More stories

  • in

    Plasticity in timing of avian breeding in response to spring temperature differs between early and late nesting species

    1.
    Dunn, P. O. & Winkler, D. W. Effects of climate change on timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds (eds Møller, A. P. et al.) 113–128 (Oxford University Press, Oxford, 2010).
    Google Scholar 
    2.
    Schwartz, M. D., Ahas, R. & Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12, 343–351 (2006).
    ADS  Article  Google Scholar 

    3.
    Jones, T. & Cresswell, W. The phenology mismatch hypothesis: are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108 (2010).
    PubMed  Article  Google Scholar 

    4.
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109. https://doi.org/10.1038/s41467-019-10924-4 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U.S.A. 105, 16195–16200 (2008).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Raquel, A. J. et al. Timing of nesting of upland-nesting ducks in the Canadian prairies and its relation to spring wetland conditions. Can. J. Zool. 94, 575–581 (2016).
    Article  Google Scholar 

    9.
    Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: A role for life-history characteristics?. Ecol. Evol. 7, 10492–10502 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Lynch, H. J., Fagan, W. F., Naveen, R., Trivelpiece, S. G. & Trivelpiece, W. Z. Differential advancement of breeding phenology in response to climate may alter staggered breeding among sympatric pygoscelid penguins. Mar. Ecol. Prog. Ser. 454, 135–145 (2012).
    ADS  Article  Google Scholar 

    11.
    Gurney, K. E. B. et al. Time constraints in temperate-breeding species: influence of growing season length on reproductive strategies. Ecography 34, 628–636 (2011).
    Article  Google Scholar 

    12.
    Drever, M. C. & Clark, R. G. Spring temperature, clutch initiation date and duck nest success: a test of the mismatch hypothesis. J. Anim. Ecol. 76, 139–148 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Oja, H. & Pöysä, H. Spring phenology, latitude, and the timing of breeding in two migratory ducks: implications of climate change impacts. Ann. Zool. Fenn. 44, 475–485 (2007).
    Google Scholar 

    14.
    Clark, R. G., Pöysä, H., Runko, P. & Paasivaara, A. Spring phenology and timing of breeding in short-distance migrant birds: phenotypic responses and offspring recruitment patterns in common goldeneyes. J. Avian Biol. 45, 457–465 (2014).
    Article  Google Scholar 

    15.
    Drever, M. C. et al. Population vulnerability to climate change linked to timing of breeding in boreal ducks. Glob. Change Biol. 18, 480–492 (2012).

    16.
    Nussey, D. H., Postma, E., Gienapp, P. & Visser, M. E. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Caro, S. P. et al. Local adaptation of timing of reproduction: females are in the driver’s seat. Funct. Ecol. 23, 172–179 (2009).
    Article  Google Scholar 

    18.
    Martin, J. G. A., Nussey, D. H., Alastair, J. W. & Réale, D. Measuring individual differences in reaction norms in field and experimental studies: a power analysis of random regression models. Methods Ecol. Evol. 2, 362–374 (2011).
    Article  Google Scholar 

    19.
    Arzel, C. et al. Early springs and breeding performance in two sympatric duck species with different migration strategies. Ibis 156, 288–298 (2014).
    Article  Google Scholar 

    20.
    Stafford, J. D., Kaminski, R. M., Reinecke, K. J. & Manley, S. W. Waste rice for waterfowl in the Mississippi Alluvial Valley. J. Wildl. Manag. 70, 61–69 (2006).
    Article  Google Scholar 

    21.
    Porlier, M. et al. Variation in phenotypic plasticity and selection patterns in blue tit breeding time: between-and within-population comparisons. J. Anim. Ecol. 81, 1041–1051 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Cooper, W. E. Dynamics and production of a natural population of a fresh-water amphipod, Hyalella azteca. Ecol. Monogr. 35, 377–394 (1965).
    Article  Google Scholar 

    23.
    Menon, P. S. Population ecology of Gammarus lacustris sars in Big Island Lake. I Habitat preference and relative abundance. Hydrobiologia 33, 14–32 (1969).
    Article  Google Scholar 

    24.
    Hargrave, B. T. Distribution, growth, and seasonal abundance of Hyalella azteca (Amphipoda) in relation to sediment microflora. J. Fish. Res. Board. Can. 27, 685–699 (1970).
    Article  Google Scholar 

    25.
    Dawson, A. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. B 363, 1621–1633. https://doi.org/10.1098/rstb.2007.0004 (2008).
    Article  Google Scholar 

    26.
    Clark, R. G. & Shutler, D. Avian habitat selection: Pattern from process in nest-site use by ducks?. Ecology 80, 272–287 (1999).
    Article  Google Scholar 

    27.
    Devries, J. H., Brook, R. W., Howerter, D. W. & Anderson, M. G. Effects of spring body condition and age on reproduction in mallards (Anas platyrhynchos). Auk 125, 618–628 (2008).
    Article  Google Scholar 

    28.
    Raquel, A. J., Devries, J. H., Howerter, D. W. & Clark, R. G. Reproductive consequences of climate variability in migratory birds: evidence for species-specific responses to spring phenology and cross-seasonal effects. Oecologia 191, 217–229 (2019).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Vardanis, Y., Klaassen, R. H., Strandberg, R. & Alerstam, T. Individuality in bird migration: routes and timing. Biol. Lett. 7, 502–505 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Phil. Trans. R. Soc. B 281, 20132161 (2014).
    Google Scholar 

    31.
    Blums, P. & Clark, R. G. Correlates of lifetime reproductive success in three species of European ducks. Oecologia 140, 61–67 (2004).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Dawson, R. D. & Clark, R. G. Effects of hatching date and egg size on growth, recruitment, and adult size of lesser scaup. Condor 102, 930–935 (2000).
    Article  Google Scholar 

    33.
    Traylor, J. J. & Alisauskas, R. T. Effects of intrinsic and extrinsic factors on survival of white-winged scoter (Melanitta fusca deglandi) ducklings. Auk 123, 67–81 (2006).
    Article  Google Scholar 

    34.
    Koons, D. N., Arnold, T. W. & Schaub, M. Understanding the demographic drivers of realized population growth rates. Ecol. Appl. 27, 2102–2115 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Ruusila, V., Pöysä, H. & Runko, P. Costs and benefits of female-biased natal philopatry in the common goldeneye. Behav. Ecol. 12, 686–690 (2001).
    Article  Google Scholar 

    37.
    Alisauskas, R. T., Traylor, J. J., Swoboda, C. J. & Kehoe, F. P. Components of population growth rate for white–winged scoters in Saskatchewan, Canada. Anim. Biodiv. Conserv. 27, 451–460 (2004).
    Google Scholar 

    38.
    Traylor, J. J., Alisauskas, R. T. & Kehoe, F. P. Nesting ecology of white-winged scoters (Melanitta fusca deglandi) at Redberry Lake, Saskatchewan. Auk 121, 950–962 (2004).
    Article  Google Scholar 

    39.
    Weller, M. W. A simple field candler for waterfowl eggs. J. Wildl. Manag. 20, 111–113 (1956).
    Article  Google Scholar 

    40.
    Arnold, T. W., Devries, J. H. & Howerter, D. W. Factors that affect renesting in mallards (Anas platyrhynchos). Auk 127, 212–221 (2010).
    Article  Google Scholar 

    41.
    Pöysä, H. Tracking ice phenology by migratory waterbirds: settling phenology and breeding success of species with divergent population trends. J. Avian Biol. 50, 2019. https://doi.org/10.1111/jav.02327 (2019).
    Article  Google Scholar 

    42.
    Korhonen, J. Long-term changes in lake ice cover in Finland. Nord. Hydrol. 37, 347–363 (2006).
    Article  Google Scholar 

    43.
    Venäläinen, A., Pirinen, H., Tuomenvirta, P. & Drebs, A. A basic Finnish climate data set 1961–2000. Finn. Meteorol. Inst. Rep. 5, 1–25 (2005).
    Google Scholar 

    44.
    Brown, P. W. & Fredrickson, L. H. Food habits of breeding white-winged scoters. Can. J. Zool. 64, 1652–1654 (1986).
    Article  Google Scholar 

    45.
    Afton, A. D., Hier, R. H. & Paulus, S. L. Lesser scaup diets during migration and winter in the Mississippi Flyway. Can. J. Zool. 69, 328–333 (1991).
    Article  Google Scholar 

    46.
    Fast, P. L., Clark, R. G., Brook, R. W. & Hines, J. E. Patterns of wetland use by brood-rearing lesser scaup in northern boreal forest of Canada. Waterbirds 27, 177–182 (2004).
    Article  Google Scholar 

    47.
    Van de Pol, M. & Wright, J. A. simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Article  Google Scholar 

    48.
    Afton, A. D. Influence of age and time on reproductive performance of female Lesser Scaup. Auk 101, 255–265 (1984).
    Article  Google Scholar 

    49.
    Rohwer, F. C. The evolution of reproductive patterns in waterfowl. In Ecology and Management of Breeding Waterfowl (eds Batt, B. et al.) 486–539 (University of Minnesota Press, Minnesota, 1992).
    Google Scholar 

    50.
    Milonoff, M., Pöysä, H. & Runko, P. Reproductive performance of common goldeneye Bucephala clangula females in relation to age and lifespan. Ibis 144, 585–592 (2002).
    Article  Google Scholar 

    51.
    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2002).
    Google Scholar 

    52.
    Wolak, M. E., Fairbairn, D. J. & Paulsen, Y. R. Guidelines for estimating repeatability. Methods Ecol. Evol. 3, 129–137 (2012).
    Article  Google Scholar 

    53.
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Article  Google Scholar 

    54.
    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    R Core Team. R: A language and environment for statistical computing. https://www.r-project.org (2019).

