Evolution of the locomotor skeleton in Anolis lizards reflects the interplay between ecological opportunity and phylogenetic inertia
1.
Grant, P. R. & Grant, B. R. How and why Species Multiply: The Radiation of Darwin’s Finches. (Princeton University Press, 2008).
2.
Baldwin, B. G. & Sanderson, M. J. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc. Natl Acad. Sci. USA 95, 9402–9406 (1998).
ADS CAS PubMed Article PubMed Central Google Scholar
3.
Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature 457, 830–836 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. (Princeton University Press, 1967).
5.
Lewontin, R. C. The organism as the subject and object of evolution. Scientia 77, 65 (1983).
Google Scholar
6.
Blows, M. W. & Hoffmann, A. A. A reassessment of genetic limits to evolutionary change. Ecology 86, 1371–1384 (2005).
Article Google Scholar
7.
Hansen, T. F. & Houle, D. Measuring and comparing evolvability and constraint in multivariate characters. J. Evol. Biol. 21, 1201–1219 (2008).
CAS PubMed Article PubMed Central Google Scholar
8.
West-Eberhard, M. J. Developmental Plasticity and Evolution. (Oxford University Press, 2003).
9.
Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).
PubMed Article PubMed Central Google Scholar
10.
Hendrikse, J. L., Parsons, T. E. & Hallgrímsson, B. Evolvability as the proper focus of evolutionary developmental biology. Evol. Dev. 9, 393–401 (2007).
PubMed Article PubMed Central Google Scholar
11.
Klingenberg, C. P. Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos. Trans. R. Soc. B 369, 20130249 (2014).
Article Google Scholar
12.
Jablonski, D. Approaches to macroevolution: 1. General concepts and origin of variation. Evol. Biol. 44, 427–450 (2017).
PubMed PubMed Central Article Google Scholar
13.
Uller, T., Moczek, A. P., Watson, R. A., Brakefield, P. M. & Laland, K. N. Developmental bias and evolution: a regulatory network perspective. Genetics 209, 949–966 (2018).
PubMed PubMed Central Article Google Scholar
14.
Hansen, T. F. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69, 83–94 (2003).
PubMed Article PubMed Central Google Scholar
15.
Goswami, A., Binder, W. J., Meachen, J. & O’Keefe, F. R. The fossil record of phenotypic and modularity: a deep-time perspective on developmental and evolutionary dynamics. Proc. Natl Acad. Sci. USA 112, 4891–4896 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
16.
Armbruster, W. S., Pelabon, C., Bolstad, G. H. & Hansen, T. F. Integrated phenotypes: understanding trait covariation in plants and animals. Philos. Trans. R. Soc. B 369, 20130245 (2014).
Article Google Scholar
17.
Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution 72, 2580–2594 (2018).
PubMed PubMed Central Article Google Scholar
18.
Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos. Trans. R. Soc. B 369, 20130254 (2014).
CAS Article Google Scholar
19.
Cheverud, J. M. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36, 499–516 (1982).
PubMed Article PubMed Central Google Scholar
20.
Wagner, G. P., Pavlicev, M. & Cheverud, J. M. The road to modularity. Nat. Rev. Genet. 8, 921–931 (2007).
CAS PubMed Article PubMed Central Google Scholar
21.
Melo, D., Porto, A., Cheverud, J. M. & Marroig, G. Modularity: genes, development and evolution. Annu. Rev. Ecol. Evol. Syst. 47, 463–486 (2016).
PubMed PubMed Central Article Google Scholar
22.
Gerhart, J. & Kirschner, M. The theory of facilitated variation. Proc. Natl Acad. Sci. USA 104, 8582–8589 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
23.
Villmoare, B., Fish, J. & Jungers, W. Selection, morphological integration, and strepsirrhine locomotor adaptations. Evol. Biol. 38, 88–99 (2011).
Article Google Scholar
24.
Navalon, G., Marugan-Lobon, J., Bright, J. A., Cooney, C. R. & Rayfield, E. J. The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian honeycreepers. Nat. Ecol. Evol. 4, 270–278 (2020).
PubMed Article PubMed Central Google Scholar
25.
Nicholson, K. E. et al. Mainland colonization by island lizards. J. Biogeogr. 32, 929–938 (2005).
Article Google Scholar
26.
Poe, S. et al. A phylogenetic, biogeographic, and taxonomic study of all extant species of Anolis (Squamata; Iguanidae). Syst. Biol. 66, 663–697 (2017).
PubMed Article PubMed Central Google Scholar
27.
