Groundwater extraction reduces tree vitality, growth and xylem hydraulic capacity in Quercus robur during and after drought events
1.
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).
Article Google Scholar
2.
Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).
Article Google Scholar
3.
Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).
ADS Article Google Scholar
4.
Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. PNAS 102, 15144–15148 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar
5.
D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).
ADS Article Google Scholar
6.
Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2019).
PubMed Article PubMed Central Google Scholar
7.
Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
ADS Article Google Scholar
8.
Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
9.
Cunningham, S. C., Thomson, J. R., MacNally, R., Read, J. & Baker, P. J. Groundwater change forecasts widespread forest dieback across an extensive floodplain system. Freshw. Biol. 56, 1494–1508 (2011).
Article Google Scholar
10.
Tockner, K. & Stanford, J. Riverine flood plains: Present state and future trends. Environ. Conserv. 29, 308–330 (2002).
Article Google Scholar
11.
Kløve, B. et al. Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environ. Sci. Policy 14, 782–793 (2011).
Article Google Scholar
12.
Griebler, C. & Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 34, 355–367 (2015).
Article Google Scholar
13.
Griebler, C., Avramov, M. & Hose, G. Groundwater ecosystems and their services: Current status and potential risks. In Atlas of Ecosystem Services (ed. Schröter, M.) 197–203 (Springer, 2019).
Google Scholar
14.
Kløve, B. et al. Groundwater dependent ecosystems part I: Hydroecological status and trends. Environ. Sci. Policy 14, 770–781 (2011).
Article Google Scholar
15.
Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).
ADS Article Google Scholar
16.
Cuthbert, M. O. et al. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Change 9, 137–141 (2019).
ADS Article Google Scholar
17.
Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).
ADS Article Google Scholar
18.
Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).
ADS Article Google Scholar
19.
Earman, S. & Dettinger, M. Potential impacts of climate change on groundwater resources—A global review. J. Water Clim. Change 2, 213–229 (2011).
Article Google Scholar
20.
Skiadaresis, G., Schwarz, J. A. & Bauhus, J. Groundwater extraction in floodplain forests reduces radial growth and increases summer drought sensitivity of pedunculate oak trees (Quercus robur L.). Front. For. Glob. Change 2, 267 (2019).
Article Google Scholar
21.
Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
PubMed Article Google Scholar
22.
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).
CAS PubMed Article Google Scholar
23.
Martínez-Vilalta, J. The rear window: Structural and functional plasticity in tree responses to climate change inferred from growth rings. Tree physiol. 38, 155–158 (2018).
PubMed Article Google Scholar
24.
Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).
Article Google Scholar
25.
McDowell, N. G., Brodribb, T. J. & Nardini, A. Hydraulics in the 21st century. New Phytol. 224, 537–542 (2019).
PubMed Article Google Scholar
26.
Anderegg, W. R. L. & Meinzer, F. C. Wood anatomy and plant hydraulics in a changing climate. In Functional and Ecological Xylem Anatomy (ed. Hacke, U.) 235–253 (Springer, 2015).
Google Scholar
27.
Fonti, P. et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New phytol. 185, 42–53 (2010).
PubMed Article Google Scholar
28.
Tulik, M. The anatomical traits of trunk wood and their relevance to oak (Quercus robur L.) vitality. Eur. J. For. Res. 133, 845–855 (2014).
Article Google Scholar
29.
Fonti, P. & Jansen, S. Xylem plasticity in response to climate. New Phytol. 195, 734–736 (2012).
PubMed Article Google Scholar
30.
Brodribb, T. J. Xylem hydraulic physiology: The functional backbone of terrestrial plant productivity. Plant Sci. 177, 245–251 (2009).
CAS Article Google Scholar
31.
He, P. et al. Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob. Change Biol. 26, 1833–1841 (2019).
ADS Article Google Scholar
32.
Barbaroux, C. & Bréda, N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 22, 1201–1210 (2002).
CAS PubMed Article PubMed Central Google Scholar
33.
Bréda, N. & Granier, A. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann. For. Sci. 53, 521–536 (1996).
Article Google Scholar
34.
Pérez-de-Lis, G., Rozas, V., Vázquez-Ruiz, R. A. & García-González, I. Do ring-porous oaks prioritize earlywood vessel efficiency over safety? Environmental effects on vessel diameter and tyloses formation. Agric. For. Meteorol. 248, 205–214 (2018).
