More stories

  • in

    No projected global drylands expansion under greenhouse warming

    1.
    D’Odorico, P. & Porporato, A. Dryland Ecohydrology (Springer, 2019).
    2.
    Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).
    Article  Google Scholar 

    3.
    Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).
    CAS  Article  Google Scholar 

    4.
    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
    Article  CAS  Google Scholar 

    5.
    Middleton, N. & Thomas, D. S. G. World Atlas of Desertification 2nd edn (Wiley, 1997).

    6.
    Budyko, M. I. & Miller, D. H. International Geophysics Series: Climate and Life Vol. 18 (Academic Press, 1974).

    7.
    Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).
    CAS  Article  Google Scholar 

    8.
    Fu, Q. & Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).
    Article  Google Scholar 

    9.
    Scheff, J. & Frierson, D. M. W. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Clim. 28, 5583–5600 (2015).
    Article  Google Scholar 

    10.
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
    Google Scholar 

    11.
    Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Change 7, 417–422 (2017).
    Article  Google Scholar 

    12.
    Park, C.-E. et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).
    Article  Google Scholar 

    13.
    Koutroulis, A. G. Dryland changes under different levels of global warming. Sci. Total Environ. 655, 482–511 (2019).
    CAS  Article  Google Scholar 

    14.
    Park, C. E. et al. Inequal responses of drylands to radiative forcing geoengineering methods. Geophys. Res. Lett. 46, 14011–14020 (2019).
    Article  Google Scholar 

    15.
    Wei, Y. et al. Drylands climate response to transient and stabilized 2 °C and 1.5 °C global warming targets. Clim. Dyn. 53, 2375–2389 (2019).
    Article  Google Scholar 

    16.
    Yao, J. et al. Accelerated dryland expansion regulates future variability in dryland gross primary production. Nat. Commun. 11, 1665 (2020).
    CAS  Article  Google Scholar 

    17.
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
    CAS  Article  Google Scholar 

    18.
    Rajaud, A. & de Noblet-Ducoudré, N. Tropical semi-arid regions expanding over temperate latitudes under climate change. Climatic Change 144, 703–719 (2017).
    Article  Google Scholar 

    19.
    Yang, Y. et al. Disconnection between trends of atmospheric drying and continental runoff. Water Resour. Res. 54, 4700–4713 (2018).
    Article  Google Scholar 

    20.
    Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).
    CAS  Article  Google Scholar 

    21.
    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).
    Article  Google Scholar 

    22.
    Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).
    Article  CAS  Google Scholar 

    23.
    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).
    Article  Google Scholar 

    24.
    Berg, A. & Sheffield, J. Soil moisture–evapotranspiration coupling in CMIP5 models: relationship with simulated climate and projections. J. Clim. 31, 4865–4878 (2018).
    Article  Google Scholar 

    25.
    Mahowald, N. et al. Projections of leaf area index in Earth system models. Earth Syst. Dyn. 7, 211–229 (2016).
    Article  Google Scholar 

    26.
    Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).
    CAS  Article  Google Scholar 

    27.
    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).
    Article  Google Scholar 

    28.
    Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).
    Article  Google Scholar 

    29.
    Lavergne, A. et al. Observed and modelled historical trends in the water‐use efficiency of plants and ecosystems. Glob. Change Biol. 25, 2242–2257 (2019).
    Article  Google Scholar 

    30.
    Friedlingstein, P. Carbon cycle feedbacks and future climate change. Phil. Trans. R. Soc. A 373, 20140421 (2015).
    Article  CAS  Google Scholar 

    31.
    Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
    CAS  Article  Google Scholar 

    32.
    Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).
    CAS  Article  Google Scholar 

    33.
    Berg, A. & Sheffield, J. Evapotranspiration partitioning in CMIP5 models: uncertainties and future projections. J. Clim. 32, 2653–2671 (2019).
    Article  Google Scholar 

    34.
    Cao, L., Bala, G., Caldeira, K., Nemani, R. & Ban-Weiss, G. Importance of carbon dioxide physiological forcing to future climate change. Proc. Natl Acad. Sci. USA 107, 9513–9518 (2010).
    CAS  Article  Google Scholar 

    35.
    Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).
    Article  CAS  Google Scholar 

    36.
    Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).
    Article  Google Scholar 

    37.
    Frieler, K. et al. Assessing the impacts of 1.5 °C global warming—simulation protocol of the Inter-sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).
    Article  Google Scholar 

    38.
    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
    CAS  Article  Google Scholar 

    39.
    He, B., Wang, S., Guo, L. & Wu, X. Aridity change and its correlation with greening over drylands. Agric. For. Meteorol. 278, 107663 (2019).
    Article  Google Scholar 

    40.
    Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 0081 (2017).
    Article  Google Scholar 

    41.
    Burrell, A. L., Evans, J. P. & De Kauwe, M. G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).
    CAS  Article  Google Scholar 

    42.
    Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).
    Article  Google Scholar 

    43.
    Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).
    CAS  Article  Google Scholar 

    44.
    Liu, Y. et al. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nat. Geosci. 12, 809–814 (2019).
    CAS  Article  Google Scholar 

    45.
    Zeng, Z. et al. Responses of land evapotranspiration to Earth’s greening in CMIP5 Earth System Models. Environ. Res. Lett. 11, 104006 (2016).
    Article  Google Scholar 

    46.
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).
    Article  Google Scholar 

    47.
    Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).
    CAS  Article  Google Scholar 

    48.
    Scheff, J., Seager, R., Liu, H. & Coats, S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).
    Article  Google Scholar 

    49.
    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).
    CAS  Article  Google Scholar 

    50.
    Berg, A. & Sheffield, J. Historic and projected changes in coupling between soil moisture and evapotranspiration (ET) confounded by the role of different ET components. J. Geophys. Res. Atmos. 124, 5791–5806 (2019).
    Google Scholar 

    51.
    Berg, A. & McColl, K. R code for ‘No global drylands expansion under greenhouse warming’. Zenodo https://doi.org/10.5281/zenodo.4490414 (2021). More

  • in

    Seeding the idea of encapsulating a representative synthetic metagenome in a single yeast cell

    1.
    Dixon, T. & Pretorius, I. S. Drawing on the past to shape the future of synthetic yeast research. Int. J. Mol. Sci. 21, 7156 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 
    2.
    Dixon, T., Curach, N. & Pretorius, I. S. Bio-informational futures: the convergence of artificial intelligence and synthetic biology. EMBO Rep. 21, e50036 (2020a). 1–5.
    CAS  Article  Google Scholar 

    3.
    Dixon, T., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Layeghifard, M., Hwang, D. W. & Guttman, D. S. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 25, 217–228 (2017).
    CAS  PubMed  Article  Google Scholar 

    5.
    Pretorius, I. S. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. 20, foz084 (2020).
    CAS  PubMed  Article  Google Scholar 

    6.
    Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Pretorius, I. S. & Boeke, J. D. Yeast 2.0 − Connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Res. 18, foy032 (2018).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    8.
    Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Muller, E. E. L. et al. Using metabolic networks to resolve ecological properties of microbiomes. Curr. Opin. Syst. Biol. 8, 73–80 (2018).
    Article  Google Scholar 

    10.
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).
    CAS  Article  Google Scholar 

    11.
    Roume, H. et al. Comparative integrated omics: identification of key functionalities in microbial community-wide metabolic networks. npj Biofilms Microbiomes 1, 15007 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    McCarty, N. S. & Ledesma-Amaro, R. Synthetic Biology tools to engineer microbial communities for Biotechnology. Trends Biotechnol. 37, 181–197 (2018).
    PubMed  Article  CAS  Google Scholar 

    14.
    Peris, D. et al. Synthetic hybrids of six yeast species. Nat. Commun. 11, 2085 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Yi, X. & Dean, A. M. Adaptive landscapes in the age of synthetic biology. Mol. Biol. Evol. 36, 890–907 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Goel, A., Wortel, M. T., Molenaar, D. & Teusink, B. Metabolic shifts: a fitness perspective for microbial cell factories. Biotechnol. Lett. 34, 2147–2160 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    De Vrieze, J. & Verstraete, W. Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. Environ. Microbiol. 18, 2797–2809 (2016).
    PubMed  Article  CAS  Google Scholar 

    18.
    Wolfe, B. E. & Dutton, R. J. Fermented foods as experimentally tractable microbial ecosystems. Cell 161, 49–55 (2015).
    CAS  PubMed  Article  Google Scholar 

    19.
    Lurgi, M., Thomas, T., Wemheuer, B., Webster, N. S. & Montoya, J. M. Modularity and predicted functions of the global sponge-microbiome network. Nat. Commun. 10, 992 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Cao, H., Gibson, T., Bashan, A. & Liu, Y. Inferring human microbial dynamics from temporal metagenomics data: Pitfalls and lessons. BioEssays 39, 1600188 (2016).
    Article  Google Scholar 

    21.
    Liu, Z. et al. Network analyses in microbiome based on high-throughput multi-omics data. Brief. Bioinform. 00, 1–17 (2020).
    Google Scholar 

    22.
    Danczak, R. E. et al. Using metacommunity ecology to understand environmental metabolomes. Nat. Commun. 11, 6369 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Dini-Andreote, F. et al. Dynamics of bacterial community succession in a saltmarsh chronosequence: evidences for temporal niche partitioning. ISME J. 8, 1989–2001 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Heintz-Buschart, A. et al. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat. Microbiol. 2, 16180 (2016).
    CAS  PubMed  Article  Google Scholar 

    25.
    Toju, H. et al. Scoring species for synthetic community design: Network analyses of functional core microbiomes. Front. Microbiol. 11, 1361 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Medlock, G. L. et al. Inferring metabolic mechanisms of interaction within a defined gut microbiota. Cell Syst. 7, 245–257 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Gibson, D. G. Programming biological operating systems: genome design, assembly and activation. Nat. Meth 11, 521–526 (2014).
    CAS  Article  Google Scholar 