    56.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar  More

  • in

    Phenotypic and environmental correlates of natal dispersal in a long-lived territorial vulture

    1.
    Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982).
    Article  Google Scholar 
    2.
    Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998).
    Article  Google Scholar 

    3.
    Clobert, J. Dispersal (Oxford University Press, 2001).
    Google Scholar 

    4.
    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).
    Google Scholar 

    5.
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).
    PubMed  Article  Google Scholar 

    6.
    Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).
    Article  Google Scholar 

    7.
    Nathan, R., Perry, G., Cronin, J. T., Strand, A. E. & Cain, M. L. Methods for estimating long-distance dispersal. Oikos 103, 261–273 (2011).
    Article  Google Scholar 

    8.
    Stevens, V. M. et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 6, 630–642 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Driscoll, D. A. et al. The trajectory of dispersal research in conservation biology: Systematic review. PLoS ONE 9, e95053 (2014).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Smith, A. L. et al. Managing uncertainty in movement knowledge for environmental decisions. Conserv. Lett. 12, 1–8. https://doi.org/10.1111/conl.12620 (2018).
    Article  Google Scholar 

    11.
    Koenig, W. D., Van Vuren, D. & Hooge, P. N. Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol. Evol. 11, 514–517 (1996).
    CAS  PubMed  Article  Google Scholar 

    12.
    Trakhtenbrotl, A., Nathan, R., Perry, G. & Richardson, D. M. The importance of long-distance dispersal in biodiversity conservation. Divers. Distrib. 11, 173–181 (2005).
    Article  Google Scholar 

    13.
    Nathan, R., Klein, E., Robledo-Arnuncio, J. J. & Revilla, E. Dispersal kernels: Review. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 187–210 (Oxford University Press, 2012).
    Google Scholar 

    14.
    Van Houtan, K. S., Pimm, S. L., Halley, J. M., Bierregaard, R. O. & Lovejoy, T. E. Dispersal of Amazonian birds in continuous and fragmented forest. Ecol. Lett. 10, 219–229 (2007).
    PubMed  Article  Google Scholar 

    15.
    Matthysen, E. Multicausality of dispersal: A review. Dispersal Ecol. Evol. 3, 18 (2012).
    Google Scholar 

    16.
    Ronce, O., Olivieri, I., Clobert, J. & Danchin, E. Perspectives on the study of dispersal evolution. In Dispersal (eds Clobert, J. et al.) 341–357 (Oxford University Press, 2001).
    Google Scholar 

    17.
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).
    PubMed  Article  Google Scholar 

    18.
    McPeek, M. A. & Holt, R. D. The evolution of dispersal in spatially and temporally varying environments. Am. Midl. Nat. 140, 1010–1027 (1992).
    Article  Google Scholar 

    19.
    Dingle, H. Migration. The Biology of Life on the Move (Oxford University Press, 1996).
    Google Scholar 

    20.
    Verhulst, S., Perrins, C. M. & Riddington, R. Natal dispersal of great tits in a patchy environment. Ecology 78, 864 (1997).
    Article  Google Scholar 

    21.
    Tarwater, C. E., Beissinger, S. R. & Gaillard, J.-M. Dispersal polymorphisms from natal phenotype-environment interactions have carry-over effects on lifetime reproductive success of a tropical parrot. Ecol. Lett. 15, 1218–1229 (2012).
    PubMed  Article  Google Scholar 

    22.
    Baines, C. B., Ferzoco, I. M. C. & McCauley, S. J. Phenotype-by-environment interactions influence dispersal. J. Anim. Ecol. 88, 1263–1274 (2019).
    PubMed  Article  Google Scholar 

    23.
    López-López, P., Zuberogoitia, Í., Alcántara, M. & Gil, J. A. Philopatry, natal dispersal, first settlement and age of first breeding of bearded vultures Gypaetus barbatus in central Pyrenees. Bird Study 60, 555–560 (2013).
    Article  Google Scholar 

    24.
    Poessel, S. A., Bloom, P. H., Braham, M. A. & Katzner, T. E. Age- and season-specific variation in local and long-distance movement behavior of golden eagles. Eur. J. Wildl. Res. 62, 377–393 (2016).
    Article  Google Scholar 

    25.
    Benard, M. F. & McCauley, S. J. Integrating across life-history stages: Consequences of natal habitat effects on dispersal. Am. Nat. 171, 553–567 (2008).
    PubMed  Article  Google Scholar 

    26.
    Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).
    Article  Google Scholar 

    27.
    Stamps, J. A. Conspecific attraction and aggregation in territorial species. Am. Nat. 131, 329–347 (1988).
    Article  Google Scholar 

    28.
    van Horne, B. Density as a misleading indicator of habitat quality. J. Wildl. Manage. 47, 893–901 (1983).
    Article  Google Scholar 

    29.
    Serrano, D. & Tella, J. L. The role of despotism and heritability in determining settlement patterns in the colonial lesser kestrel. Am. Nat. 169, E53–E67 (2007).
    PubMed  Article  Google Scholar 

    30.
    Pyle, P. Age at first breeding and natal dispersal in a declining population of Cassin’s Auklet. Auk 118, 996–1007 (2001).
    Article  Google Scholar 

    31.
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).
    Article  Google Scholar 

    32.
    Clarke, A., Sæther, B.-E. & Røskaft, E. Sex biases in avian dispersal: A reappraisal. Oikos 79, 429–438 (1997).
    Article  Google Scholar 

    33.
    Sanz-Aguilar, A. et al. Sex- and age-dependent patterns of survival and breeding success in a long-lived endangered avian scavenger. Sci. Rep. 7, 40204 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Sergio, F., Blas, J. & Hiraldo, F. Predictors of floater status in a long-lived bird: A cross-sectional and longitudinal test of hypotheses. J. Anim. Ecol. 78, 109–118 (2009).
    PubMed  Article  Google Scholar 

    35.
    Zabala, J. & Zuberogoitia, I. Breeding performance and survival in the peregrine falcon Falco peregrinus support an age-related competence improvement hypothesis mediated via an age threshold. J. Avian Biol. 46, 141–150 (2015).
    Article  Google Scholar 

    36.
    Kim, S. Y., Velando, A., Torres, R. & Drummond, H. Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia 166, 615–626 (2011).
    ADS  PubMed  Article  Google Scholar 

    37.
    Bonte, D. et al. Costs of dispersal. Biol. Rev. Camb. Philos. Soc. 87, 290–312 (2012).
    PubMed  Article  Google Scholar 

    38.
    Spear, L. B., Pyle, P. & Nur, N. Natal dispersal in the western gull: Proximal factors and fitness consequences. J. Anim. Ecol. 67, 165–179 (2009).
    Article  Google Scholar 

    39.
    Forero, M., Donázar, J.A. & Hiraldo, F. Causes and fitness consequences of natal dispersal in a population of black kites. Ecology 83, 858–872 (2002).
    Article  Google Scholar 

    40.
    Barbraud, C., Johnson, A. R. & Bertault, G. Phenotypic correlates of post-fledging dispersal in a population of greater flamingos: The importance of body condition. J. Anim. Ecol. 72, 246–257 (2003).
    Article  Google Scholar 

    41.
    McNamara, J. M. & Dall, S. R. X. The evolution of unconditional strategies via the ‘multiplier effect’. Ecol. Lett. 14, 237–243 (2011).
    PubMed  Article  Google Scholar 

    42.
    Shields, W. M. Philopatry, inbreeding, and the evolution of sex (State University of New York, 1982).
    Google Scholar 

    43.
    Elorriaga, J. et al. First documented case of long-distance dispersal in the Egyptian Vulture (Neophron percnopterus). J. Raptor Res. 43, 142–145 (2009).
    Article  Google Scholar 

    44.
    Carrete, M. et al. Habitat, human pressure, and social behavior: Partialling out factors affecting large-scale territory extinction in an endangered vulture. Biol. Conserv. 136, 143–154 (2007).
    Article  Google Scholar 

    45.
    García-Ripollés, C. & López-López, P. Integrating effects of supplementary feeding, poisoning, pollutant ingestion and wind farms of two vulture species in Spain using a population viability analysis. J. Ornithol. 152, 879–888 (2011).
    Article  Google Scholar 

    46.
    Sanz-Aguilar, A. et al. Action on multiple fronts, illegal poisoning and wind farm planning, is required to reverse the decline of the Egyptian vulture in southern Spain. Biol. Conserv. 187, 10–18 (2015).
    Article  Google Scholar 

    47.
    Tauler, H. et al. Identifying key demographic parameters for the viability of a growing population of the endangered Egyptian Vulture Neophron percnopterus. Bird Conserv. Int. 25, 426–439 (2015).
    Article  Google Scholar 

    48.
    Lieury, N., Gallardo, M., Ponchon, C., Besnard, A. & Millon, A. Relative contribution of local demography and immigration in the recovery of a geographically-isolated population of the endangered Egyptian vulture. Biol. Conserv. 191, 349–356 (2015).
    Article  Google Scholar 

    49.
    Agudo, R., Rico, C., Hiraldo, F. & Donázar, J. A. Evidence of connectivity between continental and differentiated insular populations in a highly mobile species. Divers. Distrib. 17, 1–12 (2011).
    Article  Google Scholar 

    50.
    Travis, J. M. J. & Dytham, C. Habitat persistence, habitat availability and the evolution of dispersal. Proc. R. Soc. B Biol. Sci. 266, 723–728 (1999).
    Article  Google Scholar 

    51.
    Poethke, H. J. & Hovestadt, T. Evolution of density- and patch-size-dependent dispersal rates. Proc. R. Soc. B Biol. Sci. 269, 637–645 (2002).
    Article  Google Scholar 

    52.
    Kun, Á. & Scheuring, I. The evolution of density-dependent dispersal in a noisy spatial population model. Oikos 115, 308–320 (2006).
    Article  Google Scholar 

    53.
    Hovestadt, T., Kubisch, A. & Poethke, H. J. Information processing in models for density-dependent emigration: A comparison. Ecol. Modell. 221, 405–410 (2010).
    Article  Google Scholar 

    54.
    Morton, E. R. et al. Dispersal: a matter of scale. Ecology 99, 938–946 (2018).
    PubMed  Article  Google Scholar 

    55.
    Delestrade, A., McCleery, R. H. & Perrins, C. M. Natal dispersal in a heterogeneous environment: The case of the Great tit in Wytham. Acta Oecol. 17, 519–529 (1996).
    Google Scholar 

