1.
Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2017).
CAS PubMed Article PubMed Central Google Scholar
2.
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
CAS PubMed Article PubMed Central Google Scholar
3.
Liu, H., Macdonald, C. A., Cook, J., Anderson, I. C. & Singh, B. K. An ecological loop: host microbiomes across multitrophic interactions. Trends Ecol. Evol. 34, 1118–1130 (2019).
PubMed Article PubMed Central Google Scholar
4.
Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).
CAS PubMed Article PubMed Central Google Scholar
5.
Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1, 116 (2018).
PubMed PubMed Central Article Google Scholar
6.
Fisher, R. M., Henry, L. M., Cornwallis, C. K., Kiers, E. T. & West, S. A. The evolution of host–symbiont dependence. Nat. Commun. 8, 1–8 (2017).
CAS Article Google Scholar
7.
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
CAS PubMed Article PubMed Central Google Scholar
8.
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
CAS PubMed Article PubMed Central Google Scholar
9.
Van Der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
PubMed Article PubMed Central Google Scholar
10.
Dubey, A. et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers. Conserv. 28, 2405–2429 (2019).
Article Google Scholar
11.
Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).
CAS PubMed Article PubMed Central Google Scholar
12.
Hartmann, A. et al. Assessment of the structural and functional diversities of plant microbiota: achievements and challenges—a review. J. Adv. Res. 19, 3–13 (2019).
CAS PubMed PubMed Central Article Google Scholar
13.
Gurung, K., Wertheim, B. & Falcao Salles, J. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).
Article Google Scholar
14.
Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas González, I. & Dangl, J. L. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 38, 155–163 (2017).
PubMed PubMed Central Article Google Scholar
15.
Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).
PubMed Article PubMed Central Google Scholar
16.
Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. L. & Schäfer, P. Challenges and approaches in microbiome research: from fundamental to applied. Front. Plant Sci. 9, 1205 (2018).
PubMed PubMed Central Article Google Scholar
17.
Mariotte, P. et al. Plant–soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).
PubMed Article PubMed Central Google Scholar
18.
Porter, S. S. & Sachs, J. L. Agriculture and the disruption of plant–microbial symbiosis. Trends Ecol. Evol. 35, 426–439 (2020).
PubMed Article PubMed Central Google Scholar
19.
Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).
PubMed PubMed Central Article Google Scholar
20.
Lòpez-Fernàndez, S., Mazzoni, V., Pedrazzoli, F., Pertot, I. & Campisano, A. A phloem-feeding insect transfers bacterial endophytic communities between grapevine plants. Front. Microbiol. 8, 834 (2017).
PubMed PubMed Central Article Google Scholar
21.
Kim, D. R. et al. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10, 4802 (2019).
PubMed PubMed Central Article CAS Google Scholar
22.
Adeleke, R. A., Raimi, A. R., Roopnarain, A. & Mokubedi, S. M. in Biofertilizers for Sustainable Agriculture and Environment Vol 55 (eds Bhoopander, G. et al.) 137–172 (Springer, 2019).
23.
Besset-Manzoni, Y., Rieusset, L., Joly, P., Comte, G. & Prigent-Combaret, C. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ. Sci. Pollut. Res. 25, 29953–29970 (2018).
Article Google Scholar
24.
Hussain, S., Siddique, T., Saleem, M., Arshad, M. & Khalid, A. Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv. Agron. 102, 159–200 (2009).
CAS Article Google Scholar
25.
Wolmarans, K. & Swart, W. J. Influence of glyphosate, other herbicides and genetically modified herbicide-resistant crops on soil microbiota: a review. South Afr. J. Plant Soil 31, 177–186 (2014).
Article Google Scholar
26.
Kim, N., Zabaloy, M. C., Guan, K. & Villamil, M. B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).
CAS Article Google Scholar
27.
Venter, Z. S., Jacobs, K. & Hawkins, H. J. The impact of crop rotation on soil microbial diversity: a meta-analysis. Pedobiologia 59, 215–223 (2016).
Article Google Scholar
28.
Imfeld, G. & Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur. J. Soil Biol. 49, 22–30 (2012).
