More stories

  • in

    Vulnerabilities of protected lands in the face of climate and human footprint changes

    Spatial map of Chinese protected areas
    The database of protected areas (PA) distribution in China and a digitized spatial map thereof were compiled from Zhao et al.40 and Zhang et al.41. In total, we obtained the information of 2622 protected areas in China, which also included marine reserves. In order to evaluate the representation of terrestrial protected areas, we excluded marine reserves from our analyses. We also excluded Taiwan because we did not have the spatial distribution data for nature reserves in Taiwan. Finally, we had the boundary information of 2572 protected areas covering about 15.2% land area in China.
    Species’ range maps
    Range maps of threatened vertebrates (birds, mammals, amphibians and reptiles) were obtained from the IUCN’s Red List42. Distribution data of threatened plants were compiled from Flora of China, Atlas of woody plants in China, provincial and local floras, checklists of nature reserves, various inventory reports across China and peer-reviewed papers. We obtained the information for critically endangered (CR), endangered (EN) and vulnerable (VU) species. The conservation status of vertebrates was obtained from IUCN Red List42, while that of plants was obtained from Qin et al.43. In total, we obtained the distribution information of 103 birds, 86 mammals, 134 amphibians, 50 reptiles, and 2983 plants in China (see Supplementary Data 1). We estimated the number of species in each PA by overlaying the map of PA with the species’ range maps in ArcGIS 10.2 (ESRI, Redlands, CA). In order to validate the distribution of species, we further verified the presence of species in respective PA by checking their inventory reports.
    Human footprint data
    In order to measure the extent of human pressure on the protected areas, we obtained the most comprehensive global map of human pressure i.e., human footprint (HFP) from https://wcshumanfootprint.org. The human footprint measures the cumulative impact of direct pressures on environment from human activities and is based on data from built environments, agricultural lands, pasture lands, human population density, night-time lights, railways, roads and navigable waterways44. It is one of the most complete and finest terrestrial datasets on cumulative human pressure on the environment. The human footprint maps of two time periods (1993 and 2009) are available at present. We downloaded the maps of both time periods at the spatial resolution of 1 km × 1 km to quantify the change in human pressure within Chinese protected areas over a 16-year period. It should, however, be noted that any point estimate of the change in HFP might include errors due to the resolution and reliability of the component layers. For example, one of the components of HFP is the night-time lights, which changed over time from incandescent to mercury vapor to light emitting diode. This means that the change in night light is due to more than development. As a result, the systemic bias in regional economy could likely cause low HFP in wealthy as compared to rural areas. While this issue does not invalidate our analyses, such comparisons should be applied with caution.
    Climate data
    In order to represent the climatic conditions of the past and the present, we obtained 20 years climate data comprising monthly minimum temperature, monthly maximum temperature and monthly precipitation for two time periods (past: 1961–1970 and present: 2010–2019). We used 10 years window for each time period to capture the variability in climatic conditions in order to prevent over- or underestimation of the past and present climate. In total, we obtained 12 months × 10 years × 3 variables × 2 time periods = 720 global raster layers from the Climate Research Unit (CRU TS v. 4.04) database (http://www.cru.uea.ac.uk/data) at the spatial resolution of 0.5° × 0.5°45. We then calculated the monthly mean values for the three variables for each time period separately. From these monthly mean values, we estimated mean annual temperature (MAT), mean temperature of warmest quarter (MTWQ), mean temperature of coldest quarter (MTCQ), mean annual precipitation (MAP), precipitation of driest quarter (PDQ) and precipitation of wettest quarter (PWQ) for each time period using biovars function in the R package ‘dismo’46. We then estimated the average value of climate variables in each PA using zonal.stats function in the R package ‘spatialEco’47. In order to reduce dimensionality and collinearity of the 6 climate variables, we performed principal component analysis (PCA) using prcomp function in R v4.0.248. Following Carroll et al.37, we used climate data for both past and present based on the first 2 PCA axes, which explained 89.4–89.8 % of the variance (Supplementary Tables 1-2). Additionally, we also estimated the change in mean annual temperature to identify PAs that have experienced climate warming higher than the Paris Agreement threshold of 1.5 °C. All the analyses were performed in R version 4.0.248.
    Vulnerability mapping
    We calculated three indices of vulnerability within each protected area: (i) species vulnerability, (ii) anthropogenic vulnerability, and (iii) climate vulnerability. In order to measure species vulnerability, we first assigned numerical value to each IUCN threat category using a geometric progression49,50. We gave scores of 2, 4, and 8 to species belonging to categories VU, EN, and CR, respectively. We, then, summed the score of all species in each PA and standardized the value to the range of 0–1 using minimum–maximum normalization. We performed these steps separately for birds, mammals, amphibians, reptiles and plants to calculate the vulnerability score of each group. We also calculated the cumulative score by combining the total scores of all five groups. Values close to 0 indicated low species vulnerability and values close to 1 indicated high species vulnerability. Although species diversity is highly correlated with the species vulnerability metric used herein (Pearson’s correlation coefficient = 0.94 − 0.99, p  More

  • in

    Human-associated microbiota suppress invading bacteria even under disruption by antibiotics

    1.
    Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.
    CAS  Article  Google Scholar 
    2.
    Palmer AC, Kishony R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat Rev Genet. 2013;14:243–8.
    CAS  Article  Google Scholar 

    3.
    Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016;352:544–5.
    CAS  Article  Google Scholar 

    4.
    Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Investig. 2014;124:4212–8.
    Article  Google Scholar 

    5.
    Lawley TD, Walker AW. Intestinal colonization resistance. Immunology. 2013;138:1–11.
    CAS  Article  Google Scholar 

    6.
    Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol. 2019;4:35–45.
    CAS  Article  Google Scholar 

    7.
    Bhalodi AA, Engelen TSR, van, Virk HS, Wiersinga WJ. Impact of antimicrobial therapy on the gut microbiome. J Antimicrobial Chemother. 2019;74:i6–i15.
    CAS  Article  Google Scholar 

    8.
    Klümper U, Recker M, Zhang L, Yin X, Zhang T, Buckling A, et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 2019;13, 2927–37.
    Article  Google Scholar 

    9.
    Baumgartner M, Bayer F, Pfrunder-Cardozo KR, Buckling A, Hall AR. Resident microbial communities inhibit growth and antibiotic-resistance evolution of Escherichia coli in human gut microbiome samples. PLOS Biol. 2020;18:e3000465.
    CAS  Article  Google Scholar 

    10.
    Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut. 2016;65:1906–15.
    CAS  Article  Google Scholar 

    11.
    Spaulding CN, Klein RD, Schreiber HL, Janetka JW, Hultgren SJ. Precision antimicrobial therapeutics: The path of least resistance? npj Biofilms Microbiomes. 2018;4:1–7.
    Article  Google Scholar 

    12.
    Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016;24:402–13.
    CAS  Article  Google Scholar 

    13.
    Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156:3216–23.
    CAS  Article  Google Scholar 

    14.
    Stecher B, Chaffron S, Käppeli R, Hapfelmeier S, Freedrich S, Weber TC, et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010;6:e1000711.
    Article  Google Scholar 

    15.
    Van Der Waaij D, Berghuis-de Vries JM, Lekkerkerk-Van Der Wees JEC. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg. 1971;69:405–11.
    Article  Google Scholar 

    16.
    Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunological Rev. 2017;279:90–105.
    CAS  Article  Google Scholar 

    17.
    Mathieu A, Fleurier S, Frénoy A, Dairou J, Bredeche MF, Sanchez-Vizuete P, et al. Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics. Cell Rep. 2016;17:46–57.
    CAS  Article  Google Scholar 

    18.
    Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science. 2016;352:535–8.
    CAS  Article  Google Scholar 

    19.
    Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evolution. 2018;2:936–43.
    Article  Google Scholar  More

  • in

    Phylogeography and genetic diversity of the microbivalve Kidderia subquadrata, reveals new data from West Antarctic Peninsula

    1.
    Griffiths, H. J., Barnes, D. K. & Linse, K. Towards a generalized biogeography of the Southern Ocean benthos. J. Biogeogr. 36(1), 162–177 (2009).
    Article  Google Scholar 
    2.
    Halanych, K. M. & Mahon, A. R. Challenging dogma concerning biogeographic patterns of Antarctica and the Southern Ocean. Annu. Rev. Ecol. Evol. Syst. 49, 355–378 (2018).
    Article  Google Scholar 

    3.
    Broyer, C. & Koubbi, P. Chapter 1.1. Phylogeography and population genetics. In: De Broyer C., Koubbi P., Griffiths H.J., Raymond B., Udekem d’Acoz C. d’, et al. (eds.) Biogeographic Atlas of the Southern Ocean (Scientific Committee on Antarctic Research, Cambridge, 2014) pp. 2–5.

    4.
    Allcock, A. L. & Strugnell, J. M. Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol. Evol. 27(9), 520–528 (2012).
    PubMed  Article  Google Scholar 

    5.
    Holder, K., Montgomerie, R. & Friesen, V. L. A test of the glacial refugium hypothesis using patterns of mitochondrial and nuclear DNA sequence variation in rock ptarmigan (Lagopus mutus). Evolution 53(6), 1936–1950 (1999).
    CAS  PubMed  Google Scholar 

    6.
    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refuges revisited: individualistic responses of species in space and time. Proc. R. Soc. Lond. B Biol. Sci. 277(1682), 661–671 (2010).
    Google Scholar 

    7.
    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Lin. Soc. 58(3), 247–276 (1996).
    Article  Google Scholar 

    8.
    Hewitt, G. M. The structure of biodiversity–insights from molecular phylogeography. Front. Zool. 1(1), 4 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Fedorov, V. B. & Stenseth, N. C. Multiple glacial refugia in the North American Arctic: inference from phylogeography of the collared lemming (Dicrostonyx groenlandicus). Proc. R. Soc. Lond. B Biol. Sci. 269(1505), 2071–2077 (2002).
    Article  Google Scholar 

    10.
    Dalén, L. et al. Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox. Proc. Natl. Acad. Sci. 104(16), 6726–6729 (2007).
    ADS  PubMed  Article  Google Scholar 

    11.
    Thatje, S., Hillenbrand, C. D., Mackensen, A. & Larter, R. Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89(3), 682–692 (2008).
    PubMed  Article  Google Scholar 

    12.
    Weihe, E. & Abele, D. Differences in the physiological response of inter-and subtidal Antarctic limpets Nacella concinna to aerial exposure. Aquat. Biol. 4(2), 155–166 (2008).
    Article  Google Scholar 

    13.
    Abele, D. et al. Pelagic and benthic communities of the Antarctic ecosystem of Potter Cove: genomics and ecological implications. Mar. Genom. 33, 1–11 (2017).
    CAS  Article  Google Scholar 

    14.
    Provan, J. & Bennett, K. D. Phylogeographic insights into cryptic glacial refuges. Trends Ecol. Evol. 23(10), 564–571 (2008).
    PubMed  Article  Google Scholar 

    15.
    Thatje, S., Hillenbrand, C. D. & Larter, R. On the origin of Antarctic marine benthic community structure. Trends Ecol. Evol. 20(10), 534–540 (2005).
    PubMed  Article  Google Scholar 

    16.
    Díaz, A. et al. Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: the role of the last glaciation. PLoS ONE 13(6), e0197611 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    González-Wevar, C. A., Saucède, T., Morley, S. A., Chown, S. L. & Poulin, E. Extinction and recolonization of maritime Antarctica in the limpet Nacella concinna (Strebel, 1908) during the last glacial cycle: toward a model of Quaternary biogeography in shallow Antarctic invertebrates. Mol. Ecol. 22(20), 5221–5236 (2013).
    PubMed  Article  Google Scholar 

    18.
    Fraser, C. I., Terauds, A., Smellie, J., Convey, P. & Chown, S. L. Geothermal activity helps life survive glacial cycles. Proc. Natl. Acad. Sci. 111(15), 5634–5639 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Maggs, C. A. et al. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89(sp11), S108–S122 (2008).
    PubMed  Article  Google Scholar 

    20.
    Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547(7661), 49 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Mcgaughran, A. et al. Contrasting phylogeographical patterns for springtails reflect different evolutionary histories between the Antarctic Peninsula and Continental Antarctica. J. Biogeogr. 37, 103–119 (2010).
    Article  Google Scholar 

    22.
    Mcgaughran, A., Stevens, M. I., Hogg, I. D. & Carapelli, A. Extreme glacial legacies: a synthesis of the Antarctic springtail phylogeographic record. Insects 2, 62–82 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 27(8), 462–471 (2012).
    PubMed  Article  Google Scholar 

    24.
    Moore, J. M., Carvajal, J. I., Rouse, G. W. & Wilson, N. G. The Antarctic circumpolar current isolates and connects: structured circumpolarity in the sea star Glabraster Antarctica. Ecol. Evol. 8(21), 10621–10633 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Beu, A. G. Before the ice: biogeography of Antarctic Paleogene molluscan faunas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284(3–4), 191–226 (2009).
    Article  Google Scholar 

    26.
    Linse, K. Chapter 5.11. Bivalvia. In: De Broyer C., Koubbi P., Griffiths H.J., Raymond B., Udekem d’Acoz C. d’, et al. (eds.) Biogeographic Atlas of the Southern Ocean (Scientific Committee on Antarctic Research, Cambridge, 2014), pp. 126–127.

    27.
    Linse, K., Cope, T., Lörz, A. N. & Sands, C. Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol. 30(8), 1059–1068 (2007).
    Article  Google Scholar 

    28.
    Arntz, W. E., Gutt, J. & Klages, M. (1997). Antarctic marine biodiversity: an overview. In Antarctic Communities: Species, Structure and Survival 3–14 (Cambridge University Press, Cambridge, 1997).

