More stories

  • in

    The UN Environment Programme needs new powers

    Indian prime minister Indira Gandhi meets Maurice Strong, who chaired the 1972 Stockholm Conference on the Human Environment. Gandhi saw UNEP’s potential at a time when other countries doubted its value.Credit: Yutaka Nagata/UN Photo

    The United Nations Environment Programme (UNEP) will be 50 next year. But the globe’s green watchdog, which helped to create the Intergovernmental Panel on Climate Change (IPCC), very nearly didn’t exist.
    During talks hosted by Sweden in 1972, low- and middle-income countries were concerned that such a body would inhibit their industrial development. Some high-income countries also questioned its creation. UK representative Solly Zuckerman, a former chief scientific adviser to prime ministers including Winston Churchill, said the science did not justify warnings that human activities could have irreversible consequences for the planet. The view in London was that, on balance, environmental pollution was for individual nations to solve — not the UN.
    But the idea of UNEP had powerful supporters, too. India’s prime minister, Indira Gandhi, foresaw its potential in enabling industry to become cleaner and more humane. And the host nation made a wise choice in picking Canadian industrialist Maurice Strong to steer the often fractious talks to success. He would become UNEP’s first executive director. Two decades later, Strong re-emerged to chair the 1992 Earth Summit in Rio de Janeiro, Brazil, which created three landmark international agreements: to protect biodiversity, safeguard the climate and combat desertification.
    UNEP has chalked up some impressive achievements in science and legislation. In 1988, working with the World Meteorological Organization, it co-founded the IPCC, whose scientific assessments have been pivotal to global climate action. It also responded to scientists’ warnings about the hole in the ozone layer, leading to the creation of the 1987 Montreal Protocol, an international law to phase out ozone-depleting chemicals.
    Strong’s successors would go on to identify emerging green-policy issues and nudge them into the mainstream. UNEP has pushed the world of finance to think about how to stop funding polluting industries. It has also advocated working with China to green its rapid industrial growth — including the Belt and Road Initiative to develop global infrastructure. It is essential that this work continues.
    UNEP also accelerated the creation of environment ministries around the world. Their ministers sit on the programme’s governing council; at their annual meeting last week, they reflected on what UNEP must do to tackle the environmental crisis. Although the environment is a rising priority for governments, businesses and civil society, progress on the UN’s flagship Sustainable Development Goals — in biodiversity, climate, land degradation, pollution, finance and more — is next to non-existent. Moreover, the degradation of nature is putting hard-won gains at risk, argues a report that UNEP commissioned as part of its half-century commemorations.
    The report, Making Peace with Nature, assesses much of the same literature as would a climate- or land-degradation assessment, but its key strength is in how it brings together researchers from across environmental science. In doing so, UNEP is helping to accelerate a mode of working that should be standard. If, for example, there is to be an assessment of how climate change affects biodiversity, it makes much more sense for this to be carried out by a joint team from the IPCC and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) than by researchers from just one of these organizations.
    The UNEP report’s authors stop short of recommending such changes to the architecture of the UN’s scientific advisory bodies. That is a missed opportunity. Also missing is a discussion and recommendations on how to make countries more accountable for their environmental pledges.
    Both these actions are sorely needed if the world is to take more meaningful steps to battle climate change and biodiversity loss. Countries have become expert in capturing data and reporting them to UN organizations. But there is no mechanism that holds nations to account. For example, there is no system to ensure compliance with targets for the Sustainable Development Goals.
    Last week, the UN produced a report in which countries published their progress towards commitments under the 2015 Paris climate agreement, known as nationally determined contributions. The agreement includes almost 200 countries, but just 75 reported their data. There are few incentives for success and no penalties for failure. Without such measures, it is hard to see how meaningful change could ever happen.
    In the past, researchers have proposed that UNEP’s member states upgrade its powers so it becomes more of a compliance body — a World Environment Organization that, like the World Trade Organization, has the power to censure countries for failing to keep to agreements. But this has been resisted as too radical a step, which would upend the autonomy of the UN biodiversity and climate organizations that UNEP itself helped to bring into being.
    Twenty years ago, there might have been some justification for such a view, but now, with the world on a path to extreme climate change, any action will need to be radical, including considering how to give UNEP more teeth.
    UNEP helped to lay the foundations for a scientific consensus on environmental decline, and it should be proud of the body of law that has been enacted globally. Alas, such measures risk being too little, too late. As it embarks on a year of reflection ahead of its anniversary, member states must consider what more they need to do to empower UNEP to tackle the planetary emergency. More

  • in

    Large-scale spatial patterns of small-mammal communities in the Mediterranean region revealed by Barn owl diet

    1.
    de Lattin, G. Grundriss der Zoogeographie (Gustav Fischer Verlag, 1976).
    2.
    Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. Lond. 68, 87–112. https://doi.org/10.1006/bijl.1999.0332 (1999).
    Article  Google Scholar 

    3.
    Wallace, A. R. The geographical distribution of animals; with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth’s surface (Harper & Brothers, 1876).

    4.
    Mittermeier, R. A., Myers, N., Mittermeier, C. G. & Robles Gil, P. Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions (CEMEX, 1999).
    Google Scholar 

    5.
    Médail, F. & Quézel, P. Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv. Biol. 13(6), 1510–1513 (1999).
    Article  Google Scholar 

    6.
    Temple, H. J. & Cuttelod, A. (Compilers). The Status and Distribution of Mediterranean Mammals. Gland, Switzerland and Cambridge (UK: IUCN, vii+32pp, 2009).

    7.
    Blondel, J. The nature and origin of the vertebrate fauna. pp. 139–163 In: Woodward, C. J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    8.
    Aulagnier, S., Hafner, P., Mitchell-Jones, A. J., Moutou, F. & Zima, J. Mammals of Europe, North Africa and the Middle East (A&C Black Publishers, 2009).
    Google Scholar 

    9.
    Horáček, I., Hanák, V. & Gaisler, J. Bats of the Palearctic region: a taxonomic and biogeographic review. In Proceedings of the VIIIth European bat research symposium (Vol. 1, pp. 11–157) (Kraków, CIC ISEZ PAN, 2000).

    10.
    Smith, C. H. A system of world mammal faunal regions. I. Logical and statistical derivation of the regions. J. Biogeogr. 10, 455–466. https://doi.org/10.2307/2844752 (1983).

    11.
    Dobson, M. Mammal distributions in the western Mediterranean: the role of human intervention. Mammal Rev. 28(2), 77–88 (1998).
    Article  Google Scholar 

    12.
    Sans-Fuentes, M. A. & Ventura, J. Distribution patterns of the small mammals (Insectivora and Rodentia) in a transitional zone between the Eurosiberian and the Mediterranean regions. J. Biogeogr. 27(3), 755–764 (2000).
    Article  Google Scholar 

    13.
    Kryštufek, B. & Vohralík, V. Mammals of Turkey and Cyprus: introduction, checklist, Insectivora (Zgodovinsko društvo za južno Primorsko, 2001).

    14.
    Kryštufek, B. A quantitative assessment of Balkan mammal diversity. In Balkan Biodiversity (pp. 79–108) (Springer, Dordrecht, 2004).

    15.
    Kryštufek, B., Vohralík, V. & Janžekovič, F. Mammals of Turkey and Cyprus: Rodentia I: Sciuridae, Dipodidae, Gliridae (Arvicolinae, 2005).
    Google Scholar 

    16.
    Kryštufek, B. & Vohralík, V. Mammals of Turkey and Cyprus, Rodentia II: Cricetinae, Murridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae Castoridae. J. Mammal. 96, 1–373 (2010).
    Google Scholar 

    17.
    Kryštufek, B., Donev, N. R. & Skok, J. Species richness and distribution of non-volant small mammals along an elevational gradient on a Mediterranean mountain. Mammalia 75(1), 3–11 (2011).
    Article  Google Scholar 

    18.
    Svenning, J. C., Fløjgaard, C. & Baselga, A. Climate, history and neutrality as drivers of mammal beta diversity in Europe: Insights from multiscale deconstruction. J. Anim. Ecol. 80(2), 393–402 (2011).
    Article  Google Scholar 

    19.
    Gaston, K., & Blackburn, T. Pattern and process in macroecology (John Wiley & Sons, 2008).

    20.
    Darwin, C. On the Origin of Species by Means of Natural Selection (J. Murray, 1859).

    21.
    Wallace, A. R. Tropical Nature and Other Essays (Macmillan, 1878).

    22.
    Hawkins, B. A. et al. Energy, water and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117. https://doi.org/10.1890/03-8006 (2002).
    Article  Google Scholar 

    23.
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163(2), 192–211 (2004).
    Article  Google Scholar 

    24.
    Kindlmann P, Schödelbauerová I, Dixon AF.G. Inverse latitudinal gradients in species diversity. pp. 246–257 in Storch D. et al. (eds.) Scaling Biodiversity (Cambridge University Press, 2007).

    25.
    Boone, R. B. & Krohn, W. B. Relationship between avian range limits and plant transition zones in Maine. J. Biogeogr. 27, 471–482 (2000).
    Article  Google Scholar 

    26.
    Storch, D., Evans, K. L. & Gaston, K. J. The species-area-energy relationship in orchids. Ecol. Lett. 8, 487–492. https://doi.org/10.15517/lank.v7i1-2.19504 (2005).
    Article  PubMed  Google Scholar 

    27.
    Valladares, F. et al. Global change and Mediterranean forests: current impacts and potential responses in Forests and Global Change (eds. Burslem, D. F. R. & Simonson, W. D.), 47–75 (Cambridge University Press, 2014).

    28.
    MacArthur, R. H. Patterns of Species Diversity. Geographical Ecology: Patterns in the Distributions of Species (Harper & Row, 1972).

    29.
    Whittaker, R. J. & Fernández-Palacios, J. M. Island biogeography: ecology, evolution, and conservation. Oxford University Press (2007).

    30.
    Sólymos, P. & Lele, S. R. Global pattern and local variation in species-area relationships. Glob. Ecol. Biogeogr. 21, 109–120. https://doi.org/10.1111/j.1466-8238.2011.00655.x (2012).
    Article  Google Scholar 

    31.
    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: patterns, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309. https://doi.org/10.1146/annurev.ecolsys.34.012103.144032 (2003).
    Article  Google Scholar 

    32.
    Prevedello, J., Gotelli, N. J. & Metzger, J. A stochastic model for landscape patterns of biodiversity. Ecol. Monogr. 86, 462–479. https://doi.org/10.1002/ecm.1223 (2016).
    Article  Google Scholar 

    33.
    Blondel, J., Aronson, J., Bodiou, J. Y. & Boeuf, G. The Mediteranean region. Biological diversity in space and time (Oxford University Press, 2010).

    34.
    Vigne, J. D. The large “true” Mediterranean islands as a model for the Holocene human impact on the European vertebrate fauna? Recent data and new reflections. The Holocene history of the European vertebrate fauna. Modern aspects of research, 295–322 (1999).

    35.
    Harding, A.F., Palutikof, J. & Holt, T. The climate system. pp. 69–88 In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    36.
    Zdruli, P. Desertification in the Mediterranean Region. Mediterranean year book 2011 (European Institute of the Mediterranean, 2012).

    37.
    Bilton, D. T. et al. Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc. Royal Soc. B 265(1402), 1219–1226 (1998).
    CAS  Article  Google Scholar 

    38.
    Hewitt, G. M. Mediterranean peninsulas: The evolution of hotspots. In Biodiversity hotspots (pp. 123–147) (Springer, Berlin, Heidelberg, 2011).

    39.
    Bilgin, R. Back to the suture: the distribution of intraspecific genetic diversity in and around Anatolia. Int. J. Mol. Sci. 12, 4080–4103. https://doi.org/10.3390/ijms12064080 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Vigne, J. D. The origins of mammals on the Mediterranean islands as an indicator of early voyaging. Euras. Prehistory 10(1–2), 45–56 (2014).
    Google Scholar 

    41.
    Masseti, M. Mammals of the Mediterranean islands: Homogenisation and the loss of biodiversity. Mammalia 73, 169–202. https://doi.org/10.1515/MAMM.2009.029 (2009).
    Article  Google Scholar 

    42.
    Angelici, F. M., Laurenti, A. & Nappi, A. A. checklist of the mammals of small Italian islands. Hystrix 20, 3–27. https://doi.org/10.4404/hystrix-20.1-4429 (2009).
    Article  Google Scholar 

    43.
    Cunningham, P. L. & Aspinall, S. The diet of Little Owl Athene noctua in the UAE, with notes on Barn Owl Tyto alba and Desert Eagle Owl Bubo (b.) ascalaphus. Tribulus 11, 13–15 (2001).

