Premating barriers in young sympatric snail species
1.
Mayr, E. Ecological factors in speciation. Evolution https://doi.org/10.1111/j.1558-5646.1947.tb02723.x (1947).
Article Google ScholarÂ
2.
Coyne, J. A. & Orr, H. A. Speciation Vol. 38 (Sinauer Associates, Sunderland MA, 2004).
Google ScholarÂ
3.
Rosenblum, E. B. et al. Goldilocks meets Santa Rosalia: An ephemeral speciation model explains patterns of diversification across time scales. Evol. Biol. 39, 255â261. https://doi.org/10.1007/s11692-012-9171-x (2012).
Article PubMed PubMed Central Google ScholarÂ
4.
Dobzhansky, T. Genetics and the Origin of Species (Columbia University Press, Columbia, 1937).
Google ScholarÂ
5.
Edmands, S. Does parental divergence predict reproductive compatibility?. Trends Ecol. Evol. 17, 520â527. https://doi.org/10.1016/S0169-5347(02)02585-5 (2002).
Article Google ScholarÂ
6.
Turissini, D. A., McGirr, J. A., Patel, S. S., David, J. R. & Matute, D. R. The rate of evolution of postmating-prezygotic reproductive isolation in Drosophila. Mol. Biol. Evol. 35, 312â334. https://doi.org/10.1093/molbev/msx271 (2018).
CAS Article PubMed Google ScholarÂ
7.
Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59, 705â719. https://doi.org/10.1111/j.0014-3820.2005.tb01747.x (2005).
Article PubMed Google ScholarÂ
8.
Crespi, B. J. Causes of assortative mating in arthropods. Anim. Behav. 38, 980â1000. https://doi.org/10.1016/S0003-3472(89)80138-1 (1989).
Article Google ScholarÂ
9.
Smadja, C. M. & Butlin, R. K. A framework for comparing processes of speciation in the presence of gene flow. Mol. Ecol. 20, 5123â5140. https://doi.org/10.1111/j.1365-294X.2011.05350.x (2011).
Article PubMed Google ScholarÂ
10.
Servedio, M. R. Geography, assortative mating, and the effects of sexual selection on speciation with gene flow. Evol. Appl. 9, 91â102. https://doi.org/10.1111/eva.12296 (2016).
Article PubMed Google ScholarÂ
11.
Merot, C., Salazar, C., Merrill, R. M., Jiggins, C. D. & Joron, M. What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies. Proc. R. Soc. B Biol. Sci. 284, 20170335. https://doi.org/10.1098/rspb.2017.0335 (2017).
Article Google ScholarÂ
12.
Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1â20. https://doi.org/10.1086/694889 (2018).
Article PubMed Google ScholarÂ
13.
Janicke, T., Marie-Orleach, L., Aubier, T. G., Perrier, C. & Morrow, E. H. Assortative mating in animals and its role for speciation. Am. Nat. 194, 865â875. https://doi.org/10.1086/705825 (2019).
Article PubMed Google ScholarÂ
14.
Richards, E. J., Servedio, M. R. & Martin, C. H. Searching for sympatric speciation in the genomic era. BioEssays 41, 1900047. https://doi.org/10.1002/bies.201900047 (2019).
Article Google ScholarÂ
15.
Jennings, J. H., Snook, R. R. & Hoikkala, A. Reproductive isolation among allopatric Drosophila montana populations. Evolution 68, 3095â3108. https://doi.org/10.1111/evo.12535 (2014).
Article PubMed Google ScholarÂ
16.
Alipaz, J. A., Wu, C. & Karr, T. L. Gametic incompatibilities between races of Drosophila melanogaster. Proc. R. Soc. Lond. B https://doi.org/10.1098/rspb.2000.1420 (2001).
Article Google ScholarÂ
17.
McQuaid, C. D. & Dower, K. M. Enhancement of habitat heterogeneity and species richness on rocky shores inundated by sand. Oecologia 84, 142â144. https://doi.org/10.1007/BF00665608 (1990).
ADS Article PubMed Google ScholarÂ
18.
Archambault, P. & Bourget, E. Scales of coastal heterogeneity and benthic intertidal species richness, diversity and abundance. Mar. Ecol. Prog. Ser. 136, 111â121. https://doi.org/10.3354/meps136111 (1996).
ADS Article Google ScholarÂ
19.
de Forges, B. R., Koslow, J. A. & Poore, G. C. B. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405, 944â947. https://doi.org/10.1038/35016066 (2000).
