More stories

  • in

    Healthy herds in the phytoplankton: the benefit of selective parasitism

    1.
    Slobodkin LB. Prudent predation does not require group selection. Am Nat. 1974;108:665–78.
    Article  Google Scholar 
    2.
    Williams PD. Unhealthy herds: some epidemiological consequences of host heterogeneity in predator-host-parasite systems. J Theor Biol. 2008;253:500–7.
    Article  Google Scholar 

    3.
    Packer C, Holt RD, Hudson PJ, Lafferty KD, Dobson AP. Keeping the herds healthy and alert: Implications of predator control for infectious disease. Ecol Lett. 2003;6:797–802.
    Article  Google Scholar 

    4.
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science 2015;348:1262073.
    Article  Google Scholar 

    5.
    Skovgaard A. Dirty tricks in the plankton: Diversity and role of marine parasitic protists. Acta Protozool. 2014;53:51–62.
    Google Scholar 

    6.
    Jephcott TG, Sime-Ngando T, Gleason FH, Macarthur DJ. Host-parasite interactions in food webs: Diversity, stability, and coevolution. Food Webs. 2016;6:1–8.
    Article  Google Scholar 

    7.
    Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles. 1995;9:359–72.
    CAS  Article  Google Scholar 

    8.
    Timmermans KR, Veldhuis MJ, Brussaard CP. Cell death in three marine diatom species in response to different irradiance levels, silicate, or iron concentrations. Aquat Micro Ecol. 2007;46:253–61.
    Article  Google Scholar 

    9.
    Pinto E, Van Nieuwerburgh L, De Barros MP, Pedersén M, Colepicolo P, Snoeijs P. Density-dependent patterns of thiamine and pigment production in the diatom Nitzschia microcephala. Phytochemistry. 2003;63:155–63.
    CAS  Article  Google Scholar 

    10.
    Manoylov KM. Intra- and interspecific competition for nutrients and light in diatom cultures. J Freshw Ecol. 2009;24:145–57.
    Article  Google Scholar 

    11.
    Houston DC, Cooper JE. The digestive tract of the whiteback griffon vulture and its role in disease transmission among wild ungulates. J Wildl Dis. 1975;11:306–13.
    CAS  Article  Google Scholar 

    12.
    Schaller G. The Serengeti lion: a study of predator-prey relations. London: University of Chicago Press; 1972.

    13.
    Krumm CE, Conner MM, Hobbs NT, Hunter DO, Miller MW. Mountain lions prey selectively on prion-infected mule deer. Biol Lett. 2010;6:209–11.
    Article  Google Scholar 

    14.
    Pole A, Gordon IJ, Gorman ML, MacAskill M. Prey selection by African wild dogs (Lycaon pictus) in southern Zimbabwe. J Zool. 2004;262:207–15.
    Article  Google Scholar 

    15.
    Husseman JS, Murray DL, Power G, Mack C, Wenger CR, Quigley H. Assessing differential prey selection patterns between two sympatric large carnivores. Oikos. 2003;101:591–601.
    Article  Google Scholar 

    16.
    Lafferty KD. Fishing for lobsters indirectly increases epidemics in sea urchins. Ecol Appl. 2004;14:1566–73.
    Article  Google Scholar 

    17.
    Duffy MA, Hall SR, Tessier AJ, Huebner M. Selective predators and their parasitized prey: Are epidemics in zooplankton under top-down control? Limnol Oceanogr. 2005;50:412–20.
    Article  Google Scholar 

    18.
    Hudson PJ, Dobson AP, Newborn D. Do parasites make prey vulnerable to predation? Red grouse and parasites. J Anim Ecol. 1992;61:681.
    Article  Google Scholar  More

  • in

    Causes and consequences of pattern diversification in a spatially self-organizing microbial community

    The “consumer first” pattern of spatial self-organization is the minority pattern
    We first determined which of the two patterns of spatial self-organization (i.e., the “producer first” or “consumer first” pattern (Fig. 1B, C)) is the minority pattern. We reasoned that the minority pattern is the one likely to be caused by genetic or nongenetic variants. When we performed range expansion experiments using equivalent initial cell densities of the producer and consumer (i.e., initial producer and consumer proportions of 0.5), the “consumer first” pattern was clearly the minority pattern (Fig. 1B). Among nine independent replicates, we observed mean numbers of 64 “producer first” patterns (SD = 9, n = 9) and 20 “consumer first” patterns per range expansion (SD = 4, n = 9), and the mean number of “producer first” patterns was significantly greater than the mean number of “consumer first“ patters (two-sample two-sided t test; P = 1 × 10−6, n = 9). Overall, “consumer first” patterns accounted for 24% (SD = 4%, n = 9) of the total number of patterns per range expansion. We therefore conclude that the “consumer first” pattern is indeed the minority pattern, and thus the pattern likely to be caused by genetic or phenotypic variants.
    The number of “consumer first” patterns depends on initial cell densities
    If the “consumer first” pattern were caused by genetic variants, then the number of “consumer first” patterns that emerge per range expansion should depend on the initial cell densities of the producer or consumer. For example, if a genetic variant of the consumer causes the emergence of the “consumer first” pattern, then increasing the initial cell density of the consumer should increase the number of the causative variants of the consumer, and thus promote the emergence of more “consumer first” patterns.
    To test this, we varied the initial producer proportion while holding the total initial cell density of the producer and consumer constant, thus allowing us to avoid potential confounding effects that may result from modifying the total initial cell density. We then quantified the mean number of “consumer first” patterns that emerged per range expansion as a function of the initial producer proportion. When we tested an initial producer proportion of 0.5 (i.e., an initial consumer proportion of 0.5), we observed the characteristic emergence of the two different patterns, where the “consumer first” pattern was the minority pattern (Fig. 2B). When we tested an initial producer proportion of 0.98 (i.e., an initial consumer proportion of 0.02), the “consumer first” pattern completely disappeared while the “producer first” pattern occupied the entire expansion area (Fig. 2A). In contrast, when we tested an initial producer proportion of 0.001 (i.e., an initial consumer proportion of 0.999), the “producer first” pattern completely disappeared while the “consumer first” pattern occupied the entire expansion area (Fig. 2C). We then repeated the experiment across a range of initial producer proportions and observed a decreasing monotonic relationship between the mean number of “consumer first” patterns that emerged per range expansion and the initial producer proportion (Fig. 3). We could model the decreasing relationship with a Poisson regression using the natural logarithm as the link function (intercept = 3.76, slope = −4.15, P for both parameters = 2 × 10−16, n = 9) (black line; Fig. 3). Thus, the number of “consumer first” patterns that emerge per range expansion does indeed depend on the initial cell densities of the producer and consumer.
    Fig. 2: Effect of the initial producer proportion on the number of “consumer first” patterns that emerge per range expansion after 4 weeks.

    The producer expressed the cyan fluorescent protein-encoding ecfp gene (blue) while the consumer expressed the green fluorescent protein-encoding egfp gene (green). Initial producer proportions include (A) 0.98, (B) 0.5, and (C) 0.001. The total initial cell densities of producer and consumer were identical across all of the tested initial producer proportions.

    Full size image

    Fig. 3: Effect of the initial producer proportion on the number of “consumer first” patterns that emerge per range expansion after 4 weeks.

    Each data point is the number of “consumer first” patterns that emerged for an independent range expansion. The black line is the fit of a Poisson regression model to the data. The gray area is the 95% confidence interval of Poisson distributions with λ = predicted value of the Poisson regression fit. The green line is the expected relationship between the number of “consumer first” patterns and the initial producer proportion if the “consumer first” pattern were caused by genetic variants of the consumer. The blue line is the expected relationship between the number of “consumer first” patterns and the initial producer proportion if the “consumer first” pattern were caused by genetic variants of the producer. The total initial cell densities of producer and consumer were identical across all of the tested initial proportions.

    Full size image

    Genetic variants as a cause of the observed pattern diversification
    While we found that the number of “consumer first” patterns that emerge per range expansion depends on the initial cell densities of the producer and consumer (Fig. 3), the log-linear form of the decreasing relationship is inconsistent with the “consumer first” pattern being caused by genetic variants. Consider initial producer proportions of 0.02. 0.05, or 0.1 (i.e., initial consumer proportions of 0.98, 0.95, or 0.9). At these initial producer proportions, the initial cell density of the consumer is approximately twofold greater (1.96-, 1.90-, and 1.8-fold, respectively) than that for an initial producer proportion of 0.5 (i.e., an initial consumer proportion of 0.5). If genetic variants of the consumer cause the emergence of the “consumer first” pattern, we would therefore expect approximately twofold more “consumer first” patterns to emerge per range expansion. More generally, we would expect the number of “consumer first” patterns that emerge per range expansion to decrease linearly as the initial producer proportion increases (i.e., as the initial consumer proportion decreases) (Fig. 3, green line) (see the Supplementary Text for the formulation of this expectation). We did not observe either of these expectations. First, at initial producer proportions of 0.02, 0.05, or 0.1 (i.e., initial consumer proportions of 0.98, 0.95, or 0.9), the number of “consumer first” patterns was not approximately twofold greater than at an initial producer proportion of 0.5 (i.e., an initial consumer proportion of 0.5). Instead, it was three to fivefold greater (Fig. 3) (one-sample two-sided t test; P = 6 × 10−5, n = 3). Second, we experimentally observed a decreasing log-linear relationship (black line; Fig. 3) rather than the expected decreasing linear relationship (green line; Fig. 3) between the number of “consumer first” patterns that emerged per range expansion and the initial producer proportion. Thus, we conclude that genetic variants of the consumer are unlikely to cause the emergence of the two patterns of spatial self-organization.
    Our analysis above assumes that the “consumer first” pattern is caused by genetic variants of the consumer. However, it is plausible that the “consumer first” pattern is instead caused by genetic variants of the producer. The form of the relationship between the number of “consumer first” patterns that emerged per range expansion and the initial cell densities of the producer and consumer, however, is again inconsistent with this hypothesis (Fig. 3). If genetic variants of the producer cause the emergence of the “consumer first” pattern, then we would expect the number of “consumer first” patterns that emerge per range expansion to increase as the initial producer proportion increases (blue line; Fig. 3). Stated alternatively, increasing the initial producer proportion will increase the abundance of the causative variants of the producer, and thus increase the number of “consumer first” patterns that emerge. However, we observed the opposite outcome, where the number of “consumer first” patterns that emerged per range expansion decreased as the initial producer proportion increased (black line; Fig. 3). Thus, we conclude that genetic variants of the producer are also unlikely to cause the emergence of the two different patterns of spatial self-organization.
    While the above analyses provide circumstantial evidence that genetic variants do not cause the simultaneous emergence of the two different patterns of spatial self-organization, we sought to provide more conclusive evidence of this by testing whether the “consumer first” pattern is heritable. To achieve this, we obtained a collection of isolates purified from prior “consumer first” patterns. We then mixed the isolates together (one producer with one consumer; initial producer and consumer proportions of 0.5) and repeated the range expansion experiment. Finally, we counted the numbers of “consumer first” patterns that emerged during the second range expansion and compared the numbers to those for pairs of the ancestral strains (producer and consumer). If the emergence of the “consumer first” pattern were heritable, we would expect more “consumer first” patterns when using pairs of isolates purified from prior “consumer first” patterns.
    We found that pairs of isolates (producer and consumer) purified from prior “consumer first” patterns do not behave differently when compared to pairs of the ancestral strains (producer and consumer). Among ten independent range expansions for a pair of isolates (producer and consumer) purified from a prior “consumer first” pattern, we found that the “consumer first” pattern completely covered the expansion area for one of the ten replicates (Supplementary Fig. S3a). However, among ten independent range expansions for the pair of ancestral strains (producer and consumer), we found that the “consumer first” pattern also completely covered the expansion area for one of the ten replicates (Supplementary Fig. S3b). Overall, among the remaining nine independent range expansions, we did not detect more “consumer first” patterns per range expansion for the pair of isolates (producer and consumer) purified from a prior “consumer first” pattern than for the pair of ancestral strains (producer and consumer) (two-sample two-sided t test; P = 0.27, n = 9). Moreover, we sequenced the genomes of four producer isolates and four consumer isolates purified from prior “consumer first” patterns and found only one putative genetic difference in a single consumer isolate when compared to their respective ancestors (Supplementary Text and Supplementary Table S3). Thus, the “consumer first” pattern is not heritable, and its emergence is therefore not caused by genetic variants.
    Neighborhood effects as a cause for the observed pattern diversification
    If the simultaneous emergence of the two different patterns of spatial self-organization is not caused by genetic variants, what then could be the cause? We argue that one plausible cause is neighborhood effects that emerge due to local differences in the initial spatial positionings of otherwise identical individuals. Consider random initial distributions of producer and consumer cells across a surface (initial producer and consumer proportions of 0.5; Fig. 4B). At some spatial locations, producer cells may initially lie sufficiently close to the expansion frontier such that the consumer cells do not physically impede their expansion (white arrow; Fig. 4B). The producer cells would then expand first while the consumer cells would expand afterwards, giving rise to the “producer first” pattern (white arrow; Fig. 4B). However, at other spatial locations, producer cells may initially lie behind a cluster of consumer cells such that the consumer cells physically impede the expansion of the producer cells (green arrow; Fig. 4B). Indeed, we observed this experimentally at an intermediate timepoint of expansion (Supplementary Fig. S4). These clusters of consumer cells can occur purely as a consequence of the random initial spatial positionings of those cells, a process known as Poisson clumping [55]. The producer cells would then shove the consumer cells forward as they expand, giving rise to the “consumer first” pattern (green arrow; Fig. 4B). This hypothesis assumes that cell shoving is the dominant form of cell movement in the densely packed expanding microbial colonies produced by our synthetic microbial community, which is an assumption supported by numerous experimental and theoretical investigations [17, 53, 56,57,58,59,60].
    Fig. 4: Conceptual model for how local differences in the initial spatial positionings of individual cells could promote diversification in patterns of spatial self-organization.

    The producer is blue while the consumer is green. The initial producer proportion is (A) approximating to 1, (B) 0.5, or (C) approximating to 0. White arrows indicate “producer first” patterns and green arrows indicate “consumer first” patterns. The horizontal panels from left to right depict pattern formation over time.