    56.
    Luna, Á., Palma, A., Sanz-Aguilar, A., Tella, J. L. & Carrete, M. Sex, personality and conspecific density influence natal dispersal with lifetime fitness consequences in urban and rural burrowing owls. PLoS ONE 15, 1–17 (2020).
    Google Scholar 

    57.
    Eikenaar, C., Richardson, D. S., Brouwer, L. & Komdeur, J. Sex-biased natal dispersal in a closed, saturated population of Seychelles warblers Acrocephalus sechellensis. J. Avian Biol. 39, 73–80 (2008).
    Article  Google Scholar 

    58.
    Serrano, D., Tella, J. L., Donázar, J. A. & Pomarol, M. Social and individual features affecting natal dispersal in the colonial Lesser Kestrel. Ecology 84, 3044–3054 (2003).
    Article  Google Scholar 

    59.
    Hernández, M. & Margalida, A. Poison-related mortality effects in the endangered Egyptian vulture (Neophron percnopterus) population in Spain. Eur. J. Wildl. Res. 55, 415–423 (2009).
    Article  Google Scholar 

    60.
    Fattebert, J., Balme, G., Dickerson, T., Slotow, R. & Hunter, L. Density-dependent natal dispersal patterns in a leopard population recovering from over-harvest. PLoS ONE 10, 1–15 (2015).
    Article  CAS  Google Scholar 

    61.
    Gundersen, G., Andreassen, H. P. & Ims, R. A. Individual and population level determinants of immigration success on local habitat patches: An experimental approach. Ecol. Lett. 5, 294–301 (2002).
    Article  Google Scholar 

    62.
    Newby, J. R. et al. Human-caused mortality influences spatial population dynamics: Pumas in landscapes with varying mortality risks. Biol. Conserv. 159, 230–239 (2013).
    Article  Google Scholar 

    63.
    Doligez, B., Danchin, E. & Clobert, J. Public information and breeding habitat selection in a wild bird population. Science 297, 1168–1170 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    64.
    Delibes, M., Gaona, P. & Ferreras, P. Effects of an attractive sink leading into maladaptive habitat selection. Am. Nat. 158, 277–285 (2001).
    CAS  PubMed  Article  Google Scholar 

    65.
    Cortés-Avizanda, A., Ceballos, O. & Donázar, J. A. Long-term trends in population size and breeding success in the Egyptian Vulture (Neophron percnopterus) in Northern Spain. J. Raptor Res. 43, 43–49 (2009).
    Article  Google Scholar 

    66.
    Zuberogoitia, I., Zabala, J., Martínez, J. A., Martínez, J. E. & Azkona, A. Effect of human activities on Egyptian vulture breeding success. Anim. Conserv. 11, 313–320 (2008).
    Article  Google Scholar 

    67.
    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).
    Article  Google Scholar 

    68.
    Robertson, B. A. & Hutto, R. L. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87, 1075–1085 (2006).
    PubMed  Article  Google Scholar 

    69.
    Betts, M. G., Hadley, A. S., Rodenhouse, N. & Nocera, J. J. Social information trumps vegetation structure in breeding-site selection by a migrant songbird. Proc. R. Soc. B Biol. Sci. 275, 2257–2263 (2008).
    Article  Google Scholar 

    70.
    Stodola, K. W. & Ward, M. P. The emergent properties of conspecific attraction can limit a species’ ability to track environmental change. Am. Nat. 189, 726–733 (2017).
    PubMed  Article  Google Scholar 

    71.
    Serrano, D. Dispersal in raptors. In Birds of Prey. Biology and Conservation in the XXI Century (eds Hernán Sarasola, J. et al.) 95–121 (Springer, 2018).
    Google Scholar 

    72.
    Trochet, A., Stevens, V. M. & Baguette, M. Evolution of sex-biased dispersal. Q. Rev. Biol. 91, 297–320 (2016).
    PubMed  Article  Google Scholar 

    73.
    Forsman, E. D., Anthony, R. G., Reid, J. A., Loschl, P. J. & Sovern, S. G. Natal and breeding dispersal of northern spotted owls. Wildl. Monogr. 1, 35 (2002).
    Google Scholar 

    74.
    Steiner, U. K. & Gaston, A. J. Reproductive consequences of natal dispersal in a highly philopatric seabird. Behav. Ecol. 16, 634–639 (2005).
    Article  Google Scholar 

    75.
    González, L. M. et al. Effective natal dispersal and age of maturity in the threatened Spanish Imperial Eagle Aquila adalberti: Conservation implications. Bird Stud. 53, 285–293 (2006).
    Article  Google Scholar 

    76.
    Oro, D., Tavecchia, G. & Genovart, M. Comparing demographic parameters for philopatric and immigrant individuals in a long-lived bird adapted to unstable habitats. Oecologia 165, 935–945 (2011).
    ADS  PubMed  Article  Google Scholar 

    77.
    Grande, J. M. et al. Survival in a long-lived territorial migrant: Effects of life-history traits and ecological conditions in wintering and breeding areas. Oikos 118, 580–590 (2009).
    Article  Google Scholar 

    78.
    Van Noordwijk, A. J. On bias due to observer distribution in the analysis of data on natal dispersal in birds. J. Appl. Stat. 22, 683–694 (1995).
    Article  Google Scholar 

    79.
    Ens, B. J. et al. Despotic distribution and deferred maturity: Two sides of the same coin?. Am. Nat. 146, 625–650 (2015).
    Article  Google Scholar 

    80.
    Maness, T. J. & Anderson, D. J. Predictors of juvenile survival in birds. Ornithol. Monogr. 78, 1–55 (2013).
    Article  Google Scholar 

    81.
    Azpillaga, M., Real, J. & Hernández-Matías, A. Effects of rearing conditions on natal dispersal processes in a long-lived predator bird. Ecol. Evol. 8, 6682–6698 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Delgado, M., Penteriani, V., Revilla, E. & Nams, O. The effect of phenotypic traits and external cues on natal dispersal movements. J. Anim. Ecol. 79, 620–632 (2010).
    Article  Google Scholar 

    83.
    Zuberogoitia, I., Zabala, J., Martínez, J. E., González-Oreja, J. A. & López-López, P. Effective conservation measures to mitigate the impact of human disturbances on the endangered Egyptian vulture. Anim. Conserv. 17, 410–418 (2014).
    Article  Google Scholar 

    84.
    Donázar, J. A. et al. Epizootics and sanitary regulations drive long-term changes in fledgling body condition of a threatened vulture. Ecol. Indic. 113, 106188 (2020).
    Article  Google Scholar 

    85.
    Boulinier, T. & Danchin, E. The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species. Evol. Ecol. 11, 505–517 (1997).
    Article  Google Scholar 

    86.
    Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).
    Article  Google Scholar 

    87.
    Benton, T. G. & Bowler, D. E. Linking dispersal to spatial dynamics. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 251–265 (Oxford University Press, 2012).
    Google Scholar 

    88.
    Delgado, M. D. M., Ratikainen, I. I. & Kokko, H. Inertia: The discrepancy between individual and common good in dispersal and prospecting behaviour. Biol. Rev. 86, 717–732 (2011).
    Article  Google Scholar 

    89.
    Doncaster, C. P., Clobert, J., Doligez, B., Gustafsson, L. & Danchin, E. Balanced dispersal between spatially varying local populations: An alternative to the source-sink model. Am. Nat. 150, 425–445 (1997).
    CAS  PubMed  Article  Google Scholar 

    90.
    Millon, A., Lambin, X., Devillard, S. & Schaub, M. Quantifying the contribution of immigration to population dynamics: A review of methods, evidence and perspectives in birds and mammals. Biol. Rev. 94, 2049–2067 (2019).
    PubMed  Article  Google Scholar 

    91.
    Altwegg, R., Collingham, Y. C., Erni, B. & Huntley, B. Density-dependent dispersal and the speed of range expansions. Divers. Distrib. 19, 60–68 (2013).
    Article  Google Scholar 

    92.
    Tauler-Ametller, H., Hernández-Matías, A., Pretus, J. L. L. & Real, J. Landfills determine the distribution of an expanding breeding population of the endangered Egyptian Vulture Neophron percnopterus. Ibis 159, 757–768 (2017).
    Article  Google Scholar 

    93.
    Gilroy, J. J. & Sutherland, W. J. Beyond ecological traps: Perceptual errors and undervalued resources. Trends Ecol. Evol. 22, 351–356 (2007).
    PubMed  Article  Google Scholar 

    94.
    Patten, M. A. & Kelly, J. F. Habitat selection and the perceptual trap. Ecol. Appl. 20, 2148–2156 (2010).
    PubMed  Article  Google Scholar 

    95.
    Doebeli, M. & Ruxton, G. D. Evolution of dispersal rates in metapopulation models: Branching and cyclic dynamics in phenotype space. Evolution 51, 1730 (1997).
    PubMed  Article  Google Scholar 

    96.
    Murrell, D. J., Travis, J. M. J. & Dytham, C. The evolution of dispersal distance in spatially-structured populations. Oikos 97, 229–236 (2002).
    Article  Google Scholar 

    97.
    Heino, M. & Hanski, I. Evolution of migration rate in a spatially realistic metapopulation model. Am. Nat. 157, 495–511 (2001).
    CAS  PubMed  Article  Google Scholar 

    98.
    Mathias, A., Kisdi, È. & Olivieri, I. Divergent evolution of dispersal in a heterogeneous landscape. Evolution 55, 246–259 (2001).
    CAS  PubMed  Article  Google Scholar 

    99.
    Baguette, M., Clobert, J. & Schtickzelle, N. Metapopulation dynamics of the bog fritillary butterfly: Experimental changes in habitat quality induced negative density-dependent dispersal. Ecography 34, 170–176 (2011).
    Article  Google Scholar 

    100.
    Margalida, A. et al. Uneven large-scale movement patterns in wild and reintroduced pre-adult bearded vultures: Conservation implications. PLoS ONE 8, e65857 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Buechley, E. R., McGrady, M. J., Çoban, E. & Şekercioğlu, Ç. H. Satellite tracking a wide-ranging endangered vulture species to target conservation actions in the Middle East and East Africa. Biodivers. Conserv. 27, 2293–2310 (2018).
    Article  Google Scholar 