    28.
    Hillson, N. et al. Building a global alliance of biofoundries. Nat. Commun. 10, 2040 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).
    CAS  PubMed  Article  Google Scholar 

    30.
    Coradini, A. L. V., Hull, C. B. & Ehrenreich, I. M. Building genomes to understand biology. Nat. Commun. 11, 6177 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Bartley, B. A. et al. Organizing genome engineering for the gigabase scale. Nat. Commun. 11, 689 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Lau, Y. H. et al. Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Res. 45, 6971–6980 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Kouprina, N. & Larionov, V. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 125, 621–632 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Benders, G. A. et al. Cloning whole bacterial genomes in yeast. Nucleic Acids Res. 38, 2558–2569 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Mortimer, R. K. Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiat. Res. 9, 312–326 (1958).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Shao, Y. et al. Creating a functional single-chromosome yeast. Nature 560, 331–335 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Hossain, A. et al. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat. Biotechnol. 38, 1466–1475 (2020).
    PubMed  Article  CAS  Google Scholar 

    38.
    Decoene, T., Peters, G., De Maeseneire, S. L. & De Mey, M. Toward predictable 5′UTRs in Saccharomyces cerevisiae: Development of a yUTR calculator. ACS Synth. Biol. 7, 622–634 (2018).
    CAS  PubMed  Article  Google Scholar 

    39.
    Weenink, T., van der Hilst, J., McKiernan, R. M. & Ellis, T. Design of RNA hairpin modules that predictably tune translation in yeast. Synth. Biol. 3, ysy019 (2018).
    CAS  Article  Google Scholar 

    40.
    Kotopka, B. J. & Smolke, C. D. Model-driven generation of artificial yeast promoters. Nat. Commun. 11, 2113 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Curran, K. A. et al. Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth. Biol. 4, 824–832 (2015).
    CAS  PubMed  Article  Google Scholar 

    42.
    MacPherson, M. & Saka, Y. Short synthetic terminators for assembly of transcription units in vitro and stable chromosomal integration in yeast S. cerevisiae. ACS Synth. Biol. 6, 130–138 (2017).
    CAS  PubMed  Article  Google Scholar 

    43.
    Morse, N. J., Gopal, M. R., Wagner, J. M. & Alper, H. S. Yeast terminator function can be modulated and designed on the basis of predictions of nucleosome occupancy. ACS Synth. Biol. 6, 2086–2095 (2017).
    CAS  PubMed  Article  Google Scholar 

    44.
    Gräslund, S. et al. Structural Genomics Consortium: Protein production and purification. Nat. Methods 5, 135–146 (2008).
    PubMed  Article  Google Scholar 

    45.
    Lin, Y., Zou, X., Zheng, Y., Cai, Y. & Dai, J. Improving chromosome synthesis with a semiquantitative phenotypic assay and refined assembly strategy. ACS Synth. Biol. 8, 2203–2211 (2019).
    CAS  PubMed  Article  Google Scholar 

    46.
    Mitchell, L. A. et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 355, eaaf4831 (2017).
    PubMed  Article  CAS  Google Scholar 

    47.
    Wu, Y. et al. Bug mapping and fitness testing of chemically synthesized chromosome X. Science 355, eaaf4706 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Salinas, F. et al. Fungal light-oxygen-voltage domains for optogenetic control of gene expression and flocculation in yeast. mBio 9, e00626–18 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Shen, Y. et al. SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res. 26, 36–49 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Jin, J., Jia, B. & Yuan, Y. J. Yeast chromosomal engineering to improve industrially-relevant phenotypes. Curr. Opin. Biotechnol. 66, 165–170 (2020).
    CAS  PubMed  Article  Google Scholar 

    51.
    Dymond, J. & Boeke, J. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng. Bugs 3, 168–171 (2012).
    PubMed  PubMed Central  Google Scholar 

    52.
    Lee, D., Lloyd, N. D. R., Pretorius, I. S. & Borneman, A. R. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Micro. Cell Fact. 15, 49 (2016).
    Article  CAS  Google Scholar 

    53.
    Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Synthetic evolution of metabolic productivity using biosensors. Trends Biotechnol. 34, 371–381 (2016).
    CAS  PubMed  Article  Google Scholar 

    54.
    Williams, T. C., Xu, X., Ostrowski, M., Pretorius, I. S. & Paulsen, I. T. Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast. Synth. Biol. 2, ysw002 (2017).
    CAS  Article  Google Scholar 

    55.
    Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Belda, I. et al. Unraveling the enzymatic basis of wine ‘flavorome’: a phylo-functional study of wine related yeast species. Front. Microbiol. 7, 1–13 (2016).
    Article  Google Scholar 

    57.
    Belda, I. et al. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 22, 1–29 (2017).
    Article  CAS  Google Scholar 

    58.
    Bokulich, N. A. et al. Associations among wine grape microbiome, metabolome, and fermentation behaviour suggest contribution to regional wine characteristics. mBio 7, 1–12 (2016).
    Article  Google Scholar 

    59.
    Liu, D., Chen, Q., Zhang, P., Chen, D. & Howell, K. S. The fungal microbiome is an important component of vineyard ecosystems and correlates with regional distinctiveness of wine. mSphere 5, e00534–20 (2020).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment

    1.
    Estrada, B., Aroca, R., Maathuis, F. J., Barea, J. M. & Ruiz-Lozano, J. M. Arbuscular mycorrhizal fungi native from a mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 36, 1771–1782 (2013).
    CAS  PubMed  Article  Google Scholar 
    2.
    Uva, R. H. & Whitlow, T. H. Beach plum (Prunus maritima Marsh.): Small farm sustainability through crop diversification and value added products. HortScience 38, 793 (2003).
    Google Scholar 

    3.
    Yan, D. L., Wang, G., Fang, K., Zai, X. M. & Qin, P. Introduction, cultivation and utilization of salt-tolerance beach plum. China For. Sci. Technol. 20, 67–69 (2006).
    Google Scholar 

    4.
    Zhang, H. S., Wu, X. H. & Li, G. Interactions between arbuscular mycorrhizal fungi and phosphate solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol. Fert. Soils 47, 543–554 (2011).
    CAS  Article  Google Scholar 

    5.
    Ait-El-Mokhtar, M. et al. Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Front. Sustain. Food Syst. 4, 131 (2020).
    Article  Google Scholar 

    6.
    Porcel, R., Redondo-Gómez, S. & Mateos-Naranjo, E. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J. Plant Physiol. 185, 75–83 (2015).
    CAS  PubMed  Article  Google Scholar 

    7.
    Sheng, M., Tang, M. & Chen, H. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18, 287–296 (2008).
    CAS  PubMed  Article  Google Scholar 

    8.
    Harbinson, J. Improving the accuracy of chlorophyll fluorescence measurements. Plant Cell Environ. 36, 1751–1754 (2013).
    PubMed  Article  Google Scholar 

    9.
    Zhu, X. C., Song, F. B., Liu, S. Q. & Liu, T. D. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ. 58, 186–191 (2012).
    CAS  Article  Google Scholar 

    10.
    Wang, F., Sun, Y. & Shi, Z. Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. Microorganisms 7, 289 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    11.
    Qiu, Y. J. et al. Mediation of arbuscular mycorrhizal fungi on growth and biochemical parameters of Ligustrum vicaryi in response to salinity. Physiol. Mol. Plant Pathol. 112, 101522 (2020).
    CAS  Article  Google Scholar 

    12.
    Zhang, H. S., Qin, P. & Zhang, W. M. Effects of inoculation of arbuscular mycorrhizal fungus and Apophysomyces spartina on P-uptake of castor oil plant (Ricinus communis L.) and rhizosphere soil enzyme activities under salt stress. Agri. Sci. Technol. 15, 659 (2014).
    CAS  Google Scholar 

    13.
    Ghorchiani, M., Etesami, H. & Alikhani, H. A. Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric. Ecosyst. Environ. 258, 59–70 (2018).
    CAS  Article  Google Scholar 

    14.
    Augé, R. M., Toler, H. D., Sams, C. E. & Nasim, G. Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18, 115–121 (2008).
    PubMed  Article  Google Scholar 

    15.
    Sharma, S., Compant, S., Ballhausen, M. B., Ruppel, S. & Franken, P. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum. Microbiol. Res. 240, 126556 (2020).
    CAS  PubMed  Article  Google Scholar 

    16.
    Vassilev, N., Eichler-Löbermann, B. & Vassileva, M. Stress-tolerant P-solubilizing microorganisms. Appl. Microbiol. Biot. 95, 851–859 (2012).
    CAS  Article  Google Scholar 

    17.
    Ait-El-Mokhtar, M. et al. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci. Hort. 253, 429–438 (2019).
    Article  Google Scholar 

    18.
    Zai, X. M., Zhu, S. N., Qin, P., Che, L. & Luo, F. X. Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica 50, 323–328 (2012).
    CAS  Article  Google Scholar 

    19.
    Navarro, J. M., Pérez-Tornero, O. & Morte, A. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J. Plant Physiol. 171, 76–85 (2014).
    CAS  PubMed  Article  Google Scholar 

    20.
    Toro, M., Azcon, R. & Herrera, R. Effects on yield and nutrition of mycorrhizal and nodulated Pueraria phaseolides exerted by P-solubilizing rhizobacteria. Biol. Fertil. Soils 21, 23–29 (1996).
    Article  Google Scholar 

    21.
    Singh, S. & Kapoor, K. K. Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol. Fertil. Soils 28, 139–144 (1999).
    CAS  Article  Google Scholar 