ADS Article Google Scholar
35.
Tumajer, J. & Treml, V. Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. For. Ecol. Manag. 379, 185–194 (2016).
Article Google Scholar
36.
Kniesel, B. M., Günther, B., Roloff, A. & von Arx, G. Defining ecologically relevant vessel parameters in Quercus robur L. for use in dendroecology: A pointer year and recovery time case study in Central Germany. Trees 29, 1041–1051 (2015).
Article Google Scholar
37.
Gričar, J., de Luis, M., Hafner, P. & Levanič, T. Anatomical characteristics and hydrologic signals in tree-rings of oaks (Quercus robur L.). Trees 27, 1669–1680 (2013).
Article Google Scholar
38.
Castagneri, D., Regev, L., Boaretto, E. & Carrer, M. Xylem anatomical traits reveal different strategies of two Mediterranean oaks to cope with drought and warming. Environ. Exp. Bot. 133, 128–138 (2017).
Article Google Scholar
39.
Fonti, P. & García-González, I. Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. J. Biogeogr. 35, 2249–2257 (2008).
Article Google Scholar
40.
González, I. G. & Eckstein, D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol. 23, 497–504 (2003).
PubMed Article PubMed Central Google Scholar
41.
Pérez-de-Lis, G., Rossi, S., Vázquez-Ruiz, R. A., Rozas, V. & García-González, I. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytol. 209, 521–530 (2016).
PubMed Article PubMed Central Google Scholar
42.
García-González, I., Souto-Herrero, M. & Campelo, F. Ring-porosity and earlywood vessels: A review on extracting environmental information through time. IAWA J. 37, 295–314 (2016).
Article Google Scholar
43.
Friedrichs, D. A. et al. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23, 729–739 (2009).
Article Google Scholar
44.
Büntgen, U. et al. Tree-ring indicators of German summer drought over the last millennium. Quat. Sci. Rev. 29, 1005–1016 (2010).
ADS Article Google Scholar
45.
Bhuyan, U., Zang, C. & Menzel, A. Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia 44, 1–8 (2017).
Article Google Scholar
46.
Árvai, M., Morgós, A. & Kern, Z. Growth-climate relations and the enhancement of drought signals in pedunculate oak (Quercus robur L.) tree-ring chronology in Eastern Hungary. iForest 11, 267–274 (2018).
Article Google Scholar
47.
Bramer, I. et al. Advances in monitoring and modelling climate at ecologically relevant scales. Adv. Ecol. Res. 58, 101–161 (2018).
Article Google Scholar
48.
Sass-Klaassen, U., Sabajo, C. R. & den Ouden, J. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29, 171–175 (2011).
Article Google Scholar
49.
Souto-Herrero, M., Rozas, V. & García-González, I. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manage. 425, 126–137 (2018).
Article Google Scholar
50.
Fonti, P. & García-González, I. Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol. 163, 77–86 (2004).
Article Google Scholar
51.
Jacobsen, A. L., Valdovinos-Ayala, J. & Pratt, R. B. Functional lifespans of xylem vessels: Development, hydraulic function, and post-function of vessels in several species of woody plants. Am. J. Bot. 105, 142–150 (2018).
PubMed Article Google Scholar
52.
Jia, X. et al. Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agric. For. Meteorol. 228, 120–129 (2016).
ADS Article Google Scholar
53.
Carter, J. L. & White, D. A. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiol. 29, 1407–1418 (2009).
PubMed Article Google Scholar
54.
Zolfaghar, S., Villalobos-Vega, R., Zeppel, M. & Eamus, D. The hydraulic architecture of Eucalyptus trees growing across a gradient of depth-to-groundwater. Funct. Plant Biol. 42, 888–898 (2015).
PubMed Article Google Scholar
55.
Horton, J. L., Kolb, T. E. & Hart, S. C. Responses of riparian trees to interannual variation in ground water depth in a semi-arid river basin. Plant Cell Environ. 24, 293–304 (2001).
Article Google Scholar
56.
Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).
Article Google Scholar
57.
Garzón, M. B., Alía, R., Robson, T. M. & Zavala, M. A. Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr. 20, 766–778 (2011).
Article Google Scholar
58.
Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
59.
