Fungi and insects compensate for lost vertebrate seed predation in an experimentally defaunated tropical forest
1.
Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
ADS CAS PubMed PubMed Central Article Google Scholar
2.
Harrison, R. D. et al. Impacts of hunting on tropical forests in Southeast Asia. Conserv. Biol. 30, 972–981 (2016).
PubMed Article PubMed Central Google Scholar
3.
Brodie, J. F. & Aslan, C. E. Halting regime shifts in floristically intact tropical forests deprived of their frugivores. Restor. Ecol. 20, 153–157 (2012).
Article Google Scholar
4.
Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).
ADS PubMed PubMed Central Article CAS Google Scholar
5.
Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 1–7 (2019).
Article CAS Google Scholar
6.
Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
7.
Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl Acad. Sci. USA 113, 892–897 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
8.
Dantas de Paula, M. et al. Defaunation impacts on seed survival and its effect on the biomass of future tropical forests. Oikos 127, 1526–1538 (2018).
Article Google Scholar
9.
Chanthorn, W. et al. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9, 1–9 (2019).
CAS Article Google Scholar
10.
Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
PubMed PubMed Central Article Google Scholar
11.
Song, X., Lim, J. Y., Yang, J. & Luskin, M. S. When do Janzen–Connell effects matter? A phylogenetic meta‐analysis of conspecific negative distance and density dependence experiments. Ecol. Lett. https://doi.org/10.1111/ele.13665 (2020).
Article PubMed Google Scholar
12.
Muller-Landau, H. C. Predicting the long-term effects of hunting on plant species composition and diversity in tropical forests. Biotropica 39, 372–384 (2007).
Article Google Scholar
13.
Asquith, N. M., Wright, S. J. & Clauss, M. J. Does mammal community composition control recruitment in neotropical forests? Evidence from Panama. Ecology 78, 941–946 (1997).
Article Google Scholar
14.
DeMattia, E. A., Curran, L. M. & Rathcke, B. J. Effects of small rodents and large mammals on neotropical seeds. Ecology 85, 2161–2170 (2004).
Article Google Scholar
15.
Paine, C. E. T., Beck, H. & Terborgh, J. How mammalian predation contributes to tropical tree community structure. Ecology 97, 3326–3336 (2016).
PubMed Article Google Scholar
16.
Wirth, R., Meyer, S. T., Leal, I. R. & Tabarelli, M. Plant herbivore interactions at the forest edge. in Progress in Botany (eds. Lüttge, U., Beyschlag, W. & Murata, J.). 69, 423–448 (Springer, Berlin, Heidelberg, 2008).
17.
Paine, C. E. T. & Beck, H. Seed predation by Neotropical rain forest mammals increases diversity in seedling recruitment. Ecology 88, 3076–3087 (2007).
PubMed Article Google Scholar
18.
Jia, S. et al. Global signal of top-down control of terrestrial plant communities by herbivores. Proc. Natl Acad. Sci. USA 115, 6237–6242 (2018).
CAS PubMed Article Google Scholar
19.
Wright, S. J. & Duber, H. C. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyraceae, with implications for tropical tree diversity. Biotropica 33, 583–595 (2001).
Article Google Scholar
20.
Dracxler, C. M., Pires, A. S. & Fernandez, F. A. S. Invertebrate seed predators are not all the same: Seed predation by bruchine and scolytine beetles affects palm recruitment in different ways. Biotropica 43, 8–11 (2011).
Article Google Scholar
21.
Sarmiento, C. et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc. Natl Acad. Sci. 114, 11458–11463 (2017).
CAS PubMed Article Google Scholar
22.
Kluger, C. G. et al. Host generalists dominate fungal communities associated with seeds of four Neotropical pioneer species. J. Trop. Ecol. 24, 351–354 (2008).
Article Google Scholar
23.
Velho, N., Isvaran, K. & Datta, A. Rodent seed predation: effects on seed survival, recruitment, abundance, and dispersion of bird-dispersed tropical trees. Oecologia 169, 995–1004 (2012).
ADS PubMed Article Google Scholar
24.
Curran, L. M. & Webb, C. O. Experimental tests of the spatiotemporal scale of seed predation in mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 129–148 (2000).