    22.
    Osorio, N. W. & Habte, M. Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res. Manag. 15, 263–274 (2001).
    CAS  Article  Google Scholar 

    23.
    Khan, M. S., Zaidi, A. & Wani, P. A. Role of phosphate-solubilizing microorganisms in sustainable agriculture—A review. Agron. Sustain Dev. 27, 29–43 (2007).
    Article  Google Scholar 

    24.
    Saxena, J., Saini, A., Ravi, I., Chandra, S. & Garg, V. Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J. Crop Improv. 29, 353–369 (2015).
    CAS  Article  Google Scholar 

    25.
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008).
    Google Scholar 

    26.
    Ben-Laouane, R., Baslam, M., Ait-El-Mokhtar, M., Anli, M. & Meddich, A. Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms 8, 1695 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    27.
    Hodge, A., Campbell, C. D. & Fitter, A. H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413, 297–299 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Johansen, A., Finlay, R. D. & Olsson, P. A. Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133, 705–712 (1996).
    CAS  Article  Google Scholar 

    29.
    Vicente-Sánchez, J. et al. Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza 24, 339–348 (2014).
    PubMed  Article  CAS  Google Scholar 

    30.
    Abdel-Fattah, G. M. & Asrar, A. W. A. Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiol. Plant. 34, 267–277 (2012).
    CAS  Article  Google Scholar 

    31.
    Marschner, P. Rhizosphere biology. In Marschner’s Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 369–388 (Academic Press, 2012).
    Google Scholar 

    32.
    Abd-Allah, E. F. & Egamberdieva, D. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak. J. Bot. 48, 37–45 (2016).
    Google Scholar 

    33.
    Van den Driessche, R. Effects of nutrients on stock performance in the forest. In Mineral Nutrition of Conifer Seedlings (ed. van den Driessche, R.) 229–260 (CRC Press, 1991).
    Google Scholar 

    34.
    Ebel, R. C., Duan, X., Still, D. W. & Augé, R. M. Xylem sap abscisic acid concentration and stomatal conductance of mycorrhizal Vigna unguiculata in drying soil. New Phytol. 135, 755–761 (1997).
    CAS  Article  Google Scholar 

    35.
    Ruiz-Lozano, J. M. & Aroca, R. Host response to osmotic stresses: Stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants. In Arbuscular Mycorrhizas: Physiology and Function 239–256 (Springer, 2010).
    Google Scholar 

    36.
    Birhane, E., Sterck, F. J., Fetene, M., Bongers, F. & Kuyper, T. W. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169, 895–904 (2012).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Evelin, H., Giri, B. & Kapoor, R. Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonellafoenum graecum. Mycorrhiza 23, 71–86 (2012).
    PubMed  Article  CAS  Google Scholar 

    38.
    Aroca, R. et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170, 47–55 (2013).
    CAS  PubMed  Article  Google Scholar 

    39.
    Jungklang, J. Physiological and biochemical mechanisms of salt tolerance in Sesbania rostrata Berm and Obem. PhD Thesis (Agric Univ Teckuba, 2005).

    40.
    Baker, N. R. & Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: Examination of future possibilities. J. Exp. Bot. 55, 1607–1621 (2004).
    CAS  PubMed  Article  Google Scholar 

    41.
    Nwugo, C. C. & Huerta, A. J. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311, 73–86 (2008).
    CAS  Article  Google Scholar 

    42.
    Henriques, F. S. Leaf chlorophyll fluorescence: Background and fundamentals for plant biologist. Bot. Rev. 75, 249–270 (2009).
    Article  Google Scholar 

    43.
    Gong, M. G., Tang, M., Chen, H., Zhang, Q. & Feng, X. Effects of two Glomus species on the growth and physiological performance of Sophor davidii seedlings under water stress. New For. 44, 399–408 (2013).
    Article  Google Scholar 

    44.
    Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M. & Giller, K. E. Are the rate of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses. Soil Biol. Biochem. 41, 1233–1244 (2009).
    CAS  Article  Google Scholar 

    45.
    Hoagland, D. R. & Arnon, D. I. The water-culture method for growing plants without soil. Univ. Calif. Agric. Res. Stn. Circ. 347, 1–39 (1950).
    Google Scholar 

    46.
    Bradstreet, R. B. The kjeldahl method of organic nitrogen. Anal. Chem. 26, 185–187 (1965).
    Article  Google Scholar 

    47.
    Li, Z. G., Luo, Y. M. & Teng, Y. Research Methods of Soil and Environmental Microorganisms 64–83 (Science Press, 2008).
    Google Scholar 

    48.
    Mcgonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
    Article  Google Scholar 

    49.
    Xie, Z., Song, F., Xu, H., Shao, H. & Song, R. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. Sci. World J. 2014, 1–6 (2014).
    Google Scholar 

    50.
    Chen, X. L., Li, S. Q., Ren, X. L. & Li, S. X. Effect of atmospheric NH3 and hydroponic solution nitrogen levels on chlorophyll fluorescence of corn genotypes with different nitrogen use efficiencies. Acta Ecol. Sin. 28, 1026–1032 (2008).
    CAS  Google Scholar  More

  • in

    An ecological network approach to predict ecosystem service vulnerability to species losses

    1.
    Millennium Ecosystem Assessment (Program). Ecosystems and human well-being: our human planet: summary for decision-makers. The Millennium Ecosystem Assessment series. https://doi.org/10.1196/annals.1439.003 (2005).
    2.
    Mulder, C. et al. 10 Years later: revisiting priorities for science and society a decade after the millennium ecosystem assessment. Adv. Ecol. Res. 53, 1–53 (2015).

    3.
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270 (2018).

    4.
    Díaz, S. et al. The IPBES Conceptual Framework—connecting nature and people. Curr. Opin. Environ. Sustainab. 14, 1–16 (2015).

    5.
    Hungate, B. A. et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64, 49–57 (2014).
    Article  Google Scholar 

    6.
    Díaz, S., Fargione, J., Chapin, F. S. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).
    PubMed  Article  Google Scholar 

    8.
    Harvey, E., Gounand, I., Ward, C. L. & Altermatt, F. Bridging ecology and conservation: from ecological networks to ecosystem function. J. Appl. Ecol. 54, 371–379 (2017).
    Article  Google Scholar 

    9.
    Jacob, U. et al. Valuing biodiversity and ecosystem services in a complex marine ecosystem. (eds Belgrano, A., Woodward, G. & Jacob U.) in Aquatic Functional Biodiversity. 189–207 (Academic Press, 2015).

    10.
    Dee, L. E. et al. Operationalizing network theory for ecosystem service assessments. Trends Ecol. Evol. 32, 118–130 (2017).
    PubMed  Article  Google Scholar 

    11.
    Bohan, D. et al. Networking our way to better ecosystem service provision. Trends Ecol. Evol. 31, 105–115 (2016).
    Article  Google Scholar 

    12.
    Dunne, A. J. et al. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Article  Google Scholar 

    13.
    Binzer, A. et al. The susceptibility of species to extinctions in model communities. Basic Appl. Ecol. 12, 590–599 (2011).
    Article  Google Scholar 

    14.
    Eklöf, A., Tang, S. & Allesina, S. Secondary extinctions in food webs: a Bayesian network approach. Methods Ecol. Evol. 4, 760–770 (2013).
    Article  Google Scholar 

    15.
    Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1711–1723 (2009).
    Article  Google Scholar 

    16.
    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Dobson, A. Food-web structure and ecosystem services: insights from the Serengeti. Philos. Trans. R. Soc. B Biol. Sci. 364, 1665–1682 (2009).
    Article  Google Scholar 

    18.
    Estrada, E. Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution. J. Theor. Biol. 244, 296–307 (2007).
    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

    19.
    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).

    20.
    Curtsdotter, A. et al. Robustness to secondary extinctions: comparing trait-based sequential deletions in static and dynamic food webs. Basic Appl. Ecol. 12, 571–580 (2011).
    Article  Google Scholar 

    21.
    Srinivasan, U. T., Dunne, J. A., Harte, J. & Martinez, N. D. Response of complex food webs to realistic extinction sequences. Ecology 88, 671–682 (2007).

    22.
    Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).

    23.
    Dee, L. E., De Lara, M., Costello, C. & Gaines, S. D. To what extent can ecosystem services motivate protecting biodiversity? Ecol. Lett. 20, 935–946 (2017).
    PubMed  Article  Google Scholar 

    24.
    Dunne, J., Williams Richard, J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Article  Google Scholar 

    25.
    Allesina, S., Bodini, A. & Pascual, M. Functional links and robustness in food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1701–1709 (2009).
    Article  Google Scholar 

    26.
    Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).
    PubMed  Article  Google Scholar 

    27.
    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).
    PubMed  Article  Google Scholar 

    28.
    Allesina, S. et al. The robustness and restoration of a network of ecological networks. Science 5, 1–8 (2013).
    Google Scholar 

    29.
    Bane, M. S., Pocock, M. J. O. & James, R. Effects of model choice, network structure, and interaction strengths on knockout extinction models of ecological robustness. Ecol. Evol. 8, 10794–10804 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and robustness of marine food webs. Mar. Ecol. Prog. Ser. 273, 291–302 (2004).
    ADS  Article  Google Scholar 

    31.
    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).
    PubMed  Article  Google Scholar 

    32.
    Thellmann, K. et al. Tipping points in the supply of ecosystem services of a mountainous watershed in Southeast Asia. Sustain 10, 1–15 (2018).
    Article  Google Scholar 

    33.
    Cardinale, B. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–68 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    Eklöf, A. & Ebenman, B. Species loss and secondary extinctions in simple and complex model communities. J. Anim. Ecol. 75, 239–246 (2006).
    PubMed  Article  Google Scholar 

    35.
    Vieira, M. C. & Almeida-Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).
    PubMed  Article  Google Scholar 

    36.
    Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. & Konar, B. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10, 409–415 (2012).
    Article  Google Scholar 

    37.
    Estes, J. A. et al. Trophic downgrading of planet earth. Science https://doi.org/10.1126/science.1205106 (2011).

    38.
    He, Q. & Silliman, B. R. Consumer control as a common driver of coastal vegetation worldwide. Ecol. Monogr. 86, 278–294 (2016).

