1.
Flato, G. & Boer, G. Warming asymmetry in climate change simulations. Geophys. Res. Lett. 28, 195–198 (2001).
ADS Article Google Scholar
2.
Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
3.
Jonzén, N. et al. Rapid advance of spring arrival dates in long-distance migratory birds. Science 312, 1959–1961 (2006).
ADS PubMed Article CAS PubMed Central Google Scholar
4.
Gordo, O. & Sanz, J. J. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484–495 (2005).
ADS PubMed Article PubMed Central Google Scholar
5.
Tøttrup, A. P. et al. Avian migrants adjust migration in response to environmental conditions en route. Biol. Lett. 4, 685–688 (2008).
PubMed PubMed Central Article Google Scholar
6.
Moussus, J. P., Clavel, J., Jiguet, F. & Julliard, R. Which are the phenologically flexible species? A case study with common passerine birds. Oikos 120, 991–998 (2011).
Article Google Scholar
7.
Maggini, I., Cardinale, M., Sundberg, J. H., Spina, F. & Fusani, L. Recent phenological shifts of migratory birds at a Mediterranean spring stopover site: Species wintering in the Sahel advance passage more than tropical winterers. PLoS ONE 15, e0239489 (2020).
CAS PubMed PubMed Central Article Google Scholar
8.
Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. 105, 16195–16200 (2008).
ADS PubMed Article PubMed Central Google Scholar
9.
Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B Biol. Sci. 278, 835–842 (2011).
Article Google Scholar
10.
Jones, T. & Cresswell, W. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108 (2010).
PubMed Article PubMed Central Google Scholar
11.
Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).
Article Google Scholar
12.
Lehikoinen, E., Sparks, T. H. & Zalakevicius, M. Arrival and departure dates. Adv. Ecol. Res. 35, 1–31 (2004).
Article Google Scholar
13.
Usui, T., Butchart, S. H. & Phillimore, A. B. Temporal shifts and temperature sensitivity of avian spring migratory phenology: A phylogenetic meta-analysis. J. Anim. Ecol. 86, 250–261 (2017).
PubMed Article PubMed Central Google Scholar
14.
Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. 100, 12219–12222 (2003).
ADS CAS PubMed Article PubMed Central Google Scholar
15.
Tøttrup, A. P., Thorup, K. & Rahbek, C. Changes in timing of autumn migration in North European songbird populations. Ardea 94, 527 (2006).
Google Scholar
16.
Haest, B., Hüppop, O. & Bairlein, F. Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds. Proc. Natl. Acad. Sci. 117, 17056–17062 (2020).
CAS PubMed Article PubMed Central Google Scholar
17.
Tøttrup, A. P. et al. Drought in Africa caused delayed arrival of European songbirds. Science 338, 1307–1307 (2012).
ADS PubMed Article CAS PubMed Central Google Scholar
18.
Biebach, H. Sahara stopover in migratory flycatchers: Fat and food affect the time program. Experientia 41, 695–697 (1985).
Article Google Scholar
19.
Aharon-Rotman, Y., Bauer, S. & Klaassen, M. A chain is as strong as its weakest link: Assessing the consequences of habitat loss and degradation in a long-distance migratory shorebird. Emu-Aust. Ornithol. 116, 199–207 (2016).
Article Google Scholar
20.
Berthold, P. Control of Bird Migration (Springer Science & Business Media, Berlin, 1996).
Google Scholar
21.
Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
ADS CAS PubMed Article PubMed Central Google Scholar
22.
Ramenofsky, M. Reconsidering the role of photoperiod in relation to effects of precipitation and food availability on spring departure of a migratory bird. Proc. R. Soc. B Biol. Sci. 279, 15–16 (2012).
Article Google Scholar
23.
Goymann, W., Lupi, S., Kaiya, H., Cardinale, M. & Fusani, L. Ghrelin affects stopover decisions and food intake in a long-distance migrant. Proc. Natl. Acad. Sci. 114, 1946–1951 (2017).
CAS PubMed Article PubMed Central Google Scholar
24.
Berthold, P. The endogenous control of bird migration: A survey of experimental evidence. Bird Study 31, 19–27 (1984).
Article Google Scholar
25.
Gwinner, E. Circannual clocks in avian reproduction and migration. Ibis 138, 47–63 (1996).
Article Google Scholar
26.
Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long-distance migrants, delays in short–distance migrants. Proc. R Soc. Lond. Ser. B Biol. Sci. 270, 1467–1471 (2003).
Article Google Scholar
27.
Knudsen, E. et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 86, 928–946 (2011).
PubMed Article PubMed Central Google Scholar
28.
Kovács, S., Fehérvári, P., Nagy, K., Harnos, A. & Csörgő, T. Changes in migration phenology and biometrical traits of Reed, Marsh and Sedge Warblers. Cent. Eur. J. Biol. 7, 115–125 (2012).
Google Scholar
29.
Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim. Res. 35, 135–146 (2007).
Article Google Scholar
30.
Thorup, K., Tøttrup, A. P. & Rahbek, C. Patterns of phenological changes in migratory birds. Oecologia 151, 697–703 (2007).
ADS PubMed Article PubMed Central Google Scholar
31.
Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).
Article Google Scholar
32.
Briedis, M., Krist, M., Král, M., Voigt, C. C. & Adamík, P. Linking events throughout the annual cycle in a migratory bird–non-breeding period buffers accumulation of carry-over effects. Behav. Ecol. Sociobiol. 72, 93 (2018).
Article Google Scholar
33.
Stanley, C. Q., MacPherson, M., Fraser, K. C., McKinnon, E. A. & Stutchbury, B. J. Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS ONE 7, e40688 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
34.
Bussière, E. M., Underhill, L. G. & Altwegg, R. Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change. Glob. Change Biol. 21, 2179–2190 (2015).
ADS Article Google Scholar
35.
Ahola, M. et al. Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob. Change Biol. 10, 1610–1617 (2004).
ADS Article Google Scholar
36.
Payevsky, V. A., Vysotsky, V. G. & Zelenova, N. P. Extinction of a Barred Warbler Sylvia nisoria population in Eastern Baltic: long-term monitoring, demography, and biometry. Avian Ecol. Behav 11, 89–105 (2003).
Google Scholar
37.
Newton, I. Population limitation in migrants. Ibis 146, 197–226 (2004).
Article Google Scholar
38.
Ockendon, N., Johnston, A. & Baillie, S. R. Rainfall on wintering grounds affects population change in many species of Afro-Palaearctic migrants. J. Ornithol. 155, 905–917 (2014).
Article Google Scholar
39.
Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).
Article Google Scholar
40.
Walther, B. A. & Rahbek, C. Where do Palearctic migratory birds overwinter in Africa. Danks Orn Foren Tidsskr 96, 4–8 (2002).
Google Scholar
41.
Bairlein, F. The study of bird migrations—some future perspectives. Bird Study 50, 243–253 (2003).
Article Google Scholar
42.
Altwegg, R. et al. Novel methods reveal shifts in migration phenology of barn swallows in South Africa. Proc. R. Soc. B Biol. Sci. 279, 1485–1490 (2012).
Article Google Scholar
43.
Hüppop, O. & Ppop, K. H. North Atlantic oscillation and timing of spring migration in birds. Proc. R Soc. Lond. Ser. B Biol. Sci. 270, 233–240 (2003).
Article Google Scholar
44.
Haest, B., Hüppop, O. & Bairlein, F. Challenging a 15-year-old claim: The North atlantic oscillation index as a predictor of spring migration phenology of birds. Glob. Change Biol. 24, 1523–1537 (2018).
ADS Article Google Scholar
45.
Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar
46.
MacMynowski, D. P. & Root, T. L. Climate and the complexity of migratory phenology: Sexes, migratory distance, and arrival distributions. Int. J. Biometeorol. 51, 361–373 (2007).
ADS PubMed Article PubMed Central Google Scholar
47.
Milá, B., Wayne, R. K. & Smith, T. B. Ecomorphology of migratory and sedentary populations of the yellow-rumped warbler (Dendroica coronata). Condor 110, 335–344 (2008).
Article Google Scholar
48.
Förschler, M. I. & Bairlein, F. Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS ONE 6, e18732 (2011).
ADS PubMed PubMed Central Article CAS Google Scholar
49.
Fiedler, W. Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Ann. N. Y. Acad. Sci. 1046, 253 (2005).
ADS PubMed Article PubMed Central Google Scholar
50.
Tarka, M. et al. A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proc. R. Soc. B Biol. Sci. 277, 2361–2369 (2010).