    102.
    Dwyer, J. F., Fraser, J. D. & Morrison, J. L. Evolution of communal roosting: A social refuge-territory prospecting hypothesis. J. Raptor Res. 52, 407–419 (2018).
    Article  Google Scholar 

    103.
    Blanco, G. & Tella, J. L. Temporal, spatial and social segregation of red-billed choughs between two types of communal roost: A role for mating and territory acquisition. Anim. Behav. 57, 1219–1227 (1999).
    CAS  PubMed  Article  Google Scholar 

    104.
    Bocedi, G., Heinonen, J. & Travis, J. M. J. Uncertainty and the role of information acquisition in the evolution of context-dependent emigration. Am. Nat. 179, 606–620 (2012).
    PubMed  Article  Google Scholar 

    105.
    Delgado, M. M., Bartoń, K. A., Bonte, D. & Travis, J. M. J. Prospecting and dispersal: Their eco-evolutionary dynamics and implications for population patterns. Proc. R. Soc. B Biol. Sci. 281, 20132851 (2014).
    CAS  Article  Google Scholar 

    106.
    Kesler, D. C., Walters, J. R. & Kappes, J. J. Social influences on dispersal and the fat-tailed dispersal distribution in red-cockaded woodpeckers. Behav. Ecol. 21, 1337–1343 (2010).
    Article  Google Scholar 

    107.
    Ducros, D. et al. Beyond dispersal versus philopatry? Alternative behavioural tactics of juvenile roe deer in a heterogeneous landscape. Oikos 129, 81–92 (2019).
    Article  Google Scholar 

    108.
    BirdLife International. Species factsheet: Neophron percnopterus. (2019). Available at: http://www.birdlife.org. Accessed 19 Dec 2019.

    109.
    Donázar, J. A., Ceballos, O. & Tella, J. L. Communal roosts of Egyptian vulture (Neophron percnopterus): Dynamics and implications for the species conservation. In Biología y conservación de las rapaces Mediterráneas (eds Muntaner, J. & Muntaner, J.) 189–201 (SEO/Birdlife, 1996).
    Google Scholar 

    110.
    Hernández-Matías, A. et al. Determinants of territorial recruitment in bonelli’s eagle (Aquila fasciata) populations. Auk 127, 173–184 (2010).
    Article  Google Scholar 

    111.
    Phipps, W. L. et al. Spatial and temporal variability in migration of a soaring raptor across three continents. Front. Ecol. Evol. 7, 1–14 (2019).
    Article  Google Scholar 

    112.
    del Moral, J. C. El Alimoche Común en España Población Reproductora en 2008 y Método de Censo (SEO/Birdlife, 2009).
    Google Scholar 

    113.
    del Moral, J. C. & El Martí, R. Alimoche Común en España y Portugal. (I Censo Coordinado). Año 2000. Monografía no 8 (SEO/Birdlife, 2002).
    Google Scholar 

    114.
    Donázar, J. A. & Ceballos, O. Growth rates of nestling Egyptian Vultures Neophrone percnopterus in relation to brood size, hatching order and environmental factors. Ardea 77, 217–226 (1989).
    Google Scholar 

    115.
    Imdadullah, M., Aslam, M. & Altaf, S. Mctest: An r package for detection of collinearity among regressors. R J. 8, 499–509 (2016).
    Article  Google Scholar 

    116.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
    Google Scholar 

    117.
    Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
    Article  Google Scholar 

    118.
    Schabenberger, O. & Pierce, F. J. Contemporary Statistical Models for the Plant and Soil Sciences (CRC Press, 2002).
    Google Scholar 

    119.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2018).

    120.
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.2.4. (2019). More

  • in

    Author Correction: Continent-wide tree fecundity driven by indirect climate effects

    Nicholas School of the Environment, Duke University, Durham, NC, USA
    James S. Clark, Christopher L. Kilner, Jordan Luongo, Renata Poulton-Kamakura, Ethan Ready, Chantal D. Reid, C. Lane Scher, William H. Schlesinger, Shubhi Sharma, Samantha Sutton, Jennifer J. Swenson & Margaret Swift

    INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
    James S. Clark, Benoit Courbaud, Georges Kunstler, Kyle C. Rodman & Thomas T. Veblen

    Department of Geography, University of Colorado Boulder, Boulder, CO, USA
    Robert Andrus & Emily Moran

    School of Natural Sciences, University of California, Merced, Merced, CA, USA
    Melaine Aubry-Kientz

    Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC, Canada
    Yves Bergeron

    Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
    Michal Bogdziewicz

    USDA Forest Service, Southern Research Station, Monticello, AR, USA
    Don C. Bragg

    USDA Forest Service Southern Research Station, Auburn, AL, USA
    Dale Brockway & Timothy J. Fahey

    Natural Resources, Cornell University, Ithaca, NY, USA
    Natalie L. Cleavitt

    Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
    Susan Cohen

    Greater Yellowstone Network, National Park Service, Bozeman, MT, USA
    Robert Daley, Kristin L. Legg & Erin Shanahan

    USGS Western Ecological Research Center, Three Rivers, CA, USA
    Adrian J. Das & Nathan L. Stephenson

    Earth and Environment, Boston University, Boston, MA, USA
    Michael Dietze

    Finnish Meteorological Institute, Helsinki, Finland
    Istem Fer

    Forest Resources, University of Washington, Seattle, WA, USA
    Jerry F. Franklin

    Department of Biological Science, Northern Arizona University, Flagstaff, AZ, USA
    Catherine A. Gehring, Amy V. Whipple & Thomas G. Whitham

    University of California, Santa Cruz, Santa Cruz, CA, USA
    Gregory S. Gilbert & Kai Zhu

    USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC, USA
    Cathryn H. Greenberg

    USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC, USA
    Qinfeng Guo

    Department of Biology, University of Washington, Seattle, WA, USA
    Janneke HilleRisLambers

    School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
    Ines Ibanez

    Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
    Jill Johnstone

    Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
    Johannes Knops

    Hastings Reservation, University of California Berkeley, Carmel Valley, CA, USA
    Walter D. Koenig

    Department of Biological Sciences, DePaul University, Chicago, IL, USA
    Jalene M. LaMontagne

    Department of Wildland Resources, Utah State University Ecology Center, Logan, UT, USA
    James A. Lutz

    Department of Biology, University of New Mexico, Albuquerque, NM, USA
    Diana Macias

    Pacific Forestry Centre, Victoria, BC, Canada
    Eliot J. B. McIntire

    Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada
    Yassine Messaoud

    Department of Biology, Colby College, Waterville, ME, USA
    Christopher M. Moore

    Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
    Jonathan A. Myers

    University of New Mexico, Albuquerque, NM, USA
    Orrin B. Myers

    Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
    Chase Nunez

    Valles Caldera National Preserve, National Park Service, Jemez Springs, NM, USA
    Robert Parmenter

    Fort Collins Science Center, Fort Collins, CO, USA
    Sam Pearse

    Department of Natural Sciences, Mars Hill University, Mars Hill, NC, USA
    Scott Pearson

    Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
    Miranda D. Redmond & Andreas P. Wion

    Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
    Amanda M. Schwantes

    Department of Biology, Wilkes University, Wilkes-Barre, PA, USA
    Michael A. Steele

    Geography Department and Russian and East European Institute, Bloomington, IN, USA
    Roman Zlotin More

  • in

    Accepting the loss of habitat specialists in a changing world

    1.
    Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. J. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01342-7 (2020).
    Article  Google Scholar 
    2.
    Wilson, S. K. et al. J. Anim. Ecol. 77, 220–228 (2008).
    Article  Google Scholar 

    3.
    Dornelas, M. et al. Science 344, 296–299 (2014).
    CAS  Article  Google Scholar 

    4.
    Sommer, B., Harrison, P. L., Beger, M. & Pandolfi, J. M. Ecology 95, 1000–1009 (2014).
    Article  Google Scholar 

    5.
    Feary, D. A. et al. Fish Fish. 15, 593–615 (2013).
    Article  Google Scholar 

    6.
    Brandl, S. J. et al. Science 364, 1189–1192 (2019).
    CAS  Article  Google Scholar 

    7.
    Hughes, T. P. et al. Nature 546, 82–90 (2017).
    CAS  Article  Google Scholar 

    8.
    Beyer, H. et al. Conserv. Lett. 11, e12587 (2018).
    Article  Google Scholar 

    9.
    Bottrill, M. C. et al. Trends Ecol. Evol. 24, 183–184 (2009).
    Article  Google Scholar 

    10.
    Wernberg, T. et al. Nat. Clim. Change 3, 78–82 (2013).
    Article  Google Scholar  More

  • in

    Habitat loss and range shifts contribute to ecological generalization among reef fishes

    1.
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Devictor, V. et al. Functional biotic homogenization of bird communities in disturbed landscapes. Glob. Ecol. Biogeogr. 17, 252–261 (2008).
    Article  Google Scholar 

    4.
    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
    Article  Google Scholar 

    5.
    Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).
    Article  Google Scholar 

    6.
    Wilson, S. K. et al. Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J. Anim. Ecol. 77, 220–228 (2008).
    Article  Google Scholar 

    7.
    Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Change Biol. 10, 1642–1647 (2004).
    Article  Google Scholar 

    8.
    Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl Acad. Sci. USA 101, 8251–8253 (2004).
    CAS  PubMed  Article  Google Scholar 

    9.
    Paddack, M. J. et al. Recent region-wide declines in Caribbean reef fish abundance. Curr. Biol. 19, 590–595 (2009).
    CAS  PubMed  Article  Google Scholar 

    10.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Change Biol. 23, 1511–1524 (2017).
    Article  Google Scholar 

    13.
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl Acad. Sci. USA 106, 22341–22345 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).
    PubMed  Article  Google Scholar 

    16.
    Mair, L. et al. Abundance changes and habitat availability drive species’ responses to climate change. Nat. Clim. Change 4, 127–131 (2014).
    Article  Google Scholar 

    17.
    Monaco, C. J. et al. Dietary generalism accelerates arrival and persistence of coral-reef fishes in their novel ranges under climate change. Glob. Change Biol. 26, 5564–5573 (2020).
    Article  Google Scholar 

    18.
    Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: where do we draw the line? Am. Zool. 39, 146–159 (2015).
    Article  Google Scholar 

    19.
    Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).
    Article  Google Scholar 

    20.
    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Pratchett, M. S. et al. in Oceanography and Marine Biology: Annual Review Vol. 46 (eds Gibson, R. N. et al.) 251–296 (Taylor and Francis, 2008).

