Multifaceted characteristics of dryland aridity changes in a warming world
1.
Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).
Article Google Scholar
2.
Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).
Article Google Scholar
3.
Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Akhtar-Schuster, M., Driouech, F. & Sankaran, M.) Ch. 3 (IPCC, Cambridge Univ. Press, 2019).
4.
Prăvălie, R. Drylands extent and environmental issues. A global approach. Earth Sci. Rev. 161, 259–278 (2016).
Article Google Scholar
5.
D’Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S. & Runyan, C. W. Global desertification: drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013).
Article Google Scholar
6.
Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015). Highlights the critical role of drylands in the global carbon budget by demonstrating that semi-arid ecosystems dominate the inter-annual variability and the increasing trend of global terrestrial carbon sink.
Article Google Scholar
7.
Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).
Article Google Scholar
8.
Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Desertification Synthesis (World Resources Institute, 2005).
9.
El-Beltagy, A. & Madkour, M. Impact of climate change on arid lands agriculture. Agric. Food Secur. 1, 3 (2012).
Article Google Scholar
10.
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
Article Google Scholar
11.
Cook, K. H. & Vizy, E. K. Detection and analysis of an amplified warming of the Sahara Desert. J. Clim. 28, 6560–6580 (2015).
Article Google Scholar
12.
Zhou, L., Chen, H. & Dai, Y. Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett. 10, 064012 (2015).
Article Google Scholar
13.
Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021). Proposes a conceptual framework that aims to facilitate actionable pathways towards sustainable development of global dryland socio-ecological systems.
Article Google Scholar
14.
Larigauderie, A. & Mooney, H. A. The Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services: moving a step closer to an IPCC-like mechanism for biodiversity. Curr. Opin. Environ. Sustain. 2, 9–14 (2010).
Article Google Scholar
15.
Convention on Biological Diversity. Aichi Biodiversity Targets http://www.cbd.int/sp/targets/default.shtml (2010).
16.
United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).
17.
Park, C.-E. et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).
Article Google Scholar
18.
Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).
Article Google Scholar
19.
Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2015).
Article Google Scholar
20.
Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018). Provides observational evidence for widespread loss of terrestrial water storage over global endorheic basins during 2002–2016 from climate variability and human water extractions.
Article Google Scholar
21.
Scheff, J. & Frierson, D. M. W. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Clim. 28, 5583–5600 (2015).
Article Google Scholar
22.
Koutroulis, A. G. Dryland changes under different levels of global warming. Sci. Total Environ. 655, 482–511 (2019).
Article Google Scholar
23.
Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).
Article Google Scholar
24.
Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. Discuss. 13, 14637–14665 (2013).
Google Scholar
25.
Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dyn. 43, 2607–2627 (2014).
Article Google Scholar
26.
Zhang, P. et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370, 1095–1099 (2020).
Article Google Scholar
27.
He, B., Wang, S., Guo, L. & Wu, X. Aridity change and its correlation with greening over drylands. Agric. For. Meteorol. 278, 107663 (2019).
Article Google Scholar
28.
Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013). Reveals widespread greening in global arid regions despite warming, and provides quantitative theoretical evidence linking this greening pattern with elevated CO2.
Article Google Scholar
29.
Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007 — an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).
Article Google Scholar
30.
Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M. & McVicar, T. R. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).
Article Google Scholar
31.
Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
Article Google Scholar
32.
Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
Article Google Scholar
33.
Beck, H. E. et al. Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 115, 2547–2563 (2011).
Article Google Scholar
34.
United Nations World Water Assessment Programme. The United Nations World Water Development Report 2015: Water for a Sustainable World (UNESCO, 2015).
35.
Wang, L. et al. Dryland ecohydrology and climate change: critical issues and technical advances. Hydrol. Earth Syst. Sci. 16, 2585–2603 (2012).
Article Google Scholar
36.
Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015). A comprehensive summary of contradictory viewpoints of ‘warmer is more arid’ versus ‘warmer is less arid’ that arise from different interpretations of aridity changes, and provides a road map for reconciling such disparities.
Article Google Scholar
37.
Swann, A. L. S. Plants and drought in a changing climate. Curr. Clim. Change Rep. 4, 192–201 (2018).
Article Google Scholar
38.
Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).
Article Google Scholar
39.
Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).
Article Google Scholar
40.
Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).