ADS CAS Article PubMed Google ScholarÂ
20.
Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3â35. https://doi.org/10.1890/04-0922 (2005).
Article Google ScholarÂ
21.
Williams, S. T. & Reid, D. G. Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina. Evolution 58, 2227â2251. https://doi.org/10.1111/j.0014-3820.2004.tb01600.x (2004).
CAS Article PubMed Google ScholarÂ
22.
Frey, M. A. The relative importance of geography and ecology in species diversification: evidence from a tropical marine intertidal snail (Nerita). J. Biogeogr. 37, 1515â1528. https://doi.org/10.1111/j.1365-2699.2010.02283.x (2010).
Article Google ScholarÂ
23.
Pereyra, R. T., Bergström, L., Kautsky, L. & Johannesson, K. Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evol. Biol. 9, 70. https://doi.org/10.1186/1471-2148-9-70 (2009).
Article PubMed PubMed Central Google ScholarÂ
24.
CĂĄnovas, F. G., Mota, C. F., SerrĂŁo, E. A. & Pearson, G. A. Driving south: A multi-gene phylogeny of the brown algal family Fucaceae reveals relationships and recent drivers of a marine radiation. BMC Evol. Biol. 11, 371. https://doi.org/10.1186/1471-2148-11-371 (2011).
Article PubMed PubMed Central Google ScholarÂ
25.
Coyer, J. A. et al. Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Mol. Phylogenet. Evol. 58, 283â296. https://doi.org/10.1016/j.ympev.2010.11.015 (2011).
CAS Article PubMed Google ScholarÂ
26.
Robinson, J. D. & Dillon, R. T. Genetic divergence among sympatric populations of three species of oyster drills (Urosalpinx) in Cedar Key Florida. Bull. Mar. Sci. 82, 19â31 (2008).
Google ScholarÂ
27.
Wares, J. P. Intraspecific variation and geographic isolation in Idotea balthica (Isopoda: Valvifera). J. Crustac. Biol. 21, 1007â1013. https://doi.org/10.1163/20021975-99990193 (2001).
Article Google ScholarÂ
28.
Maltseva, A. L. et al. Microhabitat distribution, shell shape, and metabolomes in sympatric populations of closely related species of the genus Littorina (Neritrema) in two sites in the Norwegian and Barents Sea. PeerJ https://doi.org/10.1594/PANGAEA.923735 (2021).
Article Google ScholarÂ
29.
Pickles, A. & Grahame, J. Mate choice in divergent morphs of the gastropod mollusc Littorina saxatilis (Olivi): speciation in action?. Anim. Behav. 58, 181â184. https://doi.org/10.1006/anbe.1999.1115 (1999).
CAS Article PubMed Google ScholarÂ
30.
Erlandsson, J. Do reproductive strategy and breeding season influence the presence of mate recognition in the intertidal snail Littorina?. Invertebr. Reprod. Dev. 41, 53â60. https://doi.org/10.1080/07924259.2002.9652735 (2002).
Article Google ScholarÂ
31.
Johannesson, K. et al. Male discrimination of female mucous trails permits assortative mating in a marine snail species. Evolution 62, 3178â3184. https://doi.org/10.2307/25483552 (2008).
Article PubMed Google ScholarÂ
32.
Ng, T. P. & Johannesson, K. No precopulatory inbreeding avoidance in the intertidal snail Littorina saxatilis. J. Molluscan Stud. 82, 213â215. https://doi.org/10.1093/mollus/eyv035 (2016).
Article Google ScholarÂ
33.
Reid, D. G. Systematics and evolution of Littorina. vol. 164 (The Ray Society, 1996).
34.
Granovitch, A. I., Mikhailova, N. A., Znamenskaya, O. & Petrova, Y. A. Species complex of mollusks of the genus Littorina (Gastropoda, Prosobranchia) from the eastern Murman coast. Zool. Z. 83, 1305â1316 (2004) (In Russian).
Google ScholarÂ
35.
Reid, D. G., Dyal, P. & Williams, S. T. A global molecular phylogeny of 147 periwinkle species (Gastropoda, Littorininae). Zool. Scr. 41, 125â136. https://doi.org/10.1111/j.1463-6409.2011.00505.x (2012).
Article Google ScholarÂ
36.
