More stories

  • in

    Fungi and insects compensate for lost vertebrate seed predation in an experimentally defaunated tropical forest

    1.
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Harrison, R. D. et al. Impacts of hunting on tropical forests in Southeast Asia. Conserv. Biol. 30, 972–981 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Brodie, J. F. & Aslan, C. E. Halting regime shifts in floristically intact tropical forests deprived of their frugivores. Restor. Ecol. 20, 153–157 (2012).
    Article  Google Scholar 

    4.
    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 1–7 (2019).
    Article  CAS  Google Scholar 

    6.
    Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl Acad. Sci. USA 113, 892–897 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Dantas de Paula, M. et al. Defaunation impacts on seed survival and its effect on the biomass of future tropical forests. Oikos 127, 1526–1538 (2018).
    Article  Google Scholar 

    9.
    Chanthorn, W. et al. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9, 1–9 (2019).
    CAS  Article  Google Scholar 

    10.
    Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Song, X., Lim, J. Y., Yang, J. & Luskin, M. S. When do Janzen–Connell effects matter? A phylogenetic meta‐analysis of conspecific negative distance and density dependence experiments. Ecol. Lett. https://doi.org/10.1111/ele.13665 (2020).
    Article  PubMed  Google Scholar 

    12.
    Muller-Landau, H. C. Predicting the long-term effects of hunting on plant species composition and diversity in tropical forests. Biotropica 39, 372–384 (2007).
    Article  Google Scholar 

    13.
    Asquith, N. M., Wright, S. J. & Clauss, M. J. Does mammal community composition control recruitment in neotropical forests? Evidence from Panama. Ecology 78, 941–946 (1997).
    Article  Google Scholar 

    14.
    DeMattia, E. A., Curran, L. M. & Rathcke, B. J. Effects of small rodents and large mammals on neotropical seeds. Ecology 85, 2161–2170 (2004).
    Article  Google Scholar 

    15.
    Paine, C. E. T., Beck, H. & Terborgh, J. How mammalian predation contributes to tropical tree community structure. Ecology 97, 3326–3336 (2016).
    PubMed  Article  Google Scholar 

    16.
    Wirth, R., Meyer, S. T., Leal, I. R. & Tabarelli, M. Plant herbivore interactions at the forest edge. in Progress in Botany (eds. Lüttge, U., Beyschlag, W. & Murata, J.). 69, 423–448 (Springer, Berlin, Heidelberg, 2008).

    17.
    Paine, C. E. T. & Beck, H. Seed predation by Neotropical rain forest mammals increases diversity in seedling recruitment. Ecology 88, 3076–3087 (2007).
    PubMed  Article  Google Scholar 

    18.
    Jia, S. et al. Global signal of top-down control of terrestrial plant communities by herbivores. Proc. Natl Acad. Sci. USA 115, 6237–6242 (2018).
    CAS  PubMed  Article  Google Scholar 

    19.
    Wright, S. J. & Duber, H. C. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyraceae, with implications for tropical tree diversity. Biotropica 33, 583–595 (2001).
    Article  Google Scholar 

    20.
    Dracxler, C. M., Pires, A. S. & Fernandez, F. A. S. Invertebrate seed predators are not all the same: Seed predation by bruchine and scolytine beetles affects palm recruitment in different ways. Biotropica 43, 8–11 (2011).
    Article  Google Scholar 

    21.
    Sarmiento, C. et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc. Natl Acad. Sci. 114, 11458–11463 (2017).
    CAS  PubMed  Article  Google Scholar 

    22.
    Kluger, C. G. et al. Host generalists dominate fungal communities associated with seeds of four Neotropical pioneer species. J. Trop. Ecol. 24, 351–354 (2008).
    Article  Google Scholar 

    23.
    Velho, N., Isvaran, K. & Datta, A. Rodent seed predation: effects on seed survival, recruitment, abundance, and dispersion of bird-dispersed tropical trees. Oecologia 169, 995–1004 (2012).
    ADS  PubMed  Article  Google Scholar 

    24.
    Curran, L. M. & Webb, C. O. Experimental tests of the spatiotemporal scale of seed predation in mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 129–148 (2000).
    Article  Google Scholar 

    25.
    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).
    Article  Google Scholar 

    26.
    Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn. Popul 298, 312 (1971).
    Google Scholar 

    27.
    Levi, T. et al. Tropical forests can maintain hyperdiversity because of enemies. PNAS 116, 581–586 (2019).
    CAS  PubMed  Article  Google Scholar 

    28.
    Terborgh, J. Enemies maintain hyperdiverse tropical forests. Am. Nat. 179, 303–314 (2012).
    PubMed  Article  Google Scholar 

    29.
    Nathan, R. & Casagrandi, R. A simple mechanistic model of seed dispersal, predation and plant establishment: Janzen-Connell and beyond. J. Ecol. 92, 733–746 (2004).
    Article  Google Scholar 

    30.
    Owen-Smith, R. N. Megaherbivores: The influence of very large body size on ecology. (Cambridge University Press, 1988).

    31.
    Kurten, E. L. Cascading effects of contemporaneous defaunation on tropical forest communities. Biol. Conserv. 163, 22–32 (2013).
    Article  Google Scholar 

    32.
    Mendoza, E. & Dirzo, R. Seed-size variation determines interspecific differential predation by mammals in a Neotropical rain forest. Oikos 116, 1841–1852 (2007).
    Article  Google Scholar 

    33.
    Wright, S. J. The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspect. Plant Ecol. Evol. Syst. 6, 73–86 (2003).
    Article  Google Scholar 

    34.
    Casula, P., Wilby, A. & Thomas, M. B. Understanding biodiversity effects on prey in multi-enemy systems. Ecol. Lett. 9, 995–1004 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Wright, S. J. et al. Poachers alter mammal abundance, seed dispersal, and seed predation in a Neotropical forest. Conserv. Biol. 14, 227–239 (2000).
    Article  Google Scholar 

    36.
    Beckman, N. G. & Muller-landau, H. C. Differential effects of hunting on pre-dispersal seed predation and primary and secondary seed removal of two Neotropical tree species. Biotropica 39, 328–339 (2007).
    Article  Google Scholar 

    37.
    Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Galetti, M., Bovendorp, R. S. & Guevara, R. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Glob. Ecol. Conserv 3, 824–830 (2015).
    Article  Google Scholar 

    39.
    Culot, L., Bello, C., Batista, J. L. F., do Couto, H. T. Z. & Galetti, M. Synergistic effects of seed disperser and predator loss on recruitment success and long-term consequences for carbon stocks in tropical rainforests. Sci. Rep. 7, 1–8 (2017).
    CAS  Article  Google Scholar 

    40.
    Rosin, C. & Poulsen, J. R. Hunting-induced defaunation drives increased seed predation and decreased seedling establishment of commercially important tree species in an Afrotropical forest. Ecol. Manag. 382, 206–213 (2016).
    Article  Google Scholar 

    41.
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
    CAS  PubMed  Article  Google Scholar 

    42.
    Terborgh, J. Using Janzen-Connell to predict the consequences of defaunation and other disturbances of tropical forests. Biol. Conserv. 163, 7–12 (2013).
    Article  Google Scholar 

    43.
    Brodie, J. F., Helmy, O. E., Brockelman, W. Y. & Maron, J. L. Bushmeat poaching reduces the seed dispersal and population growth rate of a mammal-dispersed tree. Ecol. Appl. 19, 854–863 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Dylewski, L., Ortega, Y. K., Bogdziewicz, M. & Pearson, D. E. Seed size predicts global effects of small mammal seed predation on plant recruitment. Ecol. Lett. 23, 1024–1033 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Bodmer, R. Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica 23, 255–261 (1991).
    Article  Google Scholar 

    46.
    Galetti, M. et al. Defaunation affect population and diet of rodents in Neotropical rainforests. Biol. Conserv. 190, 2–7 (2015).
    Article  Google Scholar 

    47.
    Dirzo, R., Mendoza, E. & Ortíz, P. Size-related differential seed predation in a heavily defaunated neotropical rain forest. Biotropica 39, 355–362 (2007).
    Article  Google Scholar 

    48.
    Luskin, M. S. et al. Cross-boundary subsidy cascades from oil palm degrade distant tropical forests. Nat. Commun. 8, 1–8 (2017).
    Article  CAS  Google Scholar 

    49.
    Vázquez-Yanes, C. & Orozco-Segovia, A. Patterns of seed longevity and germination in the tropical rainforest. Annu. Rev. Ecol. Syst. 24, 69–87 (1993).
    Article  Google Scholar 

    50.
    Hulme, P. E. Post-dispersal seed predation and seed bank persistence. Seed Sci. Res. 8, 513–519 (1998).
    ADS  Article  Google Scholar 

    51.
    Franco, M. & Silvertown, J. A comparative demography of plants based upon elasticities of vital rates. Ecology 85, 531–538 (2004).
    Article  Google Scholar 

    52.
    Howe, H. F. & Miriti, M. N. When seed dispersal matters. Bioscience 54, 651–660 (2004).
    Article  Google Scholar 