Jackman, T., Losos, J. B., Larson, A. & de Queiroz, K. in Molecular Evolution and Adaptive Radiation (eds Givnish, T. & Systma, K.) 535–557 (Cambridge University Press, 1997).
28.
Underwood, G. The anoles of the Eastern Caribbean (Sauria, Iguanidae). Revisionary notes. Bull. Mus. Comp. Zool., Part III 121, 191–226 (1959).
Google Scholar
29.
Losos, J. B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles. Vol. 10 (University of California Press, 2009).
30.
Pinto, G., Mahler, D. L., Harmon, L. J. & Losos, J. B. Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proc. R. Soc. B 275, 2749–2757 (2008).
PubMed Article PubMed Central Google Scholar
31.
Poe, S. & Anderson, C. G. The existence and evolution of morphotypes in Anolis lizards: coexistence patterns, not adaptive radiations, distinguish mainland and island faunas. PeerJ 6, e6040 (2019).
PubMed PubMed Central Article Google Scholar
32.
Irschick, D. J., Vitt, L. J., Zani, P. A. & Losos, J. B. A comparison of evolutionary radiations in mainland and Caribbean Anolis lizards. Ecology 78, 2191–2203 (1997).
Article Google Scholar
33.
Macrini, T. E., Irschick, D. J. & Losos, J. B. Ecomorphological differences in toepad characteristics between mainland and island anoles. J. Herpetol. 37, 52–58 (2003).
Article Google Scholar
34.
Velasco, J. A. & Herrel, A. Ecomorphology of Anolis lizards of the Choco’ region in Colombia and comparisons with Greater Antillean ecomorphs. Biol. Biol. J. Linn. Soc. 92, 403–403 (2007).
Article Google Scholar
35.
Williams, E. E. in Evol. Biol. Vol. 6 (eds Theodosius Dobzhansky, MaxK Hecht, & WilliamC Steere) Ch. 3, 47–89 (Springer US, 1972).
36.
Williams, E. E. in Lizard ecology: studies of a model organism (eds Pianka, E. R., Huey, R. B. & Schoener, T. W.) 326–370 (Harvard University Press, 1983).
37.
Losos, J. B., Jackman, T. R., Larson, A., Queiroz, K. & Rodriguez-Schettino, L. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–2118 (1998).
ADS CAS PubMed Article Google Scholar
38.
Tinius, A. & Russell, A. P. Geometric morphometric analysis of the breast-shoulder apparatus of lizards: a test case using Jamaican anoles (Squamata: Dactyloidae). Anat. Rec. 297, 410–432 (2014).
Article Google Scholar
39.
Tinius, A., Russell, A. P., Jamniczky, H. A. & Anderson, J. S. What is bred in the bone: ecomorphological associations of pelvic girdle form in greater Antillean Anolis lizards. J. Morphol. 279, 1016–1030 (2018).
PubMed Article Google Scholar
40.
Adams, D. C. & Collyer, M. L. Phylogenetic comparative methods and the evolution of multivariate phenotypes. Annu. Rev. Ecol. Evol. Syst. 50, 405–425 (2019).
Article Google Scholar
41.
Legendre, P. & Legendre, L. Numerical Ecology. (Elsevier, 2012).
42.
Collyer, M. L., Davis, M. A. & Adams, D. C. Making heads or tails of combined landmark configurations in geometric morphometric data. Evol. Biol. 47, 193–205 (2020).
Article Google Scholar
43.
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).
CAS PubMed Article PubMed Central Google Scholar
44.
Nishimoto, S. & Logan, M. P. O. Subdivision of the lateral plate mesoderm and specification of the forelimb and hindlimb forming domains. Semin. Cell Dev. Biol. 49, 102–108 (2016).
PubMed Article PubMed Central Google Scholar
45.
Shou, S., Scott, V., Reed, C., Hitzemann, R. & Stadler, H. S. Transcriptome analysis of the murine forelimb and hindlimb autopod. Dev. Dyn. 234, 74–89 (2005).
CAS PubMed Article PubMed Central Google Scholar
46.
Margulies, E. H., Kardia, S. L. R. & Innis, J. W. A comparative molecular analysis of developing mouse forelimbs and hindlimbs using Serial Analysis of Gene Expression (SAGE). Genome Res. 11, 1686–1698 (2001).
CAS PubMed PubMed Central Article Google Scholar
47.
Adams, D. C. & Collyer, M. L. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631 (2016).
PubMed Article PubMed Central Google Scholar
48.
Adams, D. C. Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure. Methods Ecol. Evol. 7, 565–572 (2016).
Article Google Scholar
49.
Adams, D. C. & Collyer, M. L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73, 2352–2367 (2019).
