1.
Tsukamoto, K. Discovery of the spawning area for Japanese eel. Nature 356, 789–791 (1992).
ADS Article Google Scholar
2.
Tsukamoto, K. Spawning of eels near a seamount. Nature 439, 929 (2006).
ADS CAS PubMed Article PubMed Central Google Scholar
3.
Chow, S. et al. Discovery of mature freshwater eels in the open ocean. Fish. Sci. 75, 257–259 (2009).
CAS Article Google Scholar
4.
Kurogi, H. et al. First capture of post-spawning female of the Japanese eel Anguilla japonica at the southern West Mariana Ridge. Fish. Sci. 77, 199–205 (2011).
CAS Article Google Scholar
5.
Tsukamoto, K. et al. Positive buoyancy in eel leptocephali: an adaptation for life in the ocean surface layer. Mar. Biol. 156, 835–846 (2009).
Article Google Scholar
6.
Cheng, P. W. & Tzeng, W. N. Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Mar. Ecol. Prog. Ser. 131, 87–96 (1996).
ADS Article Google Scholar
7.
Chen, J. Z., Huang, S. L. & Han, Y. S. Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuar. Coast. Shelf Sci. 151, 361–369 (2014).
ADS CAS Article Google Scholar
8.
Tanaka, E. Stock assessment of Japanese eels using Japanese abundance indices. Fish. Sci. 80, 1129–1144 (2014).
CAS Article Google Scholar
9.
Jacoby, D. & Gollock, M. Anguilla anguilla. The IUCN red list of threatened species, version 2014.2. IUCN 2014 e.T60344A45833138. https://doi.org/10.1108/ICS-04-2017-0025 (2014).
10.
Onda, H. et al. Vertical distribution and assemblage structure of leptocephali in the North Equatorial Current region of the western Pacific. Mar. Ecol. Prog. Ser. 575, 119–136 (2017).
ADS Article Google Scholar
11.
Saijo, Y., Iizuka, S. & Asaoka, O. Chlorophyll maxima in Kuroshio and adjacent area. Mar. Biol. 4, 190–196 (1969).
CAS Article Google Scholar
12.
Furuya, K. Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean: Vertical profiles of phytoplankton biomass and its relationship with chlorophylla and particulate organic carbon. Mar. Biol. 107, 529–539 (1990).
CAS Article Google Scholar
13.
Otake, T., Nogami, K. & Maruyama, K. Dissolved and particulate organic matter as possible food sources for eel leptocephali. Mar. Ecol. Prog. Ser. 92, 27–34 (1993).
ADS Article Google Scholar
14.
Mochioka, N. & Iwamizu, M. Diet of anguilloid larvae: Leptocephali feed selectively on larvacean houses and fecal pellets. Mar. Biol. 125, 447–452 (1996).
Google Scholar
15.
Miller, M. J., Otake, T. & Aoyama, J. Observations of gut contents of leptocephali in the North Equatorial current and Tomini Bay Indonesia. Coast. Mar. Sci. 35, 277–288 (2012).
Google Scholar
16.
Tomoda, T. et al. Observations of gut contents of anguilliform leptocephali collected in the western North Pacific. Nippon Suisan Gakkaishi 84, 32–44 (2018).
Article Google Scholar
17.
Deibel, D., Parrish, C. C., Grønkjær, P., Munk, P. & GisselNielsen, T. Lipid class and fatty acid content of the leptocephalus larva of tropical eels. Lipids 47, 623–634 (2012).
CAS PubMed Article PubMed Central Google Scholar
18.
Liénart, C. et al. Geographic variation in stable isotopic and fatty acid composition of anguilliform leptocephali and particulate organic matter in the South Pacific. Mar. Ecol. Prog. Ser. 544, 225–241 (2016).
ADS Article CAS Google Scholar
19.
Miller, M. J. et al. A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol. Lett. 9, 20120826 (2013).
PubMed PubMed Central Article Google Scholar
20.
Miyazaki, S. et al. Stable isotope analysis of two species of anguilliform leptocephali (Anguilla japonica and Ariosoma major) relative to their feeding depth in the North Equatorial Current region. Mar. Biol. 158, 2555–2564 (2011).
CAS Article Google Scholar
21.
Chow, S. et al. Japanese eel Anguilla japonica do not assimilate nutrition during the oceanic spawning migration: evidence from stable isotope analysis. Mar. Ecol. Prog. Ser. 402, 233–238 (2010).
ADS CAS Article Google Scholar
22.
Chow, S. et al. Onboard rearing attempts for the Japanese eel leptocephali using POM-enriched water collected in the Western North Pacific. Aquat. Living Resour. 30, 1–7 (2017).
Article CAS Google Scholar
23.