    22.
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Feary, D. A. The influence of resource specialization on the response of reef fish to coral disturbance. Mar. Biol. 153, 153–161 (2007).
    Article  Google Scholar 

    24.
    Mellin, C., Bradshaw, C., Fordham, D. & Caley, M. Strong but opposing β-diversity–stability relationships in coral reef fish communities. Proc. R. Soc. B 281, 20131993 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    29.
    Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102–114 (2007).
    Article  Google Scholar 

    30.
    Feary, D. A. et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish Fish. 15, 593–615 (2014).
    Article  Google Scholar 

    31.
    Guisan, A. et al. Scaling the linkage between environmental niches and functional traits for improved spatial predictions of biological communities. Glob. Ecol. Biogeogr. 28, 1384–1392 (2019).
    Article  Google Scholar 

    32.
    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).
    Article  Google Scholar 

    33.
    Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011).
    Article  Google Scholar 

    34.
    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
    CAS  Article  Google Scholar 

    35.
    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
    CAS  PubMed  Article  Google Scholar 

    36.
    Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).
    Article  Google Scholar 

    37.
    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).
    CAS  PubMed  Article  Google Scholar 

    38.
    Graham, M. H., Kinlan, B. P. & Grosberg, R. K. Post-glacial redistribution and shifts in productivity of giant kelp forests. Proc. R. Soc. B 277, 399–406 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    CAS  Article  Google Scholar 

    40.
    Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).
    CAS  PubMed  Article  Google Scholar 

    41.
    Waldock, C., Stuart-Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).
    PubMed  Article  Google Scholar 

    44.
    Cresswell, A. K. et al. Translating local benthic community structure to national biogenic reef habitat types. Glob. Ecol. Biogeogr. 26, 1112–1125 (2017).
    Article  Google Scholar 

    45.
    Edgar, G. J., Barrett, N. S. & Stuart-Smith, R. D. Exploited reefs protected from fishing transform over decades into conservation features otherwise absent from seascapes. Ecol. Appl. 19, 1967–1974 (2009).
    PubMed  Article  Google Scholar 

    46.
    Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PLoS ONE 10, e0141039 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).
    PubMed  Article  Google Scholar 

    48.
    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).
    CAS  PubMed  Article  Google Scholar 

    49.
    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
    Article  Google Scholar 

    50.
    Becker, R. A., Wilks, A. R (original S code) & Brownrigg, R. (R version). mapdata: Extra map databases. R package version 2.3.0 (2018).

    51.
    Matis, P. A., Donelson, J. M., Bush, S., Fox, R. J. & Booth, D. J. Temperature influences habitat preference of coral reef fishes: will generalists become more specialised in a warming ocean? Glob. Change Biol. 24, 3158–3169 (2018).
    Article  Google Scholar  More

  • in

    Large-scale shift in the structure of a kelp forest ecosystem co-occurs with an epizootic and marine heatwave

    1.
    Bindoff, N. L. et al. Changing Ocean, Marine Ecosystems, and Dependent Communities. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) 447–588 (IPCC, 2019).
    2.
    Collins, M. et al. Extremes, Abrupt Changes and Managing Risks. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) 589–656 (IPCC, 2019).

    3.
    Hoegh-Guldberg et al. The Ocean. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Barros, V. R. et al.) 1655–1731 (Cambridge University Press, 2014).

    4.
    Laufkotter, C., Zscheischler, J. & Frolicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 1–13 (2019).
    CAS  Article  Google Scholar 

    6.
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).
    CAS  Article  Google Scholar 

    7.
    Carr, M. & Kearns, E. J. Production regimes in four Eastern Boundary Current systems. Deep. Res. Part II 50, 3199–3221 (2003).
    CAS  Article  Google Scholar 

    8.
    Castro, C. G. et al. Introduction to ‘ The 1997 – 8 El Nino Atlas of oceanographic conditions along the west coast of North America (23°N – 50°N)’. Prog. Oceanogr. 54, 503–511 (2002).
    Article  Google Scholar 

    9.
    Kendrick, G. A. et al. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6, 1–15 (2019).
    Article  Google Scholar 

    10.
    Nohaïc, M. L. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 1–11 (2017).
    Article  CAS  Google Scholar 

    11.
    Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. N. Phytol. 225, 1447–1454 (2020).
    Article  Google Scholar 

    12.
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).
    Article  Google Scholar 

    13.
    Schiel, D. R. & Foster, M. S. The Biology and Ecology of Giant Kelp Forests (University of California Press, 2015).

    14.
    Wernberg, T., Krumhansl, K., Filbee-dexter, K. & Pedersen, M. F. in World Seas: An Environmental Evaluation (ed. Sheppard, C.) 57–78 (Elsevier Ltd., 2019).

    15.
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3, 78–82 (2012).
    Article  Google Scholar 

    16.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 1–12 (2017).
    Article  Google Scholar 

    18.
    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 1–10 (2019).
    Article  Google Scholar 

    19.
    Cavanaugh, K. C. et al. Spatial variability in the resistance and resilience of giant kelp in Southern and Baja California to a multiyear heatwave. Front. Mar. Sci. 6, 1–14 (2019).
    Article  Google Scholar 

    20.
    Arafeh-dalmau, N., Montaño-moctezuma, G., Martínez, J. A. & Smale, D. A. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 1–18 (2019).
    Article  Google Scholar 

    21.
    Filbee-Dexter, K., Feehan, C. J. & Scheibling, R. E. Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar. Ecol. Prog. Ser. 543, 141–152 (2016).

    22.
    Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).
    CAS  Article  Google Scholar 

    23.
    Sanford, E., Sones, J. L., García-reyes, M., Goddard, J. H. R. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014- 2016 marine heatwaves. Sci. Reportscientific Rep. 9, 1–14 (2019).
    Article  CAS  Google Scholar 

    24.
    Beas-Luna, R. et al. Geographic variation in responses of kelp forest communities of the California current to recent climatic changes. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15273 (2020).

    25.
    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. Bioscience 68, 64–76 (2018).
    Article  Google Scholar 

    26.
    Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).
    Article  Google Scholar 

    27.
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. USA 106, 22341–22345 (2009).

    28.
    Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–477 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Hamilton, S. L. & Caselle, J. E. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests. Proc. R. Soc. B 282, 1–10 (2014).

    30.
    Jacox, M. G. et al. Forcing of multiyear extreme ocean temperatures that impacted California current living marine resources in 2016. Bull. Am. Meteorol. Soc. 99, 27–33 (2018).
    Article  Google Scholar 

    31.
    Montecino-Latorre, D. et al. Devastating transboundary impacts of sea star wasting disease on subtidal asteroids. PLoS ONE 11, 1–21 (2016).
    Article  CAS  Google Scholar 

    32.
    Eisaguirre, J. M., Davis, K., Carlson, P. M., Gaines, S. D. & Caselle, J. E. Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics. Ecology 101, 1–11 (2020).
    Article  Google Scholar 

    33.
    Harrold, C. & Reed, D. C. Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66, 1160–1169 (1985).
    Article  Google Scholar 

    34.
    Cowen, R. K. The effect of sheephead (Semicossyphus pulcher) predation on red sea urchin (Strongylocentrotus franciscanus) populations: an experimental analysis. Oecologia 58, 249–255 (1983).
    PubMed  Article  Google Scholar 

    35.
    Burt, J. M. et al. Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts. Proc. R. Soc. B 285, 1–9 (2018).

    36.
    Springer, Y. P., Hays, C., Carr, M. H. & Mackey, M. R. Toward ecosystem-based management of marine macroalgae-the bull kelp, Nereocystis luetkeana. Oceanogr. Mar. Biol. Annu. Rev. 48, 1–42 (2010).
    Google Scholar 

    37.
    Springer, Y., Hays, C., Carr, M., Mackey, M. & Bloeser, J. Ecology and management of the bull kelp, Nereocystis luetkeana: a synthesis with recommendations for future research. Vol. 48, 1–45 (Lenfest Ocean Program at The Pew Charitable Trusts, 2006).

    38.
    Bell, T. W., Allen, J. G., Cavanaugh, K. C. & Siegel, D. A. Three decades of variability in California’s giant kelp forests from the Landsat satellites. Remote Sens. Environ. 238, 110811 (2020).

    39.
    Pfister, C. A., Berry, H. D. & Mumford, T. The dynamics of Kelp Forests in the Northeast Pacific Ocean and the relationship with environmental drivers. J. Ecol. https://doi.org/10.1111/1365-2745.12908 (2017).

    40.
    Griggs, G. B. & Hein, J. R. Sources, dispersal, and clay mineral composition of fine-grained sediment off Central and Northern California. J. Geol. 88, 541–566 (1979).
    Article  Google Scholar 

    41.
    Harvell, C. D., Caldwell, J. M., Burt, J. M., Bosley, K. & Keller, A. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv. 5, 1–9 (2019).
    Article  Google Scholar 

    42.
    Okamoto, D. K., Schroeter, S. C. & Reed, D. C. Effects of ocean climate on spatiotemporal variation in sea urchin settlement and recruitment. Limnol. Oceanogr. https://doi.org/10.1002/lno.11440 (2020).