CAS Article Google Scholar
29.
Bünemann, E. K., Schwenke, G. D. & Van Zwieten, L. Impact of agricultural inputs on soil organisms—a review. Aust. J. Soil Res. 44, 379–406 (2006).
Article Google Scholar
30.
Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 21, 973–985 (2015).
PubMed Article PubMed Central Google Scholar
31.
Chen, H. et al. Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass. Agric. Ecosyst. Environ. 293, 106841 (2020).
CAS Article Google Scholar
32.
Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M. & Raaijmakers, J. M. The wild side of plant microbiomes. Microbiome 6, 143 (2018).
PubMed PubMed Central Article Google Scholar
33.
Ullah, M. & Dijkstra, F. Fungicide and bactericide effects on carbon and nitrogen cycling in soils: a meta-analysis. Soil Syst. 3, 23 (2019).
CAS Article Google Scholar
34.
Wang, Z., Li, Y., Li, T., Zhao, D. & Liao, Y. Conservation tillage decreases selection pressure on community assembly in the rhizosphere of arbuscular mycorrhizal fungi. Sci. Total Environ. 710, 136326 (2020).
CAS PubMed Article PubMed Central Google Scholar
35.
Gómez-Gallego, C. et al. Glyphosate-based herbicide affects the composition of microbes associated with Colorado potato beetle (Leptinotarsa decemlineata). FEMS Microbiol. Lett. 367, fnaa050 (2019).
Article CAS Google Scholar
36.
Jenkins, M., Locke, M., Reddy, K., McChesney, D. S. & Steinriede, R. Glyphosate applications, glyphosate resistant corn, and tillage on nitrification rates and distribution of nitrifying microbial communities. Soil Sci. Soc. Am. J. 81, 1371–1380 (2017).
CAS Article Google Scholar
37.
Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. & Megharaj, M. Local applications but global implications: can pesticides drive microorganisms to develop antimicrobial resistance? Sci. Total Environ. 654, 177–189 (2019).
CAS PubMed Article PubMed Central Google Scholar
38.
Felsot, A. S. Enhanced biodegradation of insecticides in soil: implications for agroecosystems. Annu. Rev. Entomol. 34, 453–476 (1989).
CAS Article Google Scholar
39.
Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).
CAS PubMed Article PubMed Central Google Scholar
40.
Tago, K., Kikuchi, Y., Nakaoka, S., Katsuyama, C. & Hayatsu, M. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs. Mol. Ecol. 24, 3766–3778 (2015).
CAS PubMed Article PubMed Central Google Scholar
41.
Zhang, J. et al. Rapid evolution of symbiotic bacteria populations in spirotetramat-resistant Aphis gossypii glover revealed by pyrosequencing. Comp. Biochem. Physiol. D 20, 151–158 (2016).
Google Scholar
42.
Xia, X. et al. Gut microbiota mediate insecticide resistance in the diamondback moth, Plutella xylostella (L.). Front. Microbiol. 9, 25 (2018).
PubMed PubMed Central Article Google Scholar
43.
Almeida, L. G., de, Moraes, L. A. B., de, Trigo, J. R., Omoto, C. & Cônsoli, F. L. The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: a potential source for biotechnological exploitation. PLoS ONE 12, e0174754 (2017).
PubMed PubMed Central Article CAS Google Scholar
44.
Bowles, T. M., Jackson, L. E., Loeher, M. & Cavagnaro, T. R. Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. J. Appl. Ecol. 54, 1785–1793 (2017).
Article Google Scholar
45.
Valente, J., Gerin, F., Le Gouis, J., Moënne-Loccoz, Y. & Prigent-Combaret, C. Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria. Plant. Cell Environ. 43, 246–260 (2020).
CAS PubMed Article PubMed Central Google Scholar
46.
Newton, A. C., Gravouil, C. & Fountaine, J. M. Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann. Appl. Biol. 157, 343–359 (2010).
Article Google Scholar
47.
Huang, X., Zhao, J., Zhou, X., Zhang, J. & Cai, Z. Differential responses of soil bacterial community and functional diversity to reductive soil disinfestation and chemical soil disinfestation. Geoderma 348, 124–134 (2019).