Granovitch, A. I., Maximovich, A. N., Avanesyan, A. V., Starunova, Z. I. & Mikhailova, N. A. Micro-spatial distribution of two sibling periwinkle species across the intertidal indicates hybrdization. Genetica 141, 293â301. https://doi.org/10.1007/s10709-013-9728-3 (2013).
Article PubMed Google ScholarÂ
37.
Raffaelli, D. G. Observations of the copulatory behavior of Littorina rudis Maton and Littorina nigrolineata Gray (Gastropoda: Prosobranchia). Veliger 20, 75â77. https://doi.org/10.1007/BF00028082 (1977).
Article Google ScholarÂ
38.
Saur, M. Mate discrimination in Littorina littorea (L.) and L. saxatilis (Olivi) (Mollusca:Prosobranchia). Hydrobiologia 193, 261â270. https://doi.org/10.1007/BF00028082 (1990).
Article Google ScholarÂ
39.
Erlandsson, J. & Johannesson, K. Sexual selection on female size in a marine snail, Littorina littorea (L.). J. Exp. Mar. Biol. Ecol. 181, 145â157. https://doi.org/10.1016/0022-0981(94)90125-2 (1994).
Article Google ScholarÂ
40.
Johannesson, K., RolĂĄn-Alvarez, E. & Ekendahl, A. Incipient reproductive isolation between two sympatric morphs of the intertidal snail Littorina saxatilis. Evolution 49, 1180â1190. https://doi.org/10.1111/j.1558-5646.1995.tb04445.x (1995).
Article PubMed Google ScholarÂ
41.
RolĂĄn-Alvarez, E., Zapata, C. & Alvarez, G. Multilocus heterozygosity and sexual selection in a natural population of the marine snail Littorina mariae (Gastropoda: Prosobranchia). Heredity 75, 17â25. https://doi.org/10.1038/hdy.1995.99 (1995).
Article Google ScholarÂ
42.
Erlandsson, J. & RolĂĄn-Alvarez, E. Sexual selection and assortative mating by size and their roles in the maintenance of a polymorphism in Swedish Littorina saxatilis populations. Hydrobiologia 378, 59â69. https://doi.org/10.1023/A:1003277202763 (1998).
Article Google ScholarÂ
43.
RolĂĄn-Alvarez, E., Erlandsson, J., Johannesson, K. & Cruz, R. Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations. J. Evol. Biol. 12, 879â890. https://doi.org/10.1046/j.1420-9101.1999.00086.x (1999).
Article Google ScholarÂ
44.
Johannesson, K., Saltin, S. H., Duranovic, I., Havenhand, J. N. & Jonsson, P. R. Indiscriminate males: Mating behaviour of a marine snail compromised by a sexual conflict?. PLoS ONE 5, e12005. https://doi.org/10.1371/journal.pone.0012005 (2010).
ADS CAS Article PubMed PubMed Central Google ScholarÂ
45.
Ng, T. P. T., Davies, M. S., Stafford, R. & Williams, G. A. Mucus trail following as a mate-searching strategy in mangrove littorinid snails. Anim. Behav. 82, 459â465. https://doi.org/10.1016/j.anbehav.2011.05.017 (2011).
Article Google ScholarÂ
46.
Saltin, S. H. Mate Choice and Its Evolutionary Consequences in Intertidal Snails (Littorina spp.). (Thesis for the degree of Doctor of Philosophy). Gothenburg, Sweden: University of Gothenburg. (2013).
47.
Estévez, D. et al. A novel method to estimate the spatial scale of mate choice in the wild. Behav. Ecol. Sociobiol. 72, 195. https://doi.org/10.1007/s00265-018-2622-3 (2018).
Article Google ScholarÂ
48.
Carvajal-RodrĂguez, A. Multi-model inference of non-random mating from an information theoretic approach. Theor. Popul. Biol. 131, 38â53. https://doi.org/10.1016/j.tpb.2019.11.002 (2020).
Article PubMed MATH Google ScholarÂ
49.
Perini, S., RafajloviÄ, M., Westram, A. M., Johannesson, K. & Butlin, R. K. Assortative mating, sexual selection, and their consequences for gene flow in Littorina. Evolution 74, 1482â1497. https://doi.org/10.1111/evo.14027 (2020).
Article PubMed Google ScholarÂ
50.
Hollander, J., Lindegarth, M. & Johannesson, K. Local adaptation but not geographical separation promotes assortative mating in a snail. Anim. Behav. 70, 1209â1219. https://doi.org/10.1016/j.anbehav.2005.03.014 (2005).