Article Google Scholar
25.
Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).
Article Google Scholar
26.
Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn. Popul 298, 312 (1971).
Google Scholar
27.
Levi, T. et al. Tropical forests can maintain hyperdiversity because of enemies. PNAS 116, 581–586 (2019).
CAS PubMed Article Google Scholar
28.
Terborgh, J. Enemies maintain hyperdiverse tropical forests. Am. Nat. 179, 303–314 (2012).
PubMed Article Google Scholar
29.
Nathan, R. & Casagrandi, R. A simple mechanistic model of seed dispersal, predation and plant establishment: Janzen-Connell and beyond. J. Ecol. 92, 733–746 (2004).
Article Google Scholar
30.
Owen-Smith, R. N. Megaherbivores: The influence of very large body size on ecology. (Cambridge University Press, 1988).
31.
Kurten, E. L. Cascading effects of contemporaneous defaunation on tropical forest communities. Biol. Conserv. 163, 22–32 (2013).
Article Google Scholar
32.
Mendoza, E. & Dirzo, R. Seed-size variation determines interspecific differential predation by mammals in a Neotropical rain forest. Oikos 116, 1841–1852 (2007).
Article Google Scholar
33.
Wright, S. J. The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspect. Plant Ecol. Evol. Syst. 6, 73–86 (2003).
Article Google Scholar
34.
Casula, P., Wilby, A. & Thomas, M. B. Understanding biodiversity effects on prey in multi-enemy systems. Ecol. Lett. 9, 995–1004 (2006).
PubMed Article PubMed Central Google Scholar
35.
Wright, S. J. et al. Poachers alter mammal abundance, seed dispersal, and seed predation in a Neotropical forest. Conserv. Biol. 14, 227–239 (2000).
Article Google Scholar
36.
Beckman, N. G. & Muller-landau, H. C. Differential effects of hunting on pre-dispersal seed predation and primary and secondary seed removal of two Neotropical tree species. Biotropica 39, 328–339 (2007).
Article Google Scholar
37.
Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).
PubMed Article PubMed Central Google Scholar
38.
Galetti, M., Bovendorp, R. S. & Guevara, R. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Glob. Ecol. Conserv 3, 824–830 (2015).
Article Google Scholar
39.
Culot, L., Bello, C., Batista, J. L. F., do Couto, H. T. Z. & Galetti, M. Synergistic effects of seed disperser and predator loss on recruitment success and long-term consequences for carbon stocks in tropical rainforests. Sci. Rep. 7, 1–8 (2017).
CAS Article Google Scholar
40.
Rosin, C. & Poulsen, J. R. Hunting-induced defaunation drives increased seed predation and decreased seedling establishment of commercially important tree species in an Afrotropical forest. Ecol. Manag. 382, 206–213 (2016).
Article Google Scholar
41.
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
CAS PubMed Article Google Scholar
42.
Terborgh, J. Using Janzen-Connell to predict the consequences of defaunation and other disturbances of tropical forests. Biol. Conserv. 163, 7–12 (2013).
Article Google Scholar
43.
Brodie, J. F., Helmy, O. E., Brockelman, W. Y. & Maron, J. L. Bushmeat poaching reduces the seed dispersal and population growth rate of a mammal-dispersed tree. Ecol. Appl. 19, 854–863 (2009).
PubMed Article PubMed Central Google Scholar
44.
Dylewski, L., Ortega, Y. K., Bogdziewicz, M. & Pearson, D. E. Seed size predicts global effects of small mammal seed predation on plant recruitment. Ecol. Lett. 23, 1024–1033 (2020).
PubMed Article PubMed Central Google Scholar
45.
Bodmer, R. Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica 23, 255–261 (1991).
Article Google Scholar
46.
Galetti, M. et al. Defaunation affect population and diet of rodents in Neotropical rainforests. Biol. Conserv. 190, 2–7 (2015).
Article Google Scholar
47.
Dirzo, R., Mendoza, E. & Ortíz, P. Size-related differential seed predation in a heavily defaunated neotropical rain forest. Biotropica 39, 355–362 (2007).
Article Google Scholar
48.