Sperry, J. S., Meinzer, F. C. & McCulloh, K. A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 31, 632–645 (2008).
PubMed Article PubMed Central Google Scholar
60.
Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. New Phytol. 119, 345–360 (1991).
Article Google Scholar
61.
Oosterbaan, A. & Nabuurs, G. J. Relationships between oak decline and groundwater class in The Netherlands. Plant Soil 136, 87–93 (1991).
Article Google Scholar
62.
Leuschner, C. & Ellenberg, H. Ecology of Central European Forests (Springer, 2017).
Google Scholar
63.
McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).
PubMed Article Google Scholar
64.
McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).
PubMed Article Google Scholar
65.
Pellizzari, E., Camarero, J. J., Gazol, A., Sangüesa-Barreda, G. & Carrer, M. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. Glob. Change Biol. 22, 2125–2137 (2016).
ADS Article Google Scholar
66.
McCarroll, D., Whitney, M., Young, G. H. F., Loader, N. J. & Gagen, M. H. A simple stable carbon isotope method for investigating changes in the use of recent versus old carbon in oak. Tree Physiol. 37, 1021–1027 (2017).
CAS PubMed Article Google Scholar
67.
Hacke, U. G. Variable plant hydraulic conductance. Tree Physiol. 34, 105–108 (2014).
PubMed Article Google Scholar
68.
Hacke, U. G., Sperry, J. S., Wheeler, J. K. & Castro, L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26, 689–701 (2006).
PubMed Article Google Scholar
69.
Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).
ADS CAS PubMed Article Google Scholar
70.
Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
ADS Article Google Scholar
71.
Ehleringer, J. R. & Dawson, T. E. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ. 15, 1073–1082 (1992).
CAS Article Google Scholar
72.
Roloff, A. Baumkronen: Verständnis und praktische Bedeutung eines komplexen Naturphänomens [Tree crowns: comprehension and practical meaning of a complex phenomenon]. Ulmer, Stuttgart [original in German] (2001).
73.
Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).
Article Google Scholar
74.
Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258 (2010).
Article Google Scholar
75.
R Core Team. R: A language and environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
76.
García-González, I. & Fonti, P. Ensuring a representative sample of earlywood vessels for dendroecological studies: An example from two ring-porous species. Trees 22, 237–244 (2008).
Article Google Scholar
77.
Kolb, K. J. & Sperry, J. S. Transport constraints on water use by the Great Basin shrub, Artemisia tridentata. Plant Cell Environ. 22, 925–936 (1999).
Article Google Scholar
78.
Sterck, F. J., Zweifel, R., Sass-Klaassen, U. & Chowdhury, Q. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol. 28, 529–536 (2008).
PubMed Article PubMed Central Google Scholar
79.
von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K. & Carrer, M. Quantitative wood anatomy-practical guidelines. Front. Plant Sci. 7, 781 (2016).
Google Scholar
80.
Speer, J. H. Fundamentals of tree-ring research (University of Arizona Press, 2010).
81.
Cook, E. R. & Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. (1981).
82.
Carrer, M., von Arx, G., Castagneri, D. & Petit, G. Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiol. 35, 27–33 (2015).
CAS PubMed Article PubMed Central Google Scholar
83.
Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).
ADS Article Google Scholar
84.
Zink, M. et al. The German drought monitor. Environ. Res. Lett. 11, 74002 (2016).
Article Google Scholar
85.
Samaniego, L., Kumar, R. & Zink, M. Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeor. 14, 47–68 (2013).
ADS Article Google Scholar
86.
Samaniego, L., Kumar, R. & Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 46, 1–25 (2010).
Google Scholar
87.
Zang, C. & Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 38, 431–436 (2015).
Article Google Scholar
88.
Schwarz, J. et al. Quantifying growth responses of trees to drought—A critique of commonly used resilience indices and recommendations for future studies. Curr. For. Rep. 6, 185–200 (2020).
Google Scholar
89.
Jacobsen, A. L., Pratt, R. B., Venturas, M. D., & Hacke, U. G. Large volume vessels are vulnerable to water-stress-induced embolism in stems of poplar. IAWA J. 40(1), 4–S4 (2019).
90.
Cai, J., & Tyree, M. T. (2010). The impact of vessel size on vulnerability curves: data and models for within‐species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ. 33(7), 1059–1069. More