    53.
    Cannon, P. G., O’Brien, M. J., Yusah, K. M., Edwards, D. P. & Freckleton, R. P. Limited contributions of plant pathogens to density-dependent seedling mortality of mast fruiting Bornean trees. Ecol. Evol. 10, 13154–13164 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Lamperty, T., Zhu, K., Poulsen, J. R. & Dunham, A. E. Defaunation of large mammals alters understory vegetation and functional importance of invertebrates in an Afrotropical forest. Biol. Conserv. 241, 10829 (2020).
    Article  Google Scholar 

    55.
    Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 1–7 (2015).
    Article  CAS  Google Scholar 

    56.
    Peguero, G., Muller-Landau, H. C., Jansen, P. A. & Wright, S. J. Cascading effects of defaunation on the coexistence of two specialized insect seed predators. J. Anim. Ecol. 86, 136–146 (2017).
    PubMed  Article  Google Scholar 

    57.
    Marsh, C. W. & Greer, A. G. Forest land-use in Sabah, Malaysia: an introduction to danum valley. Philos. Trans. R. Soc. B Biol. Sci. 335, 331–339 (1992).
    ADS  Article  Google Scholar 

    58.
    Dial, R., Bloodworth, B., Lee, A., Boyne, P. & Heys, J. The distribution of free space and its relation to canopy composition at six forest sites. Science 50, 312–325 (2004).
    Google Scholar 

    59.
    Sakai, S. General flowering in lowland mixed dipterocarp forests of South-east Asia. Biol. J. Linn. Soc. 75, 233–247 (2002).
    Article  Google Scholar 

    60.
    Blate, G. M., Peart, D. R. & Leighton, M. Post-dispersal predation on isolated seeds: a comparative study of 40 tree species in a Southeast Asian rainforest. Oikos 82, 522–538 (1998).
    Article  Google Scholar 

    61.
    Wong, S. T. E., Servheen, C., Ambu, L. & Norhayati, A. Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. J. Trop. Ecol. 21, 627–639 (2005).
    Article  Google Scholar 

    62.
    Curran, L. M. & Leighton, M. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 101–128 (2000).
    Article  Google Scholar 

    63.
    Corlett, R. T. Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: an update. Glob. Ecol. Conserv. 11, 1–22 (2017).
    Article  Google Scholar 

    64.
    Fern, K. Tropical Plants Database. (2014). Available at: tropical.theferns.info. (Accessed: 4th June 2020)

    65.
    O’Brien, M. J., Philipson, C. D., Tay, J. & Hector, A. The influence of variable rainfall frequency on germination and early growth of shade-tolerant dipterocarp seedlings in Borneo. PLoS ONE 8, e70287 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Colon, C. P. & Campos-Arceiz, A. The impact of gut passage by binturongs (Arctictus binturong) on seed germination. Raffles Bull. Zool. 61, 417–421 (2013).
    Google Scholar 

    67.
    Sowa, S., Roos, E. E. & Zee, F. Anesthetic storage of recalcitrant seed: nitrous oxide prolongs longevity of lychee and longan. HortScience 26, 597–599 (1991).
    CAS  Article  Google Scholar 

    68.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    69.
    R Core Team. R: A language and environment for statistical computing. (2018).

    70.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).
    MathSciNet  MATH  Article  Google Scholar  More

  • in

    Genetic identity and genotype × genotype interactions between symbionts outweigh species level effects in an insect microbiome

    1.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci. 2013;110:3229–36.
    CAS  PubMed  Article  Google Scholar 
    2.
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Feldhaar H, Gross R. Insects as hosts for mutualistic bacteria. Int J Med Microbiol. 2009;299:1–8.
    PubMed  Article  Google Scholar 

    4.
    Hosokawa T, Ishii Y, Nikoh N, Fujie M, Satoh N, Fukatsu T. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat Microbiol. 2016;1:15011.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    de Bekker C, Merrow M, Hughes DP. From behavior to mechanisms: an integrative approach to the manipulation by a parasitic fungus (Ophiocordyceps unilateralis s.l.) of its host ants (Camponotus spp.). Integr Comp Biol. 2014;54:166–76.
    PubMed  Article  Google Scholar 

    6.
    Koskella B, Meaden S, Crowther WJ, Leimu R, Metcalf CJE. A signature of tree health? Shifts in the microbiome and the ecological drivers of horse chestnut bleeding canker disease. N. Phytol. 2017;215:737–46.
    CAS  Article  Google Scholar 

    7.
    Smee MR, Baltrus DA, Hendry TA. Entomopathogenicity to two Hemipteran insects is common but variable across epiphytic Pseudomonas syringae strains. Front Plant Sci. 2017;8:2149.
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol. 2010;55:247–66.
    CAS  PubMed  Article  Google Scholar 

    9.
    McLean AH. Cascading effects of defensive endosymbionts. Curr Opin Insect Sci. 2019;32:42–46.
    PubMed  Article  Google Scholar 

    10.
    Adair KL, Douglas AE. Making a microbiome: the many determinants of host-associated microbial community composition. Curr Opin Microbiol. 2017;35:23–29.
    PubMed  Article  Google Scholar 

    11.
    Wedin M, Maier S, Fernandez-Brime S, Cronholm B, Westberg M, Grube M. Microbiome change by symbiotic invasion in lichens. Environ Microbiol. 2015;18:1428–39.
    PubMed  Article  CAS  Google Scholar 

    12.
    King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A, Ford SA, et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 2016;10:1915–24.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Ford SA, Williams D, Paterson S, King KC. Co-evolutionary dynamics between a defensive microbe and a pathogen driven by fluctuating selection. Mol Ecol. 2017;26:1778–89.
    CAS  PubMed  Article  Google Scholar 

    14.
    Weldon SR, Russell JA, Oliver KM. More is not always better: coinfections with defensive symbionts generate highly variable outcomes. Appl Environ Microbiol. 2020;86:e02537-19.
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Bongrand C, Ruby EG. Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME J 2019;13:698-706.
    PubMed  Article  Google Scholar 

    16.
    Doremus MR, Oliver KM. Aphid heritable symbiont exploits defensive mutualism. Appl Environ Microbiol. 2017;83:e03276–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    McLean AHC, Parker BJ, Hrček J, Kavanagh JC, Wellham PAD, Godfray HCJ. Consequences of symbiont co-infections for insect host phenotypes. J Anim Ecol 2018;87:478-488.
    PubMed  Article  Google Scholar 

    18.
    Oliver KM, Moran NA, Hunter MS. Costs and benefits of a superinfection of facultative symbionts in aphids. Proc R Soc B-Biol Sci. 2006;273:1273–80.
    Article  Google Scholar 

    19.
    Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species. Cell. 2015;160:583–94.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded human microbiome project. Nature. 2017;550:61–66.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Des Roches S, Post DM, Turley NE, Bailey JK, Hendry AP, Kinnison MT, et al. The ecological importance of intraspecific variation. Nat Ecol Evol. 2018;2:57–64.
    PubMed  Article  Google Scholar 

    22.
    Barbour MA, Fortuna MA, Bascompte J, Nicholson JR, Julkunen-Tiitto R, Jules ES, et al. Genetic specificity of a plant–insect food web: implications for linking genetic variation to network complexity. Proc Natl Acad Sci. 2016;113:2128–33.
    CAS  PubMed  Article  Google Scholar 

    23.
    Reznick DN, Losos J, Travis J. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol Lett. 2019;22:233–44.
    PubMed  Article  Google Scholar 

    24.
    Koskella B, Bergelson J. The study of host–microbiome (co)evolution across levels of selection. Philos Trans R Soc B Biol Sci. 2020;375:20190604.
    Article  Google Scholar 

    25.
    Whitham TG, Allan GJ, Cooper HF, Shuster SM. Intraspecific Genetic Variation and Species Interactions Contribute to Community Evolution. Annu Rev Ecol Evol Syst. 2020;51:587–612.
    Article  Google Scholar 

    26.
    Ferrari J, West JA, Via S, Godfray HCJ. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution. 2012;66:375–90.
    PubMed  Article  Google Scholar 

    27.
    Henry LM, Peccoud J, Simon J-C, Hadfield JD, Maiden MJC, Ferrari J, et al. Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol. 2013;23:1713–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Reuter M, Keller L. High levels of multiple Wolbachia infection and recombination in the ant Formica exsecta. Mol Biol Evol. 2003;20:748–53.
    CAS  PubMed  Article  Google Scholar 

    29.
    Gauthier J-P, Outreman Y, Mieuzet L, Simon J-C. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PloS One. 2015;10:e0120664.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Douglas AE. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Douglas AE. The nutritional physiology of aphids. Advances in Insect Physiology. Oxford, UK: Academic Press; 2003. pp 73–140.