CAS Article Google Scholar
48.
Karlsson, I., Friberg, H., Steinberg, C. & Persson, P. Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS ONE 9, e111786 (2014).
PubMed PubMed Central Article CAS Google Scholar
49.
Schaeffer, R. N., Vannette, R. L., Brittain, C., Williams, N. M. & Fukami, T. Non-target effects of fungicides on nectar-inhabiting fungi of almond flowers. Environ. Microbiol. Rep. 9, 79–84 (2017).
PubMed Article PubMed Central Google Scholar
50.
Lagnaoui, A. & Radcliffe, E. B. Potato fungicides interfere with entomopathogenic fungi impacting population dynamics of green peach aphid. Am. J. Potato Res. 75, 19–25 (1998).
CAS Article Google Scholar
51.
Sarkar, S., Narayanan, P., Divakaran, A., Balamurugan, A. & Premkumar, R. The in vitro effect of certain fungicides, insecticides, and biopesticides on mycelial growth in the biocontrol fungus Trichoderma harzianum. Turkish J. Biol. 34, 399–403 (2010).
CAS Google Scholar
52.
Duke, S. O. Interaction of chemical pesticides and their formulation ingredients with microbes associated with plants and plant pests. J. Agric. Food Chem. 66, 7553–7561 (2018).
CAS PubMed Article PubMed Central Google Scholar
53.
Kakumanu, M. L., Reeves, A. M., Anderson, T. D., Rodrigues, R. R. & Williams, M. A. Honey bee gut microbiome is altered by in-hive pesticide exposures. Front. Microbiol. 7, 1255 (2016).
PubMed PubMed Central Article Google Scholar
54.
del Mar Fernández, M. et al. Influence of microbiota in the susceptibility of parasitic wasps to abamectin insecticide: deep sequencing, esterase and toxicity tests. Pest Manag. Sci. 75, 79–86 (2019).
Article CAS Google Scholar
55.
Motta, E. V. S. & Moran, N. A. Impact of glyphosate on the honey bee gut microbiota: effects of intensity, duration, and timing of exposure. mSystems 5, e00268-20 (2020).
PubMed PubMed Central Article Google Scholar
56.
Steffan, S. A. et al. Omnivory in bees: elevated trophic positions among all major bee families. Am. Nat. 194, 414–421 (2019).
PubMed Article PubMed Central Google Scholar
57.
Bernauer, O. M., Gaines-Day, H. R. & Steffan, S. A. Colonies of bumble bees (Bombus impatiens) produce fewer workers, less bee biomass, and have smaller mother queens following fungicide exposure. Insects 6, 478–488 (2015).
PubMed PubMed Central Article Google Scholar
58.
Yoder, J. A., Nelson, B. W., Jajack, A. J. & Sammataro, D. in Beekeeping – From Science to Practice (eds Vreeland, R. H. & Sammatoro, D.) 73–90 (Springer, 2017).
59.
Vida, C., Vicente, A. & Cazorla, F. M. The role of organic amendments to soil for crop protection: induction of suppression of soilborne pathogens. Ann. Appl. Biol. 176, 1–15 (2020).
Article Google Scholar
60.
Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).
PubMed PubMed Central Article Google Scholar
61.
Ling, N. et al. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol. Biochem. 99, 137–149 (2016).
CAS Article Google Scholar
62.
Li, X. et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J. 13, 738–751 (2019).
CAS PubMed Article PubMed Central Google Scholar
63.
Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 48 (2016).
Article CAS Google Scholar
64.
Osipitan, O. A., Dille, J. A., Assefa, Y. & Knezevic, S. Z. Cover crop for early season weed suppression in crops: systematic review and meta-analysis. Agron. J. 110, 2211–2221 (2018).
Article Google Scholar
65.
Hokkanen, H. M. T. & Menzler-Hokkanen, I. Insect pest suppressive soils: buffering pulse cropping systems against outbreaks of Sitona weevils. Ann. Entomol. Soc. Am. 111, 139–143 (2018).
Article Google Scholar
66.