    39.
    Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Brose, U. Complex food webs prevent competitive exclusion among producer species. Proc. R. Soc. B Biol. Sci. 275, 2507–2514 (2008).

    41.
    Rudolf, V. H. W. & Lafferty, K. D. Stage structure alters how complexity affects stability of ecological networks. Ecol. Lett. 14, 75–79 (2011).
    CAS  PubMed  Article  Google Scholar 

    42.
    De Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).
    PubMed  Article  Google Scholar 

    43.
    Perry, G. L. W., Moloney, K. A. & Etherington, T. R. Using network connectivity to prioritise sites for the control of invasive species. J. Appl. Ecol. 54, 1238–1250 (2017).
    Article  Google Scholar 

    44.
    Gross, K. & Cardinale, B. J. The functional consequences of random vs. ordered species extinctions. Ecol. Lett. 8, 409–418 (2005).
    Article  Google Scholar 

    45.
    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    46.
    Gaston, K. J. et al. Population abundance and ecosystem service provision: the case of birds. Bioscience 68, 264–272 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Davies, T. W. et al. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes. PLoS ONE 6, e28362 (2011).

    48.
    Balvanera, P., Kremen, C. & Martínez-Ramos, M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Appl. 15, 360–375 (2005).

    49.
    Xiao, H. et al. Win-wins for biodiversity and ecosystem service conservation depend on the trophic levels of the species providing services. J. Appl. Ecol. 55, 2160–2170 (2018).
    Article  Google Scholar 

    50.
    Dobson, A., Allesina, S., Lafferty, K. & Pascual, M. The assembly, collapse and restoration of food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1803–1806 (2009).
    Article  Google Scholar 

    51.
    McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 1–8 (2016).
    Article  CAS  Google Scholar 

    52.
    Hechinger, R. F. et al. Food webs including parasites, biomass, body sizes, and life stages for three California/Baja California estuaries. Ecology 92, 791 (2011).
    Article  Google Scholar 

    53.
    California Department of Fish and Wildlife. 2018-2019 California Saltwater Sport Fishing Regulations. p. 12–14 (2018).

    54.
    eBird. eBird: an online database of bird distribution and abundance. https://ebird.org. (2012).

    55.
    Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. xx, 1–13 (2019).
    Google Scholar 

    56.
    Strimas-Mackey, M., Miller, E. & Hochachka, W. Cornell Lab of Ornithology. eBird Data Extraction and Processing in R [R package auk version 0.3.2]. (Comprehensive R Archive Network (CRAN), 2019).

    57.
    Secretaria de Medio Ambiente Y Recursos Naturales. Secretaria de Medio Ambiente Y Recursos Naturales. Subsecretaria de gestion para la proteccion ambiental. (2018).

    58.
    Kones, J. K., Soetaert, K., van Oevelen, D. & Owino, J. O. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol. Modell. 220, 370–382 (2009).

    59.
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 426 (2006).
    Google Scholar 

    60.
    Booth, J. E., Gaston, K. J., Evans, K. L. & Armsworth, P. R. The value of species rarity in biodiversity recreation: a birdwatching example. Biol. Conserv. 144, 2728–2732 (2011).
    Article  Google Scholar 

    61.
    Wang, H., Zhewei, W., Junhao, G., Wang, S. & Huang, Z. Personalized PageRank to a Target Node (Cornell University, 2020).

    62.
    Bryan, K. & Leise, T. The linear algebra behind Google. SIAM Rev. 3, 13 (2009).
    MATH  Google Scholar 

    63.
    Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).

    64.
    Rabinwitz, D. Seven forms of rarity. (ed Sygne, H.) in The Biological Aspects of Rare Plant Conservation. 205–217 (John Wiley & Sons Ltd., 1981).

    65.
    Pimm, S. L., Jones, H. L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).
    Article  Google Scholar 

    66.
    Lyons, K. G., Brigham, C. A., Traut, B. H. & Schwartz, M. W. Rare species and ecosystem functioning. Conserv. Biol. 19, 1019–1024 (2005).
    Article  Google Scholar 

    67.
    Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

    68.
    Jacob, U. et al. The role of body size in complex food webs. A cold case. Adv. Ecol. Res. 45, 181–223 (2011).

    69.
    Lafferty, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Burrow emergence rhythms of Nephrops norvegicus by UWTV and surveying biases

    1.
    ICES. Final report of the Working Group on Nephrops Surveys (WGNEPS), 2–3 November 2017. (2017).
    2.
    EU. Council Regulation (EU) 2019/124 of 30 January 2019 fixing for 2019 the fishing opportunities for certain fish stocks and groups of fish stocks, applicable in Union waters and, for Union fishing vessels, in certain non-Union waters. L29, 1–166 (2019).

    3.
    EUROSTAT. The collection and compilation of fish catch and landing statistics in member coutries of the European economic area. (2020).

    4.
    Aguzzi, J., Bozzano, A. & Sardà, F. First observations on Nephrops norvegicus (L.) burrow densites on the continental shelf off the Catalan coast (western Mediterranean). Crustaceana 77, 299–310 (2004).
    Article  Google Scholar 

    5.
    Maynou, F. X., Sardà, F. & Conan, G. Y. Assessment of the spatial structure and biomass evaluation of Nephrops norvegicus (L.) populations in the northwestern Mediterranean by geostatistics. ICES J. Mar. Sci. 55, 102–120 (1998).

    6.
    Sala, A. Influence of tow duration on catch performance of trawl survey in the Mediterranean Sea. PLoS ONE 13, (2018).

    7.
    Farmer, A. S. D. Synopsis of the biological data on the Norway lobster Nephrops norvegicus (Linnaeus, 1758). FAO Fish. Synopsis 112, 1–97 (1975).
    Google Scholar 

    8.
    Atkinson, R. J. A. & Eastman, L. B. Burrow dwelling in Crustacea. Nat. Hist. Crustac. 2, 78–117 (2015).
    Google Scholar 

    9.
    Sbragaglia, V. et al. Fighting over burrows: the emergence of dominance hierarchies in the Norway lobster (Nephrops norvegicus ). J. Exp. Biol. 220, 4624–4633 (2017).
    Article  Google Scholar 

    10.
    Aguzzi, J. & Sardà, F. A history of recent advancements on Nephrops norvegicus behavioral and physiological rhythms. Rev. Fish Biol. Fish. 18, 235–248 (2008).
    Article  Google Scholar 

    11.
    Aguzzi, J., Sardà, F., Abelló, P., Company, J. B. & Rotllant, G. Diel and seasonal patterns of Nephrops norvegicus (Decapoda: Nephropidae) catchability in the western Mediterranean. Mar. Ecol. Prog. Ser. 258, 201–211 (2003).
    ADS  Article  Google Scholar 

    12.
    Bell, M. C., Redant, F. & Tuck, I. Nephrops species. In Lobsters: Biology (ed. Phillips, B.) 412–461 (Oxford Blackwell Publishing, 2006).
    Google Scholar 

    13.
    Sbragaglia, V. et al. Dusk but not dawn burrow emergence rhythms of Nephrops norvegicus (Crustacea: Decapoda). Sci. Mar. 77, 641–647 (2014).
    Article  Google Scholar 

    14.
    Chapman, C. J., Johnstone, A. D. F. & Rice, A. L. The Behaviour and Ecology of the Norway Lobster, _Nephrops norvegicus_ (L). Barnes H Proc. 9th Eur. Mar. Biol. Symp. Aberdeen Univ. Press. Aberdeen 59–74 (1975).

    15.
    Aguzzi, J., Company, J. B. & Sardà, F. The activity rhythm of berried and unberried females of Nephrops norvegicus (Decapoda, Nephropidae). Crustaceana 80, 1121–1134 (2007).
    Article  Google Scholar 

    16.
    Sbragaglia, V., García, J. A., Chiesa, J. J. & Aguzzi, J. Effect of simulated tidal currents on the burrow emergence rhythms of the Norway lobster (Nephrops norvegicus). Mar. Biol. 162, 2007–2016 (2015).
    Article  Google Scholar 

    17.
    Tuck, I. D., Parsons, D. M., Hartill, B. W. & Chiswell, S. M. Scampi (Metanephrops challengeri) emergence patterns and catchability. ICES J. Mar. Sci. 72, i199–i210 (2015).
    Article  Google Scholar 

    18.
    Aguzzi, J., Company, J. B. & Sardà, F. Feeding activity rhythm of Nephrops norvegicus of the western Mediterranean shelf and slope grounds. Mar. Biol. 144, 463–472 (2004).
    Article  Google Scholar 

    19.
    Hemmi, J. M. Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation. Anim. Behav. 69, 603–614 (2005).

    20.
    Leocadio, A., Weetman, A. & Wieland, K. Using UWTV surveys to assess and advise on Nephrops stocks. ICES Cooperative Research Report No. 340. 49 (2018).

    21.
    Morello, E. B., Antolini, B., Gramitto, M. E., Atkinson, R. J. A. & Froglia, C. The fishery for Nephrops norvegicus (Linnaeus, 1758) in the central Adriatic Sea (Italy): preliminary observations comparing bottom trawl and baited creels. Fish. Res. 95, 325–331 (2009).
    Article  Google Scholar 

    22.
    ICES. Report of the Working Group on Nephrops Surveys (WGNEPS) 6–8 November 2018. (2018).

    23.
    ICES. Working Group on Nephrops Surveys (WGNEPS; outputs from 2019). ICES Scientific Reports. 2:16. https://doi.org/10.17895/ices.pub.5968 (2020).