    44.
    Taylor, I. R. How owls select their prey: A study of Barn owls Tyto alba and their small mammal prey. Ardea 97, 635–644. https://doi.org/10.5253/078.097.0433 (2009).
    Article  Google Scholar 

    45.
    Yom-Tov, Y. & Wool, D. Do the contents of barn owl pellets accurately represent the proportion of prey species in the field?. Condor 99, 972–976. https://doi.org/10.2307/1370149 (1997).
    Article  Google Scholar 

    46.
    Dodson, P. & Wexlar, D. Taphonomic investigations of owl pellets. Paleobiology 5, 275–284 (1979).
    Article  Google Scholar 

    47.
    Heisler, L., Somers, C. & Poulin, R. Owl pellets: A more effective alternative to conventional trapping for broad-scale studies of small mammal communities. Methods Ecol. Evol. 7, 96–103. https://doi.org/10.1111/2041-210X.12454 (2015).
    Article  Google Scholar 

    48.
    Torre, I., Arrizabalaga, A. & Flaquer, C. Three methods for assessing richness and composition of small mammal communities. J. Mammal. 85, 524–530. https://doi.org/10.1644/BJK-112 (2004).
    Article  Google Scholar 

    49.
    Yalden, D. W. & Morris, P. A. The analysis of owl pellet (Occasional publications)(The Mammal Society, 1990).

    50.
    Williams, D. F. & Braun, S. E. Comparison of pitfall and conventional traps for sampling small mammal populations. J. Wildl. Manage. 47, 841–845 (1983).
    Article  Google Scholar 

    51.
    Glennon, M. J., Porter, W. F. & Demers, C. L. An alternative field technique for estimating diversity of small-mammal populations. J. Mammal. 83, 734–742. https://doi.org/10.1644/1545-1542 (2002).
    Article  Google Scholar 

    52.
    Morris, P. A., Burgis, M. J., Morris, P. A. & Holloway, R. A method for estimating total body weight of avian prey items in the diet of owls. J. Zool. 210, 642–644 (1986).
    Article  Google Scholar 

    53.
    Vukićević Radić, O., Jovanović, T. B., Matić, R. & Katarinovski, D. Age structure of yellow-necked mouse (Apodemus flavicollis Melchior 1834) in two samples obtained from live traps and owl pellets. Arch. Biol. Sci. 57, 53–56 (2005).

    54.
    Coda, J., Gomez, D., Steinmann, A. R. & Priotto, J. Small mammals in farmlands of Argentina: Responses to organic and conventional farming. Agric. Ecosyst. Environ. 211, 17–23 (2015).
    Article  Google Scholar 

    55.
    Andrade, A., de Menezes, J. F. S. & Monjeau, A. Are owl pellets good estimators of prey abundance?. J. King Saud Univ. Sci. 28, 239–244. https://doi.org/10.1016/j.jksus.2015.10.007 (2016).
    Article  Google Scholar 

    56.
    Moysi, M., Christou, M., Goutner, V., Kassinis, N. & Iezekiel, S. Spatial and temporal patterns in the diet of barn owl (Tyto alba) in Cyprus. J. Biol. Res-Thessalon. 25(1), 9 (2018).
    Article  Google Scholar 

    57.
    Romano, A., Séchaud, R. & Roulin, A. Global biogeographical patterns in the diet of a cosmopolitan predator. J. Biogeogr. 47, 1467–1481. https://doi.org/10.1111/jbi.13829 (2020).
    Article  Google Scholar 

    58.
    Baquero, R. A. & Tellería, J. L. Species richness, rarity and endemicity of European mammals: A biogeographical approach. Biodivers. Conserv. 10(1), 29–44 (2001).
    Article  Google Scholar 

    59.
    Mitchell-Jones, A. J. et al. The Atlas of European Mammals (T & AD Poyser, 1999).

    60.
    Kross, S. M., Bourbour, R. P. & Martinico, B. L. Agricultural land use, arn owl diet, and vertebrate pest control implications. Agric. Ecosyst. Environ. 223, 167–174. https://doi.org/10.1016/j.agee.2016.03.002 (2016).
    Article  Google Scholar 

    61.
    Krishnapriya, T. & Ramakrishnan, U. Higher speciation and lower extinction rates influence mammal diversity gradients in Asia. BMC Evol. Biol. 15, 11. https://doi.org/10.1186/s12862-015-0289-1 (2015).
    Article  Google Scholar 

    62.
    Kouki, J., Niemela, P. & Viitasaari, M. Reversed latitudinal gradient in species richness of sawflies (Hymenoptera, Symphyta). Ann. Zool. Fenn. 31, 83–88 (1994).
    Google Scholar 

    63.
    Rabenold, K. N. A reversed latitudinal diversity gradient in avian communities of eastern deciduous forests. Am. Nat. 114, 275–286. https://doi.org/10.1086/283474 (1979).
    Article  Google Scholar 

    64.
    Ruffino, L. & Vidal, E. Early colonization of Mediterranean islands by Rattus rattus: A review of zooarcheological data. Biol. Invasions 12(8), 2389–2394 (2010).
    Article  Google Scholar 

    65.
    Thomes, J. B. Land degradation. pp. 563–581. In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    66.
    Allen, H. D. Vegetation and ecosystem dynamics. pp. 203–227. In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    67.
    Dov Por, F. & Dimentman, C. Mare Nostrum. Neogene and anthropic natural history of the Mediterranean basin, with emphasis on the Levant (Pensoft, Sofia-Moscow, 2006).

    68.
    Zohary, D., Hopi, M. & Weiss, E. Domestication of Plants in the Old World 4th edn. (Oxford University Press, 2012).
    Google Scholar 

    69.
    Roulin, A. Spatial variation in the decline of European birds as shown by the Barn Owl Tyto alba diet. Bird Study 62, 271–275. https://doi.org/10.1080/00063657.2015.1012043 (2015).
    Article  Google Scholar 

    70.
    Pezzo, F. & Morimando, F. Food habits of the barn owl, Tyto alba, in a mediterranean rural area: Comparison with the diet of two sympatric carnivores. Boll. Zool. 62, 369–373. https://doi.org/10.1080/11250009509356091 (1995).
    Article  Google Scholar 

    71.
    Soranzo, N., Alia, R., Provan, J. & Powell, W. Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol. Ecol. 9, 1205–1211. https://doi.org/10.1046/j.1365-294x.2000.00994.x (2000).
    CAS  Article  PubMed  Google Scholar 

    72.
    van Andel, T. H. The climate and landscape of the middle part of the Weichselian Glaciation in Europe: The stage 3 project. Q. Res. 57, 2–8. https://doi.org/10.1006/qres.2001.2294 (2002).
    ADS  Article  Google Scholar 

    73.
    Johnston, D. W. & Hill, J. M. Prey selection of Common Barn-owls on islands and mainland sites. J. Raptor. Res. 21(1), 3–7 (1987).
    Google Scholar 

    74.
    Sommer, R., Zoller, H., Kock, D., Böhme, W. & Griesau, A. Feeding of the barn owl, Tyto alba with first record of the European free-tailed bat, Tadarida teniotis on the island of Ibiza (Spain, Balearics). Fol. Zool. 54, 364–370 (2005).
    Google Scholar 

    75.
    Kryštufek, B., Reed, J. Pattern and process in Balkan biodiversity – an overview in A quantitative assesment of Balkan mammal diversity (eds. Griffiths, H. I., Kryštufek, B. & Reed, J. M.) 79–108 (Kluwer Academic, 2004).

    76.
    Ricklefs, R. E. & Lovette, I. J. The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. J. Anim. Ecol. 68, 1142–1160 (1999).
    Article  Google Scholar 

    77.
    Heaney, L. R. Mammalian species richness on islands on the Sunda Shelf Southeast Asia. Oecologia 61, 11–17 (1984).
    ADS  Article  Google Scholar 

    78.
    Carvajal, A. & Adler, G. H. Biogeography of mammals on tropical Pacific islands. J. Biogeogr. 32, 1561–1569. https://doi.org/10.1111/j.1365-2699.2005.01302.x (2005).
    Article  Google Scholar 

    79.
    Millien-Parra, V. & Jaeger, J. J. Island biogeography of the Japanese terrestrial mammal assemblages: An example of a relict fauna. J. Biogeogr. 26, 959–972. https://doi.org/10.1046/j.1365-2699.1999.00346.x (1999).
    Article  Google Scholar 

    80.
    Amori, G., Rizzo Pinna, V., Sammuri, G. & Luiselli, L. Diversity of small mammal communities of the tuscan archipelago: Testing the effects of island size, distance from mainland and human density. Fol. Zool. 64, 161–166. https://doi.org/10.25225/fozo.v64.i2.a9.2015 (2015).

    81.
    Audoin-Rouzeau, F. & La Vigne, J. D. colonisation de l’Europe par le rat noir (Rattus rattus). Rev. de Paléobiologie 13, 125–145. https://doi.org/10.1134/S1062359011020130 (1994).
    Article  Google Scholar 

    82.
    Towns, D. R., Atkinson, I. A. E. & Daugherty, Ch. H. Have the harmful effects of introduced rats on islands been exaggerated?. Biol. Invasions 8, 863–891. https://doi.org/10.1007/s10530-005-0421-z (2006).
    Article  Google Scholar 

    83.
    Martin, J. L., Thibault, J. C. & Bretagnolle, V. Black rats, island characteristics, and colonial nesting birds in the Mediterranean: Consequences of an ancient introduction. Conserv. Biol. 14, 1452–1466. https://doi.org/10.1046/j.1523-1739.2000.99190.x (2000).
    Article  Google Scholar 

    84.
    Landová, E., Horáček, I. & Frynta, D. Have black rats evolved a culturally-transmitted technique of pinecone opening independently in Cyprus and Israel?. Isr. J. Ecol. Evol. 52(2), 151–158 (2006).
    Article  Google Scholar 

    85.
    Sarà, M. & Morand, S. Island incidence and mainland population density: Mammals from Mediterranean islands. Divers. Distrib. 8, 1–9 (2002).
    Article  Google Scholar 

    86.
    Libois, M. R., Fons, R., Saint Girons, M. C. Le régime alimentaire de la chouette effraie Tyto alba, dans les Pyrénées-orientales. Etude des variations ecogéographiques. Rev. Ecol.-Terre Vie 37, 187–217 (1983).

    87.
    Di Russo, C. Dati sui micromammiferi da borre di barbacianni, Tyto alba, di un Sito della Sardegna Centro-orientale. Hystrix 2, 57–62. https://doi.org/10.4404/hystrix-2.1-3885 (1987).
    Article  Google Scholar 

    88.
    Guerra, C., García, D. & Alcover, J. A. Unusual foraging patterns of the barn owl, Tyto alba (Strigiformes: Tytonidae), on small islets from the Pityusic archipelago (Western Mediterranean Sea). Fol. Zool. 63, 180–187. https://doi.org/10.25225/fozo.v63.i3.a5.2014 (2014).

    89.
    Patterson, B. D. & Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. Lond. 28, 65–82. https://doi.org/10.1111/j.1095-8312.1986.tb01749.x (1986).
    Article  Google Scholar 

    90.
    Kutiel, P., Peled, Y. & Geffen, E. The effect of removing shrub cover on annual plants and small mammals in a coastal sand dune ecosystem. Biol. Conserv. 94, 235–242. https://doi.org/10.1016/S0006-3207(99)00172-X (2000).
    Article  Google Scholar 

    91.
    Tores, M., Motro, Y., Motro, U. & Yom-Tov, Y. The barn owl-a selective opportunist predator. Israel J. Zool. 51, 349–360. https://doi.org/10.1560/7862-9E5G-RQJJ-15BE (2005).
    Article  Google Scholar 

    92.
    Obuch, J. & Benda, P. Food of the Barn Owl (Tyto alba) in the Eastern Mediterranean. Slovak Raptor J. 3, 41–50. https://doi.org/10.2478/v10262-012-0032-4 (2009).
    Article  Google Scholar 

    93.
    Anděra, M. & Horáček, I. Determining our mammals (Sobotáles, 2005).

    94.
    Dor, M. Observations sur les Micromammiferes trouves dans les Pelotes de la Chouette effraye (Tyto alba) en Palestine. Mammalia 11, 50–54 (1947).
    Article  Google Scholar 

    95.
    De Pablo, F. Alimentación de la Lechuza Común (Tyto alba) en Menorca. Bolleti Soc. Hist. Nat. Balear. 43, 15–26 (2000).
    Google Scholar 

    96.
    Rihane, A. Contribution to the study of the diet of Barn Owl Tyto alba in the semi-arid plains of Atlantic Morocco. Alauda 71, 363–369 (2003).
    Google Scholar 

    97.
    Kennedy, C. M., J. R. Oakleaf, D. M. Theobald, Baruch-Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biol. 25(3), 811–826. https://doi.org/10.1111/gcb.14549 (2019).

    98.
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Global Human Modification of Terrestrial Systems. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/edbc-3z60. Accessed DAY MONTH YEAR (2020).