PubMed Article PubMed Central Google Scholar
50.
Dellinger, A. S. et al. Modularity increases rate of floral evolution and adaptive success for functionally specialized pollination systems. Commun. Biol. 2, 453 (2019).
PubMed PubMed Central Article Google Scholar
51.
Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
52.
Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
53.
Marki, P. Z., Kennedy, J. D., Cooney, C. R., Rahbek, C. & Fjeldsa, J. Adaptive radiation and the evolution of nectarivory in a large songbird clade. Evolution 73, 1226–1240 (2019).
PubMed Article PubMed Central Google Scholar
54.
Brown, R. L. What evolvability really is. Br. J. Philos. Sci. 65, 549–572 (2013).
MathSciNet Article Google Scholar
55.
Watson, R. A. & Szathmary, E. How can evolution learn? Trends Ecol. Evol. 31, 147–157 (2016).
PubMed Article PubMed Central Google Scholar
56.
Young, N. M. & Hallgrimsson, B. Serial homology and the evolution of mammalian limb covariation structure. Evolution 59, 2691–2704 (2005).
PubMed Article PubMed Central Google Scholar
57.
Young, N. M., Wagner, G. P. & Hallgrimsson, B. Development and the evolvability of human limbs. Proc. Natl Acad. Sci. USA 107, 3400–3405 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar
58.
Kelly, E. M. & Sears, K. E. Reduced phenotypic covariation in marsupial limbs and the implications for mammalian evolution. Biol. J. Linn. Soc. 102, 22–36 (2011).
Article Google Scholar
59.
Bennett, C. V. & Goswami, A. Does developmental strategy drive limb integration in marsupials and monotremes? Mamm. Biol. 76, 79–83 (2011).
Article Google Scholar
60.
Martin-Serra, A. & Benson, R. B. J. Developmental constraints do not influence long-term phenotypic evolution of marsupial forelimbs as revealed by interspecific disparity and integration patterns. Am. Nat. 195, 547–560 (2020).
PubMed Article PubMed Central Google Scholar
61.
Parter, M., Kashtan, N. & Alon, U. Facilitated variation: how evolution learns from past environments to generalize to new environments. PLoS Comp. Biol. 4, e1000206 (2008).
ADS Article CAS Google Scholar
62.
Kouvaris, K., Clune, J., Kounios, L., Brede, M. & Watson, R. A. How evolution learns to generalise: Using the principles of learning theory to understand the evolution of developmental organisation. PLoS Comp. Biol. 13, e1005358 (2017).
ADS Article CAS Google Scholar
63.
Brun-Usan, M., Rago, A., Thies, C., Uller, T. & Watson, R. A. Developmental models reveal the role of phenotypic plasticity in explaining genetic evolvability. bioRxiv https://doi.org/10.1101/2020.06.29.179226 (2020).
64.
Shanahan, T. Phylogenetic inertia and Darwin’s higher law. Stud. Hist. Philos. Sci. Part C 42, 60–68 (2011).
Article Google Scholar
65.
Houle, D., Bolstad, G. H., van der Linde, K. & Hansen, T. F. Mutation predicts 40 million years of fly wing evolution. Nature 548, 447–450 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar
66.
Braendle, C., Baer, C. F. & Felix, M. A. Bias and evolution of the mutationally accessible phenotypic space in a developmental system. PLoS Genet. 6, e1000877 (2010).
PubMed PubMed Central Article CAS Google Scholar
67.
Haber, A. Phenotypic covariation and morphological diversification in the ruminant skull. Am. Nat. 187, 576–591 (2016).
PubMed Article PubMed Central Google Scholar
68.
Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).
PubMed Article PubMed Central Google Scholar
69.
Hanot, P., Herrel, A., Guintard, C. & Cornette, R. The impact of artificial selection on morphological integration in the appendicular skeleton of domestic horses. J. Anat. 232, 657–673 (2018).
PubMed PubMed Central Article Google Scholar
70.
Penna, A., Melo, D., Bernardi, S., Oyarzabal, M. I. & Marroig, G. The evolution of phenotypic integration: How directional selection reshapes covariation in mice. Evolution 71, 2370–2380 (2017).
PubMed PubMed Central Article Google Scholar
71.
Watson, R. A., Wagner, G. P., Pavlicev, M., Weinreich, D. M. & Mills, R. The evolution of phenotypic correlations and “developmental memory”. Evolution 68, 1124–1138 (2014).
PubMed PubMed Central Article Google Scholar
72.
Donihue, C. M. et al. Hurricane effects on Neotropical lizards span geographic and phylogenetic scales. Proc. Natl Acad. Sci. USA 117, 10429–10434 (2020).