Article Google ScholarÂ
51.
Merrell, D. J. Measurement of sexual isolation and selective mating. Evolution https://doi.org/10.2307/2405599 (1950).
ADS Article Google ScholarÂ
52.
RolĂĄn-Alvarez, E. & Caballero, A. Estimating sexual selection and sexual isolation effects from mating frequencies. Evolution 54, 30â36. https://doi.org/10.1111/j.0014-3820.2000.tb00004.x (2000).
Article PubMed Google ScholarÂ
53.
Ter Braak, C. J. F. Partial canonical correspondence analysis. In Classification and Related Methods of data Analysis: Proceedings of the First Conference of the International Federation of Classification Societies (IFCS), Technical University of Aachen, FRG, 29 June-1 July 1987 551â558 (Elsevier, 1988).
54.
Legendre, P. & Legendre, L. Numerical Ecology Vol. 24 (Elsevier, Amsterdam, 2012).
Google ScholarÂ
55.
Hannaford Ellis, C. J. Patterns of reproduction in four Littorina species. J. Molluscan Stud. 49, 98â106. https://doi.org/10.1093/oxfordjournals.mollus.a065711 (1983).
Article Google ScholarÂ
56.
Sokolova, I. M. Influence of trematodes on the demography of Littorina saxatilis (Gastropoda: Prosobranchia: Littorinidae) in the White Sea. Dis. Aquat. Organ. 21, 91â101. https://doi.org/10.3354/dao021091 (1995).
Article Google ScholarÂ
57.
Hull, S. L., Grahame, J. & Mill, P. J. Reproduction in four populations of brooding periwinkle (Littorina) at Ravenscar, North Yorkshire: Adaptation to the local environment?. J. Mar. Biol. Assoc. 79, 891â898. https://doi.org/10.1017/S0025315499001058 (1999).
Article Google ScholarÂ
58.
Ganzha, E. V., Granovitch, A. I., Petrova, Y. A. & Mikhailova, N. A. Hystological analysis of penial glands of Littorina mollusks. Vestn. -Peterbg. Univ. 3, 40â46 (2006) (In Russian).
Google ScholarÂ
59.
Granovitch, A. I., Loskutova, Z. I., Gracheva, Y. A. & Mikhailova, N. A. Morphometric comparison of the copulatory organ in mollusks of âsaxatilisâ species complex (Caenogastropoda: Littorinidae): problems of identification of species and species status. Zool. Z. 87, 1425â1436 (2008).
Google ScholarÂ
60.
Mikhailova, N. A., Gracheva, Y. A. & Granovitch, A. I. Analysis of the interspecific mating frequency in the copulating pairs of the marine gastropods genus Littorina in âsaxatilisâ complex. Vestn. St Petersburg State Univ. 3, 5â9 (2008) (In Russian).
Google ScholarÂ
61.
Mikhailova, N. A., Gracheva, Y. A., Backeljau, T. & Granovitch, A. I. A potential species-specific molecular marker suggests interspecific hybridization between sibling species Littorina arcana and L. saxatilis (Mollusca, Caenogastropoda) in natural populations. Genetica 137, 333. https://doi.org/10.1007/s10709-009-9397-4 (2009).
CAS Article PubMed Google ScholarÂ
62.
Reid, D. G. Barnacle-dwelling ecotypes of three British Littorina species and the status of Littorina neglecta Bean. J. Molluscan Stud. 59, 51â62. https://doi.org/10.1093/mollus/59.1.51 (1993).
Article Google ScholarÂ
63.
Warwick, T., Knight, A. & Ward, R. Hybridisation in the Littorina saxatilis species complex (Prosobranchia: Mollusca). Hydrobiologia 193, 109â116. https://doi.org/10.1007/BF00028070 (1990).
Article Google ScholarÂ
64.
Stankowski, S. et al. The evolution of strong reproductive isolation between sympatric intertidal snails. Philos. Trans. R. Soc. B 375, 20190545. https://doi.org/10.1098/rstb.2019.0545 (2020).
CAS Article Google ScholarÂ
65.
RolĂĄn-Alvarez, E. et al. The scale-of-choice effect and how estimates of assortative mating in the wild can be biased due to heterogeneous samples. Evolution 69, 1845â1857. https://doi.org/10.1111/evo.12691 (2015).
Article PubMed Google ScholarÂ
66.