Article Google Scholar
41.
Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2°C global warming target. Nat. Clim. Change 7, 417–422 (2017).
Article Google Scholar
42.
Middleton, N. & Thomas, D. World Atlas of Desertification (Arnold, 1997).
43.
Fu, Q. & Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).
Article Google Scholar
44.
Yang, Y. et al. Disconnection between trends of atmospheric drying and continental runoff. Water Resour. Res. 54, 4700–4713 (2018).
Article Google Scholar
45.
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).
Article Google Scholar
46.
Greve, P., Roderick, M. L. & Seneviratne, S. I. Simulated changes in aridity from the last glacial maximum to 4xCO2. Environ. Res. Lett. 12, 114021 (2017).
Article Google Scholar
47.
Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).
Article Google Scholar
48.
Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).
Article Google Scholar
49.
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
Article Google Scholar
50.
Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
Article Google Scholar
51.
Keenan, T. F., Luo, X., Zhang, Y. & Zhou, S. Ecosystem aridity and atmospheric CO2. Science 368, 251–252 (2020).
Google Scholar
52.
Burrell, A. L., Evans, J. P. & De Kauwe, M. G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).
Article Google Scholar
53.
Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2013).
Article Google Scholar
54.
Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).
Article Google Scholar
55.
Milly, P. & Dunne, K. A. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change. J. Am. Water Resour. Assoc. 53, 822–838 (2017).
Article Google Scholar
56.
De Jeu, R. A. et al. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 29, 399–420 (2008).
Article Google Scholar
57.
Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).
Article Google Scholar
58.
Feng, H. & Zhang, M. Global land moisture trends: drier in dry and wetter in wet over land. Sci. Rep. 5, 18018 (2015).
Article Google Scholar
59.
Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).
Article Google Scholar
60.
Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).
Article Google Scholar
61.
Li, M., Wu, P., Ma, Z., Lv, M. & Yang, Q. Changes in soil moisture persistence in China over the past 40 years under a warming climate. J. Clim. 33, 9531–9550 (2020).
Article Google Scholar
62.
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).
Article Google Scholar
63.
Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Change Rep. 4, 301–312 (2018). Highlights the dominant role of CO2radiative forcing in shaping global land surface drying patterns for the twenty-first century.
Article Google Scholar
64.
Schlaepfer, D. R. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196 (2017).
Article Google Scholar
65.
Li, L. et al. Global trends in water and sediment fluxes of the world’s large rivers. Sci. Bull. 65, 62–69 (2019).
Article Google Scholar
66.
Yang, H. et al. Regional patterns of future runoff changes from Earth system models constrained by observation. Geophys. Res. Lett. 44, 5540–5549 (2017).
Article Google Scholar
67.
Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2015).
Article Google Scholar
68.
Milly, P. C. D. & Dunne, K. A. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 367, 1252–1255 (2020).
Article Google Scholar
69.
Trancoso, R., Larsen, J. R., McVicar, T. R., Phinn, S. R. & McAlpine, C. A. CO2-vegetation feedbacks and other climate changes implicated in reducing base flow. Geophys. Res. Lett. 44, 2310–2318 (2017).
Article Google Scholar
70.
Dai, A., Qian, T., Trenberth, K. E. & Milliman, J. D. Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 22, 2773–2792 (2009).
Article Google Scholar
71.
Hobeichi, S., Abramowitz, G., Evans, J. & Beck, H. E. Linear Optimal Runoff Aggregate (LORA): A global gridded synthesis runoff product. Hydrol. Earth Syst. Sci. 23, 851–870 (2019).
Article Google Scholar
72.
Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).
Article Google Scholar
73.
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).
Article Google Scholar
74.
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Article Google Scholar
75.
Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).
Article Google Scholar
76.
Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016). Reveals the important mechanism that declining soil moisture and altered vegetation physiology under climate change and rising CO2could make the near-surface air even warmer and drier.
Article Google Scholar
77.
Stephens, C. M., McVicar, T. R., Johnson, F. M. & Marshall, L. A. Revisiting pan evaporation trends in Australia a decade on. Geophys. Res. Lett. 45, 11164–11172 (2018).
Google Scholar
78.
Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).
Article Google Scholar
79.
Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2020).
Article Google Scholar
80.
Lau, W. K. & Kim, K. M. Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl Acad. Sci. USA 112, 3630–3635 (2015).