    24.
    Campbell, N., Dobby, H. & Bailey, N. Investigating and mitigating uncertainties in the assessment of Scottish Nephrops norvegicus populations using simulated underwater television data. ICES J. Mar. Sci. 66, 646–655 (2009).
    Article  Google Scholar 

    25.
    Martinelli, M. et al. Towed underwater television towards the quantification of Norway lobster, squat lobsters and sea pens in the Adriatic Sea. Acta Adriat. 54, 3–12 (2013).
    Google Scholar 

    26.
    ICES. Report of the Workshop and training course on Nephrops Burrow Identification (WKNEPHBID). (2008).

    27.
    ICES. Report on the Workshop on Nephrops Burrow Counting (WKNEPS) 9–11 November 2016. (2016).

    28.
    ICES. Report of the Study Group on Nephrops (WKNEPH), 28 February–1 March 2009. (2009).

    29.
    ICES. Report of the Benchmark Workshop on Nephrops (WKNEPH), 2–6 March 2009. (2009).

    30.
    Sardà, F. & Aguzzi, J. A review of burrow counting as an alternative to other typical methods of assessment of Norway lobster populations. Rev. Fish Biol. Fish. 22, 409–422 (2012).
    Article  Google Scholar 

    31.
    Rice, A. L. & Chapman, C. J. Observations on the burrows and burrowing behaviour of two mud-dwelling decapod crustaceans, Nephrops norvegicus and Goneplax rhomboides. Mar. Biol. Int. J. Life Ocean. Coast. Waters 10, 330–342 (1971).

    32.
    Chapman, C. J. & Rice, A. L. Some direct observations on the ecology and behaviour of the Norway lobster Nephrops norvegicus. Mar. Biol. Int. J. Life Ocean. Coast. Waters 10, 321–329 (1971).

    33.
    Cobb, J. S. & Wang, D. Fisheries biology of lobsters and crayfishes. Provenzano A.D. Biol. Crustac. 10, 167–247 (1985).

    34.
    Maynou, F. & Sardà, F. Nephrops norvegicus population and morphometrical characteristics in relation to substrate heterogeneity. Fish. Res. 30, 139–149 (1997).
    Article  Google Scholar 

    35.
    Tuck, I. D., Atkinson, R. J. A. & Chapman, C. J. The structure and seasonal variability in the spatial distribution of nephrops norvegicus burrows. Ophelia 40, (1994).

    36.
    Tuck, I. D., Chapman, C. J. & Atkinson, R. J. A. Population biology of the Norway lobster, Nephrops norvegicus (L.) in the Firth of Clyde, Scotland – I: Growth and density. ICES J. Mar. Sci. 54, 125–135 (1997).

    37.
    ICES. Report of the Study Group on Nephrops Surveys (SGNEPS), 6–8 March 2012. (2012).

    38.
    Gerritsen, H. & Lordan, C. Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES J. Mar. Sci. 68, 245–252 (2011).
    Article  Google Scholar 

    39.
    Ligas, A., Sartor, P. & Colloca, F. Trends in population dynamics and fishery of Parapenaeus longirostris and Nephrops norvegicus in the Tyrrhenian Sea (NW Mediterranean): the relative importance of fishery and environmental variables. Mar. Ecol. 32, 25–35 (2011).
    ADS  Article  Google Scholar 

    40.
    Morello, E. B., Froglia, C. & Atkinson, R. J. A. Underwater television as a fishery-independent method for stock assessment of Norway lobster (Nephrops norvegicus) in the central Adriatic Sea (Italy). ICES J. Mar. Sci. 64, 1116–1123 (2007).
    Article  Google Scholar 

    41.
    Atkinson, R. J. A. & Naylor, E. An endogenous activity rhythm and the rhythmicity of catches of Nephrops norvegicus (L). J. Exp. Mar. Bio. Ecol. 25, 95–108 (1976).
    Article  Google Scholar 

    42.
    Hammond, R. D. & Naylor, E. Effects of dusk and dawn on locomotor activity rhythms in the Norway lobster Nephrops norvegicus. Mar. Biol. 39, 253–260 (1977).
    Article  Google Scholar 

    43.
    Katoh, E., Sbragaglia, V., Aguzzi, J. & Breithaupt, T. Sensory biology and behaviour of Nephrops norvegicus. Adv. Mar. Biol. 64, 35–106 (2013).
    Google Scholar 

    44.
    Aguzzi, J., Allué, R. & Sardà, F. Characterisation of seasonal and diel variations in Nephrops norvegicus (Decapoda: Nephropidae) landings off the Catalan Coasts. Fish Res. 69, 293–300 (2004).

    45.
    Powell, A. & Eriksson, S. P. Reproduction: life cycle, larvae and larviculture. In Advances in Marine Biology 64, 201–245 (Elsevier, 2013).

    46.
    Refinetti, R. Circadian Physiology. Fr. Taylor, New York. https://doi.org/10.1201/b19527 (2006).

    47.
    Chiesa, J. J., Aguzzi, J., García, J. A., Sardà, F. & De La Iglesia, H. O. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J. Biol. Rhythms 25, 277–287 (2010).
    Article  Google Scholar 

    48.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73, 3–36 (2011).

    49.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2020).

    50.
    Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).
    MathSciNet  CAS  Article  Google Scholar 

    51.
    Aguzzi, J. & Company, J. B. Chronobiology of deep-water decapod crustaceans on continental margins. In Advances in Marine Biology 58, 155–225 (Elsevier, 2010).

    52.
    Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M. Challenges to the assessment of benthic populations and biodiversity as a result of rhythmic behaviour: video solutions from cabled observatories. Oceanogr. Mar. Biol. An Annu. Rev. 50, 233–284 (2012).
    Google Scholar 

    53.
    Catchpole, T. L. & Revill, A. S. Gear technology in Nephrops trawl fisheries. Rev. Fish Biol. Fish. 18, 17–31 (2008).
    Article  Google Scholar 

    54.
    Main, J. & Sangster, G. I. The Behaviour of the Norway Lobster, Nephrops norvegicus (L.), During Trawling. Scottish Fish. Res. Rep. 34, 1–23 (1985).

    55.
    Ungfors, A. et al. Nephrops fisheries in European waters. Adv. Mar. Biol. 64, 247–314 (2013).
    Article  Google Scholar 

    56.
    Jerlov, N. G. Optical Oceanography 194 (Elsevier, 1968).

    57.
    Herring, P. The biology of the deep ocean. J. Hered. 93, (2002).

    58.
    Laidre, M. E. Evolutionary ecology of burrow construction. In The Natural History of the Crustacea: Life Histories (eds. Thiel, M. & Wellborn, G.) 5, 279–302 (Oxford University Press, 2018).

    59.
    Trenkel, V. M., Rochet, M. & Mahevas, S. Interactions between fishing strategies of Nephrops trawlers in the Bay of Biscay and Norway lobster diel activity patterns. Fish. Manag. Ecol. 15, 11–18 (2008).
    Google Scholar 

    60.
    Aguzzi, J. et al. Monochromatic blue light entrains diel activity cycles in the Norway lobster, Nephrops norvegicus (L.) as measured by automated video-image analysis. Sci. Mar. 73, 773–783 (2009).

    61.
    Colloca, F., Scarcella, G. & Libralato, S. Recent trends and impacts of fisheries exploitation on Mediterranean stocks and ecosystems. Front. Mar. Sci. 4, (2017).

    62.
    Marine Institute. The Stock Book 2019: Annual Review of Fish Stocks in 2019 with Management Advice for 2020. Mar. Institute, Galway, Irel. (2019).

    63.
    Aguzzi, J. et al. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environ. Sci. Technol. 53, 6616–6631 (2019).
    ADS  CAS  Article  Google Scholar 

    64.
    Chatzievangelou, D., Aguzzi, J., Ogston, A., Suárez, A. & Thomsen, L. Visual monitoring of key deep-sea megafauna with an Internet operated crawler as a tool for ecological status assessment. Prog. Oceanogr. 102321 (2020).

    65.
    Rountree, R. A. et al. Towards an optimal design for ecosystem-level ocean observatories. Front. Mar. Sci. 1–69 (2019).

    66.
    Masmitja, I. et al. Mobile robotic platforms for the acoustic tracking of deep water demersal fishery resources. Sci. Robot. 5, eabc3701 (2020).