    99.
    Shannon, C. & Weaver, W. The Mathematical Theory of Communication (The University of Illinois Press, 1964).

    100.
    R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Found Stat Comp (2011).

    101.
    Anderson, D. R. & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 66, 912–918 (2002).
    Article  Google Scholar 

    102.
    Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75, 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x (2006).
    Article  PubMed  Google Scholar 

    103.
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35. https://doi.org/10.1007/s00265-010-1039-4 (2011).
    Article  Google Scholar 

    104.
    ter Braak, C. & Šmilauer, P. Canoco reference manual and user’s quide: software for ordination, version 5.0 (Microcomputer Power, 2012).

    105.
    StatSoft Inc. Statistica (data analysis software system), version 12. http://www.statsoft.com (2013). More

  • in

    Experimental identification and in silico prediction of bacterivory in green algae

    1.
    Jost C, Lawrence CA, Campolongo F, Van De Bund W, Hill S, DeAngelis DL. The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model. Theor Popul Biol. 2004;66:37–51.
    PubMed  Article  Google Scholar 
    2.
    Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, et al. Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs. Proc Natl Acad Sci. 2011;100:12776–81.
    Article  CAS  Google Scholar 

    3.
    Ward BA, Follows MJ. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci. 2016;113:2958–63.
    CAS  PubMed  Article  Google Scholar 

    4.
    Hansen PJ, Tillmann U. Mixotrophy among dinoflagellates—prey selection, physiology and ecological imporance. In: Subba Rao DV, editor. Dinoflagellates: classification, evolution, physiology and ecological significance. Hauppauge, NY, USA: Nova; 2020;201–60.

    5.
    Unrein F, Gasol JM, Not F, Forn I, Massana R. Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J. 2014;8:164–76.
    CAS  PubMed  Article  Google Scholar 

    6.
    Anderson R, Charvet S, Hansen P. Mixotrophy in chlorophytes and haptophytes – effect of irradiance, macronutrient, micronutrient and vitamin limitation. Front Microbiol. 2018;9:1704.
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Lewitus AJ, Caron DA, Miller KR. Effect of light and glycerol on the organization of the photosynthetic apparatus in the facultative heterotroph Pyrenomonas salina (cryptophyceae). J Phycol. 1991;27:578–87.
    Article  Google Scholar 

    8.
    Du YooY, Seong KA, Jeong HJ, Yih W, Rho J-R, Nam SW, et al. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae. 2017;68:105–17.
    Article  Google Scholar 

    9.
    Caron DA, Porter KG, Sanders RW. Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnol Oceanogr. 1990;35:433–43.
    CAS  Article  Google Scholar 

    10.
    Holen DA, Boraas ME. Mixotrophy in chrysophytes. Chrysophyte algae. Cambridge, UK: Cambridge University Press; 1995;119–40.

    11.
    Fenchel T. Ecology of heterotrophic microflagellates. II. Bioenerg growth Mar Ecol Prog Ser. 1982;8:225–31.
    Article  Google Scholar 

    12.
    Rottberger J, Gruber A, Boenigk J, Kroth P. Influence of nutrients and light on autotrophic, mixotrophic and heterotrophic freshwater chrysophytes. Aquat Micro Ecol. 2013;71:179–91.
    Article  Google Scholar 

    13.
    Bell EM, Laybourn-Parry J. Mixotrophy in the antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyceae). J Phycol. 2003;39:644–9.
    Article  Google Scholar 

    14.
    McKie-Krisberg ZM, Sanders RW. Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans. ISME J. 2014;8:1953–61.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    McKie-Krisberg ZM, Gast RJ, Sanders RW. Physiological responses of three species of Antarctic mxotrophic phytoflagellates to changes in light and dissolved nutrients. Micro Ecol. 2015;70:21–29.
    CAS  Article  Google Scholar 

    16.
    Paasch A. Physiological and genomic characterization of phagocytosis in green algae. New York, NY, USA: American Museum of Natural History; 2017.

    17.
    Not F, Latasa M, Scharek R, Viprey M, Karleskind P, Balagué V, et al. Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Res Part I Oceanogr Res Pap. 2008;55:1456–73.
    Article  Google Scholar 

    18.
    Shi XL, Marie D, Jardillier L, Scanlan DJ, Vaulot D. Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLoS ONE. 2009;4:e7657.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Rii YM, Duhamel S, Bidigare RR, Karl DM, Repeta DJ, Church MJ. Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the South East Pacific Ocean. Limnol Oceanogr. 2016;61:806–24.
    Article  Google Scholar 

    20.
    Maruyama S, Kim E. A modern descendant of early green algal phagotrophs. Curr Biol. 2013;23:1081–4.
    CAS  PubMed  Article  Google Scholar 

    21.
    O’Kelly C. Flagellar apparatus architecture and the phylogeny of ‘green’ algae: Chlorophytes, Euglenoids, Glaucophytes. In: Menzel D, editor. The cytoskeleton of the algae. Boca Raton: CRC Press; 1992. p. 315–41.
    Google Scholar 

    22.
    Burns JA, Pittis AA, Kim E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol. 2018;2:697–704.
    PubMed  Article  Google Scholar 

    23.
    Wilken S, Yung CCM, Hamilton M, Hoadley K, Nzongo J, Eckmann C, et al. The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Philos Trans R Soc B Biol Sci. 2019;374:20190090.
    CAS  Article  Google Scholar 

    24.
    Inouye I, Hori T, Chihara M. Absolute configuration analysis of the flagellar apparatus of Pterosperma Cristatum (Prasinophyceae) and consideration of Its phylogenetic position. J Phycol. 1990;26:329–44.
    Article  Google Scholar 

    25.
    Bhuiyan MAH, Faria DG, Horiguchi T, Sym SD, Suda S. Taxonomy and phylogeny of Pyramimonas vacuolata sp. nov. (Pyramimonadales, Chlorophyta). Phycologia. 2015;54:323–32.
    CAS  Article  Google Scholar 

    26.
    Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019;66:4–119.
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Burns JA, Paasch A, Narechania A, Kim E. Comparative genomics of a bacterivorous green alga reveals evolutionary causalities and consequences of phago-mixotrophic mode of nutrition. Genome Biol Evol. 2015;7:3047–61.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Guillard R. Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley WH, editors. Culture of marine invertebrate animals. 1975. New York: Plenum Press; 1975. p. 22–60.

    29.
    Cho J-C, Giovannoni SJ. Pelagibaca bermudensis gen. nov., sp. nov., a novel marine bacterium within the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol. 2006;56:855–9.
    CAS  PubMed  Article  Google Scholar 

    30.
    Thrash JC, Cho J-C, Ferriera S, Johnson J, Vergin KL, Giovannoni SJ. Genome sequences of Pelagibaca bermudensis HTCC2601T and Maritimibacter alkaliphilus HTCC2654T, the type strains of two marine Roseobacter genera. J Bacteriol. 2010;192:5552–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    First MR, Park NY, Berrang ME, Meinersmann RJ, Bernhard JM, Gast RJ, et al. Ciliate ingestion and digestion: Flow cytometric measurements and regrowth of a digestion-resistant Campylobacter jejuni. J Eukaryot Microbiol. 2012;59:12–19.
    PubMed  Article  Google Scholar 

    32.
    Sherr BF, Sherr EB, Fallon RD. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol. 1987;53:958–65.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Vazquez-Dominguez E, Peters F, Gasol JM, Vaqué D. Measuring the grazing losses of picoplankton: methodological improvements in the use of fluorescently labeled tracers combined with flow cytometry. Aquat Micro Ecol. 1999;20:119–28.
    Article  Google Scholar 

    34.
    Leebens-Mack J, Barker M, Carpenter EJ. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–85.
    Article  CAS  Google Scholar 

    35.
    Wincker P. A thousand plants’ phylogeny. Nat Plants. 2019;5:1106–7.
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLOS Biol. 2014;12:e1001889.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    Johnson LK, Alexander H, Brown CT. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Gigascience. 2019;8:1–12.
    Google Scholar 

    38.
    Besemer J. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
    PubMed  PubMed Central  Google Scholar 

    40.
    Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. Non-photosynthetic predators are sister to red algae. Nature. 2019;572:240–3.
    CAS  PubMed  Article  Google Scholar 

    41.
    Newcombe RG. Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med. 1998;17:873–90.
    CAS  PubMed  Article  Google Scholar 

    42.
    Kursa M, Rudnicki W. Feature selection with the Boruta package. J Stat Softw. 2010;36:1–13.
    Article  Google Scholar 

    43.
    Chasset PO. Probabilistic neural network for the R statistical language. https://github.com/chasset/pnn. Github. 2013.

    44.
    Maia R, Eliason CM, Bitton P-P, Doucet SM, Shawkey MD. pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol Evol. 2013;4:906–13.
    Google Scholar 

    45.
    Jimenez V, Burns J, Le Gall F, Not F, Vaulot D. No evidence of phago-mixotropy in Micromonas polaris, the dominant picophytoplankton species in the Arctic. J Phycol. 2021. https://doi.org/10.1111/jpy.13125.

    46.
    R Core Team. R development core team. R A Lang Environ Stat Comput. Vienna: R Foundation for Statistical Computing; 2016.

    47.
    Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. When the lights go out: the evolutionary fate of free-living colorless green algae. N. Phytol. 2015;206:972–82.
    Article  Google Scholar 

    48.
    Nakada T, Misawa K, Nozaki H. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol Phylogenet Evol. 2008;48:281–91.
    CAS  PubMed  Article  Google Scholar 

    49.
    Johnson I. The molecular probes handbook: a guide to fluorescent probes and labeling technologies. 11th ed. Waltham, MA, USA: Life Technologies Corporation; 2010.

    50.
    Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, et al. Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci. 2012;31:1–46.
    Article  Google Scholar 

    51.
    Leliaert F. Green algae: chlorophyta and streptophyta. Reference module in life sciences. Amsterdam, DK: Elsevier; 2019.

    52.
    Parke M, Adams I. The Pyramimonas-like motile stage of Halosphaera viridis Schmitz. Bull Res Counc Isr. 1961.

    53.
    Thorndsen J. Cymbomonas Schiller (Prasinophyceae) reinvestigated by light and electron microscopy. Arch fur Protistenkd. 1988;136:327–36.
    Article  Google Scholar 

    54.
    González JM, Sherr BF, Sherr EB. Digestive enzyme activity as a quantitative measure of protistan grazing: the acid lysozyme assay for bacterivory. Mar Ecol Prog Ser. 1993;100:197–206.
    Article  Google Scholar 

    55.
    Moestrup Ø, Inouye I, Hori T. Ultrastructural studies on Cymbomonas tetramitiformis (Prasinophyceae). I. General structure, scale microstructure, and ontogeny. Can J Bot. 2003;81:657–71.
    Article  Google Scholar 

    56.
    Turmel M, Lopes dos Santos A, Otis C, Sergerie R, Lemieux C. Tracing the evolution of the plastome and mitogenome in the Chloropicophyceae uncovered convergent tRNA gene losses and a variant plastid genetic code. Genome Biol Evol. 2019;11:1275–92.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Lopes dos Santos A, Gourvil P, Tragin M, Noël M, Decelle J, Romac S, et al. Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME J. 2017;11:512–28.
    PubMed  Article  Google Scholar 

    58.
    Lemieux C, Turmel M, Otis C, Pombert J-F. A streamlined and predominantly diploid genome in the tiny marine green alga Chloropicon primus. Nat Commun. 2019;10:4061.
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Zingone A, Borra M, Brunet C, Forlani G. Kooistra WHCF, Procaccini G. Phylogenetic position of Crustomatix stigmatica sp. nov. and Dolichomastix tenuilepis in relation to the mamiellales (Prasinophyceae, Chlorophyta). J Phycol. 2002;38:1024–39.
    CAS  Article  Google Scholar 

    60.
    Liang Z, Geng Y, Ji C, Du H, Wong CE, Zhang Q, et al. Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Adv Sci. 2020;7:1901850.
    CAS  Article  Google Scholar 

    61.
    Buckley CM, Gopaldass N, Bosmani C, Johnston SA, Soldati T, Insall RH, et al. WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proc Natl Acad Sci. 2016;113:E5906–15.
    CAS  PubMed  Article  Google Scholar 

    62.
    Shpak M, Kugelman JR, Varela-Ramirez A, Aguilera RJ. The phylogeny and evolution of deoxyribonuclease II: An enzyme essential for lysosomal DNA degradation. Mol Phylogenet Evol. 2008;47:841–54.
    CAS  PubMed  Article  Google Scholar 

    63.
    Gast RJ, McKie-Krisberg ZM, Fay SA, Rose JM, Sanders RW. Antarctic mixotrophic protist abundances by microscopy and molecular methods. FEMS Microbiol Ecol. 2014;89:388–401.
    CAS  PubMed  Article  Google Scholar 