    32.
    Zytynska SE, Weisser WW. The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol. 2016;41:13–26.
    Article  Google Scholar 

    33.
    Smith AH, Łukasik P, O’Connor MP, Lee A, Mayo G, Drott MT, et al. Patterns, causes, and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol. 2015;24:1135–49.
    PubMed  Article  Google Scholar 

    34.
    Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA. 2003;100:1803–7.
    CAS  PubMed  Article  Google Scholar 

    35.
    Scarborough CL, Ferrari J, Godfray HCJ. Aphid protected from pathogen by endosymbiont. Science. 2005;310:1781–1781.
    CAS  PubMed  Article  Google Scholar 

    36.
    Montllor CB, Maxmen A, Purcell AH. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol. 2002;27:189–95.
    Article  Google Scholar 

    37.
    Hrček J, McLean AHC, Godfray HCJ. Symbionts modify interactions between insects and natural enemies in the field. J Anim Ecol. 2016;85:1605–12.
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Rock DI, Smith AH, Joffe J, Albertus A, Wong N, O’Connor M, et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol Ecol. 2018;27:2039–56.
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol. 2005;71:3302–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Manzano-Marín A, Szabó G, Simon J-C, Horn M, Latorre A. Happens in the best of subfamilies: establishment and repeated replacements of co-obligate secondary endosymbionts within Lachninae aphids. Environ Microbiol. 2017;19:393–408.
    PubMed  Article  CAS  Google Scholar 

    41.
    Henry LM, Maiden MCJ, Ferrari J, Godfray HCJ. Insect life history and the evolution of bacterial mutualism. Ecol Lett. 2015;18:516–25.
    PubMed  Article  Google Scholar 

    42.
    Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA. 2005;102:12795–12800.
    CAS  PubMed  Article  Google Scholar 

    43.
    Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science. 2009;325:992–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Degnan PH, Moran NA. Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol Ecol. 2008;17:916–29.
    CAS  PubMed  Article  Google Scholar 

    45.
    Chevignon G, Boyd BM, Brandt JW, Oliver KM, Strand MR. Culture-facilitated comparative genomics of the facultative symbiont Hamiltonella defensa. Genome Biol Evol. 2018;10:786–802.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Heyworth ER, Ferrari J. A facultative endosymbiont in aphids can provide diverse ecological benefits. J Evol Biol. 2015;28:1753–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H. The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci USA. 2005;102:16919–26.
    CAS  PubMed  Article  Google Scholar 

    48.
    Oliver KM, Higashi CH. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr Opin Insect Sci. 2019;32:1–7.
    PubMed  Article  Google Scholar 

    49.
    Martinez AJ, Doremus MR, Kraft LJ, Kim KL, Oliver KM. Multi-modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism. J Anim Ecol. 2018;87:464–77.
    PubMed  Article  Google Scholar 

    50.
    Łukasik P, van Asch M, Guo H, Ferrari J, Charles J, Godfray H. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett. 2013;16:214–8.
    PubMed  Article  Google Scholar 

    51.
    Parker BJ, Hrček J, McLean AHC, Godfray HCJ. Genotype specificity among hosts, pathogens, and beneficial microbes influences the strength of symbiont-mediated protection. Evolution. 2017;71:1222–31.
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Vorburger C. The evolutionary ecology of symbiont-conferred resistance to parasitoids in aphids. Insect Sci. 2014;21:251–64.
    PubMed  Google Scholar 

    53.
    Ferrari J, Via S, Godfray HCJ. Population differentiation and genetic variation in performance on eight hosts in the pea aphid complex. Evolution. 2008;62:2508–24.
    PubMed  Article  Google Scholar 

    54.
    McLean AHC, van Asch M, Ferrari J, Godfray HCJ. Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc R Soc B-Biol Sci. 2011;278:760–6.
    CAS  Article  Google Scholar 

    55.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

    56.
    Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
    Article  Google Scholar 

    57.
    Russell JA, Weldon S, Smith AH, Kim KL, Hu Y, Łukasik P, et al. Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol Ecol. 2013;22:2045–59.
    PubMed  Article  Google Scholar 

    58.
    Jayakar SD. A mathematical model for interaction of gene frequencies in a parasite and its host. Theor Popul Biol. 1970;1:140–64.
    CAS  PubMed  Article  Google Scholar 

    59.
    Tellier A, Brown JKM. Stability of genetic polymorphism in host–parasite interactions. Proc R Soc B Biol Sci. 2007;274:809–17.
    Article  Google Scholar 

    60.
    Eren AM, Sogin ML, Morrison HG, Vineis JH, Fisher JC, Newton RJ, et al. A single genus in the gut microbiome reflects host preference and specificity. ISME J. 2015;9:90–100.
    CAS  PubMed  Article  Google Scholar 

    61.
    Yin Y, Wang Y, Zhu L, Liu W, Liao N, Jiang M, et al. Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME J. 2013;7:615–21.
    CAS  PubMed  Article  Google Scholar 

    62.
    Parker BJ, McLean AHC, Hrček J, Gerardo NM, Godfray HCJ. Establishment and maintenance of aphid endosymbionts after horizontal transfer is dependent on host genotype. Biol Lett. 2017;13:20170016.
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Nyabuga FN, Outreman Y, Simon J-C, Heckel DG, Weisser WW. Effects of pea aphid secondary endosymbionts on aphid resistance and development of the aphid parasitoid Aphidius ervi: a correlative study. Entomol Exp Appl. 2010;136:243–53.
    Google Scholar 

    64.
    Leclair M, Polin S, Jousseaume T, Simon J-C, Sugio A, Morlière S, et al. Consequences of coinfection with protective symbionts on the host phenotype and symbiont titres in the pea aphid system. Insect Sci. 2016;24:798–808.
    PubMed  Article  Google Scholar 

    65.
    Zhao D, Hoffmann AA, Zhang Z, Niu H, Guo H. Interactions between facultative symbionts Hamiltonella and Cardinium in Bemisia tabaci (Hemiptera: Aleyrodoidea): cooperation or conflict? J Econ Entomol. 2018;111:2660-2666.
    PubMed  Article  CAS  Google Scholar 

    66.
    Vorburger C, Gehrer L, Rodriguez P. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett. 2010;6:109–11.
    PubMed  Article  Google Scholar 

    67.
    McLean AHC, Godfray HCJ. Evidence for specificity in symbiont-conferred protection against parasitoids. Proc R Soc B. 2015;282:20150977.
    Article  Google Scholar 

    68.
    Patel V, Chevignon G, Manzano-Marín A, Brandt JW, Strand MR, Russell JA, et al. Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic ‘X-type’ symbiont of aphids. Genome Biol Evol. 2019;11:3510-3522.
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Rouchet R, Vorburger C. Strong specificity in the interaction between parasitoids and symbiont-protected hosts. J Evol Biol. 2012;25:2369–75.
    PubMed  Article  Google Scholar 

    70.
    Sanders D, Kehoe R, Veen FF, van, McLean A, Godfray HCJ, Dicke M, et al. Defensive insect symbiont leads to cascading extinctions and community collapse. Ecol Lett. 2016;19:789–99.
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Genetic structure of Malus sylvestris and potential link with preference/performance by the rosy apple aphid pest Dysaphis plantaginea

    Plant and insect materials
    A total of 56 apple plants were grown from seeds and sampled for this study. Cultivated apple plants resulting from crosses between various cultivated apple varieties were used (M. domestica, referred to as “Dom”, N = 14, Table S1). The seeds were kindly provided by INRAE IRHS Angers that performed every year crosses for apple breeding programs. A total of 42 M. sylvestris plants were grown from field-collected seeds. These wild apple seeds originated from three out of the five known European wild apple populations (referred to as Danish: Syl_Dk, French: Syl_Fr and Romanian: Syl_Ro, N = 14 per population). Each population was represented by a single sampling site, and within each site, each seed was sampled on a single mother tree, so that each seedling has a different parental origin. Though M. domestica is usually grafted, new plants were grown from seed to eliminate the rootstock effect.
    After field sampling, seeds were stored at -20 °C before vernalization for the experiment. Seeds were then vernalized for three months at 4 °C in the dark, then grown in controlled conditions for two months before being individually transferred to 3 L pots containing commercial sterilized potting soil. Potted plants were grown in a growth chamber for four weeks under the following conditions: 20 ± 1 °C, 75 ± 5% Relative Humidity (RH), and a 16:8 light:dark (L:D) photoperiod. The 56 plants were then genotyped using 13 previously published microsatellite markers (see below) to confirm their genetic status (i.e., belonging to one of the M. sylvestris European populations or crop-to-wild/wild-to-wild hybrid).
    A single colony of D. plantaginea (Hemiptera: Aphididae) was used and provided by INRAE which were sampled as a population in spring 2018 from an apple tree at the Agrocampus Ouest orchard (Angers, France) (Philippe Robert, personal communication). This aphid population was mass reared without differentiating individual aphid clones on M. domestica cv. “Jonagold” plants obtained by in vitro multiplication21. Pots containing three plants (90 × 90 × 70 mm) were placed in a Plexiglas cube (50 cm). Mass rearing and experiments were performed in growth chambers under 20 ± 1 °C, 60 ± 5% RH, and a 16:8 L:D cycle.
    Synchronized first instar nymphs were obtained by placing parthenogenetic adult females on plantlets for 24 h before removing them. They were then reared on M. domestica cv. “Jonagold” plants inside Plexiglas aerated boxes (36 × 24 × 14 cm) for ten days then used as the young adult RAA for the behavioral/performance experiments.
    Apple population genetic diversity and structure
    Genomic DNA was extracted with the NucleoSpin plant DNA extraction kit II (Macherey & Nagel, Düren, Germany) according to the manufacturer’s instructions. Microsatellites were amplified by multiplex PCR, with the Multiplex PCR Kit (QIAGEN, Inc.). We used 13 microsatellite markers, Ch01f02, Ch01f03, Ch01h01, Ch01h10, Ch02c06, Ch02c09, Ch02c11, Ch02d08, Ch03d07, Ch04c07, Ch05f06, GD12, and Hi02c07 in four multiplexes (MP01, MP02, MP03, MP04)4. PCR were performed in a final reaction volume of 15 ml (7.5 ml of QIAGEN Multiplex Master Mix, 10–20 mM of each primer, with the forward primer labelled with a fluorescent dye and 10 ng of template DNA) (See4 for more details). The final volume was achieved with distilled water. A touch-down PCR program (initial annealing temperature of 60 °C, decreasing by 1 °C per cycle down to 55 °C) was used. Genotyping was performed on the GENTYANE platform (INRAE Clermont-Ferrand) using an ABI PRISM X3730XL, with 2 ml of GS500LIZ size standard (Applied Biosystems). Alleles were scored with GENEMAPPER 4.0 software (Applied Biosystems). Only multilocus genotypes with  0.1 were classified as crop-to-wild hybrids (i.e., introgressed by M. domestica). Once crop-wild hybrids removed, plants assigned to a given wild gene pool with a cumulated membership coefficient  > 0.9 were defined as “pure wild” individuals. Plants assigned to the wild gene pool with a cumulated membership coefficient  More