Luskin, M. S. et al. Cross-boundary subsidy cascades from oil palm degrade distant tropical forests. Nat. Commun. 8, 1–8 (2017).
Article CAS Google Scholar
49.
Vázquez-Yanes, C. & Orozco-Segovia, A. Patterns of seed longevity and germination in the tropical rainforest. Annu. Rev. Ecol. Syst. 24, 69–87 (1993).
Article Google Scholar
50.
Hulme, P. E. Post-dispersal seed predation and seed bank persistence. Seed Sci. Res. 8, 513–519 (1998).
ADS Article Google Scholar
51.
Franco, M. & Silvertown, J. A comparative demography of plants based upon elasticities of vital rates. Ecology 85, 531–538 (2004).
Article Google Scholar
52.
Howe, H. F. & Miriti, M. N. When seed dispersal matters. Bioscience 54, 651–660 (2004).
Article Google Scholar
53.
Cannon, P. G., O’Brien, M. J., Yusah, K. M., Edwards, D. P. & Freckleton, R. P. Limited contributions of plant pathogens to density-dependent seedling mortality of mast fruiting Bornean trees. Ecol. Evol. 10, 13154–13164 (2020).
PubMed PubMed Central Article Google Scholar
54.
Lamperty, T., Zhu, K., Poulsen, J. R. & Dunham, A. E. Defaunation of large mammals alters understory vegetation and functional importance of invertebrates in an Afrotropical forest. Biol. Conserv. 241, 10829 (2020).
Article Google Scholar
55.
Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 1–7 (2015).
Article CAS Google Scholar
56.
Peguero, G., Muller-Landau, H. C., Jansen, P. A. & Wright, S. J. Cascading effects of defaunation on the coexistence of two specialized insect seed predators. J. Anim. Ecol. 86, 136–146 (2017).
PubMed Article Google Scholar
57.
Marsh, C. W. & Greer, A. G. Forest land-use in Sabah, Malaysia: an introduction to danum valley. Philos. Trans. R. Soc. B Biol. Sci. 335, 331–339 (1992).
ADS Article Google Scholar
58.
Dial, R., Bloodworth, B., Lee, A., Boyne, P. & Heys, J. The distribution of free space and its relation to canopy composition at six forest sites. Science 50, 312–325 (2004).
Google Scholar
59.
Sakai, S. General flowering in lowland mixed dipterocarp forests of South-east Asia. Biol. J. Linn. Soc. 75, 233–247 (2002).
Article Google Scholar
60.
Blate, G. M., Peart, D. R. & Leighton, M. Post-dispersal predation on isolated seeds: a comparative study of 40 tree species in a Southeast Asian rainforest. Oikos 82, 522–538 (1998).
Article Google Scholar
61.
Wong, S. T. E., Servheen, C., Ambu, L. & Norhayati, A. Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. J. Trop. Ecol. 21, 627–639 (2005).
Article Google Scholar
62.
Curran, L. M. & Leighton, M. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 101–128 (2000).
Article Google Scholar
63.
Corlett, R. T. Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: an update. Glob. Ecol. Conserv. 11, 1–22 (2017).
Article Google Scholar
64.
Fern, K. Tropical Plants Database. (2014). Available at: tropical.theferns.info. (Accessed: 4th June 2020)
65.
O’Brien, M. J., Philipson, C. D., Tay, J. & Hector, A. The influence of variable rainfall frequency on germination and early growth of shade-tolerant dipterocarp seedlings in Borneo. PLoS ONE 8, e70287 (2013).
ADS PubMed PubMed Central Article CAS Google Scholar
66.
Colon, C. P. & Campos-Arceiz, A. The impact of gut passage by binturongs (Arctictus binturong) on seed germination. Raffles Bull. Zool. 61, 417–421 (2013).
Google Scholar
67.
Sowa, S., Roos, E. E. & Zee, F. Anesthetic storage of recalcitrant seed: nitrous oxide prolongs longevity of lychee and longan. HortScience 26, 597–599 (1991).
CAS Article Google Scholar
68.
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
69.
R Core Team. R: A language and environment for statistical computing. (2018).
70.
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).
MathSciNet MATH Article Google Scholar More