    64.
    Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, et al. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: Incorporation of diverse mixotrophic strategies. Protist. 2016;167:106–20.
    CAS  Article  Google Scholar 

    65.
    Kirkham AR, Lepère C, Jardillier LE, Not F, Bouman H, Mead A, et al. A global perspective on marine photosynthetic picoeukaryote community structure. ISME J. 2013;7:922–36.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Moon-van Der Staay SY, Wachter R De, Vaulot D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature. 2001;409:607–10.
    CAS  PubMed  Article  Google Scholar 

    67.
    Worden A. Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat Micro Ecol. 2006;43:165–75.
    Article  Google Scholar 

    68.
    Van Hannen EJ, Veninga M, Bloem J, Gons HJ, Laanbroek HJ. Genetic changes in the bacterial community structure associated with protistan grazers. Fundam Appl Limnol. 1999;145:25–38.
    Article  Google Scholar 

    69.
    Jürgens K, Güde H. The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser. 1994;112:169–88.
    Article  Google Scholar 

    70.
    Jürgens K, Pernthaler J, Schalla S, Amann R. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol. 1999;65:1241–50.
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Suzuki M. Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat Micro Ecol. 1999;20:261–72.
    Article  Google Scholar 

    72.
    Sherr EB, Sherr BF. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek2. 2002;81:293–308.
    CAS  Article  Google Scholar 

    73.
    González J, Sherr EB, Sherr BF. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol. 1990;56:583–9.
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Sherr BF, Sherr EB, McDaniel J. Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl Environ Microbiol. 1992;58:2381–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    González J, Sherr EB, Sherr BF. Differential feeding by marine flagellates on growing vs starving bacteria, and on motile vs non-motile bacteria. Mar Ecol Prog Ser. 1993;102:257–67.
    Article  Google Scholar 

    76.
    del Giorgio PA, Gasol JM, Vaqué D, Mura P, Agustí S, Duarte CM. Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. Limnol Oceanogr. 1996;41:1169–79.
    Article  Google Scholar 

    77.
    Andersen OK, Goldman JC, Caron DA, Dennett MR. Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. Mar Ecol Prog Ser. 1986;31:47–55.
    CAS  Article  Google Scholar 

    78.
    Fenchel T. Protistan filter feeding. Prog Protistol. 1986;1:65–113.
    Google Scholar 

    79.
    Epstein S, Shiaris M. Size selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colourless flagellates and ciliates. Micro Ecol. 1992;23:211–25.
    CAS  Article  Google Scholar 

    80.
    Montagnes D, Barbosa A, Boenigk J, Davidson K, Jurgens K, Macek M, et al. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Micro Ecol. 2008;53:83–98.
    Article  Google Scholar 

    81.
    Pfister G, Arndt H. Food selectivity and feeding behaviour in omnivorous filter-feeding ciliates: a case study for Stylonychia. Eur J Protistol. 1998;34:446–57.
    Article  Google Scholar 

    82.
    Boenigk J, Arndt H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek. 2002;81:465–80.
    PubMed  Article  Google Scholar 

    83.
    Pickup ZL, Pickup R, Parry JD. Growth of Acanthamoeba castellanii and Hartmannella vermiformis on live, heat-killed and DTAF-stained bacterial prey. FEMS Microbiol Ecol. 2007;61:264–72.
    CAS  PubMed  Article  Google Scholar 

    84.
    Legrand C, Johansson N, Johnsen G, Borsheim K, Graneli E. Phagotrophy and toxicity variation in mixotrophic Prymnesium patelliferum (Haptophyceae). Limnol Oceanogr. 2001;46:1208–14.
    Article  Google Scholar 

    85.
    Caron DA, Sanders RW, Lim EL, Marrasé C, Amaral LA, Whitney S, et al. Light-depend phagotrophy freshwater mixotrophic chrysophyte Dinobryon cylindricum. Micro. Ecol. 1993;25:93–111.
    CAS  Article  Google Scholar 

    86.
    Fenchel T. The microbial loop – 25 years later. J Exp Mar Bio Ecol. 2008;366:99–103.
    Article  Google Scholar 

    87.
    Tittel J, Bissinger V, Zippel B, Gaedke U, Bell E, Lorke A, et al. Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs. Proc Natl Acad Sci. 2003;100:12776–81.
    CAS  PubMed  Article  Google Scholar 

    88.
    Moorthi S, Ptacnik R, Sanders R, Fischer R, Busch M, Hillebrand H. The functional role of planktonic mixotrophs in altering seston stoichiometry. Aquat Micro Ecol. 2017;79:235–45.
    Article  Google Scholar 

    89.
    Katechakis A, Haseneder T, Kling R, Stibor H. Mixotrophic versus photoautotrophic specialist algae as food for zooplankton: The light: nutrient hypothesis might not hold for mixotrophs. Limnol Oceanogr. 2005;50:1290–9.
    CAS  Article  Google Scholar 

    90.
    Weisse T, Anderson R, Arndt H, Calbet A, Hansen PJ, Montagnes D. Functional ecology of aquatic phagotrophic protists – concepts, limitations, and perspectives. Eur J Protistol. 2016;55:50–74.
    PubMed  Article  Google Scholar 

    91.
    Graham LE, Graham JM, Wilcox WL, Cook ME. Algae. 3rd ed. Madison, WI, USA: LJLM Press; 2016.

    92.
    Guillou L, Eikrem W, Chrétiennot-Dinet M-J, Le Gall F, Massana R, Romari K, et al. Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist. 2004;155:193–214.
    CAS  PubMed  Article  Google Scholar 

    93.
    Lemieux C, Otis C, Turmel M. Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genom. 2014;15:857.
    Article  CAS  Google Scholar  More

  • in

    The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons

    1.
    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Siles, J. A., Cajthaml, T., Filipová, A., Minerbi, S. & Margesin, R. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biol. Biochem. 112, 1–13 (2017).
    CAS  Article  Google Scholar 

    3.
    Sedjo, R. A. The carbon cycle and global forest ecosystem. Water Air Soil Pollut. 70, 295–307 (1993).
    ADS  CAS  Article  Google Scholar 

    4.
    Flato, G. & Marotzke, J. Evaluation of climate models. In Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (2013).

    5.
    Zhao, W. et al. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. CATENA 139, 191–198 (2016).
    CAS  Article  Google Scholar 

    6.
    Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2), 1–22 (2004).
    ADS  CAS  Article  Google Scholar 

    7.
    Yang, Y. & Tilman, D. Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res. J. 7(2), 1143–1148 (2020).
    Article  Google Scholar 

    8.
    Rovira, P. & Vallejo, V. R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach. Geoderma 107, 109–141 (2002).
    ADS  CAS  Article  Google Scholar 

    9.
    Zou, X., Ruan, H., Fu, Y., Yang, X. & Sha, L. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure. Soil Biol. Biochem. 37, 1923–1928 (2005).
    CAS  Article  Google Scholar 

    10.
    Liang, B. C. et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biol. Fertil. Soils 26, 88–94 (1997).
    Article  Google Scholar 

    11.
    Xu, G. et al. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil Biol. Biochem. 91, 1–13 (2015).
    CAS  Article  Google Scholar 

    12.
    Wolters, V. Invertebrate control of soil organic matter stability. Biol. Fertil. Soils 31, 1–19 (2000).
    MathSciNet  CAS  Article  Google Scholar 

    13.
    Marschner, P., Kandelerb, E. & Marschnerc, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453–461 (2003).
    CAS  Article  Google Scholar 

    14.
    Xiao, Y., Huang, Z. & Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 82, 381–389 (2015).
    Article  Google Scholar 

    15.
    Burke, D. J., Weintraub, M. N., Hewins, C. R. & Kalisz, S. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol. Biochem. 43, 795–803 (2011).
    CAS  Article  Google Scholar 

    16.
    Ljungdahl, L. G. & Eriksson, K. E. Ecology of microbial cellulose degradation. Adv. Microb. Ecol. 8, 237–299 (1985).
    CAS  Article  Google Scholar 

    17.
    Sinsabaugh, R. L., Hill, B. H. & Follstad-Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 468, 122–122 (2010).
    ADS  CAS  Article  Google Scholar 

    18.
    Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 68, 252–262 (2014).
    CAS  Article  Google Scholar 

    19.
    Chen, X. et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations. Appl. Soil Ecol. 107, 162–169 (2016).
    Article  Google Scholar 

    20.
    Qi, R. et al. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 102, 36–45 (2016).
    Article  Google Scholar 

    21.
    Rasche, F. et al. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5, 389–402 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Piao, H., Hong, Y. & Yuan, Z. Seasonal changes of microbial biomass carbon related to climatic factors in soils from karst areas of southwest China. Biol. Fertil. Soils 30, 294–297 (2000).
    CAS  Article  Google Scholar 

    23.
    Zhou, G., Xu, J. & Jiang, P. Effect of management practices on seasonal dynamics of organic carbon in soils under bamboo plantations. Pedosphere 16, 525–531 (2006).
    CAS  Article  Google Scholar 

    24.
    Thomas, G. W. Soil pH and soil acidity. Soil Sci. Soc. Am. J. 5, 475–490 (1996).
    Google Scholar 

    25.
    Walkley, A. An examination of methods for determining organic carbon and nitrogen in soils (with one text-figure). Indian. J. Agric. Sci. 25, 598–609 (1935).
    CAS  Article  Google Scholar 

    26.
    Jenkinson, D. S. & Powlson, D. S. The effects of biocidal treatments on metabolism in soil: A method for measuring soil biomass. Soil Biol. Biochem. 8, 209–213 (1976).
    CAS  Article  Google Scholar 

    27.
    Blair, G. J., Lefroy, R. & Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46, 393–406 (1995).
    Article  Google Scholar 

    28.
    Mcgill, W. B., Cannon, K. R., Robertson, J. A. & Cook, F. D. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66, 1–19 (1986).
    Article  Google Scholar 

    29.
    Marx, M. C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).
    CAS  Article  Google Scholar 

    30.
    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16s rrna gene sequencing on the illumina miseq platform. Microbiome 2, 1–7 (2014).
    Article  Google Scholar 

    31.
    Mukherjee, P. K. et al. Oral mycobiome analysis of HIV-infected patients: Identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10, e1003996 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Masella, A. P., Bartram, A. K., Truszkowski, J. M. & Brown, D. G. Neufeld JD (2012) PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 13, 31 (2014).
    Article  CAS  Google Scholar 

    33.
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Kemp, P. F. & Aller, J. Y. Bacterial diversity in aquatic and other environments: What 16S rDNA libraries can tell us. FEMS Microbiol. Ecol. 47, 161–177 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Cole, J. R. et al. Ribosomal Database Project, data and tools for high throughput rRNA analysis. Nucleic Acids. Res. 42, 633–642 (2014).
    Article  CAS  Google Scholar 

    36.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. App. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  Article  Google Scholar 

    37.
    Haynes, R. J. Labile organic matter fractions as central components of the quality of agricultural soils: An pverview. Adv. Agron. 85, 221–268 (2005).
    CAS  Article  Google Scholar 

    38.
    Wang, J., Song, C., Wang, X. & Song, Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in northeast china. CATENA 96, 83–89 (2012).
    CAS  Article  Google Scholar 

    39.
    Ma, W., Li, G., Wu, J., Xu, G. & Wu, J. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma 377, 114565 (2020).
    ADS  CAS  Article  Google Scholar 

    40.
    Smolander, A. & Kitunen, V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol. Biochem. 34, 651–660 (2002).
    CAS  Article  Google Scholar 

    41.
    Wang, Q. & Wang, S. Soil organic matter under different forest types in Southern China. Geoderma 142, 349–356 (2007).
    ADS  CAS  Article  Google Scholar 

    42.
    Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B. & Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 165, 277–304 (2000).
    ADS  CAS  Article  Google Scholar 

    43.
    Quideau, S. A. et al. Vegetation control on soil organic matter dynamics. Org. Geochem. 32, 247–252 (2001).
    CAS  Article  Google Scholar 

    44.
    Liu, C. et al. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant Soil 376, 445–459 (2014).
    CAS  Article  Google Scholar 

    45.
    Jiang, P., Xu, Q., Xu, Z. & Cao, Z. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. Forest Ecol. Manag. 236, 30–36 (2006).
    Article  Google Scholar 

    46.
    Hu, Y. et al. Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow. J. Soil Sediment 17, 326–339 (2016).
    Article  CAS  Google Scholar 

    47.
    Liu, G. et al. Seasonal changes in labile organic matter as a function of environmental factors in a relict permafrost region on the Qinghai-Tibetan Plateau. CATENA 180, 194–202 (2019).
    CAS  Article  Google Scholar 

    48.
    Mcdowell, W. H., Currie, W. S., Aber, J. D. & Yano, Y. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollut. 105, 175–182 (1998).
    ADS  CAS  Article  Google Scholar 