    Full size image

    Importantly, this hypothesis is qualitatively consistent with our experimentally observed relationship between the number of “consumer first” patterns that emerge per range expansion and the initial proportions of the producer and consumer (Fig. 3). If producer cells initially far outnumber consumer cells, then the “consumer first” pattern should become less numerous (Fig. 4A). This is because there are fewer consumer cells present to create the necessary cell clusters that physically impede the expansion of the producer cells, and the producer cells can therefore expand immediately giving rise to the “producer first” pattern (Fig. 4A). In contrast, if the consumer cells initially far outnumber producer cells, then the “consumer first” pattern should become more numerous (Fig. 4C). This is because there are more consumer cells present to create the necessary cell clusters that physically impede the expansion of the producer cells, and the producer cells must therefore shove the consumer cells forward giving rise to the “consumer first” pattern (Fig. 4C).
    This hypothesis is also consistent with quantitative features of our experimentally observed relationship between the number of “consumer first” patterns that emerge per range expansion and the initial proportions of the producer and consumer (Fig. 3). The initial spatial distributions of producer and consumer cells can be thought of as realizations of a Poisson point process. Such a process by chance produces clusters of consumer cells whose occurrence is described by a Poisson distribution with mean and variance λ. The mean number of consumer clusters and variance depend on the initial proportion of the consumer in a log-linear manner. As the initial proportion of the consumer increases, the probability for a consumer cluster to occur also increases. This, in turn, increases the probability that a “consumer first” pattern will form and increases the variance in the expected number of “consumer first” patterns. We found that this Poisson process accurately captures key features of our experimental data. First, the relationship between the number of “consumer first” patterns and the initial consumer proportion is modeled very well by a Poisson regression (Fig. 3). Second, the variance in the number of “consumer first” patterns increases as the experimentally observed number of “consumer first” patterns increases (Fig. 3). Third, the 95% confidence intervals of the Poisson distributions with λ equal to the predicted value of the Poisson regression matches the spread of the experimentally observed number of “consumer first” patterns (Fig. 3). In summary, the log-linear shape and the increasing variance of the data are thus consistent with our hypothesis that Poisson clumping due to the random initial spatial positionings of individuals causes the ‘consumer first’ pattern and promotes the observed diversification in patterns of spatial self-organization.
    To provide further evidence that neighborhood effects due to local differences in the initial spatial positionings of individuals can promote diversification in patterns of spatial self-organization, we performed mathematical simulations with an individual-based model that accounts for cell shoving during range expansion. The original model and its adaptions to range expansion are described in detail elsewhere [17, 53]. We further adapted the model to simulate the emergence of spatial self-organization during expansion of our own synthetic microbial community [20]. In this study, we applied the model for two purposes. First, we asked whether the model could simulate the simultaneous emergence of the two different patterns of spatial self-organization in the absence of spatial heterogeneity in the initial abiotic environment. Second, we varied the initial producer proportion and evaluated the consequences on the number of “consumer first” patterns that emerge during range expansion. Note that our implementation of the model does not incorporate genetic or stochastic phenotypic heterogeneity or demographic effects. However, our implementation does account for heterogeneity in the initial spatial positionings of individuals, as we randomly distributed individuals of the producer and consumer across the inoculation area prior to the onset of community expansion.
    Our simulations revealed three important outcomes. First, when we tested an initial producer proportion of 0.98 (i.e., an initial consumer proportion of 0.02), we found rare localized spatial areas where consumer cells were pushed forward by producer cells (Fig. 5A and Supplementary Movie S1). These cells maintained a spatial position at the expansion frontier for a prolonged period of time and formed a characteristic “consumer first” pattern (Fig. 5A and Supplementary Movie S1). Second, at this initial producer proportion, both “producer first” and “consumer first” patterns emerged simultaneously, from the very origin of expansion, and at the same length scale, even though the initial abiotic environment was spatially homogeneous and all individuals were subject the same deterministic rules (Fig. 5A and Supplementary Movie S1). Finally, when we decreased the initial producer proportion to 0.02 (i.e., an initial consumer proportion of 0.98), the number of consumer cells that maintained a position at the expansion frontier increased, thus indicating the formation of more “consumer first” patterns (Fig. 5B and Supplementary Movie S2). All three of these observations are consistent with our experimental observations and, importantly, did not require the consideration of heterogeneity in the initial abiotic environment, genetic or stochastic phenotypic heterogeneity within populations, or demographic effects. Thus, neighborhood effects due to local differences in the initial spatial positionings of individuals are sufficient alone to promote pattern diversification and result in the emergence of two different patterns of spatial self-organization.
    Fig. 5: Individual-based modeling simulations of the effect of the initial producer proportion on the number of “consumer first” patterns that emerge per range expansion.

    The producer is blue while the consumer is green. Initial producer proportions are (A) 0.98 (see Supplementary Movie S1) and (B) 0.02 (see Supplementary Movie S2). The initial abiotic environment was spatially homogeneous and genetic heterogeneity, stochastic phenotypic heterogeneity, and demographic effects were not incorporated into the model. Producer and consumer cells were distributed randomly around the center prior to the onset of expansion and the total initial cell densities of producer and consumer were identical across all of the simulations. The white arrows indicate “producer first” patterns and the green arrow indicates a “consumer first” pattern.

    Full size image

    The different patterns of spatial self-organization have different community properties
    We finally asked whether the different patterns of spatial self-organization have different community-level properties. More specifically, we tested whether the different patterns have different expansion speeds. Two features of our previous experimental observations already point towards this being the case. First, the “consumer first” patterns (green arrows; Fig. 1C) extend further in the radial direction of expansion than do the “producer first” patterns (white arrows; Fig. 1C). This is readily observed at the expansion frontier, where the “consumer first” patterns tend to protrude outwards in the radial direction (Fig. 1C). Second, the “consumer first” patterns increase in width in the direction of expansion (green arrows; Fig. 1C). Both of these features are consistent with faster expansion speeds [61, 62].
    To further test this, we varied the initial producer proportion, and thus varied the ratio of “consumer first” to “producer first” patterns (Fig. 3), and quantified the expansion radii over time. We found that the initial expansion speeds were significantly faster for an initial producer proportion of 0.001 (i.e., an initial consumer proportion of 0.999) than for 0.98 (i.e., an initial consumer proportion of 0.02) (F-test; P = 1 × 10−5) (Fig. 6A). Thus, smaller initial producer proportions that promote the emergence of more ‘consumer first’ patterns result in faster expansion speeds. Moreover, when we varied the initial producer proportion between 0.02 and 0.98 (i.e., initial consumer proportions between 0.98 and 0.02), we found a decreasing relationship between the final expansion radius and the initial producer proportion (linear model: final expansion radius ~ initial producer proportion; slope = −263, R2 = 0.42, P = 2 × 10−4, n = 9) (Fig. 6B). Thus, smaller initial producer proportions that promote the emergence of more “consumer first” patterns result in a greater extent of community expansion over the time-course of the experiment. Together, our data demonstrate that the different patterns of spatial self-organization do indeed have different expansion speeds.
    Fig. 6: Effect of the initial producer proportion on expansion properties.

    A Effect on the initial expansion speed. B Effect on the final expansion radius. Each data point is the expansion radius for an independent range expansion. The lines are linear models and the gray areas are the 95% confidence intervals. The total initial cell densities of producer and consumer were identical across all of the tested initial producer proportions. The final expansion radii were measured after 4 weeks of incubation.

    Full size image More

  • in

    Efficient Lévy walks in virtual human foraging

    1.
    Rosati, A. G. & Cognition, F. Reviving the ecological intelligence hypothesis. Trends Cognit. Sci. 21(9), 691–702. https://doi.org/10.1016/j.tics.2017.05.011 (2017) (ISSN 1879307X).
    Article  Google Scholar 
    2.
    Kuhn, S. L., Raichlen, D. A. & Clark, A. E. What moves us? How mobility and movement are at the center of human evolution. Evolut. Anthropol. 25(3), 86–97. https://doi.org/10.1002/evan.21480 (2016).
    Article  Google Scholar 

    3.
    Pacheco-Cobos, L. et al. Nahua mushroom gatherers use area-restricted search strategies that conform to marginal value theorem predictions. Proc. Natl. Acad. Sci. USA 116(21), 10339–10347. https://doi.org/10.1073/pnas.1814476116 (2019) (ISSN 10916490).
    CAS  Article  PubMed  Google Scholar 

    4.
    Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401(6756), 911–914. https://doi.org/10.1038/44831 (1999) (ISSN 00280836).
    CAS  Article  PubMed  ADS  Google Scholar 

    5.
    Bartumeus, F. Lévy processes in animal movement: an evolutionary hypothesis. Fractals 15(2), 151–162. https://doi.org/10.1142/S0218348X07003460 (2007).
    Article  Google Scholar 

    6.
    Bartumeus, F. et al. Foraging success under uncertainty: search tradeoffs and optimal space use. Ecol. Lett. 19(11), 1299–1313. https://doi.org/10.1111/ele.12660 (2016).
    Article  PubMed  Google Scholar 

    7.
    Sims, D. W. et al. Scaling laws of marine predator search behaviour. Nature 451(7182), 1098–1102. https://doi.org/10.1038/nature06518 (2008).
    CAS  Article  PubMed  ADS  Google Scholar 

    8.
    Bartumeus, F., Peters, F., Pueyo, S., Marrasé, C. & Catalan, J. Helical Lévy walks: adjusting searching statistics to resource availability in microzooplankton. Proc. Natl. Acad. Sci. USA 100(22), 12771–12775. https://doi.org/10.1073/pnas.2137243100 (2003).
    CAS  Article  PubMed  ADS  Google Scholar 

    9.
    Boyer, D., Crofoot, M. C. & Walsh, P. D. Non-random walks in monkeys and humans. J. R. Soc. Interface 9(70), 842–847. https://doi.org/10.1098/rsif.2011.0582 (2012) (ISSN 17425662).
    Article  PubMed  Google Scholar 

    10.
    Brown, C. T., Liebovitch, L. S. & Glendon, R. Lévy flights in dobe Ju/’hoansi foraging patterns. Hum. Ecol. 35(1), 129–138. https://doi.org/10.1007/s10745-006-9083-4 (2007) (ISSN 03007839).
    Article  Google Scholar 

    11.
    Raichien, D. A. et al. Evidence of Lévy walk foraging patterns inhuman hunter-gatherers. Proc. Natl. Acad. Sci. USA 111(2), 728–733. https://doi.org/10.1073/pnas.1318616111 (2014).
    CAS  Article  ADS  Google Scholar 

    12.
    Kölzsch, A. et al. Experimental evidence for inherent lévy search behaviour in foraging animals. Proc. R. Soc. B Biol. Sci. 282(1807), 20150424. https://doi.org/10.1098/rspb.2015.0424 (2005).
    Article  Google Scholar 

    13.
    Kramer, D. L. & McLaughlin, R. L. The behavioral ecology of intermittent locomotion. Am. Zool. 41(2), 137–153. https://doi.org/10.1093/icb/41.2.137 (2001).
    Article  Google Scholar 

    14.
    Bartumeus, F. & Levin, S.A. Fractal reorientation clocks: Linking animal behavior to statistical patterns of search. Technical Report 49, (2008). https://www.pnas.org/content/pnas/105/49/19072.full.pdf.

    15.
    Bazazi, S., Bartumeus, F., Hale, J. J. & Couzin, I. D. Intermittent motion in desert locusts: behavioural complexity in simple environments. PLoS Comput. Biol. 8(5), e1002498. https://doi.org/10.1371/journal.pcbi.1002498 (2012).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    16.
    Reynolds, A. Liberating Lévy walk research from the shackles of optimal foraging (2015). ISSN 15710645.

    17.
    Grove, M., Lycett, S.J. & Chauhan, P.R. The Quantitative Analysis of Mobility: Ecological Techniques and Archaeological Extensions. https://doi.org/10.1007/978-1-4419-6861-6 (2010). ISBN 9781441968609.

    18.
    Bond, A. B. & Kamil, A. C. Spatial heterogeneity, predator cognition, and the evolution of color polymorphism in virtual prey. Proc. Natl. Acad. Sci. USA 103(9), 3214–3219. https://doi.org/10.1073/pnas.0509963103 (2006) (ISSN 00278424).
    CAS  Article  PubMed  ADS  Google Scholar 

    19.
    Spaethe, J., Tautz, J. & Chittka, L. Do honeybees detect colour targets using serial or parallel visual search?. J. Exp. Biol. 209(6), 987–993. https://doi.org/10.1242/jeb.02124 (2006) (ISSN 00220949).
    Article  PubMed  Google Scholar 

    20.
    de Froment, A. J., Rubenstein, D. I. & Levin, S. A. An extra dimension to decision-making in animals: the three-way trade-off between speed, effort per-unit-time and accuracy. PLoS Comput. Biol. 10(12), e1003937. https://doi.org/10.1371/journal.pcbi.1003937 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Campos, D., Méndez, V. & Bartumeus, F. Optimal intermittence in search strategies under speed-selective target detection. Phys. Rev. Lett. 108(2), 028102. https://doi.org/10.1103/PhysRevLett.108.028102 (2012) (ISSN 00319007).
    CAS  Article  PubMed  ADS  Google Scholar 

    22.
    Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113(4), 700–765. https://doi.org/10.1037/0033-295X.113.4.700 (2006).
    Article  PubMed  Google Scholar 

    23.
    Chittka, L., Skorupski, P. & Raine, N. E. Speed-accuracy tradeoffs in animal decision making. Trends Ecol. Evol. 24(7), 400–407. https://doi.org/10.1016/j.tree.2009.02.010 (2009) (ISSN 01695347).
    Article  PubMed  Google Scholar 

    24.
    Nityananda, V. & Chittka, L. Modality-specific attention in foraging bumblebees. R. Soc. Open Sci.https://doi.org/10.1098/rsos.150324 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    25.
    Chittka, L. & Raine, N.E. Recognition of flowers by pollinators, 8 (2006). ISSN 13695266.

    26.
    Zhang, M. et al. Finding any Waldo with zero-shot invariant and efficient visual search. Nat. Commun. 9(1), 1–15. https://doi.org/10.1038/s41467-018-06217-x (2018).
    CAS  Article  ADS  Google Scholar 

    27.
    Viswanathan, G. M., Da Luz, M. G. E., Raposo, E. P. & Eugene Stanley, H. The Physics of Foraging: An Introduction to Random Searches and Biological Encounters Vol. 9781107006 (Cambridge University Press, Cambridge, 2011). https://doi.org/10.1017/CBO9780511902680.
    Google Scholar 

    28.
    Wilson, R. P., Quintana, F. & Hobson, V. J. Construction of energy landscapes can clarify the movement and distribution of foraging animals. Proc. R. Soc. B Biol. Sci. 279(1730), 975–980. https://doi.org/10.1098/rspb.2011.1544 (2012).
    Article  Google Scholar 

    29.
    Ross, C. T. & Winterhalder, B. Sit-and-wait versus active-search hunting: a behavioral ecological model of optimal search mode. J. Theor. Biol. 387, 76–87. https://doi.org/10.1016/j.jtbi.2015.09.022 (2015) (ISSN 10958541).
    MathSciNet  Article  PubMed  MATH  Google Scholar 

    30.
    Gameiro, R. R., Kaspar, K., König, S. U., Nordholt, S. & König, P. Exploration and exploitation in natural viewing behavior. Sci. Rep. 7(1), 1–23. https://doi.org/10.1038/s41598-017-02526-1 (2017) (ISSN 20452322).
    CAS  Article  Google Scholar 

    31.
    LaScala-Gruenewald, D. E., Mehta, R. S., Liu, Yu. & Denny, M. W. Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies. Ecol. Model. 404(October 2018), 69–82. https://doi.org/10.1016/j.ecolmodel.2019.02.015 (2019) (ISSN 03043800).
    Article  Google Scholar 

    32.
    Mugan, U. & MacIver, M. A. Spatial planning with long visual range benefits escape from visual predators in complex naturalistic environments. Nat. Commun. 11(1), 1–14. https://doi.org/10.1038/s41467-020-16102-1 (2020) (ISSN 20411723).
    CAS  Article  Google Scholar 

    33.
    Kerster, B. E., Rhodes, T. & Kello, C. T. Spatial memory in foraging games. Cognition 148, 85–96. https://doi.org/10.1016/j.cognition.2015.12.015 (2016) (ISSN 18737838).
    Article  PubMed  Google Scholar 

    34.
    Martínez-García, R., Calabrese, J. M. & López, C. Online games: a novel approach to explore how partial information influences human random searches. Sci. Rep. 7(1), 40029. https://doi.org/10.1038/srep40029 (2017).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    35.
    Kalff, C. & Hills, T. Human foraging behavior: a virtual reality investigation on area restricted search in humans. Search 32(32), 168–173 (2006).
    Google Scholar 

    36.
    Kamil, A. C., Krebs, J. R. & Pulliam, H. R. Foraging Behavior. https://doi.org/10.1007/978-1-4613-1839-2 (1987). ISBN 9781461290278.