    29.
    Brandt, A., Linse, K. & Mühlenhardt-Siegel, U. Biogeography of Crustacea and Mollusca of the SubAntarctic and Antarctic regions. Sci. Mar. 63(S1), 383–389 (1999).
    Article  Google Scholar 

    30.
    Brandt, A., Linse, K. & Schüller, M. Bathymetric distribution patterns of Southern Ocean macrofaunal taxa: Bivalvia, Gastropoda, Isopoda and Polychaeta. Deep Sea Res. Part I 56(11), 2013–2025 (2009).
    Article  Google Scholar 

    31.
    Canapa, A. et al. A molecular analysis of the systematics of three Antarctic bivalves. Ital. J. Zool. 67(S1), 127–132 (2000).
    CAS  Article  Google Scholar 

    32.
    Page, T. J. & Linse, K. More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol. 25(11), 818–826 (2002).
    Article  Google Scholar 

    33.
    Passos, F. D. & Magalhães, F. T. A comparative study of the Bivalvia (Mollusca) from the continental shelves of Antarctica and Brazil. Biota. Neotrop. 11(1), 143–155 (2011).
    Article  Google Scholar 

    34.
    Jackson, J. A., Linse, K., Whittle, R. & Griffiths, H. J. The evolutionary origins of the Southern Ocean philobryid bivalves: hidden biodiversity, ancient persistence. PLoS ONE 10(4), e0121198 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    González-Wevar, C. A. et al. Cryptic speciation in Southern Ocean Aequiyoldia eightsii (Jay, 1839): Mio-Pliocene trans-Drake Passage separation and diversification. Prog. Oceanogr. 174, 44–54 (2019).
    ADS  Article  Google Scholar 

    36.
    Powell, D. K., Tyler, P. A. & Peck, L. S. Effect of sperm concentration and sperm ageing on fertilisation success in the Antarctic soft-shelled clam Laternula elliptica and the Antarctic limpet Nacella concinna. Mar. Ecol. Prog. Ser. 215, 191–200 (2001).
    ADS  Article  Google Scholar 

    37.
    Taylor, J. D. et al. Left in the cold? Evolutionary origin of Laternula elliptica, a keystone bivalve species of Antarctic benthos. Biol. J. Lin. Soc. 123(2), 360–376 (2018).
    Article  Google Scholar 

    38.
    Lau, S. C., Grange, L. J., Peck, L. S. & Reed, A. J. The reproductive ecology of the Antarctic bivalve Aequiyoldia eightsii (Protobranchia: Sareptidae) follows neither Antarctic nor taxonomic patterns. Pol. Biol., 1–14 (2018).

    39.
    Helmuth, B., Veit, R. R. & Holberton, R. Long-distance dispersal of a subAntarctic brooding bivalve (Gaimardia trapesina) by kelp-rafting. Mar. Biol. 120(3), 421–426 (1994).
    Article  Google Scholar 

    40.
    Hunter, R. L. & Halanych, K. M. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J. Hered. 99(2), 137–148 (2008).
    CAS  PubMed  Article  Google Scholar 

    41.
    Sherman, C. D. H., Hunt, A. & Ayre, D. J. Is life history a barrier to dispersal? Contrasting patterns of genetic differentiation along an oceanographically complex coast. Biol. J. Linn. Soc. 95, 106–116 (2008).
    Article  Google Scholar 

    42.
    Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17(23), 5104–5117 (2008).
    CAS  PubMed  Article  Google Scholar 

    43.
    Janosik, A. M., Mahon, A. R. & Halanych, K. M. Evolutionary history of Southern Ocean Odontaster sea star species (Odontasteridae; Asteroidea). Polar Biol. 34(4), 575–586 (2011).
    Article  Google Scholar 

    44.
    Thatje, S. Effects of capability for dispersal on the evolution of diversity in Antarctic benthos. Integr. Comp. Biol. ics105 (2012).

    45.
    Hüne, M. et al. Low level of genetic divergence between Harpagifer fish species (Perciformes: Notothenioidei) suggests a Quaternary colonization of Patagonia from the Antarctic Peninsula. Polar Biol. 38(5), 607–617 (2015).
    Article  Google Scholar 

    46.
    Pelseneer, P. Mollusques (Amphineures, Gastropodes et Lamellibranches) Expédition Antartique Belge: Résultats Voyage du S. Y. Belgica en 1897–1898–1899 7 85, pp., pls. 1–9 (1903).

    47.
    Shabica, S. V. Reproductive biology of the brooding Antarctic lamellibranch Kidderia Subquadrata Pelseneer 1974. MSc Thesis. School of Oceanography, Oregon.

    48.
    Linse, K., Griffiths, H. J., Barnes, D. K. & Clarke, A. Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca. Deep Sea Res. Part II 53(8), 985–1008 (2006).
    ADS  Article  Google Scholar 

    49.
    Baird, H. P., Miller, K. J. & Stark, J. S. Genetic population structure in the Antarctic benthos: insights from the widespread amphipod Orchomenella franklini. PloS one 7(3), e34363 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Havermans, C. et al. Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS ONE 8(9), e74218 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Hoffman, J. I., Clarke, A., Linse, K. & Peck, L. S. Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar. Biol. 158(2), 287–296 (2011).
    Article  Google Scholar 

    52.
    González-Wevar, C. A., Nakano, T., Cañete, J. I. & Poulin, E. Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol. Phylogenet. Evol. 56(1), 115–124 (2010).
    PubMed  Article  Google Scholar 

    53.
    Moreau, C. et al. Is reproductive strategy a key factor in understanding the evolutionary history of Southern Ocean Asteroidea (Echinodermata)?. Ecol. Evol. 9(15), 8465–8478 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Thompson, A. F., Heywood, K. J., Thorpe, S. E., Renner, A. H. & Trasviña, A. Surface circulation at the tip of the Antarctic Peninsula from drifters. J. Phys. Oceanogr. 39(1), 3–26 (2009).
    ADS  Article  Google Scholar 

    55.
    Du, G., Zhang, Z., Zhou, M., Zhu, Y. & Zhong, Y. The upper 1000-m slope currents North of the South Shetland Islands and Elephant Island based on ship cruise observations. J. Ocean Univ. China 17(2), 420–432 (2018).
    ADS  Article  Google Scholar 

    56.
    Hofmann, E. E., Klinck, J. M., Lascara, C. M. & Smith, D. A. Water mass distribution and circulation west of the Antarctic Peninsula and including Bransfield Strait. Found. Ecol. Res. West Antarctic Peninsula 70, 61–80 (1996).
    Article  Google Scholar 

    57.
    Leiva, C., Riesgo, A., Avila, C., Rouse, G. W. & Taboada, S. Population structure and phylogenetic relationships of a new shallow-water Antarctic phyllodocid annelid. Zoolog. Scr. 47(6), 714–726 (2018).
    Article  Google Scholar 

    58.
    Savidge, D. K. & Amft, J. A. Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects. Deep Sea Res. Part I 56(10), 1633–1655 (2009).
    Article  Google Scholar 

    59.
    Veit-Köhler, G. et al. Oceanographic and topographic conditions structure benthic meiofauna communities in the Weddell Sea, Bransfield Strait and Drake Passage (Antarctic). Prog. Oceanogr. 162, 240–256 (2018).
    ADS  Article  Google Scholar 

    60.
    Barlett, E. M. R., Tosonotto, G. V., Piola, A. R., Sierra, M. E. & Mata, M. M. On the temporal variability of intermediate and deep waters in the Western Basin of the Bransfield Strait. Deep Sea Res. Part II 149, 31–46 (2018).
    Article  Google Scholar 

    61.
    Riesgo, A., Taboada, S. & Avila, C. Evolutionary patterns in Antarctic marine invertebrates: an update on molecular studies. Mar. Genom. 23, 1–13 (2015).
    Article  Google Scholar 

    62.
    Sugden, D. E. & Clapperton, C. M. The maximum ice extent on island groups in the Scotia Sea Antarctica. Quatern. Res. 7(2), 268–282 (1977).
    ADS  Article  Google Scholar 

    63.
    Gersonde, R., Crosta, X., Abelmann, A. & Armand, L. Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum-a circum-Antarctic view based on siliceous microfossil records. Quatern. Sci. Rev. 24(7–9), 869–896 (2005).
    ADS  Article  Google Scholar 

    64.
    Ingólfsson, Ó. & Hjort, C. Glacial history of the Antarctic Peninsula since the Last Glacial Maximum—a synthesis. Polar Res. 21(2), 227–234 (2002).
    Google Scholar 

    65.
    Simms, A. R., Milliken, K. T., Anderson, J. B. & Wellner, J. S. The marine record of deglaciation of the South Shetland Islands, Antarctica since the Last Glacial Maximum. Quatern. Sci. Rev. 30(13–14), 1583–1601 (2011).
    ADS  Article  Google Scholar 

    66.
    Herron, M. J. & Anderson, J. B. Late quaternary glacial history of the South Orkney Plateau Antarctica. Quatern. Res. 33(3), 265–275 (1990).
    ADS  Article  Google Scholar 

    67.
    Anderson, J. B., Shipp, S. S., Lowe, A. L., Wellner, J. S. & Mosola, A. B. The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quatern. Sci. Rev. 21(1–3), 49–70 (2002).
    ADS  Article  Google Scholar 

    68.
    Nikula, R., Fraser, C. I., Spencer, H. G. & Waters, J. M. Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Mar. Ecol. Prog. Ser. 405, 221–230 (2010).
    ADS  CAS  Article  Google Scholar 

    69.
    Fraser, C. I., Morrison, A. & Rojas, P. O. (2020). Biogeographic Processes Influencing Antarctic and sub-Antarctic Seaweeds. In Antarctic Seaweeds 43–57 (Springer, Cham, 2020).

    70.
    Ávila, C. et al. Invasive marine species discovered on non-native kelp rafts in the warmest Antarctic island. Sci. Rep. 10(1), 1–9 (2020).
    Article  CAS  Google Scholar 

    71.
    Takahata, N. & Slatkin, M. Private alleles in a partially isolated population II: distribution of persistence time and probability of emigration. Theor. Popul. Biol. 30(2), 180–193 (1986).
    MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

    72.
    Stevens, M. I. & Hogg, I. D. Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land Antarctica. Mol. Ecol. 12(9), 2357–2369 (2003).
    CAS  PubMed  Article  Google Scholar 

    73.
    Rogers, A. D. Evolution and biodiversity of Antarctic organisms: a molecular perspective. Philos. Trans. R. Soc. B Biol. Sci. 362(1488), 2191–2214 (2007).
    CAS  Article  Google Scholar 

    74.
    Dahlgren, T. G., Weinberg, J. R. & Halanych, K. M. Phylogeography of the ocean quahog (Arctica islandica): influences of paleoclimate on genetic diversity and species range. Mar. Biol. 137(3), 487–495 (2000).
    Article  Google Scholar 

    75.
    Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25(1), 1–45 (1950).
    CAS  PubMed  Article  Google Scholar 

    76.
    Peck, L. S. & Bullough, L. W. Growth and population structure in the infaunal bivalve Yoldia eightsi in relation to iceberg activity at Signy Island Antarctica. Mar. Biol. 117(2), 235–241 (1993).
    Article  Google Scholar 

    77.
    Waller, C. L., Barnes, D. K. & Convey, P. Ecological contrasts across an Antarctic land–sea interface. Austral Ecol. 31(5), 656–666 (2006).
    Article  Google Scholar 

    78.
    Barnes, D. K. & Conlan, K. E. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1477), 11–38 (2007).
    PubMed  Article  Google Scholar 

    79.
    Hebert, P. D., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B Biol. Sci. 270(Suppl 1), S96–S99 (2003).
    CAS  Google Scholar 

    80.
    Cook, L. G., Edwards, R. D., Crisp, M. D. & Hardy, N. B. Need morphology always be required for new species descriptions?. Invertebr. Syst. 24(3), 322–326 (2010).
    Article  Google Scholar 

    81.
    Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522(7557), 431–438 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    82.
    Wilson, N. G., Schrodl, M. & Halanych, K. M. Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol. Ecol. 18, 965–984 (2009).
    PubMed  Article  Google Scholar 

    83.
    Allcock, A. L. et al. Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep Sea Res. II 58, 242–249 (2011).
    ADS  Article  Google Scholar 

    84.
    Verheye, M. L., Backeljau, T. & d’Acoz, C. D. U. Looking beneath the tip of the iceberg: diversification of the genus Epimeria on the Antarctic shelf (Crustacea, Amphipoda). Polar Biol 39, 925–945 (2016).
    Article  Google Scholar 

    85.
    Durand, J. D., Blel, H., Shen, K. N., Koutrakis, E. T. & Guinand, B. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: a single mitochondrial clade and many nuclear barriers. Mar. Ecol. Prog. Ser. 474, 243–261 (2013).
    ADS  Article  Google Scholar 

    86.
    Bonnet, T., Leblois, R., Rousset, F. & Crochet, P. A. A reassessment of explanations for discordant introgressions of mitochondrial and nuclear genomes. Evolution 71(9), 2140–2158 (2017).
    PubMed  Article  Google Scholar 

    87.
    Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    88.
    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11), 1451–1452 (2009).
    CAS  PubMed  Article  Google Scholar 

    89.
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 35: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567 (2010).
    PubMed  Article  Google Scholar 

    90.
    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209–220 (1967).
    CAS  Google Scholar 

    92.
    Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph Stat. 5, 299–314 (1996).
    Google Scholar 

    93.
    Dupanloup, I., Schneider, S. & Excoffier, L. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol. 11(12), 2571–2581 (2002).
    CAS  PubMed  Article  Google Scholar 

    94.
    Guillot, G., Mortier, F. & Estoup, A. GENELAND: a computer package for landscape genetics. Mol. Ecol. Notes 5(3), 712–715 (2005).
    CAS  Article  Google Scholar 

    95.
    Salzburger, W., Ewing, G. B. & Von Haeseler, A. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 20(9), 1952–1963 (2011).
    PubMed  Article  Google Scholar 

    96.
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3), 585–595 (1989).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2), 915–925 (1997).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    99.
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9(8), 772 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    100.
    Marko, P. B. & Moran, A. L. Out of sight, out of mind: high cryptic diversity obscures the identities and histories of geminate species in the marine bivalve subgenus Acar. J. Biogeogr. 36(10), 1861–1880 (2009).
    Article  Google Scholar 

    101.
    Wilke, T., Schultheiß, R. & Albrecht, C. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. Am. Malacol. Bull. 27(1/2), 25–45 (2009).
    Article  Google Scholar 

    102.
    Ho, S. Y., Phillips, M. J., Cooper, A. & Drummond, A. J. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol. Biol. Evol. 22(7), 1561–1568 (2005).
    CAS  PubMed  Article  Google Scholar 

    103.
    Hoareau, T. B. Late glacial demographic expansion motivates a clock overhaul for population genetics. Syst. Biol. 65(3), 449–464 (2015).
    PubMed  Article  Google Scholar 

    104.
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1 6, 2014 (2016).

    105.
    Cornuet, J. M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Article  Google Scholar 

    106.
    Cabrera, A. A. & Palsbøll, P. J. Inferring past demographi changes from contemporary genetic data: a simulation-based evaluation of the ABC methods implemented in DIYABC. Mol. Ecol. Resour. 17(6), e94–e110 (2017).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Premating barriers in young sympatric snail species

    1.
    Mayr, E. Ecological factors in speciation. Evolution https://doi.org/10.1111/j.1558-5646.1947.tb02723.x (1947).
    Article  Google Scholar 
    2.
    Coyne, J. A. & Orr, H. A. Speciation Vol. 38 (Sinauer Associates, Sunderland MA, 2004).
    Google Scholar 

    3.
    Rosenblum, E. B. et al. Goldilocks meets Santa Rosalia: An ephemeral speciation model explains patterns of diversification across time scales. Evol. Biol. 39, 255–261. https://doi.org/10.1007/s11692-012-9171-x (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Dobzhansky, T. Genetics and the Origin of Species (Columbia University Press, Columbia, 1937).
    Google Scholar 

    5.
    Edmands, S. Does parental divergence predict reproductive compatibility?. Trends Ecol. Evol. 17, 520–527. https://doi.org/10.1016/S0169-5347(02)02585-5 (2002).
    Article  Google Scholar 

    6.
    Turissini, D. A., McGirr, J. A., Patel, S. S., David, J. R. & Matute, D. R. The rate of evolution of postmating-prezygotic reproductive isolation in Drosophila. Mol. Biol. Evol. 35, 312–334. https://doi.org/10.1093/molbev/msx271 (2018).
    CAS  Article  PubMed  Google Scholar 

    7.
    Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59, 705–719. https://doi.org/10.1111/j.0014-3820.2005.tb01747.x (2005).
    Article  PubMed  Google Scholar 

    8.
    Crespi, B. J. Causes of assortative mating in arthropods. Anim. Behav. 38, 980–1000. https://doi.org/10.1016/S0003-3472(89)80138-1 (1989).
    Article  Google Scholar 

    9.
    Smadja, C. M. & Butlin, R. K. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 20, 5123–5140. https://doi.org/10.1111/j.1365-294X.2011.05350.x (2011).
    Article  PubMed  Google Scholar 

    10.
    Servedio, M. R. Geography, assortative mating, and the effects of sexual selection on speciation with gene flow. Evol. Appl. 9, 91–102. https://doi.org/10.1111/eva.12296 (2016).
    Article  PubMed  Google Scholar 

    11.
    Merot, C., Salazar, C., Merrill, R. M., Jiggins, C. D. & Joron, M. What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies. Proc. R. Soc. B Biol. Sci. 284, 20170335. https://doi.org/10.1098/rspb.2017.0335 (2017).
    Article  Google Scholar 

    12.
    Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20. https://doi.org/10.1086/694889 (2018).
    Article  PubMed  Google Scholar 

    13.
    Janicke, T., Marie-Orleach, L., Aubier, T. G., Perrier, C. & Morrow, E. H. Assortative mating in animals and its role for speciation. Am. Nat. 194, 865–875. https://doi.org/10.1086/705825 (2019).
    Article  PubMed  Google Scholar 

    14.
    Richards, E. J., Servedio, M. R. & Martin, C. H. Searching for sympatric speciation in the genomic era. BioEssays 41, 1900047. https://doi.org/10.1002/bies.201900047 (2019).
    Article  Google Scholar 

    15.
    Jennings, J. H., Snook, R. R. & Hoikkala, A. Reproductive isolation among allopatric Drosophila montana populations. Evolution 68, 3095–3108. https://doi.org/10.1111/evo.12535 (2014).
    Article  PubMed  Google Scholar 

    16.
    Alipaz, J. A., Wu, C. & Karr, T. L. Gametic incompatibilities between races of Drosophila melanogaster. Proc. R. Soc. Lond. B https://doi.org/10.1098/rspb.2000.1420 (2001).
    Article  Google Scholar 

    17.
    McQuaid, C. D. & Dower, K. M. Enhancement of habitat heterogeneity and species richness on rocky shores inundated by sand. Oecologia 84, 142–144. https://doi.org/10.1007/BF00665608 (1990).
    ADS  Article  PubMed  Google Scholar 

    18.
    Archambault, P. & Bourget, E. Scales of coastal heterogeneity and benthic intertidal species richness, diversity and abundance. Mar. Ecol. Prog. Ser. 136, 111–121. https://doi.org/10.3354/meps136111 (1996).
    ADS  Article  Google Scholar 

    19.
    de Forges, B. R., Koslow, J. A. & Poore, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944–947. https://doi.org/10.1038/35016066 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    20.
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35. https://doi.org/10.1890/04-0922 (2005).
    Article  Google Scholar 

    21.
    Williams, S. T. & Reid, D. G. Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina. Evolution 58, 2227–2251. https://doi.org/10.1111/j.0014-3820.2004.tb01600.x (2004).
    CAS  Article  PubMed  Google Scholar 

    22.
    Frey, M. A. The relative importance of geography and ecology in species diversification: evidence from a tropical marine intertidal snail (Nerita). J. Biogeogr. 37, 1515–1528. https://doi.org/10.1111/j.1365-2699.2010.02283.x (2010).
    Article  Google Scholar 

    23.
    Pereyra, R. T., Bergström, L., Kautsky, L. & Johannesson, K. Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evol. Biol. 9, 70. https://doi.org/10.1186/1471-2148-9-70 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Cánovas, F. G., Mota, C. F., Serrão, E. A. & Pearson, G. A. Driving south: A multi-gene phylogeny of the brown algal family Fucaceae reveals relationships and recent drivers of a marine radiation. BMC Evol. Biol. 11, 371. https://doi.org/10.1186/1471-2148-11-371 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    25.
    Coyer, J. A. et al. Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Mol. Phylogenet. Evol. 58, 283–296. https://doi.org/10.1016/j.ympev.2010.11.015 (2011).
    CAS  Article  PubMed  Google Scholar 

    26.
    Robinson, J. D. & Dillon, R. T. Genetic divergence among sympatric populations of three species of oyster drills (Urosalpinx) in Cedar Key Florida. Bull. Mar. Sci. 82, 19–31 (2008).
    Google Scholar 

    27.
    Wares, J. P. Intraspecific variation and geographic isolation in Idotea balthica (Isopoda: Valvifera). J. Crustac. Biol. 21, 1007–1013. https://doi.org/10.1163/20021975-99990193 (2001).
    Article  Google Scholar 

    28.
    Maltseva, A. L. et al. Microhabitat distribution, shell shape, and metabolomes in sympatric populations of closely related species of the genus Littorina (Neritrema) in two sites in the Norwegian and Barents Sea. PeerJ https://doi.org/10.1594/PANGAEA.923735 (2021).
    Article  Google Scholar 

    29.
    Pickles, A. & Grahame, J. Mate choice in divergent morphs of the gastropod mollusc Littorina saxatilis (Olivi): speciation in action?. Anim. Behav. 58, 181–184. https://doi.org/10.1006/anbe.1999.1115 (1999).
    CAS  Article  PubMed  Google Scholar 

    30.
    Erlandsson, J. Do reproductive strategy and breeding season influence the presence of mate recognition in the intertidal snail Littorina?. Invertebr. Reprod. Dev. 41, 53–60. https://doi.org/10.1080/07924259.2002.9652735 (2002).
    Article  Google Scholar 

    31.
    Johannesson, K. et al. Male discrimination of female mucous trails permits assortative mating in a marine snail species. Evolution 62, 3178–3184. https://doi.org/10.2307/25483552 (2008).
    Article  PubMed  Google Scholar 

    32.
    Ng, T. P. & Johannesson, K. No precopulatory inbreeding avoidance in the intertidal snail Littorina saxatilis. J. Molluscan Stud. 82, 213–215. https://doi.org/10.1093/mollus/eyv035 (2016).
    Article  Google Scholar 

    33.
    Reid, D. G. Systematics and evolution of Littorina. vol. 164 (The Ray Society, 1996).

    34.
    Granovitch, A. I., Mikhailova, N. A., Znamenskaya, O. & Petrova, Y. A. Species complex of mollusks of the genus Littorina (Gastropoda, Prosobranchia) from the eastern Murman coast. Zool. Z. 83, 1305–1316 (2004) (In Russian).
    Google Scholar 

    35.
    Reid, D. G., Dyal, P. & Williams, S. T. A global molecular phylogeny of 147 periwinkle species (Gastropoda, Littorininae). Zool. Scr. 41, 125–136. https://doi.org/10.1111/j.1463-6409.2011.00505.x (2012).
    Article  Google Scholar 

    36.
    Granovitch, A. I., Maximovich, A. N., Avanesyan, A. V., Starunova, Z. I. & Mikhailova, N. A. Micro-spatial distribution of two sibling periwinkle species across the intertidal indicates hybrdization. Genetica 141, 293–301. https://doi.org/10.1007/s10709-013-9728-3 (2013).
    Article  PubMed  Google Scholar 

    37.
    Raffaelli, D. G. Observations of the copulatory behavior of Littorina rudis Maton and Littorina nigrolineata Gray (Gastropoda: Prosobranchia). Veliger 20, 75–77. https://doi.org/10.1007/BF00028082 (1977).
    Article  Google Scholar 

    38.
    Saur, M. Mate discrimination in Littorina littorea (L.) and L. saxatilis (Olivi) (Mollusca:Prosobranchia). Hydrobiologia 193, 261–270. https://doi.org/10.1007/BF00028082 (1990).
    Article  Google Scholar 

    39.
    Erlandsson, J. & Johannesson, K. Sexual selection on female size in a marine snail, Littorina littorea (L.). J. Exp. Mar. Biol. Ecol. 181, 145–157. https://doi.org/10.1016/0022-0981(94)90125-2 (1994).
    Article  Google Scholar 

    40.
    Johannesson, K., Rolán-Alvarez, E. & Ekendahl, A. Incipient reproductive isolation between two sympatric morphs of the intertidal snail Littorina saxatilis. Evolution 49, 1180–1190. https://doi.org/10.1111/j.1558-5646.1995.tb04445.x (1995).
    Article  PubMed  Google Scholar 

    41.
    Rolán-Alvarez, E., Zapata, C. & Alvarez, G. Multilocus heterozygosity and sexual selection in a natural population of the marine snail Littorina mariae (Gastropoda: Prosobranchia). Heredity 75, 17–25. https://doi.org/10.1038/hdy.1995.99 (1995).
    Article  Google Scholar 

    42.
    Erlandsson, J. & Rolán-Alvarez, E. Sexual selection and assortative mating by size and their roles in the maintenance of a polymorphism in Swedish Littorina saxatilis populations. Hydrobiologia 378, 59–69. https://doi.org/10.1023/A:1003277202763 (1998).
    Article  Google Scholar 

    43.
    Rolán-Alvarez, E., Erlandsson, J., Johannesson, K. & Cruz, R. Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations. J. Evol. Biol. 12, 879–890. https://doi.org/10.1046/j.1420-9101.1999.00086.x (1999).
    Article  Google Scholar 

    44.
    Johannesson, K., Saltin, S. H., Duranovic, I., Havenhand, J. N. & Jonsson, P. R. Indiscriminate males: Mating behaviour of a marine snail compromised by a sexual conflict?. PLoS ONE 5, e12005. https://doi.org/10.1371/journal.pone.0012005 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Ng, T. P. T., Davies, M. S., Stafford, R. & Williams, G. A. Mucus trail following as a mate-searching strategy in mangrove littorinid snails. Anim. Behav. 82, 459–465. https://doi.org/10.1016/j.anbehav.2011.05.017 (2011).
    Article  Google Scholar 

    46.
    Saltin, S. H. Mate Choice and Its Evolutionary Consequences in Intertidal Snails (Littorina spp.). (Thesis for the degree of Doctor of Philosophy). Gothenburg, Sweden: University of Gothenburg. (2013).

    47.
    Estévez, D. et al. A novel method to estimate the spatial scale of mate choice in the wild. Behav. Ecol. Sociobiol. 72, 195. https://doi.org/10.1007/s00265-018-2622-3 (2018).
    Article  Google Scholar 

    48.
    Carvajal-Rodríguez, A. Multi-model inference of non-random mating from an information theoretic approach. Theor. Popul. Biol. 131, 38–53. https://doi.org/10.1016/j.tpb.2019.11.002 (2020).
    Article  PubMed  MATH  Google Scholar 

    49.
    Perini, S., Rafajlović, M., Westram, A. M., Johannesson, K. & Butlin, R. K. Assortative mating, sexual selection, and their consequences for gene flow in Littorina. Evolution 74, 1482–1497. https://doi.org/10.1111/evo.14027 (2020).
    Article  PubMed  Google Scholar 

    50.
    Hollander, J., Lindegarth, M. & Johannesson, K. Local adaptation but not geographical separation promotes assortative mating in a snail. Anim. Behav. 70, 1209–1219. https://doi.org/10.1016/j.anbehav.2005.03.014 (2005).
    Article  Google Scholar 

    51.
    Merrell, D. J. Measurement of sexual isolation and selective mating. Evolution https://doi.org/10.2307/2405599 (1950).
    ADS  Article  Google Scholar 

    52.
    Rolán-Alvarez, E. & Caballero, A. Estimating sexual selection and sexual isolation effects from mating frequencies. Evolution 54, 30–36. https://doi.org/10.1111/j.0014-3820.2000.tb00004.x (2000).
    Article  PubMed  Google Scholar 

    53.
    Ter Braak, C. J. F. Partial canonical correspondence analysis. In Classification and Related Methods of data Analysis: Proceedings of the First Conference of the International Federation of Classification Societies (IFCS), Technical University of Aachen, FRG, 29 June-1 July 1987 551–558 (Elsevier, 1988).

    54.
    Legendre, P. & Legendre, L. Numerical Ecology Vol. 24 (Elsevier, Amsterdam, 2012).
    Google Scholar 

    55.
    Hannaford Ellis, C. J. Patterns of reproduction in four Littorina species. J. Molluscan Stud. 49, 98–106. https://doi.org/10.1093/oxfordjournals.mollus.a065711 (1983).
    Article  Google Scholar 

    56.
    Sokolova, I. M. Influence of trematodes on the demography of Littorina saxatilis (Gastropoda: Prosobranchia: Littorinidae) in the White Sea. Dis. Aquat. Organ. 21, 91–101. https://doi.org/10.3354/dao021091 (1995).
    Article  Google Scholar 

    57.
    Hull, S. L., Grahame, J. & Mill, P. J. Reproduction in four populations of brooding periwinkle (Littorina) at Ravenscar, North Yorkshire: Adaptation to the local environment?. J. Mar. Biol. Assoc. 79, 891–898. https://doi.org/10.1017/S0025315499001058 (1999).
    Article  Google Scholar 

    58.
    Ganzha, E. V., Granovitch, A. I., Petrova, Y. A. & Mikhailova, N. A. Hystological analysis of penial glands of Littorina mollusks. Vestn. -Peterbg. Univ. 3, 40–46 (2006) (In Russian).
    Google Scholar 

    59.
    Granovitch, A. I., Loskutova, Z. I., Gracheva, Y. A. & Mikhailova, N. A. Morphometric comparison of the copulatory organ in mollusks of ‘saxatilis’ species complex (Caenogastropoda: Littorinidae): problems of identification of species and species status. Zool. Z. 87, 1425–1436 (2008).
    Google Scholar 

    60.
    Mikhailova, N. A., Gracheva, Y. A. & Granovitch, A. I. Analysis of the interspecific mating frequency in the copulating pairs of the marine gastropods genus Littorina in “saxatilis” complex. Vestn. St Petersburg State Univ. 3, 5–9 (2008) (In Russian).
    Google Scholar 

    61.
    Mikhailova, N. A., Gracheva, Y. A., Backeljau, T. & Granovitch, A. I. A potential species-specific molecular marker suggests interspecific hybridization between sibling species Littorina arcana and L. saxatilis (Mollusca, Caenogastropoda) in natural populations. Genetica 137, 333. https://doi.org/10.1007/s10709-009-9397-4 (2009).
    CAS  Article  PubMed  Google Scholar 

    62.
    Reid, D. G. Barnacle-dwelling ecotypes of three British Littorina species and the status of Littorina neglecta Bean. J. Molluscan Stud. 59, 51–62. https://doi.org/10.1093/mollus/59.1.51 (1993).
    Article  Google Scholar 

    63.
    Warwick, T., Knight, A. & Ward, R. Hybridisation in the Littorina saxatilis species complex (Prosobranchia: Mollusca). Hydrobiologia 193, 109–116. https://doi.org/10.1007/BF00028070 (1990).
    Article  Google Scholar 

    64.
    Stankowski, S. et al. The evolution of strong reproductive isolation between sympatric intertidal snails. Philos. Trans. R. Soc. B 375, 20190545. https://doi.org/10.1098/rstb.2019.0545 (2020).
    CAS  Article  Google Scholar 

    65.
    Rolán-Alvarez, E. et al. The scale-of-choice effect and how estimates of assortative mating in the wild can be biased due to heterogeneous samples. Evolution 69, 1845–1857. https://doi.org/10.1111/evo.12691 (2015).
    Article  PubMed  Google Scholar 

    66.
    Ng, T. P. T., Williams, G. A., Davies, M. S., Stafford, R. & Rolán-Alvarez, E. Sampling scale can cause bias in positive assortative mating estimates: Evidence from two intertidal snails. Biol. J. Linn. Soc. 119, 414–419. https://doi.org/10.1111/bij.12839 (2016).
    Article  Google Scholar 

    67.
    Mirkin, B. Mathematical Classification and Clustering (Springer Science & Business Media, Berlin, 1996).
    Google Scholar 

    68.
    Rand, W. M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850. https://doi.org/10.2307/2284239 (1971).
    Article  Google Scholar 

    69.
    Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720. https://doi.org/10.1093/bioinformatics/btv428 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    70.
    R Core Team. R: A language and environment for statistical computing. Version 3.6.0. (R Foundation for Statistical Computing, 2019).