    43.
    Estes, J. A., Burdin, A. & Doak, D. F. Sea otters, kelp forests, and the extinction of Steller’s sea cow. Proc. Natl Acad. Sci. USA 113, 880–885 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Ebert, T. A., Schroeter, S. C., Dixon, J. D. & Kalvass, P. Settlement patterns of red and purple sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in California, USA. Mar. Ecol. Prog. Ser. 111, 41–52 (1994).
    Article  Google Scholar 

    46.
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–366 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    47.
    Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).
    Article  Google Scholar 

    48.
    Smith, J. G. et al. Behavioral responses across a mosaic of ecosystem states restructure a sea otter-urchin trophic cascade. Proc. Natl. Acad. Sci. USA 118, 202012493 (2020). https://doi.org/10.1073/pnas.2012493118.

    49.
    Eurich, J. G., Selden, R. L. & Warner, R. R. California spiny lobster preference for urchins from kelp forests: implications for urchin barren persistence. Mar. Ecol. Prog. Ser. 498, 217–225 (2014).
    Article  Google Scholar 

    50.
    Graham, M. H. Effects of local deforestation on the diversity and structure of Southern California giant kelp forest food webs. Ecosystems 7, 341–357 (2004).
    Article  Google Scholar 

    51.
    Babcock, R. C. et al. Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc. Natl Acad. Sci. USA 107, 18256–18261 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Hewson, I., Bistolas, K. S. I., Cardé, E. M. Q. & Button, J. B. Investigating the complex association between viral ecology, environment, and Northeast Pacific Sea Star Wasting. Front. Mar. Sci. 5, 1–14 (2018).

    53.
    Pearse, J. S. & Hines, A. H. Expansion of a central California kelp forest following the mass mortality of sea urchins. Mar. Biol. 51, 83–91 (1979).

    54.
    Ebeling, A. W., Laur, D. R., Rowley, R. J. & Barbara, S. Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol. 294, 287–294 (1985).
    Article  Google Scholar 

    55.
    Martínez, B. et al. Distribution models predict large contractions of forming seaweeds in response to ocean warming. Divers. Distrib. 24, 1350–1366 (2018).
    Article  Google Scholar 

    56.
    DeYoung, B. et al. Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol. Evol. 23, 402–409 (2008).
    PubMed  Article  Google Scholar 

    57.
    Crépin, A., Biggs, R., Polasky, S., Troell, M. & Zeeuw, A. De. Regime shifts and management. Ecol. Econ. 84, 15–22 (2012).
    Article  Google Scholar 

    58.
    Roberts, D. A. et al. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 65, 267–279 (1998).
    Article  Google Scholar 

    59.
    Cavanaugh, K. C., Siegel, D. A., Reed, D. C. & Dennison, P. E. Environmental controls of giant-kelp biomass in the Santa Barbara Channel, California. Mar. Ecol. Prog. Ser. 429, 1–17 (2011).
    Article  Google Scholar 

    60.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
    Article  Google Scholar 

    61.
    García-Reyes, M., Largier, J. L. & Sydeman, W. J. Progress in Oceanography Synoptic-scale upwelling indices and predictions of phyto- and zooplankton populations. Prog. Oceanogr. 120, 177–188 (2014).
    Article  Google Scholar 

    62.
    McHugh, T., Abbott, D. & Freiwald, J. Phase shift from kelp forest to urchin barren along California’s North Coast. (Western Society of Naturalists, 2018).

    63.
    Rogers-Bennett, L., Kashiwada, J. V., Taniguchi, I. K., Kawana, S. K. & Catton, C. A. Using density-based fishery management strategies to respond to mass mortality events. J. Shellfish Res. 38, 1–11 (2019).
    Article  Google Scholar 

    64.
    Carrascal, L. M. & Galva, I. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).
    Article  Google Scholar 

    65.
    Vadas, R. L. Ecological implications of culture studies on nereocystis luetkeana. J. Phycol. 8, 196–203 (1972).
    Google Scholar 

    66.
    Finger, D. J. I., McPherson, M. L., Houskeeper, H. F. & Kudela, R. M. Mapping bull kelp canopy in northern California using Landsat to enable long-term monitoring. Remote Sens. Environ. 254, 112243 (2021).
    Article  Google Scholar  More

  • in

    Mountain surface processes and regulation

    1.
    Pringle, R. M. A mountain of ecological interactions. Nature 568, 38–39 (2019).
    CAS  Article  ADS  Google Scholar 
    2.
    Sayre, R. et al. A new high-resolution map of world mountains and an online tool for visualizing and comparing characterizations of global mountain distributions. Mt Res Dev 38, 240–249. https://doi.org/10.1659/mrd-journal-d-17-00107.1 (2018).
    Article  Google Scholar 

    3.
    Peters, M. K. et al. Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92. https://doi.org/10.1038/s41586-019-1048-z (2019).
    CAS  Article  PubMed  ADS  Google Scholar 

    4.
    Bian, J., Li, A., Lei, G., Zhang, Z. & Nan, X. Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine. ISPRS J Photogramm Remote Sens 162, 63–76. https://doi.org/10.1016/j.isprsjprs.2020.02.011 (2020).
    Article  ADS  Google Scholar 

    5.
    Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat Geo 11, 718–725. https://doi.org/10.1038/s41561-018-0236-z (2018).
    CAS  Article  ADS  Google Scholar 

    6.
    Price, M. F., Arnesen, T., Gløersen, E. & Metzger, M. J. Mapping mountain areas: learning from Global, European and Norwegian perspectives. J Mt Sci 16, 1–15. https://doi.org/10.1007/s11629-018-4916-3 (2019).
    Article  Google Scholar 

    7.
    Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp Bot 121, 73–78. https://doi.org/10.1007/s00035-011-0094-4 (2011).
    Article  Google Scholar 

    8.
    Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp Bot 127, 1–15. https://doi.org/10.1007/s00035-016-0182-6 (2017).
    Article  Google Scholar 

    9.
    Karagulle, D. et al. Modeling global Hammond landform regions from 250-m elevation data. Trans GIS 21, 1040–1060. https://doi.org/10.1111/tgis.12265 (2017).
    Article  Google Scholar 

    10.
    Payne, D., Spehn, E. M., Snethlage, M. & Fischer, M. Opportunities for research on mountain biodiversity under global change. Curr Opin Environ Sustain 29, 40–47. https://doi.org/10.1016/j.cosust.2017.11.001 (2017).
    Article  Google Scholar 

    11.
    Silveira, F. A. O. et al. Tropical mountains as natural laboratories to study global changes: A long-term ecological research project in a megadiverse biodiversity hotspot. Perspect Plant Ecol Evol Syst 38, 64–73. https://doi.org/10.1016/j.ppees.2019.04.001 (2019).
    Article  Google Scholar 

    12.
    Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat Commun 11, 1974. https://doi.org/10.1038/s41467-020-15881-x (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    13.
    Cheng, G. et al. Rebirth after death: forest succession dynamics in response to climate change on Gongga Mountain, Southwest China. J Mt Sci 15, 1671–1681. https://doi.org/10.1007/s11629-017-4435-7 (2018).
    Article  Google Scholar 

    14.
    Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci Rep 10, 9698. https://doi.org/10.1038/s41598-020-66277-2 (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    15.
    Strinella, E., Scridel, D., Brambilla, M., Schano, C. & Korner-Nievergelt, F. Potential sex-dependent effects of weather on apparent survival of a high-elevation specialist. Sci Rep 10, 8386. https://doi.org/10.1038/s41598-020-65017-w (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    16.
    Durán-Romero, C., Medina-Sánchez, J. M. & Carrillo, P. Uncoupled phytoplankton-bacterioplankton relationship by multiple drivers interacting at different temporal scales in a high-mountain Mediterranean lake. Sci Rep 10, 350. https://doi.org/10.1038/s41598-019-57269-y (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    17.
    Mair, D. et al. Fast long-term denudation rate of steep alpine headwalls inferred from cosmogenic 36Cl depth profiles. Sci Rep 9, 11023. https://doi.org/10.1038/s41598-019-46969-0 (2019).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    18.
    Liu, H., Chen, Y., Ye, Z., Li, Y. & Zhang, Q. Recent lake area changes in Central Asia. Sci Rep 9, 16277. https://doi.org/10.1038/s41598-019-52396-y (2019).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    19.
    Spandre, P. et al. Climate controls on snow reliability in French Alps ski resorts. Sci Rep 9, 8043. https://doi.org/10.1038/s41598-019-44068-8 (2019).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    20.
    Tichavský, R., Ballesteros-Cánovas, J. A., Šilhán, K., Tolasz, R. & Stoffel, M. Dry spells and extreme precipitation are the main trigger of landslides in Central Europe. Sci Rep 9, 14560. https://doi.org/10.1038/s41598-019-51148-2 (2019).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    21.
    Stoffel, M., Ballesteros Cánovas, J. A., Luckman, B. H., Casteller, A. & Villalba, R. Tree-ring correlations suggest links between moderate earthquakes and distant rockfalls in the Patagonian Cordillera. Sci Rep 9, 12112. https://doi.org/10.1038/s41598-019-48530-5 (2019).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    22.
    de Haas, T., Nijland, W., de Jong, S. M. & McArdell, B. W. How memory effects, check dams, and channel geometry control erosion and deposition by debris flows. Sci Rep 10, 14024. https://doi.org/10.1038/s41598-020-71016-8 (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    23.
    Yousefi, S. et al. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Sci Rep 10, 12144. https://doi.org/10.1038/s41598-020-69233-2 (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar  More