    67.
    Aguzzi, et al. Fish-stock assessment using video imagery from worldwide cabled observatory networks. ICES J. Mar. Sci. 77, 2396–2410 (2020).
    Article  Google Scholar  More

  • in

    Bioinformatic analysis of chromatin organization and biased expression of duplicated genes between two poplars with a common whole-genome duplication

    An improved reference genome of P. alba var. pyramidalis
    To identify the major structural variation between the genomes of these two species, we first produced a chromosome-level genome assembly of P. alba var. pyramidalis using single-molecule sequencing and chromosome conformation capture (Hi-C) technologies, and then performed comparative genomic analysis with a recently published genome assembly of P. euphratica37. The resulting assembly of P. alba var. pyramidalis consisted of 131 contigs spanning 408.08 Mb, 94.74% (386.61 Mb) of which were anchored onto 19 chromosomes (Supplementary Fig. S1 and Supplementary Tables S1–S3). A total of 40,215 protein-coding genes were identified in this assembly (Supplementary Table S4). The content of repetitive elements in the genome of P. alba var. pyramidalis (138.17 Mb, 33.86% of the genome) is 188.94 Mb less than that of P. euphratica (327.11 Mb, 56.95% of the genome), which contributes greatly to their differences in genome size (Supplementary Table S5).
    3D organization of the poplar genomes
    To characterize the spatial organization and evolution of poplar 3D genomes at a high resolution, we performed Hi-C experiments using HindIII for P. euphratica and P. alba var. pyramidalis, generating a total of 482.95 million sequencing read pairs. These data were mapped to their respective reference genome sequences. After stringent filtering, 81.72 and 94.61 million usable valid read pairs were obtained in P. euphratica and P. alba var. pyramidalis, respectively, and used for subsequent comparative 3D genome analysis (Supplementary Table S6). In addition, we profiled the DNA methylation and transcriptomes of the same tissue samples to provide a framework for understanding the relationships among epigenetic features and 3D chromatin architecture in poplar.
    We first examined genome packing at the chromosomal level with a genome-wide Hi-C map at 50 kb binning resolution for P. euphratica and P. alba var. pyramidalis. As expected, the normalized Hi-C map from both species showed intense signals on the main diagonal (Fig. 1, and Supplementary Figs. S2 and S3) and a rapid decrease in the frequency of intrachromosomal interactions with increasing genomic distance, indicating frequent interactions between sequences close to each other in the linear genome (Supplementary Fig. S4). Strong intrachromosomal and interchromosomal interactions were also observed on the chromosome arms, implying the presence of chromosome territories in the nucleus, in which each chromosome occupies a limited, exclusive nuclear space16,38.
    Fig. 1: Hi-C heatmaps with compartment region analysis results at 50-kb resolution of P. euphratica chromosome 1 (left) and P. alba var. pyramidalis chromosome 1 (right).

    The heatmaps at the top are Hi-C contact maps at 50-kb resolution, which show global patterns of chromatin interaction in the chromosome. The chromosome is shown from top to bottom and left to right. The ICE-normalized interaction intensity is shown on the color scale on the right side of the heatmap. The track below the Hi-C heatmap shows the partition of A (red histogram, PC1  > 0) and B (green histogram, PC1 5 kb) structural variants ranging from 5 to 446 kb in length in the alignment of the two genomes, including 719 inversions, 476 translocations, and 7947 and 10,093 unique regions in P. alba var. pyramidalis and P. euphratica, respectively (Supplementary Tables S10 and S11).
    To characterize the relationship between structural variation and spatial organization of the poplar genomes, we first analyzed the conservation of A/B compartments between P. alba var. pyramidalis and P. euphratica, using a 50-kb Hi-C matrix. The results showed that 71.52% (145.75 Mb in P. euphratica and 145.63 Mb in P. alba var. pyramidalis) of the total length of the syntenic regions have the same compartment status between the two species, while 43.68 and 43.71 Mb of the genomic regions exhibit A/B compartment switching in P. alba var. pyramidalis and P. euphratica, respectively (Fig. 3a). For the regions with structural variation, we found that 77% of the inversion events between the two genomes had no effects on their compartment status, while 61% of the translocation events occurred within the regions exhibiting compartment switching (Fig. 4a and Supplementary Table S10). Moreover, we also found that 38.59% and 33.39% of the nonsyntenic regions were identified as A compartments in P. alba var. pyramidalis and P. euphratica, respectively, indicating that the large-scale insertions and/or deletions are biased to occur at heterochromatic regions (Fig. 4b). We further assessed the conservation of genome organization at the TAD level by examining whether the orthologous genes within the same TAD in one species could still be located within the TAD in another species19,21,23. The results indicated that only 48.04% of TADs from P. alba var. pyramidalis and 40.95% from P. euphratica were substantially shared between the two species (Figs. 3b, c). Taken together, these results indicated that the 3D genome organization shows surprisingly low conservation across poplar species at both the compartmental and TAD levels.
    Fig. 3: Evolutionary conservation of compartment status and TADs across P. euphratica and P. alba var. pyramidalis.

    a Overlap of compartment status between syntenic regions in P. euphratica and P. alba var. pyramidalis. b Overlap of TADs between syntenic regions in P. euphratica and P. alba var. pyramidalis. c Example of conserved TAD structures across a syntenic region between P. euphratica and P. alba var. pyramidalis. The TADs are outlined by black triangles in the heatmaps, and the position of the TAD domains is indicated by alternating blue-green line segments. The mean cf value used to identify the domains is also shown. The orthology tracks of these conserved domains are shown at the bottom

    Full size image

    Fig. 4: Relationship between structural variation and spatial organization of the genomes of P. euphratica and P. alba var. pyramidalis.

    a Analysis of compartment inversion (left) and translocation (right) across P. euphratica and P. alba var. pyramidalis. b Analysis of compartments of species-specific regions in P. euphratica (left) and P. alba var. pyramidalis (right)

    Full size image

    Relationship between chromatin interactions and expression divergence of WGD-derived paralogs
    Poplar species have undergone a recent WGD event followed by diploidization, a process of genome fractionation that leads to functional and expression divergence of the duplicated gene pairs27,28,33. Although no biased gene loss or expression dominance was found between the two poplar subgenomes, there is evidence that nearly half of the WGD-derived paralogs have diverged in expression32,33. To explore the potential role of chromatin dynamics on the observed expression patterns of duplicated genes, we examined their differences in chromatin interaction patterns for both species. We first identified a total of 10,438 and 9754 paralogous gene pairs showing interchromosomal interactions in P. euphratica and P. alba var. pyramidalis, respectively. After correlating the frequency of chromatin interactions with their differences in expression, we found that gene pairs with biased expression (more than twofold differences in expression levels) interacted less frequently than gene pairs with similar expression levels in both species (P = 1.71 × 10−6 and 7.20 × 10−7 for P. euphratica and P. alba var. pyramidalis, respectively, Mann–Whitney U test; Fig. 5a). We also estimated the interaction score (the average of the distance-normalized interaction frequencies) for bins involved in the paralogous gene pairs and quantified their differences in interaction strength (Supplementary Fig. S7 and Supplementary Table S12)3,23. Our results showed that for gene pairs with biased expression, highly expressed gene copies have stronger interaction strengths than weakly expressed copies (P = 2.10 × 10−12 and 2.74 × 10−2 for P. alba var. pyramidalis and P. euphratica, respectively, Mann–Whitney U test), while no significant differences were observed for gene pairs with similar expression levels (Fig. 5b). We further investigated these phenomena at the level of high-order chromatin architecture and found that the gene pairs located in conserved TADs had similar expression levels (P = 2.68 × 10−3 and 7.86 × 10−6 for P. euphratica and P. alba var. pyramidalis, respectively, Mann–Whitney U test; Supplementary Fig. S8). Overall, our analyses indicate that the extensive expression divergence between WGD-derived paralogs in Populus is associated with the differences in their chromatin dynamics and 3D genome organization, and suggest that this organization may function as a key regulatory layer underlying expression divergence during diploidization.
    Fig. 5: Comparison of interaction levels between WGD-derived paralogs with biased/similar expression in P. euphratica and P. alba var. pyramidalis.

    a The box plot shows that the interaction frequency of WGD-derived paralogs with biased (fold change  > 2) and similar (fold change  More

  • in

    Seeing biodiversity from a Chinese perspective

    Zoologist Alice Hughes leads the landscape-ecology research group at Xishuangbanna Tropical Botanical Garden in Menglun, Yunnan province, China.Credit: Michael C. Orr

    British zoologist Alice Hughes has been working at the Xishuangbanna Tropical Botanical Garden in Menglun, Yunnan province, in southern China, for nearly eight years. She reveals what she has learnt about the country’s approach to ecological conservation ahead of its first United Nations biodiversity conference in Kunming, Yunnan, in May.
    What is your current role?
    I lead the landscape-ecology research group at one of China’s most diverse botanical gardens. My team aims to better understand the lives of animals and how they interact with their environments. This helps us to create more effective methods of conserving a biodiverse environment.
    The 18-person team, which is part of the Chinese Academy of Sciences (CAS), does everything from mapping biodiversity to researching the illegal and legal trade in different species, to find out where and why our natural world is changing. We then develop actionable measures to help stem the worst effects of those changes.
    For example, many members of my team are working on the various species of Rhinolophus bats. Our genetic research suggests that around 70% of the Rhinolophus bat species haven’t been described in scientific literature. If you can’t describe a species, then you can’t conserve it.
    How did you come to work in China, and what’s it like?
    In 2011, I moved to Thailand from the United Kingdom as part of my postdoctoral research, before heading to Australia and finally taking a position in China in 2013.
    At first, I was naive about how different the culture might be in Asian countries and it’s definitely been a steep learning curve. Adaptability is important. I think that many people in the West are much too ready to disbelieve or find fault with actions from China, and Chinese scientists. As a result, there is sensitivity in China’s research community, especially around things that have frequently been an issue, such as the regulation of the trade of exotic wildlife. As a foreigner, it is a challenging balance to provide advice without it being seen as overly critical. I can participate in these discussions at a high level because I have worked here long enough: people know I will listen and provide my perspectives based on fact, rather than prejudice.

    I’ve worked on some difficult and potentially sensitive topics, such as endangered species, wildlife trade and the Belt and Road Initiative, which aims to link global trade routes to China through international infrastructure development, for example. I focus on the possible impacts these might have on biodiversity and how to minimize them. China is wary of being accused of driving extensive biodiversity loss, especially as it is investing in scientific research to avert it.
    I’ve been invited to join a variety of both central and regional government working groups. It’s a privilege to be in those groups and work with some of the country’s top scientists, especially when it comes to international or UN meetings.
    Working for CAS is the equivalent to being an employee of the government. Many people outside China still find it surprising that foreigners work in scientific institutes here, even though the number is growing.
    I’m also unusual because I’m a foreign woman. In the time I have worked here I don’t think I have met any other European women with full-time faculty positions in China. In my institute there are more than ten foreign men with such positions. It’s not easy for Chinese women either. At the institute, we have 43 research groups; only 3 are led by women.
    It’s important for all conservation scientists to be open minded and willing to find out what’s going to work in any country and culture to help tackle the global problem of biodiversity loss, and develop solutions that work in that societal context. A good example of that came last year, when some specialists called for a global ban on wild-meat consumption, amid fears over new diseases that originate in wild animals and cause outbreaks in humans. Now that might sound like a great idea, but in many parts of Africa there is not enough water to raise livestock, and people depend on wild meat for food.
    This means that rather than recommending a blanket ban, a better solution might be a system that monitors what is traded, and provides recommendations as to which species can be eaten safely and sustainably.