    71.
    RStudio Team. RStudio: Integrated Development Environment for R. (2019).

    72.
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer-Verlag, New York, 2011).
    Google Scholar 

    73.
    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5–5. (2019).

    74.
    Bateman, A. J. Analysis of data on sexual isolation. Evolution https://doi.org/10.1111/j.1558-5646.1949.tb00017.x (1949).
    Article  PubMed  Google Scholar 

    75.
    Pérez-Figueroa, A., Caballero, A. & Rolán-Alvarez, E. Comparing the estimation properties of different statistics for measuring sexual isolation from mating frequencies. Biol. J. Linn. Soc. 85, 307–318. https://doi.org/10.1111/j.1095-8312.2005.00491.x (2005).
    Article  Google Scholar 

    76.
    Wheeler, B. & Torchiano, M. lmPerm: Permutation Tests for Linear Models. R Package Version 2.1–0. (2016).

    77.
    Maxwell, S. E., Delaney, H. D. & Kelley, K. Designing Experiments and Analyzing Data: A model Comparison Perspective (Routledge, London, 2017).
    Google Scholar 

    78.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).
    Google Scholar 

    79.
    Struhsaker, J. W. Breeding, spawning, spawning periodicity and early development in the Hawaiian Littorina: L. pintado (Wood), L. picta Philippi and L. scabra (Linné). J. Molluscan Stud. 37, 137–166. https://doi.org/10.1093/oxfordjournals.mollus.a064985 (1966).
    Article  Google Scholar 

    80.
    Kemppainen, P., Panova, M., Hollander, J. & Johannesson, K. Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. J. Evol. Biol. 22, 2000–2011. https://doi.org/10.1111/j.1420-9101.2009.01810.x (2009).
    CAS  Article  PubMed  Google Scholar 

    81.
    Carvalho, J. et al. De novo isolation of 17 microsatellite loci for flat periwinkles (Littorina fabalis and L. obtusata) and their application for species discrimination and hybridization studies. J. Molluscan Stud. 81, 421–425. https://doi.org/10.1093/mollus/eyv014 (2015).
    Article  Google Scholar 

    82.
    Costa, D. et al. Hybridization patterns between two marine snails, Littorina fabalis and L. obtusata. Ecol. Evol. 10, 1158–1179. https://doi.org/10.1002/ece3.5943 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    83.
    Carvalho, J., Sotelo, G., Galindo, J. & Faria, R. Genetic characterization of flat periwinkles (Littorinidae) from the Iberian Peninsula reveals interspecific hybridization and different degrees of differentiation. Biol. J. Linn. Soc. 118, 503–519. https://doi.org/10.1111/bij.12762 (2016).
    Article  Google Scholar 

    84.
    Maltseva, A. L. et al. Proteomic similarity of the Littorinid snails in the evolutionary context. PeerJ 8, e8546. https://doi.org/10.7717/peerj.8546 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    85.
    Ng, T. P. et al. The causal relationship between sexual selection and sexual size dimorphism in marine gastropods. Anim. Behav. 148, 53–62. https://doi.org/10.1016/j.anbehav.2018.12.005 (2019).
    Article  Google Scholar 

    86.
    Tatarenkov, A. & Johannesson, K. Evidence of a reproductive barrier between two forms of the marine periwinkle Littorina fabalis (Gastropoda). Biol. J. Linn. Soc. 63, 349–365. https://doi.org/10.1111/j.1095-8312.1998.tb01522.x (1998).
    Article  Google Scholar 

    87.
    Carvalho, J. G. M. Study on the Diversification of Flat Periwinkles (Littorina fabalis and L. obtusata): Insights from Genetics and Geometric Morphometrics. Doctoral Dissertation (2014).

    88.
    Lobov, A. A., Maltseva, A. L., Mikhailova, N. A. & Granovitch, A. I. LOSP: A newly identified sperm protein from Littorina obtusata. J. Molluscan Stud. 81, 512–515. https://doi.org/10.1093/mollus/eyv010 (2015).
    Article  Google Scholar 

    89.
    Lobov, A. A. et al. LOSP: A putative marker of parasperm lineage in male reproductive system of the prosobranch mollusk Littorina obtusata. J. Exp. Zool. B 330, 193–201. https://doi.org/10.1002/jez.b.22803 (2018).
    CAS  Article  Google Scholar 

    90.
    Buckland-Nicks, J. A., Healy, J. M., Jamieson, B. G. M. & O’Leary, S. Paraspermatogenesis in Littoraria (Palustorina) articulata, with reference to other Littorinidae (Littorinoidea, Caenogastropoda). Invertebr. Biol. 119, 254–264. https://doi.org/10.1111/j.1744-7410.2000.tb00012.x (2000).
    Article  Google Scholar 

    91.
    Lobov, A. Gamete interaction proteins as factors of reproductive isolation of cryptic species of the genus Littorina Férussac, 1822. Thesis for the degree of Candidate of Biological Sciences. St.-Petersburg State University. https://doi.org/10.13140/RG.2.2.16769.68968. (2020).

    92.
    Ng, T. P. et al. Snails and their trails: the multiple functions of trail-following in gastropods. Biol. Rev. 88, 683–700. https://doi.org/10.1111/brv.12023 (2013).
    Article  PubMed  Google Scholar 

    93.
    Erlandsson, J. & Kostylev, V. Trail following, speed and fractal dimension of movement in a marine prosobranch, Littorina littorea, during a mating and a non-mating season. Mar. Biol. 122, 87–94. https://doi.org/10.1007/BF00349281 (1995).
    Article  Google Scholar 

    94.
    Rolán-Alvarez, E. et al. Nonallopatric and parallel origin of local reproductive barriers between two snail ecotypes. Mol. Ecol. 13, 3415–3424. https://doi.org/10.1111/j.1365-294X.2004.02330.x (2004).
    CAS  Article  PubMed  Google Scholar 

    95.
    Grahame, J. W., Wilding, C. S. & Butlin, R. K. Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis. Evolution 60, 268–278. https://doi.org/10.1111/j.0014-3820.2006.tb01105.x (2006).
    CAS  Article  PubMed  Google Scholar 

    96.
    Panova, M., Hollander, J. & Johannesson, K. Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Mol. Ecol. 15, 4021–4031. https://doi.org/10.1111/j.1365-294X.2006.03067.x (2006).
    CAS  Article  PubMed  Google Scholar 

    97.
    Maltseva, A. L. et al. Measuring physiological similarity of closely related littorinid species: A proteomic insight. Mar. Ecol. Prog. Ser. 552, 177–193. https://doi.org/10.3354/meps11770 (2016).
    ADS  CAS  Article  Google Scholar 

    98.
    Ward, R. D., Warwick, T. & Knight, A. J. Genetic analysis of ten polymorphic enzyme loci in Littorina saxatilis (Prosobranchia: Mollusca). Heredity 57, 233–241. https://doi.org/10.1038/hdy.1986.113 (1986).
    CAS  Article  Google Scholar 

    99.
    Dopman, E. B., Robbins, P. S. & Seaman, A. Components of reproductive isolation between North American pheromone strains of the European corn borer. Evol. Int. J. Org. Evol. 64, 881–902. https://doi.org/10.1111/j.1558-5646.2009.00883.x (2010).
    Article  Google Scholar 

    100.
    Weissing, F. J., Edelaar, P. & Van Doorn, G. S. Adaptive speciation theory: A conceptual review. Behav. Ecol. Sociobiol. 65, 461–480. https://doi.org/10.1007/s00265-010-1125-7 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    101.
    Lobov, A., Maltseva, A., Mikhailova, N. & Granovitch, A. The molecular mechanisms of gametic incompatibility in invertebrates. Acta Nat. 11, 4–15 (2019).
    CAS  Article  Google Scholar  More

  • in

    How mountains and elevations shape the spatial distribution of beetles in Peninsular Malaysia

    1.
    Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Soh, M. C. K. et al. Impacts of habitat degradation on tropical montane biodiversity and ecosystem services: A systematic map for identifying future research priorities. Front. For. Glob. Change. 2, 83 (2019).
    Article  Google Scholar 

    3.
    Dolezal, J. et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Grant, E., Brand, A. B., De Wekker, S., Lee, T. R. & Wofford, J. Evidence that climate sets the lower elevation range limit in a high-elevation endemic salamander. Ecol. Evol. 8(15), 7553–7562 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Duclos, T. R., DeLuca, W. V. & King, D. I. Direct and indirect effects of climate on bird abundance along elevation gradients in the Northern Appalachian Mountains. Divers. Distrib. 25, 1670–1683 (2019).
    Article  Google Scholar 

    6.
    Brehm, G., Süssenbach, D. & Fiedler, K. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26, 456–466 (2003).
    Article  Google Scholar 

    7.
    Axmacher, J. C. & Fiedler, K. Habitat type modifies geometry of elevational diversity gradients in geometrid moths (Lepidoptera Geometridae) on Mt Kilimanjaro, Tanzania. Trop. Zool. 21, 243–251 (2009).
    Google Scholar 

    8.
    Rahbek, C. The elevational gradient of species richness: A uniform pattern. Ecography 18, 200–205 (1995).
    Article  Google Scholar 

    9.
    Axmacher, J. C., Liu, Y., Wang, C., Li, L. & Yu, Z. Spatial α-diversity patterns of diverse insect taxa in Northern China: Lessons for biodiversity conservation. Biol. Conserv. 144, 2362–2368 (2011).
    Article  Google Scholar 

    10.
    Li, J., Liu, H., Wu, Y., Zeng, L. & Huang, X. Spatial patterns and determinants of the diversity of Hemipteran insects in the Qinghai-Tibetan plateau. Front. Ecol. Evol. 7, 165 (2019).
    ADS  Article  Google Scholar 

    11.
    Bender, I. M. A., Kissling, W. D. & Böhning-Gaese, K. Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Sci. Rep. 9, 17708 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Silveira, F. et al. Tropical mountains as natural laboratories to study global changes: A long-term ecological research project in a megadiverse biodiversity hotspot. Perspect. Plant Ecol. Evol. Syst. 38, 64–73 (2019).
    Article  Google Scholar 

    13.
    Lohman, D. J. et al. Biogeography of the indo-australian archipelago. Annu. Rev. Ecol. Evol. Syst. 42(1), 205–226 (2011).
    Article  Google Scholar 

    14.
    Kidane, Y. O., Steinbauer, M. J. & Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 19, e00670 (2019).
    Article  Google Scholar 

    15.
    Economic Planning Unit (EPU). Eleventh Malaysia Plan 2016–2020. Putrajaya: Prime minister’s department. (Malaysia, 2016).

    16.
    Sodhi N. S., & Brook, B. W. Southeast Asian Biodiversity in Crisis. (Cambridge University Press, 2006).

    17.
    Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).
    Article  Google Scholar 

    18.
    Laurance, W. F. Lessons from research for sustainable development and conservation in Borneo. Forests. 7, 314 (2016).
    Article  Google Scholar 

    19.
    Schonberg, L. A., Longino, J. T., Nadkarni, N. M. & Yanoviak, S. P. Arboreal ant species richness in primary forest, secondary forest, and pasture habitats of a tropical montane landscape. Biotropica 36, 402–409 (2004).
    Article  Google Scholar 

    20.
    Peh, K.S.-H. et al. Up in the clouds: Is sustainable use of tropical montane cloud forests possible in Malaysia. Bioscience 61, 27–38 (2011).
    Article  Google Scholar 

    21.
    Hughes, A. C. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8(1), e01624 (2017).
    Article  Google Scholar 

    22.
    Lessard, J.-P., Sackett, T. E., Reynolds, W. N., Fowler, D. A. & Sanders, N. J. Determinants of the detrital arthropod community structure: The effects of temperature and resources along an environmental gradient. Oikos 320, 333–343 (2011).
    Article  Google Scholar 

    23.
    Cronin, D. T., Libalah, M. B., Bergl, R. A. & Hearn, G. W. Biodiversity and conservation of tropical montane ecosystems in the Gulf of Guinea, West Africa. Arct. Antarct. Alp. Res. 46(4), 891–904 (2014).
    Article  Google Scholar 

    24.
    Nowrouzi, S. et al. Ant diversity and distribution along elevation gradients in the Australian wet tropics: The importance of seasonal moisture stability. PLoS ONE 11(4), e0153420 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Perillo, L. N., Neves, F. D. S., Antonini, Y. & Martins, R. P. Compositional changes in bee and wasp communities along neotropical mountain altitudinal gradient. PLoS ONE 12(7), e0182054 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Maicher, V. et al. Seasonal shifts of biodiversity patterns and species elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J. Biogeogr. 47, 342–354 (2020).
    Article  Google Scholar 

    27.
    Rahbek, C. et al. Building mountain biodiversity: Geological and evolutionary processes. Science 365, 1114–1119 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Musthafa, M. M., Abdullah, F. & Sanchez, U. Comparative study of spatial patterns and ecological niches of beetles in two Malaysian mountains elevation gradients. J. Insect Conserv. 22(5–6), 757–769 (2018).
    Article  Google Scholar 

    29.
    Musthafa, M. M. & Abdullah, F. Beetles species richness along environmental gradients at montane ecosystem in Fraser’s Hill, peninsular Malaysia. Sains Malays. 48(7), 1395–1407 (2019).
    Article  Google Scholar 

    30.
    Musthafa, M. M. & Abdullah, F. Coleoptera of genting Highland, Malaysia: Species richness and diversity along the elevations. Arxius de Miscel·lània Zoològica. 17, 123–144 (2019).