  • in

    Urbanization can benefit agricultural production with large-scale farming in China

    1.
    Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).
    ADS  CAS  Article  Google Scholar 
    2.
    Godfray, H. C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).
    ADS  CAS  Article  Google Scholar 

    3.
    Bren D Amour, C. et al. Future urban land expansion and implications for global croplands. Proc. Natl Acad. Sci. USA 114, 8939–8944 (2017).
    Article  Google Scholar 

    4.
    Gardi, C., Panagos, P., Van Liedekerke, M., Bosco, C. & De Brogniez, D. Land take and food security: assessment of land take on the agricultural production in Europe. J. Environ Plann. Manag. 58, 898–912 (2015).
    Article  Google Scholar 

    5.
    Shi, K. et al. Urban expansion and agricultural land loss in China: a multiscale perspective. Sustainability 8, 790 (2016).
    Article  Google Scholar 

    6.
    Bai, X., Shi, P. & Liu, Y. Society: realizing China’s urban dream. Nature 509, 158–160 (2014).
    Article  Google Scholar 

    7.
    World Urbanization Prospects 2018 (United Nations, 2018); https://population.un.org/wup/Download/

    8.
    Zhai, Z., Chen, J. & Li, L. Future trends of China’s population and aging from 2015 to 2100 [in Chinese]. Popul. Res. 41, 60–71 (2017).
    Google Scholar 

    9.
    Van Vliet, J., Eitelberg, D. A. & Verburg, P. H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Change 43, 107–115 (2017).
    Article  Google Scholar 

    10.
    Chen, J. Rapid urbanization in China: a real challenge to soil protection and food security. Catena 69, 1–15 (2007).
    Article  Google Scholar 

    11.
    Martellozzo, F. et al. Urbanization and the loss of prime farmland: a case study in the Calgary–Edmonton corridor of Alberta. Reg. Environ. Change 15, 881–893 (2015).
    Article  Google Scholar 

    12.
    Yan, H., Liu, J., He, Q. H., Bo, T. & Cao, M. Assessing the consequence of land use change on agricultural productivity in China. Glob. Planet. Change 67, 13–19 (2009).
    ADS  Article  Google Scholar 

    13.
    Bai, X., Chen, J. & Shi, P. Landscape urbanization and economic growth in China: positive feedbacks and sustainability dilemmas. Environ. Sci. Technol. 46, 132–139 (2012).
    ADS  CAS  Article  Google Scholar 

    14.
    Statistical yearbooks of prefecture-level cities in 2015 [in Chinese]. National Bureau of Statistics http://www.stats.gov.cn/tjsj/ (2016).

    15.
    Zuo, L. et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 1, 304–313 (2018).
    Article  Google Scholar 

    16.
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).
    ADS  CAS  Article  Google Scholar 

    17.
    Zhang, X. et al. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: evidence from long-term experiments with wheat–maize cropping systems in China. Sci. Total Environ. 562, 247–259 (2016).
    ADS  CAS  Article  Google Scholar 

    18.
    Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).
    ADS  CAS  Article  Google Scholar 

    19.
    Zou, B., Mishra, A. K. & Luo, B. Aging population, farm succession, and farmland usage: evidence from rural China. Land Use Policy 77, 437–445 (2018).
    Article  Google Scholar 

    20.
    Guidance on Accelerating the Development of Agricultural Productive Services (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2017).

    21.
    Ju, X., Gu, B., Wu, Y. & Galloway, J. N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Change 41, 26–32 (2016).
    Article  Google Scholar 

    22.
    Ren, C. et al. The impact of farm size on agricultural sustainability. J. Clean Prod. 220, 357–367 (2019).
    Article  Google Scholar 

    23.
    Adamopoulos, T. & Restuccia, D. The size distribution of farms and international productivity differences. Am. Econ. Rev. 104, 1667–1697 (2014).
    Article  Google Scholar 

    24.
    Wang, J., Chen, K. Z., Gupta, S. D. & Huang, Z. Is small still beautiful? A comparative study of rice farm size and productivity in China and India. China Agr. Econ. Rev. 7, 484–509 (2015).
    Article  Google Scholar 

    25.
    Lu, H., Xie, H., He, Y., Wu, Z. & Zhang, X. Assessing the impacts of land fragmentation and plot size on yields and costs: a translog production model and cost function approach. Agr. Syst. 161, 81–88 (2018).
    Article  Google Scholar 

    26.
    Syp, A., Faber, A., Borzecka-Walker, M. & Osuch, D. Assessment of greenhouse gas emissions in winter wheat farms using data envelopment analysis approach. Pol. J. Environ. Stud. 24, 2197–2203 (2015).
    CAS  Article  Google Scholar 

    27.
    Li, G., Feng, Z., You, L. & Fan, L. Re-examining the inverse relationship between farm size and efficiency. China Agr. Econ. Rev. 5, 473–488 (2013).
    Article  Google Scholar 

    28.
    Fan, L. et al. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environ. Sci. Pollut. Res. 26, 464–472 (2019).
    Article  Google Scholar 

    29.
    Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Env. Resour. 28, 315–358 (2003).
    Article  Google Scholar 

    30.
    Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl Acad. Sci. USA 115, 2335–2340 (2018).
    CAS  Article  Google Scholar 

    31.
    Resource and Environment Data Cloud Platform (Resource and Environment Science and Data Center, 2018); http://www.resdc.cn/Default.aspx

    32.
    Laborde, D., Martin, W., Swinnen, J. & Vos, R. COVID-19 risks to global food security. Science 369, 500–502 (2020).
    ADS  CAS  Article  Google Scholar 

    33.
    Shi, Q., Jin, H. & Zhuo, J. Does land expropriation definitely reduce farmers’ income: a survey of 7 villages in Shanghai: the defects and reforms of the current land expropriation system [in Chinese]. Manage. World 3, 77–82 (2011).
    Google Scholar 

    34.
    Liu, Y. & Li, Y. Revitalize the world’s countryside. Nature 548, 275–277 (2017).
    ADS  CAS  Article  Google Scholar 

    35.
    Liu, Y., Fang, F. & Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 40, 6–12 (2014).
    CAS  Article  Google Scholar 

    36.
    Measures for Land Acquisition Compensation and Social Security for Land-Expropriated Farmers in Jiangsu Province Provincial Government Order No. 93 (Jiangsu Provincial People’s Government, 2013).

    37.
    Wu, Y., Chen, Y., Deng, X. & Hui, E. C. M. Development of characteristic towns in China. Habitat Int. 77, 21–31 (2018).
    Article  Google Scholar 

    38.
    Yu, Y., Huang, Y. & Zhang, W. Modeling soil organic carbon change in croplands of China, 1980–2009. Glob. Planet Change 82–83, 115–128 (2012).
    ADS  Article  Google Scholar 

    39.
    No. 1 Central Document (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2020); http://www.moa.gov.cn/ztzl/jj2020zyyhwj/

    40.
    Güneralp, B. et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl Acad. Sci. USA 114, 8945–8950 (2017).
    Article  Google Scholar  More

  • in

    Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India

    1.
    Grigg, G. & Kirshner, D. Biology and Evolution of Crocodylians (CSIRO Publishing, 2015). https://doi.org/10.1071/9781486300679.
    Google Scholar 
    2.
    Singh, L. A. K. Ecological studies on the Indian gharial Gavialis gangeticus (Gmelin) (Reptilia, Crocodilia). PhD Thesis, Utkal University, Odisha (1978).