Esmaeili Taheri, A., Hamel, C. & Gan, Y. Cropping practices impact fungal endophytes and pathogens in durum wheat roots. Appl. Soil Ecol. 100, 104–111 (2016).
Article Google Scholar
67.
Lucas, S. T., D’Angelo, E. M. & Williams, M. A. Improving soil structure by promoting fungal abundance with organic soil amendments. Appl. Soil Ecol. 75, 13–23 (2014).
Article Google Scholar
68.
Misra, P. et al. Vulnerability of soil microbiome to monocropping of medicinal and aromatic plants and its restoration through intercropping and organic amendments. Front. Microbiol. 10, 2604 (2019).
PubMed PubMed Central Article Google Scholar
69.
Nicola, L. et al. Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease. Appl. Soil Ecol. 113, 71–79 (2017).
Article Google Scholar
70.
Nobbe, F. & Hiltner, L. Inoculation of the soil for cultivating leguminous plants. US Patent 570 (1896).
71.
Thilakarathna, M. S. & Raizada, M. N. A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biol. Biochem. 105, 177–196 (2017).
CAS Article Google Scholar
72.
Zhang, S., Lehmann, A., Zheng, W., You, Z. & Rillig, M. C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. N. Phytol. 222, 543–555 (2019).
CAS Article Google Scholar
73.
Veresoglou, S. D. & Menexes, G. Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant Soil 337, 469–480 (2010).
CAS Article Google Scholar
74.
Federici, B. A., Bonning, B. C. & St. Leger, R. J. in Patho-Biotechnology (eds Sleator, R. & Hill, C.) 15–40 (CRC Press, 2008).
75.
Johnson, L. J. et al. The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers. 60, 171–188 (2013).
Article Google Scholar
76.
Castillo Lopez, D., Zhu-Salzman, K., Ek-Ramos, M. J. & Sword, G. A. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 9, e103891 (2014).
PubMed PubMed Central Article Google Scholar
77.
Sessitsch, A., Pfaffenbichler, N. & Mitter, B. Microbiome applications from lab to field: facing complexity. Trends Plant Sci. 24, 194–198 (2019).
CAS PubMed Article PubMed Central Google Scholar
78.
Stephan, J. G. et al. Honeybee-specific lactic acid bacterium supplements have no effect on American foulbrood-infected honeybee colonies. Appl. Environ. Microbiol. 85, e00606-19 (2019).
PubMed PubMed Central Article Google Scholar
79.
Bacilio, M., Moreno, M., Lopez-Aguilar, D. R. & Bashan, Y. Scaling from the growth chamber to the greenhouse to the field: demonstration of diminishing effects of mitigation of salinity in peppers inoculated with plant growth-promoting bacterium and humic acids. Appl. Soil Ecol. 119, 327–338 (2017).
Article Google Scholar
80.
Latz, M. A. C., Jensen, B., Collinge, D. B. & Lyngs Jørgensen, H. J. Identification of two endophytic fungi that control Septoria tritici blotch in the field, using a structured screening approach. Biol. Control 141, 104128 (2020).
CAS Article Google Scholar
81.
Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 15051 (2015).
CAS PubMed PubMed Central Article Google Scholar
82.
Smith, K. P., Handelsman, J. & Goodman, R. M. Genetic basis in plants for interactions with disease-suppressive bacteria. Proc. Natl Acad. Sci. USA 96, 4786–4790 (1999).
CAS PubMed Article PubMed Central Google Scholar
83.
Shrestha, A. et al. Genetic differences in barley govern the responsiveness to N-acyl homoserine lactone. Phytobiomes J. 3, 191–202 (2019).
Article Google Scholar
84.
Chowdhury, S. P. et al. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS ONE 8, e68818 (2013).
PubMed PubMed Central Article Google Scholar
85.
Papavizas, G. C. Survival of Trichoderma harzianum in soil and in pea and bean rhizospheres. Phytopathology 72, 121 (1982).
Article Google Scholar
86.
Hungria, M., Campo, R. J., Chueire, L. M. O., Grange, L. & Megías, M. Symbiotic effectiveness of fast-growing rhizobial strains isolated from soybean nodules in Brazil. Biol. Fertil. Soils 33, 387–394 (2001).