    31.
    Nazaruddin, D. A., Hassan, H. & Sanusi, A. F. A. Some geological attractions of mount chamah area, Kelantan, Malaysia. J. Appl. Sci. Res. 9(3), 1298–1304 (2013).
    Google Scholar 

    32.
    Kumaran, J. V. et al. Diversity and conservation status of small mammals in Kelantan, Malaysia. Songklanakarin J. Sci. Technol. 38(2), 213–220 (2016).
    Google Scholar 

    33.
    Aweng, E. R., Suhaimi, O. & Izzati, S. N. Benthic macroinvertebrate community structure and distribution in Sungai Pichong, Gunung Chamah, Kelantan, Malaysia. Am. Int. J. Contemp. Res. 2(1), 163–167 (2012).
    Google Scholar 

    34.
    Sulaiman, N., Bakri, M. A. M., Kahar, K. M., Yaacob, M. Z. & Boler, I. Moth fauna (Lepidoptera: Heterocera) of Gunung Tebu forest reserve, Terengganu, Malaysia. Malayan Nat. J. 66(4), 376–389 (2014).
    Google Scholar 

    35.
    Nordin, R., Malek, I. A. & Manohar, M. Rain forest recreation zone planning using geo spatial tools. Pertanika J. Trop. Agric. Sci. 36, 181–194 (2013).
    Google Scholar 

    36.
    Grytnes, J. A., & McCain, C. M. Elevational trends in biodiversity. (ed. Simon, A.L.) Encyclopedia of Biodiversity. 1–8 (USA, 2007).

    37.
    Lazarina, M. et al. Diversity patterns of different life forms of plants along an elevational gradient in Crete, Greece. Diversity. 11, 200 (2019).
    Article  Google Scholar 

    38.
    Masse, P. S. M. & Makon, S. D. Effects of human disturbance and altitudinal gradient on Myriapod species richness and abundance at Mount Kala, central Cameroon. Afr. Zool. 54(4), 215–223 (2019).
    Article  Google Scholar 

    39.
    Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Deng, W., Wang, J. & Scott, M. B. Sampling methods affect nematode-trapping fungi biodiversity patterns across an elevational gradient. BMC Microbioogyl. 20, 15 (2020).
    Article  Google Scholar 

    41.
    Skvarla, M. J. & Dowling, A. P. G. A comparison of trapping techniques (Coleoptera: Carabidae, Buprestidae, Cerambycidae, and Curculionoidea excluding Scolytinae). J. Insect Sci. 17(1), 7–20 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Basset, Y. et al. IBISCA-Panama, a large-scale study of arthropod beta-diversity and vertical stratification in a lowland rainforest: Rationale, study sites and field protocols. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique. 77, 36–69 (2007).
    Google Scholar 

    43.
    Nizar, N. B. M. Geology of the jelebu area, negeri sembilan with emphasis on geomorphological analysis. BSc Thesis University of Malaya, (Malaysia, 2016).

    44.
    Surjono, S. S., Leman, M. S., Ali, C. A., Mohamed, K. R., & Mada, M. F. H. Petrogenesis and depositional environment of paleozoic sedili and pengerang volcaniclastics in east Johor Basin, peninsular Malaysia. E3S Web of Conferences. 76, 04009 (2019).

    45.
    Aweng-Eh, R., Ismid-Said, M., Maketab-Mohamed, M. & Ahmad-Abas, K. Macrobenthic community structure and distribution in the Gunung Belumut recreational forest, Kluang, Johor, Malaysia. Aust. J. Basic Appl. Sci. 4(8), 3904–3908 (2010).
    Google Scholar 

    46.
    Abdullah, F., & Sabri, M.S.M. Beetle fauna of Gunung Besar Hantu forest reserve, Jelebu. In Siri kepelbagaian biologi hutan: Hutan Gunung Besar Hantu, Negeri Sembilan: Pengurusan hutan, persekitaran fizikal dan kepelbagaian (eds. Rahman, A. et al.) Biology, 199–214 (Jabatan Perhutanan Semenanjung, 2014).

    47.
    Betz, O., Srisuka, W. & Puthz, V. Elevational gradients of species richness, community structure, and niche occupation of tropical rove beetles (Coleoptera: Staphylinidae: Steninae) across mountain slopes in Northern Thailand. Ecol. Evol. 34, 193–216 (2020).
    Article  Google Scholar 

    48.
    Zhang, W., Huang, D., Wang, R., Liu, J. & Du, N. Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of Northern China. PLoS ONE 11(7), e0159995 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Kontopanou, A. & Panitsa, M. Habitat islands on the Aegean islands (Greece): Elevational gradient of chasmophytic diversity, endemism, phytogeographical patterns and need for monitoring and conservation. Diversity. 12(1), 33 (2020).
    Article  Google Scholar 

    50.
    Jordal, B. H., Normark, B. B., Farrell, B. D. & Kirkendalld, L. R. Extraordinary haplotype diversity in haplodiploid inbreeders: Phylogenetics and evolution of the bark beetle genus Coccotrypes. Mol. Phylogenet. Evol. 23, 171–188 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Lassau, S. A., Hochuli, D. F., Cassis, G. & Reid, C. A. M. Effects of habitat complexity on forest beetle diversity: Do functional groups respond consistently. Divers. Distrib. 11, 73–82 (2005).
    Article  Google Scholar 

    52.
    Cosovic, M., Bugalho, M. N., Thom, D. & Borges, J. G. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests. 11, 343 (2020).
    Article  Google Scholar 

    53.
    Jankowski, J. E., Ciecka, A. L., Meyer, N. Y. & Rabenold, K. N. Beta diversity along environmental gradients: Implications of habitat specialization in tropical montane landscapes. J. Anim. Ecol. 78, 315–327 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Novotny, V. & Weiblen, G. D. From communities to continents: Beta diversity of herbivorous insects. Ann. Zool. Fenn. 42, 463–475 (2005).
    Google Scholar 

    55.
    Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).
    Article  Google Scholar 

    56.
    Nguyen, D. T. & Gómez-Zurita, J. Subtle ecological gradient in the tropics triggers high species-turnover in a local geographical scale. PLoS ONE 11(6), e0156840 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Antão, L. H., McGill, B., Magurran, A. E., Soares, A. M. V. M. & Dornelas, M. β-diversity scaling patterns are consistent across metrics and taxa. Ecography 42, 1012–1023 (2019).
    Article  Google Scholar 

    58.
    Bevilacqua, S. & Terlizzi, A. Nestedness and turnover unveil inverse spatial patterns of compositional and functional β-diversity at varying depth in marine benthos. Divers. Distrib. 26, 743–757 (2020).
    Article  Google Scholar 

    59.
    da Silva, P. G., Hernández, M. I. M. & Heino, J. Disentangling the correlates of species and site contributions to beta diversity in dung beetle assemblages. Divers. Distrib. 24, 1674–1686 (2018).
    Article  Google Scholar 

    60.
    Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).
    ADS  Article  Google Scholar 

    61.
    Brodie, J. F. et al. Lowland biotic attrition revisited: Body size and variation among climate change “winners” and “losers”. Proc. Biol. Sci. 284(1847), 20162335 (2017).
    PubMed  PubMed Central  Google Scholar 

    62.
    Penaloza, R. J. M. et al. Consequences of habitat fragmentation on genetic structure of Chamaedorea alternans (Arecaceae) palm populations in the tropical rain forests of los Tuxtlas, Veracruz, Mexico. Revista Mexicana de Biodiversidad. 87(3), 990–1001 (2016).
    Article  Google Scholar 

    63.
    Villacampa, J., Whitworth, A., Allen, L. & Malo, J. E. Altitudinal differences in alpha, beta and functional diversity of an amphibian community in a biodiversity hotspot. Neotrop. Biodivers. 5(1), 60–68 (2019).
    Article  Google Scholar 

    64.
    Kiew, R. The Encyclopedia of Malaysia. Vol. II. Plants Montane Forests (Archipelago Press, 1998).

    65.
    Shahrudin, S. et al. An addition of reptiles of Gunung inas, Kedah, Malaysia. Russ. J. Herpetol. 20(3), 171–180 (2013).
    Google Scholar 

    66.
    Chan, N. W. Degradation of the highland areas in Malaysia. Effects on water resources. Consumer Association of Penang. (ed. Tanah air ku: Land issues in Malaysia). 66–86 (Malaysia, 2000).

    67.
    Chua, L. S. L. & Saw, L. G. Plants of Krau. FRIM Res. Pam. 126, 227 (2006).
    Google Scholar 

    68.
    Ramly, F. N., & Ramli, R. Diversity of understorey birds in Virgin and logged forests of Gunung Angsi forest reserve, Negeri (ed. Sembilan, H. et al.). Harnessing the Potential of Biodiversity, Simposium Biology. 65–68 (Malaysia, 2009).

    69.
    Sofiah, M. S. Komposisi, kepelbagaian dan biojisim pokok di Hutan Lipur Gunung Belumut, Kluang (Univeristi Kebangsaan, 2010).
    Google Scholar 

    70.
    Ashton P. S., Okuda T., Manokaran N. Pasoh research, past and present. In Pasoh (eds. Okuda T. et al.), 1–13 (Springer, 2003).

    71.
    Rayan, D. M. & Mohamed, S. W. The importance of selectively logged forests for tiger Panthera tigris conservation: A population density estimates in Peninsular Malaysia. Oryx 43(1), 48–51 (2009).
    Article  Google Scholar 

    72.
    Saito, M. A new species of the genus Tomoderus (Coleoptera, Anthicidae) from the Ryukyu Islands, Southwest Japan. Elytra. 31, 321–323 (2003).
    Google Scholar 

    73.
    Mohamedsaid, M. S. (ed. Catalogue of the Malaysian Chrysomelidae Insecta: Coleoptera). (Bulgeria, 2004).

    74.
    Kirejtshuk, A. G. On the fauna of Nitidulidae (Insecta, Coleoptera) from Taiwan with some taxonomical notes. Annales Historico-Naturales Musei Nationalis Hungarici. 97, 51–113 (2005).
    Google Scholar 

    75.
    Naomi, S Taxonomic revision of the genus Stenus latreille, 1797 (Coleoptera, Staphylinidae, steninae) of Japan: Species group of S. indubius Sharp. Jpn. J. Syst. Entomol. 12(1), 39–120 (2006).

    76.
    Schawaller, W. Revision of the oriental species of the genus Bradymerus perroud, with descriptions of 29 new species (Coleoptera: Tenebrionidae). Stuttgarter beiträge zur Naturkunde. 4, 1–64 (2006).
    Google Scholar 

    77.
    Schawaller, W. Two new species and new records of the genus Spinolyprops Pic, 1917 from the oriental region (Coleoptera, Tenebrionidae, Lupropini). ZooKeys. 243, 83–94 (2012).
    Article  Google Scholar 

    78.
    Schimmel, R. & Tarnawski, D. Monograph of the subtribe Elaterina (Insecta: Coleoptera: Elateridae: Elaterinae). Genus 21(3), 325–487 (2010).
    Google Scholar 

    79.
    Assing, V. Four new species and additional records of Palaearctic Sunius, with two new synonymies (Coleoptera: Staphylinidae: Paederinae). Beiträge zur Entomologie. 58, 455–470 (2008).
    Article  Google Scholar 

    80.
    Grimm, R. Guanobius borneensis n. gen., n. sp. from Borneo (Coleoptera: Tenebrionidae: Alphitobiini). Stuttgarter Beiträge zur Naturkunde A, Neue Serie. 1, 375–379 (2008).

    81.
    Batelka, J. Clinopalpus hanae, a new genus and species of ripiphorid beetle from Malaysia (Coleoptera: Ripiphoridae: Pelecotominae). Acta Entomologica Musei Nationalis Pragae 49(1), 239–245 (2009).
    Google Scholar 

    82.
    Gerstmeier, R. Taxonomic supplement to a revision of Omadius Laporte 1836 (Mawdsley 2006) (Coleoptera: Cleridae). Annales de la Société Entomologique de France. 45(2), 135–144 (2009).
    Article  Google Scholar 

    83.
    Sittichaya, W., Beaver, R. A., Liu, L.-Y. & Ngampongsai, A. An illustrated key to powder post beetles (Coleoptera, Bostrichidae) associated with rubberwood in Thailand, with new records and a checklist of species found in Southern Thailand. ZooKeys. 26, 33–51 (2009).
    Article  Google Scholar 

    84.
    Hlaváč, P., Newton, A. F. & Maruyama, M. World catalogue of the species of the tribe Lomechusini (Staphylinidae: Aleocharinae). Zootaxa 3075, 1–151 (2011).
    Google Scholar 

    85.
    Prathapan, K. D. & Viraktamath, C. A. A new species of Longitarsus latreille, 1829 (Coleoptera, Chrysomelidae, Galerucinae) pupating inside stem aerenchyma of the hydrophyte host from the Oriental Region. ZooKeys. 87, 1–10 (2011).
    Article  Google Scholar 

    86.
    Ryvkin, A. B. Contributions to the knowledge of Stenus (Nestus) species of the crassus group (Insecta: Coleoptera: Staphylinidae: Steninae). Four new species from the Russian far east with taxonomic notes. Baltic J. Coleopterol. 11(1), 57–72 (2011).