  • in

    A novel methodology for epidemic risk assessment of COVID-19 outbreak

    Identification of the risk variables and their correlations with the COVID-19 damages
    We have investigated a series of factors contributing to the risk of an epidemic diffusion and its impact on the population. Among many possible, we selected the following variables: mobility index, housing concentration, healthcare density, air pollution, average winter temperature and age of population. In paragraph 1 of Methods section we motivate our choice on such variables (mainly based on epidemics literature and features of the COVID-19 outbreak), show the related data (see Table 1) and explain the adopted normalization.
    The first step is, of course, to estimate to what extent the chosen normalized variables individually correlate with the main impact indicators of the COVID-19 epidemic, i.e., total cases and total deaths detected in each Italian region, cumulated up to July 14, 20204, when the first epidemic wave seemed to have finished, and the intensive care occupancy recorded on April 2, 20204, when the epidemic peak was reached. In the first two rows of Fig. 2, from panel (a) to panel (f), the spatial distributions of the six risk indicators, multiplied by the population of each region, are reported as chromatic maps and thus can be visually compared with the analogous maps of the three impact indicators, panels (g), (h) and (i) in the third row. As detailed in Table 2, in paragraph 2 of Methods section, pairwise correlations between risk indicators are, with a few exceptions, quite weak; furthermore, in Table 3, results of the linear least squares fit of each individual risk indicator to damages are reported. We found correlation coefficients ranging from 0.71 to 0.96, always higher than those observed as a function of the population, which can be considered the null model; however, the relative quadratic errors stay quite high (from 0.26 to 0.62). This suggests that some opportune combination of risk indicators could better capture the risk associated to each region. In the next paragraph, we propose a risk assessment framework aimed to this.
    Figure 2

    The geographical distribution of the six risk factors (a–f) can be compared with the COVID-19 total cases (g), the total deaths (h) and the intensive care occupancy (i). Cases and deaths have been cumulated up to July 14, 2020, i.e. at the end of the first epidemic wave; the intensive care data have been recorded on April 2, 2020, i.e. just before the epidemic peak. The risk indicators have been multiplied for the population of each region and normalized between 0 and 1 (the color scale for temperature has been reversed, i.e. dark colors mean low temperatures, see Methods). A concentration of dark colors in the northern regions is roughly visible for almost all the indicators and the correlations between the single factors and the damages range from 0.70 to 0.95. Maps were realized with QGIS 3.10 (https://qgis.org/en/site/). (l) Crichton’s Risk Triangle. (m) Risk Index assessment framework: risk indicators (factors) are reported in red, risk components in black.

    Full size image

    Definition of a risk assessment framework and calibration with COVID-19 data
    Conventional risk assessment theory relies on “Crichton’s Risk Triangle”24,25, shown in panel (l) of Fig. 2. In this framework, risk is evaluated as a function of three components: Hazard, Exposure and Vulnerability. Hazard is the potential for an event to cause harm (e.g., earthquake, flooding, epidemics); Exposure measures the amount of assets exposed to harm (e.g., buildings, infrastructures, population); Vulnerability is the harm proneness of assets if exposed to hazard events (e.g., building characteristics, drainage systems, age of population). The risk is present only when all of the three components co-exist in the same place. Used for the first time in the insurance industry24, this approach has been extended to assess spatially distributed risks in many fields of disaster management, such as those related to climate change impact27,28,29,30,31 and earthquakes32.
    In the present paper, we consider Hazard as the degree of diffusion of the virus over the population of an Italian region (influenced by a set of factors, related to spatial and socio-economic characteristics of the region itself); Exposure is the amount of people who might potentially be infected by the virus as a consequence of the Hazard (it should coincide with the size of the population of the region); Vulnerability is the propensity of an infected person to become sick or die (in general, it is strongly related to the age and pre-existing health conditions prior to infection). The combination of Vulnerability and Exposure provides a measure of the absolute damage (i.e., the number of ill people due to pathologies related to the virus in the region), which we called Consequences.
    In paragraph 3 of Methods section we propose two models that differ in the way the risk indicators are aggregated into the three components of the Crichton’s risk triangle. In particular, we consider the E_HV model, where the effect of Hazard and Vulnerability are combined in a single affine function of the six indicators, and the E_H_V model, where Hazard and Vulnerability are considered as affine functions of, respectively, mobility index, housing concentration and healthcare density, on one hand, and air pollution, average winter temperature and age of population on the other hand (see Fig. 2 (m) for a summary). In both models the Exposure is represented by the population of each region. Furthermore, two versions of each model have been considered: an optimized one, where the weights of the risk indicators are obtained through a least-square fitting versus real COVID-19 data, and an a-priori one, where all the weights are assumed to be equal.
    As shown in Tables 4 and 5 of Methods section, models based on data fitting perform better, both in terms of relative mean quadratic error and correlation coefficient, as expected. In particular, the E_H_V model fits the best. Furthermore, in agreement with the strong correlation of the variables with the targets, most coefficients are positive. Indeed, all coefficients obtained by fitting the number of cases and the intensive care occupancy are positive, and only one negative coefficient appears in each model, when fitting the number of deceased. However, the numerical value of the coefficients strongly depends on both models and targets, making these models not very robust. On the other hand, the a-priori models are independent of the targets, depending only on the choice of the variables we decided to include in the risk evaluation.
    Among the two considered a-priori models, where all coefficients assume the same value, we observe that the E_H_V model produces a smaller error with respect to real COVID-19 data and better correlation coefficients than the E_HV model, thus justifying the multiplicative approach which define the risk intensity in terms of the product between Hazard and Vulnerability (we used data at April 2, 2020 for this preliminary analysis but similar results would be obtained using data at July 14, 2020). Moreover, the aggregation of risk indicators in the three components of the E_H_V model follows better our motivations to choose those indicators (as explained in Methods, paragraph 1).
    Validation of the a-priori E_H_V model on COVID-19 data
    Once we established the robustness of the a-priori E_H_V model, let us now build the corresponding regional risk ranking and validate the model with the regional COVID-19 data as a case study. In particular, following the scheme of Fig. 2 (m), by multiplying Exposure and Vulnerability for the k-th region, we first calculate the Consequences ((C_{k} = E_{k} cdot V_{k}), k = 1,…,20). Then, by multiplying Hazard and Consequences, we obtain the global risk index (R_{k}) for each region ((R_{k} = H_{k} cdot C_{k}), k = 1,…, 20). In this respect, the risk index can be interpreted as the product of what is related to the occurrence of causes of the virus diffusion in a given region ((H_{k})) and what is related to the severity of effects on people ((C_{k})).
    In Fig. 3a we can appreciate the predictive capability of our model by looking at the a-priori risk ranking of the Italian regions, compared with the COVID-19 data4, in terms of total cases (cumulated), deaths (cumulated) and intensive care occupancy (daily, not cumulated), updated both at April 2, 2020 and July 14, 2020. The values of (R_{k}) have been normalized to their maximum value, so that Lombardia results to have (R_{k}) = 1. The average of (R_{k}) over all the regions is (R_{av} = 0.15) and can be considered approximately a reference level for the Italian country (even if, of course, it has only a relative value).
    Figure 3

    (a) A-priori normalized risk ranking of Italian regions, emerging from our analysis of risk indicators, compared with the corresponding total cases, deaths and intensive care occupancy updated, respectively, at April 2, 2020 (just before the epidemic peak) and at July 14, 2020 (at the end of the first wave). Regions are organized in four risk groups, corresponding to different colors: very high, high, medium and low risk. The agreement with the observed effects Data referring to overestimations or underestimations of risk are also colored in green and red, respectively. (b–d) Comparison between the spatial distribution of COVID-19 total cases at July 14, 2020 (b), the most struck regions (in terms of severe cases and deaths) from 2019–2020 seasonal flu (d) according to the ISS data19 and our a-priori risk map (c). The geographical correlation with the risk map is evident for both kind of epidemic flus. Maps were realized with QGIS 3.10 (https://qgis.org/en/site/).