    37.
    Korn, C. W. & Bach, D. R. Heuristic and optimal policy computations in the human brain during sequential decision-making. Nat. Commun. 9(1), 1–15. https://doi.org/10.1038/s41467-017-02750-3 (2018).
    CAS  Article  Google Scholar 

    38.
    Zollner, P.A. & Lima, S.L. Search Strategies for Landscape-Level Interpatch Movements. Technical Report 3 (1999).

    39.
    Zurick, D., Valli, É., Farkas, R. & Troyer, H. Land of pure vision: The sacred geography of Tibet and the Himalaya. University Press of Kentucky (2014). ISBN 9780813145594.

    40.
    Kaushal, M. Divining the landscape-the Gaddi and his land. India Int. Centre Q. 27, 31–40 (2001).
    Google Scholar 

    41.
    Minetti, A. E., Moia, C., Roi, G. S., Susta, D. & Ferretti, G. Energy cost of walking and running at extreme uphill and downhill slopes. J. Appl. Physiol. 93(3), 1039–1046. https://doi.org/10.1152/japplphysiol.01177.2001 (2002).
    Article  PubMed  Google Scholar 

    42.
    Reynolds, A. M. Optimal random Lévy-loop searching: New insights into the searching behaviours of central-place foragers. Epl 82(2), 20001. https://doi.org/10.1209/0295-5075/82/20001 (2008).
    CAS  Article  ADS  Google Scholar 

    43.
    Ydenberg, R. C., Welham, C. V. J., Schmid-hempel, R., Schmid-hempel, P. & Beauchamp, G. Time and energy constraints and the relationships between currencies in foraging theory. Technical Report1, (1994).

    44.
    Bracis, C., Gurarie, E., Van Moorter, B. & Andrew Goodwin, R. Memory effects on movement behavior in animal foraging. PLoS ONE 10(8), e0136057. https://doi.org/10.1371/journal.pone.0136057 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Spencer, W. D. Home ranges and the value of spatial information. J. Mammal. 93(4), 929–947. https://doi.org/10.1644/12-mamm-s-061.1 (2012).
    Article  Google Scholar 

    46.
    Sims, D. W., Humphries, N. E., Hu, N., Medan, V. & Berni, J. Optimal searching behaviour generated intrinsically by the central pattern generator for locomotion. eLife 8, 1–31. https://doi.org/10.7554/eLife.50316 (2019).
    Article  Google Scholar 

    47.
    Reynolds, A., Ceccon, E., Baldauf, C., Medeiros, T. K. & Miramontes, O. Lévy foraging patterns of rural humans. PLoS ONE 13(6), e0199099. https://doi.org/10.1371/journal.pone.0199099 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    48.
    Seuront, L. & Eugene Stanley, H. Anomalous diffusion and multifractality enhance mating encounters in the ocean. Proc. Natl. Acad. Sci. USA 111(6), 2206–2211. https://doi.org/10.1073/pnas.1322363111 (2014).
    CAS  Article  PubMed  ADS  Google Scholar 

    49.
    Wearmouth, V. J. et al. Scaling laws of ambush predator “waiting” behaviour are tuned to a common ecology. Proc. R. Soc. B Biol. Sci.https://doi.org/10.1098/rspb.2013.2997 (2014).

    50.
    Reynolds, A. M., Ropert-Coudert, Y., Kato, A., Chiaradia, A. & MacIntosh, A. J. J. A priority-based queuing process explanation for scale-free foraging behaviours. Anim. Behav. 108, 67–71. https://doi.org/10.1016/j.anbehav.2015.07.022 (2015) (ISSN 00033472).
    Article  Google Scholar 

    51.
    Raposo, E. P. et al. Dynamical robustness of lévy search strategies. Phys. Rev/. Lett. 91, 24. https://doi.org/10.1103/PhysRevLett.91.240601 (2003).
    CAS  Article  Google Scholar 

    52.
    Vazquez, A. Impact of memory on human dynamics. Physica A Stat. Mech. Its Appl. 373, 747–752. https://doi.org/10.1016/j.physa.2006.04.060 (2007) (ISSN 03784371).
    Article  ADS  Google Scholar 

    53.
    Stephens, D. W. Decision ecology: foraging and the ecology of animal decision making. Cognit. Affect. Behav. Neurosci. 8(4), 475–484. https://doi.org/10.3758/CABN.8.4.475 (2008) (ISSN 15307026).
    Article  Google Scholar 

    54.
    Bell, W.J. Searching Behavior: the Behavioral Ecology of Finding Resources. https://doi.org/10.1093/aesa/85.1.108 (1990). ISBN 9789401053723.

    55.
    Pyke, G.H. Animal Movements—An Optimal Foraging Theory Approach, Vol. 2. 2nd edn Elsevier, (2019). ISBN 9780128132517. https://doi.org/10.1016/B978-0-12-809633-8.90160-2

    56.
    Namboodiri, V. M. K., Levy, J. M., Mihalas, S., Sims, D. W. & Hussain Shuler, M. G. Rationalizing spatial exploration patterns of wild animals and humans through a temporal discounting framework. Proc. Natl. Acad. Sci. USA 113(31), 8747–8752. https://doi.org/10.1073/pnas.1601664113 (2016).
    CAS  Article  PubMed  Google Scholar 

    57.
    Humphries, N. E. & Sims, D. W. Optimal foraging strategies: Lévy walks balance searching and patch exploitation under a very broad range of conditions. J. Theor. Biol. 358, 179–193. https://doi.org/10.1016/j.jtbi.2014.05.032 (2014).
    Article  PubMed  MATH  Google Scholar 

    58.
    Bartumeus, F. et al. Superdiffusion and encounter rates in diluted, low dimensional worlds. Eur. Phys. J. Spec. Top. 157(1), 157–166. https://doi.org/10.1140/epjst/e2008-00638-6 (2008).
    Article  Google Scholar 

    59.
    Nurzaman, S.G., Matsumoto, Y., Nakamura, Y., Shirai, K., Koizumi, S. & Ishiguro, H. An adaptive switching behavior between levy and brownian random search in a mobile robot based on biological fluctuation. In IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 – Conference Proceedings, pages 1927–1934. IEEE, 10 https://doi.org/10.1109/IROS.2010.5651671 (2010). ISBN 9781424466757. http://ieeexplore.ieee.org/document/5651671/.

    60.
    Mason, W. & Suri, S. Conducting behavioral research on Amazon’s Mechanical Turk. Behav. Res. Methods 44(1), 1–23. https://doi.org/10.3758/s13428-011-0124-6 (2012).
    Article  PubMed  ADS  Google Scholar 

    61.
    Ross, J., Irani, L., Six Silberman, M., Zaldivar, A. & Tomlinson, B. Who are the crowdworkers? Shifting demographics in mechanical turk. In Conference on Human Factors in Computing Systems – Proceedings, pages 2863–2872, New York, New York, USA, https://doi.org/10.1145/1753846.1753873 (2010). ACM Press. ISBN 9781605589312. http://portal.acm.org/citation.cfm?doid=1753846.1753873.

    62.
    Hamilton, M. J., Lobo, J., Rupley, E., Youn, H. & West, G. B. The ecological and evolutionary energetics of hunter-gatherer residential mobility. Evolut. Anthropol. 25(3), 124–132. https://doi.org/10.1002/evan.21485 (2016) (ISSN 15206505).
    Article  Google Scholar 

    63.
    Sakiyama, T. & Gunji, Y. P. Emergent weak home-range behaviour without spatial memory. R. Soc. Open Sci.https://doi.org/10.1098/rsos.160214 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Bénichou, O., Coppey, M., Moreau, M., Suet, P. H. & Voituriez, R. Optimal search strategies for hidden targets. Phys. Rev. Lett.https://doi.org/10.1103/PhysRevLett.94.198101 (2005).
    Article  PubMed  Google Scholar 

    65.
    Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. & Smouse, P.E. A movement ecology paradigm for unifying organismal movement research, 12 (2008). ISSN 00278424. http://www.ncbi.nlm.nih.gov/pubmed/19060196, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2614714.

    66.
    Hills, T. Animal foraging and the evolution of goal-directed cognition. Cognit. Sci. 30(1), 3–41. https://doi.org/10.1207/s15516709cog0000_50 (2006).
    MathSciNet  Article  Google Scholar 

    67.
    Purcell, B. A. & Kiani, R. Hierarchical decision processes that operate over distinct timescales underlie choice and changes in strategy. Proc. Natl. Acad. Sci. USA 113(31), E4531–E4540. https://doi.org/10.1073/pnas.1524685113 (2016) (ISSN 10916490).
    CAS  Article  PubMed  Google Scholar 

    68.
    Jeffrey Brantingham, P. et al. Measuring forager mobility. Curr. Anthropol. 47(3), 435–459. https://doi.org/10.1086/503062 (2006).
    Article  Google Scholar 

    69.
    Farnsworth, K. D. & Beecham, J. A. How do grazers achieve their distribution? A continuum of models from random diffusion to the ideal free distribution using biased random walks. Am. Nat. 153(5), 509–526. https://doi.org/10.1086/303192 (1999) (ISSN 00030147).
    CAS  Article  PubMed  Google Scholar 

    70.
    Wilke, A. & Barrett, H. C. The hot hand phenomenon as a cognitive adaptation to clumped resources. Evol. Hum. Behav. 30(3), 161–169. https://doi.org/10.1016/j.evolhumbehav.2008.11.004 (2009) (ISSN 10905138).
    Article  Google Scholar 

    71.
    Hills, T. T. Animal foraging and the evolution of goal-directed cognition. Cognit. Sci. 30(1), 3–41. https://doi.org/10.1207/s15516709cog0000_50 (2006).
    MathSciNet  Article  Google Scholar 

    72.
    Rhodes, T., Kello, C. T. & Kerster, B. Intrinsic and extrinsic contributions to heavy tails in visual foraging. Vis. Cognit. 22(6), 809–842. https://doi.org/10.1080/13506285.2014.918070 (2014).
    Article  Google Scholar 

    73.
    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73(6), 1943–1967. https://doi.org/10.2307/1941447 (1992) (ISSN 00129658).
    Article  Google Scholar 

    74.
    Mobbs, D., Trimmer, P.C., Blumstein, D.T. & Dayan, P. Foraging for foundations in decision neuroscience: Insights from ethology. Technical Report 7, (2018). www.nature.com/nrn.

    75.
    Schulz, E., Wu, C. M., Huys, Q. J. M., Krause, A. & Speekenbrink, M. Generalization and search in risky environments. Cognit. Sci. 42(8), 2592–2620. https://doi.org/10.1111/cogs.12695 (2018) (ISSN 15516709).
    Article  Google Scholar 

    76.
    Hart, Y. et al. Creative exploration as a scale-invariant search on a meaning landscape. Nat. Commun. 9(1), 5411. https://doi.org/10.1038/s41467-018-07715-8 (2018).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    77.
    Shlesinger, M. F. Mathematical physics: search research. Nature 443(7109), 281–282. https://doi.org/10.1038/443281a (2006).
    CAS  Article  PubMed  ADS  Google Scholar 

    78.
    Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703. https://doi.org/10.1137/070710111 (2009).
    MathSciNet  Article  MATH  ADS  Google Scholar  More

  • in

    Prey removal in cotton crops next to woodland reveals periodic diurnal and nocturnal invertebrate predation gradients from the crop edge by birds and bats

    1.
    FAO. United Nations Food Agricultural Organisation. High Level Expert Forum (FAO, Rome, 2009).
    Google Scholar 
    2.
    Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: Linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245. https://doi.org/10.1016/j.mambio.2015.03.008 (2015).
    Article  Google Scholar 

    3.
    Cleveland, C. J. et al. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 4, 238–243. https://doi.org/10.1890/1540-9295(2006)004[0238:Evotpc]2.0.Co;2 (2006).
    Article  Google Scholar 

    4.
    Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Conservation. Economic importance of bats in agriculture. Science 332, 41–42. https://doi.org/10.1126/science.1201366 (2011).
    Article  PubMed  ADS  Google Scholar 

    5.
    Naylor, R. L. & Ehrlich, P. R. In Nature’s Services: Societal Dependence on Natural Ecosystems (ed. Daily, G. C.) 151–174 (Island Press, New York, 1997).
    Google Scholar 

    6.
    Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56[311:Tevoes]2.0.Co;2 (2006).
    Article  Google Scholar 

    7.
    Power, A. G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. Lond. B 365, 2959–2971. https://doi.org/10.1098/rstb.2010.0143 (2010).
    Article  Google Scholar 

    8.
    Maine, J. J. & Boyles, J. G. Bats initiate vital agroecological interactions in corn. Proc. Natl. Acad. Sci. U.S.A. 112, 12438–12443. https://doi.org/10.1073/pnas.1505413112 (2015).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    9.
    Tremblay, A., Mineau, P. & Stewart, R. K. Effects of bird predation on some pest insect populations in corn. Agric. Ecosyst. Environ. 83, 143–152. https://doi.org/10.1016/S0167-8809(00)00247-4 (2001).
    Article  Google Scholar 

    10.
    Van Bael, S. A. et al. Birds as predators in tropical agroforestry systems. Ecology 89, 928–934 (2008).
    Article  Google Scholar 

    11.
    Grass, I., Lehmann, K., Thies, C. & Tscharntke, T. Insectivorous birds disrupt biological control of cereal aphids. Ecology 98, 1583–1590. https://doi.org/10.1002/ecy.1814 (2017).
    Article  PubMed  Google Scholar 