    3.
    Whitaker, R. The management of crocodilians in India. In Wildlife Management; Crocodiles and Alligators (eds Webb, G. J. W. et al.) 63–72 (Surrey Beatty and Sons, 1987).
    Google Scholar 

    4.
    Hussain, S. A. Reproductive success, hatchling survival and rate of increase of gharial Gavialis gangeticus in National Chambal Sanctuary, India. Biol. Conserv. 87, 261–268 (1999).
    Article  Google Scholar 

    5.
    Bustard, H. R. A future for the Gharial. Cheetal 17, 3–8 (1975).
    Google Scholar 

    6.
    Hussain, S. A. Basking site and water depth selection by gharial Gavialis gangeticus Gmelin 1789 (Crocodylia, Reptilia) in National Chambal Sanctuary, India and its implication for river conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 127–133 (2009).
    Article  Google Scholar 

    7.
    Lang, J. W., Chowfin, S. & Ross, J. P. Gavialis gangeticus (errata version published in 2019). IUCN Red List Threat. Species 2019 (2019).

    8.
    Basu, D. Saving the gharial. Indian Wildlifer 1, 7–15 (1981).
    Google Scholar 

    9.
    Singh, V. B. The status of the gharial (Gavialis gangeticus) in U.P. and its rehabilitation. J. Bombay Nat. Hist. Soc. 75, 668–683 (1978).
    Google Scholar 

    10.
    Stevenson, C. & Whitaker, R. Indian Gharial Gavialis gangeticus. In Crocodiles. Status Survey and Conservation Action Plan (eds Manolis, S. C. & Stevenson, C.) 139–143 (Crocodile Specialist Group, 2010).
    Google Scholar 

    11.
    Whitaker, R. & Basu, D. The gharial (Gavialis gangeticus) a review. J. Bombay Nat. Hist. Soc. 79, 531–548 (1982).
    Google Scholar 

    12.
    Whitaker, R. The gharial: Going extinct again. Iguana 14, 25–33 (2007).
    Google Scholar 

    13.
    Lang, J. W., Jailabdeen, A. & Kumar, P. Gharial ecology project—Update 2018–2019. IUCN-SSC Crocodile Spec. Gr. Newsl. 37, 15–17 (2018).
    Google Scholar 

    14.
    IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations IUCN. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission viiii + 57 pp. (2013).

    15.
    Schwartz, M. K. Guidelines on the use of molecular genetics in reintroduction programs. EU LIFE-Nature Proj. to Guidel. reintroduction Threat. species 51–58 (2005).

    16.
    White, L. C., Moseby, K. E., Thomson, V. A., Donnellan, S. C. & Austin, J. J. Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biol. Conserv. 219, 1–11 (2018).
    Article  Google Scholar 

    17.
    Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 4, 709–725 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).
    PubMed  Article  Google Scholar 

    19.
    Katdare, S. et al. Gharial (Gavialis gangeticus) populations and human influences on habitat on the River Chambal, India. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 364–371 (2011).
    Article  Google Scholar 

    20.
    Nair, T., Thorbjarnarson, J. B., Aust, P. & Krishnaswamy, J. Rigorous gharial population estimation in the Chambal: Implications for conservation and management of a globally threatened crocodilian. J. Appl. Ecol. 49, 1046–1054 (2012).
    Article  Google Scholar 

    21.
    Hussain, S. A. Ecology of gharial (Gavialis gangeticus) in National Chambal Sanctuary. MPhil Thesis, Aligarh Muslim University, Uttar Pradesh (1991).

    22.
    Sharma, S. P. et al. Mitochondrial DNA analysis reveals extremely low genetic diversity in a managed population of the Critically Endangered Gharial (Gavialis gangeticus, Gmelin 1789). Herpetol. J. 30, 202–206 (2020).
    Article  Google Scholar 

    23.
    Jogayya, K. N., Meganathan, P. R., Dubey, B. & Haque, I. Novel microsatellite DNA markers for Indian Gharial (Gavialis gangeticus). Conserv. Genet. Resour. 5, 787–790 (2013).
    Article  Google Scholar 

    24.
    Zhu, H., Wu, X., Xue, H., Wei, L. & Hu, Y. Isolation of polymorphic microsatellite loci from the Chinease alligator (Alligator sinensis). Mol. Ecol. Resour. 9, 892–894 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Glenn, T. C. et al. Characterization of microsatellite DNA loci in American alligators. Copeia 3, 591–601 (1998).
    Article  Google Scholar 

    26.
    Ojeda, G. N., Amavet, P. S., Rueda, E. C., Siroski, P. A. & Larriera, A. Mating system of Caiman yacare (Reptilia: Alligatoridae) described from microsatellite genotypes. J. Hered. 108, 135–141 (2017).
    PubMed  PubMed Central  Google Scholar 

    27.
    Yu, D. et al. Analysis of genetic variation and bottleneck in a captive population of Siamese crocodile using novel microsatellite loci. Conserv. Genet. Resour. 3, 217–220 (2011).
    Article  Google Scholar 

    28.
    Hinlo, M. R. P. et al. Population genetics implications for the conservation of the Philippine Crocodile Crocodylus mindorensis Schmidt, 1935 (Crocodylia: Crocodylidae). J. Threat. Taxa 6, 5513–5533 (2014).
    Article  Google Scholar 

    29.
    Mcvay, J. D. et al. Evidence of multiple paternity in Morelet’s Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. J. Exp. Zool. Part A Ecol. Genet. Physiol. 309, 643–648 (2008).
    Article  Google Scholar 

    30.
    Dever, J. A., Strauss, R. E., Rainwater, T. R., McMurry, S. T. & Densmore, I. L. D. Genetic diversity, population subdivision, and gene flow in Morelet’s crocodile (Crocodylus moreletii) from Belize, Central America. Copeia 4, 1078–1091 (2002).
    Article  Google Scholar 

    31.
    Aggarwal, R. K., Lalremruata, A. & Dubey, B. Development of fourteen novel microsatellite markers of Crocodylus palustris, the Indian mugger, and their cross-species transferability in ten other crocodilians. Conserv. Genet. Resour. 7, 197–200 (2014).
    Article  Google Scholar 

    32.
    Campos, J. C., Mobaraki, A., Abtin, E., Godinho, R. & Brito, J. C. Preliminary assessment of genetic diversity and population connectivity of the Mugger Crocodile in Iran. Amphib. Reptil. 39, 126–131 (2018).
    Article  Google Scholar 

    33.
    Garner, A., Rachlow, J. L. & Hicks, J. F. Patterns of genetic diversity and its loss in mammalian populations. Conserv. Biol. 19, 1215–1221 (2005).
    Article  Google Scholar 

    34.
    Rossi, N. A. et al. High levels of population genetic differentiation in the American crocodile (Crocodylus acutus). PLoS ONE 15, e0235288 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    van Asch, B. et al. Phylogeography, genetic diversity, and population structure of Nile crocodile populations at the fringes of the southern African distribution. PLoS ONE 14, 1–20 (2019).
    Google Scholar 

    36.
    Luck, N. L. et al. Mitochondrial DNA analyses of the saltwater crocodile (Crocodylus porosus) from the Northern Territory of Australia. Aust. J. Zool. 60, 18–25 (2012).
    Article  Google Scholar 

    37.
    Russello, M. A., Brazaitis, P., Gratten, J., Watkins-Colwell, G. J. & Caccone, A. Molecular assessment of the genetic integrity, distinctiveness and phylogeographic context of the Saltwater crocodile (Crocodylus porosus) on Palau. Conserv. Genet. 8, 777–787 (2007).
    CAS  Article  Google Scholar 

    38.
    Ray, D. A. et al. Low levels of nucleotide diversity in Crocodylus moreletiiand evidence of hybridization with C. acutus. Conserv. Genet. 5, 449–462 (2004).
    CAS  Article  Google Scholar 

    39.
    Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).
    CAS  PubMed  Article  Google Scholar 

    41.
    Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Blackwell Publishing, 2007).
    Google Scholar 

    43.
    Guries, R. P. & Ledig, F. T. Genetic structure of populations and differentiation in forest trees. in Conkle, MT (tech. coord.) Proceedings of the symposium on isozymes of North American forest trees and forest insects. USDA For. Serv. Gen. Tech. Rep. PSW-48 42–47 (1979).