Article Google Scholar
81.
Lau, W. K. M. & Tao, W. Precipitation–radiation–circulation feedback processes associated with structural changes of the ITCZ in a warming climate during 1980–2014: an observational portrayal. J. Clim. 33, 8737–8749 (2020).
Article Google Scholar
82.
Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).
Article Google Scholar
83.
Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).
Article Google Scholar
84.
Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).
Article Google Scholar
85.
García, M. et al. Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints. Remote Sens. Environ. 131, 103–118 (2013).
Article Google Scholar
86.
Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).
Article Google Scholar
87.
Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
Article Google Scholar
88.
Fowler, M. D., Kooperman, G. J., Randerson, J. T. & Pritchard, M. S. The effect of plant physiological responses to rising CO2 on global streamflow. Nat. Clim. Change 9, 873–879 (2019).
Article Google Scholar
89.
Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).
Article Google Scholar
90.
Haverd, V. et al. Higher than expected CO2 fertilization inferred from leaf to global observations. Glob. Change Biol. 26, 2390–2402 (2020).
Article Google Scholar
91.
Nie, M., Lu, M., Bell, J., Raut, S. & Pendall, E. Altered root traits due to elevated CO2: a meta-analysis. Glob. Ecol. Biogeogr. 22, 1095–1105 (2013).
Article Google Scholar
92.
Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).
Article Google Scholar
93.
Sun, X., Wilcox, B. P. & Zou, C. B. Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. J. Hydrol. 576, 123–136 (2019).
Article Google Scholar
94.
Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).
Article Google Scholar
95.
Yang, H., Huntingford, C., Wiltshire, A., Sitch, S. & Mercado, L. Compensatory climate effects link trends in global runoff to rising atmospheric CO2 concentration. Environ. Res. Lett. 14, 124075 (2019).
Article Google Scholar
96.
Mankin, J. S. et al. Blue water trade-offs with vegetation in a CO2-enriched climate. Geophys. Res. Lett. 45, 3115–3125 (2018).
Article Google Scholar
97.
Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).
Article Google Scholar
98.
Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).
Article Google Scholar
99.
Morgan, J. A. et al. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476, 202–205 (2011).
Article Google Scholar
100.
Farrior, C. E., Rodriguez-Iturbe, I., Dybzinski, R., Levin, S. A. & Pacala, S. W. Decreased water limitation under elevated CO2 amplifies potential for forest carbon sinks. Proc. Natl Acad. Sci. USA 112, 7213–7218 (2015).
Article Google Scholar
101.
Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).
Article Google Scholar
102.
Ukkola, A. M., Keenan, T. F., Kelley, D. I. & Prentice, I. C. Vegetation plays an important role in mediating future water resources. Environ. Res. Lett. 11, 094022 (2016).
Article Google Scholar
103.
Mankin, J. S., Smerdon, J. E., Cook, B. I., Williams, A. P. & Seager, R. The curious case of projected twenty-first-century drying but greening in the American West. J. Clim. 30, 8689–8710 (2017).
Article Google Scholar
104.
Zarakas, C. M., Swann, A. L. S., Laguë, M. M., Armour, K. C. & Randerson, J. T. Plant physiology increases the magnitude and spread of the transient climate response to CO2 in CMIP6 Earth system models. J. Clim. 33, 8561–8578 (2020).
Article Google Scholar
105.
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).
Article Google Scholar
106.
Song, J. et al. Elevated CO2 does not stimulate carbon sink in a semi-arid grassland. Ecol. Lett. 22, 458–468 (2019).
Article Google Scholar
107.
Obermeier, W. A. et al. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Change 7, 137–141 (2016).
Article Google Scholar
108.
Craine, J. M. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. 2, 1735–1744 (2018).
Article Google Scholar
109.
Medlyn, B. E. et al. How do leaf and ecosystem measures of water-use efficiency compare? New Phytol. 216, 758–770 (2017).
Article Google Scholar
110.
Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).
Article Google Scholar
111.
Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental-scale. Nat. Geosci. 11, 744–748 (2018).
Article Google Scholar
112.
Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).
Article Google Scholar
113.
Lemordant, L. & Gentine, P. Vegetation response to rising CO2 impacts extreme temperatures. Geophys. Res. Lett. 46, 1383–1392 (2019).