CAS Article Google Scholar
87.
Cassán, F. & Diaz-Zorita, M. Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol. Biochem. 103, 117–130 (2016).
Article CAS Google Scholar
88.
Ojiambo, P. S., Battilani, P., Cary, J. W., Blum, B. H. & Carbone, I. Cultural and genetic approaches to manage aflatoxin contamination: recent insights provide opportunities for improved control. Phytopathology 108, 1024–1037 (2018).
CAS PubMed Article PubMed Central Google Scholar
89.
Karise, R. et al. Reliability of the entomovector technology using Prestop-Mix and Bombus terrestris L. as a fungal disease biocontrol method in open field. Sci. Rep. 6, 31650 (2016).
CAS PubMed PubMed Central Article Google Scholar
90.
Hawkes, C. V. & Connor, E. W. Translating phytobiomes from theory to practice: ecological and evolutionary considerations. Phytobiomes J. 1, 57–69 (2017).
Article Google Scholar
91.
Mitter, B. et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front. Microbiol. 8, 11 (2017).
PubMed PubMed Central Google Scholar
92.
Prado, A., Marolleau, B., Vaissière, B. E., Barret, M. & Torres-Cortes, G. Insect pollination: an ecological process involved in the assembly of the seed microbiota. Sci. Rep. 10, 3575 (2020).
CAS PubMed PubMed Central Article Google Scholar
93.
Bosworth, A. H. et al. Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Appl. Environ. Microbiol. 60, 3815–3832 (1994).
CAS PubMed PubMed Central Article Google Scholar
94.
Suárez, R. et al. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol. Plant Microbe Interact. 21, 958–966 (2008).
PubMed Article CAS PubMed Central Google Scholar
95.
Leonard, S. P. et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science 367, 573–576 (2020).
CAS PubMed PubMed Central Article Google Scholar
96.
Sarma, B. K., Yadav, S. K., Singh, S. & Singh, H. B. Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol. Biochem. 87, 25–33 (2015).
CAS Article Google Scholar
97.
Becker, J., Eisenhauer, N., Scheu, S. & Jousset, A. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity. Ecol. Lett. 15, 468–474 (2012).
PubMed Article PubMed Central Google Scholar
98.
Hu, J. et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. mBio 7, e01790-16 (2016).
PubMed PubMed Central Article Google Scholar
99.
Nuzzo, A., Satpute, A., Albrecht, U. & Strauss, S. L. Impact of soil microbial amendments on tomato rhizosphere microbiome and plant growth in field soil. Microb. Ecol. 80, 398–409 (2020).
CAS PubMed Article PubMed Central Google Scholar
100.
Xu, X. M. & Jeger, M. J. Combined use of two biocontrol agents with different biocontrol mechanisms most likely results in less than expected efficacy in controlling foliar pathogens under fluctuating conditions: a modeling study. Phytopathology 103, 108–116 (2013).
PubMed Article PubMed Central Google Scholar
101.
Guijarro, B. et al. Compatibility interactions between the biocontrol agent Penicillium frequentans Pf909 and other existing strategies to brown rot control. Biol. Control 129, 45–54 (2019).
Article Google Scholar
102.
Rubin, R. L., van Groenigen, K. J. & Hungate, B. A. Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil 416, 309–323 (2017).
CAS Article Google Scholar
103.
Rho, H. et al. Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microb. Ecol. 75, 407–418 (2018).
PubMed Article PubMed Central Google Scholar
104.
Johnson, K. B., Temple, T. N., Elkins, R. B. & Smith, T. J. Strategy for non-antibiotic fire blight control in U.S.-grown organic pome fruit. Acta Hortic. 1056, 93–100 (2014).
Article Google Scholar
105.
Temple, T. N., Thompson, E. C., Uppala, S. S., Granatstein, D. & Johnson, K. Floral colonization dynamics and specificity of Aureobasidium pullulans strains used to suppress fire blight of pome fruit. Plant Dis. 104, 121–128 (2019).
PubMed Article PubMed Central Google Scholar
106.
Rotolo, C. et al. Use of biocontrol agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards. Pest Manag. Sci. 74, 715–725 (2018).