    12.
    Karp, D. S. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347. https://doi.org/10.1111/ele.12173 (2013).
    Article  PubMed  Google Scholar 

    13.
    Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. Camb. Philos. Soc. 91, 1081–1101. https://doi.org/10.1111/brv.12211 (2016).
    Article  PubMed  Google Scholar 

    14.
    Cohen, Y., Bar-David, S., Nielsen, M., Bohmann, K. & Korine, C. An appetite for pests: Synanthropic insectivorous bats exploit cotton pest irruptions and consume various deleterious arthropods. Mol. Ecol. 29, 1185–1198. https://doi.org/10.1111/mec.15393 (2020).
    Article  PubMed  Google Scholar 

    15.
    Chaplin-Kramer, R., de Valpine, P., Mills, N. J. & Kremen, C. Detecting pest control services across spatial and temporal scales. Agric. Ecosyst. Environ. 181, 206–212. https://doi.org/10.1016/j.agee.2013.10.007 (2013).
    Article  Google Scholar 

    16.
    Speakman, J. R. & Thomas, D. W. In Bat ecology (eds Kunz, T. H. & Fenton, M. B.) 430–490 (University of Chicago Press, Chicago, 2003).
    Google Scholar 

    17.
    Norberg, U. M. Avian Energetics and Nutritional Ecology 199–249 (Springer, Berlin, 1996).
    Google Scholar 

    18.
    Nyffeler, M., Şekercioğlu, Ç. H. & Whelan, C. J. Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci. Nat. 105, 47. https://doi.org/10.1007/s00114-018-1571-z (2018).
    CAS  Article  Google Scholar 

    19.
    Sekercioglu, C. H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464–471. https://doi.org/10.1016/j.tree.2006.05.007 (2006).
    Article  PubMed  Google Scholar 

    20.
    Mols, C. M. M. & Visser, M. E. Great tits can reduce caterpillar damage in apple orchards. J. Appl. Ecol. 39, 888–899. https://doi.org/10.1046/j.1365-2664.2002.00761.x (2002).
    Article  Google Scholar 

    21.
    Van Bael, S. A., Bichier, P. & Greenberg, R. Bird predation on insects reduces damage to the foliage of cocoa trees (Theobroma cacao) in western Panama. J. Trop. Ecol. 23, 715–719. https://doi.org/10.1017/s0266467407004440 (2007).
    Article  Google Scholar 

    22.
    Federico, P. et al. Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops. Ecol. Appl. 18, 826–837. https://doi.org/10.1890/07-0556.1 (2008).
    Article  PubMed  Google Scholar 

    23.
    McCracken, G. F. et al. Bats track and exploit changes in insect pest populations. PLoS ONE 7, e43839. https://doi.org/10.1371/journal.pone.0043839 (2012).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    24.
    Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. 10, 371–388. https://doi.org/10.1002/ece3.5901 (2020).
    Article  PubMed  Google Scholar 

    25.
    Maas, B., Clough, Y. & Tscharntke, T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16, 1480–1487. https://doi.org/10.1111/ele.12194 (2013).
    Article  PubMed  Google Scholar 

    26.
    Kalka, M. B., Smith, A. R. & Kalko, E. K. Bats limit arthropods and herbivory in a tropical forest. Science 320, 71. https://doi.org/10.1126/science.1153352 (2008).
    CAS  Article  PubMed  ADS  Google Scholar 

    27.
    Williams-Guillen, K., Perfecto, I. & Vandermeer, J. Bats limit insects in a neotropical agroforestry system. Science 320, 70. https://doi.org/10.1126/science.1152944 (2008).
    CAS  Article  PubMed  ADS  Google Scholar 

    28.
    Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T. & Fleming, T. H. In Year in Ecology and Conservation Biology (eds Ostfeld, R. S. & Schlesinger, W. H.) 1–38 (New York Academy of Sciences, New York, 2011).
    Google Scholar 

    29.
    Taylor, P. J., Grass, I., Alberts, A. J., Joubert, E. & Tscharntke, T. Economic value of bat predation services: A review and new estimates from macadamia orchards. Ecosyst. Serv. 30, 372–381. https://doi.org/10.1016/j.ecoser.2017.11.015 (2018).
    Article  Google Scholar 

    30.
    Redlich, S., Martin Emily, A. & Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13126 (2018).
    Article  Google Scholar 

    31.
    Hooks, C., Pandey, R. R., & Johnson, M. W. Unlikely guardians of cropping systems: Can birds and spiders protect broccoli from caterpillar pests? Insect Pests (2007).

    32.
    Martin, E. A., Reineking, B., Seo, B. & Steffan-Dewenter, I. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc. Natl. Acad. Sci. U.S.A. 110, 5534–5539. https://doi.org/10.1073/pnas.1215725110 (2013).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    33.
    Karp, D. S. & Daily, G. C. Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology 95, 1065–1074. https://doi.org/10.1890/13-1012.1 (2014).
    Article  PubMed  Google Scholar 

    34.
    Barbaro, L. et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. J. Appl. Ecol. 54, 500–508. https://doi.org/10.1111/1365-2664.12740 (2017).
    Article  Google Scholar 

    35.
    Rey Benayas, J. M., Meltzer, J., de las Heras-Bravo, D. & Cayuela, L. Potential of pest regulation by insectivorous birds in Mediterranean woody crops. PLoS ONE 12, 15. https://doi.org/10.1371/journal.pone.0180702 (2017).
    CAS  Article  Google Scholar 

    36.
    Morrison, E. B. & Lindell, C. A. Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecol. Appl. 22, 1526–1534 (2012).
    Article  Google Scholar 

    37.
    Ndanganga, P. K., Njoroge, J. B. M. & Vickery, J. Quantifying the contribution of birds to the control of arthropod pests on kale, Brassica oleracea acephala, a key crop in East African highland farmland. Int. J. Pest Manage. https://doi.org/10.1080/09670874.2013.820005 (2013).
    Article  Google Scholar 

    38.
    Tschumi, M., Ekroos, J., Hjort, C., Smith, H. G. & Birkhofer, K. Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes. Oecologia 188, 863–873. https://doi.org/10.1007/s00442-018-4242-z (2018).
    Article  PubMed  PubMed Central  ADS  Google Scholar 

    39.
    Elkinton, J. S., Liebhold, A. M. & Muzika, R.-M. Effects of alternative prey on predation by small mammals on gypsy moth pupae. Popul. Ecol. 46, 171–178. https://doi.org/10.1007/s10144-004-0175-y (2004).
    Article  Google Scholar 

    40.
    Dyrcz, A. Breeding biology and behaviour of the willie wagtail (Rhipidura leucophrys) in the madang region Papua New Guinea. Emu 94, 17–26. https://doi.org/10.1071/MU9940017 (1994).
    Article  Google Scholar 

    41.
    Adriano, S. & Calver, M. C. Diet of breeding willie wagtails (Rhipidura leucophrys) in suburban Western Australia. Emu 95, 138–141. https://doi.org/10.1071/MU9950138 (1995).
    Article  Google Scholar 

    42.
    Razeng, E. & Watson, D. M. What do declining woodland birds eat? A synthesis of dietary records. Emu 112, 149–156. https://doi.org/10.1071/MU11099 (2012).
    Article  Google Scholar 

    43.
    Brandl, R., Kristín, A. & Leisler, B. Dietary niche breadth in a local community of passerine birds: An analysis using phylogenetic contrasts. Oecologia 98, 109–116. https://doi.org/10.1007/bf00326096 (1994).
    CAS  Article  PubMed  ADS  Google Scholar 

    44.
    Kaplan, G. Australian Magpie: Biology and Behaviour of an Unusual Songbird (CSIRO Publishing, Clayton, 2019).
    Google Scholar 

    45.
    Puckett, H. L., Brandle, J. R. & Johnson, R. J. Avian foraging patterns in crop field edges adjacent to woody habitat. Agric. Ecosyst. Environ. 131, 9–15 (2009).
    Article  Google Scholar 

    46.
    Best, L. B., Whitmore, R. C. & Booth, G. M. Use of cornfields by birds during the breeding season: the importance of edge habitat. Am. Midl. Nat. 123, 84–99. https://doi.org/10.2307/2425762 (1990).
    Article  Google Scholar 

    47.
    Hansen, N. A., Sato, C. F., Michael, D. R., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43. https://doi.org/10.1111/1365-2664.13269 (2019).
    Article  Google Scholar 

    48.
    Storch, I., Woitke, E. & Krieger, S. Landscape-scale edge effect in predation risk in forest-farmland mosaics of Central Europe. Landsc. Ecol. 20, 927–940. https://doi.org/10.1007/s10980-005-7005-2 (2005).
    Article  Google Scholar 

    49.
    Douglas, D. J. T., Vickery, J. A. & Benton, T. G. Improving the value of field margins as foraging habitat for farmland birds. J. Appl. Ecol. 46, 353–362. https://doi.org/10.1111/j.1365-2664.2009.01613.x (2009).
    Article  Google Scholar 

    50.
    Stephens, D. W. & Krebs, J. R. Foraging Theory (University Press, 1986).
    Google Scholar 

    51.
    Denzinger, A. & Schnitzler, H.-U. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front. Physiol. 4, 164. https://doi.org/10.3389/fphys.2013.00164 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    52.
    Schnitzler, H.-U. & Kalko, E. K. V. Echolocation by insect-eating bats. Vol. 51 (SPIE, 2001).

    53.
    Neuweiler, G. Foraging, echolocation and audition in bats. Naturwissenschaften 71, 446–455. https://doi.org/10.1007/BF00455897 (1984).
    Article  ADS  Google Scholar 

    54.
    Fenton, M. B. The foraging behaviour and ecology of animal-eating bats. Can. J. Zool. 68, 411–422. https://doi.org/10.1139/z90-061 (1990).
    Article  Google Scholar 

    55.
    Jantzen, M. K. & Fenton, M. B. The depth of edge influence among insectivorous bats at forest–field interfaces. Can. J. Zool. 91, 287–292. https://doi.org/10.1139/cjz-2012-0282 (2013).
    Article  Google Scholar 

    56.
    Estur, G. Cotton Exporter’s Guide. (International Trade Centre UNCTAD/WTO, 2007).

    57.
    RBG In State of the World’s Plants 2017 (ed. Willis, K.) 64–71 (Board of Trustees of the Royal Botanic Gardens, Kew, 2017).
    Google Scholar 

    58.
    Rencken, I. An Investigation of the Importance of Native and Non-Crop Vegetation to Beneficial Generalist Predators in Australian Cotton Agroecosystems PhD thesis, University of New England (2006).

    59.
    Holloway, J. C., Furlong, M. J. & Bowden, P. I. Management of beneficial invertebrates and their potential role in integrated pest management for Australian grain systems. Aust. J. Exp. Agric. 48, 1531–1542. https://doi.org/10.1071/EA07424 (2008).
    Article  Google Scholar 

    60.
    Schellhorn, N. A., Bianchi, F. J. & Hsu, C. L. Movement of entomophagous arthropods in agricultural landscapes: Links to pest suppression. Annu. Rev. Entomol. 59, 559–581. https://doi.org/10.1146/annurev-ento-011613-161952 (2014).
    CAS  Article  PubMed  Google Scholar 

    61.
    Whitehouse, M. E. A., Wilson, L. J. & Fitt, G. P. A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ. Entomol. 34, 1224–1241 (2005).
    Article  Google Scholar 

    62.
    Smith, R., Reid, J., Scott-Morales, L., Green, S. & Reid, N. A baseline survey of birds in native vegetation on cotton farms in inland eastern Australia. Wildl. Res. 46, 304–316. https://doi.org/10.1071/WR18038 (2019).
    Article  Google Scholar 

    63.
    Ford, G. & Thomson, N. Birds on Cotton Farms: A Guide to Common Species and Habitat Management (Cotton Catchment Communities CRC, Boca Raton, 2006).
    Google Scholar 

    64.
    Whelan, C. J., Wenny, D. G. & Marquis, R. J. In Year in Ecology and Conservation Biology (eds Ostfeld, R. S. & Schlesinger, W. H.) 25–60 (Annals of the New York Academy of Sciences, New York, 2008).
    Google Scholar 

    65.
    Rodríguez, A., Andrén, H. & Jansson, G. Habitat-mediated predation risk and decision making of small birds at forest edges. Oikos 95, 383–396 (2001).
    Article  Google Scholar 

    66.
    Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161. https://doi.org/10.1007/s10336-012-0869-4 (2012).
    Article  Google Scholar 

    67.
    Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782. https://doi.org/10.1002/ecy.2378 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    68.
    Nelson, J. J. & Gillam, E. H. Selection of foraging habitat by female little brown bats (Myotis lucifugus). J. Mammal. 98, 222–231. https://doi.org/10.1093/jmammal/gyw181 (2016).
    Article  Google Scholar 

    69.
    Rohner, C. & Krebs, C. J. Owl predation on snowshoe hares: Consequences of antipredator behaviour. Oecologia 108, 303–310. https://doi.org/10.1007/bf00334655 (1996).
    Article  PubMed  ADS  Google Scholar 

    70.
    Rockwell, C., Gabriel, P. O. & Black, J. M. Bolder, older, and selective: Factors of individual-specific foraging behaviors in Steller’s jays. Behav. Ecol. 23, 676–683. https://doi.org/10.1093/beheco/ars015 (2012).
    Article  Google Scholar 

    71.
    Krebs, J. R. In Perspectives in Ethology (eds Bateson, P. P. G. & Klopfer, P. H.) 73–111 (Springer US, Berlin, 1973).
    Google Scholar 

    72.
    Lövei, G. L. & Ferrante, M. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 24, 528–542. https://doi.org/10.1111/1744-7917.12405 (2017).
    Article  PubMed  Google Scholar 

    73.
    Nagy, R. K., Schellhorn, N. A. & Zalucki, M. P. Fresh, frozen or fake: A comparison of predation rates measured by various types of sentinel prey. J. Appl. Entomol. 144, 407–416. https://doi.org/10.1111/jen.12745 (2020).
    Article  Google Scholar 

    74.
    Ravzanaadii, N., Kim, S.-H., Choi, W. H., Seong-Jin, H. & Kim, N. J. Nutritional value of mealworm, tenebrio molitor as food source. Int. J. Ind. Ergon. 25, 93–98 (2012).
    Google Scholar 

    75.
    Barbaro, L., Giffard, B., Charbonnier, Y., van Halder, I. & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: A transcontinental experiment. Divers. Distrib. 20, 149–159. https://doi.org/10.1111/ddi.12132 (2014).
    Article  Google Scholar 

    76.
    Environment Australia. Revision of the Interim Biogeographic Regionalisation of Australia (IBRA) and Development of Version 5.0: Summary Report. (Department of Environment and Heritage, Canberra, 2000).