    44.
    Biebach, I. & Keller, L. F. Inbreeding in reintroduced populations: The effects of early reintroduction history and contemporary processes. Conserv. Genet. 11, 527–538 (2010).
    Article  Google Scholar 

    45.
    Wang, J. Estimating pairwise relatedness in a small sample of individuals. Heredity (Edinb). 119, 302–313 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Degiorgio, M. & Rosenberg, N. A. An unbiased estimator of gene diversity in samples containing related individuals p. Mol. Biol. Evol. 26, 501–512 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Girod, C., Vitalis, R., Leblois, R. & Fréville, H. Inferring population decline and expansion from microsatellite data: A simulation-based evaluation of the msvar method. Genetics 188, 165–179 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Luikart, G. & Cornuet, J. M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237 (1998).
    Article  Google Scholar 

    50.
    Keller, L. F. et al. Immigration and the ephemerality of a natural population bottleneck: Evidence from molecular markers. Proc. R Soc. London. Ser. B Biol. Sci. 268, 1387–1394 (2001).
    CAS  Article  Google Scholar 

    51.
    Cristescu, R., Sherwin, W. B., Handasyde, K., Cahill, V. & Cooper, D. W. Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: The importance of the microsatellite structure. Conserv. Genet. 11, 1043–1049 (2010).
    Article  Google Scholar 

    52.
    Peery, M. Z. et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21, 3403–3418 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Hoban, S. M., Gaggiotti, O. E. & Bertorelle, G. The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: A simulation-based study. Mol. Ecol. 22, 3444–3450 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).
    Google Scholar 

    56.
    Miquel, C. et al. Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol. Ecol. Notes 6, 985–988 (2006).
    Article  Google Scholar 

    57.
    Oaks, J. R. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution (N.Y.) 65, 3285–3297 (2011).
    Google Scholar 

    58.
    Broquet, T. & Petit, E. Quantifying genotyping errors in noninvasive population genetics. Mol. Ecol. 13, 3601–3608 (2004).
    CAS  PubMed  Article  Google Scholar 

    59.
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    61.
    Valière, N. GIMLET: A computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379 (2002).
    Google Scholar 

    62.
    Peakall, R. & Smouse, P. E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Kalinowski, S. T. HP-RARE 1.0—A computer program for performing rarefaction on measures of allelic richness.pdf. Mol. Ecol. Notes 5, 187–189 (2005).
    CAS  Article  Google Scholar 

    65.
    Weir, B. S. & Cockerham, C. Estimating F-statistics for the analysis of population structure. Evolution (N. Y.). 38, 1358–1370 (1984).
    CAS  Google Scholar 

    66.
    Hedrick, P. W. A standardized genetic differentiation measure. Evolution (N. Y.). 59, 1633–1638 (2005).
    CAS  Google Scholar 

    67.
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Archer, F. I., Adams, P. E. & Schneiders, B. B. stratag: An r package for manipulating, summarizing and analysing population genetic data. Mol. Ecol. Resour. 17, 5–11 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    72.
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Article  Google Scholar 

    73.
    Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
    Article  Google Scholar 

    74.
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).
    PubMed  PubMed Central  Google Scholar 

    75.
    Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinforma. Online. 1, 47–50 (2005).
    CAS  Google Scholar 

    76.
    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
    Article  Google Scholar 

    77.
    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).
    CAS  PubMed  Article  Google Scholar 

    78.
    Di Rienzo, A. et al. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 91, 3166–3170 (1994).
    ADS  PubMed  Article  Google Scholar 

    79.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    81.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  Article  Google Scholar  More

  • in

    No projected global drylands expansion under greenhouse warming

    1.
    D’Odorico, P. & Porporato, A. Dryland Ecohydrology (Springer, 2019).
    2.
    Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).
    Article  Google Scholar 

    3.
    Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).
    CAS  Article  Google Scholar 

    4.
    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
    Article  CAS  Google Scholar 

    5.
    Middleton, N. & Thomas, D. S. G. World Atlas of Desertification 2nd edn (Wiley, 1997).

    6.
    Budyko, M. I. & Miller, D. H. International Geophysics Series: Climate and Life Vol. 18 (Academic Press, 1974).

    7.
    Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).
    CAS  Article  Google Scholar 

    8.
    Fu, Q. & Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).
    Article  Google Scholar 

    9.
    Scheff, J. & Frierson, D. M. W. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Clim. 28, 5583–5600 (2015).
    Article  Google Scholar 

    10.
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
    Google Scholar 

    11.
    Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).
    Article  Google Scholar 

    12.
    Park, C.-E. et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).
    Article  Google Scholar 

    13.
    Koutroulis, A. G. Dryland changes under different levels of global warming. Sci. Total Environ. 655, 482–511 (2019).
    CAS  Article  Google Scholar 

    14.
    Park, C. E. et al. Inequal responses of drylands to radiative forcing geoengineering methods. Geophys. Res. Lett. 46, 14011–14020 (2019).
    Article  Google Scholar 

    15.
    Wei, Y. et al. Drylands climate response to transient and stabilized 2 °C and 1.5 °C global warming targets. Clim. Dyn. 53, 2375–2389 (2019).
    Article  Google Scholar 

    16.
    Yao, J. et al. Accelerated dryland expansion regulates future variability in dryland gross primary production. Nat. Commun. 11, 1665 (2020).
    CAS  Article  Google Scholar 

    17.
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
    CAS  Article  Google Scholar 

    18.
    Rajaud, A. & de Noblet-Ducoudré, N. Tropical semi-arid regions expanding over temperate latitudes under climate change. Climatic Change 144, 703–719 (2017).
    Article  Google Scholar 

    19.
    Yang, Y. et al. Disconnection between trends of atmospheric drying and continental runoff. Water Resour. Res. 54, 4700–4713 (2018).
    Article  Google Scholar 

    20.
    Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).
    CAS  Article  Google Scholar 

    21.
    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).
    Article  Google Scholar 

    22.
    Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).
    Article  CAS  Google Scholar 

    23.
    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).
    Article  Google Scholar 

    24.
    Berg, A. & Sheffield, J. Soil moisture–evapotranspiration coupling in CMIP5 models: relationship with simulated climate and projections. J. Clim. 31, 4865–4878 (2018).
    Article  Google Scholar 

    25.
    Mahowald, N. et al. Projections of leaf area index in Earth system models. Earth Syst. Dyn. 7, 211–229 (2016).
    Article  Google Scholar 

    26.
    Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).
    CAS  Article  Google Scholar 

    27.
    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).
    Article  Google Scholar 

    28.
    Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).
    Article  Google Scholar 

    29.
    Lavergne, A. et al. Observed and modelled historical trends in the water‐use efficiency of plants and ecosystems. Glob. Change Biol. 25, 2242–2257 (2019).
    Article  Google Scholar 

    30.
    Friedlingstein, P. Carbon cycle feedbacks and future climate change. Phil. Trans. R. Soc. A 373, 20140421 (2015).
    Article  CAS  Google Scholar 

    31.
    Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
    CAS  Article  Google Scholar 

    32.
    Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).
    CAS  Article  Google Scholar 

    33.
    Berg, A. & Sheffield, J. Evapotranspiration partitioning in CMIP5 models: uncertainties and future projections. J. Clim. 32, 2653–2671 (2019).
    Article  Google Scholar 

    34.
    Cao, L., Bala, G., Caldeira, K., Nemani, R. & Ban-Weiss, G. Importance of carbon dioxide physiological forcing to future climate change. Proc. Natl Acad. Sci. USA 107, 9513–9518 (2010).
    CAS  Article  Google Scholar 

    35.
    Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).
    Article  CAS  Google Scholar 

    36.
    Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).
    Article  Google Scholar 

    37.
    Frieler, K. et al. Assessing the impacts of 1.5 °C global warming—simulation protocol of the Inter-sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).
    Article  Google Scholar 

    38.
    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
    CAS  Article  Google Scholar 

    39.
    He, B., Wang, S., Guo, L. & Wu, X. Aridity change and its correlation with greening over drylands. Agric. For. Meteorol. 278, 107663 (2019).
    Article  Google Scholar 

    40.
    Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 0081 (2017).
    Article  Google Scholar 

    41.
    Burrell, A. L., Evans, J. P. & De Kauwe, M. G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).
    CAS  Article  Google Scholar 

    42.
    Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).
    Article  Google Scholar 

    43.
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).
    CAS  Article  Google Scholar 

    44.
    Liu, Y. et al. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nat. Geosci. 12, 809–814 (2019).
    CAS  Article  Google Scholar 

    45.
    Zeng, Z. et al. Responses of land evapotranspiration to Earth’s greening in CMIP5 Earth System Models. Environ. Res. Lett. 11, 104006 (2016).
    Article  Google Scholar 

    46.
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).
    Article  Google Scholar 

    47.
    Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).
    CAS  Article  Google Scholar 

    48.
    Scheff, J., Seager, R., Liu, H. & Coats, S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).
    Article  Google Scholar 

    49.
    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).
    CAS  Article  Google Scholar 

    50.
    Berg, A. & Sheffield, J. Historic and projected changes in coupling between soil moisture and evapotranspiration (ET) confounded by the role of different ET components. J. Geophys. Res. Atmos. 124, 5791–5806 (2019).
    Google Scholar 

    51.
    Berg, A. & McColl, K. R code for ‘No global drylands expansion under greenhouse warming’. Zenodo https://doi.org/10.5281/zenodo.4490414 (2021). More