    87.
    Caterino, M. S. & Tishechkin, A. K. A systematic revision of Baconia Lewis (Coleoptera, Histeridae, Exosternini). ZooKeys. 343, 1–297 (2013).
    Article  Google Scholar 

    88.
    Pace, R. New distributional data, new species and three new genera of Aleocharinae from Malaysia, Vietnam and Taiwan (Coleoptera: Staphylinidae). Trop. Zool. 26(1), 33–63 (2013).
    Article  Google Scholar 

    89.
    Shi, H., Zhou, H. & Liang, H. Taxonomic synopsis of the subtribe Physoderina (Coleoptera, Carabidae, Lebiini), with species revisions of eight genera. Zookeys. 284, 1–129 (2013).
    Article  Google Scholar 

    90.
    Mertlik, J. & Németh, T. Distributional notes on Lacon nadaii and L. unicolor (Coleoptera: Elateridae). Elateridarium. 8, 61–66 (2013).
    Google Scholar 

    91.
    Filippini, V., Micó, E. & Galante, E. Checklist and identification key of Anomalini (Coleoptera, Scarabaeidae, Rutelinae) of Costa Rica. ZooKeys. 621, 63–136 (2016).
    Article  Google Scholar 

    92.
    Anzaldo, S. S. Review of the genera of Conoderinae (Coleoptera, Curculionidae) from North America, Central America, and the Caribbean. ZooKeys. 683, 51–138 (2017).
    Article  Google Scholar 

    93.
    Makranczy, G. Review of the Anotylus Cimicoides species group (Coleoptera: Staphylinidae: Oxytelinae). Acta Zool. Acad. Sci. Hung. 63(2), 143–262 (2017).
    Article  Google Scholar 

    94.
    Sasakawa, K., Kim, J.-K., Kim, J.-K. & Kubota, K. Morphological phylogeny and biogeography of the Pterostichus raptor species group (Coleoptera: Carabidae) of ground beetles, endemic to the Korean Peninsula and adjacent islands. J. Asia-Pac. Entomol. 20, 7–12 (2017).
    Article  Google Scholar 

    95.
    Murakami, H. A new species of the genus Cladiscus chevrolat, 1843 (Coleoptera: Cleridae: Tillinae) from Borneo, Malaysia. Jpn. J. Syst. Entomol. 23(2), 235–238 (2017).
    Google Scholar 

    96.
    Murakami, H. & Cheong, L. F. A new species of the genus Allochotes westwood, 1875 (Coleoptera: Cleridae: Orthopleurinae) from Malay Peninsula. Jpn. J. Syst. Entomol. 24(2), 221–224 (2018).
    Google Scholar 

    97.
    Moore, M. R., Cave, R. D. & Branham, M. A. Synopsis of the cyclocephaline scarab beetles (Coleoptera, Scarabaeidae, Dynastinae). ZooKeys. 745, 1–99 (2018).
    Article  Google Scholar 

    98.
    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    99.
    Jost, L. Entropy and diversity. Oikos 113, 363–374 (2006).
    Article  Google Scholar 

    100.
    Moreno, C. E. et al. Measuring biodiversity in the Anthropocene: A simple guide to helpful methods. Biodivers. Conserv. 26(12), 2993–2998 (2017).
    Article  Google Scholar 

    101.
    R Development Core Team. A language and environment for statistical computing. R. Foundation for Statistical Computing. (Austria, 2015)

    102.
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 

    103.
    De Cáceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).
    PubMed  Article  Google Scholar 

    104.
    De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).
    Article  Google Scholar 

    105.
    De Cáceres, M., Legendre, P., Wiser, S. K. & Brotons, L. Using species combinations in indicator value analyses. Methods Ecol. Evol. 3, 973–982 (2012).
    Article  Google Scholar 

    106.
    Anderson, M. J. & Walsh, D. C. I. What null hypothesis are you testing? PERMANOVA, ANOSIM and the mantel test in the face of heterogeneous dispersions. Ecol. Monogr. 83, 557–574 (2013).
    Article  Google Scholar 

    107.
    Clarke, K. R., & Gorley, R. N. PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth, 18 (United Kingdom, 2015)

    108.
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Article  Google Scholar 

    109.
    Carvalho, J. C., Cardoso, P. & Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob. Ecol. Biogeogr. 21, 760–771 (2012).
    Article  Google Scholar 

    110.
    Qian, H., Ricklefs, R. E. & White, P. S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 8, 15–22 (2005).
    Article  Google Scholar  More

  • in

    First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself

    1.
    Murchison, E. P. Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene 27, S19–S30 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Metzger, M. J. et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534, 705–709 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Storfer, A. et al. The devil is in the details: Genomics of transmissible cancers in Tasmanian devils. PLoS Pathog. 14, 1–7 (2018).
    Article  CAS  Google Scholar 

    4.
    Nowinsky, M. A. Zur Frage über die Impfung der krebsigen Geschwülste. Zentralbl Med Wissensch. 14, 790–791 (1876).
    Google Scholar 

    5.
    Murgia, C., Pritchard, J. K., Kim, S. Y., Fassati, A. & Weiss, R. A. Clonal origin and evolution of a transmissible cancer. Cell 126, 477–487 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Pearse, A. M. & Swift, K. Allograft theory: transmission of devil facial-tumour disease. Nature 439, 549 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Siddle, H. V. et al. Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc. Natl. Acad. Sci. USA 104, 16221–16226 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Metzger, M. J. J., Reinisch, C., Sherry, J. & Goff, S. P. P. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161, 255–263 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Riquet, F., Simon, A. & Bierne, N. Weird genotypes? Don’t discard them, transmissible cancer could be an explanation. Evol. Appl. 10, 140–145 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Yonemitsu, M. A. et al. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. Elife 8, 1–21 (2019).
    Article  Google Scholar 

    11.
    Woods, G. M., Bruce Lyons, A. & Bettiol, S. S. A devil of a transmissible cancer. Trop. Med. Infect. Dis. 5, 1–10 (2020).
    Google Scholar 

    12.
    Ganguly, B., Das, U. & Das, A. K. Canine transmissible venereal tumour: a review. Vet. Comp. Oncol. 14, 1–12 (2016).
    CAS  PubMed  Article  Google Scholar 

    13.
    Paynter, A. N., Metzger, M. J., Sessa, J. A. & Siddall, M. E. Evidence of horizontal transmission of the cancer-associated Steamer retrotransposon among ecological cohort bivalve species. Dis. Aquat. Organ. https://doi.org/10.3354/dao03113 (2017).
    Article  PubMed  Google Scholar 

    14.
    Barber, B. J. Neoplastic diseases of commercially important marine bivalves. Aquat. Living Resour. 17, 449–466 (2004).
    Article  Google Scholar 

    15.
    Farley, C. A. Sarcomatoid proliferative disease in a wild population of blue mussels (Mytilus edulis). J. Natl. Cancer Inst. 43, 509–516 (1969).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Sparks, A. K. Synopsis of Invertebrate Pathology Exclusive of Insects (Elsevier, 1985).
    Google Scholar 

    17.
    Muttray, A. F. & Vassilenko, K. Mollusca: disseminated neoplasia in bivalves and the p53 protein family. Adv. Comp. Immunol. https://doi.org/10.1007/978-3-319-76768-0 (1969).
    Article  Google Scholar 

    18.
    Bihari, N., Mičić, M., Batel, R. & Zahn, R. K. Flow cytometric detection of DNA cell cycle alterations in hemocytes of mussels (Mytilus galloprovincialis) off the Adriatic coast Croatia. Aquat. Toxicol. 64, 121–129 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Vassilenko, E. & Baldwin, S. A. Using flow cytometry to detect haemic neoplasia in mussels (Mytilus trossulus) from the Pacific Coast of Southern British Columbia Canada. J. Invertebr. Pathol. 117, 68–72 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Moore, J. D., Elston, R. A., Drum, A. S. & Wilkinson, M. T. Alternate pathogenesis of systemic neoplasia in the bivalve mollusc Mytilus. J. Invertebr. Pathol. 58, 231–243 (1991).
    CAS  PubMed  Article  Google Scholar 

    21.
    Benabdelmouna, A., Saunier, A., Ledu, C., Travers, M. A. & Morga, B. Genomic abnormalities affecting mussels (Mytilus edulis-galloprovincialis) in France are related to ongoing neoplastic processes, evidenced by dual flow cytometry and cell monolayer analyses. J. Invertebr. Pathol. 157, 45–52 (2018).
    Article  CAS  Google Scholar 

    22.
    Burioli, E. A. V. et al. Implementation of various approaches to study the prevalence, incidence and progression of disseminated neoplasia in mussel stocks. J. Invertebr. Pathol. 168, 107271 (2019).
    CAS  PubMed  Article  Google Scholar 

    23.
    Moore, C. A., Beckmann, N. & Patricia Morse, M. Cytoskeletal structure of diseased and normal hemocytes of Mya arenaria. J. Invertebr. Pathol. 60, 141–147 (1992).
    Article  Google Scholar 

    24.
    Carballal, M. J., Barber, B. J., Iglesias, D. & Villalba, A. Neoplastic diseases of marine bivalves. J. Invertebr. Pathol. https://doi.org/10.1016/j.jip.2015.06.004 (2015).
    Article  PubMed  Google Scholar 

    25.
    Odintsova, N. A. Leukemia-like cancer in bivalves. Russ. J. Mar. Biol. 46, 59–67 (2020).
    Article  Google Scholar 

    26.
    Smolarz, K., Renault, T. & Wołowicz, M. Ultrastructural study of neoplastic cells in Macoma balthica (Bivalvia) from the Gulf of Gdansk (Poland). J. Invertebr. Pathol. 92, 79–84 (2006).
    PubMed  Article  Google Scholar 

    27.
    Carella, F. et al. Nuclear morphometry and ploidy of normal and neoplastic haemocytes in mussels. PLoS ONE 12, e0173219 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Smolowitz, R. M. & Reinisch, C. L. Indirect peroxidase staining using monoclonal antibodies specific for Mya arenaria neoplastic cells. J. Invertebr. Pathol. 48, 139–145 (1986).
    CAS  PubMed  Article  Google Scholar 

    29.
    Carella, F., Figueras, A., Novoa, B. & De Vico, G. Cytomorphology and PCNA expression pattern in bivalves Mytilus galloprovincialis and Cerastoderma edule with haemic neoplasia. Dis. Aquat. Organ. 105, 81–87 (2013).
    PubMed  Article  Google Scholar 

    30.
    McDonald, J. H., Seed, R. & Koehn, R. K. Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern Hemispheres. Mar. Biol. 111, 323–333 (1991).
    Article  Google Scholar 

    31.
    Larraín, M. A., Zbawicka, M., Araneda, C., Gardner, J. P. A. & Wenne, R. Native and invasive taxa on the Pacific coast of South America: impacts on aquaculture, traceability and biodiversity of blue mussels (Mytilus spp.). Evol. Appl. 11, 298–311 (2018).
    Article  CAS  Google Scholar 

    32.
    Pye, R. J. et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 113, 374–379 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Strakova, A. et al. Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer. Elife 5, 1–25 (2016).
    Article  Google Scholar 

    34.
    Rawson, P. D. & Harper, F. M. Colonization of the northwest Atlantic by the blue mussel, Mytilus trossulus postdates the last glacial maximum. Mar. Biol. 156, 1857–1868 (2009).
    Article  Google Scholar 

    35.
    Wenne, R., Bach, L., Zbawicka, M., Strand, J. & McDonald, J. H. A first report on coexistence and hybridization of Mytilus trossulus and M. edulis mussels in Greenland. Polar Biol. 39, 343–355 (2016).
    Article  Google Scholar 

    36.
    Laakkonen, H. M., Hardman, M., Strelkov, P. & Väinölä, R. Cycles of trans-Arctic dispersal and vicariance, and diversification of the amphi-boreal marine fauna. J. Evol. Biol. https://doi.org/10.1111/jeb.13674 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Zbawicka, M., Wenne, R. & Burzyński, A. Mitogenomics of recombinant mitochondrial genomes of Baltic Sea Mytilus mussels. Mol. Genet. Genom. 289, 1275–1287 (2014).
    CAS  Article  Google Scholar 

    38.
    Śmietanka, B. & Burzyński, A. Disruption of doubly uniparental inheritance of mitochondrial DNA associated with hybridization area of European Mytilus edulis and Mytilus trossulus in Norway. Mar. Biol. https://doi.org/10.1007/s00227-017-3235-5 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Sunila, I. Histopathology of mussels (Mytilus edulis L.) from the Tvarminne area, the Gulf of Finland (Baltic Sea). Ann. Zool. Fennici 24, 55–69 (1987).
    Google Scholar 

    40.
    Usheva, L. N. & Frolova, L. T. Neoplasia in the connective tissue tumor in the mussel Mytilus trossulus from a polluted region of Nakhodka Bay, the Sea of Japan. Ontogenez 31, 63–70 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Maiorova, M. A. & Odintsova, N. A. β integrin-like protein-mediated adhesion and its disturbances during cell cultivation of the mussel Mytilus trossulus. Cell Tissue Res. 361, 581–592 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Marigomez, I., Lekube, X. & Cancio, I. Immunochemical localisation of proliferating cells in mussel digestive gland tissue. Histochem. J. 31, 781–788 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Maiorova, M. A. & Odintsova, N. A. Proliferative potential of larval cells of the mussel Mytilus trossulus and their capacity to differentiate into myogenic cells in culture. Russ. J. Mar. Biol. 42, 281–285 (2016).
    Article  Google Scholar 

    44.
    Voronezhskaya, E. E., Nezlin, L. P., Odintsova, N. A., Plummer, J. T. & Croll, R. P. Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia). Zoomorphology 127, 97–110 (2008).
    Article  Google Scholar 

    45.
    Presa, P., Pérez, M., Diz, A. P., Perez, M. & Diz, A. P. Polymorphic microsatellite markers for blue mussels (Mytilus spp.). Conserv. Genet. 3, 441–443 (2002).
    CAS  Article  Google Scholar 

    46.
    Zouros, E. Biparental inheritance through uniparental transmission: the doubly uniparental inheritance (DUI) of mitochondrial DNA. Evol. Biol. 40, 1–31 (2013).
    Article  Google Scholar 

    47.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Paabo, S., Irwin, M. & Wilson, C. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem. 265, 4718–4721 (1990).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Bradley, R. D. & Hillis, D. A. Recombinant DNA sequences generated by PCR amplification. Mol. Biol. Evol. 14, 592–593 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47, 256–259 (2019).
    Article  CAS  Google Scholar 

    51.
    Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, 1–5 (2015).
    Article  Google Scholar 

    52.
    Breton, S., Burger, G., Stewart, D. T. & Blier, P. U. Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels (Mytilus spp.). Genetics 172, 1107–1119 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Marko, P. B. et al. The ‘Expansion-contraction’ model of Pleistocene biogeography: rocky shores suffer a sea change?. Mol. Ecol. 19, 146–169 (2010).
    CAS  PubMed  Article  Google Scholar 

    54.
    Crego-Prieto, V., Juanes, F. & Garcia-Vazquez, E. Aquaculture and the spread of introduced mussel genes in British Columbia. Biol. Invasions https://doi.org/10.1007/s10530-015-0853-z (2015).
    Article  Google Scholar 

    55.
    Chung, J. M. et al. Molecular phylogenetic study of bivalvia from four countries (China, Japan, Russia and Myanmar) using 3 types of primers. Korean J. Malacol. 35, 137–148 (2019).
    Google Scholar 

    56.
    Layton, K. K. S., Martel, A. L., Hebert, P. D. N. & Layton, K. K. S. Patterns of DNA barcode variation in Canadian Marine molluscs. PLoS ONE 9, 1–9 (2014).
    Article  Google Scholar 

    57.
    deWaard, J. R. et al. A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. Sci. Data 6, 1–12 (2019).
    Article  CAS  Google Scholar 

    58.
    Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating Gene Genealogies. Parallel Distrib. Process. Symp. Int. 2, 184 (2002).