CAS PubMed Article PubMed Central Google Scholar
107.
Abbey, J. A., Percival, D., Asiedu, S. K., Prithiviraj, B. & Schilder, A. Management of Botrytis blossom blight in wild blueberries by biological control agents under field conditions. Crop Prot. 131, 105078 (2020).
CAS Article Google Scholar
108.
Morel, M. A., Cagide, C., Minteguiaga, M. A., Dardanelli, M. S. & Castro-Sowinski, S. The pattern of secreted molecules during the co-inoculation of alfalfa plants with Sinorhizobium meliloti and Delftia sp. strain JD2: an interaction that improves plant yield. Mol. Plant Microbe Interact. 28, 134–142 (2015).
CAS PubMed Article PubMed Central Google Scholar
109.
Remans, R. et al. Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312, 25–37 (2008).
CAS Article Google Scholar
110.
Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).
PubMed Article CAS PubMed Central Google Scholar
111.
Santhanam, R. et al. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl Acad. Sci. USA 112, E5013–E5020 (2015).
CAS PubMed Article PubMed Central Google Scholar
112.
Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).
CAS PubMed Article PubMed Central Google Scholar
113.
Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).
PubMed PubMed Central Article Google Scholar
114.
Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).
CAS PubMed Article PubMed Central Google Scholar
115.
Sanchez-Gorostiaga, A., Bajić, D., Osborne, M. L., Poyatos, J. F. & Sanchez, A. High-order interactions distort the functional landscape of microbial consortia. PLoS Biol. 17, e3000550 (2019).
CAS PubMed PubMed Central Article Google Scholar
116.
Herrera Paredes, S. et al. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biol. 16, e2003962 (2018).
PubMed PubMed Central Article CAS Google Scholar
117.
Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).
CAS PubMed Article PubMed Central Google Scholar
118.
Pineda, A., Kaplan, I. & Bezemer, T. M. Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci. 22, 770–778 (2017).
CAS PubMed Article PubMed Central Google Scholar
119.
Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).
CAS PubMed Article PubMed Central Google Scholar
120.
Swenson, W., Wilson, D. S. & Elias, R. Artificial ecosystem selection. Proc. Natl Acad. Sci. USA 97, 9110–9114 (2000).
CAS PubMed Article PubMed Central Google Scholar
121.
Jochum, M. D., McWilliams, K. L., Pierson, E. A. & Jo, Y. K. Host-mediated microbiome engineering (HMME) of drought tolerance in the wheat rhizosphere. PLoS ONE 14, e0225933 (2019).
CAS PubMed PubMed Central Article Google Scholar
122.
Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989 (2015).
CAS PubMed Article PubMed Central Google Scholar
123.
Arora, J., Mars Brisbin, M. A. & Mikheyev, A. S. Effects of microbial evolution dominate those of experimental host-mediated indirect selection. PeerJ 8, e9350 (2020).
PubMed PubMed Central Article Google Scholar
124.
Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl Acad. Sci. USA 117, 1148–1159 (2020).
CAS PubMed Article PubMed Central Google Scholar
125.
Mason, C. J. et al. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc. Natl Acad. Sci. USA 116, 15991–15996 (2019).
CAS PubMed Article PubMed Central Google Scholar
126.
Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11, 2244–2257 (2017).
PubMed PubMed Central Article Google Scholar
127.
Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).
PubMed Article PubMed Central Google Scholar
128.
Wallace, J. G., Kremling, K. A., Kovar, L. L. & Buckler, E. S. Quantitative genetics of the maize leaf microbiome. Phytobiomes J. 2, 208–224 (2018).
Article Google Scholar
129.
Huang, R. et al. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. N. Phytol. 225, 1762–1776 (2020).
CAS Article Google Scholar
130.
Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).
CAS PubMed Article PubMed Central Google Scholar
131.
French, E., Tran, T. & Iyer-Pascuzzi, A. Tomato genotype modulates selection and responses to root microbiota. Phytobiomes J. 4, 314–326.
132.
Wintermans, P. C. A., Bakker, P. A. H. M. & Pieterse, C. M. J. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol. Biol. 90, 623–634 (2016).