    Xishuanganna tropical botanic garden in southwest China’s Yunnan Province.Credit: Xinhua/eyevine

    Do foreign scientists need to speak Chinese to work in China?
    For most of my team, neither English nor Chinese is their first language. We have around 12 different nationalities, so discussions take place predominantly in English, as a default.
    I work closely with my Chinese colleagues to make sure that our research work is properly communicated when it’s published in Chinese. In meetings with Chinese colleagues, someone will translate pertinent points to me, or I’ll translate my slides into Chinese and present in English. I also have my reports and briefs translated, and with advances in translation software, we can get what is needed done.
    It’s easy to have misunderstandings when you’re translating ideas between different languages, so we’re careful to look for any linguistic nuances that might change the perceived meaning.
    How is China balancing urbanization with conservation?
    It’s an ongoing challenge. The concept of an ecological civilization — the government’s vision for environmentally sustainable growth in China — was written into the country’s constitution in 2018 after it was made a national priority in 2012, which is a huge commitment to sustainability.
    A principal policy is the ecological conservation red-line plan, an idea that has been developed over the past decade. Across China, large areas of land are now being protected from industrial and urban development, in part to ensure that crucial ecosystems, such as wetlands that limit floods, can continue to function effectively. Multimillion-dollar developments have been torn down during its roll-out. China is one of few countries to have enacted such a science-based, top-down vision of how to balance human need with the maintenance of ecological services and preservation of biodiversity.

    It’s not all perfect, though: I know that on paper, these ecological red lines now exist and in certain biodiversity hotspots they have been enforced. But not every region is the same. Areas have high levels of autonomy and in Yunnan, where I live, there have been more challenges for the local government to work with provincial governments for many practical and political reasons. The saying goes, ‘The mountains are high, and the emperor is far away’: places that are far away from Beijing feel less pressure to enact centralized policies because there is less supervision.
    The south of China has seen lots of deforestation, which is hugely damaging to biodiversity. Natural forests have been replaced with for-profit tree plantations, usually planted with rubber or eucalyptus, which have had a hugely negative impact on biodiversity. Sustainable forestry is a real issue across Asia.
    China is leading an important biodiversity conference in May. What are your expectations?
    It’s the first time that China will host the UN biodiversity conference and this puts the spotlight on what they are doing to help the situation.
    I know there are a number of senior Chinese officials who would like to see China take on more of an international leadership role, in addition to making efforts to preserve biodiversity domestically.
    The current set of UN goals for global biodiversity expired last year and the next set, which is planned to be agreed at the convention, must encourage countries to plant diverse, native species. Currently, there is no pressure coming from politicians to do that, even though we know we suffer biodiversity loss as a result: we’re often hung up on targets, even if those targets are virtue signalling, rather than real change.
    Also, governments tend to try to meet their targets in the easiest and most economically beneficial way. So they meet their tree-planting targets by planting by just a few, non-diverse species that are often not even native to the country.
    We still need to include more practical goals in policy documents, such as enabling sustainable supply chains, to focus on the mechanisms behind biodiversity loss.
    What strikes you as unique about the Chinese ecological-research environment?
    A Chinese ecologist needs to be fast to act. The time frame to submit an application for a grant can be very quick. Often you have less than 24 hours to respond. Also, most initiatives are tied to the government’s five-year plans, so our priorities need to adapt to reflect those five-year cycles.
    In the past two years, there has been a complete inventory of all China’s marine and terrestrial protected areas so they can be accurately mapped and future targets can be based on them. That really is an unparalleled effort.
    This involved mapping 400 marine protected areas, and 13,600 terrestrial ones. I haven’t heard of anything equivalent to this scale and speed in any other country.
    The most positive thing for me is that science matters here. The annual budget for scientific research is increasing and the findings from our applied research inform national policy. That is something the West would do well to remember. More

  • in

    Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a Moso bamboo forest

    1.
    Ni, X. & Groffman, P. M. Declines in methane uptake in forest soils. Proc. Natl. Acad. Sci. USA 115, 8587–8590 (2018).
    CAS  PubMed  Article  Google Scholar 
    2.
    IPCC. Climate change 2013: the physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).

    3.
    Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).
    ADS  CAS  Article  Google Scholar 

    4.
    Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl. Acad. Sci. USA 116, 2805–2813 (2019).
    CAS  PubMed  Article  Google Scholar 

    5.
    Tate, K. R. Soil methane oxidation and land-use change–from process to mitigation. Soil Biol. Biochem. 80, 260–272 (2015).
    CAS  Article  Google Scholar 

    6.
    Thauer, R. K., Anne-Kristin, K., Henning, S., Wolfgang, B. & Reiner, H. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).
    CAS  PubMed  Article  Google Scholar 

    7.
    Banger, K., Tian, H. & Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?. Glob. Change Biol. 18, 3259–3267 (2012).
    ADS  Article  Google Scholar 

    8.
    Murase, J. & Kimura, M. Methane production and its fate in paddy fields. IV. Sources of microorganisms and substrates responsible for anaerobic CH4 oxidation in subsoil. Soil Sci. Plant Nutr. 40, 57–61 (1994).
    CAS  Article  Google Scholar 

    9.
    Zhang, M., Huang, J., Sun, S., Rehman, M. & He, S. Depth-specific distribution and significance of nitrite-dependent anaerobic methane oxidation process in tidal flow constructed wetlands used for treating river water. Sci. Total Environ. 716, 107354 (2020).
    Google Scholar 

    10.
    Yu, X. et al. Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biol. Biochem. 144, 107775 (2020).
    CAS  Article  Google Scholar 

    11.
    Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Dunfield, P., Knowles, R., Dumont, R. & Moore, T. R. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol. Biochem. 25, 321–326 (1993).
    CAS  Article  Google Scholar 

    14.
    Mer, J. L. & Roger, P. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50 (2001).
    Article  Google Scholar 

    15.
    Aronson, E. L., Dubinsky, E. A. & Helliker, B. R. Effects of nitrogen addition on soil microbial diversity and methane cycling capacity depend on drainage conditions in a pine forest soil. Soil Biol. Biochem. 62, 119–128 (2013).
    CAS  Article  Google Scholar 

    16.
    Bodelier, P. L. E. & Laanbroek, H. J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265–277 (2004).
    CAS  PubMed  Article  Google Scholar 

    17.
    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Liu, L. & Greaver, T. L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12, 1103–1117 (2009).
    CAS  PubMed  Article  Google Scholar 

    19.
    Fowler, D., Coyle, M., Skiba, U., Sutton, M. A. & Voss, M. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B. 368, 20130164 (2013).
    Article  CAS  Google Scholar 

    20.
    Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437 (2008).
    ADS  CAS  Article  Google Scholar 

    21.
    Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).
    ADS  CAS  Article  Google Scholar 

    22.
    Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Li, Q. et al. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agric. For. Meteorol. 268, 48–54 (2019).
    ADS  Article  Google Scholar 

    24.
    Steudler, P. A., Bowden, R. D., Melillo, J. M. & Aber, J. D. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341, 314–316 (1989).
    ADS  Article  Google Scholar 

    25.
    Hütsch, B. W., Webster, C. P. & Powlson, D. S. Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biol. Biochem. 26, 1613–1622 (1994).
    Article  Google Scholar 

    26.
    Bodelier, P. L. E., Roslev, P., Henckel, T. & Frenzel, P. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403, 421–424 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    27.
    Kruger, M. & Frenzel, P. Effects of N-fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Glob. Change Biol. 9, 773–784 (2003).
    ADS  Article  Google Scholar 

    28.
    Delgado, J. A. & Mosier, A. R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. J. Environ. Qual. 25, 1105–1111 (1996).
    CAS  Article  Google Scholar 

    29.
    Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob. Change Biol. 17, 2196–2210 (2011).
    ADS  Article  Google Scholar 

    30.
    Cai, Z. et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196, 7–14 (1997).
    CAS  Article  Google Scholar 

    31.
    Malghani, S., Reim, A., Fischer, J. V., Conrad, R. & Trumbore, S. E. Soil methanotroph abundance and community composition are not influenced by substrate availability in laboratory incubations. Soil Biol. Biochem. 101, 184–194 (2016).
    CAS  Article  Google Scholar 

    32.
    Schnyder, E., Bodelier, P. L. E., Hartmann, M., Henneberger, R. & Niklaus, P. A. Positive diversity-functioning relationships in model communities of methanotrophic bacteria. Ecology 99, 714–723 (2018).
    PubMed  Article  Google Scholar 

    33.
    Wang, C., Liu, D. & Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120, 126–133 (2018).
    CAS  Article  Google Scholar 

    34.
    Shrestha, M., Shrestha, P. M., Frenzel, P. & Conrad, R. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. ISME J. 4, 1545–1556 (2010).
    CAS  PubMed  Article  Google Scholar 

    35.
    Liu, H. et al. Responses of soil methanogens, methanotrophs, and methane fluxes to land-use conversion and fertilization in a hilly red soil region of southern China. Environ. Sci. Pollut. Res. 24, 8731–8743 (2017).
    CAS  Article  Google Scholar 