Miller, M. J., Hanel, R., Feunteun, E. & Tsukamoto, K. The food source of Sargasso Sea leptocephali. Mar. Biol. 167, 57 (2020).
CAS Article Google Scholar
24.
Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).
CAS PubMed Article PubMed Central Google Scholar
25.
Wang, M. & Jeffs, A. G. Nutritional composition of potential zooplankton prey of spiny lobster larvae: a review. Rev. Aquac. 6, 270–299 (2014).
Article Google Scholar
26.
Ho, T. W., Hwang, J. S., Cheung, M. K., Kwan, H. S. & Wong, C. K. Dietary analysis on the shallow-water hydrothermal vent crab Xenograpsus testudinatus using Illumina sequencing. Mar. Biol. 162, 1787–1798 (2015).
CAS Article Google Scholar
27.
Chow, S. et al. Molecular diet analysis of Anguilliformes leptocephalus larvae collected in the western North Pacific. PLoS ONE 14, e0225610 (2019).
CAS PubMed PubMed Central Article Google Scholar
28.
Riemann, L. et al. Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biol. Lett. 6, 819–822 (2010).
CAS PubMed PubMed Central Article Google Scholar
29.
Ayala, D. J. et al. Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea. Sci. Rep. 8, 6156 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
30.
Estrada, M. et al. Phytoplankton across tropical and subtropical regions of the Atlantic Indian and Pacific Oceans. PLoS ONE 11, e0151699 (2016).
PubMed PubMed Central Article CAS Google Scholar
31.
Lundgreen, R. B. C. et al. Eukaryotic and cyanobacterial communities associated with marine snow particles in the oligotrophic Sargasso Sea. Sci. Rep. 9, 1–12 (2019).
CAS Article Google Scholar
32.
Ayala, D., Riemann, L. & Munk, P. Species composition and diversity of fish larvae in the Subtropical Convergence Zone of the Sargasso Sea from morphology and DNA barcoding. Fish. Oceanogr. 25, 85–104 (2016).
Article Google Scholar
33.
Arai, M. N. Active and passive factors affecting aggregations of hydromedusae: a review. Sci. Mar. 56, 99–108 (1992).
Google Scholar
34.
Boero, F. et al. Gelatinous plankton: Irregularities rule the world (sometimes). Mar. Ecol. Prog. Ser. 356, 299–310 (2008).
ADS Article Google Scholar
35.
Purcell, J. E. Feeding and growth of the siphonophore Muggiaea atlantica (Cunningham 1893). J. Exp. Mar. Bio. Ecol. 62, 39–54 (1982).
Article Google Scholar
36.
Alldredge, A. Particle aggregation dynamics. In Encyclopedia of Ocean Sciences, 2nd edn, 330–337 (Elsevier Inc., 2008). https://doi.org/10.1016/B978-012374473-9.00468-9
37.
Hosia, A. & Bamstedt, U. Seasonal abundance and vertical distribution of siphonophores in western Norwegian fjords. J. Plankton Res. 30, 951–962 (2008).
Article Google Scholar
38.
Lo, W. T., Yu, S. F. & Hsieh, H. Y. Effects of summer mesoscale hydrographic features on epipelagic siphonophore assemblages in the surrounding waters of Taiwan, western North Pacific Ocean. J. Oceanogr. 69, 495–509 (2013).
Article Google Scholar
39.
Lo, W.-T., Yu, S.-F. & Hsieh, H.-Y. Hydrographic processes driven by seasonal monsoon system affect siphonophore assemblages in tropical-subtropical waters (Western North Pacific Ocean). PLoS ONE 9, e100085 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
40.
Li, K. Z., Yin, J. Q., Huang, L. M. & Song, X. Y. Comparison of siphonophore distributions during the southwest and northeast monsoons on the northwest continental shelf of the South China Sea. J. Plankton Res. 34, 636–641 (2012).
Article Google Scholar
41.
López-López, L., Molinero, J. C., Tseng, L.-C., Chen, Q.-C. & Hwang, J.-S. Seasonal variability of the gelatinous carnivore zooplankton community in Northern Taiwan. J. Plankton Res. 35, 677–683 (2013).
Article Google Scholar
42.
Price, J. F. Upper ocean response to a hurricane. J. Phys. Ocean. 11, 153–175 (1981).
ADS Article Google Scholar
43.
Toratani, M. Primary production enhancement by typhoon Ketsana in 2003 in western North Pacific. In Remote Sensing of Inland, Coastal, and Oceanic Waters (eds. Frouin, R. J. et al.) 7150, 715013 (SPIE, 2008).
44.
Lin, I. I. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res. Ocean. 117, C03039 (2012).
ADS Article Google Scholar
45.
