Eco-evolutionary interaction between microbiome presence and rapid biofilm evolution determines plant host fitness
1.
Slobodkin, L. B. Growth and regulation of animal populations (Holt, Rinehart and Winston, 1961).
2.
Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).
CAS PubMed Article Google Scholar
3.
Hendry, A. P. A critique for eco-evolutionary dynamics. Funct. Ecol. 33, 84–94 (2019).
Article Google Scholar
4.
Turcotte, M. M., Reznick, D. N. & Hare, J. D. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol. Lett. 14, 1084–1092 (2011).
PubMed Article Google Scholar
5.
Hairston, N. G. Jr, Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).
Article Google Scholar
6.
Tan, J., Rattray, J. B., Yang, X. & Jiang, L. Spatial storage effect promotes biodiversity during adaptive radiation. Proc. R. Soc. Lond. B 284, 20170841 (2017).
Google Scholar
7.
Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl Acad. Sci. USA 116, 2112–2117 (2019).
CAS PubMed Article Google Scholar
8.
Faillace, C. A. & Morin, P. J. Evolution alters the consequences of invasions in experimental communities. Nat. Ecol. Evol. 1, 0013 (2017).
Article Google Scholar
9.
Vanbergen, A. J., Espíndola, A. & Aizen, M. A. Risks to pollinators and pollination from invasive alien species. Nat. Ecol. Evol. 2, 16–25 (2018).
PubMed Article Google Scholar
10.
Hendry, A. P. Eco-evolutionary dynamics (Princeton Univ. Press, 2016).
11.
Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).
PubMed PubMed Central Article Google Scholar
12.
Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667 (2019).
CAS PubMed PubMed Central Article Google Scholar
13.
terHorst, C. P. & Zee, P. C. Eco-evolutionary dynamics in plant–soil feedbacks. Funct. Ecol. 30, 1062–1072 (2016).
Article Google Scholar
14.
Soto, M. J., Domínguez‐Ferreras, A., Pérez‐Mendoza, D., Sanjuán, J. & Olivares, J. Mutualism versus pathogenesis: the give‐and‐take in plant–bacteria interactions. Cell. Microbiol. 11, 381–388 (2009).
CAS PubMed Article Google Scholar
15.
Marchetti, M. et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol. 8, e1000280 (2010).
PubMed PubMed Central Article CAS Google Scholar
16.
Saikkonen, K., Wäli, P., Helander, M. & Faeth, S. H. Evolution of endophyte–plant symbioses. Trends Plant Sci. 9, 275–280 (2004).
CAS PubMed Article Google Scholar
17.
Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio 9, e01294-18 (2018).
PubMed PubMed Central Article Google Scholar
18.
Miller, E. T., Svanbäck, R. & Bohannan, B. J. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).
PubMed Article Google Scholar
19.
Griffin, E. A. et al. Plant host identity and soil macronutrients explain little variation in sapling endophyte community composition: is disturbance an alternative explanation? J. Ecol. 107, 1876–1889 (2019).
CAS Article Google Scholar
20.
Acosta, K. et al. Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS ONE 15, e0228560 (2020).
CAS PubMed PubMed Central Article Google Scholar
21.
Sandler, G., Bartkowska, M., Agrawal, A. F. & Wright, S. I. Estimation of the SNP mutation rate in two vegetatively propagating species of duckweed. G3 10, 4191–4200 (2020).
PubMed Article Google Scholar
22.
Ishizawa, H., Kuroda, M., Morikawa, M. & Ike, M. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnol. Biofuels 10, 62 (2017).
PubMed PubMed Central Article CAS Google Scholar
23.
Zhang, Y. et al. Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS ONE 5, e13527 (2010).
PubMed PubMed Central Article CAS Google Scholar
24.
Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).
CAS PubMed PubMed Central Article Google Scholar
25.
Tan, J., Yang, X., He, Q., Hua, X. & Jiang, L. Earlier parasite arrival reduces the repeatability of host adaptive radiation. ISME J. 14, 2358–2360 (2020).
PubMed PubMed Central Article Google Scholar
26.
Tan, J., Yang, X. & Jiang, L. Species ecological similarity modulates the importance of colonization history for adaptive radiation. Evolution 71, 1719–1727 (2017).
PubMed Article Google Scholar
27.
Meyer, J. R., Schoustra, S. E., Lachapelle, J. & Kassen, R. Overshooting dynamics in a model adaptive radiation. Proc. R. Soc. Lond. B 278, 392–398 (2011).
Google Scholar
28.
Tan, J., Kelly, C. K. & Jiang, L. Temporal niche promotes biodiversity during adaptive radiation. Nat. Commun. 4, 2102 (2013).
PubMed Article CAS Google Scholar
29.
Spiers, A. J., Buckling, A. & Rainey, P. B. The causes of Pseudomonas diversity. Microbiology 146, 2345–2350 (2000).
CAS PubMed Article Google Scholar
30.
Spiers, A. J., Bohannon, J., Gehrig, S. M. & Rainey, P. B. Biofilm formation at the air–liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol. Microbiol. 50, 15–27 (2003).