    49.
    Kurka, A. M., Starr, M., Heikinheimo, M. & Salkinojasalonen, M. Decomposition of cellulose strips in relation to climate, litterfall nitrogen, phosphorus and C/N ratio in natural boreal forests. Plant Soil 219, 91–101 (2000).
    CAS  Article  Google Scholar 

    50.
    Waldrop, M. P. & Firestone, M. K. Response of microbial community composition and function to soil climate change. Microb. Ecol. 52, 716–724 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Uselman, S. M., Qualls, R. G. & Thomas, R. B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree. Plant Soil 222, 191–202 (2000).
    CAS  Article  Google Scholar 

    52.
    Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J. & Fogel, M. L. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biol. Biochem. 60, 23–32 (2013).
    CAS  Article  Google Scholar 

    53.
    Mondal, I. K. et al. Seasonal variation of soil enzymes in areas of fluoride stress in Birbhum District, West Bengal, India. J. Taibah. Univ. Sci. 9, 133–142 (2015).
    Article  Google Scholar 

    54.
    Wang, C., Lü, Y., Wang, L., Liu, X. & Tian, X. Insights into seasonal variation of litter decomposition and related soil degradative enzyme activities in subtropical forest in China. J. Forest Res. 24, 683–689 (2013).
    CAS  Article  Google Scholar 

    55.
    Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. & Šnajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 46, 177–182 (2010).
    Article  Google Scholar 

    56.
    Song, Y. et al. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in northeast China. Environ. Manag. 50, 418–426 (2012).
    ADS  Article  Google Scholar 

    57.
    Shi, W., Dell, E., Bowman, D. & Iyyemperumal, K. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant Soil 288, 285–296 (2006).
    CAS  Article  Google Scholar 

    58.
    Salazar, S. et al. Correlation among soil enzyme activities under different forest system management practices. Ecol. Eng. 37, 1123–1131 (2011).
    Article  Google Scholar 

    59.
    Waldrop, M. P. & Zak, D. R. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9, 921–933 (2006).
    CAS  Article  Google Scholar 

    60.
    Stursova, M., Zifcakova, L., Leigh, M. B., Burgess, R. & Baldrian, P. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 80, 735–746 (2012).
    CAS  PubMed  Article  Google Scholar 

    61.
    Pankratov, T. A., Ivanova, A. O., Dedysh, S. N. & Liesack, W. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ. Microbiol. 13, 1800–1814 (2011).
    CAS  PubMed  Article  Google Scholar 

    62.
    Eichorst, S. A., Kuske, C. R. & Schmidt, T. M. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl. Environ. Microbiol. 77, 586–596 (2011).
    CAS  PubMed  Article  Google Scholar 

    63.
    Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B. & Coutinho, P. M. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. App. Environ. Microbiol. 75, 2046–2056 (2009).
    CAS  Article  Google Scholar 

    64.
    Bastida, F., Hernández, T., Albaladejo, J. & García, C. Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biol. Biochem. 65, 12–21 (2013).
    CAS  Article  Google Scholar 

    65.
    Hannula, S. E., Boschker, H. T. S., Boer, W. D. & Veen, J. A. V. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline. New Phytol. 194, 784–799 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Edwards, I. P., Zak, D. R., Kellner, H., Eisenlord, S. D. & Pregitzer, K. S. Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PLoS ONE 6, e20421 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: A question of microbial competition?. Soil Biol. Biochem. 35, 837–843 (2003).
    CAS  Article  Google Scholar  More

  • in

    Iron limitation by transferrin promotes simultaneous cheating of pyoverdine and exoprotease in Pseudomonas aeruginosa

    1.
    Smith P, Schuster M. Public goods and cheating in microbes. Curr Biol. 2019;29:R442–7.
    2.
    Harrison F, McNally A, Da Silva AC, Heeb S, Diggle SP. Optimised chronic infection models demonstrate that siderophore ‘cheating’ in Pseudomonas aeruginosa is context specific. ISME J. 2017;11:2492–509.

    3.
    Kümmerli R, Santorelli LA, Granato ET, Dumas Z, Dobay A, Griffin AS, et al. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J Evol Biol. 2015;28:2264–74.

    4.
    Stilwell P, Lowe C, Buckling A. The effect of cheats on siderophore diversity in Pseudomonas aeruginosa. J Evol Biol. 2018;31:1330–9.

    5.
    Butaite E, Baumgartner M, Wyder S, Kümmerli R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun. 2017;8:414.

    6.
    Jin Z, Li J, Ni L, Zhang R, Xia A, Jin F. Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion. Nat Commun. 2018;9:1383.

    7.
    Leinweber A, Fredrik Inglis R, Kümmerli R. Cheating fosters species co-existence in well-mixed bacterial communities. ISME J. 2017;11:1179–88.

    8.
    Özkaya Ö, Balbontín R, Gordo I, Xavier KB. Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa. Curr Biol. 2018;28:2070–80.

    9.
    O’Brien S, Kümmerli R, Paterson S, Winstanley C, Brockhurst MA. Transposable temperate phages promote the evolution of divergent social strategies in Pseudomonas aeruginosa populations. Proc R Soc B Biol Sci. 2019;286:20191794.

    10.
    Wolz C, Hohloch K, Ocaktan A, Poole K, Evans RW, Rochel N, et al. Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa. Infect Immun. 1994;62:4021–7.

    11.
    Kim SJ, Park RY, Kang SM, Choi MH, Kim CM, Shin SH. Pseudomonas aeruginosa alkaline protease can facilitate siderophore-mediated iron-uptake via the proteolytic cleavage of transferrins. Biol Pharm Bull. 2006;29:2295–300.

    12.
    Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci USA. 2007;104:15876–81.
    CAS  Article  Google Scholar 

    13.
    Diggle SP, Griffin AS, Campbell GS, West SA. Cooperation and conflict in quorum-sensing bacterial populations. Nature. 2007;450:411–4.
    CAS  Article  Google Scholar 

    14.
    Dandekar AA, Chugani S, Greenberg EP. Bacterial quorum sensing and metabolic incentives to cooperate. Science. 2012;338:264–6.
    CAS  Article  Google Scholar 

    15.
    Loarca D, Díaz D, Quezada H, Guzmán-Ortiz AL, Rebollar-Ruiz A, Presas AMF, et al. Seeding public goods is essential for maintaining cooperation in Pseudomonas aeruginosa. Front Microbiol. 2019;10:1–8.
    Article  Google Scholar 

    16.
    García-Contreras R, Loarca D, Pérez-González C, Jiménez-Cortés JG, Gonzalez-Valdez A, Soberón-Chávez G. Rhamnolipids stabilize quorum sensing mediated cooperation in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2020;367:1–5.

    17.
    García-Contreras R, Lira-Silva E, Jasso-Chávez R, Hernández-González IL, Maeda T, Hashimoto T, et al. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants. Int J Med Microbiol. 2013;303:574–82.

    18.
    Castañeda-Tamez P, Ramírez-Peris J, Pérez-Velázquez J, Kuttler C, Jalalimanesh A, Saucedo-Mora M, et al. Pyocyanin restricts social cheating in Pseudomonas aeruginosa. Front Microbiol. 2018;9:1–10.
    Article  Google Scholar 

    19.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    20.
    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;00:1–3.

    21.
    Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing — Free bayes — Variant Calling — Longranger. arXiv Prepr arXiv12073907 2012.

    22.
    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012;6:80–92.

    23.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    24.
    Quinlan AR, Hall IM BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    25.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    26.
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28:464–9.

    27.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Current protocols in molecular biology: preface. Curr Protoc Mol Biol. 2010;1:178–89.

    28.
    King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954;44:301–7.

    29.
    López-Jácome LE, Garza-Ramos G, Hernández-Durán M, Franco-Cendejas R, Loarca D, Romero-Martínez D, et al. AiiM lactonase strongly reduces quorum sensing controlled virulence factors in clinical strains of Pseudomonas aeruginosa isolated from burned patients. Front Microbiol. 2019;10:1–11.
    Article  Google Scholar 

    30.
    Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci USA. 2007;104:15876–81.

    31.
    D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol. 2010;17:254–64.

    32.
    Wang Y, Gao L, Rao X, Wang J, Yu H, Jiang J, et al. Characterization of lasR-deficient clinical isolates of Pseudomonas aeruginosa. Sci Rep. 2018;8:13344.

    33.
    Wilder CN, Allada G, Schuster M. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun. 2009;77:5631–9.
    CAS  Article  Google Scholar 

    34.
    Brown SP, West SA, Diggle SP, Griffin AS. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos Trans R Soc B Biol Sci. 2009;364:3157–68.

    35.
    Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA. Quorum sensing and the social evolution of bacterial virulence. Curr Biol. 2009;19:341–5.

    36.
    Bonchi C, Frangipani E, Imperi F, Visca P. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum. Antimicrob Agents Chemother. 2015;59:5641–6.

    37.
    Sathe S, Mathew A, Agnoli K, Eberl L, Kümmerli R. Genetic architecture constrains exploitation of siderophore cooperation in the bacterium Burkholderia cenocepacia. Evol Lett. 2019;3:610–22.

    38.
    Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA. 2006;103:2833–8.

    39.
    Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW, Rasko DA, et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol. 2019;201. More

  • in

    Expansion of the mangrove species Rhizophora mucronata in the Western Indian Ocean launched contrasting genetic patterns

    1.
    Bryan-Brown, D. N., Brown, C. J., Hughes, J. M. & Connolly, R. M. Patterns and trends in marine population connectivity research. Mar. Ecol. Prog. Ser. 585, 243–256 (2017).
    ADS  Article  Google Scholar 
    2.
    Tomlinson, P. B. The Botany of Mangroves (Cambridge University Press, Cambridge, 2016).
    Google Scholar 

    3.
    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669. https://doi.org/10.3390/rs10101669 (2018).
    ADS  Article  Google Scholar 

    4.
    Ward, R. D., Friess, D. A., Day, R. H. & MacKenzie, R. A. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Health Sustain. 2, 01211. https://doi.org/10.1002/ehs2.1211 (2016).
    Article  Google Scholar 

    5.
    Richards, D. R. & Friess, D. A. Rates of drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 113, 344–349 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Hermansen, T. D., Britton, D. R., Ayre, D. J. & Minchonton, T. E. Identifying the real pollinators? Exotic honeybees are the dominant flower visitors and only effective pollinators of Avicennia marina in Australian temperate mangroves. Estuar. Coast. 37, 621–635 (2014).
    Article  Google Scholar 

    7.
    Wee, A. K. S., Low, S. Y. & Webb, E. L. Pollen limitation affects reproductive outcome in the bird-pollinated mangrove Bruguiera gymnorrhiza (Lam.) in a highly urbanized environment. Aquat. Bot. 120, 240–243 (2015).
    Article  Google Scholar 

    8.
    Rabinowitz, D. Dispersal properties of mangrove propagules. Biotropica 10, 47–57 (1978).
    Article  Google Scholar 

    9.
    Drexler, J. Z. Maximum longevities of Rhizophora apiculataand R. mucronatapropagules. Pac. Sci. 55, 17–22 (2001).
    Article  Google Scholar 

    10.
    Nettel, A. & Dodd, R. S. Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 61, 958–971 (2007).
    CAS  PubMed  Article  Google Scholar 

    11.
    Takayama, K., Tamura, M., Tateshi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in red mangroves Rhizophora (Rhizophoraceae), revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).
    CAS  PubMed  Article  Google Scholar 

    12.
    Lo, E. Y., Duke, N. C. & Sun, M. Phylogeographic pattern of Rhizophora(Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol. Biol. 14, 83. https://doi.org/10.1186/1471-2148-14-83 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Van der Stocken, T. et al. A general framework for propagule dispersal in mangroves. Biol. Rev. 94, 1547–1575 (2019).
    PubMed  Article  Google Scholar 

    14.
    Thomas, L. et al. Isolation by resistance across a complex coral reef seascape. Proc. R. Soc. B Biol. Sci. 282, 20151217. https://doi.org/10.1098/rspb.2015.1217 (2015).
    CAS  Article  Google Scholar 

    15.
    Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Contrasting effects of historical sea level rise and contemporary ocean currents on regional gene flow of Rhizophora racemosain eastern Atlantic mangroves. PLoS ONE 11, e0150950. https://doi.org/10.1371/journal.pone.0150950 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Wee, A. K. S. et al. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronataLam. (Rhizophoraceae) in Southeast Asia. J. Biogeogr. 41, 954–964 (2014).
    Article  Google Scholar 

    17.
    Wee, A. K. S. et al. Genetic structures across a biogeographical barrier reflect dispersal potential of four Southeast Asian mangrove plant species. J. Biogeogr. 47, 1258–1271 (2020).
    Article  Google Scholar 