    59.
    Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    60.
    Kartavtsev, Y. P., Masalkova, N. A. & Katolikova, M. V. Genetic and morphometric variability in settlements of two mussel species (Mytilus ex. Gr. Edulis), Mytilus trossulus and Mytilus galloprovincialis, in the Northwestern Sea of Japan. J. Shellfish Res. 37, 103–119 (2018).
    Article  Google Scholar 

    61.
    Larraín, M. A., González, P., Pérez, C. & Araneda, C. Comparison between single and multi-locus approaches for specimen identification in Mytilus mussels. Sci. Rep. 9, 1–13 (2019).
    Article  CAS  Google Scholar 

    62.
    Inoue, K., Waite, J. H., Matsuoka, M., Odo, S. & Harayama, S. Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus. Biol. Bull. 189, 370–375 (1995).
    CAS  PubMed  Article  Google Scholar 

    63.
    Heath, D. D., Rawson, P. D. & Hilbish, T. J. PCR-based nuclear markers identify alien blue mussel Mytilus spp. genotypes on the west coast of Canada. Can. J. Fish. Aquat. Sci. 52, 2621–2627 (1995).
    CAS  Article  Google Scholar 

    64.
    Rawson, P. D., Secor, C. L. & Hilbish, T. J. The effects of natural hybridization on the regulation of doubly uniparental mtDNA inheritance in blue mussels (Mytilus spp.). Genetics 144, 241–248 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Rawson, P. D. & Hilbish, T. J. Distribution of male and female mtDNA lineages in populations of blue mussels, Mytilus trossulus and M. galloprovincialis, along the Pacific coast of North America. Mar. Biol. 124, 245–250 (1995).
    Article  Google Scholar 

    66.
    Cremonte, F., Vázquez, N. & Silva, M. R. Gonad atrophy caused by disseminated neoplasia in Mytilus chilensis cultured in the Beagle channel, Tierra Del Fuego Province Argentina. J. Shellfish Res. 30, 845–849 (2011).
    Article  Google Scholar 

    67.
    Ciocan, C. & Sunila, I. Disseminated neoplasia in blue mussels, Mytilus galloprovincialis, from the Black Sea Romania. Mar. Pollut. Bull. 50, 1335–1339 (2005).
    CAS  PubMed  Article  Google Scholar 

    68.
    Gombač, M., Sitar, R., Pogačnik, M., Arzul, I. & Jenčič, V. Haemocytic neoplasia in Mediterranean mussels (Mytilus galloprovincialis). Mar. Freshw. Behav. Physiol. 46, 135–143 (2013).
    Article  Google Scholar 

    69.
    Villalba, A., Mourelle, S. G., Carballal, M. J. & López, C. Symbionts and diseases of farmed mussels Mytilus galloprovincialis throughout the culture process in the Rias of Galicia (NW Spain). Dis. Aquat. Organ. 31, 127–139 (1997).
    Article  Google Scholar 

    70.
    Cremonte, F., Puebla, C., Tillería, J. & Videla, V. Estudio histopatológico del chorito Mytilus chilensis (Mytilidae) y del culengue Gari solida (Psammobiidae) en el sur de Chile. Lat. Am. J. Aquat. Res. 43, 248–254 (2015).
    Article  Google Scholar 

    71.
    Vassilenko, E. I., Muttray, A. F., Schulte, P. M. & Baldwin, S. A. Variations in p53-like cDNA sequence are correlated with mussel haemic neoplasia: a potential molecular-level tool for biomonitoring. Mutat. Res. Genet. Toxicol. Environ. Mutagen. https://doi.org/10.1016/j.mrgentox.2010.06.001 (2010).
    Article  Google Scholar 

    72.
    Caza, F., Bernet, E., Veyrier, F. J., Betoulle, S. & St-Pierre, Y. Hemocytes released in seawater act as Trojan horses for spreading of bacterial infections in mussels. Sci. Rep. 10, 1–12 (2020).
    Article  CAS  Google Scholar 

    73.
    Rebbeck, C. A., Leroi, A. M. & Burt, A. Mitochondrial capture by a transmissible cancer. Science (80-) 331, 303 (2011).
    ADS  CAS  Article  Google Scholar 

    74.
    Rawson, P. D. & Hilbish, T. J. Asymmetric introgression of mitochondrial DNA among European populations of Blue Mussels (Mytilus spp.). Evolution (N. Y.) 52, 100–108 (1998).
    Google Scholar 

    75.
    Kijewski, A., Zbawicka, M., Väinölä, R. & Wenne, T. K. Introgression and mitochondrial DNA heteroplasmy in the Baltic populations of mussels Mytilus trossulus and M. edulis. Mar. Biol. https://doi.org/10.1007/s00227-006-0316-2 (2006).
    Article  Google Scholar 

    76.
    Burzyński, A., Zbawicka, M., Skibinski, D. O. F. & Wenne, R. Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic. Mol. Biol. Evol. 20, 388–392 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Burzynski, A., Zbawicka, M., Skibinski, D. O. F. & Wenne, R. Doubly uniparental inheritance is associated with high polymorphism for rearranged and recombinant control region haplotypes in Baltic Mytilus trossulus. Genetics 174, 1081–1094 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Stuckas, H., Stoof, K., Quesada, H. & Tiedemann, R. Evolutionary implications of discordant clines across the Baltic Mytilus hybrid zone (Mytilus edulis and Mytilus trossulus). Heredity (Edinb). 103, 146–156 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Cao, L., Kenchington, E. & Zouros, E. Differential segregation patterns of sperm mitochondria in embryos of the Blue Mussel (Mytilus edulis). Genetics https://doi.org/10.1534/genetics.166.2.883 (2004).
    Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Key soil parameters affecting the survival of Panax notoginseng under continuous cropping

    1.
    Zhao, Y. Panax notoginseng (Burk.) F.H. Chen (Sanqi, Notoginseng) (eds. Liu, Y., Wang, Z. & Zhang, J.) 185–193 (Springer, 2015).
    2.
    Liao, P. et al. Stereoscopic cultivation of Panax notoginseng: A new approach to overcome the continuous cropping obstacle. Ind. Crop Prod. 126, 38–47 (2018).
    CAS  Article  Google Scholar 

    3.
    Yang, M. et al. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng. PLoS ONE 10, e0118555 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Mazzola, M. & Manici, L. M. Apple replant disease: Role of microbial ecology in cause and control. Annu. Rev. Phytopathol. 50, 45–65 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Lovaisa, N. C. et al. Strawberry monocropping: Impacts on fruit yield and soil microorganisms. J. Soil Sci. Plant Nutr. 17, 868–883 (2017).
    CAS  Article  Google Scholar 

    6.
    Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen–Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Xia, P. G. et al. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents. J. Ginseng Res. 40, 38–46 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Dong, L., Xu, J., Feng, G., Li, X. & Chen, S. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. 6, 31802 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Zhang, Y., Zheng, Y., Xia, P., Xun, L. & Liang, Z. Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties. Sci. Rep. 9, 13205 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Liu, D. H. et al. Study on dynamic change law of N, P and K in Panax notoginseng plant soils with different interval year. China J. Chin. Mater. Med. 39, 572–579 (2014).
    ADS  Google Scholar 

    11.
    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 48 (2016).
    Article  CAS  Google Scholar 

    12.
    Manici, L. M., Caputo, F. & Saccà, M. L. Secondary metabolites released into the rhizosphere by Fusarium oxysporum and Fusarium spp. as underestimated component of nonspecific replant disease. Plant Soil 415, 85–98 (2016).
    Article  CAS  Google Scholar 

    13.
    Tan, Y. et al. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiol. Res. 194, 10–19 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C. & Fitter, A. H. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 4, 337–345 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Jeanbille, M. et al. Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communities across temperate beech forest soil sequences. Microb. Ecol. 71, 482–493 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Wu, F. Y., Cui, X. M., Yang, Y. & Guan, H. L. Effects of soil pH values regulated by different fertilization on the disease incidence and growth of Panax notoginseng. J. Yunnan Univ. 39, 908–914 (2017).
    Google Scholar 

    17.
    Wei, W., Yang, M., Liu, Y., Huang, H. & Zhu, S. Fertilizer N application rate impacts plant–soil feedback in a Sanqi production system. Sci. Total Environ. 633, 796–807 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    18.
    Killham, K. & Staddon, W. J. Bioindicators and sensors of soil health and the application of geostatistics (eds. Burns, R. G. & Dick, R. P.) 391–405 (Marcel Dekker, 2002).

    19.
    Kotroczó, Z. et al. Soil enzyme activity in response to long-term organic matter manipulation. Soil Biol. Biochem. 70, 237–243 (2014).
    Article  CAS  Google Scholar 

    20.
    Sinsabaugh, R. L., Antibus, R. K. & Linkins, A. E. An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agric. Ecosyst. Environ. 34, 43–54 (1991).
    CAS  Article  Google Scholar 

    21.
    Li, W. H., Liu, Q. Z. & Chen, P. Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity. J. Integr. Agric. 17, 2570–2582 (2018).
    Article  Google Scholar 

    22.
    Sun, X. T. et al. Properties of soil physical–chemistry and activities of soil enzymes in context of continuous cropping obstacles for Panax notoginseng. Ecol. Environ. Sci. 24, 409–417 (2015).
    Google Scholar 

    23.
    Sun, X. T. et al. The progress and prospect on consecutive monoculture problems of Panax notoginseng. Chin. J. Ecol. 34, 885–893 (2015).
    Google Scholar 

    24.
    Tyler, G. & Falkengren-Grerup, U. Soil chemistry and plant performance-ecological consideration. Progr. Bot. 59, 634–658 (1998).
    CAS  Article  Google Scholar 

    25.
    Utkhede, R. S. Soil sickness, replant problem or replant disease and its integrated control. Allelopathy J. 18, 23–38 (2006).
    Google Scholar 

    26.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    27.
    Lu, R. K. Analytical Method of Soil and Agricultural Chemistry 260–344 (China Agricultural Science and Technology Press, 2000).
    Google Scholar 

    28.
    Guan, S. Soil Enzyme and Its Research Methods 22–36 (Agricultural Publisher, 1986).
    Google Scholar 

    29.
    Zhang, Q. et al. Microcalorimetric study of the effects of long-term fertilization on soil microbial activity in a wheat field on the loess plateau. Ecotoxicology 23, 2035–2040 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Fellows, I. Deducer: A data analysis GUI for R. J. Stat. Softw. 49, 1–15 (2012).
    Article  Google Scholar 

    31.
    Yang, M. et al. Steaming combined with biochar application eliminates negative plant-soil feedback for Sanqi cultivation. Soil Till. Res. 189, 189–198 (2019).
    Article  Google Scholar 

    32.
    Tan, Y. et al. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. J. Basic Microbiol. 57, 337–344 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Zhao, Y. M. et al. Role of phenolic acids from the rhizosphere soils of Panax notoginseng as a double-edge sword in the occurrence of root-rot disease. Molecules 23, 819 (2018).
    PubMed Central  Article  CAS  Google Scholar 

    34.
    Wu, L. J., Guan, Y. M. & Liu, J. Y. Pollution-Free Cultivation of Panax notoginseng 69–79 (Chemical Industry Press, 2004).
    Google Scholar 

    35.
    Du, C. Y., Zhang, N. M., Jiang, R., Wang, T. & Liu, Y. Evaluation of main soil nutrients characteristics for Panax notoginseng planting area of Yunnan. Southwest China J. Agric. Sci. 29, 599–605 (2016).
    Google Scholar 

    36.
    Zhou, X. et al. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system. Eur. J. Soil Biol. 60, 1–8 (2014).
    CAS  Article  Google Scholar 

    37.
    Qin, S. H. et al. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield. PLoS ONE 12, e0175934 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Dou, F., Wright, A. L., Mylavarapu, R. S., Jiang, X. J. & Matocha, J. E. Soil enzyme activities and organic matter composition affected by 26 years of continuous cropping. Pedosphere 26, 618–625 (2016).
    CAS  Article  Google Scholar 

    39.
    Wang, Y. et al. Effects of biochar on the growth of apple seedlings, soil enzyme activities and fungal communities in replant disease soil. Sci. Hortic. 256, 108641 (2019).
    CAS  Article  Google Scholar 

    40.
    Adetunji, A. T., Lewu, F. B., Mulidzi, R. & Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 17, 794–807 (2017).
    CAS  Article  Google Scholar 

    41.
    Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).
    CAS  Article  Google Scholar 

    42.
    Malik, A. A. et al. Soil fungal:bacterial ratios are linked to altered carbon cycling. Front. Microbiol. 7, 1247 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Liu, X. et al. Soil fumigation and bio-organic fertilizer application promotes potato growth and affects soil bio-chemical properties in a continuous cropping system. Acta Pratacult. Sin. 24, 122–133 (2015).
    Google Scholar 

    44.
    Liu, H. J. et al. Characteristics of soil microflora of Panax notoginseng in different continuous cropping years. Allelopathy J. 44, 145–158 (2018).
    ADS  Article  Google Scholar 

    45.
    Singh, B. P., Cowi, A. L. & Chan, K. Y. Soil Health and Climate Change 69–85 (Springer, 2011).
    Google Scholar 

    46.
    Turner, B. L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 76, 6485–6493 (2011).
    Article  CAS  Google Scholar 

    47.
    Burns, R. G. et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil. Biol. Biochem. 58, 216–234 (2013).
    CAS  Article  Google Scholar 

    48.
    Stark, S., Männistö, M. K. & Eskelinen, A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 383, 373–385 (2014).
    CAS  Article  Google Scholar 

    49.
    Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, e02826-e2916 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Dong, L. L. et al. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil. Biol. Biochem. 125, 64–74 (2018).
    CAS  Article  Google Scholar 

    51.
    Li, X. et al. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat. Sci. Rep. 6, 30466 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Increases in Great Lake winds and extreme events facilitate interbasin coupling and reduce water quality in Lake Erie