  • in

    Seeding the idea of encapsulating a representative synthetic metagenome in a single yeast cell

    1.
    Dixon, T. & Pretorius, I. S. Drawing on the past to shape the future of synthetic yeast research. Int. J. Mol. Sci. 21, 7156 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 
    2.
    Dixon, T., Curach, N. & Pretorius, I. S. Bio-informational futures: the convergence of artificial intelligence and synthetic biology. EMBO Rep. 21, e50036 (2020a). 1–5.
    CAS  Article  Google Scholar 

    3.
    Dixon, T., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Layeghifard, M., Hwang, D. W. & Guttman, D. S. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 25, 217–228 (2017).
    CAS  PubMed  Article  Google Scholar 

    5.
    Pretorius, I. S. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. 20, foz084 (2020).
    CAS  PubMed  Article  Google Scholar 

    6.
    Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Pretorius, I. S. & Boeke, J. D. Yeast 2.0 − Connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Res. 18, foy032 (2018).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    8.
    Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Muller, E. E. L. et al. Using metabolic networks to resolve ecological properties of microbiomes. Curr. Opin. Syst. Biol. 8, 73–80 (2018).
    Article  Google Scholar 

    10.
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).
    CAS  Article  Google Scholar 

    11.
    Roume, H. et al. Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. npj Biofilms Microbiomes 1, 15007 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    McCarty, N. S. & Ledesma-Amaro, R. Synthetic Biology tools to engineer microbial communities for Biotechnology. Trends Biotechnol. 37, 181–197 (2018).
    PubMed  Article  CAS  Google Scholar 

    14.
    Peris, D. et al. Synthetic hybrids of six yeast species. Nat. Commun. 11, 2085 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Yi, X. & Dean, A. M. Adaptive landscapes in the age of synthetic biology. Mol. Biol. Evol. 36, 890–907 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Goel, A., Wortel, M. T., Molenaar, D. & Teusink, B. Metabolic shifts: a fitness perspective for microbial cell factories. Biotechnol. Lett. 34, 2147–2160 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    De Vrieze, J. & Verstraete, W. Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. Environ. Microbiol. 18, 2797–2809 (2016).
    PubMed  Article  CAS  Google Scholar 

    18.
    Wolfe, B. E. & Dutton, R. J. Fermented foods as experimentally tractable microbial ecosystems. Cell 161, 49–55 (2015).
    CAS  PubMed  Article  Google Scholar 

    19.
    Lurgi, M., Thomas, T., Wemheuer, B., Webster, N. S. & Montoya, J. M. Modularity and predicted functions of the global sponge-microbiome network. Nat. Commun. 10, 992 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Cao, H., Gibson, T., Bashan, A. & Liu, Y. Inferring human microbial dynamics from temporal metagenomics data: Pitfalls and lessons. BioEssays 39, 1600188 (2016).
    Article  Google Scholar 

    21.
    Liu, Z. et al. Network analyses in microbiome based on high-throughput multi-omics data. Brief. Bioinform. 00, 1–17 (2020).
    Google Scholar 

    22.
    Danczak, R. E. et al. Using metacommunity ecology to understand environmental metabolomes. Nat. Commun. 11, 6369 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Dini-Andreote, F. et al. Dynamics of bacterial community succession in a saltmarsh chronosequence: evidences for temporal niche partitioning. ISME J. 8, 1989–2001 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Heintz-Buschart, A. et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat. Microbiol. 2, 16180 (2016).
    CAS  PubMed  Article  Google Scholar 

    25.
    Toju, H. et al. Scoring species for synthetic community design: Network analyses of functional core microbiomes. Front. Microbiol. 11, 1361 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Medlock, G. L. et al. Inferring metabolic mechanisms of interaction within a defined gut microbiota. Cell Syst. 7, 245–257 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Gibson, D. G. Programming biological operating systems: genome design, assembly and activation. Nat. Meth 11, 521–526 (2014).
    CAS  Article  Google Scholar 

    28.
    Hillson, N. et al. Building a global alliance of biofoundries. Nat. Commun. 10, 2040 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).
    CAS  PubMed  Article  Google Scholar 

    30.
    Coradini, A. L. V., Hull, C. B. & Ehrenreich, I. M. Building genomes to understand biology. Nat. Commun. 11, 6177 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Bartley, B. A. et al. Organizing genome engineering for the gigabase scale. Nat. Commun. 11, 689 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Lau, Y. H. et al. Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Res. 45, 6971–6980 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Kouprina, N. & Larionov, V. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 125, 621–632 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Benders, G. A. et al. Cloning whole bacterial genomes in yeast. Nucleic Acids Res. 38, 2558–2569 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Mortimer, R. K. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res. 9, 312–326 (1958).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Shao, Y. et al. Creating a functional single-chromosome yeast. Nature 560, 331–335 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Hossain, A. et al. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat. Biotechnol. 38, 1466–1475 (2020).
    PubMed  Article  CAS  Google Scholar 

    38.
    Decoene, T., Peters, G., De Maeseneire, S. L. & De Mey, M. Toward predictable 5′UTRs in Saccharomyces cerevisiae: Development of a yUTR calculator. ACS Synth. Biol. 7, 622–634 (2018).
    CAS  PubMed  Article  Google Scholar 

    39.
    Weenink, T., van der Hilst, J., McKiernan, R. M. & Ellis, T. Design of RNA hairpin modules that predictably tune translation in yeast. Synth. Biol. 3, ysy019 (2018).
    CAS  Article  Google Scholar 

    40.
    Kotopka, B. J. & Smolke, C. D. Model-driven generation of artificial yeast promoters. Nat. Commun. 11, 2113 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Curran, K. A. et al. Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth. Biol. 4, 824–832 (2015).
    CAS  PubMed  Article  Google Scholar 

    42.
    MacPherson, M. & Saka, Y. Short synthetic terminators for assembly of transcription units in vitro and stable chromosomal integration in yeast S. cerevisiae. ACS Synth. Biol. 6, 130–138 (2017).
    CAS  PubMed  Article  Google Scholar 

    43.
    Morse, N. J., Gopal, M. R., Wagner, J. M. & Alper, H. S. Yeast terminator function can be modulated and designed on the basis of predictions of nucleosome occupancy. ACS Synth. Biol. 6, 2086–2095 (2017).
    CAS  PubMed  Article  Google Scholar 

    44.
    Gräslund, S. et al. Structural Genomics Consortium: Protein production and purification. Nat. Methods 5, 135–146 (2008).
    PubMed  Article  Google Scholar 

    45.
    Lin, Y., Zou, X., Zheng, Y., Cai, Y. & Dai, J. Improving chromosome synthesis with a semiquantitative phenotypic assay and refined assembly strategy. ACS Synth. Biol. 8, 2203–2211 (2019).
    CAS  PubMed  Article  Google Scholar 

    46.
    Mitchell, L. A. et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 355, eaaf4831 (2017).
    PubMed  Article  CAS  Google Scholar 

    47.
    Wu, Y. et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science 355, eaaf4706 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Salinas, F. et al. Fungal light-oxygen-voltage domains for optogenetic control of gene expression and flocculation in yeast. mBio 9, e00626–18 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Shen, Y. et al. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res. 26, 36–49 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Jin, J., Jia, B. & Yuan, Y. J. Yeast chromosomal engineering to improve industrially-relevant phenotypes. Curr. Opin. Biotechnol. 66, 165–170 (2020).
    CAS  PubMed  Article  Google Scholar 

    51.
    Dymond, J. & Boeke, J. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng. Bugs 3, 168–171 (2012).
    PubMed  PubMed Central  Google Scholar 

    52.
    Lee, D., Lloyd, N. D. R., Pretorius, I. S. & Borneman, A. R. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Micro. Cell Fact. 15, 49 (2016).
    Article  CAS  Google Scholar 

    53.
    Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 34, 371–381 (2016).
    CAS  PubMed  Article  Google Scholar 

    54.
    Williams, T. C., Xu, X., Ostrowski, M., Pretorius, I. S. & Paulsen, I. T. Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synth. Biol. 2, ysw002 (2017).
    CAS  Article  Google Scholar 

    55.
    Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Belda, I. et al. Unraveling the enzymatic basis of wine ‘flavorome’: a phylo-functional study of wine related yeast species. Front. Microbiol. 7, 1–13 (2016).
    Article  Google Scholar 

    57.
    Belda, I. et al. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 22, 1–29 (2017).
    Article  CAS  Google Scholar 

    58.
    Bokulich, N. A. et al. Associations among wine grape microbiome, metabolome, and fermentation behaviour suggest contribution to regional wine characteristics. mBio 7, 1–12 (2016).
    Article  Google Scholar 

    59.
    Liu, D., Chen, Q., Zhang, P., Chen, D. & Howell, K. S. The fungal microbiome is an important component of vineyard ecosystems and correlates with regional distinctiveness of wine. mSphere 5, e00534–20 (2020).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment

    1.
    Estrada, B., Aroca, R., Maathuis, F. J., Barea, J. M. & Ruiz-Lozano, J. M. Arbuscular mycorrhizal fungi native from a mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 36, 1771–1782 (2013).
    CAS  PubMed  Article  Google Scholar 
    2.
    Uva, R. H. & Whitlow, T. H. Beach plum (Prunus maritima Marsh.): Small farm sustainability through crop diversification and value added products. HortScience 38, 793 (2003).
    Google Scholar 

    3.
    Yan, D. L., Wang, G., Fang, K., Zai, X. M. & Qin, P. Introduction, cultivation and utilization of salt-tolerance beach plum. China For. Sci. Technol. 20, 67–69 (2006).
    Google Scholar 

    4.
    Zhang, H. S., Wu, X. H. & Li, G. Interactions between arbuscular mycorrhizal fungi and phosphate solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol. Fert. Soils 47, 543–554 (2011).
    CAS  Article  Google Scholar 

    5.
    Ait-El-Mokhtar, M. et al. Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Front. Sustain. Food Syst. 4, 131 (2020).
    Article  Google Scholar 

    6.
    Porcel, R., Redondo-Gómez, S. & Mateos-Naranjo, E. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J. Plant Physiol. 185, 75–83 (2015).
    CAS  PubMed  Article  Google Scholar 

    7.
    Sheng, M., Tang, M. & Chen, H. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18, 287–296 (2008).
    CAS  PubMed  Article  Google Scholar 

    8.
    Harbinson, J. Improving the accuracy of chlorophyll fluorescence measurements. Plant Cell Environ. 36, 1751–1754 (2013).
    PubMed  Article  Google Scholar 

    9.
    Zhu, X. C., Song, F. B., Liu, S. Q. & Liu, T. D. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ. 58, 186–191 (2012).
    CAS  Article  Google Scholar 

    10.
    Wang, F., Sun, Y. & Shi, Z. Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms 7, 289 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    11.
    Qiu, Y. J. et al. Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity. Physiol. Mol. Plant Pathol. 112, 101522 (2020).
    CAS  Article  Google Scholar 

    12.
    Zhang, H. S., Qin, P. & Zhang, W. M. Effects of inoculation of arbuscular mycorrhizal fungus and Apophysomyces spartina on P-uptake of castor oil plant (Ricinus communis L.) and rhizosphere soil enzyme activities under salt stress. Agri. Sci. Technol. 15, 659 (2014).
    CAS  Google Scholar 

    13.
    Ghorchiani, M., Etesami, H. & Alikhani, H. A. Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric. Ecosyst. Environ. 258, 59–70 (2018).
    CAS  Article  Google Scholar 

    14.
    Augé, R. M., Toler, H. D., Sams, C. E. & Nasim, G. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18, 115–121 (2008).
    PubMed  Article  Google Scholar 

    15.
    Sharma, S., Compant, S., Ballhausen, M. B., Ruppel, S. & Franken, P. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiol. Res. 240, 126556 (2020).
    CAS  PubMed  Article  Google Scholar 

    16.
    Vassilev, N., Eichler-Löbermann, B. & Vassileva, M. Stress-tolerant P-solubilizing microorganisms. Appl. Microbiol. Biot. 95, 851–859 (2012).
    CAS  Article  Google Scholar 

    17.
    Ait-El-Mokhtar, M. et al. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci. Hort. 253, 429–438 (2019).
    Article  Google Scholar 

    18.
    Zai, X. M., Zhu, S. N., Qin, P., Che, L. & Luo, F. X. Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica 50, 323–328 (2012).
    CAS  Article  Google Scholar 

    19.
    Navarro, J. M., Pérez-Tornero, O. & Morte, A. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J. Plant Physiol. 171, 76–85 (2014).
    CAS  PubMed  Article  Google Scholar 

    20.
    Toro, M., Azcon, R. & Herrera, R. Effects on yield and nutrition of mycorrhizal and nodulated Pueraria phaseolides exerted by P-solubilizing rhizobacteria. Biol. Fertil. Soils 21, 23–29 (1996).
    Article  Google Scholar 

    21.
    Singh, S. & Kapoor, K. K. Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol. Fertil. Soils 28, 139–144 (1999).
    CAS  Article  Google Scholar 

    22.
    Osorio, N. W. & Habte, M. Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res. Manag. 15, 263–274 (2001).
    CAS  Article  Google Scholar 

    23.
    Khan, M. S., Zaidi, A. & Wani, P. A. Role of phosphate-solubilizing microorganisms in sustainable agriculture—A review. Agron. Sustain Dev. 27, 29–43 (2007).
    Article  Google Scholar 

    24.
    Saxena, J., Saini, A., Ravi, I., Chandra, S. & Garg, V. Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J. Crop Improv. 29, 353–369 (2015).
    CAS  Article  Google Scholar 

    25.
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008).
    Google Scholar 

    26.
    Ben-Laouane, R., Baslam, M., Ait-El-Mokhtar, M., Anli, M. & Meddich, A. Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms 8, 1695 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    27.
    Hodge, A., Campbell, C. D. & Fitter, A. H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413, 297–299 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Johansen, A., Finlay, R. D. & Olsson, P. A. Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133, 705–712 (1996).
    CAS  Article  Google Scholar 

    29.
    Vicente-Sánchez, J. et al. Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza 24, 339–348 (2014).
    PubMed  Article  CAS  Google Scholar 

    30.
    Abdel-Fattah, G. M. & Asrar, A. W. A. Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol. Plant. 34, 267–277 (2012).
    CAS  Article  Google Scholar 

    31.
    Marschner, P. Rhizosphere biology. In Marschner’s Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 369–388 (Academic Press, 2012).
    Google Scholar 

    32.
    Abd-Allah, E. F. & Egamberdieva, D. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak. J. Bot. 48, 37–45 (2016).
    Google Scholar 

    33.
    Van den Driessche, R. Effects of nutrients on stock performance in the forest. In Mineral Nutrition of Conifer Seedlings (ed. van den Driessche, R.) 229–260 (CRC Press, 1991).
    Google Scholar 

    34.
    Ebel, R. C., Duan, X., Still, D. W. & Augé, R. M. Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil. New Phytol. 135, 755–761 (1997).
    CAS  Article  Google Scholar 

    35.
    Ruiz-Lozano, J. M. & Aroca, R. Host response to osmotic stresses: Stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In Arbuscular Mycorrhizas: Physiology and Function 239–256 (Springer, 2010).
    Google Scholar 

    36.
    Birhane, E., Sterck, F. J., Fetene, M., Bongers, F. & Kuyper, T. W. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169, 895–904 (2012).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Evelin, H., Giri, B. & Kapoor, R. Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonellafoenum graecum. Mycorrhiza 23, 71–86 (2012).
    PubMed  Article  CAS  Google Scholar 

    38.
    Aroca, R. et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170, 47–55 (2013).
    CAS  PubMed  Article  Google Scholar 

    39.
    Jungklang, J. Physiological and biochemical mechanisms of salt tolerance in Sesbania rostrata Berm and Obem. PhD Thesis (Agric Univ Teckuba, 2005).

    40.
    Baker, N. R. & Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: Examination of future possibilities. J. Exp. Bot. 55, 1607–1621 (2004).
    CAS  PubMed  Article  Google Scholar 

    41.
    Nwugo, C. C. & Huerta, A. J. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311, 73–86 (2008).
    CAS  Article  Google Scholar 

    42.
    Henriques, F. S. Leaf chlorophyll fluorescence: Background and fundamentals for plant biologist. Bot. Rev. 75, 249–270 (2009).
    Article  Google Scholar 

    43.
    Gong, M. G., Tang, M., Chen, H., Zhang, Q. & Feng, X. Effects of two Glomus species on the growth and physiological performance of Sophor davidii seedlings under water stress. New For. 44, 399–408 (2013).
    Article  Google Scholar 

    44.
    Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M. & Giller, K. E. Are the rate of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses. Soil Biol. Biochem. 41, 1233–1244 (2009).
    CAS  Article  Google Scholar 

    45.
    Hoagland, D. R. & Arnon, D. I. The water-culture method for growing plants without soil. Univ. Calif. Agric. Res. Stn. Circ. 347, 1–39 (1950).
    Google Scholar 

    46.
    Bradstreet, R. B. The kjeldahl method of organic nitrogen. Anal. Chem. 26, 185–187 (1965).
    Article  Google Scholar 

    47.
    Li, Z. G., Luo, Y. M. & Teng, Y. Research Methods of Soil and Environmental Microorganisms 64–83 (Science Press, 2008).
    Google Scholar 

    48.
    Mcgonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
    Article  Google Scholar 

    49.
    Xie, Z., Song, F., Xu, H., Shao, H. & Song, R. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. Sci. World J. 2014, 1–6 (2014).
    Google Scholar 

    50.
    Chen, X. L., Li, S. Q., Ren, X. L. & Li, S. X. Effect of atmospheric NH3 and hydroponic solution nitrogen levels on chlorophyll fluorescence of corn genotypes with different nitrogen use efficiencies. Acta Ecol. Sin. 28, 1026–1032 (2008).
    CAS  Google Scholar  More