CAS PubMed PubMed Central Article Google Scholar
133.
Pérez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635–644 (2015).
PubMed PubMed Central Article CAS Google Scholar
134.
Hacquard, S., Spaepen, S., Garrido-Oter, R. & Schulze-Lefert, P. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 55, 565–589 (2017).
CAS PubMed Article PubMed Central Google Scholar
135.
Mendes, L. W., Mendes, R., Raaijmakwers, J. M. & Tsai, S. M. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. ISME J. 12, 3038–3042 (2018).
CAS PubMed PubMed Central Article Google Scholar
136.
Koprivova, A. et al. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc. Natl Acad. Sci. USA 116, 15735–15744 (2019).
CAS PubMed Article PubMed Central Google Scholar
137.
Vílchez, J. I. et al. DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nat. Plants 6, 983–995 (2020).
PubMed Article CAS PubMed Central Google Scholar
138.
Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).
CAS PubMed Article PubMed Central Google Scholar
139.
Esse, H. P., Reuber, T. L. & Does, D. Genetic modification to improve disease resistance in crops. N. Phytol. 225, 70–86 (2020).
Article Google Scholar
140.
Ryu, M. et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat. Microbiol. 5, 80–84 (2020).
Article CAS Google Scholar
141.
Murphy, K. A., Tabuloc, C. A., Cervantes, K. R. & Chiu, J. C. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci. Rep. 6, 22587 (2016).
CAS PubMed PubMed Central Article Google Scholar
142.
Whitten, M. M. A. et al. Symbiont-mediated RNA interference in insects. Proc. R. Soc. B 283, 20160042 (2016).
PubMed Article CAS PubMed Central Google Scholar
143.
Chung, S. H., Jing, X., Luo, Y. & Douglas, A. E. Targeting symbiosis-related insect genes by RNAi in the pea aphid–Buchnera symbiosis. Insect Biochem. Mol. Biol. 95, 55–63 (2018).
CAS PubMed Article PubMed Central Google Scholar
144.
Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).
CAS PubMed Article PubMed Central Google Scholar
145.
Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).
CAS Article Google Scholar
146.
Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).
Article CAS Google Scholar
147.
Geddes, B. A. et al. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nat. Commun. 10, 3430 (2019).
PubMed PubMed Central Article CAS Google Scholar
148.
Petrosino, J. F. The microbiome in precision medicine: the way forward. Genome Med. 10, 12 (2018).
PubMed PubMed Central Article Google Scholar
149.
Basso, B. & Antle, J. Digital agriculture to design sustainable agricultural systems. Nat. Sustain. 3, 254–256 (2020).
Article Google Scholar
150.
Schlaeppi, K. & Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Interact. 28, 212–217 (2015).
CAS PubMed Article PubMed Central Google Scholar
151.
Vannette, R. L. The floral microbiome: plant, pollinator, and microbial perspectives. Annu. Rev. Ecol. Evol. Syst. 51, 363–386 (2020).
Article Google Scholar
152.
Pineda, A., Kaplan, I., Hannula, S. E., Ghanem, W. & Bezemer, M. T. Conditioning the soil microbiome through plant‐soil feedbacks suppresses an aboveground insect pest. New Phytol. 226, 595–608 (2020).
CAS PubMed PubMed Central Article Google Scholar
153.
Blundell, R. et al. Organic management promotes natural pest control through altered plant resistance to insects. Nat. Plants 6, 483–491 (2020).
CAS PubMed Article PubMed Central Google Scholar
154.
Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).
CAS PubMed Article PubMed Central Google Scholar
155.
Gu, S. et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat. Microbiol. 5, 1002–1010 (2020).
CAS PubMed PubMed Central Article Google Scholar
156.
Zengler, K. et al. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat. Methods 16, 567–571 (2019).
CAS PubMed PubMed Central Article Google Scholar
157.
Kaplan, I. et al. Phylogenetic farming: can evolutionary history predict crop rotation via the soil microbiome? Evol. Appl. 13, 1984–1999 (2020).
PubMed PubMed Central Article Google Scholar
158.