Article Google Scholar
114.
Sellers, P. J. et al. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271, 1402–1406 (1996).
Article Google Scholar
115.
Warren, J. M., Norby, R. J. & Wullschleger, S. D. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).
Article Google Scholar
116.
De Kauwe, M. G. et al. Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes. Biogeosciences 16, 903–916 (2019).
Article Google Scholar
117.
Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).
Article Google Scholar
118.
Reich, P. B., Hobbie, S. E., Lee, T. D. & Pastore, M. A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360, 317–320 (2018).
Article Google Scholar
119.
Norby, R. J. et al. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 209, 17–28 (2016).
Article Google Scholar
120.
Steffen, W. et al. The emergence and evolution of Earth System Science. Nat. Rev. Earth Environ. 1, 54–63 (2020).
Article Google Scholar
121.
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
Article Google Scholar
122.
Marvel, K. et al. Twentieth-century hydroclimate changes consistent with human influence. Nature 569, 59–65 (2019).
Article Google Scholar
123.
Di Baldassarre, G. et al. Sociohydrology: scientific challenges in addressing the sustainable development goals. Water Resour. Res. 55, 6327–6355 (2019).
Article Google Scholar
124.
van der Esch, S. et al. Exploring Future Changes in Land Use and Land Condition and the Impacts on Food, Water, Climate Change and Biodiversity: Scenarios for the UNCCD Global Land Outlook (PBL Netherlands Environmental Assessment Agency, 2017).
125.
Gleick, P. H. Transitions to freshwater sustainability. Proc. Natl Acad. Sci. USA 115, 8863–8871 (2018).
Article Google Scholar
126.
Wada, Y., de Graaf, I. E. M. & van Beek, L. P. H. High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model Earth Syst. 8, 735–763 (2016).
Article Google Scholar
127.
Wada, Y. et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016). Provides an ensemble model projection of significant increases in the twenty-first century’s water demand by major water-use sectors under envisaged population growth and socio-economic developments.
Article Google Scholar
128.
Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48, W00L06 (2012).
Article Google Scholar
129.
Chen, Y. et al. Recent global cropland water consumption constrained by observations. Water Resour. Res. 55, 3708–3738 (2019).
Article Google Scholar
130.
Allen, L. H. Jr., Kakani, V. G., Vu, J. C. & Boote, K. J. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. J. Plant Physiol. 168, 1909–1918 (2011).
Article Google Scholar
131.
Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).
Article Google Scholar
132.
Urban, D. W., Sheffield, J. & Lobell, D. B. Historical effects of CO2 and climate trends on global crop water demand. Nat. Clim. Change 7, 901–905 (2017).
Article Google Scholar
133.
Gleeson, T., Wada, Y., Bierkens, M. F. & van Beek, L. P. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).
Article Google Scholar
134.
Bierkens, M. F. P. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14, 063002 (2019).
Article Google Scholar
135.
Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).
Article Google Scholar
136.
Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110–2118 (2013).
Article Google Scholar
137.
Eamus, D. & Froend, R. Groundwater-dependent ecosystems: the where, what and why of GDEs. Aust. J. Bot. 54, 91–96 (2006).
Article Google Scholar
138.
Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34, 355–367 (2015).
Article Google Scholar
139.
Devitt, T. J., Wright, A. M., Cannatella, D. C. & Hillis, D. M. Species delimitation in endangered groundwater salamanders: implications for aquifer management and biodiversity conservation. Proc. Natl Acad. Sci. USA 116, 2624–2633 (2019).
Article Google Scholar
140.
Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).
Article Google Scholar
141.
Hong, S. et al. Divergent responses of soil organic carbon to afforestation. Nat. Sustain. 3, 694–700 (2020).
Article Google Scholar
142.
McVicar, T. R. et al. Developing a decision support tool for China’s re-vegetation program: Simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. For. Ecol. Manag. 251, 65–81 (2007).
Article Google Scholar
143.
Zhao, M. et al. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 4, 56–62 (2020).
Article Google Scholar
144.
Kwon, H.-Y. et al. in Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development Ch. 8 (eds Nkonya E., Mirzabaev A. & von Braun J.) 197-214 (Springer, 2016).
145.
Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E. & Harris, A. T. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour. 29, 261–299 (2004).
Article Google Scholar
146.