    36.
    Bao, Q., Ding, L. J., Huang, Y. & Xiao, K. Effect of rice straw and/or nitrogen fertiliser inputs on methanogenic archaeal and denitrifying communities in a typical rice paddy soil. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 375–386 (2019).
    CAS  Google Scholar 

    37.
    Ho, A. et al. The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J. 8, 1945–1948 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Dan, H. et al. The response of methanotrophs to additions of either ammonium, nitrate or urea in alpine swamp meadow soil as revealed by stable isotope probing. FEMS Microbiol. Ecol. 7, fiz077 (2019).
    Google Scholar 

    39.
    Zhang, D., Mo, L., Chen, X., Zhang, L. & Xu, X. Effect of nitrogen addition on methanotrophs in temperate forest soil. Acta Ecol. Sin. 37, 8254–8263 (2017).
    Google Scholar 

    40.
    Mohanty, S. R., Bodelier, P. L. E., Floris, V. & Conrad, R. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl. Environ. Microbiol. 72, 1346–1354 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Hu, A. & Lu, Y. The differential effects of ammonium and nitrate on methanotrophs in rice field soil. Soil Biol. Biochem. 85, 31–38 (2015).
    CAS  Article  Google Scholar 

    42.
    Shrestha, P. M. et al. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil. ISME J. 6, 1115–1126 (2012).
    CAS  PubMed  Article  Google Scholar 

    43.
    Jang, I., Lee, S., Zoh, K. D. & Kang, H. Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biol. Biochem. 43, 620–627 (2011).
    CAS  Article  Google Scholar 

    44.
    Song, X., Chen, X., Zhou, G., Jiang, H. & Peng, C. Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers. Agric. For. Meteorol. 247, 467–475 (2017).
    ADS  Article  Google Scholar 

    45.
    Song, X. et al. Carbon sequestration by Chinese bamboo forests, and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).
    CAS  Article  Google Scholar 

    46.
    Jia, Y. et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci. Rep. 4, 3763 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Song, X., Zhou, G., Gu, H. & Qi, L. Management practices amplify the effects of N deposition on leaf litter decomposition of the Moso bamboo forest. Plant Soil 395, 391–400 (2015).
    CAS  Article  Google Scholar 

    48.
    Mo, J., Fang, Y., Xu, G., Li, D. & Xue, J. The short-term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China. Acta Ecol. Sin. 25, 682–690 (2005).
    CAS  Google Scholar 

    49.
    Zhang, W. et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China. J. Geophys. Res. 113, D11116 (2008).
    ADS  Article  CAS  Google Scholar 

    50.
    Song, X. et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv. 6, eaaw5790 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Wang, M., Xu, X., Wang, W., Wang, G. & Su, C. Effects of slag and biochar amendments on methanogenic community structures in paddy fields. Acta Ecol. Sin. 38, 2816–2818 (2018).
    Article  Google Scholar 

    53.
    Zeikus, J. G. Biology of methanogenic bacteria. Bacteriol. Rev. 41, 514–541 (1977).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Täumer, J. et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob. Change Biol. 27, 929–940 (2021).

    55.
    Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A. K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20(3), 1016–1029 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 487 (2015).
    Article  Google Scholar 

    57.
    Deng, Y. et al. Upland soil cluster gamma dominates methanotrophic communities in upland grassland soils. Sci. Total Environ. 670, 826–836 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Henckel, T., Friedrich, M. & Conrad, R. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65, 1980–1990 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Lieberman, R. L. & Rosenzweig, A. C. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39, 147–164 (2004).
    CAS  PubMed  Article  Google Scholar 

    60.
    Freitag, T. E. & Prosser, J. I. Correlation of methane production and functional gene transcriptional activity in a peat soil. Appl. Environ. Microbiol. 75, 6679–6687 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson prize lecture. Microbiology 144, 2377–2406 (1998).
    CAS  PubMed  Article  Google Scholar 

    62.
    Schnell, S. & King, G. M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl. Environ. Microbiol. 60, 3514–3521 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    MathSciNet  Google Scholar 

    64.
    Shannon, C. E. A. mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
    MathSciNet  MATH  Article  Google Scholar 

    65.
    Li, Q. et al. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition. Environ. Res. Lett. 13, 044029 (2018).
    ADS  Article  CAS  Google Scholar 

    66.
    Li, Q., Song, X., Gu, H. & Gao, F. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations. Sci. Rep. 6, 28235 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Frey, S. D., Knorr, M., Parrent, J. L. & Simpson, R. T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196, 159–171 (2004).
    Article  Google Scholar 

    68.
    Lin, Y. et al. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic ultisol. Soil Biol. Biochem. 123, 218–228 (2018).
    CAS  Article  Google Scholar 

    69.
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).
    PubMed  Article  Google Scholar 

    70.
    Zhou, X., Guo, Z., Chen, C. & Jia, Z. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations. Biogeosciences 14, 2101–2111 (2017).
    ADS  CAS  Article  Google Scholar 

    71.
    Nicol, G. W., Leininger, S., Schleper, C. & Prosser, J. I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10, 2966–2978 (2008).
    CAS  PubMed  Article  Google Scholar 

    72.
    Vitousek, P. M. et al. Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737 (1997).
    Google Scholar 

    73.
    Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).
    PubMed  Article  Google Scholar 

    74.
    Serna-Chavez, H. M. & Bodegom, P. M. V. Global drivers and patterns of microbial abundance in soil. Glob. Ecol. Biogeogr. 22, 1162–1172 (2013).
    Article  Google Scholar 

    75.
    Rosso, L., Lobry, J. R., Bajard, S. & Flandrois, J. P. Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl. Environ. Microbiol. 61, 610–616 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Högberg, M. N., Högberg, P. & Myrold, D. D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three?. Oecologia 150, 590–601 (2007).
    ADS  PubMed  Article  Google Scholar 

    77.
    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).
    Google Scholar 

    78.
    Kolb, S. The quest for atmospheric methane oxidizers in forest soils. Environ. Microbiol. Rep. 1, 336–346 (2009).
    CAS  PubMed  Article  Google Scholar 

    79.
    Topp, E. & Pettey, E. Soils as sources and sinks for atmospheric methane. Can. J. Soil Sci. 77, 167–177 (1997).
    CAS  Article  Google Scholar 

    80.
    Bender, M. & Conrad, R. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol. Biochem. 27, 1517–1527 (1995).
    CAS  Article  Google Scholar 

    81.
    Kolb, S., Knief, C., Dunfield, P. F. & Conrad, R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7(8), 1150–1161 (2005).
    CAS  PubMed  Article  Google Scholar 

    82.
    Degelmann, D. M., Borken, W., Drake, H. L. & Kolb, S. Different atmospheric methane-oxidizing communities in European Beech and Norway Spruce Soils. Appl. Environ. Microbiol. 76(10), 3228–3235 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Li, S., Yu, Y. & He, S. Summary of research on dissolved organic carbon (DOC). Soil Environ. Sci. 11, 422–429 (2002).
    Google Scholar 

    84.
    Zhang, R. et al. Nitrogen deposition enhances photosynthesis in Moso bamboo but increases susceptibility to other stress factors. Front. Plant Sci. 8, 1975 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Wan, X. et al. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 387, 103–116 (2015).
    CAS  Article  Google Scholar 

    86.
    Demoling, F., Figueroa, D. & Bååth, E. Comparison of factors limiting bacterial growth in different soils. Soil Biol. Biochem. 39, 485–2495 (2007).
    Article  CAS  Google Scholar 

    87.
    Aronson, E. L. & Helliker, B. R. Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology 91, 3242–3251 (2010).
    CAS  Article  Google Scholar 

    88.
    Cheng, S. et al. The primary factors controlling methane uptake from forest soils and their responses to increased atmospheric nitrogen deposition: a review. Acta Ecol. Sin. 32, 4914–4923 (2012).
    ADS  CAS  Article  Google Scholar 

    89.
    Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017 (2012).
    CAS  PubMed  Article  Google Scholar 

    90.
    Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).
    ADS  Article  Google Scholar 

    91.
    Song, X., Li, Q. & Gu, H. Effect of nitrogen deposition and management practices on fine root decomposition in Moso bamboo plantations. Plant Soil 410, 207–215 (2017).
    CAS  Article  Google Scholar 

    92.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
    CAS  Article  Google Scholar 

    93.
    Li, Y. et al. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol. Biochem. 122, 173–185 (2018).
    CAS  Article  Google Scholar 

    94.
    Lu, R. Methods for Soil Agro-chemistry Analysis (China Agricultural Science and Technology Press, Beijing, 2000).
    Google Scholar 

    95.
    Bourne, D. G., Mcdonald, I. R. & Murrell, J. C. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl. Environ. Microbiol. 67, 3802 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    96.
    Angel, R., Claus, P. & Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    97.
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Wang, Q. et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio 4, e00592-e613 (2013).
    PubMed  PubMed Central  Google Scholar 

    99.
    Kou, Y. et al. Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils. Soil Biol. Biochem. 111, 104–114 (2017).
    CAS  Article  Google Scholar 

    100.
    Kou, Y. et al. Climate and soil parameters are more important than denitrifier abundances in controlling potential denitrification rates in Chinese grassland soils. Sci. Total Environ. 669, 62–69 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    101.
    Wei, H. et al. Contrasting soil bacterial community, diversity, and function in two forests in China. Front. Microbiol. 9, 1693 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    102.
    Liu, W. et al. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology 101, e03053 (2020).
    PubMed  Google Scholar 

    103.
    Tang, X., Liu, S., Zhou, G., Zhang, D. & Zhou, C. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob. Change Biol. 12, 546–560 (2006).
    ADS  Article  Google Scholar  More