Ng, T. P. T., Williams, G. A., Davies, M. S., Stafford, R. & RolĂĄn-Alvarez, E. Sampling scale can cause bias in positive assortative mating estimates: Evidence from two intertidal snails. Biol. J. Linn. Soc. 119, 414â419. https://doi.org/10.1111/bij.12839 (2016).
Article Google ScholarÂ
67.
Mirkin, B. Mathematical Classification and Clustering (Springer Science & Business Media, Berlin, 1996).
Google ScholarÂ
68.
Rand, W. M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846â850. https://doi.org/10.2307/2284239 (1971).
Article Google ScholarÂ
69.
Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718â3720. https://doi.org/10.1093/bioinformatics/btv428 (2015).
CAS Article PubMed PubMed Central Google ScholarÂ
70.
R Core Team. R: A language and environment for statistical computing. Version 3.6.0. (R Foundation for Statistical Computing, 2019).
71.
RStudio Team. RStudio: Integrated Development Environment for R. (2019).
72.
Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer-Verlag, New York, 2011).
Google ScholarÂ
73.
Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5â5. (2019).
74.
Bateman, A. J. Analysis of data on sexual isolation. Evolution https://doi.org/10.1111/j.1558-5646.1949.tb00017.x (1949).
Article PubMed Google ScholarÂ
75.
PĂ©rez-Figueroa, A., Caballero, A. & RolĂĄn-Alvarez, E. Comparing the estimation properties of different statistics for measuring sexual isolation from mating frequencies. Biol. J. Linn. Soc. 85, 307â318. https://doi.org/10.1111/j.1095-8312.2005.00491.x (2005).
Article Google ScholarÂ
76.
Wheeler, B. & Torchiano, M. lmPerm: Permutation Tests for Linear Models. R Package Version 2.1â0. (2016).
77.
Maxwell, S. E., Delaney, H. D. & Kelley, K. Designing Experiments and Analyzing Data: A model Comparison Perspective (Routledge, London, 2017).
Google ScholarÂ
78.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, New York, 2016).
Google ScholarÂ
79.
Struhsaker, J. W. Breeding, spawning, spawning periodicity and early development in the Hawaiian Littorina: L. pintado (Wood), L. picta Philippi and L. scabra (LinnĂ©). J. Molluscan Stud. 37, 137â166. https://doi.org/10.1093/oxfordjournals.mollus.a064985 (1966).
Article Google ScholarÂ
80.
Kemppainen, P., Panova, M., Hollander, J. & Johannesson, K. Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. J. Evol. Biol. 22, 2000â2011. https://doi.org/10.1111/j.1420-9101.2009.01810.x (2009).
CAS Article PubMed Google ScholarÂ
81.
Carvalho, J. et al. De novo isolation of 17 microsatellite loci for flat periwinkles (Littorina fabalis and L. obtusata) and their application for species discrimination and hybridization studies. J. Molluscan Stud. 81, 421â425. https://doi.org/10.1093/mollus/eyv014 (2015).
Article Google ScholarÂ
82.
Costa, D. et al. Hybridization patterns between two marine snails, Littorina fabalis and L. obtusata. Ecol. Evol. 10, 1158â1179. https://doi.org/10.1002/ece3.5943 (2020).
Article PubMed PubMed Central Google ScholarÂ
83.
Carvalho, J., Sotelo, G., Galindo, J. & Faria, R. Genetic characterization of flat periwinkles (Littorinidae) from the Iberian Peninsula reveals interspecific hybridization and different degrees of differentiation. Biol. J. Linn. Soc. 118, 503â519. https://doi.org/10.1111/bij.12762 (2016).
Article Google ScholarÂ
84.
Maltseva, A. L. et al. Proteomic similarity of the Littorinid snails in the evolutionary context. PeerJ 8, e8546. https://doi.org/10.7717/peerj.8546 (2020).
Article PubMed PubMed Central Google ScholarÂ
85.
Ng, T. P. et al. The causal relationship between sexual selection and sexual size dimorphism in marine gastropods. Anim. Behav. 148, 53â62. https://doi.org/10.1016/j.anbehav.2018.12.005 (2019).
Article Google ScholarÂ
86.
Tatarenkov, A. & Johannesson, K. Evidence of a reproductive barrier between two forms of the marine periwinkle Littorina fabalis (Gastropoda). Biol. J. Linn. Soc. 63, 349â365. https://doi.org/10.1111/j.1095-8312.1998.tb01522.x (1998).