Dunne, T., Western, D. & Dietrich, W. E. Effects of cattle trampling on vegetation, infiltration, and erosion in a tropical rangeland. J. Arid. Environ. 75, 58–69 (2011).
Article Google Scholar
147.
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Article Google Scholar
148.
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
Article Google Scholar
149.
Reisman-Berman, O., Keasar, T. & Tel-Zur, N. Native and non-native species for dryland afforestation: bridging ecosystem integrity and livelihood support. Ann. For. Sci. 76, 114 (2019).
Article Google Scholar
150.
Zhang, J. et al. Carrying capacity for vegetation across northern China drylands. Sci. Total Environ. 710, 136391 (2020).
Article Google Scholar
151.
Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Change 9, 880–885 (2019).
Article Google Scholar
152.
Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J. & Vicente, O. Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front. Plant Sci. 6, 978 (2015).
Article Google Scholar
153.
Graham, N. T. et al. Water sector assumptions for the Shared Socioeconomic Pathways in an integrated modeling framework. Water Resour. Res. 54, 6423–6440 (2018).
Article Google Scholar
154.
Muhs, D. R. The geologic records of dust in the Quaternary. Aeolian Res. 9, 3–48 (2013).
Article Google Scholar
155.
Scheff, J., Seager, R., Liu, H. & Coats, S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).
Article Google Scholar
156.
Lambert, F. et al. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616–619 (2008).
Article Google Scholar
157.
Salzmann, U. et al. Climate and environment of a Pliocene warm world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 1–8 (2011).
Article Google Scholar
158.
Fu, Q., Lin, L., Huang, J., Feng, S. & Gettelman, A. Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. J. Geophys. Res. Atmos. 121, 2857–2873 (2016).
Article Google Scholar
159.
Prudhomme, C. et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl Acad. Sci. USA 111, 3262–3267 (2014).
Article Google Scholar
160.
Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).
Article Google Scholar
161.
Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).
Article Google Scholar
162.
Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).
Article Google Scholar
163.
Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2012).
Article Google Scholar
164.
Williams, A. P. et al. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl Acad. Sci. USA 107, 21289–21294 (2010).
Article Google Scholar
165.
Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
Article Google Scholar
166.
Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Article Google Scholar
167.
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
Article Google Scholar
168.
Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).
Article Google Scholar
169.
Hoover, D. L., Knapp, A. K. & Smith, M. D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95, 2646–2656 (2014).
Article Google Scholar
170.
Greve, P. et al. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain. 1, 486–494 (2018).
Article Google Scholar
171.
Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).
Article Google Scholar
172.
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
Article Google Scholar
173.
Roderick, M. L., Sun, F., Lim, W. H. & Farquhar, G. D. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci. 18, 1575–1589 (2014).
Article Google Scholar
174.
Gudmundsson, L., Greve, P. & Seneviratne, S. I. The sensitivity of water availability to changes in the aridity index and other factors—A probabilistic analysis in the Budyko space. Geophys. Res. Lett. 43, 6985–6994 (2016).
Article Google Scholar
175.
American Meteorological Society. Glossary of Meteorology http://glossary.ametsoc.org/wiki/Aridity (2000).
176.
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration — Guidelines for Computing Crop Water Requirements — FAO Irrigation and Drainage Paper 56 (Food and Agriculture Organization of the United Nations, 1998).
177.
Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).
Article Google Scholar
178.
Dai A. in Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts 1st edn, Ch. 2 (eds Tang, Q. & Oki, T.) 17-37 (Wiley, 2016).
179.
Sitch, S. et al. Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades. Biogeosci. Discuss. 10, 20113–20177 (2013).
Google Scholar
180.
Donohue, R. J., Roderick, M. L., McVicar, T. R. & Yang, Y. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO2 reveals distinct response patterns between disturbed and undisturbed vegetation. J. Geophys. Res. Biogeosci. 122, 168–184 (2017).
Article Google Scholar
181.
Barton, C. V. M. et al. Effects of elevated atmospheric [CO2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna. Glob. Change Biol. 18, 585–595 (2012).
Article Google Scholar
182.
Savvides, A. M. & Fotopoulos, V. Two inexpensive and non-destructive techniques to correct for smaller-than-gasket leaf area in gas exchange measurements. Front. Plant Sci. 9, 548 (2018).
Article Google Scholar More