    18.
    Lessios, H. A. & Robertson, D. R. Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc. R. Soc. B: Biol. Sci. 273, 2201–2208 (2006).
    CAS  Article  Google Scholar 

    19.
    Ng, W. L., Chan, H. T. & Szmidt, A. E. Molecular identification of natural mangrove hybrids of Rhizophora in Peninsular Malaysia. Tree Genet. Genomes 9, 1151–1160 (2013).
    Article  Google Scholar 

    20.
    Guo, Z. et al. Genetic discontinuities in a dominant mangrove Rhizophora apiculata (Rhizophoraceae) in the Indo-Malaysian region. J. Biogeogr. 43, 1856–1868 (2016).
    Article  Google Scholar 

    21.
    Yan, Y.-B., Duke, N. & Sun, M. Comparative analysis of the pattern of population genetic diversity in three Indo-West Pacific Rhizophora mangrove species. Front. Plant Sci. 7, 1434. https://doi.org/10.3389/fpls.2016.01434 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Triest, L., Hasan, S., Motro, P. R. & De Ryck, D. J. R. Geographical distance and large rivers shape genetic structure of Avicennia officinalis in the highly dynamic Sundarbans mangrove forest and Ganges Delta region. Estuar. Coast. 41, 908–920 (2018).
    Article  Google Scholar 

    23.
    Do, B. T. N., Koedam, N. & Triest, L. Avicennia marina maintains genetic structure whereas Rhizophora stylosa connects mangroves in a flooded, former inner sea (Vietnam). Estuar. Coast. Shelf Sci. 222, 195–204 (2019).
    ADS  Article  Google Scholar 

    24.
    He, Z. et al. Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. Natl. Sci. Rev. 6, 272–288 (2019).
    Google Scholar 

    25.
    Pil, M. W. et al. Postglacial north-south expansion of populations of Rhizophora mangle (Rhizophoraceae) along the Brazilian coast revealed by microsatellite analysis. Am. J. Bot. 98, 1031–1039 (2011).
    PubMed  Article  Google Scholar 

    26.
    Cerón-Souza, I. et al. Contrasting demographic history and gene flow patterns of two mangrove species on either side of the Central American Isthmus. Ecol. Evol. 5, 3486–3499 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Sandoval-Castro, E. et al. Post-glacial expansion and population genetic divergence of mangrove species Avicennia germinans (L.) Stearn and Rhizophora mangle L. along the Mexican coast. PLoS ONE 9, 93358. https://doi.org/10.1371/journal.pone.0093358 (2014).
    ADS  CAS  Article  Google Scholar 

    28.
    Kennedy, J. P. et al. Contrasting genetic effects of red mangrove (Rhizophora mangleL.) range expansion along West and East Florida. J. Biogeogr. 44, 335–347 (2017).
    Article  Google Scholar 

    29.
    Francisco, P. M., Mori, G. M., Alves, F. A., Tambarussi, E. V. & de Souza, A. P. Population genetic structure, introgression, and hybridization in the genus Rhizophora along the Brazilian coast. Ecol. Evol. 8, 3491–3504. https://doi.org/10.1002/ece3.3900 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia 803, 189–207 (2017).
    Article  Google Scholar 

    31.
    Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108 (2017).
    Article  Google Scholar 

    32.
    De Ryck, D. J. R. et al. Dispersal limitation of the mangrove Avicennia marina at its South African range limit in strong contrast to connectivity in its core East African region. Mar. Ecol. Prog. Ser. 545, 123–134 (2016).
    ADS  Article  CAS  Google Scholar 

    33.
    Duke, N. C., Lo, E. Y. Y. & Sun, M. Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees Struct. Funct. 16, 65–79 (2002).
    Article  Google Scholar 

    34.
    Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves (Earthscan and James & James, 2010).

    35.
    Osland, M. J. et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 87, 341–359 (2017).
    Article  Google Scholar 

    36.
    Duke, N. et al. Rhizophora mucronata. The IUCN Red List of Threatened Species 2010: e.T178825A7618520.https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T178825A7618520.en (2010). Downloaded on 27 January 2020.

    37.
    Schouten, M. W., de Ruijter, W. P. M., van Leeuwen, P. J. & Ridderinkhof, H. Eddies and variability in the Mozambique Channel. Deep-Sea Res. II(50), 1987–2003 (2003).
    ADS  Google Scholar 

    38.
    Ternon, J. F., Roberts, M. J., Morris, T., Hancke, L. & Backeberg, B. In situ measured current structures of the eddy field in the Mozambique Channel. Deep-Sea Res. II 100, 10–26 (2014).
    Article  Google Scholar 

    39.
    Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P. & Fifield, K. L. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Van der Stocken, T., Carroll, D., Menemenlis, D., Simard, M. & Koedam, N. Global-scale dispersal and connectivity in mangroves. Proc. Natl. Acad. Sci. USA 116, 915–922 (2019).
    PubMed  Article  CAS  Google Scholar 

    41.
    Schott, F. A., Shang-Ping, X. & McCreary, J. P. Jr. Indian Ocean circulation and climate variability. Rev. Geophys. 47, RG1002. https://doi.org/10.1029/2007RG000245 (2009).
    ADS  Article  Google Scholar 

    42.
    Hume, J. P., Martill, D. & Hing, R. A. Terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group. Seychelles. PLoS ONE 13, e0192675. https://doi.org/10.1371/journal.pone.0192675 (2018).
    CAS  Article  PubMed  Google Scholar 

    43.
    Braithwaite, C. J. R., Taylor, J. D. & Kennedy, W. J. The evolution of an atoll: the depositional and erosional history of Aldabra. Philos. Trans. R. Soc. Lond. B. 266, 307–340 (1973).
    ADS  Article  Google Scholar 

    44.
    Obura, D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013. https://doi.org/10.1371/journal.pone.0045013 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Urashi, C., Teshima, K. M., Minobe, S., Koizumi, O. & Inomata, N. Inferences of evolutionary history of a widely distributed mangrove species, Bruguiera gymnorrhiza, in the Indo-West Pacific region. Ecol. Evol. 3, 2251–2261 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Tomizawa, Y. et al. Genetic structure and population demographic history of a widespread mangrove plant Xylocarpus granatum J. Koenig across the Indo-West Pacific region. Forests 8, 480 (2017).
    Article  Google Scholar 

    47.
    van der Ven, R. M. et al. Population genetic structure of the stony coral Acropora tenius shows high but variable connectivity in East Africa. J. Biogeogr. 43, 510–519 (2016).
    Article  Google Scholar 

    48.
    Jahnke, M. et al. Population genetic structure and connectivity of the seagrass Thalassia hemprichii in the Western Indian Ocean is influenced by predominant ocean currents. Ecol. Evol. 9, 8953–8964 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Muths, D., Tessier, E. & Bourjea, J. Genetic structure of the reef grouper Epinephelus merra in the West Indian Ocean appears congruent with biogeographic and oceanographic boundaries. Mar. Ecol. 36, 447–461 (2015).
    ADS  Article  Google Scholar 

    50.
    Mori, G. M., Zucchi, M. I. & Souza, A. P. Multiple-geographic-scale genetic structure of two mangrove tree species: the roles of mating system, hybridization, limited dispersal and extrinsic factors. PLoS ONE 10, 0118710. https://doi.org/10.1371/journal.pone.0118710 (2015).
    CAS  Article  Google Scholar 

    51.
    Hancke, L., Roberts, M. J. & Ternon, J. F. Surface drifter trajectories highlight flow pathways in the Mozambique Channel. Deep-Sea Res. II(100), 27–37 (2014).
    Google Scholar 

    52.
    Gamoyo, M., Obura, D. & Reason, C. J. C. Estimating connectivity through larval dispersal in the Western Indian Ocean. J. Geophys. Res. Biogeo. 124, 2446–2459. https://doi.org/10.1029/2019JG005128 (2019).
    Article  Google Scholar 

    53.
    Silva, I., Mesquita, N. & Paula, J. Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura Sesarmidae) along an East African latitudinal gradient. Biol. J. Linn. Soc. 99, 28–46 (2010).
    Article  Google Scholar 

    54.
    Madeira, C., Alves, M. J., Mesquita, N., Silva, I. & Paula, J. Tracing geographical patterns of population differentiation in a widespread mangrove gastropod: genetic and geometric morphometrics surveys along the eastern African coast. Biol. J. Linn. Soc. 107, 647–663 (2012).
    Article  Google Scholar 

    55.
    Fatoyinbo, E. T., Simard, M., Washington-Allen, R. A. & Shugart, H. H. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. J. Geophys. Res. Biogeo. 113, G02S06. https://doi.org/10.1029/2007JG000551 (2008).
    ADS  Article  Google Scholar 

    56.
    Lutjeharms, J. R. E. & Da Silva, A. J. The Delagoa bight eddy. Deep-Sea Res. 35, 619–634 (1988).
    ADS  Article  Google Scholar 

    57.
    Quartly, G. D. & Srokosz, M. A. Eddies in the southern Mozambique Channel. Dee-Sea Res. II: Top. Stud. Oceanogr. 51, 69–83 (2004).
    ADS  CAS  Article  Google Scholar 

    58.
    Paula, J., Dray, T. & Queiroga, H. Interaction of offshore and inshore processes controlling settlement of brachyuran megalopae in Saco mangrove creek, Inhaca Island (South Mozambique). Mar. Ecol. Prog. Ser. 215, 251–260 (2001).
    ADS  Article  Google Scholar 

    59.
    Singh, S. P., Groeneveld, J. C., Hart-Davis, M. G., Backeberg, B. C. & Willows-Munro, S. Seascape genetics of the spiny lobster Panulirus homarus in the Western Indian Ocean: understanding how oceanographic features shape the genetic structure of species with high larval dispersal potential. Ecol. Evol. 8, 12221–12237 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Ngeve, M., Koedam, N. & Triest, L. Runaway fathers? Limited pollen dispersal and mating system in Rhizophora racemosa populations of a disturbed mangrove estuary. Aquat. Bot. 165, 103241. https://doi.org/10.1016/j.aquabot.2020.103241 (2020).
    Article  Google Scholar 

    61.
    Kondo, K., Nakamura, T., Tsuruda, K., Saito, N. & Yaguchi, Y. Pollination in Bruguiera gymnorrhiza and Rhizophora mucronata (Rhizophoraceae) in Ishigaki Island, The Ryukyu Islands, Japan. Biotropica 19, 377–380 (1987).
    Article  Google Scholar 

    62.
    Islam, M. S., Lian, C., Kameyama, N., Wu, B. & Hogetsu, T. Development of microsatellite markers in Rhizophora stylosa using a dual-suppression-polymerase chain reaction technique. Mol. Ecol. Notes 4, 110–112 (2004).
    CAS  Article  Google Scholar 

    63.
    Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv. Genet. 9, 1323–1325 (2008).
    CAS  Article  Google Scholar 

    64.
    Takayama, K. et al. Isolation and characterization of microsatellite loci in a mangrove species, Rhizophora stylosa (Rhizophoraceae). Conserv. Genet. Resour. 1, 175. https://doi.org/10.1007/s12686-009-9042-7 (2009).
    Article  Google Scholar 

    65.
    Shinmura, Y. et al. Isolation and characterization of 14 microsatellite markers for Rhizophora mucronata (Rhizophoraceae) and their potential use in range-wide population studies. Conserv. Genet. Resour. 4, 951–954 (2012).
    Article  Google Scholar 

    66.
    Wee, A. K. S., Takayama, K., Kajita, T. & Webb, E. L. Microsatellite loci for Avicennia alba (Acanthaceae), Sonneratia alba (Lythraceae) and Rhizophora mucronata (Rhizophoraceae). J. Trop. For. Sci. 25, 131–136 (2013).
    Google Scholar 

    67.
    Ribeiro, D. O. et al. Isolation of microsatellite markers for the red mangrove, Rhizophora mangle (Rhizophoraceae). Appl. Plant Sci. 1, 1300003. https://doi.org/10.3732/apps.1300003 (2013).
    Article  Google Scholar 

    68.
    Goudet, J. FSTAT, version 2.9.3, a program to estimate and test gene diversities and fixation indices. (2001).

    69.
    van Oosterhout, C., Hutchison, W. F., Wills, D. P. M. & Shipley, P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    70.
    Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Hered. 100, 106113 (2009).
    Article  CAS  Google Scholar 

    71.
    Campagne, P., Smouse, P. E., Varouchas, G., Silvain, J.-F. & Leru, B. Comparing the van Oosterhout and Chybicki-Burczyk methods of estimating null allele frequencies for inbred populations. Mol. Ecol. Resour. 12, 975–982 (2012).
    CAS  PubMed  Article  Google Scholar 

    72.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Hardy, O. & Vekemans, X. spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).
    Article  CAS  Google Scholar 

    74.
    Loiselle, B., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82, 1420–1425 (1995).
    Article  Google Scholar 

    75.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    76.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    77.
    Earl, D. M. & von Holdt, B. M. Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Article  Google Scholar 

    78.
    Li, Y. L. & Liu, J. X. Structureselector: a web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
    PubMed  Article  Google Scholar 

    79.
    Manni, F., Guerard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum. Biol. 76, 173190 (2004).
    Article  Google Scholar 

    80.
    Beerli, P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22, 341–345 (2006).
    CAS  PubMed  Article  Google Scholar 

    81.
    Beerli, P. & Palczewski, M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185, 313–326 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Cornuet, J. M. et al. DIYABC v2.0: a software to make approximate bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Article  Google Scholar 

    83.
    Lutjeharms, J. R. E., Biastoch, A., Van der Werf, P. M., Ridderinkhof, H. & De Ruijter, W. P. M. On the discontinuous nature of the Mozambique Current. S. Afr. J. Sci. https://doi.org/10.4102/sajs.v108i1/2.428 (2012).
    Article  Google Scholar  More

  • in

    A 3D taphonomic model of long bone modification by lions in medium-sized ungulate carcasses

    Humerus
    Left humeri display a non-stationary (i.e., spatially variable in intensity) distribution of tooth marks, with inhomogeneous intensity and with a clustering trend, especially on the proximal end. Tooth marks cluster on the proximal epiphyses, both on the tubercles as well as the articular surface area and proximal metadiaphyses. They also occur in the vicinity of the deltoid crest. Shafts present more abundant modifications on the caudal and medial sides. The cranial and lateral distal shafts show very few tooth marks in comparison. This distribution shows a connection between tooth mark occurrence and areas of muscle and ligament insertions. Tooth marks were probably created during defleshing and limb detachment from the trunk. They are most abundant on the neck junction between the articular head and the proximal metadiaphysis (Fig. 2).
    Figure 2

    Examples of three-dimensional tooth mark distribution from the lion-consumed carcass sample on each of the four long bones. Distribution of marks is shown on bilateral representation.