Article Google ScholarÂ
87.
Carvalho, J. G. M. Study on the Diversification of Flat Periwinkles (Littorina fabalis and L. obtusata): Insights from Genetics and Geometric Morphometrics. Doctoral Dissertation (2014).
88.
Lobov, A. A., Maltseva, A. L., Mikhailova, N. A. & Granovitch, A. I. LOSP: A newly identified sperm protein from Littorina obtusata. J. Molluscan Stud. 81, 512â515. https://doi.org/10.1093/mollus/eyv010 (2015).
Article Google ScholarÂ
89.
Lobov, A. A. et al. LOSP: A putative marker of parasperm lineage in male reproductive system of the prosobranch mollusk Littorina obtusata. J. Exp. Zool. B 330, 193â201. https://doi.org/10.1002/jez.b.22803 (2018).
CAS Article Google ScholarÂ
90.
Buckland-Nicks, J. A., Healy, J. M., Jamieson, B. G. M. & OâLeary, S. Paraspermatogenesis in Littoraria (Palustorina) articulata, with reference to other Littorinidae (Littorinoidea, Caenogastropoda). Invertebr. Biol. 119, 254â264. https://doi.org/10.1111/j.1744-7410.2000.tb00012.x (2000).
Article Google ScholarÂ
91.
Lobov, A. Gamete interaction proteins as factors of reproductive isolation of cryptic species of the genus Littorina Férussac, 1822. Thesis for the degree of Candidate of Biological Sciences. St.-Petersburg State University. https://doi.org/10.13140/RG.2.2.16769.68968. (2020).
92.
Ng, T. P. et al. Snails and their trails: the multiple functions of trail-following in gastropods. Biol. Rev. 88, 683â700. https://doi.org/10.1111/brv.12023 (2013).
Article PubMed Google ScholarÂ
93.
Erlandsson, J. & Kostylev, V. Trail following, speed and fractal dimension of movement in a marine prosobranch, Littorina littorea, during a mating and a non-mating season. Mar. Biol. 122, 87â94. https://doi.org/10.1007/BF00349281 (1995).
Article Google ScholarÂ
94.
RolĂĄn-Alvarez, E. et al. Nonallopatric and parallel origin of local reproductive barriers between two snail ecotypes. Mol. Ecol. 13, 3415â3424. https://doi.org/10.1111/j.1365-294X.2004.02330.x (2004).
CAS Article PubMed Google ScholarÂ
95.
Grahame, J. W., Wilding, C. S. & Butlin, R. K. Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis. Evolution 60, 268â278. https://doi.org/10.1111/j.0014-3820.2006.tb01105.x (2006).
CAS Article PubMed Google ScholarÂ
96.
Panova, M., Hollander, J. & Johannesson, K. Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Mol. Ecol. 15, 4021â4031. https://doi.org/10.1111/j.1365-294X.2006.03067.x (2006).
CAS Article PubMed Google ScholarÂ
97.
Maltseva, A. L. et al. Measuring physiological similarity of closely related littorinid species: A proteomic insight. Mar. Ecol. Prog. Ser. 552, 177â193. https://doi.org/10.3354/meps11770 (2016).
ADS CAS Article Google ScholarÂ
98.
Ward, R. D., Warwick, T. & Knight, A. J. Genetic analysis of ten polymorphic enzyme loci in Littorina saxatilis (Prosobranchia: Mollusca). Heredity 57, 233â241. https://doi.org/10.1038/hdy.1986.113 (1986).
CAS Article Google ScholarÂ
99.
Dopman, E. B., Robbins, P. S. & Seaman, A. Components of reproductive isolation between North American pheromone strains of the European corn borer. Evol. Int. J. Org. Evol. 64, 881â902. https://doi.org/10.1111/j.1558-5646.2009.00883.x (2010).
Article Google ScholarÂ
100.
Weissing, F. J., Edelaar, P. & Van Doorn, G. S. Adaptive speciation theory: A conceptual review. Behav. Ecol. Sociobiol. 65, 461â480. https://doi.org/10.1007/s00265-010-1125-7 (2011).
Article PubMed PubMed Central Google ScholarÂ
101.
Lobov, A., Maltseva, A., Mikhailova, N. & Granovitch, A. The molecular mechanisms of gametic incompatibility in invertebrates. Acta Nat. 11, 4â15 (2019).
CAS Article Google Scholar More