    Climate change has increased water temperature and altered wind-driven water movements in aquatic systems1,2. This applies not only to the mean conditions3,4, but also to the frequency of extreme events (i.e., near the upper ends of the range of observed values5,  > 80th percentile). For example, high air temperature or powerful winds5,6,7,8,9 has affected the behaviour of surface gravity waves10. Understanding the changes in wind and wave climate provides insight into the prediction and management of climate change impacts related to coastal dynamics, such as coastal erosion and sediment budgets, water motions, and biological responses6,11,12. Several studies on the impacts of climate change on oceanic waves12,13,14,15 have been undertaken, including a recent study16 that shows a 0.41% annual increase in global wave power (WP; the transport of energy by waves, which represents the temporal variations of energy transferred from the atmosphere to the ocean surface motion over cumulative periods of time16,17 (Eq. 2) due to stronger winds caused by increases in sea surface temperature. The oceanic wave climate also responds to global atmospheric phenomena (e.g., El Niño Southern Oscillation and the Atlantic Multidecadal Oscillation), in which sea surface temperature modifies wind patterns and storm cyclogenesis12,18,19,20. A systematic long-term assessment of climate warming impacts on waves in lakes remains to be undertaken, but should include winds, which are one of the principal sources of mechanical energy for lake circulation and interbasin coupling (e.g., exchange)21,22,23,24.
    The Laurentian Great Lakes, which consist of lakes Superior, Michigan, Huron, Erie, and Ontario (Fig. 1a), are the largest group of freshwater lakes on Earth; they contain 21% of the world’s volume of fresh surface water. These lakes have been affected by climate change in several ways including increased surface water temperature, longer summer stratification related hypoxia (i.e., dissolved oxygen [DO] concentrations  0.05); all the black bars are significant (i.e., p  8 m s−1) from the south and southwest that are the common wind directions over the Great Lakes23, tilt the thermocline upward in the western and northern part of the central basin due to Ekman transport of surface water southward22,38,42,43,44,45. As this hypolimnetic water upwells into shallower depths it can be transported counter clockwise by the alongshore surface currents moving to the west32. If there is a calm period following the high winds, the upwelled water in the northwestern part of the central basin will flow southward because of the pressure gradient and also in a clockwise direction (to the west) because of the Coriolis effect, and so will intrude into the western basin (i.e., a geostrophic flow) opposite to the hydraulic flow from the Detroit River (Fig. 1c)22,32,46. This causes the rapid (on the order of hours) formation of a thermocline within the northeastern portion of the western basin (Pelee Passage) due to the intrusion of low temperature bottom water22,42, which can also be hypoxic22 or anoxic (i.e., DO (approx) 0) at the sediment surface22 and contain high soluble reactive phosphorus concentrations (SRP; 0.02–0.05 mg L−1)47,48,49. Low values of sediment oxygen uptake are observed during these events in the western basin due to stratification and weak bottom shear and turbulence, which results in thicker diffusive sublayer22.
    Interbasin exchange has been observed in lakes with multiple basins elsewhere (e.g., Lake Geneva50, Nechako Reservoir51) as well as in the Great Lakes region (e.g., Muskegon Bay52, Green Bay53, Kempenfelt Bay54, Pere Marquette River55). In Lake Michigan, for example, high winds can lead to coastal upwelling into Muskegon Lake causing episodic hypoxia52. In case of Lake Erie, interbasin exchange was identified as the dominant cause (63%) of hypoxia in the northeastern portion of the western basin during biweekly fishing trawls in August over the past 30 years22. However, there are no long-term continuous water quality observations to assess the occurrence and historic trends in these hypoxic events. Extreme winds prevailing from upwelling favourable directions (i.e., from the south and southwest) can generate strong surface waves and water currents through momentum flux at the air–water interface. Therefore, WP can be used as an indicator or proxy (but not the cause) of interbasin exchange. Here, we examine the historical trends in water temperature, winds and resultant waves in the context of climate change in the summer in the Great Lakes (Fig. 1a) with an emphasis on the western basin of Lake Erie (Fig. 1b). We examine data for August, which is the month when hypoxia is most likely to occur in dimictic north temperate lakes before the fall turnover, and when large HAB have been observed in the western basin of Lake Erie. August is also the time when the spatial extent of hypoxia in the central basin is the largest and when the aforementioned upwelling into the western basin is likely to occur22,40,56. The data examined are from buoys with the longest historical records (Fig. 1a and Table S1). We examine winds from the south and southwest directions, which are the common wind directions over the Great Lakes during August, and which are favourable for upwelling into the western basin of Lake Erie. The results show that the WP in Great Lakes has increased in the past 40 years. A pattern in WP (a proxy for hypoxic upwelling events into the western basin of Lake Erie) has also increased in frequency over this time, which has implications for the water quality (e.g., dissolved oxygen and total phosphorus) of the lake. The increased frequency of interbasin upwelling was confirmed using historical records of lake bottom water temperature (LBT), as well as dissolved oxygen and total phosphorus concentrations. This is the first time that WP has been identified as an indicator of climate change-driven biogeochemical responses in lakes.
    Long-term trends in WP and LST in the Great Lakes
    First, we investigate the historical trends in average lake surface temperature (LST), wind, and waves in the Great Lakes during August. Results show that LST and LSTw (hereinafter subscript ”w” is used to denote the variables measured during upwelling favourable winds from 180° to 270°, clockwise from north) have both increased significantly (p  0.2% year−1) since 1980, although lower trends were observed in lake Erie and Michigan (Figs. S1–S5 ((a) and (b)) and Table S1). These changes in the LST correspond to a warming trend in air temperature (Tair); the average Tair over the Great Lakes increased significantly by ~ 0.4 (pm) 0.2 ((pm) standard error) oC decade−1 since 1980 (Fig. S6a,b). There was an associated significant increase in wind speed (W) over the Great Lakes during August (Ww) of ~ 0.4 (pm) 0.1 m s−1 decade−1 for winds from the south and southwest (Figs. S1–S5 ((c) and (d)) and Table S1). Consequently, the wind stress associated with wind from the south and southwest over the water surface of the Great Lakes (({tau }_{w}=0.0012{rho }_{air}{W}_{w}^{2}), where ({rho }_{air})=1.22 kg m−3 is the density of air57, and the wind speed is measured 10 m above the water) increased significantly by 0.006 (pm) 0.002 Pa decade−1 during August (3.0 (pm) 0.9% year−1; Figs. S1–S5 ((e) and (f)) and Table S1).
    The effects of increased wind stress can also be seen in wave power, which is a function of the square of significant wave height (the mean value of the largest third of the wave heights during typically 1 h, SWH) and the wave period (({T}_{p}); i.e., (WP propto {{T}_{p} times SWH}^{2})); and changes in wind are reflected in wave power ((WP propto {W}^{2.4}) and (propto {W}^{5}) for developing and fully developed waves, respectively; see “Materials and methods”). The average SWH and SWHw in the Great Lakes during August have increased significantly by 0.03 (pm) 0.02 and 0.04 (pm) 0.03 m decade−1, respectively (i.e., ~ 1.0 (pm) 0.8% and ~ 1.7 (pm) 1.5% year−1, respectively), and this is largely driven by the increase in the frequency of extreme surface winds58 (Figs. S1–S5g and h; WP responds to changes in mean values, but it is more sensitive to extreme events because WP (propto { SWH}^{2})16). Consequently, the average WP and WPw in the Great Lakes during August have increased by ~ 0.04 (pm) 0.02 and ~ 0.06 (pm) 0.03 kW m−1 decade−1, respectively (i.e., ~ 1.0 (pm) 0.6% and ~ 2.0 (pm) 0.9% year−1, respectively; Fig. 2). In Lake Erie, WPw during August increased significantly by 0.02 (pm) 0.01 kW m−1 decade−1 (1.4 (pm) 0.2% year−1; Fig. 2 and Table S1; the increasing trend in WP = 0.02 (pm) 0.02 or 0.5 (pm) 0.1% was not statistically significant). It is relevant to note that these results are based on observations from a single buoy per lake; the one with the longest available data records (Fig. 1a and Table S2). However, the wind records and historical wave trends between buoys Sta. NDBC 45005 and Port Stanley in Lake Erie (Fig. 1a), which are ~ 130 km apart, are consistent based on the available records. Specifically, wind speed and direction in 2018 have Pearson correlation coefficients, r  > 0.6 (Fig. S7a,b, respectively); Ww and WPw are also correlated with r = 0.51 and 0.67, respectively, during August of 1990–2018 and the buoys show similar temporal increases in WPw (~ 0.025 (pm) 0.02 and 0.02 ± 0.01 kW m−1 decade−1 in Port Stanley and Sta. NDBC 45005, respectively). The trends in historical LSTw and WPw are related statistically (i.e., higher mutual information; Fig. S8) similar to the relationship described for global sea surface temperature and oceanic WP used as an indicator of climate change16.
    Figure 2

    Historical patterns in wave power in Great Lakes. 10 year moving average of wave power (WP) during the August (a) and during August with the wind from south and southwest and (WPw; b). The dashed lines show the linear regression (statistical results provided in Table S1).

    Full size image

    The long-term variations in WP and LST may be related to the global atmospheric phenomena. The LSTw anomaly in all the lakes show an increasing trend beginning in 1995 (Fig. S9a), which corresponds to the switch from the negative mode of the Atlantic Multidecadal Oscillation (AMO) to the positive mode (associated with increased tropical cyclone activity and stronger westerly winds) between the 1980s and the early 2000s (Fig. S9b)16. Both the WPw and LSTw anomaly are positively correlated with the AMO (r ~ 0.50 and ~ 0.55, respectively, since 1990). Similar to global oceanic wave power16, peaks in WPw in the Great Lakes are associated with strong El Niño years (i.e., Multivariate El Niño/Southern Oscillation (MEI) greater than 1.5; Fig. S9c,d), which can contribute to the enhanced wind energy due to increased cyclonic events16. MEI and WPw in Great Lakes are generally correlated by r  > 0.45 since 1990, however, the impacts of global atmospheric events on temperature and water dynamics of Great Lakes requires further study.
    Episodic hypoxic upwelling events in the western basin of Lake Erie
    We used historical records (Table S2) of long-term near-bottom water temperature (1998–2018) and dissolved oxygen (2007–2018) in the northeastern portion of the western basin of Lake Erie as well as wave observations in the western portion of the central basin (1980–2018 in Sta. NDBC 45005, Fig. 1) in August to determine the frequency of hypoxic upwelling events and the impacts of these events on the total phosphorus concentration in the northeast portion of the western basin. These analyses do not include the local hypoxia due to periods of calm and warm atmospheric conditions that may occur annually31 and, which are different than episodic upwelling events. Intrusion of cold hypoxic hypolimnetic water from the central basin into the western basin, following high winds from upwelling favourable directions, can cause a sudden drop (on the order of hours) in LBT and dissolved oxygen (DO) when the hypolimnetic water in the central basin is hypoxic22. The LBT time series in the western basin from 2017 to 2018 show that LBT decreased more than 3 °C in less than 12 h during upwelling events; e.g., 9–16, 18–22 and 26–31 August 2018 at Sta E (Fig. 3b) and 24–29 August 2017 at Leamington and Sta E (Fig. S10b). The records of LBT measured by the Ontario Ministry of Natural Resources and Forestry (MNRF) in August in Leamington Ontario between 1998 and 2018 detected 23 events of intrusion of cold water, which are consistent with upwelling (the blue symbols in Fig. 4a).
    Figure 3

    Wave power and bottom water temperature during August 2018 in the western basin of Lake Erie. (a) Time series of wave power (WP; black line), wave period (Tp; magenta), and significant wave height (SWH; blue) recorded at Sta. NDBC 45005. (b) Time series of dissolved oxygen (DO; red) and water temperature (LBT; blue dashed-line) in Sta. E at 1 m above the bed and bottom water temperature in Leamington (blue solid-line) in August 2018. The red triangles represent the observed hypoxic events in the western basin of Lake Erie. The wave power of the waves from south and southwest (i.e., favourable for upwelling) are positive preceding upwelling.

    Full size image

    Figure 4

    Number of hypoxic upwelling events in the western basin. (a) The number of hypoxic upwelling events based on patterns in wave power at Sta. NDBC 45005 (dark grey: average WPw  > 0.44 kW m−1, light grey: 0.37  8 m s−1 from similar directions, which corresponds to the ~ 80th percentile of wind speeds and is greater than the sum of the average and standard deviation of the wind speed (~ 6 and 2 m s−1, respectively). This wind threshold is consistent with Rao et al.’s44 wind speed that led to upwelling, which resulted in a fish kill along the north shore of the central basin in 2012.
    We used a least-square method to find a wave pattern (i.e., wave direction, duration, and power) that could be applied to predict the number of upwelling events that could be hypoxic between 1998 and 2018 based on LBT observations. A rapid decrease in the LBT at both Sta E and Leamington (12 km vs. 20 km from the Pelee Passage, respectively) occurred during events in which the average WP was  > 0.44 kW m−1 (i.e., 22–24 August 2017; Fig. S10a,b). The model predicted 25 upwelling events at Leamington (dark bars in Fig. 4a) of which 23 were observed (as stated above; no data were available for 2012; blue circles in Fig. 4a) for waves from south and southwest that lasted for at least 15 h with an average wave power greater than 0.37 kW m−1. Of the 23 observed events, the model predicted 21 events providing a root mean square error [RMSE] of 0.20 events. We validated the model predictions using the biweekly DO measurements from MNRF cruises between 2007 and 2018, which happened to sample 17 of the 23 observed events of low LBT. We note, however, that two hypoxic upwelling events were also recorded outside the study period, i.e., early September; this supports the study’s focus on August. Hypoxic conditions (DO  1.6 events year−1 in 2018 based on a 10-year moving average. Specifically, 21 of 49 (~ 43%) upwelling events in the last four decades have occurred in the past 10 years. Thirty-two of these were strong events with WP  > 0.44 kW m−1, 15 of which (~ 47%) occurred after 2009. Interestingly, this pattern in wave power (i.e., waves from south and southwest that last for  > 15 h with an average WP  > 0.37 kW m−1 from the historical data) was also observed in August 1980 (Fig. 4a), when the LBT dropped following rapid formation of a thermocline, which at the time was attributed to the upwelling of hypolimnetic water from the central basin40,42. These results indicate that an increase in extreme winds from south and southwest during August, over the last four decades, has resulted in more frequent upwelling from the central basin into the western basin and consequently a greater number of episodic hypoxic events in that part of Lake Erie.
    The effect of upwelling on phosphorus concentrations was examined through an analysis of the water column-average total phosphorus (TP) observations from biweekly cruises conducted by the MNRF at station W5 (Fig. 1b). We examined the available data recorded between 15 July and 15 September from 2000 to 2018 (3–5 records year−1; 66 observations in total), which is a period in which linear patterns in TP vs. sampling date were not evident (p  >   > 0.05). The z-score (standard deviate) was determined for the data within a given year (({mathrm{Z}}_{mathrm{TP}}=left(mathrm{TP}-{mathrm{TP}}_{mathrm{mean}}right)/mathrm{SD}), where ({mathrm{TP}}_{mathrm{mean}}) is the annual average of TP and SD is the standard deviation). Positive ({mathrm{Z}}_{mathrm{TP}}) values (i.e., (mathrm{TP} >{mathrm{TP}}_{mathrm{mean}})) were observed in 11 cases in which the sampling occurred  1) observed during 5 August–8 September sampling (black solid circles in Fig. 4b). Statistical comparison revealed that the average ({mathrm{Z}}_{mathrm{TP}}) was significantly higher during upwelling vs. non-upwelling samples (i.e., 0.95 ± 0.18, n = 11 vs. − 0.26 ± 0.12, n = 25; ANOVA F1,34 = 29.64, p  More