    Full size image

    Both, the K function and the pair-correlation function indicate an overall trend of clustering. This is nuanced by the other functions. The near-neighbour G function shows a slight clustering trend in short distances and a general asymptotic trend of dispersal in longer distances. The empty-space F function suggests a trend towards clustering within an overall CSR pattern (Fig. 3).
    Figure 3

    Three-dimensional plot of the distribution of tooth marks on the left humerus. (A) K-function plot. (B) G near-neighbour function plot. (C) F empty space function. (C) Pair-correlation function. The F function suggests a pattern non-differentiable from CSR. The other three functions suggest a mild clustering trend in short distances. Key to (A,B,D) Dotted red line shows the Poisson Complete Spatial Random (CSR) process and the gray band shows its confidence envelope. Black line shows the point process of the target sample (here, tooth marks on humerus). When above the CSR Poisson process, it indicates a clustering trend. When below, it indicates a regular scattering trend. The interpretation is reverse for (C) (F empty space function). Same interpretation applies to equivalent figures in the Supplementary Information.

    Full size image

    Right humeri show a similar tendency of mark clustering around the neck under the articular surface with both tubercles impacted. Marks on the medial shaft are slightly more abundant than on the lateral shaft, while the latter shows higher concentrations around the deltoid crest. Interestingly, marks on the shaft cluster on the proximal and distal portions and the mid-shaft is mostly devoid of marks, regardless of orientation. The cranial side, especially the shaft, is again the least impacted by lions. All the functions show a moderate tendency to clustering; so much so in the K and pair-correlation functions because the latter is a modified version of the former (by using rings within the distance radius). The G function shows a very slight clustering trend in short distances, which in the F function is barely outside the CSR envelope (Fig. S4).
    In sum, the slight clustering trends in both sides indicate a redundant pattern of tooth mark location. This shows that mark distribution in humeri is not random, since it is repeated across all the carcasses studied.
    Femur
    Left femora do not show a more widespread distribution of tooth marks than documented in both humeri. Most tooth marks also occur on the proximal half of the element. Most distal tooth marks appear concentrated on the epiphyses. They occur mostly on the medial condyle (on its medial facet) and on the medial portion of the trochlea. Marks on the proximal end occur on the trochanters and also on the spiral line of the neck. The lateral sides of the shaft are the least modified, followed by the caudal distal shaft. Tooth marks on the caudal shaft occur on both sides of the line aspera. As was the case with the humerus, a large portion of marks appear at or near muscle insertion areas. All the functions show a slight clustering trend in short distances and a CSR pattern in longer distances (Fig S5).
    Right femora appear substantially more toothmarked than the left ones. Again, the proximal and distal ends exhibit the highest amount of marks. Both trochanters and the proximal metadiaphysis contain large numbers of modifications. Marks on the distal epiphysis occur both on the medial facet of the throclea and on both condyles. Marks on the caudal shaft, along the linea aspera, are more abundant than on the cranial shaft. All functions coincide in finding a moderate clustering trend, which indicates that BSM are not following a CSR pattern (Fig. S6).
    As was the case for humeri, the non-random and moderately clustered pattern shows that there are locations, mostly coinciding with tendon and muscle insertions, that are more prone to be impacted by lions during carcass consumption than others.
    Radius-ulna
    Radii from carcasses consumed by lions are generally left unmodified12,26,27. Most of the damage concentrates on the olecranon of the ulna (Fig. S7). Only a few tooth marks have been documented scattered on the proximal metadiaphysis, some under the articular facet of the lateral epiphysis. The rest occur mostly in the form of isolated marks, without any specific preference for clustering or side. The left radius shows this distribution. Marks outside the ulna are very few and occur on the cranial and lateral sides of the proximal metadiaphysis, in proximity to the articular facet. Scattered marks can be observed on the distal end. In contrast with the stylopodials, the left radius-ulna shows more intense clustering of tooth marks, as denoted by the K,G, F and pair-correlation functions (Fig. S4). This may be the effect of the intense damage on the olecranon.
    The right radius appears also very slightly toothmarked, despite the large number of carcasses involved. Most tooth marks concentrate on the ulnar olecranon, with very few scattered along the ulnar shaft and even less so on the radial shaft. The few tooth marks documented on the shaft appear on the uppermost cranial shaft and a couple on the lower caudal shaft. As was the case with the left radius, the second-order functions indicate a clear clustering of tooth marks in slightly longer distances than documented in the stylopods (Fig. S8).
    In sum, marks in radii are few and mostly clustered on the ulna. Those on the radial shaft are scattered but also seem to be in connection with damage on the proximal end imparted during defleshing by lions.
    Tibia
    The left tibia shows a concentration of tooth marks on the proximal end, more specifically, on the epiphysis and, especially, on the crest. Marks on the shaft are not common and they cluster mostly on the lateral and medial sides and on the lateral portion of the caudal side. Marks in the lower half of the shaft are uncommon regardless of orientation (Fig. S9). This element exhibits the lowest frequency of marks of the whole long bone set. The second-order functions indicate a very minor clustering trend in short distances, probably caused by redundancy in damage in the proximal portion of the element, but most of the shaft, where the few scattered marks occur, seems very similar to a Poisson process. This suggests that damage to the tibia (with the exception of the crest and proximal end) is more stochastic than on the other elements.
    Right tibiae are only slightly more toothmarked than the left tibiae. Given its overall greater length than other long bones, its low toothmarking frequencies renders them the least impacted elements in number of tooth marks. Most marks cluster on the proximal end, more specifically, on the tibial crest. The lateral side is more damaged than the other sides. In the whole collection, only one tooth mark was found in the distal half of the shaft (Fig. 2). Again, most of the damage on the caudal side was concentrated on the proximal lateral side, coinciding with the more intensive damage on the lateral portion of the cranial side. The second-order functions suggest also a very minor clustering trend, slightly more marked than on left tibiae, probably because all tooth marks documented concentrate on the proximal half of the element (Fig. S10).
    In sum, tibiae show some of the least intense point processes resulting from toothmarking by lions on long bones. Marks occurring on the shaft are usually isolated and more random than on other elements, where they are more spatially recurrent.
    Bilateral element comparison
    Left and right humeri display a similar pattern in the location of most damage as the three-dimensional coordinates of the PCA show (Fig. 4). This is reinforced by the bivariate wavelet analysis, which shows that both sides of humeri show a strong correlation ( > 0.8) in the location of most tooth marks in specific locations (Fig. 5). Both humeri display high frequencies of tooth marks (remember, the lower the frequency, the higher the scale) and a clear clustering on the proximal epiphysis and proximal metadiaphysis, as well as on the distal shaft. Most of the mid-shaft shows almost no tooth marks and when they do, they occur in very low frequencies. High frequency marks have only been documented on the proximal epiphyseal portion (Fig. 5). The frequency distribution also shows that the medial and caudal sides bear more marks than the lateral and cranial sides. Most cranial marks are concentrated in the articular surface, tubercles and metadiaphyseal portion of the proximal end.
    Figure 4

    Principal component analysis (PCA) of each of the four long bones (humerus, femur, radius-ulna and tibia) according to side (left–right) showing point distribution according to components generated by compressing the three-dimensional coordinates. A 95% confidence ellipse per side shows variation and similarity of toothmark patterns in each of the bones. Percentages shown are for the first and second component respectively.

    Full size image

    Figure 5

    Bivariate wavelet coherence plot showing the correlation of most tooth mark damage on the proximal and distal sections of left and right humeri in low frequencies. Arrows indicate that in these two high-correlation areas, both humeral sides are in phase (i.e., the covary together in the same direction). In the distal area, the right humerus is leading (arrows pointing to the right-down or left-up) and in the proximal area, the left humerus leads (arrows pointing to the right-up or left-down). Binning of histograms is described in Table 3. (A) frequency of marks from distal end (left) to proximal (right) end; (B) frequency of marks from lateral (left) to medial (right), and, (C) frequency of marks on caudal (left) to cranial (right).

    Full size image

    Table 3 Binning of histograms according to bone length.
    Full size table

    Left and right femora also display a similar toothmarking pattern (Fig. 4). Both 95% confidence PCA ellipses overlap in most of their areas. The wavelet coherence analysis shows that both sides display a high correlation ( > 0.8) in toothmarking on proximal and distal ends as well as on the shaft when the frequency of marks is low or moderate. Most marks occur on the proximal portion of the element, with a higher impact on the cranial side and more medial for the left femur and more lateral for the right one (Fig. 6). Femoral mid-shafts, thus, appear more highly toothmarked than humeral shafts. Interestingly, the wavelet analysis also shows that when modifications are abundant, there is correspondence between left and right sides only at the distal end. This seems to respond to bone and muscle insertions and ways in which lions deflesh carcasses at this part of the limb. A moderate correlation ( > 0.6) between both sides of the element can be found at the level of the proximal articular neck (metadiaphysis) and surrounding the trochanter section (see yellow islands at the level of the 20th-23rd bins in Fig. 6).
    Figure 6

    Bivariate wavelet coherence plot showing the correlation of tooth mark damage on the proximal and distal sections of left and right femora in moderate frequencies. Arrows indicate that in these two high-correlation areas, both femoral sides are in phase (i.e., the covary together in the same direction). The right femur is leading (arrows pointing to the right-down or left-up). Binning of histograms is described in Table 3. (A) frequency of marks from distal end (left) to proximal (right) end; (B) frequency of marks from lateral (left) to medial (right), and, (C) frequency of marks on caudal (left) to cranial (right).

    Full size image

    As was the case of the upper limb bones, radii-ulnae also exhibit a localized tooth mark pattern. The 95% confidence PCA ellipses overlap for both sides is more intense even than with the stylopodials. The only points falling outside the confidence ellipse are those that appear in the form of single marks and are caused stochastically. The wavelet coherence analysis indicates a strong pattern between both sides, with marks clustering in the proximal epiphysis and strong correlation in the exhibition of low-impact modifications (i.e., few isolates marks) in most of the shaft (high scale = low frequency). There is a high frequency of modifications on the proximal end (see black line sloping upwards in Fig. 7), which decreases as we go down the shaft. The low frequency is maintained throughout the length of the shaft. Only because a few more marks have been documented on the distal and proximal ends, do we see a lower scale (i.e., higher frequency) at the beginning and end of the plot. The high correlation spread along the element shaft indicates that both the right and left radii-ulnae display virtually the same modification pattern.
    Figure 7

    Bivariate wavelet coherence plot showing the correlation of tooth mark damage on the proximal and distal sections of left and right radius-ulna in moderate to high frequencies. Arrows indicate that in these two high-correlation areas, both femoral sides are in phase (i.e., the covary together in the same direction). The right radius-ulna is leading (arrows pointing to the right-down or left-up). Binning of histograms is described in Table 3. (A) frequency of marks from distal end (left) to proximal (right) end; (B) frequency of marks from lateral (left) to medial (right), and, (C) frequency of marks on caudal(left) to cranial (right).