Ishida, H., Furusawa, K., Makino, T., Ishizaka, J. & Watanabe, Y. The effect of typhoons on phytoplankton communities and settling particle flux in the western North Pacific subtropical region. Oceanogr. Jpn. 25, 17–41 (2016).
Article Google Scholar
46.
Siswanto, E., Ishizaka, J., Yokouchi, K., Tanaka, K. & Tan, C. K. Estimation of interannual and interdecadal variations of typhoon-induced primary production: a case study for the outer shelf of the East China Sea. Geophys. Res. Lett. 34, L03604 (2007).
ADS Article Google Scholar
47.
Chen, Y. L. L., Houng-Yung, C., Jan, S. & Tuo, S. H. Phytoplankton productivity enhancement and assemblage change in the upstream Kuroshio after typhoons. Mar. Ecol. Prog. Ser. 385, 111–126 (2009).
ADS CAS Article Google Scholar
48.
Tsuchiya, K. et al. Typhoon-induced response of phytoplankton and bacteria in temperate coastal waters. Estuar. Coast. Shelf Sci. 167, 458–465 (2015).
ADS CAS Article Google Scholar
49.
Typhoon information. Japan Meteorological Agency. https://www.data.jma.go.jp/fcd/yoho/typhoon/index.html. Accessed 10 Dec 2020.
50.
Miller, M. J. et al. Morphology and gut contents of anguillid and marine eel larvae in the Sargasso Sea. Zool. Anz. 279, 138–151 (2019).
Article Google Scholar
51.
Singh, P., Liu, Y., Li, L. & Wang, G. Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl. Microbiol. Biotechnol. 98, 5789–5805 (2014).
CAS PubMed Article Google Scholar
52.
Tanaka, H., Kagawa, H., Ohta, H., Unuma, T. & Nomura, K. The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol. Biochem. 28, 493–497 (2003).
Article Google Scholar
53.
Stenly, W. et al. Ingestion by Japanese eel Anguilla japonica larvae on various minute zooplanktons. Aquac. Sci. 61, 341–347 (2013).
Google Scholar
54.
Butts, I. A. E., Sørensen, S. R., Politis, S. N. & Tomkiewicz, J. First-feeding by European eel larvae: a step towards closing the life cycle in captivity. Aquaculture 464, 451–458 (2016).
Article Google Scholar
55.
Tsukamoto, K. & Miller, M. J. The mysterious feeding ecology of leptocephali: a unique strategy of consuming marine snow materials. Fish. Sci. 87, 11–29 (2020).
Article CAS Google Scholar
56.
Bouilliart, M., Tomkiewicz, J., Lauesen, P., De Kegel, B. & Adriaens, D. Musculoskeletal anatomy and feeding performance of pre-feeding engyodontic larvae of the European eel (Anguilla anguilla). J. Anat. 227, 325–340 (2015).
PubMed PubMed Central Article Google Scholar
57.
Westeberg, H. A proposal regarding the source of nutrition of leptocephalus larvae. Int. Rev. Hydrobiol. Hydrogr. 75, 863–864 (1990).
Article Google Scholar
58.
Miller, M. Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. Aqua-BioScience Monogr. https://doi.org/10.1093/gbe/evy021 (2009).
ADS Article Google Scholar
59.
Strom, S., Bright, K., Fredrickson, K. & Brahamsha, B. The Synechococcus cell surface protein SwmA increases vulnerability to predation by flagellates and ciliates. Limnol. Oceanogr. 62, 784–794 (2017).
ADS Article Google Scholar
60.
Benner, R. & Kaiser, K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnol. Oceanogr. 48, 118–128 (2003).
ADS CAS Article Google Scholar
61.
Seymour, J., Ahmed, T., Durham, W. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).
Article Google Scholar
62.
Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science (80-) 343, 183–186 (2014).
ADS CAS Article Google Scholar
63.
Scanlan, D. Bacterial vesicles in the ocean. Science 343, 143–144 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
64.
Cisternas-Novoa, C., Lee, C. & Engel, A. Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP): Differences between their origin and vertical distributions in the ocean. Mar. Chem. 175, 56–71 (2015).
CAS Article Google Scholar
65.
Long, R. A. & Azam, F. Abundant protein-containing particles in the sea. Aquat. Microb. Ecol. 10, 213–221 (1996).
Article Google Scholar
66.
Tanoue, E., Ishii, M. & Midorikawa, T. Discrete dissolved and particulate proteins in oceanic waters. Limnol. Oceanogr. 41, 1334–1343 (1996).
ADS CAS Article Google Scholar
67.
Simon, M., Alldredge, A. L. & Azam, F. Bacterial carbon dynamics on marine snow. Mar. Ecol. Prog. Ser. 65, 205–211 (1990).
ADS CAS Article Google Scholar
68.
Godhe, A. et al. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl. Environ. Microbiol. 74, 7174–7182 (2008).
CAS PubMed PubMed Central Article Google Scholar
69.
Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52, 79–92 (2005).
CAS PubMed Article PubMed Central Google Scholar
70.
Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219 (2019).
Article Google Scholar
71.
Furuya, K. & Marumo, R. The structure of the phytoplankton community in the subsurface chlorophyll maxima in the western North Pacific Ocean. J. Plankton Res. 5, 393–406 (1983).
Article Google Scholar
72.
Kuroki, M., Okamura, A., Yamada, Y., Hayasaka, S. & Tsukamoto, K. Evaluation of optimum temperature for the early larval growth of Japanese eel in captivity. Fish. Sci. 85, 801–809 (2019).
CAS Article Google Scholar
73.
Okamura, A. et al. Effects of water temperature on early development of Japanese eel Anguilla japonica. Fish. Sci. 73, 1241–1248 (2007).
CAS Google Scholar
74.
Kurokawa, T. et al. Influence of water temperature on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. J. World Aquac. Soc. 39, 726–735 (2008).
Article Google Scholar
75.
Tsukamoto, K. et al. Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat. Commun. 2, 179 (2011).
ADS PubMed PubMed Central Article CAS Google Scholar
76.
Shirai, K. et al. Temperature and depth distribution of Japanese eel eggs estimated using otolith oxygen stable isotopes. Geochim. Cosmochim. Acta 236, 373–383 (2018).
ADS CAS Article Google Scholar
77.
Ichikawa, T. Particulate organic carbon and nitrogen in the adjacent seas of the Pacific Ocean. Mar. Biol. 68, 49–60 (1982).
CAS Article Google Scholar
78.
Hebel, D. V. & Karl, D. M. Seasonal, interannual and decadal variations in particulate matter concentrations and composition in the subtropical North Pacific Ocean. Deep Sea Res Part II Top. Stud. Oceanogr. 48, 1669–1695 (2001).
ADS CAS Article Google Scholar
79.
MacIntyre, S., Alldredge, A. L. & Gotschalk, C. C. Accumulation of marines now at density discontinuities in the water column. Limnol. Oceanogr. 40, 449–468 (1995).
ADS Article Google Scholar
80.
Tomas, C. R. & Hasle, G. R. Identifying Marine Phytoplankton (Academic Press, New York, 1997).
Google Scholar
81.
Suzuki, K. et al. Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry. Prog. Oceanogr. 64, 167–187 (2005).
ADS Article Google Scholar
82.
Nagai, S. et al. Influences of diurnal sampling bias on fixed-point monitoring of plankton biodiversity determined using a massively parallel sequencing-based technique. Gene 576, 667–675 (2016).
CAS PubMed Article PubMed Central Google Scholar
83.
Tanabe, A. S. et al. Comparative study of the validity of three regions of the 18S-rRNA gene for massively parallel sequencing-based monitoring of the planktonic eukaryote community. Mol. Ecol. Resour. 16, 402–414 (2016).
CAS PubMed Article PubMed Central Google Scholar
84.
Dzhembekova, N., Moncheva, S., Ivanova, P., Slabakova, N. & Nagai, S. Biodiversity of phytoplankton cyst assemblages in surface sediments of the Black Sea based on metabarcoding. Biotechnol. Biotechnol. Equip. 32, 1507–1513 (2018).
CAS Article Google Scholar
85.
Dzhembekova, N., Urusizaki, S., Moncheva, S., Ivanova, P. & Nagai, S. Applicability of massively parallel sequencing on monitoring harmful algae at Varna Bay in the Black Sea. Harmful Algae 68, 40–51 (2017).
PubMed Article PubMed Central Google Scholar
86.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
CAS PubMed PubMed Central Article Google Scholar
87.
Schloss, P. D., Gevers, D. & Westcott, S. L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6, e27310 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
88.
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
CAS PubMed PubMed Central Article Google Scholar
89.
Cheung, K. L. Y., Huen, J., Houry, W. A. & Ortega, J. Comparison of the multiple oligomeric structures observed for the Rvb1 and Rvb2 proteins. Biochem. Cell Biol. 88, 77–88 (2010).
CAS PubMed PubMed Central Article Google Scholar
90.
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
Article CAS Google Scholar
91.
Horton, T. et al. World register of marine species (WoRMS) (2018).
92.
R Core team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing , Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/ (2017). https://doi.org/10.2788/95827.
93.
Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).
Article Google Scholar
94.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32–46 (2001).
Google Scholar
95.
Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2. CRAN R (2018). ISBN 0-387-95457-0. More