Chang, H. X., Haudenshield, J. S., Bowen, C. R. & Hartman, G. L. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front. Microbiol. 8, 519 (2017).
PubMed PubMed Central Google Scholar
159.
Ribière, C., Hegarty, C., Stephenson, H., Whelan, P. & O’Toole, P. W. Gut and whole-body microbiota of the honey bee separate thriving and non-thriving hives. Microb. Ecol. 78, 195–205 (2019).
PubMed Article PubMed Central Google Scholar
160.
Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).
CAS PubMed PubMed Central Article Google Scholar
161.
Bainard, L. D., Bainard, J. D., Hamel, C. & Gan, Y. Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol. Ecol. 88, 333–344 (2014).
CAS PubMed Article PubMed Central Google Scholar
162.
Stedtfeld, R. D. et al. Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiol. Ecol. 94, fiy130 (2018).
CAS Article Google Scholar
163.
Shade, A. Diversity is the question, not the answer. ISME J. 11, 1–6 (2017).
PubMed Article PubMed Central Google Scholar
164.
Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168 (2019).
Article Google Scholar
165.
Shao, H. & Zhang, Y. Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin. Sci. Rep. 7, 5521 (2017).
PubMed PubMed Central Article CAS Google Scholar
166.
Wu, M. et al. Rational dose of insecticide chlorantraniliprole displays a transient impact on the microbial metabolic functions and bacterial community in a silty-loam paddy soil. Sci. Total Environ. 616–617, 236–244 (2018).
PubMed Article CAS PubMed Central Google Scholar
167.
Adak, T. et al. Target and non-target effect of commonly used fungicides on microbial properties in rhizospheric soil of rice. Int. J. Environ. Anal. Chem. 100, 1350–1361 (2019).
Article CAS Google Scholar
168.
Wang, Y. et al. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci. Total Environ. 609, 341–347 (2017).
CAS PubMed Article PubMed Central Google Scholar
169.
Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
PubMed Article PubMed Central Google Scholar
170.
Zhu, S., Vivanco, J. M. & Manter, D. K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl. Soil Ecol. 107, 324–333 (2016).
Article Google Scholar
171.
Yeoh, Y. K. et al. The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ. Microbiol. 18, 1338–1351 (2016).
PubMed Article PubMed Central Google Scholar
172.
Liu, Y. & Ludewig, U. Nitrogen-dependent bacterial community shifts in root, rhizome and rhizosphere of nutrient-efficient Miscanthus x giganteus from long-term field trials. GCB Bioenergy 11, 1334–1347 (2019).
CAS Article Google Scholar
173.
Shaharoona, B., Naveed, M., Arshad, M. & Zahir, Z. A. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl. Microbiol. Biotechnol. 79, 147–155 (2008).
CAS PubMed Article PubMed Central Google Scholar
174.
Chen, S. et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7, 136 (2019).
CAS PubMed PubMed Central Article Google Scholar
175.
Shen, W. et al. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant Soil 337, 137–150 (2010).
CAS Article Google Scholar
176.
Wang, Z., Li, Y., Li, T., Zhao, D. & Liao, Y. Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth. Soil Tillage Res. 197, 104501 (2020).
Article Google Scholar
177.
Kraut-Cohen, J. et al. Effects of tillage practices on soil microbiome and agricultural parameters. Sci. Total Environ. 705, 135791 (2020).
CAS PubMed Article PubMed Central Google Scholar
178.
Mavrodi, D. V. et al. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. Front. Plant Sci. 9, 345 (2018).
PubMed PubMed Central Article Google Scholar
179.
Hartmann, M. et al. A decade of irrigation transforms the soil microbiome of a semi‐arid pine forest. Mol. Ecol. 26, 1190–1206 (2017).
PubMed Article PubMed Central Google Scholar
180.
Palacios, O. A. et al. Monitoring of indicator and multidrug resistant bacteria in agricultural soils under different irrigation patterns. Agric. Water Manag. 184, 19–27 (2017).
Article Google Scholar
181.
Mavrodi, D. V. et al. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. Front. Plant. Sci. 9, 345 (2018).
PubMed PubMed Central Article Google Scholar More