    Full size image

    Tibiae also show similar tooth-marking patterns when comparing right and left sides of the skeleton. A PCA shows that a 95% confidence ellipse of samples from both sides overlap in most of their areas (Fig. 4). However, it should be remarked that there is more coordinate variation (i.e., variation in distribution) of tooth marks in tibiae compared to the other long bones. The reason may be double. On the one hand, the tibia exhibits the longest length dimensions of the appendicular skeleton. On the other side, the occurrence of tooth marks outside the area surrounding the tibial crest is commonly in the form of isolated marks that are more prone to occur randomly during defleshing because no muscle insertions occur on the cranial aspect of the element. Only in the proximal caudal side are tooth marks more prone to cluster because of the muscle insertions on that side. A wavelet coherence analysis shows that tibiae show a low density of modifications, similar to radii-ulnae but over a more widespread area. This creates a situation of high correlation between the left and right sides in the location of the few scattered marks (Fig. 8). The correlation is also similar in the proximal and distal ends when modifications are more clustered. Overall, the lack of intensive (i.e., abundant clustering) modifications on the shaft, makes both tibial sides to lack a pattern, with the exception of the lateral and caudal proximal shafts. This moderate clustering there creates the small peninsula between bins 5 and 11 of Fig. 8.
    Figure 8

    Bivariate wavelet coherence plot showing the correlation of tooth mark damage on the proximal and distal sections of left and right tibiae in moderate to high frequencies. Notice different location of proximal and distal ends compared to the other elements. Arrows indicate that in these two high-correlation areas, both tibial sides are in phase (i.e., the covary together in the same direction). Binning of histograms is described in Table 3. (A) frequency of marks from distal end (right) to proximal (left) end; (B) frequency of marks from lateral (right) to medial (left), and, (C) frequency of marks on caudal(left) and cranial (right).

    Full size image

    In summary, the humeri, femora and radii-ulnae exhibit strong patterning on how lions modify them after consumption, as reflected in tooth mark distribution on both sides of the same elements. The tibiae display a more variable pattern, which overall is reflected on fewer modifications, especially along the shaft. Given the commonly isolated nature of most marks created along the shaft, these respond more to stochastic processes and reflect higher variability than in the other elements. Exceptions to this observation are found in BSM observed on the tibial crest and proximal caudal-lateral portions of the shaft.
    Multi-element comparison
    The information contained in the three-dimensional coordinates of the toothmark pattern documented on each of the elements, when approached through the holistic consideration of the mean values of their global interrelation (as documented through the second-order functions), provides identity information (i.e., element-specific identification) for each of the bones analyzed. On a different scale, this could be applied to individual assemblages instead of individual elements as done here. In the comparison among the different elements and their sides, the way marks were distributed in each of their respective point processes (considering their intensity and distances per element) contained sufficient information to differentiate four different clusters corresponding to the four different elements (Table 2, Fig. 9). Within each element set, both sides were contained within the same node. This is of utmost interest, because in the variables used for this analysis, it is the patterns and not the raw coordinates of marks on each element that were used. This enabled the relativization of the actual location of marks on the different long bone elements and only the emergent properties of the mark assemblage in each of them (understood as individual point process) was considered. Thus, multi-element comparison was possible and different bones were successfully differentiated (Fig. 9).
    Figure 9

    Hierarchical clustering of the selected variables from the second-order functions, intensity, and nearest-neighbour distance. A phylogenetic dendrogram was used. Four groups were identified (different colors) corresponding to each of the four elements analyzed. Key: lHum (left humerus); rHum (right humerus); lFem (left femur); rFem (right femur); lRad (left radius-ulna); rRad (right radius-ulna); lTib (left tibia); rTib (right tibia).

    Full size image More

  • in

    Evolutionary effects of geographic and climatic isolation between Rhododendron tsusiophyllum populations on the Izu Islands and mainland Honshu of Japan

    Alcala N, Goudet J, Vuilleumier S (2014) On the transition of genetic differentiation from isolation to panmixia: what we can learn from GST and D. Theor Popul Biol 93:75–84
    PubMed  Article  Google Scholar 

    Barton NH (1996) Natural selection and random genetic drift as causes of evolution on islands. Philos Trans R Soc Lond B Biol Sci 351:785–795
    CAS  PubMed  Article  Google Scholar 

    Bellemain E, Ricklefs RE (2008) Are islands the end of the colonization road? Trends Ecol Evol 23:461–468
    PubMed  Article  Google Scholar 

    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodol 57:289–300
    Google Scholar 

    Bolger A, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Bouckaert R (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372–1373
    CAS  PubMed  Article  Google Scholar 

    Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D et al. (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265
    CAS  PubMed  Article  Google Scholar 

    Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol 29:1917–1932
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140
    PubMed  PubMed Central  Article  Google Scholar 

    Chapin III FS, Matson PA, Vitousek PM (2002) Principles of terrestrial ecosystem ecology. Springer, New York
    Google Scholar 

    Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B et al. (2009) The last glacial maximum. Science 325:710–714
    CAS  PubMed  Article  Google Scholar 

    DeChaine EG, Martin AP (2005) Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am J Bot 92:477–486
    CAS  PubMed  Article  Google Scholar 

    Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567
    PubMed  Article  Google Scholar 

    Foote AD, Morin PA (2016) Genome-wide SNP data suggest complex ancestry of sympatric North Pacific killer whale ecotypes. Heredity 117:316–325
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327
    PubMed  Article  Google Scholar 

    Frichot E, François O (2015) LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929
    Article  Google Scholar 

    Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics 196:973–983
    PubMed  PubMed Central  Article  Google Scholar 

    Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Frichot E, Schoville SD, De Villemereuil P, Gaggiotti OE, François O (2015) Detecting adaptive evolution based on association with ecological gradients: orientation matters! Heredity 115:22–28
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Funk WC, Lovich RE, Hohenlohe PA, Hofman CA, Morrison SA, Sillett TS et al. (2016) Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol Ecol 25:2176–2194
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Garot E, Joët T, Combes M, Severac D, Lashermes P (2019) Plant population dynamics on oceanic islands during the Late Quaternary climate changes: genetic evidence from a tree species (Coffea mauritiana) in Reunion Island. N Phytol 224:974–986
    CAS  Article  Google Scholar 

    Gillespie R (2004) Community assembly through adaptive radiation in Hawaiian spiders. Science 303:356–359
    CAS  PubMed  Article  Google Scholar 

    Hamabata T, Kinoshita G, Kurita K, Cao PL, Ito M, Murata J et al. (2019) Endangered island endemic plants have vulnerable genomes. Commun Biol 2:244
    PubMed  PubMed Central  Article  Google Scholar 

    Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638
    CAS  PubMed  Article  Google Scholar 

    Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267
    CAS  PubMed  Article  Google Scholar 

    Izuno A, Kitayama K, Onoda Y, Tsujii Y, Hatakeyama M, Nagano AJ et al. (2017) The population genomic signature of environmental association and gene flow in an ecologically divergent tree species Metrosideros polymorpha (Myrtaceae). Mol Ecol 26:1515–1532
    CAS  PubMed  Article  Google Scholar 

    James JE, Lanfear R, Eyre-Walker A (2016) Molecular evolutionary consequences of island colonization. Genome Biol Evol 8:1876–1888
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Juan C, Emerson BC, Oromı́ P, Hewitt GM (2000) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol Evol 15:104–109
    CAS  PubMed  Article  Google Scholar 

    Kamijo T, Hashiba K (2003) Island ecosystem and vegetation dynamics before and after the 2000-year eruption on Miyake-jima Island, Japan, with implications for conservation of the island’s ecosystem. Glob Environ Res 7:69–78
    Google Scholar 

    Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C et al. (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci USA 106:9322–9327
    CAS  PubMed  Article  Google Scholar 

    Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498
    CAS  Article  Google Scholar 

    Liu X, Fu YX (2015) Exploring population size changes using SNP frequency spectra. Nat Genet 47:555–559
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387
    Article  Google Scholar 

    Maekawa F (1949) Makinoesia and its bearing to Oriental Asiatic flora. J Jpn Bot 24:91–96. in Japanese
    Google Scholar 

    McGlaughlin ME, Wallace LE, Wheeler GL, Bresowar G, Riley L, Britten NR et al. (2014) Do the island biogeography predictions of MacArthur and Wilson hold when examining genetic diversity on the near mainland California Channel Islands? Examples from endemic Acmispon (Fabaceae). Bot J Linn Soc 174:289–304
    Article  Google Scholar 

    Ministry of the Environment of Japan (2019) Threatened wildlife of Japan – red list 2019. http://www.env.go.jp/press/106383.html

    Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Nakamura K, Denda T, Kokubugata G, Suwa R, Yang TYA, Peng C-I et al. (2010) Phylogeography of Ophiorrhiza japonica (Rubiaceae) in continental islands, the Ryukyu Archipelago, Japan. J Biogeogr 37:1907–1918
    Google Scholar 

    Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170
    CAS  PubMed  Article  Google Scholar 

    Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG et al. (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94
    CAS  PubMed  Article  Google Scholar 

    Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I et al. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436
    CAS  Article  Google Scholar 

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    R Development Core Team (2019) R: a language and environment for statistical computing. https://www.R-project.org/

    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370
    PubMed  Article  Google Scholar 

    Stervander M, Illera JC, Kvist L, Barbosa P, Keehnen NP, Pruisscher P et al. (2015) Disentangling the complex evolutionary history of the Western Palearctic blue tits (Cyanistes spp.) – Phylogenomic analyses suggest radiation by multiple colonization events and subsequent isolation. Mol Ecol 24:2477–2494
    CAS  PubMed  Article  Google Scholar 

    Stuessy TF, Takayama K, López-Sepúlveda P, Crawford DJ (2014) Interpretation of patterns of genetic variation in endemic plant species of oceanic islands. Bot J Linn Soc 174:276–288
    PubMed  Article  Google Scholar 

    Sundqvist L, Keenan K, Zackrisson M, Prodöhl P, Kleinhans D (2016) Directional genetic differentiation and relative migration. Ecol Evol 6:3461–3475
    PubMed  PubMed Central  Article  Google Scholar 

    Taira A, Saito S, Aoike K, Morita S, Tokuyama H, Suyehiro K et al. (1998) Nature and growth rate of the northern Izu-Bonin (Ogasawara) arc crust and their implications for continental crust formation. Isl Arc 7:395–407
    CAS  Article  Google Scholar 

    Takahashi H (1971) Fossa Magna element plants. Res Reports Kanagawa Prefect Museum. Nat Hist 2:2–59. in Japanese
    Google Scholar 

    Takahashi H, Katsuyama T (1992) Natural hybrids between Rhododendron tsusiophyllum and R. kaempferi var. macrogemma (Ericaceae). Bull Kanagawa Prefect. Museum 21:59–71. in Japanese
    Google Scholar 

    Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752
    CAS  PubMed  Article  Google Scholar 

    Tanaka N (1999) Plant communities in Mt. Tenjo, Koudzu Island, Tokyo. Actinia 12:147–158. in Japanese
    Google Scholar 

    Vaxevanidou Z, González-Martínez SC, Climent J, Gil L (2006) Tree populations bordering on extinction: a case study in the endemic Canary Island pine. Biol Conserv 129:451–460
    Article  Google Scholar 

    Velo-Antón G, Zamudio K, Cordero-Rivera A (2012) Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108:410–418
    PubMed  Article  Google Scholar 

    Wagner DB, Furnier GR, Saghai-Maroof MA, Williams SM, Dancik BP, Allard RW (1987) Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci USA 84:2097–2100
    CAS  PubMed  Article  Google Scholar 

    Warren BH, Simberloff D, Ricklefs RE, Aguilée R, Condamine FL, Gravel D et al. (2015) Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson. Ecol Lett 18:200–217
    PubMed  Article  Google Scholar 

    Weigelt P, Jetz W, Kreft H (2013) Bioclimatic and physical characterization of the world’s islands. Proc Natl Acad Sci USA 110:15307–15312
    CAS  PubMed  Article  Google Scholar 

    Yamada T, Maki M (2012) Impact of geographical isolation on genetic differentiation in insular and mainland populations of Weigela coraeensis (Caprifoliaceae) on Honshu and the Izu Islands. J Biogeogr 39:901–917
    Article  Google Scholar 

    Yamamoto S, Kikuchi T, Yamagiwa Y, Handa T (2017) Genetic diversity of Lilium auratum var. platyphyllum endemic to the Izu archipelago and its relationship to a nearby population of L. auratum var. auratum by morphological and SSR analysis. Hortic J 86:379–388
    Article  Google Scholar 

    Yoichi W, Minamitani T, Oh S-H, Nagano AJ, Abe H, Yukawa T (2019) New taxa of Rhododendron tschonoskii alliance (Ericaceae) from East Asia. PhytoKeys 134:97–114
    PubMed  PubMed Central  Article  Google Scholar  More