1.
de Lattin, G. Grundriss der Zoogeographie (Gustav Fischer Verlag, 1976).
2.
Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. Lond. 68, 87–112. https://doi.org/10.1006/bijl.1999.0332 (1999).
Article Google Scholar
3.
Wallace, A. R. The geographical distribution of animals; with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth’s surface (Harper & Brothers, 1876).
4.
Mittermeier, R. A., Myers, N., Mittermeier, C. G. & Robles Gil, P. Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions (CEMEX, 1999).
Google Scholar
5.
Médail, F. & Quézel, P. Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv. Biol. 13(6), 1510–1513 (1999).
Article Google Scholar
6.
Temple, H. J. & Cuttelod, A. (Compilers). The Status and Distribution of Mediterranean Mammals. Gland, Switzerland and Cambridge (UK: IUCN, vii+32pp, 2009).
7.
Blondel, J. The nature and origin of the vertebrate fauna. pp. 139–163 In: Woodward, C. J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).
8.
Aulagnier, S., Hafner, P., Mitchell-Jones, A. J., Moutou, F. & Zima, J. Mammals of Europe, North Africa and the Middle East (A&C Black Publishers, 2009).
Google Scholar
9.
Horáček, I., Hanák, V. & Gaisler, J. Bats of the Palearctic region: a taxonomic and biogeographic review. In Proceedings of the VIIIth European bat research symposium (Vol. 1, pp. 11–157) (Kraków, CIC ISEZ PAN, 2000).
10.
Smith, C. H. A system of world mammal faunal regions. I. Logical and statistical derivation of the regions. J. Biogeogr. 10, 455–466. https://doi.org/10.2307/2844752 (1983).
11.
Dobson, M. Mammal distributions in the western Mediterranean: the role of human intervention. Mammal Rev. 28(2), 77–88 (1998).
Article Google Scholar
12.
Sans-Fuentes, M. A. & Ventura, J. Distribution patterns of the small mammals (Insectivora and Rodentia) in a transitional zone between the Eurosiberian and the Mediterranean regions. J. Biogeogr. 27(3), 755–764 (2000).
Article Google Scholar
13.
Kryštufek, B. & Vohralík, V. Mammals of Turkey and Cyprus: introduction, checklist, Insectivora (Zgodovinsko društvo za južno Primorsko, 2001).
14.
Kryštufek, B. A quantitative assessment of Balkan mammal diversity. In Balkan Biodiversity (pp. 79–108) (Springer, Dordrecht, 2004).
15.
Kryštufek, B., Vohralík, V. & Janžekovič, F. Mammals of Turkey and Cyprus: Rodentia I: Sciuridae, Dipodidae, Gliridae (Arvicolinae, 2005).
Google Scholar
16.
Kryštufek, B. & Vohralík, V. Mammals of Turkey and Cyprus, Rodentia II: Cricetinae, Murridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae Castoridae. J. Mammal. 96, 1–373 (2010).
Google Scholar
17.
Kryštufek, B., Donev, N. R. & Skok, J. Species richness and distribution of non-volant small mammals along an elevational gradient on a Mediterranean mountain. Mammalia 75(1), 3–11 (2011).
Article Google Scholar
18.
Svenning, J. C., Fløjgaard, C. & Baselga, A. Climate, history and neutrality as drivers of mammal beta diversity in Europe: Insights from multiscale deconstruction. J. Anim. Ecol. 80(2), 393–402 (2011).
Article Google Scholar
19.
Gaston, K., & Blackburn, T. Pattern and process in macroecology (John Wiley & Sons, 2008).
20.
Darwin, C. On the Origin of Species by Means of Natural Selection (J. Murray, 1859).
21.
Wallace, A. R. Tropical Nature and Other Essays (Macmillan, 1878).
22.
Hawkins, B. A. et al. Energy, water and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117. https://doi.org/10.1890/03-8006 (2002).
Article Google Scholar
23.
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163(2), 192–211 (2004).
Article Google Scholar
24.
Kindlmann P, Schödelbauerová I, Dixon AF.G. Inverse latitudinal gradients in species diversity. pp. 246–257 in Storch D. et al. (eds.) Scaling Biodiversity (Cambridge University Press, 2007).
25.
Boone, R. B. & Krohn, W. B. Relationship between avian range limits and plant transition zones in Maine. J. Biogeogr. 27, 471–482 (2000).
Article Google Scholar
26.
Storch, D., Evans, K. L. & Gaston, K. J. The species-area-energy relationship in orchids. Ecol. Lett. 8, 487–492. https://doi.org/10.15517/lank.v7i1-2.19504 (2005).
Article PubMed Google Scholar
27.
Valladares, F. et al. Global change and Mediterranean forests: current impacts and potential responses in Forests and Global Change (eds. Burslem, D. F. R. & Simonson, W. D.), 47–75 (Cambridge University Press, 2014).
28.
MacArthur, R. H. Patterns of Species Diversity. Geographical Ecology: Patterns in the Distributions of Species (Harper & Row, 1972).
29.
Whittaker, R. J. & Fernández-Palacios, J. M. Island biogeography: ecology, evolution, and conservation. Oxford University Press (2007).
30.
Sólymos, P. & Lele, S. R. Global pattern and local variation in species-area relationships. Glob. Ecol. Biogeogr. 21, 109–120. https://doi.org/10.1111/j.1466-8238.2011.00655.x (2012).
Article Google Scholar
31.
Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: patterns, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309. https://doi.org/10.1146/annurev.ecolsys.34.012103.144032 (2003).
Article Google Scholar
32.
Prevedello, J., Gotelli, N. J. & Metzger, J. A stochastic model for landscape patterns of biodiversity. Ecol. Monogr. 86, 462–479. https://doi.org/10.1002/ecm.1223 (2016).
Article Google Scholar
33.
Blondel, J., Aronson, J., Bodiou, J. Y. & Boeuf, G. The Mediteranean region. Biological diversity in space and time (Oxford University Press, 2010).
34.
Vigne, J. D. The large “true” Mediterranean islands as a model for the Holocene human impact on the European vertebrate fauna? Recent data and new reflections. The Holocene history of the European vertebrate fauna. Modern aspects of research, 295–322 (1999).
35.
Harding, A.F., Palutikof, J. & Holt, T. The climate system. pp. 69–88 In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).
36.
Zdruli, P. Desertification in the Mediterranean Region. Mediterranean year book 2011 (European Institute of the Mediterranean, 2012).
37.
Bilton, D. T. et al. Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc. Royal Soc. B 265(1402), 1219–1226 (1998).
CAS Article Google Scholar
38.
Hewitt, G. M. Mediterranean peninsulas: The evolution of hotspots. In Biodiversity hotspots (pp. 123–147) (Springer, Berlin, Heidelberg, 2011).
39.
Bilgin, R. Back to the suture: the distribution of intraspecific genetic diversity in and around Anatolia. Int. J. Mol. Sci. 12, 4080–4103. https://doi.org/10.3390/ijms12064080 (2011).
Article PubMed PubMed Central Google Scholar
40.
Vigne, J. D. The origins of mammals on the Mediterranean islands as an indicator of early voyaging. Euras. Prehistory 10(1–2), 45–56 (2014).
Google Scholar
41.
Masseti, M. Mammals of the Mediterranean islands: Homogenisation and the loss of biodiversity. Mammalia 73, 169–202. https://doi.org/10.1515/MAMM.2009.029 (2009).
Article Google Scholar
42.
Angelici, F. M., Laurenti, A. & Nappi, A. A. checklist of the mammals of small Italian islands. Hystrix 20, 3–27. https://doi.org/10.4404/hystrix-20.1-4429 (2009).
Article Google Scholar
43.
Cunningham, P. L. & Aspinall, S. The diet of Little Owl Athene noctua in the UAE, with notes on Barn Owl Tyto alba and Desert Eagle Owl Bubo (b.) ascalaphus. Tribulus 11, 13–15 (2001).
44.
Taylor, I. R. How owls select their prey: A study of Barn owls Tyto alba and their small mammal prey. Ardea 97, 635–644. https://doi.org/10.5253/078.097.0433 (2009).
Article Google Scholar
45.
Yom-Tov, Y. & Wool, D. Do the contents of barn owl pellets accurately represent the proportion of prey species in the field?. Condor 99, 972–976. https://doi.org/10.2307/1370149 (1997).
Article Google Scholar
46.
Dodson, P. & Wexlar, D. Taphonomic investigations of owl pellets. Paleobiology 5, 275–284 (1979).
Article Google Scholar
47.
Heisler, L., Somers, C. & Poulin, R. Owl pellets: A more effective alternative to conventional trapping for broad-scale studies of small mammal communities. Methods Ecol. Evol. 7, 96–103. https://doi.org/10.1111/2041-210X.12454 (2015).
Article Google Scholar
48.
Torre, I., Arrizabalaga, A. & Flaquer, C. Three methods for assessing richness and composition of small mammal communities. J. Mammal. 85, 524–530. https://doi.org/10.1644/BJK-112 (2004).
Article Google Scholar
49.
Yalden, D. W. & Morris, P. A. The analysis of owl pellet (Occasional publications)(The Mammal Society, 1990).
50.
Williams, D. F. & Braun, S. E. Comparison of pitfall and conventional traps for sampling small mammal populations. J. Wildl. Manage. 47, 841–845 (1983).
Article Google Scholar
51.
Glennon, M. J., Porter, W. F. & Demers, C. L. An alternative field technique for estimating diversity of small-mammal populations. J. Mammal. 83, 734–742. https://doi.org/10.1644/1545-1542 (2002).
Article Google Scholar
52.
Morris, P. A., Burgis, M. J., Morris, P. A. & Holloway, R. A method for estimating total body weight of avian prey items in the diet of owls. J. Zool. 210, 642–644 (1986).
Article Google Scholar
53.
Vukićević Radić, O., Jovanović, T. B., Matić, R. & Katarinovski, D. Age structure of yellow-necked mouse (Apodemus flavicollis Melchior 1834) in two samples obtained from live traps and owl pellets. Arch. Biol. Sci. 57, 53–56 (2005).
54.
Coda, J., Gomez, D., Steinmann, A. R. & Priotto, J. Small mammals in farmlands of Argentina: Responses to organic and conventional farming. Agric. Ecosyst. Environ. 211, 17–23 (2015).
Article Google Scholar
55.
Andrade, A., de Menezes, J. F. S. & Monjeau, A. Are owl pellets good estimators of prey abundance?. J. King Saud Univ. Sci. 28, 239–244. https://doi.org/10.1016/j.jksus.2015.10.007 (2016).
Article Google Scholar
56.
Moysi, M., Christou, M., Goutner, V., Kassinis, N. & Iezekiel, S. Spatial and temporal patterns in the diet of barn owl (Tyto alba) in Cyprus. J. Biol. Res-Thessalon. 25(1), 9 (2018).
Article Google Scholar
57.
Romano, A., Séchaud, R. & Roulin, A. Global biogeographical patterns in the diet of a cosmopolitan predator. J. Biogeogr. 47, 1467–1481. https://doi.org/10.1111/jbi.13829 (2020).
Article Google Scholar
58.
Baquero, R. A. & Tellería, J. L. Species richness, rarity and endemicity of European mammals: A biogeographical approach. Biodivers. Conserv. 10(1), 29–44 (2001).
Article Google Scholar
59.
Mitchell-Jones, A. J. et al. The Atlas of European Mammals (T & AD Poyser, 1999).
60.
Kross, S. M., Bourbour, R. P. & Martinico, B. L. Agricultural land use, arn owl diet, and vertebrate pest control implications. Agric. Ecosyst. Environ. 223, 167–174. https://doi.org/10.1016/j.agee.2016.03.002 (2016).
Article Google Scholar
61.
Krishnapriya, T. & Ramakrishnan, U. Higher speciation and lower extinction rates influence mammal diversity gradients in Asia. BMC Evol. Biol. 15, 11. https://doi.org/10.1186/s12862-015-0289-1 (2015).
Article Google Scholar
62.
Kouki, J., Niemela, P. & Viitasaari, M. Reversed latitudinal gradient in species richness of sawflies (Hymenoptera, Symphyta). Ann. Zool. Fenn. 31, 83–88 (1994).
Google Scholar
63.
Rabenold, K. N. A reversed latitudinal diversity gradient in avian communities of eastern deciduous forests. Am. Nat. 114, 275–286. https://doi.org/10.1086/283474 (1979).
Article Google Scholar
64.
Ruffino, L. & Vidal, E. Early colonization of Mediterranean islands by Rattus rattus: A review of zooarcheological data. Biol. Invasions 12(8), 2389–2394 (2010).
Article Google Scholar
65.
Thomes, J. B. Land degradation. pp. 563–581. In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).
66.
Allen, H. D. Vegetation and ecosystem dynamics. pp. 203–227. In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).
67.
Dov Por, F. & Dimentman, C. Mare Nostrum. Neogene and anthropic natural history of the Mediterranean basin, with emphasis on the Levant (Pensoft, Sofia-Moscow, 2006).
68.
Zohary, D., Hopi, M. & Weiss, E. Domestication of Plants in the Old World 4th edn. (Oxford University Press, 2012).
Google Scholar
69.
Roulin, A. Spatial variation in the decline of European birds as shown by the Barn Owl Tyto alba diet. Bird Study 62, 271–275. https://doi.org/10.1080/00063657.2015.1012043 (2015).
Article Google Scholar
70.
Pezzo, F. & Morimando, F. Food habits of the barn owl, Tyto alba, in a mediterranean rural area: Comparison with the diet of two sympatric carnivores. Boll. Zool. 62, 369–373. https://doi.org/10.1080/11250009509356091 (1995).
Article Google Scholar
71.
Soranzo, N., Alia, R., Provan, J. & Powell, W. Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol. Ecol. 9, 1205–1211. https://doi.org/10.1046/j.1365-294x.2000.00994.x (2000).
CAS Article PubMed Google Scholar
72.
van Andel, T. H. The climate and landscape of the middle part of the Weichselian Glaciation in Europe: The stage 3 project. Q. Res. 57, 2–8. https://doi.org/10.1006/qres.2001.2294 (2002).
ADS Article Google Scholar
73.
Johnston, D. W. & Hill, J. M. Prey selection of Common Barn-owls on islands and mainland sites. J. Raptor. Res. 21(1), 3–7 (1987).
Google Scholar
74.
Sommer, R., Zoller, H., Kock, D., Böhme, W. & Griesau, A. Feeding of the barn owl, Tyto alba with first record of the European free-tailed bat, Tadarida teniotis on the island of Ibiza (Spain, Balearics). Fol. Zool. 54, 364–370 (2005).
Google Scholar
75.
Kryštufek, B., Reed, J. Pattern and process in Balkan biodiversity – an overview in A quantitative assesment of Balkan mammal diversity (eds. Griffiths, H. I., Kryštufek, B. & Reed, J. M.) 79–108 (Kluwer Academic, 2004).
76.
Ricklefs, R. E. & Lovette, I. J. The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. J. Anim. Ecol. 68, 1142–1160 (1999).
Article Google Scholar
77.
Heaney, L. R. Mammalian species richness on islands on the Sunda Shelf Southeast Asia. Oecologia 61, 11–17 (1984).
ADS Article Google Scholar
78.
Carvajal, A. & Adler, G. H. Biogeography of mammals on tropical Pacific islands. J. Biogeogr. 32, 1561–1569. https://doi.org/10.1111/j.1365-2699.2005.01302.x (2005).
Article Google Scholar
79.
Millien-Parra, V. & Jaeger, J. J. Island biogeography of the Japanese terrestrial mammal assemblages: An example of a relict fauna. J. Biogeogr. 26, 959–972. https://doi.org/10.1046/j.1365-2699.1999.00346.x (1999).
Article Google Scholar
80.
Amori, G., Rizzo Pinna, V., Sammuri, G. & Luiselli, L. Diversity of small mammal communities of the tuscan archipelago: Testing the effects of island size, distance from mainland and human density. Fol. Zool. 64, 161–166. https://doi.org/10.25225/fozo.v64.i2.a9.2015 (2015).
81.
Audoin-Rouzeau, F. & La Vigne, J. D. colonisation de l’Europe par le rat noir (Rattus rattus). Rev. de Paléobiologie 13, 125–145. https://doi.org/10.1134/S1062359011020130 (1994).
Article Google Scholar
82.
Towns, D. R., Atkinson, I. A. E. & Daugherty, Ch. H. Have the harmful effects of introduced rats on islands been exaggerated?. Biol. Invasions 8, 863–891. https://doi.org/10.1007/s10530-005-0421-z (2006).
Article Google Scholar
83.
Martin, J. L., Thibault, J. C. & Bretagnolle, V. Black rats, island characteristics, and colonial nesting birds in the Mediterranean: Consequences of an ancient introduction. Conserv. Biol. 14, 1452–1466. https://doi.org/10.1046/j.1523-1739.2000.99190.x (2000).
Article Google Scholar
84.
Landová, E., Horáček, I. & Frynta, D. Have black rats evolved a culturally-transmitted technique of pinecone opening independently in Cyprus and Israel?. Isr. J. Ecol. Evol. 52(2), 151–158 (2006).
Article Google Scholar
85.
Sarà, M. & Morand, S. Island incidence and mainland population density: Mammals from Mediterranean islands. Divers. Distrib. 8, 1–9 (2002).
Article Google Scholar
86.
Libois, M. R., Fons, R., Saint Girons, M. C. Le régime alimentaire de la chouette effraie Tyto alba, dans les Pyrénées-orientales. Etude des variations ecogéographiques. Rev. Ecol.-Terre Vie 37, 187–217 (1983).
87.
Di Russo, C. Dati sui micromammiferi da borre di barbacianni, Tyto alba, di un Sito della Sardegna Centro-orientale. Hystrix 2, 57–62. https://doi.org/10.4404/hystrix-2.1-3885 (1987).
Article Google Scholar
88.
Guerra, C., García, D. & Alcover, J. A. Unusual foraging patterns of the barn owl, Tyto alba (Strigiformes: Tytonidae), on small islets from the Pityusic archipelago (Western Mediterranean Sea). Fol. Zool. 63, 180–187. https://doi.org/10.25225/fozo.v63.i3.a5.2014 (2014).
89.
Patterson, B. D. & Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. Lond. 28, 65–82. https://doi.org/10.1111/j.1095-8312.1986.tb01749.x (1986).
Article Google Scholar
90.
Kutiel, P., Peled, Y. & Geffen, E. The effect of removing shrub cover on annual plants and small mammals in a coastal sand dune ecosystem. Biol. Conserv. 94, 235–242. https://doi.org/10.1016/S0006-3207(99)00172-X (2000).
Article Google Scholar
91.
Tores, M., Motro, Y., Motro, U. & Yom-Tov, Y. The barn owl-a selective opportunist predator. Israel J. Zool. 51, 349–360. https://doi.org/10.1560/7862-9E5G-RQJJ-15BE (2005).
Article Google Scholar
92.
Obuch, J. & Benda, P. Food of the Barn Owl (Tyto alba) in the Eastern Mediterranean. Slovak Raptor J. 3, 41–50. https://doi.org/10.2478/v10262-012-0032-4 (2009).
Article Google Scholar
93.
Anděra, M. & Horáček, I. Determining our mammals (Sobotáles, 2005).
94.
Dor, M. Observations sur les Micromammiferes trouves dans les Pelotes de la Chouette effraye (Tyto alba) en Palestine. Mammalia 11, 50–54 (1947).
Article Google Scholar
95.
De Pablo, F. Alimentación de la Lechuza Común (Tyto alba) en Menorca. Bolleti Soc. Hist. Nat. Balear. 43, 15–26 (2000).
Google Scholar
96.
Rihane, A. Contribution to the study of the diet of Barn Owl Tyto alba in the semi-arid plains of Atlantic Morocco. Alauda 71, 363–369 (2003).
Google Scholar
97.
Kennedy, C. M., J. R. Oakleaf, D. M. Theobald, Baruch-Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biol. 25(3), 811–826. https://doi.org/10.1111/gcb.14549 (2019).
98.
Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Global Human Modification of Terrestrial Systems. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/edbc-3z60. Accessed DAY MONTH YEAR (2020).
99.
Shannon, C. & Weaver, W. The Mathematical Theory of Communication (The University of Illinois Press, 1964).
100.
R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Found Stat Comp (2011).
101.
Anderson, D. R. & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 66, 912–918 (2002).
Article Google Scholar
102.
Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75, 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x (2006).
Article PubMed Google Scholar
103.
Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35. https://doi.org/10.1007/s00265-010-1039-4 (2011).
Article Google Scholar
104.
ter Braak, C. & Šmilauer, P. Canoco reference manual and user’s quide: software for ordination, version 5.0 (Microcomputer Power, 2012).
105.
StatSoft Inc. Statistica (data analysis software system), version 12. http://www.statsoft.com (2013). More