    Full size image

    As already explained, due to the intrinsic limitations of the official COVID-19 data, it is convenient to make the comparison at the aggregate level of groups of regions, without expecting to predict the exact rank within each group. Let us therefore arrange the 20 regions in four risk groups, each one characterized by a different color and ordered according to decreasing values of the risk index: very high risk ((0.4 < R_{k} le 1), in red), high risk ((0.2 < R_{k} le 0.4), in brown), medium risk ((0.03 < R_{k} le 0.2), in beige) and low risk ((R_{k} le 0.03), in pink). With this choice, our model is clearly able to correctly identify the four northern regions where the epidemic effects have been far more evident, in terms of cases, deaths and intensive care occupancy: the first in the ranking, i.e. Lombardia (whose risk score is about three times the second classified) and the group of the three regions immediately after it, Veneto, Piemonte and Emilia Romagna (even if not in the exact order of damage). A quite good agreement can be observed also for the other two groups: only for Sardegna the effects on both total cases and deaths seem to have been slightly overestimated (its insularity might play a role), while for other two regions, Umbria and Valle d’Aosta, some impact indicators have been slightly underestimated. Notice that the proposed risk classification seems quite robust, since it holds both near to the peak of April and at the end of the first wave, in July, when the intensive care occupancy of the majority of the regions was zero. In Table 6 reported in Methods, a further analysis of the robustness of this classification has been performed by eliminating, one by one, single indicators from the risk index definition: results show that the position of some regions slightly changes inside each group, but the composition of the four risk groups remains for the mostly unchanged with just few exceptions worsening the agreement with the impact indicators shown in Fig. 3a. This confirms the advantage of including all indicators in the risk index. The clear separation between northern regions from central and southern ones is also confirmed in the bottom part of Fig. 3, where the a-priori risk color map, in panel (c), is compared with the map of COVID-19 total cases in July, panel (b), and the map of the serious cases and deaths of the seasonal flu 2019/20 in Italy, panel (d) (ISS data19). The agreement is clearly visible. In Fig. 4 we show the correlations between the a-priori risk index and the three main impact indicators related to the outbreak, i.e. the total number of cases (a) and the total number of deaths (b), cumulated up to July 14, 2020, and the intensive care occupancy (c), registered at April 2, 2020. For each plot, a linear regression has been performed, with Pearson correlation coefficients always taking values greater or equal to 0.97, indicating a strong positive correlation. On the right of each plot we report the corresponding percentages of damage observed in the three Italian macro-regions—North, Center and South, see the geographic map (d). Also in this case the correlation is evident, if compared with the percentage of cumulated a-priori risk associated to the same macro-regions (e). Figure 4 The three main impact indicators for COVID-19—the total number of cases (a) and the total number of deaths (b) cumulated up to July 14, 20204, and the intensive care occupancy (c) at April 2, 20204—are reported as function of the a-priori risk index for all the Italian regions. The size of the points is proportional to the risk index score. A linear regression has been performed for each plot. The Pearson correlation coefficients are very good, always greater or equal than 0.97. The corresponding percentages of damages, aggregated for the three Italian macro-regions (North, Center and South (d)) are also reported to the right and can be compared with the percentages of cumulated a-priori risk (e). It is clear that our a-priori risk index is able to explain the anomalous damage discrepancies between these different parts of Italy. Maps were realized with QGIS 3.10 (https://qgis.org/en/site/). Full size image Another interesting way to visualize these correlations is to represent the a-priori risk index through its two main aggregated components, Hazard and Consequences, and plotting each region as a point of coordinates ((H_{i} ,C_{i} )) in the plane (left{ {H times C} right}). This Risk Diagram is reported in Fig. 5a, where the points have been also characterized by the same color of the corresponding risk group of Fig. 3. It is evident that the iso-risk line described by the equation C = Rav/H (being Rav = 0.15 the average regional risk value) is correctly able to separate the four more damaged and highly risky, northern regions (plus Lazio) from all the others. The value of the risk index is reported in parentheses next to each region name. As shown in Fig. 5b, where the ranking of the Italian regions has been disaggregated for both Hazard and Consequences, it is interesting to notice that some regions (such as Friuli, Trentino or Valle d’Aosta) exhibit high values of Hazard and quite low values of Consequences, while for other regions (such as Campania or Piemonte) the opposite is true. See also the colored geographic maps in Fig. 5c,d for a visual comparison. This confirms that it is necessary to aggregate such two main components in a single global index to have a more reliable indication of the regional a-priori risk. Figure 5 (a) Risk Diagram. Each region is represented as a point in the plane (left{ {H times C} right}) while the color is proportional to the corresponding risk group updated at July 14, 2020 (see Fig. 3a). The most damaged regions lie with a good approximation above the C = Rav/H hyperbole (i.e. the iso-risk line related to the average regional risk index), while the less damaged ones lie below this line. The a-priori risk index score is also reported for each region. (b) The rankings of Italian regions according to either Hazard (on the left) or Consequences (on the right). The corresponding colored geographic maps are also shown in panels (c) and (d) for comparison. Maps were realized with QGIS 3.10 (https://qgis.org/en/site/). Full size image Let us close this paragraph by showing, in Fig. 6, three sequences of the geographic distribution of the total cases (a), total number of deaths (b) and current intensive care occupancy (c) as a function of time, from March 9 to July 14, 2020. These sequences are compared with the geographic map of the a-priori risk level (the bordered image on the right in each sequence), the latter being independent of time. In all the plots, damages seem to spread over the regions with a variable intensity (expressed by the color scale) quite correctly predicted by our a-priori risk analysis. The intensive care occupancy map compared with the risk map is dated April 2, since the occupancy on July 14 is zero almost everywhere (with the exception of Lombardia and a few other regions). Figure 6 The geographic distributions of damage in the various Italian regions—cumulated total cases (a), cumulated total deaths (b) and daily intensive care occupancy (c)—are reported as function of time, from March 9, 2020 to July 14, 2020 and compared with the geographic distribution of the a-priori risk. Obviously, the intensive care occupancy to compare with the risk map is that of April, since in July, at the end the epidemic wave, this variable is zero everywhere except for a few regions (among which only Lombardia has a score slightly higher than 25). Maps were realized with QGIS 3.10 (https://qgis.org/en/site/). Full size image In the next paragraph, the methodology proposed in this paper, and in particular this representation in terms of risk diagram, will be used to build a policy model aimed at mitigating damages in case of an epidemic outbreak similar to the COVID-19 one. A proposal for a policy protocol to reduce the epidemic risk We have seen how the risk can be thought as composed in two components, one related to the causes of the infection diffusion and the other to the consequences. In this paragraph we will interpret the consequences in terms of protection and required support to people with the goal of improving the social result and/or reducing the economic cost. It is evident that enhancing the capability of the healthcare system appears to be the most important action: basically, the insufficient carrying capacity creates the emergency. Beyond specific factors explained above, the epidemic crisis in Lombardia essentially showed a breakdown of its healthcare system, caused by high demand rate for hospital admissions, long permanence times in intensive care, insufficient health assistance (diagnosis equipment, staff, spaces, etc.). Previously illustrated data provide a positive analysis of an epidemic disease (i.e., how things are, in a given state of the world). The normative approach here described presents a viable framework to assess possible policy protocols. Several variables affecting the diffusion of an infection can be looked at as suitable policy instruments to manage both the spreading process and the stress level to the healthcare system of a given district (such as a country, a region, an urban area, etc.). Following the evidence suggested by data, we propose a theoretical model (whose details are presented in the Methods section, paragraph 4) based on two independent variables influencing the level of risk, namely the infection ratio, i.e., the proportion of infected individuals over the total population, and the number of per capita hospital beds, as a measure of the impact of consequences caused by the spreading of the disease. We adopt an approach based on a standard model of economic policy, in which a series of instruments explicitly affecting the infection ratio and the per capita hospital beds endowment can be used to approach the target, i.e., the minimization of the risk level. A similar rationale, covering other topics, can be found in Samuelson and Solow33 (1960) and builds upon a widely consolidated literature which dates back in time34,35,36,37,38,39 (among many others). Despite the analysis concerns a collective problem, the model here proposed describes elements of a possible decision process followed by an individual policy-maker, thus remaining microeconomic in nature. Panel (a) in Fig. 7 shows the risk function, while the right panel provides an illustration of the family of its convex contours, for a finite set of risk levels (limited for graphic convenience): Figure 7 (a,b) The Risk function and its convex contours: an example for (R = x^{0.5} b^{0.5}). (c,d) The carrying capacity function and effects of policy interventions on the supply-side. (e,f) Comparative statics of equilibrium and disequilibrium. (g,h) Two examples of model implementation, see the main text. Full size image Panel (b) in Fig. 7 replicates the meaning of Fig. 5a by translating the consequences indicated by data as the required per capita hospital beds, while explaining that the position of each iso-risk curve corresponds to the different actual composition of the scenario at hand. We assume a unique care strategy based on the structural carrying capacity of the healthcare system, defined as the available number of per capita hospital beds. Such a carrying capacity derives from the health expenditure (G_{H}), which is set to a level considered sufficient. Such a choice is based on political decisions and is reasonably inferred from past experience, structural elements of population, such as age and territorial density, etc. A part of the deliberated budget is dedicated to set up intensive care beds, as an advanced assistance service provision. During an emergency, possibly deriving from an epidemic spreading, the number of beds can suddenly reveal insufficient. In other words, it is possible that the amount of hospital beds required at a certain point is greater than the current availability. In the model, we assume the number of hospital beds, H, and the proportion of intensive care beds, (alpha), as exogenously determined by the policy-maker who fixes (G_{H}). The actual carrying capacity is shown as a function of the infection ratio, x, computed as the infected population over the total, as shown in panel (c) of Fig. 7, and detailed in paragraph 4 of Methods. Changes in the proportion of per capita intensive care hospital beds over the total, cause instead, a variation in the slope of the line (which becomes steeper for reduction in the proportion of intensive care beds). Finally, changes in the overall expenditure shift the line with the same slope (above for increments of the expenditure). In particular, it is worth to notice that the political choice of the ratio (alpha = HH/H) may imply that the overall capacity to assist the entire population is not guaranteed (i.e. the intercept on the (x) axis might be less than (1)). A direct comparison of elements contained in panels (a-b) and (c-d) of Fig. 7 provides a quick inspection of the policy problem, focused to control the epidemic spreading. The constraint should be considered as a dynamic law, but since the speed of adjustment is reasonably low, we will proceed by means of a comparative statics perspective, in which a comparison of different strategies can be presented, by starting from different, static, scenarios. Further, by definition, an emergency challenges the usual policy settings, since the speed of damages is greater than that of policy tools. In panel (e) of Fig. 7 a hypothetic country has a given carrying capacity to sustain the risk level represented by the iso-risk curve. Without an immediate availability of funds to increase the carrying capacity, the main policy target could easily be described as the transposition of the iso-risk curve to the bottom-left: the closer the curve to the origin, the higher the satisfaction for the community. Secondly, the meaning of the relationship between the curve and the line is that until the curve touches the line, the policy maker has a sort of measure of how much the problem is out of control, given by the distance between the curve and the constraint. Third, policies may try to transpose the curve to lower levels or, equivalently, the constraint upwards (with or without modification of the slope). A minimal result is reached if both are at least tangent, as depicted in panel (f) of Fig. 7. Whenever such a tangency condition has been reached, the highest infection rate that the given health care system can sustain has been found. Further policy actions are possible to approach a lower iso-risk curve or to save resources and/or re-allocate them differently. A policy can be considered satisfactory when any of points belonging to the arc TT’ is reached, e.g. the point L. Alternative policies are neither equivalent, nor requiring the same actions, and the policy-maker has to choose actions with reference to the actual data collected by its own Country. Points F and G, although carrying the same risk level as E, still represent out-of-control positions. Different regions of the plot have a different signaling power: at point F, the infection rate is low and, thus, very difficult to be further reduced. In such a case, for example, it would be advisable to suggest health protocols which improve people safety. On the contrary, at point G, the infection rate is so high that a limit on social interaction easily appears to be much more urgent than medical protocols. The right mix between a demand-side and a supply-side policy to adopt is a decision of political nature. A distinction can be made by saying that demand-side policies are devoted to reduce the number of newly infected people (by means of restrictions to movements, quarantine regulations, rules of conduct, etc.) and their effects are able to lower the iso-risk curves; supply-side policies are, instead, aimed at incrementing the carrying capacity of the system (by means of expenditure for the healthcare system, increments of dedicated personnel and intensive care beds, in-house medical protocols) and their effects can shift the constraint representing the carrying capacity of the system. Politics has, then, to decide when the risk is low enough or the constraint is sufficiently high. Specific calibration of the model will allow, in a forthcoming research, a detailed analysis of policy implications, by considering actual conditions and risk factors of specific districts, thus providing the policy-maker with a toolbox for normative directions. For instance, the model can be read to analyze differences in proposed actions in Lombardia and Veneto, and in other regions or countries. More