    77.
    OEH. NSW (Mitchell) Landscapes. Vol. version 3.1 (State of New South Wales and Office of Environment and Heritage 2002).

    78.
    Keith, D. A. Ocean Shores to Desert Dunes: The Native Vegetation of NEW South Wales and the ACT (Department of Environment and Conservation, 2004).
    Google Scholar 

    79.
    R Core Team, R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/, 2018).

    80.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 400. https://doi.org/10.3929/ethz-b-000240890 (2017).
    Article  Google Scholar 

    81.
    Lüdecke, D. ggeffects: Create Tidy Data Frames of Marginal Effects for ‘ggplot’ from Model Outputs (v0.16.0). https://CRAN.R-project.org/package=ggeffects. (2017).

    82.
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/mixed) Regression Models (v0.3.3). https://CRAN.R-project.org/package=DHARMa (2017).

    83.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Estimated Marginal Means, aka Least-Squares Means (v1.5.3). https://www.rdocumentation.org/packages/emmeans (2019).

    84.
    Szumilas, M. Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 19, 227–229 (2010).
    Article  Google Scholar  More

  • in

    Novel combination of CRISPR-based gene drives eliminates resistance and localises spread

    This research presents HD-ClvR, which is a combination of three gene drives: homing, cleave-and-rescue and daisyfield. Our modelling indicates that HD-ClvR overcomes an important trade-off in current homing gene drive designs: the trade-off between resistance allele formation and gene drive efficiency. This strategy benefits from the efficiency of a homing gene drive and the evolutionary stability of cleave-and-rescue gene drive. Due to the inclusion of a daisyfield system, HD-ClvR is self-limiting and can be controlled by supplementation of gene drive animals.
    HD-ClvR compared to other gene drives
    Over recent years, many different gene drives have been published and developments have been geared towards both efficiency and safety38. An ongoing issue has been the development of resistance alleles. For CRISPR-based homing gene drive there are two fundamental approaches to combat resistance allele formation: careful gRNA targeting and gRNA multiplexing. When a gRNA targets a conserved sequence in a gene, resistance alleles are likely to disrupt gene function through NHEJ repair and will therefore reduce fitness39. Recently, population suppression was already shown to work with a carefully targeted homing gene drive in contained mosquito populations39, however, current data suggests that homing might be less efficient in mammals than in insects14. A recent paper has proposed the concept of ‘tethered homing gene drive’, which combines a threshold-dependent underdominance gene drive with a homing gene drive for improved suppression capabilities40. We use this concept in a different manner in HD-ClvR, by relying on a daisyfield rather than threshold-dependence for self-limitation. Very recently, two new papers have proposed a gene drive similar to HD-ClvR, but intented for population modification instead of suppression41,42. These studies also combine homing and cleave-and-rescue principles to combat resistance alleles and their modifications are able to persist stably in cage experiments, which is promising for HD-ClvR.
    In addition to targeting conserved sequences, when gRNA multiplexing, resistant allele allele formation is reduced because multiple sites are targeted simultaneously. For homing gene drives, multiplexing has been shown to reduce homing efficiency when more than two gRNAs are used28. In contrast, cleave-and-rescue gene drives do not have this problem, as they do not use homing and can therefore multiplex gRNAs without any efficiency costs. HD-ClvR separates the elimination of resistance alleles and homing efficiency, and therefore gRNAs can be optimised for both goals separately.
    To date, most gene drive research has focused on improving the efficiency, however, equally important is the development of strategies that allow for containment, or even reversibility, of the gene drives29,43. For contained gene drives, density dependence is often used, which requires large numbers of gene drive individuals to be released into a target population to spread44. Therefore, non-target populations are unlikely to be affected by this type of gene drive. However, a large single release of gene drive individuals can put significant pressure on the local ecosystem, and if a population is already at carrying capacity, it may lead to starvation or mass migration of the population. In contrast, HD-ClvR uses ongoing input in the form of gene drive animals to control the extent of population suppression and contain spread, while the total amount of gene drive animals necessary for release is similar to threshold-dependent gene drives. Therefore, the use of HD-ClvR seems more feasible than threshold-dependent gene drives. Although self-limitation comes with increased cost and labour relative to unlimited gene drives, we believe this is justified by the control and safety of HD-ClvR.
    As stated above, the initial introduction frequency for a standard cleave-and-rescue gene drive in our randomly mating model was increased 10-fold over the other homing-based strategies. This increase is necessary due to the significant cost to the reproduction rate that is incurred when using a standard cleave-and-rescue gene drive. On average, cleave-and-rescue animals will produce 50% less offspring than wild-type animals21,24. This significantly slows the spread of the gene drive and due to density dependent dynamics, requires large initial releases of cleave-and-rescue animals for population suppression. With a homing-cleave-and-rescue drive, more offspring inherit the drive and there is less cost to the reproduction rate. Effectively, for homing-cleave-and-rescue, the reproduction rate of gene drive individuals is equal to the homing efficiency (plus half of the homing failure rate, where the gene drive is inherited by chance), which so far has been shown to range from 0.7 to 1 in different organisms14,39,45.
    Supplementation
    As animal supplementation is a critical component of HD-ClvR, our modelling investigated how daisyfield size and the level and placement of supplemented HD-ClvR animals effects efficiency and safety of population suppression. Optimisation of these parameters can significantly reduce cost and labour, as well as reduce the risk of unwanted impacts on non-target populations. We modelled our supplementation as a percentage of the total population size, therefore the number of individuals needed for supplementation increases linearly with population size. We also want to minimise the risk of non-target populations being impacted by the gene drive, and therefore, there is a trade-off between safety (size of the daisyfield) and cost and labour (level of supplementation required).
    The least number of daisy elements that can suppress the population with a realistic level of supplementation, but does not cause any serious issues in non-target populations, should be objectively established through an in-depth risk assessment process. In a larger population however, the spread is slower than in a small one. Therefore, for improved safety and efficiency, gene drives are best applied in small sub-populations separately. The impact of a single introduction, such as a rogue deployment or migration, depends on the population size. The smaller the population, the bigger the impact. This it is a concern when the target population is much larger than the non-target population, but this is not the case for invasive UK grey squirrels and many other invasive species.
    The appropriate daisyfield size also depends on the rate of NHEJ ((P_n)) of the gene drive system; the higher the ((P_n)), the more embryonic lethal offspring will arise and the sooner daisyfield burns out. To choose a safe number of daisy elements, we also need an estimate of how many animals a rogue party could obtain, potential breed and add into a non-target population for their own benefit. Overall, each target population and prospective gene drive strategy needs to be considered on a case-by-case basis and include an in-depth multidisciplinary risk assessment process.
    When we consider the spatial aspects of a HD-ClvR supplementation programme, the picture becomes more complex. A key factor is the supplementation location of individuals. Obviously, supplementing individuals in a location where the population has already been suppressed will be ineffective. Therefore, different placement strategies can be adopted to keep placing individuals in a relevant area. A monitoring system where not only the size of the population is known, but also the location can significantly help HD-ClvR continue spreading and suppress a targeted population.
    In this study, we modelled HD-ClvR using five different supplementation placement strategies in grey squirrel. These were: supplementation at the mean of population location, the mode of population location, randomly, randomly in 10 groups, and in a moving front (Fig. 6a). With supplementation at the mean of the population location, supplementation started in the middle of the population. After a few generations, a gap appears in the middle due to local suppression. The mean of the populations location still lies in the middle, as can be seen in Fig. 6c at 20 generations. Therefore, supplementation is not effective until the population is also suppressed in another location, thereby shifting the mean. Additionally, when there is a single large patch of the population left and additional smaller clusters, supplementation in the middle of the large patch allows the smaller clusters to recover, as can be seen in Fig. 6c after 64 generations.
    With supplementation at the mode of the population location, we supplement in a location where there are many individuals. This placement strategy avoids the problem of supplementing in a location without individuals, either in a doughnut-like spatial population structure or in a multi-patch population. However, this placement strategy still allows small patches to form and recover. Supplementation at a random location theoretically means that supplementation happens uniformly, but in reality, this is not the case. Initially HD-ClvR spreads in multiple locations, but after the population is suppressed in certain regions, supplementation in those regions becomes ineffective. Therefore, at a later stage of population suppression this placement scheme becomes increasingly ineffective.
    Supplementation at random locations is more effective when they are broken up into multiple groups (ten in our model). The gene drive spreads in many locations initially like the random single location placement scheme. After significant suppression of the population some but not all of the 10 groups supplemented are at ineffective locations. The groups that are placed at relevant locations are enough to keep the gene drive spreading. In our model supplementation in groups at random locations gets close to the speed at which a gene drive spreads in a non-spatial model.
    The moving front placement scheme is very effective initially, as the gene drive spreads uniformly across the front. In this case, supplementation keeps ahead of where the populations is being suppressed. This placement strategy allows the population to recover behind the moving front after effective initial spread and near-complete suppression. To improve efficiency of the moving front strategy, it may be beneficial to include random supplementation behind the moving front to prevent animals from re-establishing.
    Finally, in our spatial model, it was evident that there is more uncertainty in levels of population suppression than a randomly mating model leads us to believe. As can be seen in Fig. 6b, the 95% quantiles are broader than the quantiles in Fig. 3. Therefore, we conclude that to tailor the amount of supplementation, it is vital to closely monitor a population where a gene drive is used.
    Assumptions and future work
    Our model works under the following six assumptions. First, our model excludes some complexities of the optimal number of gRNAs for homing. Although our model suggests that multiplexing gRNAs for both the homing and cleave-and-rescue gene drives is most effective, a recent study using a more complex model and in vivo data shows that the optimal number of gRNAs to use for homing in Drosphilia melanogaster is two. They report a decrease in homing efficiency with more than two gRNAs due to reduced homology and Cas nuclease saturation28. Therefore, our gene drive with four gRNAs for both homing and cleave-and-rescue will likely be less efficient in such a complex model. We suggest using two homing gRNAs and four cleave- and-rescue gRNAs is likely most efficient, while still eliminating all resistance alleles28. It would be prudent to analyse our gene drive in this complex model as well to get a definitive estimate, as Cas saturation is thought to have an influence on gene drive efficiency when multiplexing is used28.
    Second, we assumed there was no embryonic Cas-gRNA expression. Embryonic Cas-gRNA expression might be problematic as it leads to resistance allele formation and can interfere with the cleave-and-rescue mechanism by cleaving alleles from the wildtype parent. As our gene drive eliminates resistance alleles, embryonic Cas-gRNA expression may not inhibit spread, depending on the rate. Additionally, if the embryonic Cas-gRNA expression turns out to be more common in grey squirrel or other species, the cleave-and-rescue part of the gene drive can be harnessed with a double rescue mechanism to overcome this issue, as reported by Champer et al.24.
    Third, we did not take other types of resistance alleles into account such as mutations rendering the CRISPR-Cas non-functional. As this is a universal assumption in gene drive research, we will have to await multigenerational studies to see if this is problematic.
    Fourth, HD-ClvR has not been tested in vivo, which is our next step. The two recent papers testing a gene drive similar to HD-ClvR for population modification have performed in vivo tests in Drosophila melanogaster which showed very efficient conversion rates41. Proof-of-concept testing of HD-ClvR would likely initially occur in D. melanogaster and mouse models before progressing to squirrel studies. Recent reports have shown that the VASA promoter for Cas expression in homing gene drives is not optimal and further investigation to identify a meiosis-specific germline promoter is needed15. Furthermore, the integration of many daisies in a squirrel genome will be a molecular challenge and is a feat which has not yet been reported on in any species. This task could be achieved using either a random integration strategy, such as lentiviruses46 or a targeted integration strategy that exploits neutral repetitive sequences in the genome as target sites32. Also, non-model species might be difficult to genetically engineer, although grey squirrel embryology will likely follow the extensive knowledge on rodent and farmed animal embryology, and similar reagents and equipment could be used. An important consideration when engineering gene drive is that the modified animals maintain enough wild vigour to survive and breed in a wild population. Promising technologies for generating gene drive harbouring mammals with as little intervention as possible include in situ delivery of CRISPR reagents to the oviduct47.
    Fifth, for our spatial modelling, we assumed that an estimation of population size could be made every year, although there is a significant amount of room for error in this estimate. Additionally, for some of our placement schemes, we assumed an accurate estimate of population location. As the random placement in groups scheme turned out most effective, this is not a problem so much as further potential for improvement. Another direction for future spatial work is the modelling of real landscapes, which are more complex than what we modelled in this study48. In complex landscapes, it might be that gene drive spread is slower or even regionally confined in some situations. Additionally, there might be spatial dynamics to gene drives in general such as ’chasing’, which is the perpetual escaping and chasing of wildtype and gene drive animals34. Further efforts are necessary to create a more realistic spatial model before we can consider using a gene drive.
    A final consideration is that the ecological services the grey squirrel and other invasive species provide are largely unchartered. Ecologists need to investigate the ecological services that an invasive species performs and how an abrupt suppression of this invasive population might impact the ecosystem as a whole. We need to consider other restorative measures such as reintroducing native species to fragmented habitats, amongst other ecological interventions49. From a regulatory perspective, there is no tested legislative framework for the release of gene drive organisms; and with regard to our test animal it is currently illegal to breed grey squirrels in the UK. Developing these legislative frameworks alongside gene drive research is important. More importantly, the UK needs to continue to broaden public engagement and see whether the public is receptive to the deployment of gene drive technology in parallel to a financial overview of how much it would cost to apply gene drives reflecting our predicted need for supplementation.
    Summary
    HD-ClvR offers an efficient, self-limiting, and controllable gene drive strategy. We show that in the spatial model, complete population suppression is achieved approximately 5 years later than in the randomly mating population model. We then explored how the placement of supplemented animals could impact population suppression. Our results show that spatial dynamics of supplementation placement are not prohibitive to the spread of the gene drive, but that in fact, with an optimised strategy, spread at a rate equal to randomly mating population can be achieved. In our models, we have shown that grey squirrels have a spatial life history which facilitates the spread of a gene drive. Therefore, gene drives could be a valuable tool in the conservation toolbox. More

  • in

    Limited flexibility in departure timing of migratory passerines at the East-Mediterranean flyway

    1.
    Flato, G. & Boer, G. Warming asymmetry in climate change simulations. Geophys. Res. Lett. 28, 195–198 (2001).
    ADS  Article  Google Scholar 
    2.
    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Jonzén, N. et al. Rapid advance of spring arrival dates in long-distance migratory birds. Science 312, 1959–1961 (2006).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Gordo, O. & Sanz, J. J. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484–495 (2005).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Tøttrup, A. P. et al. Avian migrants adjust migration in response to environmental conditions en route. Biol. Lett. 4, 685–688 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Moussus, J. P., Clavel, J., Jiguet, F. & Julliard, R. Which are the phenologically flexible species? A case study with common passerine birds. Oikos 120, 991–998 (2011).
    Article  Google Scholar 

    7.
    Maggini, I., Cardinale, M., Sundberg, J. H., Spina, F. & Fusani, L. Recent phenological shifts of migratory birds at a Mediterranean spring stopover site: Species wintering in the Sahel advance passage more than tropical winterers. PLoS ONE 15, e0239489 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. 105, 16195–16200 (2008).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B Biol. Sci. 278, 835–842 (2011).
    Article  Google Scholar 

    10.
    Jones, T. & Cresswell, W. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).
    Article  Google Scholar 

    12.
    Lehikoinen, E., Sparks, T. H. & Zalakevicius, M. Arrival and departure dates. Adv. Ecol. Res. 35, 1–31 (2004).
    Article  Google Scholar 

    13.
    Usui, T., Butchart, S. H. & Phillimore, A. B. Temporal shifts and temperature sensitivity of avian spring migratory phenology: A phylogenetic meta-analysis. J. Anim. Ecol. 86, 250–261 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. 100, 12219–12222 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Tøttrup, A. P., Thorup, K. & Rahbek, C. Changes in timing of autumn migration in North European songbird populations. Ardea 94, 527 (2006).
    Google Scholar 

    16.
    Haest, B., Hüppop, O. & Bairlein, F. Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds. Proc. Natl. Acad. Sci. 117, 17056–17062 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Tøttrup, A. P. et al. Drought in Africa caused delayed arrival of European songbirds. Science 338, 1307–1307 (2012).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    18.
    Biebach, H. Sahara stopover in migratory flycatchers: Fat and food affect the time program. Experientia 41, 695–697 (1985).
    Article  Google Scholar 

    19.
    Aharon-Rotman, Y., Bauer, S. & Klaassen, M. A chain is as strong as its weakest link: Assessing the consequences of habitat loss and degradation in a long-distance migratory shorebird. Emu-Aust. Ornithol. 116, 199–207 (2016).
    Article  Google Scholar 

    20.
    Berthold, P. Control of Bird Migration (Springer Science & Business Media, Berlin, 1996).
    Google Scholar 

    21.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Ramenofsky, M. Reconsidering the role of photoperiod in relation to effects of precipitation and food availability on spring departure of a migratory bird. Proc. R. Soc. B Biol. Sci. 279, 15–16 (2012).
    Article  Google Scholar 

    23.
    Goymann, W., Lupi, S., Kaiya, H., Cardinale, M. & Fusani, L. Ghrelin affects stopover decisions and food intake in a long-distance migrant. Proc. Natl. Acad. Sci. 114, 1946–1951 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Berthold, P. The endogenous control of bird migration: A survey of experimental evidence. Bird Study 31, 19–27 (1984).
    Article  Google Scholar 

    25.
    Gwinner, E. Circannual clocks in avian reproduction and migration. Ibis 138, 47–63 (1996).
    Article  Google Scholar 

    26.
    Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long-distance migrants, delays in short–distance migrants. Proc. R Soc. Lond. Ser. B Biol. Sci. 270, 1467–1471 (2003).
    Article  Google Scholar 

    27.
    Knudsen, E. et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 86, 928–946 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Kovács, S., Fehérvári, P., Nagy, K., Harnos, A. & Csörgő, T. Changes in migration phenology and biometrical traits of Reed, Marsh and Sedge Warblers. Cent. Eur. J. Biol. 7, 115–125 (2012).
    Google Scholar 

    29.
    Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim. Res. 35, 135–146 (2007).
    Article  Google Scholar 

    30.
    Thorup, K., Tøttrup, A. P. & Rahbek, C. Patterns of phenological changes in migratory birds. Oecologia 151, 697–703 (2007).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).
    Article  Google Scholar 

    32.
    Briedis, M., Krist, M., Král, M., Voigt, C. C. & Adamík, P. Linking events throughout the annual cycle in a migratory bird–non-breeding period buffers accumulation of carry-over effects. Behav. Ecol. Sociobiol. 72, 93 (2018).
    Article  Google Scholar 

    33.
    Stanley, C. Q., MacPherson, M., Fraser, K. C., McKinnon, E. A. & Stutchbury, B. J. Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS ONE 7, e40688 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Bussière, E. M., Underhill, L. G. & Altwegg, R. Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change. Glob. Change Biol. 21, 2179–2190 (2015).
    ADS  Article  Google Scholar 

    35.
    Ahola, M. et al. Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob. Change Biol. 10, 1610–1617 (2004).
    ADS  Article  Google Scholar 

    36.
    Payevsky, V. A., Vysotsky, V. G. & Zelenova, N. P. Extinction of a Barred Warbler Sylvia nisoria population in Eastern Baltic: long-term monitoring, demography, and biometry. Avian Ecol. Behav 11, 89–105 (2003).
    Google Scholar 

    37.
    Newton, I. Population limitation in migrants. Ibis 146, 197–226 (2004).
    Article  Google Scholar 

    38.
    Ockendon, N., Johnston, A. & Baillie, S. R. Rainfall on wintering grounds affects population change in many species of Afro-Palaearctic migrants. J. Ornithol. 155, 905–917 (2014).
    Article  Google Scholar 

    39.
    Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).
    Article  Google Scholar 

    40.
    Walther, B. A. & Rahbek, C. Where do Palearctic migratory birds overwinter in Africa. Danks Orn Foren Tidsskr 96, 4–8 (2002).
    Google Scholar 

    41.
    Bairlein, F. The study of bird migrations—some future perspectives. Bird Study 50, 243–253 (2003).
    Article  Google Scholar 

    42.
    Altwegg, R. et al. Novel methods reveal shifts in migration phenology of barn swallows in South Africa. Proc. R. Soc. B Biol. Sci. 279, 1485–1490 (2012).
    Article  Google Scholar 

    43.
    Hüppop, O. & Ppop, K. H. North Atlantic oscillation and timing of spring migration in birds. Proc. R Soc. Lond. Ser. B Biol. Sci. 270, 233–240 (2003).
    Article  Google Scholar 

    44.
    Haest, B., Hüppop, O. & Bairlein, F. Challenging a 15-year-old claim: The North atlantic oscillation index as a predictor of spring migration phenology of birds. Glob. Change Biol. 24, 1523–1537 (2018).
    ADS  Article  Google Scholar 

    45.
    Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    MacMynowski, D. P. & Root, T. L. Climate and the complexity of migratory phenology: Sexes, migratory distance, and arrival distributions. Int. J. Biometeorol. 51, 361–373 (2007).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Milá, B., Wayne, R. K. & Smith, T. B. Ecomorphology of migratory and sedentary populations of the yellow-rumped warbler (Dendroica coronata). Condor 110, 335–344 (2008).
    Article  Google Scholar 

    48.
    Förschler, M. I. & Bairlein, F. Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS ONE 6, e18732 (2011).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Fiedler, W. Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Ann. N. Y. Acad. Sci. 1046, 253 (2005).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Tarka, M. et al. A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proc. R. Soc. B Biol. Sci. 277, 2361–2369 (2010).
    Article  Google Scholar 

    51.
    Nowakowski, J. K., Szulc, J. & Remisiewicz, M. The further the flight, the longer the wing: Relationship between wing length and migratory distance in Old World reed and bush warblers (Acrocephalidae and Locustellidae). Ornis Fennica 91, 2 (2014).
    Google Scholar 

    52.
    Toews, D. P., Heavyside, J. & Irwin, D. E. Linking the wintering and breeding grounds of warblers along the Pacific Flyway. Ecol. Evol. 7, 6649–6658 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Pérez-Tris, J., Carbonell, R. & Tellería, J. L. A method for differentiating between sedentary and migratory Blackcaps Sylvia atricapilla in wintering areas of southern Iberia. Bird Study 46, 299–304 (1999).
    Article  Google Scholar 

    54.
    Kovács, S., Csörgő, T., Harnos, A., Fehérvári, P. & Nagy, K. Change in migration phenology and biometrics of two conspecific Sylvia species in Hungary. J. Ornithol. 152, 365–373 (2011).
    Article  Google Scholar 

    55.
    Lank, D. B. et al. Long term continental changes in wing length, but not bill length, of a long distance migratory shorebird. Ecol. Evol. 7, 3243–3256 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C. & Du Feu, R. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91–101 (2006).
    Article  Google Scholar 

    57.
    Szekely, T., Lislevand, T. & Figuerola, J. Sexual size dimorphism in birds. Sex, size and gender roles: evolutionary studies of sexual size dimorphism, 27–37 (2007).

    58.
    Spina, F., Massi, A. & Montemaggiori, A. Back from Africa: Who’s running ahead? Aspects of differential migration of sex and age classes in Palearctic-African spring migrants. Ostrich 65, 137–150 (1994).
    Article  Google Scholar 

    59.
    Izhaki, I. & Maitav, A. Blackcaps Sylvia atricapilla stopping over at the desert edge; inter-and intra sexual differences in spring and autumn migration. Ibis 140, 234–243 (1998).
    Article  Google Scholar 

    60.
    Tøttrup, A. P. & Thorup, K. Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J. Ornithol. 149, 161–167 (2008).
    Article  Google Scholar 

    61.
    Shneor, O., Perlman, G., Balaban, A. & Yom-Tov, Y. Origin of passerine migratory waves: Evidence from the blackcap at a stopover site. Israel J. Ecol. Evol. 56, 135–151 (2010).
    Article  Google Scholar 

    62.
    Porkert, J. et al. Variation and long-term trends in the timing of breeding of different Eurasian populations of Common Redstart Phoenicurus phoenicurus. J. Ornithol. 155, 1045–1057 (2014).
    Article  Google Scholar 

    63.
    BirdLife International and Handbook of the Birds of the World., 2019.

    64.
    Houborg, R., Soegaard, H. & Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 106, 39–58 (2007).
    ADS  Article  Google Scholar 

    65.
    Papeş, M., Peterson, A. T. & Powell, G. V. Vegetation dynamics and avian seasonal migration: Clues from remotely sensed vegetation indices and ecological niche modelling. J. Biogeogr. 39, 652–664 (2012).
    Article  Google Scholar 

    66.
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    ADS  Article  Google Scholar 

    67.
    Gersten, A. & Hahn, S. Timing of migration in Common Redstarts (Phoenicurus phoenicurus) in relation to the vegetation phenology at residence sites. J. Ornithol. 157, 1029–1036 (2016).
    Article  Google Scholar 

    68.
    Adole, T., Dash, J. & Atkinson, P. M. Characterising the land surface phenology of Africa using 500 m MODIS EVI. Appl. Geogr. 90, 187–199 (2018).
    Article  Google Scholar 

    69.
    Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Article  Google Scholar 

    70.
    Kiat, Y. & Sapir, N. Life-history trade-offs result in evolutionary optimization of feather quality. Biol. J. Lin. Soc. 125, 613–624 (2018).
    Google Scholar 

    71.
    Miles, W. T. et al. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long distance migratory birds. Glob. Change Biol. 23, 1400–1414 (2017).
    ADS  Article  Google Scholar 

    72.
    Geraci, M. & Bottai, M. Linear quantile mixed models. Stat. Comput. 24, 461–479 (2014).
    MathSciNet  MATH  Article  Google Scholar 

    73.
    Geraci, M. Linear quantile mixed models: The lqmm package for Laplace quantile regression. J. Stat. Softw. 57, 1–29 (2014).
    Article  Google Scholar 

    74.
    Koenker, R. & Bassett, G. J. Regression quantiles. Econometrica 2, 33–50 (1978).
    MathSciNet  MATH  Article  Google Scholar 

    75.
    Kokko, H., Gunnarsson, T. G., Morrell, L. J. & Gill, J. A. Why do female migratory birds arrive later than males?. J. Anim. Ecol. 75, 1293–1303 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Yosef, R. & Meissner, W. Seasonal age differences in weight and biometrics of migratory Dunlins (Calidris alpina) at Eilat Israel. Ostrich-J. Afr. Ornithol. 77, 67–72 (2006).
    Article  Google Scholar 

    77.
    Smith, R. J. & Moore, F. R. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav. Ecol. Sociobiol. 57, 231–239 (2005).
    Article  Google Scholar 

    78.
    R: A language and environment for statistical computing. ( Vienna, Austria. URL https://www.R-project.org/, 2019).

    79.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R-Core-Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–139 URL: https://CRAN.R-project.org/package=nlme (2020).

    80.
    Lenth, R. V. Least-square means: The R package lsmeans. J. Stat. Softw. 69, 1–33. https://doi.org/10.18637/jss.v069.i01 (2016).
    Article  Google Scholar 

    81.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, Berlin, 2009).
    Google Scholar 

    82.
    Hahn, S. et al. Longer wings for faster springs: Wing length relates to spring phenology in a long distance migrant across its range. Ecol. Evol. 6, 68–77 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360, 668 (1992).
    ADS  Article  Google Scholar 

    84.
    Hedlund, J. S., Jakobsson, S., Kullberg, C. & Fransson, T. Long-term phenological shifts and intra-specific differences in migratory change in the willow warbler Phylloscopus trochilus. J. Avian Biol. 46, 97–106 (2015).
    Article  Google Scholar 

    85.
    Tryjanowski, P., Kuźniak, S. & Sparks, T. What affects the magnitude of change in first arrival dates of migrant birds?. J. Ornithol. 146, 200–205 (2005).
    Article  Google Scholar 

    86.
    Newson, S. E. et al. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158, 481–495 (2016).
    Article  Google Scholar 

    87.
    Zalakevicius, M., Bartkeviciene, G., Raudonikis, L. & Janulaitis, J. Spring arrival response to climate change in birds: a case study from eastern Europe. J. Ornithol. 147, 326–343 (2006).
    Article  Google Scholar 

    88.
    Spottiswoode, C. N., Tøttrup, A. P. & Coppack, T. Sexual selection predicts advancement of avian spring migration in response to climate change. Proc. R. Soc. B Biol. Sci. 273, 3023–3029 (2006).
    Article  Google Scholar 

    89.
    Yosef, R. & Wineman, A. Differential stopover of blackcap (Sylvia atricapilla) by sex and age at Eilat Israel. J. Arid Environ. 74, 360–367 (2010).
    ADS  Article  Google Scholar 

    90.
    Kristensen, M. W., Tøttrup, A. P. & Thorup, K. Migration of the Common Redstart (Phoenicurus phoenicurus): A Eurasian songbird wintering in highly seasonal conditions in the West African Sahel. Auk 130, 258–264 (2013).
    Article  Google Scholar 

    91.
    Moreau, R. E. Palaearctic-African Bird Migration Systems (Academic Press, London, 1972).
    Google Scholar 

    92.
    Tryjanowski, P., Kuźniak, S. & Sparks, T. Earlier arrival of some farmland migrants in western Poland. Ibis 144, 62–68 (2002).
    Article  Google Scholar 

    93.
    Ożarowska, A., Zaniewicz, G. & Meissner, W. in Annales Zoologici Fennici. 45–54 (BioOne).

    94.
    Wisz, M. S., Walther, B. & Rahbek, C. Using potential distributions to explore determinants of Western Palaearctic migratory songbird species richness in sub-Saharan Africa. J. Biogeogr. 34, 828–841 (2007).
    Article  Google Scholar 

    95.
    Yosef, R. & Markovets, M. Spring bird migration phenology in Eilat Israel. ZooKeys 31, 193 (2009).
    Article  Google Scholar 

    96.
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Wolff, C. et al. Reduced interannual rainfall variability in East Africa during the last ice age. Science 333, 743–747 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Metabolomics shows the Australian dingo has a unique plasma profile

    1.
    Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E. & Lundeberg, J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc. Natl. Acad. Sci. USA 101, 12387–12390. https://doi.org/10.1073/pnas.0401814101 (2004).
    CAS  Article  PubMed  ADS  Google Scholar 
    2.
    Smith, B. P. et al. Taxonomic status of the Australian dingo: The case for Canis dingo Meyer, 1793. Zootaxa 4564, 173–197. https://doi.org/10.11646/zootaxa.4564.1.6 (2019).
    Article  Google Scholar 

    3.
    Ballard, J. W. O. & Wilson, L. A. B. The Australian dingo: Untamed or feral?. Front. Zool. 16, 1–19. https://doi.org/10.1186/s12983-019-0300-6 (2019).
    Article  Google Scholar 

    4.
    Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413. https://doi.org/10.1111/j.1469-185X.2011.00203.x (2012).
    Article  PubMed  Google Scholar 

    5.
    Letnic, M., Crowther, M. & Koch, F. Does a top-predator provide an endangered rodent with refuge from an invasive mesopredator?. Anim. Conserv. 12, 302–312 (2009).
    Article  Google Scholar 

    6.
    Doherty, T. S. et al. Continental patterns in the diet of a top predator: Australia’s dingo. Mammal. Rev. 49, 31–44. https://doi.org/10.1111/mam.12139 (2019).
    Article  Google Scholar 

    7.
    Stephens, D., Wilton, A. N., Fleming, P. J. & Berry, O. Death by sex in an Australian icon: A continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol. Ecol. 24, 5643–5656 (2015).
    CAS  Article  Google Scholar 

    8.
    Spady, T. C. & Ostrander, E. A. Canine behavioral genetics: Pointing out the phenotypes and herding up the genes. Am. J. Hum. Genet. 82, 10–18. https://doi.org/10.1016/j.ajhg.2007.12.001 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Wayne, R. K. Consequences of domestication: Morphological diversity of the dog. In The Genetics of the Dog (ed. Ruvinsky, A.) 43–60 (CAB International, Wallingford, 2001).
    Google Scholar 

    10.
    Parker, H. G. et al. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Rep. 19, 697–708. https://doi.org/10.1016/j.celrep.2017.03.079 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Johannes, J. E. Basenji origin and migration: At Africa’s Doorstep. Off. Bull. Basenji Am. 38, 18–19 (2004).
    Google Scholar 

    12.
    Fuller, J. L. Photoperiodic control of estrus in the Basenji. J. Hered. 47, 179–180 (1956).
    Article  Google Scholar 

    13.
    Talenti, A. et al. Studies of modern Italian dog populations reveal multiple patterns for domestic breed evolution. Ecol. Evol. 8, 2911–2925. https://doi.org/10.1002/ece3.3842 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Field, M. A. et al. Canfam_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C. Gigascience 9, giaa027. https://doi.org/10.1093/gigascience/giaa027 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Pendleton, A. L. et al. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. Bmc Biol. 16, 64. https://doi.org/10.1186/s12915-018-0535-2 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Jackson, S. M. et al. The Dogma of Dingoes—Taxonomic status of the dingo: A reply to Smith et al. Zootaxa 4564, 198–212 (2019).
    Article  Google Scholar 

    17.
    Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. Plos Genet 10, e1004016. https://doi.org/10.1371/journal.pgen.1004016 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    18.
    Arendt, M., Cairns, K. M., Ballard, J. W., Savolainen, P. & Axelsson, E. Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity 117, 301–306. https://doi.org/10.1038/hdy.2016.48 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Beckmann, M. et al. Metabolite fingerprinting of urine suggests breed-specific dietary metabolism differences in domestic dogs. Br. J. Nutr. 103, 1127–1138. https://doi.org/10.1017/S000711450999300X (2010).
    CAS  Article  PubMed  Google Scholar 

    20.
    Clinquart, A., Van Eenaeme, C., Mayombo, A. P., Gauthier, S. & Istasse, L. Plasma hormones and metabolites in cattle in relation to breed (Belgian Blue vs Holstein) and conformation (double-muscled vs dual-purpose type). Vet. Res.Commun. 19, 185–194. https://doi.org/10.1007/BF01839297 (1995).
    CAS  Article  PubMed  Google Scholar 

    21.
    Viant, M. R., Ludwig, C., Rhodes, S., Gunther, U. L. & Allaway, D. Validation of a urine metabolome fingerprint in dog for phenotypic classification (vol 3, pg 453, 2007). Metabolomics 5, 517–517. https://doi.org/10.1007/s11306-009-0172-4 (2009).
    CAS  Article  Google Scholar 

    22.
    Gopalakrishnan, S. et al. Interspecific gene flow shaped the evolution of the genus Canis. Curr. Biol. 28, 3441–3449. https://doi.org/10.1016/j.cub.2018.08.041 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Gottelli, D. et al. Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol. Ecol. 3, 301–312. https://doi.org/10.1111/j.1365-294x.1994.tb00070.x (1994).
    CAS  Article  PubMed  Google Scholar 

    24.
    Galov, A. et al. First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers. R. Soc. Open Sci. 2, 150450. https://doi.org/10.1098/rsos.150450 (2015).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    25.
    Adams, J. R., Leonard, J. A. & Waits, L. P. Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern US coyotes. Mol. Ecol. 12, 541–546. https://doi.org/10.1046/j.1365-294x.2003.01708.x (2003).
    CAS  Article  PubMed  Google Scholar 

    26.
    Roy, M. S., Geffen, E., Smith, D. & Wayne, R. K. Molecular genetics of pre-1940 red wolves. Conserv. Biol. 10, 1413–1424 (1996).
    Article  Google Scholar 

    27.
    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83 (1996).
    Article  Google Scholar 

    28.
    Fiehn, O. Metabolomics: The link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171. https://doi.org/10.1023/A:1013713905833 (2002).
    CAS  Article  PubMed  Google Scholar 

    29.
    Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459. https://doi.org/10.1038/nrm.2016.25 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    van Ravenzwaay, B. et al. The use of metabolomics for the discovery of new biomarkers of effect. Toxicol. Lett. 172, 21–28. https://doi.org/10.1016/j.toxlet.2007.05.021 (2007).
    CAS  Article  PubMed  Google Scholar 

    31.
    Hanhineva, K. et al. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J. Nutr. 145, 7–17. https://doi.org/10.3945/jn.114.196840 (2015).
    CAS  Article  PubMed  Google Scholar 

    32.
    Khamis, M. M., Adamko, D. J. & El-Aneed, A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev. 36, 115–134. https://doi.org/10.1002/mas.21455 (2017).
    CAS  Article  PubMed  ADS  Google Scholar 

    33.
    Mamas, M., Dunn, W. B., Neyses, L. & Goodacre, R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch. Toxicol. 85, 5–17. https://doi.org/10.1007/s00204-010-0609-6 (2011).
    CAS  Article  PubMed  Google Scholar 

    34.
    Ferlizza, E. et al. Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease. J. Proteom. 222, 103795. https://doi.org/10.1016/j.jprot.2020.103795 (2020).
    CAS  Article  Google Scholar 

    35.
    Colyer, A., Gilham, M. S., Kamlage, B., Rein, D. & Allaway, D. Identification of intra- and inter-individual metabolite variation in plasma metabolite profiles of cats and dogs. Br. J. Nutr. 106(Suppl 1), S146-149. https://doi.org/10.1017/S000711451100081X (2011).
    CAS  Article  PubMed  Google Scholar 

    36.
    Lloyd, A. J. et al. Ultra high performance liquid chromatography-high resolution mass spectrometry plasma lipidomics can distinguish between canine breeds despite uncontrolled environmental variability and non-standardized diets. Metabolomics 13, 15. https://doi.org/10.1007/s11306-016-1152-0 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Carlos, G., Dos Santos, F. P. & Froehlich, P. E. Canine metabolomics advances. Metabolomics 16, 16. https://doi.org/10.1007/s11306-020-1638-7 (2020).
    CAS  Article  PubMed  Google Scholar 

    38.
    Carthey, A. J. R., Bucknall, M. P., Wierucka, K. & Banks, P. B. Novel predators emit novel cues: A mechanism for prey naivety towards alien predators. Sci. Rep. 7, 16377. https://doi.org/10.1038/s41598-017-16656-z (2017).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    39.
    Nicholson, G. et al. Human metabolic profiles are stably controlled by genetic and environmental variation. Mol. Syst. Biol. 7, 525. https://doi.org/10.1038/msb.2011.57 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Suhre, K. & Gieger, C. Genetic variation in metabolic phenotypes: study designs and applications. Nat. Rev. Genet. 13, 759–769. https://doi.org/10.1038/nrg3314 (2012).
    CAS  Article  PubMed  Google Scholar 

    41.
    Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276. https://doi.org/10.1038/ng.1073 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Fujisaka, S. et al. Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites. Cell. Rep. 22, 3072–3086. https://doi.org/10.1016/j.celrep.2018.02.060 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Söder, J. et al. Plasma metabolomics reveals lower carnitine concentrations in overweight Labrador Retriever dogs. Acta Vet. Scand. 61, 1–12 (2019).
    Article  ADS  Google Scholar 

    44.
    Boretti, F. S. et al. Serum lipidome analysis of healthy beagle dogs receiving different diets. Metabolomics 16, 1 (2020).
    CAS  Article  Google Scholar 

    45.
    Lyu, T. S. et al. Changes in feeding habits promoted the differentiation of the composition and function of gut microbiotas between domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus). Amb. Express 8, 1–12. https://doi.org/10.1186/s13568-018-0652-x (2018).
    Article  Google Scholar 

    46.
    Zhang, S. J. et al. Genomic regions under selection in the feralization of the dingoes. Nat. Commun. 11, 671. https://doi.org/10.1038/s41467-020-14515-6 (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    47.
    Lee, R. K., Wurtman, R. J., Cox, A. J. & Nitsch, R. M. Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 92, 8083–8087. https://doi.org/10.1073/pnas.92.17.8083 (1995).
    CAS  Article  PubMed  ADS  Google Scholar 

    48.
    Li, Q., Chen, J., Yu, X. & Gao, J. M. A mini review of nervonic acid: Source, production, and biological functions. Food Chem. 301, 125286. https://doi.org/10.1016/j.foodchem.2019.125286 (2019).
    CAS  Article  PubMed  Google Scholar 

    49.
    Schauer, R. Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499. https://doi.org/10.1023/a:1011062223612 (2000).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Wang, G. D. et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 26, 21–33. https://doi.org/10.1038/cr.2015.147 (2016).
    Article  PubMed  Google Scholar 

    51.
    Pavlova, T. et al. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal. Chim. Acta 987, 72–80. https://doi.org/10.1016/j.aca.2017.08.022 (2017).
    CAS  Article  PubMed  Google Scholar 

    52.
    Webster, P. M., Hoover, W. H. & Miller, T. K. Determination of 2,6 Diaminopimelic acid in biological-materials using high-performance liquid-chromatography. Anim. Feed Sci. Technol. 30, 11–20. https://doi.org/10.1016/0377-8401(90)90048-D (1990).
    CAS  Article  Google Scholar 

    53.
    Vranova, V., Lojkova, L., Rejsek, K. & Formanek, P. Significance of the natural occurrence of L- versus D-pipecolic acid: A review. Chirality 25, 823–831. https://doi.org/10.1002/chir.22237 (2013).
    CAS  Article  PubMed  Google Scholar 

    54.
    Lin, C., Wan, J., Su, Y. & Zhu, W. Effects of early intervention with maternal fecal microbiota and antibiotics on the gut microbiota and metabolite profiles of piglets. Metabolites 8, 89. https://doi.org/10.3390/metabo8040089 (2018).
    CAS  Article  PubMed Central  Google Scholar 

    55.
    Sawada, S. & Yamamoto, C. Gamma-D-glutamylglycine and cis-2,3-piperidine dicarboxylate as antagonists of excitatory amino-acids in the hippocampus. Exp. Brain Res. 55, 351–358 (1984).
    CAS  Article  Google Scholar 

    56.
    Lewis, E. D., Meydani, S. N. & Wu, D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life 71, 487–494. https://doi.org/10.1002/iub.1976 (2019).
    CAS  Article  PubMed  Google Scholar 

    57.
    D’Arrigo, P. & Servi, S. Synthesis of lysophospholipids. Molecules 15, 1354–1377. https://doi.org/10.3390/molecules15031354 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Birgbauer, E. & Chun, J. New developments in the biological functions of lysophospholipids. Cell Mol. Life Sci. 63, 2695–2701. https://doi.org/10.1007/s00018-006-6155-y (2006).
    CAS  Article  PubMed  Google Scholar 

    59.
    Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. & Kluk, M. J. Lysophospholipids: Receptor revelations. Science 294, 1875–1878. https://doi.org/10.1126/science.1065323 (2001).
    CAS  Article  PubMed  ADS  Google Scholar 

    60.
    Li, Z. & Vance, D. E. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49, 1187–1194. https://doi.org/10.1194/jlr.R700019-JLR200 (2008).
    CAS  Article  PubMed  Google Scholar 

    61.
    van der Veen, J. N. et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. BBA https://doi.org/10.1016/j.bbamem.2017.04.006 (2017).
    Article  Google Scholar 

    62.
    Vance, D. E. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr. Opin. Lipidol. 19, 229–234. https://doi.org/10.1097/MOL.0b013e3282fee935 (2008).
    CAS  Article  PubMed  Google Scholar 

    63.
    Segal, S. Defective galactosylation in galactosemia: Is low cell UDPgalactose an explanation?. Eur. J. Pediatr. 154, S65–S71 (1995).
    CAS  Article  Google Scholar 

    64.
    Ollivier, M. et al. Amy2B copy number variation reveals starch diet adaptations in ancient European dogs. R. Soc. Open Sci. 3, 160449 (2016).
    Article  ADS  Google Scholar 

    65.
    Arendt, M., Fall, T., Lindblad-Toh, K. & Axelsson, E. Amylase activity is associated with AMY 2B copy numbers in dog: Implications for dog domestication, diet and diabetes. Anim. Genet. 45, 716–722 (2014).
    CAS  Article  Google Scholar 

    66.
    Hoenig, M. Progress in Molecular Biology and Translational Science Vol. 121, 377–412 (Elsevier, Amstredam, 2014).
    Google Scholar 

    67.
    Bradshaw, J. W. The evolutionary basis for the feeding behavior of domestic dogs (Canis familiaris) and cats (Felis catus). J. Nutr. 136, 1927S-1931S. https://doi.org/10.1093/jn/136.7.1927S (2006).
    CAS  Article  PubMed  Google Scholar 

    68.
    Surbakti, S. et al. New Guinea highland wild dogs are the original New Guinea singing dogs. Proc. Natl. Acad. Sci. USA 117, 24369–24376. https://doi.org/10.1073/pnas.2007242117 (2020).
    CAS  Article  PubMed  Google Scholar 

    69.
    Wilton, A. N. In A Symposium on the Dingo’ 49–56.

    70.
    Mackay, G. M., Zheng, L., Van Den Broek, N. J. & Gottlieb, E. Methods in Enzymology Vol. 561, 171–196 (Elsevier, Amsterdam, 2015).
    Google Scholar 

    71.
    Zhang, T., Creek, D. J., Barrett, M. P., Blackburn, G. & Watson, D. G. Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic studies of human urine. Anal. Chem. 84, 1994–2001. https://doi.org/10.1021/ac2030738 (2012).
    CAS  Article  PubMed  Google Scholar 

    72.
    Team, R. C. & DC, R. A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2012). https://www.R-project.org (2019).

    73.
    Fox, J. et al. Package ‘car’ (R Foundation for Statistical Computing, Vienna, 2012).
    Google Scholar 

    74.
    Champely, S. et al. Package ‘pwr’. R package version 1 (2018). More

  • in

    Continental-scale analysis of shallow and deep groundwater contributions to streams

    1.
    Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).
    ADS  Article  Google Scholar 
    2.
    Boulton, A. & Hancock, P. Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Aust. J. Bot. 54, (2006).

    3.
    Tesoriero, A. J., Duff, J. H., Saad, D. A., Spahr, N. E. & Wolock, D. M. Vulnerability of streams to legacy nitrate sources. Environ. Sci. Technol. 47, 3623–3629 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Briggs, M. A. et al. Hillslope groundwater discharges provide localized stream ecosystem buffers from regional per- and polyfluoroalkyl substances contamination. Hydrol. Process. 34, 2281–2291 (2020).
    ADS  CAS  Article  Google Scholar 

    5.
    Ward, J. V. & Stanford, J. A. Thermal responses in the evolutionary ecology of aquatic insects. Annu. Rev. Entomol. 27, 97–117 (1982).
    Article  Google Scholar 

    6.
    Baird, O. E. & Krueger, C. C. Behavioral thermoregulation of brook and rainbow trout: comparison of summer habitat use in an Adirondack river, New York. Trans. Am. Fish. Soc. 132, 1194–1206 (2003).
    Article  Google Scholar 

    7.
    Torgersen, C., Ebersole, J. & Keenan, D. Primer for identifying cold-water refuges to protect and restore thermal diversity in riverine landscapes. EPA Sci. Guid. Handb. p. 91 (2012).

    8.
    Briggs, M. A. et al. Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals. Sci. Total Environ. 636, 1117–1127 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Kaushal, S. S. et al. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8, 451–466 (2010).
    Article  Google Scholar 

    10.
    Isaak, D. J., Wollrab, S., Horan, D. & Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change 113, 499–524 (2012).
    ADS  Article  Google Scholar 

    11.
    Luce, C. et al. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest. Water Resour. Res. 50, 3428–3443 (2014).
    ADS  Article  Google Scholar 

    12.
    Leach, J. A. & Moore, R. D. Empirical stream thermal sensitivities may underestimate stream temperature response to climate warming. Water Resour. Res. 55, 5453–5467 (2019).
    ADS  Article  Google Scholar 

    13.
    Bundschuh, J. Modeling annual variations of spring and groundwater temperatures associated with shallow aquifer systems. J. Hydrol. 142, 427–444 (1993).
    ADS  Article  Google Scholar 

    14.
    Snyder, C. D., Hitt, N. P. & Young, J. A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 25, 1397–1419 (2015).
    PubMed  Article  Google Scholar 

    15.
    Barclay, J. R., Starn, J. J., Briggs, M. A. & Helton, A. M. Improved prediction of management-relevant groundwater discharge characteristics throughout river networks. Water Resour. Res. 56, e2020WR028027 (2020).
    ADS  Article  Google Scholar 

    16.
    Kurylyk, B. L., MacQuarrie, K. T. B., Caissie, D. & McKenzie, J. M. Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling. Hydrol. Earth Syst. Sci. 19, 2469–2489 (2015).
    ADS  Article  Google Scholar 

    17.
    Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 44, 1–20 (2008).
    Article  CAS  Google Scholar 

    18.
    Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S. & Slater, L. Multiscale geophysical imaging of the critical zone. Rev. Geophys. 53, 1–26 (2015).
    ADS  Article  Google Scholar 

    19.
    Maxwell, R. M. & Kollet, S. J. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci. 1, 665–669 (2008).
    ADS  CAS  Article  Google Scholar 

    20.
    Eggleston, J. & McCoy, K. J. Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA. Hydrogeol. J. 23, 105–120 (2015).
    ADS  Article  Google Scholar 

    21.
    Williams, M. R. et al. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment. J. Hydrol. 511, 870–879 (2014).
    ADS  CAS  Article  Google Scholar 

    22.
    Cozzarelli, I. M. et al. Geochemical and geophysical indicators of oil and gas wastewater can trace potential exposure pathways following releases to surface waters. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142909 (2020).
    Article  PubMed  Google Scholar 

    23.
    Thompson, T. J. et al. Groundwater discharges as a source of phytoestrogens and other agriculturally derived contaminants to streams. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142873 (2020).

    24.
    Condon, L. E. et al. Where is the bottom of a watershed? Water Resour. Res. 56, e2019WR026010 (2020).
    ADS  Article  Google Scholar 

    25.
    Barnes, R. T., Butman, D. E., Wilson, H. F. & Raymond, P. A. Riverine export of aged carbon driven by flow path depth and residence time. Environ. Sci. Technol. 52, 1028–1035 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Zhi, W. & Li, L. The shallow and deep hypothesis: subsurface vertical chemical contrasts shape nitrate export patterns from different land uses. Environ. Sci. Technol. 54, 11915–11928 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    27.
    Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Essaid, H. I. & Caldwell, R. R. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed. Sci. Total Environ. 599–600, 581–596 (2017).
    ADS  PubMed  Article  CAS  Google Scholar 

    29.
    Burns, D. A., Murdoch, P. S., Lawrence, G. B. & Michel, R. L. Effect of groundwater springs on NO3/- concentrations during summer in Catskill Mountain streams. Water Resour. Res. 34, 1987–1996 (1998).
    ADS  CAS  Article  Google Scholar 

    30.
    Kalbus, E., Reinstorf, F. & Schirmer, M. Measuring methods for groundwater-surface water interactions: a review. Hydrol. Earth Syst. Sci. 10, 873–887 (2006).
    ADS  CAS  Article  Google Scholar 

    31.
    Kelleher, C. et al. Investigating controls on the thermal sensitivity of Pennsylvania streams. Hydrol. Process. 26, 771–785 (2012).
    ADS  Article  Google Scholar 

    32.
    Gustard, A., Bullock, A. & Dixon, J. M. Low flow estimation in the United Kingdom. Inst. Hydrol. 102, 1–292 (1992).
    Google Scholar 

    33.
    Essaid, H. I., Baker, N. T. & McCarthy, K. A. Contrasting nitrogen fate in watersheds using agricultural and water quality information. J. Environ. Qual. 45, 1616–1626 (2016).
    CAS  PubMed  Article  Google Scholar 

    34.
    Jasechko, S., Kirchner, J. W., Welker, J. M. & McDonnell, J. J. Substantial proportion of global streamflow less than three months old. Nat. Geosci. 9, 126–129 (2016).
    ADS  CAS  Article  Google Scholar 

    35.
    Letcher, B. H. et al. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags. PeerJ https://doi.org/10.7717/peerj.1727 (2016).

    36.
    Kędra, M. & Wiejaczka, Ł. Climatic and dam-induced impacts on river water temperature: Assessment and management implications. Sci. Total Environ. 626, 1474–1483 (2018).
    ADS  PubMed  Article  CAS  Google Scholar 

    37.
    Tague, C., Grant, G., Farrell, M., Choate, J. & Jefferson, A. Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades. Clim. Change 86, 189–210 (2008).
    ADS  Article  Google Scholar 

    38.
    Bense, V., Kurylyk, B. L., van Daal, J., van der Ploeg, M. J. & Carey, S. K. Interpreting repeated temperature-depth profiles for groundwater flow. Water Resour. Res. 53, 8639–8647 (2017).
    ADS  Article  Google Scholar 

    39.
    Burns, E. R. et al. Thermal effect of climate change on groundwater-fed ecosystems. Water Resour. Res. 53, 3341–3351 (2017).
    ADS  Article  Google Scholar 

    40.
    Johnson, Z. C. et al. Paired air-water annual temperature patterns reveal hydrogeological controls on stream thermal regimes at watershed to continental scales. J. Hydrol. 587, 124929 (2020).
    Article  Google Scholar 

    41.
    Briggs, M. A. et al. Shallow bedrock limits groundwater seepage-based headwater climate refugia. Limnologica 68, 142–156 (2018).
    Article  Google Scholar 

    42.
    Land, M., Ingri, J., Andersson, P. S. & Ohlander, B. Ba/Sr, Ca/Sr and Sr-87/Sr-86 ratios in soil water and groundwater: implications for relative contributions to stream water discharge. Appl. Geochem. 15, 311–325 (2000).
    CAS  Article  Google Scholar 

    43.
    Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground water and surface water: a single resource. U.S. Geological Survey circular: 1139 (1998).

    44.
    Briggs, M. A. et al. Hydrogeochemical controls on brook trout spawning habitats in a coastal stream. Hydrol. Earth Syst. Sci. 22, 6383–6398 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Johnson, Z. C., Snyder, C. D. & Hitt, N. P. Landform features and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams. Water Resour. Res. 53, 5788–5812 (2017).
    ADS  Article  Google Scholar 

    46.
    Jencso, K. G., Mcglynn, B. L., Gooseff, M. N., Bencala, K. E. & Wondzell, S. M. Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources. 46, 1–18 (2010).

    47.
    Helton, A. M., Poole, G. C., Payn, R. A., Izurieta, C. & Stanford, J. A. Relative influences of the river channel, floodplain surface, and alluvial aquifer on simulated hydrologic residence time in a montane river floodplain. Geomorphology 205, 17–26 (2012).
    ADS  Article  Google Scholar 

    48.
    Idaho Department of Environmental Quality Technical Services Division. Upper North Fork Clearwater River Subbasin Assessment and Total Maximum Daily Loads. 2017 Lake Creek Temperature TMDL (2018).

    49.
    Ledford, S. H., Lautz, L. K. & Stella, J. C. Hydrogeologic processes impacting storage, fate, and transport of chloride from road salt in urban riparian aquifers. Environ. Sci. Technol. 50, 4979–4988 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Hill, R. A., Weber, M. H., Leibowitz, S. G., Olsen, A. R. & Thornbrugh, D. J. The stream-catchment (StreamCat) dataset: a database of watershed metrics for the conterminous United States. J. Am. Water Resour. Assoc. 52, 120–128 (2016).
    ADS  Article  Google Scholar 

    51.
    Falcone, J. A., Carlisle, D. M. & Weber, L. C. Quantifying human disturbance in watersheds: variable selection and performance of a GIS-based disturbance index for predicting the biological condition of perennial streams. Ecol. Indic. 10, 264–273 (2010).
    Article  Google Scholar 

    52.
    U.S. Geological Survey. GAGES-II—Geospatial attributes of gages for evaluating streamflow: U.S. Geological Survey database. https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml (2011).

    53.
    de Graaf, I. E. M., Gleeson, T., (Rens) van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).
    ADS  PubMed  Article  CAS  Google Scholar 

    54.
    Ledford, S. H., Zimmer, M. & Payan, D. Anthropogenic and biophysical controls on low flow hydrology in the Southeastern United States. Water Resour. Res. 56, 1–19 (2020).
    Article  Google Scholar 

    55.
    Kurylyk, B. L., Macquarrie, K. T. B. & Voss, C. I. Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resour. Res. 50, 3253–3274 (2014).
    ADS  Article  Google Scholar 

    56.
    Arismendi, I., Johnson, S. L., Dunham, J. B., Haggerty, R. & Hockman-Wert, D. The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States. Geophys. Res. Lett. 39, 1–7 (2012).
    Article  Google Scholar 

    57.
    Luce, C. H., Abatzoglou, J. T. & Holden, Z. A. The missing mountain water: slower westerlies decrease orographic enhancement in the pacific northwest USA. Science 342, 1360–1365 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Johnson, Z. C. et al. Heed the data gap: guidelines for using incomplete datasets in annual stream temperature analyses. Ecol. Indic. 122, 107229 (2021).
    Article  Google Scholar 

    59.
    U.S. Geological Survey. USGS water data for the Nation: U.S. Geological Survey National Water Information System database. (2019).

    60.
    Isaak, D. J. et al. The NorWeST summer stream temperature model and scenarios for the Western U.S.: a crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams. Water Resour. Res. 53, 9181–9205 (2017).
    ADS  Article  Google Scholar 

    61.
    Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. (2012)

    62.
    Chamberlain, S. rnoaa: ‘NOAA’ Weather Data from R. R package version 0.8.4. (2019).

    63.
    Falcone, J. A. U.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences: U.S. Geological Survey data release (2017).

    64.
    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods https://doi.org/10.1038/s41592-019-0686-2 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    65.
    Rosenberry, D. O., Briggs, M. A., Delin, G. & Hare, D. K. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream. Water Resour. Res. 52, 1–18 (2016).
    Article  Google Scholar 

    66.
    Barlow, P. M. & Hess, K. M. Simulated Hydrologic Responses of the Quashnet River Stream-Aquifer System to Proposed Ground-Water Withdrawals, Cape Cod, Massachusetts. U.S. Geological Survey, Water-Resources Investigations Report 93-4-64, Marlborough (1993).

    67.
    Herberich, E., Sikorski, J. & Hothorn, T. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS One 5, 1–8 (2010).
    Article  CAS  Google Scholar 

    68.
    Carslaw, D. C. & Ropkins, K. Openair – an r package for air quality data analysis. Environ. Model. Softw. 27–28, 52–61 (2012).
    Article  Google Scholar 

    69.
    Hare, D. K. Continental-scale analysis of shallow and deep groundwater contributions to streams. Haredkb/PairedAir-StreamAnnualTSignals https://doi.org/10.5281/zenodo.4313244 (2020).
    Article  Google Scholar 

    70.
    U.S. Geological Survey. USGS TNM Hydrography (NHD). https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServer (2016). More