Article Google Scholar
51.
Nowakowski, J. K., Szulc, J. & Remisiewicz, M. The further the flight, the longer the wing: Relationship between wing length and migratory distance in Old World reed and bush warblers (Acrocephalidae and Locustellidae). Ornis Fennica 91, 2 (2014).
Google Scholar
52.
Toews, D. P., Heavyside, J. & Irwin, D. E. Linking the wintering and breeding grounds of warblers along the Pacific Flyway. Ecol. Evol. 7, 6649–6658 (2017).
PubMed PubMed Central Article Google Scholar
53.
Pérez-Tris, J., Carbonell, R. & Tellería, J. L. A method for differentiating between sedentary and migratory Blackcaps Sylvia atricapilla in wintering areas of southern Iberia. Bird Study 46, 299–304 (1999).
Article Google Scholar
54.
Kovács, S., Csörgő, T., Harnos, A., Fehérvári, P. & Nagy, K. Change in migration phenology and biometrics of two conspecific Sylvia species in Hungary. J. Ornithol. 152, 365–373 (2011).
Article Google Scholar
55.
Lank, D. B. et al. Long term continental changes in wing length, but not bill length, of a long distance migratory shorebird. Ecol. Evol. 7, 3243–3256 (2017).
PubMed PubMed Central Article Google Scholar
56.
Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C. & Du Feu, R. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91–101 (2006).
Article Google Scholar
57.
Szekely, T., Lislevand, T. & Figuerola, J. Sexual size dimorphism in birds. Sex, size and gender roles: evolutionary studies of sexual size dimorphism, 27–37 (2007).
58.
Spina, F., Massi, A. & Montemaggiori, A. Back from Africa: Who’s running ahead? Aspects of differential migration of sex and age classes in Palearctic-African spring migrants. Ostrich 65, 137–150 (1994).
Article Google Scholar
59.
Izhaki, I. & Maitav, A. Blackcaps Sylvia atricapilla stopping over at the desert edge; inter-and intra sexual differences in spring and autumn migration. Ibis 140, 234–243 (1998).
Article Google Scholar
60.
Tøttrup, A. P. & Thorup, K. Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J. Ornithol. 149, 161–167 (2008).
Article Google Scholar
61.
Shneor, O., Perlman, G., Balaban, A. & Yom-Tov, Y. Origin of passerine migratory waves: Evidence from the blackcap at a stopover site. Israel J. Ecol. Evol. 56, 135–151 (2010).
Article Google Scholar
62.
Porkert, J. et al. Variation and long-term trends in the timing of breeding of different Eurasian populations of Common Redstart Phoenicurus phoenicurus. J. Ornithol. 155, 1045–1057 (2014).
Article Google Scholar
63.
BirdLife International and Handbook of the Birds of the World., 2019.
64.
Houborg, R., Soegaard, H. & Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 106, 39–58 (2007).
ADS Article Google Scholar
65.
Papeş, M., Peterson, A. T. & Powell, G. V. Vegetation dynamics and avian seasonal migration: Clues from remotely sensed vegetation indices and ecological niche modelling. J. Biogeogr. 39, 652–664 (2012).
Article Google Scholar
66.
Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
ADS Article Google Scholar
67.
Gersten, A. & Hahn, S. Timing of migration in Common Redstarts (Phoenicurus phoenicurus) in relation to the vegetation phenology at residence sites. J. Ornithol. 157, 1029–1036 (2016).
Article Google Scholar
68.
Adole, T., Dash, J. & Atkinson, P. M. Characterising the land surface phenology of Africa using 500 m MODIS EVI. Appl. Geogr. 90, 187–199 (2018).
Article Google Scholar
69.
Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
ADS Article Google Scholar
70.
Kiat, Y. & Sapir, N. Life-history trade-offs result in evolutionary optimization of feather quality. Biol. J. Lin. Soc. 125, 613–624 (2018).
Google Scholar
71.
Miles, W. T. et al. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long distance migratory birds. Glob. Change Biol. 23, 1400–1414 (2017).
ADS Article Google Scholar
72.
Geraci, M. & Bottai, M. Linear quantile mixed models. Stat. Comput. 24, 461–479 (2014).
MathSciNet MATH Article Google Scholar
73.