CAS PubMed Article Google Scholar
31.
Bantinaki, E. et al. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Genetics 176, 441–453 (2007).
CAS PubMed PubMed Central Article Google Scholar
32.
McDonald, M. J., Gehrig, S. M., Meintjes, P. L., Zhang, X.-X. & Rainey, P. B. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation. GENETICS 183, 1041–1053 (2009).
CAS PubMed PubMed Central Article Google Scholar
33.
Bailey, S. F., Dettman, J. R., Rainey, P. B. & Kassen, R. Competition both drives and impedes diversification in a model adaptive radiation. Proc. R. Soc. Lond. B 280, 20131253 (2013).
Google Scholar
34.
Hansen, S. K., Rainey, P. B., Haagensen, J. A. & Molin, S. Evolution of species interactions in a biofilm community. Nature 445, 533–536 (2007).
CAS PubMed Article Google Scholar
35.
Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).
CAS PubMed Article Google Scholar
36.
Ahmad, F., Ahmad, I. & Khan, M. S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163, 173–181 (2008).
CAS PubMed Article Google Scholar
37.
El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y. & Elbadry, M. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front. Microbiol. 5, 651 (2014).
PubMed PubMed Central Article Google Scholar
38.
Gómez, P. & Buckling, A. Real-time microbial adaptive diversification in soil. Ecol. Lett. 16, 650–655 (2013).
PubMed Article Google Scholar
39.
Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290 (2011).
CAS PubMed Article Google Scholar
40.
Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).
PubMed PubMed Central Article Google Scholar
41.
Veach, A. M. et al. Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome 7, 76 (2019).
PubMed PubMed Central Article Google Scholar
42.
Lennon, J. T. & Martiny, J. B. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol. Lett. 11, 1178–1188 (2008).
PubMed Article Google Scholar
43.
Pantel, J. H., Duvivier, C. & Meester, L. D. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecol. Lett. 18, 992–1000 (2015).
PubMed Article Google Scholar
44.
Faillace, C. A. & Morin, P. J. Evolution alters post-invasion temporal dynamics in experimental communities. J. Anim. Ecol. 89, 285–298 (2020).
PubMed Article Google Scholar
45.
Omilian, A. R., Cristescu, M. E. A., Dudycha, J. L. & Lynch, M. Ameiotic recombination in asexual lineages of Daphnia. Proc. Natl Acad. Sci. USA 103, 18638–18643 (2006).
CAS PubMed Article Google Scholar
46.
Mao, Y., Botella, J. R., Liu, Y. & Zhu, J.-K. Gene editing in plants: progress and challenges. Natl Sci. Rev. 6, 421–437 (2019).
CAS Article Google Scholar
47.
Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of Bacteria and Archaea. Science 327, 167–170 (2010).
CAS PubMed Article Google Scholar
48.
Yang, L. et al. Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol. Biochem. 43, 915–922 (2011).
CAS Article Google Scholar
49.
Zabłocka-Godlewska, E., Przystaś, W. & Grabińska-Sota, E. Decolourization of diazo Evans blue by two strains of Pseudomonas fluorescens isolated from different wastewater treatment plants. Water Air Soil Pollut. 223, 5259–5266 (2012).
PubMed PubMed Central Article CAS Google Scholar
50.
Paulsen, I. T. et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat. Biotechnol. 23, 873–878 (2005).
CAS PubMed PubMed Central Article Google Scholar
51.
Rainey, P. B. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol. 1, 243–257 (1999).
CAS PubMed Article Google Scholar
52.
Gilbert, S. et al. Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front. Chem. 6, 265 (2018).
PubMed PubMed Central Article CAS Google Scholar
53.
Bailey, M. J., Lilley, A. K., Thompson, I. P., Rainey, P. B. & Ellis, R. J. Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Mol. Ecol. 4, 755–764 (1995).
CAS PubMed Article Google Scholar
54.
Spiers, A. J. & Rainey, P. B. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology 151, 2829–2839 (2005).
CAS PubMed Article Google Scholar
55.
Lind, P. A., Libby, E., Herzog, J. & Rainey, P. B. Predicting mutational routes to new adaptive phenotypes. eLife 8, e38822 (2019).
PubMed PubMed Central Article Google Scholar
56.
O’Brien, P. A., Webster, N. S., Miller, D. J. & Bourne, D. G. Host–microbe coevolution: applying evidence from model systems to complex marine invertebrate holobionts. mBio 10, e02241-18 (2019).
PubMed PubMed Central Article Google Scholar
57.
Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028-16 (2016).
PubMed PubMed Central Article Google Scholar
58.
Landolt, E. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), Volume 2. The Family of Lemnaceae, A Monographic Study, Volume 1 (Geobotanical Institute, ETH Zurich, 1986).
59.
Ziegler, P., Sree, K. S. & Appenroth, K.-J. Duckweeds for water remediation and toxicity testing. Toxicol. Environ. Chem. 98, 1127–1154 (2016).
CAS Article Google Scholar More