CAS PubMed Article PubMed Central Google Scholar
73.
Feiner, N., Jackson, I. S. C., Munch, K. L., Radersma, R. & Uller, T. Plasticity and evolutionary convergence in the locomotor skeleton of Greater Antillean Anolis lizards. eLife 9, e57468 (2020).
CAS PubMed PubMed Central Article Google Scholar
74.
Vanhooydonck, B. & Irschick, D. in Topics in functional and ecological vertebrate morphology (eds Aerts, P., D’Août, K., Herrel, A. & Van Damme, R.) (Shaker Publishing, 2002).
75.
Schluter, D. The Ecology of Adaptive Radiation. (Oxford: Oxford University Press, 2000).
76.
Roughgarden, J. Anolis Lizards of the Caribbean: Ecology, Evolution, and Plate Tectonics. (Oxford University Press, 1995).
77.
Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods-a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).
CAS PubMed Article PubMed Central Google Scholar
78.
Losos, J. B. et al. Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54, 301–305 (2000).
CAS PubMed PubMed Central Google Scholar
79.
Tinius, A. Geometric morphometric analysis of the breast-shoulder apparatus of Greater Antillean anole ecomorphs PhD thesis, (University of Calgary, 2016).
80.
Cignoni, P. et al. in Eurographics Italian Chapter Conference (eds Scarano, V., De Chiara, R. & Erra, U.) (The Eurographics Association, 2008).
81.
Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. (2019).
82.
Olsen, A. M. & Westneat, M. W. StereoMorph: an R package for the collection of 3D landmarks and curves using a stereo camera set-up. Methods Ecol. Evol. 6, 351–356 (2015).
Article Google Scholar
83.
Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
84.
Rohlf, F. J. Shape statistics: procrustes superimpositions and tangent spaces. J. Classif. 16, 197–223 (1999).
MATH Article Google Scholar
85.
Uetz, P., Freed, P. & Hosek, J. The Reptile Database http://www.reptile-database.org (2019).
86.
Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).
PubMed PubMed Central Article CAS Google Scholar
87.
Köhler, G. & Hedges, S. B. A revision of the green anoles of Hispaniola with description of eight new species (Reptilia, Squamata, Dactyloidae). Nov. Carib. 9, 1–135 (2016).
Google Scholar
88.
Hofmann, E. P. & Townsend, J. H. Origins and biogeography of the Anolis crassulus subgroup (Squamata: Dactyloidae) in the highlands of Nuclear Central America. BMC Evol. Biol. 17, 267 (2017).
PubMed PubMed Central Article CAS Google Scholar
89.
Mahler, D. L. et al. Discovery of a giant chameleon-like lizard (Anolis) on hispaniola and its significance to understanding replicated adaptive radiations. Am. Nat. 188, 357–364 (2016).
PubMed Article PubMed Central Google Scholar
90.
Kohler, J., Hahn, M. & Kohler, G. Divergent evolution of hemipenial morphology in two cryptic species of mainland anoles related to Anolis polylepis. Salamandra 48, 1–11 (2012).
Google Scholar
91.
Kohler, G., Perez, R. G. T., Petersen, C. B. P. & De la Cruz, F. R. M. A revision of the Mexican Anolis (Reptilia, Squamata, Dactyloidae) from the Pacific versant west of the Isthmus de Tehuantepec in the states of Oaxaca, Guerrero, and Puebla, with the description of six new species. Zootaxa 3862, 1 (2014).
PubMed Article PubMed Central Google Scholar
92.
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Article Google Scholar
93.
Nicholson, K. E., Crother, B. I., Guyer, C. & Savage, J. M. It is time for a new classification of anoles (Squamata: Dactyloidae). Zootaxa 3477, 1–108 (2012).
Article Google Scholar
94.
Goswami, A. & Finarelli, J. A. EMMLi: a maximum likelihood approach to the analysis of modularity. Evolution 70, 1622–1637 (2016).
PubMed Article PubMed Central Google Scholar
95.
Bookstein, F. L. et al. Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. J. Hum. Evol. 44, 167–187 (2003).
PubMed Article PubMed Central Google Scholar
96.
Adams, D. C. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Syst. Biol. 63, 166–177 (2014).
PubMed Article PubMed Central Google Scholar
97.
Xie, W. G., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).
PubMed Article PubMed Central Google Scholar
98.
Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 364–367 (1974).
MATH Article Google Scholar
99.
Levene, H. in Contributions to Probability and Statistics (Stanford University Press, 1960).
100.
Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).
MATH Article Google Scholar More