Geraci, M. Linear quantile mixed models: The lqmm package for Laplace quantile regression. J. Stat. Softw. 57, 1–29 (2014).
Article Google Scholar
74.
Koenker, R. & Bassett, G. J. Regression quantiles. Econometrica 2, 33–50 (1978).
MathSciNet MATH Article Google Scholar
75.
Kokko, H., Gunnarsson, T. G., Morrell, L. J. & Gill, J. A. Why do female migratory birds arrive later than males?. J. Anim. Ecol. 75, 1293–1303 (2006).
PubMed Article PubMed Central Google Scholar
76.
Yosef, R. & Meissner, W. Seasonal age differences in weight and biometrics of migratory Dunlins (Calidris alpina) at Eilat Israel. Ostrich-J. Afr. Ornithol. 77, 67–72 (2006).
Article Google Scholar
77.
Smith, R. J. & Moore, F. R. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav. Ecol. Sociobiol. 57, 231–239 (2005).
Article Google Scholar
78.
R: A language and environment for statistical computing. ( Vienna, Austria. URL https://www.R-project.org/, 2019).
79.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R-Core-Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–139 URL: https://CRAN.R-project.org/package=nlme (2020).
80.
Lenth, R. V. Least-square means: The R package lsmeans. J. Stat. Softw. 69, 1–33. https://doi.org/10.18637/jss.v069.i01 (2016).
Article Google Scholar
81.
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, Berlin, 2009).
Google Scholar
82.
Hahn, S. et al. Longer wings for faster springs: Wing length relates to spring phenology in a long distance migrant across its range. Ecol. Evol. 6, 68–77 (2016).
PubMed Article PubMed Central Google Scholar
83.
Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360, 668 (1992).
ADS Article Google Scholar
84.
Hedlund, J. S., Jakobsson, S., Kullberg, C. & Fransson, T. Long-term phenological shifts and intra-specific differences in migratory change in the willow warbler Phylloscopus trochilus. J. Avian Biol. 46, 97–106 (2015).
Article Google Scholar
85.
Tryjanowski, P., Kuźniak, S. & Sparks, T. What affects the magnitude of change in first arrival dates of migrant birds?. J. Ornithol. 146, 200–205 (2005).
Article Google Scholar
86.
Newson, S. E. et al. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158, 481–495 (2016).
Article Google Scholar
87.
Zalakevicius, M., Bartkeviciene, G., Raudonikis, L. & Janulaitis, J. Spring arrival response to climate change in birds: a case study from eastern Europe. J. Ornithol. 147, 326–343 (2006).
Article Google Scholar
88.
Spottiswoode, C. N., Tøttrup, A. P. & Coppack, T. Sexual selection predicts advancement of avian spring migration in response to climate change. Proc. R. Soc. B Biol. Sci. 273, 3023–3029 (2006).
Article Google Scholar
89.
Yosef, R. & Wineman, A. Differential stopover of blackcap (Sylvia atricapilla) by sex and age at Eilat Israel. J. Arid Environ. 74, 360–367 (2010).
ADS Article Google Scholar
90.
Kristensen, M. W., Tøttrup, A. P. & Thorup, K. Migration of the Common Redstart (Phoenicurus phoenicurus): A Eurasian songbird wintering in highly seasonal conditions in the West African Sahel. Auk 130, 258–264 (2013).
Article Google Scholar
91.
Moreau, R. E. Palaearctic-African Bird Migration Systems (Academic Press, London, 1972).
Google Scholar
92.
Tryjanowski, P., Kuźniak, S. & Sparks, T. Earlier arrival of some farmland migrants in western Poland. Ibis 144, 62–68 (2002).
Article Google Scholar
93.
Ożarowska, A., Zaniewicz, G. & Meissner, W. in Annales Zoologici Fennici. 45–54 (BioOne).
94.
Wisz, M. S., Walther, B. & Rahbek, C. Using potential distributions to explore determinants of Western Palaearctic migratory songbird species richness in sub-Saharan Africa. J. Biogeogr. 34, 828–841 (2007).
Article Google Scholar
95.
Yosef, R. & Markovets, M. Spring bird migration phenology in Eilat Israel. ZooKeys 31, 193 (2009).
Article Google Scholar
96.
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
97.
Wolff, C. et al. Reduced interannual rainfall variability in East Africa during the last ice age. Science 333, 743–747 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar More