More stories

  • in

    Novel combination of CRISPR-based gene drives eliminates resistance and localises spread

    This research presents HD-ClvR, which is a combination of three gene drives: homing, cleave-and-rescue and daisyfield. Our modelling indicates that HD-ClvR overcomes an important trade-off in current homing gene drive designs: the trade-off between resistance allele formation and gene drive efficiency. This strategy benefits from the efficiency of a homing gene drive and the evolutionary stability of cleave-and-rescue gene drive. Due to the inclusion of a daisyfield system, HD-ClvR is self-limiting and can be controlled by supplementation of gene drive animals.
    HD-ClvR compared to other gene drives
    Over recent years, many different gene drives have been published and developments have been geared towards both efficiency and safety38. An ongoing issue has been the development of resistance alleles. For CRISPR-based homing gene drive there are two fundamental approaches to combat resistance allele formation: careful gRNA targeting and gRNA multiplexing. When a gRNA targets a conserved sequence in a gene, resistance alleles are likely to disrupt gene function through NHEJ repair and will therefore reduce fitness39. Recently, population suppression was already shown to work with a carefully targeted homing gene drive in contained mosquito populations39, however, current data suggests that homing might be less efficient in mammals than in insects14. A recent paper has proposed the concept of ‘tethered homing gene drive’, which combines a threshold-dependent underdominance gene drive with a homing gene drive for improved suppression capabilities40. We use this concept in a different manner in HD-ClvR, by relying on a daisyfield rather than threshold-dependence for self-limitation. Very recently, two new papers have proposed a gene drive similar to HD-ClvR, but intented for population modification instead of suppression41,42. These studies also combine homing and cleave-and-rescue principles to combat resistance alleles and their modifications are able to persist stably in cage experiments, which is promising for HD-ClvR.
    In addition to targeting conserved sequences, when gRNA multiplexing, resistant allele allele formation is reduced because multiple sites are targeted simultaneously. For homing gene drives, multiplexing has been shown to reduce homing efficiency when more than two gRNAs are used28. In contrast, cleave-and-rescue gene drives do not have this problem, as they do not use homing and can therefore multiplex gRNAs without any efficiency costs. HD-ClvR separates the elimination of resistance alleles and homing efficiency, and therefore gRNAs can be optimised for both goals separately.
    To date, most gene drive research has focused on improving the efficiency, however, equally important is the development of strategies that allow for containment, or even reversibility, of the gene drives29,43. For contained gene drives, density dependence is often used, which requires large numbers of gene drive individuals to be released into a target population to spread44. Therefore, non-target populations are unlikely to be affected by this type of gene drive. However, a large single release of gene drive individuals can put significant pressure on the local ecosystem, and if a population is already at carrying capacity, it may lead to starvation or mass migration of the population. In contrast, HD-ClvR uses ongoing input in the form of gene drive animals to control the extent of population suppression and contain spread, while the total amount of gene drive animals necessary for release is similar to threshold-dependent gene drives. Therefore, the use of HD-ClvR seems more feasible than threshold-dependent gene drives. Although self-limitation comes with increased cost and labour relative to unlimited gene drives, we believe this is justified by the control and safety of HD-ClvR.
    As stated above, the initial introduction frequency for a standard cleave-and-rescue gene drive in our randomly mating model was increased 10-fold over the other homing-based strategies. This increase is necessary due to the significant cost to the reproduction rate that is incurred when using a standard cleave-and-rescue gene drive. On average, cleave-and-rescue animals will produce 50% less offspring than wild-type animals21,24. This significantly slows the spread of the gene drive and due to density dependent dynamics, requires large initial releases of cleave-and-rescue animals for population suppression. With a homing-cleave-and-rescue drive, more offspring inherit the drive and there is less cost to the reproduction rate. Effectively, for homing-cleave-and-rescue, the reproduction rate of gene drive individuals is equal to the homing efficiency (plus half of the homing failure rate, where the gene drive is inherited by chance), which so far has been shown to range from 0.7 to 1 in different organisms14,39,45.
    Supplementation
    As animal supplementation is a critical component of HD-ClvR, our modelling investigated how daisyfield size and the level and placement of supplemented HD-ClvR animals effects efficiency and safety of population suppression. Optimisation of these parameters can significantly reduce cost and labour, as well as reduce the risk of unwanted impacts on non-target populations. We modelled our supplementation as a percentage of the total population size, therefore the number of individuals needed for supplementation increases linearly with population size. We also want to minimise the risk of non-target populations being impacted by the gene drive, and therefore, there is a trade-off between safety (size of the daisyfield) and cost and labour (level of supplementation required).
    The least number of daisy elements that can suppress the population with a realistic level of supplementation, but does not cause any serious issues in non-target populations, should be objectively established through an in-depth risk assessment process. In a larger population however, the spread is slower than in a small one. Therefore, for improved safety and efficiency, gene drives are best applied in small sub-populations separately. The impact of a single introduction, such as a rogue deployment or migration, depends on the population size. The smaller the population, the bigger the impact. This it is a concern when the target population is much larger than the non-target population, but this is not the case for invasive UK grey squirrels and many other invasive species.
    The appropriate daisyfield size also depends on the rate of NHEJ ((P_n)) of the gene drive system; the higher the ((P_n)), the more embryonic lethal offspring will arise and the sooner daisyfield burns out. To choose a safe number of daisy elements, we also need an estimate of how many animals a rogue party could obtain, potential breed and add into a non-target population for their own benefit. Overall, each target population and prospective gene drive strategy needs to be considered on a case-by-case basis and include an in-depth multidisciplinary risk assessment process.
    When we consider the spatial aspects of a HD-ClvR supplementation programme, the picture becomes more complex. A key factor is the supplementation location of individuals. Obviously, supplementing individuals in a location where the population has already been suppressed will be ineffective. Therefore, different placement strategies can be adopted to keep placing individuals in a relevant area. A monitoring system where not only the size of the population is known, but also the location can significantly help HD-ClvR continue spreading and suppress a targeted population.
    In this study, we modelled HD-ClvR using five different supplementation placement strategies in grey squirrel. These were: supplementation at the mean of population location, the mode of population location, randomly, randomly in 10 groups, and in a moving front (Fig. 6a). With supplementation at the mean of the population location, supplementation started in the middle of the population. After a few generations, a gap appears in the middle due to local suppression. The mean of the populations location still lies in the middle, as can be seen in Fig. 6c at 20 generations. Therefore, supplementation is not effective until the population is also suppressed in another location, thereby shifting the mean. Additionally, when there is a single large patch of the population left and additional smaller clusters, supplementation in the middle of the large patch allows the smaller clusters to recover, as can be seen in Fig. 6c after 64 generations.
    With supplementation at the mode of the population location, we supplement in a location where there are many individuals. This placement strategy avoids the problem of supplementing in a location without individuals, either in a doughnut-like spatial population structure or in a multi-patch population. However, this placement strategy still allows small patches to form and recover. Supplementation at a random location theoretically means that supplementation happens uniformly, but in reality, this is not the case. Initially HD-ClvR spreads in multiple locations, but after the population is suppressed in certain regions, supplementation in those regions becomes ineffective. Therefore, at a later stage of population suppression this placement scheme becomes increasingly ineffective.
    Supplementation at random locations is more effective when they are broken up into multiple groups (ten in our model). The gene drive spreads in many locations initially like the random single location placement scheme. After significant suppression of the population some but not all of the 10 groups supplemented are at ineffective locations. The groups that are placed at relevant locations are enough to keep the gene drive spreading. In our model supplementation in groups at random locations gets close to the speed at which a gene drive spreads in a non-spatial model.
    The moving front placement scheme is very effective initially, as the gene drive spreads uniformly across the front. In this case, supplementation keeps ahead of where the populations is being suppressed. This placement strategy allows the population to recover behind the moving front after effective initial spread and near-complete suppression. To improve efficiency of the moving front strategy, it may be beneficial to include random supplementation behind the moving front to prevent animals from re-establishing.
    Finally, in our spatial model, it was evident that there is more uncertainty in levels of population suppression than a randomly mating model leads us to believe. As can be seen in Fig. 6b, the 95% quantiles are broader than the quantiles in Fig. 3. Therefore, we conclude that to tailor the amount of supplementation, it is vital to closely monitor a population where a gene drive is used.
    Assumptions and future work
    Our model works under the following six assumptions. First, our model excludes some complexities of the optimal number of gRNAs for homing. Although our model suggests that multiplexing gRNAs for both the homing and cleave-and-rescue gene drives is most effective, a recent study using a more complex model and in vivo data shows that the optimal number of gRNAs to use for homing in Drosphilia melanogaster is two. They report a decrease in homing efficiency with more than two gRNAs due to reduced homology and Cas nuclease saturation28. Therefore, our gene drive with four gRNAs for both homing and cleave-and-rescue will likely be less efficient in such a complex model. We suggest using two homing gRNAs and four cleave- and-rescue gRNAs is likely most efficient, while still eliminating all resistance alleles28. It would be prudent to analyse our gene drive in this complex model as well to get a definitive estimate, as Cas saturation is thought to have an influence on gene drive efficiency when multiplexing is used28.
    Second, we assumed there was no embryonic Cas-gRNA expression. Embryonic Cas-gRNA expression might be problematic as it leads to resistance allele formation and can interfere with the cleave-and-rescue mechanism by cleaving alleles from the wildtype parent. As our gene drive eliminates resistance alleles, embryonic Cas-gRNA expression may not inhibit spread, depending on the rate. Additionally, if the embryonic Cas-gRNA expression turns out to be more common in grey squirrel or other species, the cleave-and-rescue part of the gene drive can be harnessed with a double rescue mechanism to overcome this issue, as reported by Champer et al.24.
    Third, we did not take other types of resistance alleles into account such as mutations rendering the CRISPR-Cas non-functional. As this is a universal assumption in gene drive research, we will have to await multigenerational studies to see if this is problematic.
    Fourth, HD-ClvR has not been tested in vivo, which is our next step. The two recent papers testing a gene drive similar to HD-ClvR for population modification have performed in vivo tests in Drosophila melanogaster which showed very efficient conversion rates41. Proof-of-concept testing of HD-ClvR would likely initially occur in D. melanogaster and mouse models before progressing to squirrel studies. Recent reports have shown that the VASA promoter for Cas expression in homing gene drives is not optimal and further investigation to identify a meiosis-specific germline promoter is needed15. Furthermore, the integration of many daisies in a squirrel genome will be a molecular challenge and is a feat which has not yet been reported on in any species. This task could be achieved using either a random integration strategy, such as lentiviruses46 or a targeted integration strategy that exploits neutral repetitive sequences in the genome as target sites32. Also, non-model species might be difficult to genetically engineer, although grey squirrel embryology will likely follow the extensive knowledge on rodent and farmed animal embryology, and similar reagents and equipment could be used. An important consideration when engineering gene drive is that the modified animals maintain enough wild vigour to survive and breed in a wild population. Promising technologies for generating gene drive harbouring mammals with as little intervention as possible include in situ delivery of CRISPR reagents to the oviduct47.
    Fifth, for our spatial modelling, we assumed that an estimation of population size could be made every year, although there is a significant amount of room for error in this estimate. Additionally, for some of our placement schemes, we assumed an accurate estimate of population location. As the random placement in groups scheme turned out most effective, this is not a problem so much as further potential for improvement. Another direction for future spatial work is the modelling of real landscapes, which are more complex than what we modelled in this study48. In complex landscapes, it might be that gene drive spread is slower or even regionally confined in some situations. Additionally, there might be spatial dynamics to gene drives in general such as ’chasing’, which is the perpetual escaping and chasing of wildtype and gene drive animals34. Further efforts are necessary to create a more realistic spatial model before we can consider using a gene drive.
    A final consideration is that the ecological services the grey squirrel and other invasive species provide are largely unchartered. Ecologists need to investigate the ecological services that an invasive species performs and how an abrupt suppression of this invasive population might impact the ecosystem as a whole. We need to consider other restorative measures such as reintroducing native species to fragmented habitats, amongst other ecological interventions49. From a regulatory perspective, there is no tested legislative framework for the release of gene drive organisms; and with regard to our test animal it is currently illegal to breed grey squirrels in the UK. Developing these legislative frameworks alongside gene drive research is important. More importantly, the UK needs to continue to broaden public engagement and see whether the public is receptive to the deployment of gene drive technology in parallel to a financial overview of how much it would cost to apply gene drives reflecting our predicted need for supplementation.
    Summary
    HD-ClvR offers an efficient, self-limiting, and controllable gene drive strategy. We show that in the spatial model, complete population suppression is achieved approximately 5 years later than in the randomly mating population model. We then explored how the placement of supplemented animals could impact population suppression. Our results show that spatial dynamics of supplementation placement are not prohibitive to the spread of the gene drive, but that in fact, with an optimised strategy, spread at a rate equal to randomly mating population can be achieved. In our models, we have shown that grey squirrels have a spatial life history which facilitates the spread of a gene drive. Therefore, gene drives could be a valuable tool in the conservation toolbox. More

  • in

    Limited flexibility in departure timing of migratory passerines at the East-Mediterranean flyway

    1.
    Flato, G. & Boer, G. Warming asymmetry in climate change simulations. Geophys. Res. Lett. 28, 195–198 (2001).
    ADS  Article  Google Scholar 
    2.
    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Jonzén, N. et al. Rapid advance of spring arrival dates in long-distance migratory birds. Science 312, 1959–1961 (2006).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Gordo, O. & Sanz, J. J. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484–495 (2005).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Tøttrup, A. P. et al. Avian migrants adjust migration in response to environmental conditions en route. Biol. Lett. 4, 685–688 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Moussus, J. P., Clavel, J., Jiguet, F. & Julliard, R. Which are the phenologically flexible species? A case study with common passerine birds. Oikos 120, 991–998 (2011).
    Article  Google Scholar 

    7.
    Maggini, I., Cardinale, M., Sundberg, J. H., Spina, F. & Fusani, L. Recent phenological shifts of migratory birds at a Mediterranean spring stopover site: Species wintering in the Sahel advance passage more than tropical winterers. PLoS ONE 15, e0239489 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. 105, 16195–16200 (2008).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B Biol. Sci. 278, 835–842 (2011).
    Article  Google Scholar 

    10.
    Jones, T. & Cresswell, W. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).
    Article  Google Scholar 

    12.
    Lehikoinen, E., Sparks, T. H. & Zalakevicius, M. Arrival and departure dates. Adv. Ecol. Res. 35, 1–31 (2004).
    Article  Google Scholar 

    13.
    Usui, T., Butchart, S. H. & Phillimore, A. B. Temporal shifts and temperature sensitivity of avian spring migratory phenology: A phylogenetic meta-analysis. J. Anim. Ecol. 86, 250–261 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl. Acad. Sci. 100, 12219–12222 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Tøttrup, A. P., Thorup, K. & Rahbek, C. Changes in timing of autumn migration in North European songbird populations. Ardea 94, 527 (2006).
    Google Scholar 

    16.
    Haest, B., Hüppop, O. & Bairlein, F. Weather at the winter and stopover areas determines spring migration onset, progress, and advancements in Afro-Palearctic migrant birds. Proc. Natl. Acad. Sci. 117, 17056–17062 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Tøttrup, A. P. et al. Drought in Africa caused delayed arrival of European songbirds. Science 338, 1307–1307 (2012).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    18.
    Biebach, H. Sahara stopover in migratory flycatchers: Fat and food affect the time program. Experientia 41, 695–697 (1985).
    Article  Google Scholar 

    19.
    Aharon-Rotman, Y., Bauer, S. & Klaassen, M. A chain is as strong as its weakest link: Assessing the consequences of habitat loss and degradation in a long-distance migratory shorebird. Emu-Aust. Ornithol. 116, 199–207 (2016).
    Article  Google Scholar 

    20.
    Berthold, P. Control of Bird Migration (Springer Science & Business Media, Berlin, 1996).
    Google Scholar 

    21.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Ramenofsky, M. Reconsidering the role of photoperiod in relation to effects of precipitation and food availability on spring departure of a migratory bird. Proc. R. Soc. B Biol. Sci. 279, 15–16 (2012).
    Article  Google Scholar 

    23.
    Goymann, W., Lupi, S., Kaiya, H., Cardinale, M. & Fusani, L. Ghrelin affects stopover decisions and food intake in a long-distance migrant. Proc. Natl. Acad. Sci. 114, 1946–1951 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Berthold, P. The endogenous control of bird migration: A survey of experimental evidence. Bird Study 31, 19–27 (1984).
    Article  Google Scholar 

    25.
    Gwinner, E. Circannual clocks in avian reproduction and migration. Ibis 138, 47–63 (1996).
    Article  Google Scholar 

    26.
    Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long-distance migrants, delays in short–distance migrants. Proc. R Soc. Lond. Ser. B Biol. Sci. 270, 1467–1471 (2003).
    Article  Google Scholar 

    27.
    Knudsen, E. et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 86, 928–946 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Kovács, S., Fehérvári, P., Nagy, K., Harnos, A. & Csörgő, T. Changes in migration phenology and biometrical traits of Reed, Marsh and Sedge Warblers. Cent. Eur. J. Biol. 7, 115–125 (2012).
    Google Scholar 

    29.
    Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim. Res. 35, 135–146 (2007).
    Article  Google Scholar 

    30.
    Thorup, K., Tøttrup, A. P. & Rahbek, C. Patterns of phenological changes in migratory birds. Oecologia 151, 697–703 (2007).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Saino, N. et al. Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol. Lett. 7, 21–25 (2004).
    Article  Google Scholar 

    32.
    Briedis, M., Krist, M., Král, M., Voigt, C. C. & Adamík, P. Linking events throughout the annual cycle in a migratory bird–non-breeding period buffers accumulation of carry-over effects. Behav. Ecol. Sociobiol. 72, 93 (2018).
    Article  Google Scholar 

    33.
    Stanley, C. Q., MacPherson, M., Fraser, K. C., McKinnon, E. A. & Stutchbury, B. J. Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS ONE 7, e40688 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Bussière, E. M., Underhill, L. G. & Altwegg, R. Patterns of bird migration phenology in South Africa suggest northern hemisphere climate as the most consistent driver of change. Glob. Change Biol. 21, 2179–2190 (2015).
    ADS  Article  Google Scholar 

    35.
    Ahola, M. et al. Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob. Change Biol. 10, 1610–1617 (2004).
    ADS  Article  Google Scholar 

    36.
    Payevsky, V. A., Vysotsky, V. G. & Zelenova, N. P. Extinction of a Barred Warbler Sylvia nisoria population in Eastern Baltic: long-term monitoring, demography, and biometry. Avian Ecol. Behav 11, 89–105 (2003).
    Google Scholar 

    37.
    Newton, I. Population limitation in migrants. Ibis 146, 197–226 (2004).
    Article  Google Scholar 

    38.
    Ockendon, N., Johnston, A. & Baillie, S. R. Rainfall on wintering grounds affects population change in many species of Afro-Palaearctic migrants. J. Ornithol. 155, 905–917 (2014).
    Article  Google Scholar 

    39.
    Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).
    Article  Google Scholar 

    40.
    Walther, B. A. & Rahbek, C. Where do Palearctic migratory birds overwinter in Africa. Danks Orn Foren Tidsskr 96, 4–8 (2002).
    Google Scholar 

    41.
    Bairlein, F. The study of bird migrations—some future perspectives. Bird Study 50, 243–253 (2003).
    Article  Google Scholar 

    42.
    Altwegg, R. et al. Novel methods reveal shifts in migration phenology of barn swallows in South Africa. Proc. R. Soc. B Biol. Sci. 279, 1485–1490 (2012).
    Article  Google Scholar 

    43.
    Hüppop, O. & Ppop, K. H. North Atlantic oscillation and timing of spring migration in birds. Proc. R Soc. Lond. Ser. B Biol. Sci. 270, 233–240 (2003).
    Article  Google Scholar 

    44.
    Haest, B., Hüppop, O. & Bairlein, F. Challenging a 15-year-old claim: The North atlantic oscillation index as a predictor of spring migration phenology of birds. Glob. Change Biol. 24, 1523–1537 (2018).
    ADS  Article  Google Scholar 

    45.
    Bearhop, S. et al. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310, 502–504 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    MacMynowski, D. P. & Root, T. L. Climate and the complexity of migratory phenology: Sexes, migratory distance, and arrival distributions. Int. J. Biometeorol. 51, 361–373 (2007).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Milá, B., Wayne, R. K. & Smith, T. B. Ecomorphology of migratory and sedentary populations of the yellow-rumped warbler (Dendroica coronata). Condor 110, 335–344 (2008).
    Article  Google Scholar 

    48.
    Förschler, M. I. & Bairlein, F. Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS ONE 6, e18732 (2011).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Fiedler, W. Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Ann. N. Y. Acad. Sci. 1046, 253 (2005).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Tarka, M. et al. A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proc. R. Soc. B Biol. Sci. 277, 2361–2369 (2010).
    Article  Google Scholar 

    51.
    Nowakowski, J. K., Szulc, J. & Remisiewicz, M. The further the flight, the longer the wing: Relationship between wing length and migratory distance in Old World reed and bush warblers (Acrocephalidae and Locustellidae). Ornis Fennica 91, 2 (2014).
    Google Scholar 

    52.
    Toews, D. P., Heavyside, J. & Irwin, D. E. Linking the wintering and breeding grounds of warblers along the Pacific Flyway. Ecol. Evol. 7, 6649–6658 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Pérez-Tris, J., Carbonell, R. & Tellería, J. L. A method for differentiating between sedentary and migratory Blackcaps Sylvia atricapilla in wintering areas of southern Iberia. Bird Study 46, 299–304 (1999).
    Article  Google Scholar 

    54.
    Kovács, S., Csörgő, T., Harnos, A., Fehérvári, P. & Nagy, K. Change in migration phenology and biometrics of two conspecific Sylvia species in Hungary. J. Ornithol. 152, 365–373 (2011).
    Article  Google Scholar 

    55.
    Lank, D. B. et al. Long term continental changes in wing length, but not bill length, of a long distance migratory shorebird. Ecol. Evol. 7, 3243–3256 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Yom-Tov, Y., Yom-Tov, S., Wright, J., Thorne, C. & Du Feu, R. Recent changes in body weight and wing length among some British passerine birds. Oikos 112, 91–101 (2006).
    Article  Google Scholar 

    57.
    Szekely, T., Lislevand, T. & Figuerola, J. Sexual size dimorphism in birds. Sex, size and gender roles: evolutionary studies of sexual size dimorphism, 27–37 (2007).

    58.
    Spina, F., Massi, A. & Montemaggiori, A. Back from Africa: Who’s running ahead? Aspects of differential migration of sex and age classes in Palearctic-African spring migrants. Ostrich 65, 137–150 (1994).
    Article  Google Scholar 

    59.
    Izhaki, I. & Maitav, A. Blackcaps Sylvia atricapilla stopping over at the desert edge; inter-and intra sexual differences in spring and autumn migration. Ibis 140, 234–243 (1998).
    Article  Google Scholar 

    60.
    Tøttrup, A. P. & Thorup, K. Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J. Ornithol. 149, 161–167 (2008).
    Article  Google Scholar 

    61.
    Shneor, O., Perlman, G., Balaban, A. & Yom-Tov, Y. Origin of passerine migratory waves: Evidence from the blackcap at a stopover site. Israel J. Ecol. Evol. 56, 135–151 (2010).
    Article  Google Scholar 

    62.
    Porkert, J. et al. Variation and long-term trends in the timing of breeding of different Eurasian populations of Common Redstart Phoenicurus phoenicurus. J. Ornithol. 155, 1045–1057 (2014).
    Article  Google Scholar 

    63.
    BirdLife International and Handbook of the Birds of the World., 2019.

    64.
    Houborg, R., Soegaard, H. & Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 106, 39–58 (2007).
    ADS  Article  Google Scholar 

    65.
    Papeş, M., Peterson, A. T. & Powell, G. V. Vegetation dynamics and avian seasonal migration: Clues from remotely sensed vegetation indices and ecological niche modelling. J. Biogeogr. 39, 652–664 (2012).
    Article  Google Scholar 

    66.
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).
    ADS  Article  Google Scholar 

    67.
    Gersten, A. & Hahn, S. Timing of migration in Common Redstarts (Phoenicurus phoenicurus) in relation to the vegetation phenology at residence sites. J. Ornithol. 157, 1029–1036 (2016).
    Article  Google Scholar 

    68.
    Adole, T., Dash, J. & Atkinson, P. M. Characterising the land surface phenology of Africa using 500 m MODIS EVI. Appl. Geogr. 90, 187–199 (2018).
    Article  Google Scholar 

    69.
    Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Article  Google Scholar 

    70.
    Kiat, Y. & Sapir, N. Life-history trade-offs result in evolutionary optimization of feather quality. Biol. J. Lin. Soc. 125, 613–624 (2018).
    Google Scholar 

    71.
    Miles, W. T. et al. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long distance migratory birds. Glob. Change Biol. 23, 1400–1414 (2017).
    ADS  Article  Google Scholar 

    72.
    Geraci, M. & Bottai, M. Linear quantile mixed models. Stat. Comput. 24, 461–479 (2014).
    MathSciNet  MATH  Article  Google Scholar 

    73.
    Geraci, M. Linear quantile mixed models: The lqmm package for Laplace quantile regression. J. Stat. Softw. 57, 1–29 (2014).
    Article  Google Scholar 

    74.
    Koenker, R. & Bassett, G. J. Regression quantiles. Econometrica 2, 33–50 (1978).
    MathSciNet  MATH  Article  Google Scholar 

    75.
    Kokko, H., Gunnarsson, T. G., Morrell, L. J. & Gill, J. A. Why do female migratory birds arrive later than males?. J. Anim. Ecol. 75, 1293–1303 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Yosef, R. & Meissner, W. Seasonal age differences in weight and biometrics of migratory Dunlins (Calidris alpina) at Eilat Israel. Ostrich-J. Afr. Ornithol. 77, 67–72 (2006).
    Article  Google Scholar 

    77.
    Smith, R. J. & Moore, F. R. Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav. Ecol. Sociobiol. 57, 231–239 (2005).
    Article  Google Scholar 

    78.
    R: A language and environment for statistical computing. ( Vienna, Austria. URL https://www.R-project.org/, 2019).

    79.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R-Core-Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–139 URL: https://CRAN.R-project.org/package=nlme (2020).

    80.
    Lenth, R. V. Least-square means: The R package lsmeans. J. Stat. Softw. 69, 1–33. https://doi.org/10.18637/jss.v069.i01 (2016).
    Article  Google Scholar 

    81.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, Berlin, 2009).
    Google Scholar 

    82.
    Hahn, S. et al. Longer wings for faster springs: Wing length relates to spring phenology in a long distance migrant across its range. Ecol. Evol. 6, 68–77 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360, 668 (1992).
    ADS  Article  Google Scholar 

    84.
    Hedlund, J. S., Jakobsson, S., Kullberg, C. & Fransson, T. Long-term phenological shifts and intra-specific differences in migratory change in the willow warbler Phylloscopus trochilus. J. Avian Biol. 46, 97–106 (2015).
    Article  Google Scholar 

    85.
    Tryjanowski, P., Kuźniak, S. & Sparks, T. What affects the magnitude of change in first arrival dates of migrant birds?. J. Ornithol. 146, 200–205 (2005).
    Article  Google Scholar 

    86.
    Newson, S. E. et al. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158, 481–495 (2016).
    Article  Google Scholar 

    87.
    Zalakevicius, M., Bartkeviciene, G., Raudonikis, L. & Janulaitis, J. Spring arrival response to climate change in birds: a case study from eastern Europe. J. Ornithol. 147, 326–343 (2006).
    Article  Google Scholar 

    88.
    Spottiswoode, C. N., Tøttrup, A. P. & Coppack, T. Sexual selection predicts advancement of avian spring migration in response to climate change. Proc. R. Soc. B Biol. Sci. 273, 3023–3029 (2006).
    Article  Google Scholar 

    89.
    Yosef, R. & Wineman, A. Differential stopover of blackcap (Sylvia atricapilla) by sex and age at Eilat Israel. J. Arid Environ. 74, 360–367 (2010).
    ADS  Article  Google Scholar 

    90.
    Kristensen, M. W., Tøttrup, A. P. & Thorup, K. Migration of the Common Redstart (Phoenicurus phoenicurus): A Eurasian songbird wintering in highly seasonal conditions in the West African Sahel. Auk 130, 258–264 (2013).
    Article  Google Scholar 

    91.
    Moreau, R. E. Palaearctic-African Bird Migration Systems (Academic Press, London, 1972).
    Google Scholar 

    92.
    Tryjanowski, P., Kuźniak, S. & Sparks, T. Earlier arrival of some farmland migrants in western Poland. Ibis 144, 62–68 (2002).
    Article  Google Scholar 

    93.
    Ożarowska, A., Zaniewicz, G. & Meissner, W. in Annales Zoologici Fennici. 45–54 (BioOne).

    94.
    Wisz, M. S., Walther, B. & Rahbek, C. Using potential distributions to explore determinants of Western Palaearctic migratory songbird species richness in sub-Saharan Africa. J. Biogeogr. 34, 828–841 (2007).
    Article  Google Scholar 

    95.
    Yosef, R. & Markovets, M. Spring bird migration phenology in Eilat Israel. ZooKeys 31, 193 (2009).
    Article  Google Scholar 

    96.
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Wolff, C. et al. Reduced interannual rainfall variability in East Africa during the last ice age. Science 333, 743–747 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Metabolomics shows the Australian dingo has a unique plasma profile

    1.
    Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E. & Lundeberg, J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc. Natl. Acad. Sci. USA 101, 12387–12390. https://doi.org/10.1073/pnas.0401814101 (2004).
    CAS  Article  PubMed  ADS  Google Scholar 
    2.
    Smith, B. P. et al. Taxonomic status of the Australian dingo: The case for Canis dingo Meyer, 1793. Zootaxa 4564, 173–197. https://doi.org/10.11646/zootaxa.4564.1.6 (2019).
    Article  Google Scholar 

    3.
    Ballard, J. W. O. & Wilson, L. A. B. The Australian dingo: Untamed or feral?. Front. Zool. 16, 1–19. https://doi.org/10.1186/s12983-019-0300-6 (2019).
    Article  Google Scholar 

    4.
    Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413. https://doi.org/10.1111/j.1469-185X.2011.00203.x (2012).
    Article  PubMed  Google Scholar 

    5.
    Letnic, M., Crowther, M. & Koch, F. Does a top-predator provide an endangered rodent with refuge from an invasive mesopredator?. Anim. Conserv. 12, 302–312 (2009).
    Article  Google Scholar 

    6.
    Doherty, T. S. et al. Continental patterns in the diet of a top predator: Australia’s dingo. Mammal. Rev. 49, 31–44. https://doi.org/10.1111/mam.12139 (2019).
    Article  Google Scholar 

    7.
    Stephens, D., Wilton, A. N., Fleming, P. J. & Berry, O. Death by sex in an Australian icon: A continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol. Ecol. 24, 5643–5656 (2015).
    CAS  Article  Google Scholar 

    8.
    Spady, T. C. & Ostrander, E. A. Canine behavioral genetics: Pointing out the phenotypes and herding up the genes. Am. J. Hum. Genet. 82, 10–18. https://doi.org/10.1016/j.ajhg.2007.12.001 (2008).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Wayne, R. K. Consequences of domestication: Morphological diversity of the dog. In The Genetics of the Dog (ed. Ruvinsky, A.) 43–60 (CAB International, Wallingford, 2001).
    Google Scholar 

    10.
    Parker, H. G. et al. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Rep. 19, 697–708. https://doi.org/10.1016/j.celrep.2017.03.079 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    11.
    Johannes, J. E. Basenji origin and migration: At Africa’s Doorstep. Off. Bull. Basenji Am. 38, 18–19 (2004).
    Google Scholar 

    12.
    Fuller, J. L. Photoperiodic control of estrus in the Basenji. J. Hered. 47, 179–180 (1956).
    Article  Google Scholar 

    13.
    Talenti, A. et al. Studies of modern Italian dog populations reveal multiple patterns for domestic breed evolution. Ecol. Evol. 8, 2911–2925. https://doi.org/10.1002/ece3.3842 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    Field, M. A. et al. Canfam_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C. Gigascience 9, giaa027. https://doi.org/10.1093/gigascience/giaa027 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Pendleton, A. L. et al. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. Bmc Biol. 16, 64. https://doi.org/10.1186/s12915-018-0535-2 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Jackson, S. M. et al. The Dogma of Dingoes—Taxonomic status of the dingo: A reply to Smith et al. Zootaxa 4564, 198–212 (2019).
    Article  Google Scholar 

    17.
    Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. Plos Genet 10, e1004016. https://doi.org/10.1371/journal.pgen.1004016 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    18.
    Arendt, M., Cairns, K. M., Ballard, J. W., Savolainen, P. & Axelsson, E. Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity 117, 301–306. https://doi.org/10.1038/hdy.2016.48 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Beckmann, M. et al. Metabolite fingerprinting of urine suggests breed-specific dietary metabolism differences in domestic dogs. Br. J. Nutr. 103, 1127–1138. https://doi.org/10.1017/S000711450999300X (2010).
    CAS  Article  PubMed  Google Scholar 

    20.
    Clinquart, A., Van Eenaeme, C., Mayombo, A. P., Gauthier, S. & Istasse, L. Plasma hormones and metabolites in cattle in relation to breed (Belgian Blue vs Holstein) and conformation (double-muscled vs dual-purpose type). Vet. Res.Commun. 19, 185–194. https://doi.org/10.1007/BF01839297 (1995).
    CAS  Article  PubMed  Google Scholar 

    21.
    Viant, M. R., Ludwig, C., Rhodes, S., Gunther, U. L. & Allaway, D. Validation of a urine metabolome fingerprint in dog for phenotypic classification (vol 3, pg 453, 2007). Metabolomics 5, 517–517. https://doi.org/10.1007/s11306-009-0172-4 (2009).
    CAS  Article  Google Scholar 

    22.
    Gopalakrishnan, S. et al. Interspecific gene flow shaped the evolution of the genus Canis. Curr. Biol. 28, 3441–3449. https://doi.org/10.1016/j.cub.2018.08.041 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Gottelli, D. et al. Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol. Ecol. 3, 301–312. https://doi.org/10.1111/j.1365-294x.1994.tb00070.x (1994).
    CAS  Article  PubMed  Google Scholar 

    24.
    Galov, A. et al. First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers. R. Soc. Open Sci. 2, 150450. https://doi.org/10.1098/rsos.150450 (2015).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    25.
    Adams, J. R., Leonard, J. A. & Waits, L. P. Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern US coyotes. Mol. Ecol. 12, 541–546. https://doi.org/10.1046/j.1365-294x.2003.01708.x (2003).
    CAS  Article  PubMed  Google Scholar 

    26.
    Roy, M. S., Geffen, E., Smith, D. & Wayne, R. K. Molecular genetics of pre-1940 red wolves. Conserv. Biol. 10, 1413–1424 (1996).
    Article  Google Scholar 

    27.
    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83 (1996).
    Article  Google Scholar 

    28.
    Fiehn, O. Metabolomics: The link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171. https://doi.org/10.1023/A:1013713905833 (2002).
    CAS  Article  PubMed  Google Scholar 

    29.
    Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459. https://doi.org/10.1038/nrm.2016.25 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    van Ravenzwaay, B. et al. The use of metabolomics for the discovery of new biomarkers of effect. Toxicol. Lett. 172, 21–28. https://doi.org/10.1016/j.toxlet.2007.05.021 (2007).
    CAS  Article  PubMed  Google Scholar 

    31.
    Hanhineva, K. et al. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J. Nutr. 145, 7–17. https://doi.org/10.3945/jn.114.196840 (2015).
    CAS  Article  PubMed  Google Scholar 

    32.
    Khamis, M. M., Adamko, D. J. & El-Aneed, A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev. 36, 115–134. https://doi.org/10.1002/mas.21455 (2017).
    CAS  Article  PubMed  ADS  Google Scholar 

    33.
    Mamas, M., Dunn, W. B., Neyses, L. & Goodacre, R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch. Toxicol. 85, 5–17. https://doi.org/10.1007/s00204-010-0609-6 (2011).
    CAS  Article  PubMed  Google Scholar 

    34.
    Ferlizza, E. et al. Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease. J. Proteom. 222, 103795. https://doi.org/10.1016/j.jprot.2020.103795 (2020).
    CAS  Article  Google Scholar 

    35.
    Colyer, A., Gilham, M. S., Kamlage, B., Rein, D. & Allaway, D. Identification of intra- and inter-individual metabolite variation in plasma metabolite profiles of cats and dogs. Br. J. Nutr. 106(Suppl 1), S146-149. https://doi.org/10.1017/S000711451100081X (2011).
    CAS  Article  PubMed  Google Scholar 

    36.
    Lloyd, A. J. et al. Ultra high performance liquid chromatography-high resolution mass spectrometry plasma lipidomics can distinguish between canine breeds despite uncontrolled environmental variability and non-standardized diets. Metabolomics 13, 15. https://doi.org/10.1007/s11306-016-1152-0 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Carlos, G., Dos Santos, F. P. & Froehlich, P. E. Canine metabolomics advances. Metabolomics 16, 16. https://doi.org/10.1007/s11306-020-1638-7 (2020).
    CAS  Article  PubMed  Google Scholar 

    38.
    Carthey, A. J. R., Bucknall, M. P., Wierucka, K. & Banks, P. B. Novel predators emit novel cues: A mechanism for prey naivety towards alien predators. Sci. Rep. 7, 16377. https://doi.org/10.1038/s41598-017-16656-z (2017).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    39.
    Nicholson, G. et al. Human metabolic profiles are stably controlled by genetic and environmental variation. Mol. Syst. Biol. 7, 525. https://doi.org/10.1038/msb.2011.57 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Suhre, K. & Gieger, C. Genetic variation in metabolic phenotypes: study designs and applications. Nat. Rev. Genet. 13, 759–769. https://doi.org/10.1038/nrg3314 (2012).
    CAS  Article  PubMed  Google Scholar 

    41.
    Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276. https://doi.org/10.1038/ng.1073 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Fujisaka, S. et al. Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites. Cell. Rep. 22, 3072–3086. https://doi.org/10.1016/j.celrep.2018.02.060 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Söder, J. et al. Plasma metabolomics reveals lower carnitine concentrations in overweight Labrador Retriever dogs. Acta Vet. Scand. 61, 1–12 (2019).
    Article  ADS  Google Scholar 

    44.
    Boretti, F. S. et al. Serum lipidome analysis of healthy beagle dogs receiving different diets. Metabolomics 16, 1 (2020).
    CAS  Article  Google Scholar 

    45.
    Lyu, T. S. et al. Changes in feeding habits promoted the differentiation of the composition and function of gut microbiotas between domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus). Amb. Express 8, 1–12. https://doi.org/10.1186/s13568-018-0652-x (2018).
    Article  Google Scholar 

    46.
    Zhang, S. J. et al. Genomic regions under selection in the feralization of the dingoes. Nat. Commun. 11, 671. https://doi.org/10.1038/s41467-020-14515-6 (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    47.
    Lee, R. K., Wurtman, R. J., Cox, A. J. & Nitsch, R. M. Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 92, 8083–8087. https://doi.org/10.1073/pnas.92.17.8083 (1995).
    CAS  Article  PubMed  ADS  Google Scholar 

    48.
    Li, Q., Chen, J., Yu, X. & Gao, J. M. A mini review of nervonic acid: Source, production, and biological functions. Food Chem. 301, 125286. https://doi.org/10.1016/j.foodchem.2019.125286 (2019).
    CAS  Article  PubMed  Google Scholar 

    49.
    Schauer, R. Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499. https://doi.org/10.1023/a:1011062223612 (2000).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Wang, G. D. et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 26, 21–33. https://doi.org/10.1038/cr.2015.147 (2016).
    Article  PubMed  Google Scholar 

    51.
    Pavlova, T. et al. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal. Chim. Acta 987, 72–80. https://doi.org/10.1016/j.aca.2017.08.022 (2017).
    CAS  Article  PubMed  Google Scholar 

    52.
    Webster, P. M., Hoover, W. H. & Miller, T. K. Determination of 2,6 Diaminopimelic acid in biological-materials using high-performance liquid-chromatography. Anim. Feed Sci. Technol. 30, 11–20. https://doi.org/10.1016/0377-8401(90)90048-D (1990).
    CAS  Article  Google Scholar 

    53.
    Vranova, V., Lojkova, L., Rejsek, K. & Formanek, P. Significance of the natural occurrence of L- versus D-pipecolic acid: A review. Chirality 25, 823–831. https://doi.org/10.1002/chir.22237 (2013).
    CAS  Article  PubMed  Google Scholar 

    54.
    Lin, C., Wan, J., Su, Y. & Zhu, W. Effects of early intervention with maternal fecal microbiota and antibiotics on the gut microbiota and metabolite profiles of piglets. Metabolites 8, 89. https://doi.org/10.3390/metabo8040089 (2018).
    CAS  Article  PubMed Central  Google Scholar 

    55.
    Sawada, S. & Yamamoto, C. Gamma-D-glutamylglycine and cis-2,3-piperidine dicarboxylate as antagonists of excitatory amino-acids in the hippocampus. Exp. Brain Res. 55, 351–358 (1984).
    CAS  Article  Google Scholar 

    56.
    Lewis, E. D., Meydani, S. N. & Wu, D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life 71, 487–494. https://doi.org/10.1002/iub.1976 (2019).
    CAS  Article  PubMed  Google Scholar 

    57.
    D’Arrigo, P. & Servi, S. Synthesis of lysophospholipids. Molecules 15, 1354–1377. https://doi.org/10.3390/molecules15031354 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Birgbauer, E. & Chun, J. New developments in the biological functions of lysophospholipids. Cell Mol. Life Sci. 63, 2695–2701. https://doi.org/10.1007/s00018-006-6155-y (2006).
    CAS  Article  PubMed  Google Scholar 

    59.
    Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. & Kluk, M. J. Lysophospholipids: Receptor revelations. Science 294, 1875–1878. https://doi.org/10.1126/science.1065323 (2001).
    CAS  Article  PubMed  ADS  Google Scholar 

    60.
    Li, Z. & Vance, D. E. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49, 1187–1194. https://doi.org/10.1194/jlr.R700019-JLR200 (2008).
    CAS  Article  PubMed  Google Scholar 

    61.
    van der Veen, J. N. et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. BBA https://doi.org/10.1016/j.bbamem.2017.04.006 (2017).
    Article  Google Scholar 

    62.
    Vance, D. E. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr. Opin. Lipidol. 19, 229–234. https://doi.org/10.1097/MOL.0b013e3282fee935 (2008).
    CAS  Article  PubMed  Google Scholar 

    63.
    Segal, S. Defective galactosylation in galactosemia: Is low cell UDPgalactose an explanation?. Eur. J. Pediatr. 154, S65–S71 (1995).
    CAS  Article  Google Scholar 

    64.
    Ollivier, M. et al. Amy2B copy number variation reveals starch diet adaptations in ancient European dogs. R. Soc. Open Sci. 3, 160449 (2016).
    Article  ADS  Google Scholar 

    65.
    Arendt, M., Fall, T., Lindblad-Toh, K. & Axelsson, E. Amylase activity is associated with AMY 2B copy numbers in dog: Implications for dog domestication, diet and diabetes. Anim. Genet. 45, 716–722 (2014).
    CAS  Article  Google Scholar 

    66.
    Hoenig, M. Progress in Molecular Biology and Translational Science Vol. 121, 377–412 (Elsevier, Amstredam, 2014).
    Google Scholar 

    67.
    Bradshaw, J. W. The evolutionary basis for the feeding behavior of domestic dogs (Canis familiaris) and cats (Felis catus). J. Nutr. 136, 1927S-1931S. https://doi.org/10.1093/jn/136.7.1927S (2006).
    CAS  Article  PubMed  Google Scholar 

    68.
    Surbakti, S. et al. New Guinea highland wild dogs are the original New Guinea singing dogs. Proc. Natl. Acad. Sci. USA 117, 24369–24376. https://doi.org/10.1073/pnas.2007242117 (2020).
    CAS  Article  PubMed  Google Scholar 

    69.
    Wilton, A. N. In A Symposium on the Dingo’ 49–56.

    70.
    Mackay, G. M., Zheng, L., Van Den Broek, N. J. & Gottlieb, E. Methods in Enzymology Vol. 561, 171–196 (Elsevier, Amsterdam, 2015).
    Google Scholar 

    71.
    Zhang, T., Creek, D. J., Barrett, M. P., Blackburn, G. & Watson, D. G. Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with Orbitrap mass spectrometry for metabolomic studies of human urine. Anal. Chem. 84, 1994–2001. https://doi.org/10.1021/ac2030738 (2012).
    CAS  Article  PubMed  Google Scholar 

    72.
    Team, R. C. & DC, R. A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2012). https://www.R-project.org (2019).

    73.
    Fox, J. et al. Package ‘car’ (R Foundation for Statistical Computing, Vienna, 2012).
    Google Scholar 

    74.
    Champely, S. et al. Package ‘pwr’. R package version 1 (2018). More

  • in

    Continental-scale analysis of shallow and deep groundwater contributions to streams

    1.
    Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).
    ADS  Article  Google Scholar 
    2.
    Boulton, A. & Hancock, P. Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Aust. J. Bot. 54, (2006).

    3.
    Tesoriero, A. J., Duff, J. H., Saad, D. A., Spahr, N. E. & Wolock, D. M. Vulnerability of streams to legacy nitrate sources. Environ. Sci. Technol. 47, 3623–3629 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Briggs, M. A. et al. Hillslope groundwater discharges provide localized stream ecosystem buffers from regional per- and polyfluoroalkyl substances contamination. Hydrol. Process. 34, 2281–2291 (2020).
    ADS  CAS  Article  Google Scholar 

    5.
    Ward, J. V. & Stanford, J. A. Thermal responses in the evolutionary ecology of aquatic insects. Annu. Rev. Entomol. 27, 97–117 (1982).
    Article  Google Scholar 

    6.
    Baird, O. E. & Krueger, C. C. Behavioral thermoregulation of brook and rainbow trout: comparison of summer habitat use in an Adirondack river, New York. Trans. Am. Fish. Soc. 132, 1194–1206 (2003).
    Article  Google Scholar 

    7.
    Torgersen, C., Ebersole, J. & Keenan, D. Primer for identifying cold-water refuges to protect and restore thermal diversity in riverine landscapes. EPA Sci. Guid. Handb. p. 91 (2012).

    8.
    Briggs, M. A. et al. Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals. Sci. Total Environ. 636, 1117–1127 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Kaushal, S. S. et al. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8, 451–466 (2010).
    Article  Google Scholar 

    10.
    Isaak, D. J., Wollrab, S., Horan, D. & Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change 113, 499–524 (2012).
    ADS  Article  Google Scholar 

    11.
    Luce, C. et al. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest. Water Resour. Res. 50, 3428–3443 (2014).
    ADS  Article  Google Scholar 

    12.
    Leach, J. A. & Moore, R. D. Empirical stream thermal sensitivities may underestimate stream temperature response to climate warming. Water Resour. Res. 55, 5453–5467 (2019).
    ADS  Article  Google Scholar 

    13.
    Bundschuh, J. Modeling annual variations of spring and groundwater temperatures associated with shallow aquifer systems. J. Hydrol. 142, 427–444 (1993).
    ADS  Article  Google Scholar 

    14.
    Snyder, C. D., Hitt, N. P. & Young, J. A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 25, 1397–1419 (2015).
    PubMed  Article  Google Scholar 

    15.
    Barclay, J. R., Starn, J. J., Briggs, M. A. & Helton, A. M. Improved prediction of management-relevant groundwater discharge characteristics throughout river networks. Water Resour. Res. 56, e2020WR028027 (2020).
    ADS  Article  Google Scholar 

    16.
    Kurylyk, B. L., MacQuarrie, K. T. B., Caissie, D. & McKenzie, J. M. Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling. Hydrol. Earth Syst. Sci. 19, 2469–2489 (2015).
    ADS  Article  Google Scholar 

    17.
    Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 44, 1–20 (2008).
    Article  CAS  Google Scholar 

    18.
    Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S. & Slater, L. Multiscale geophysical imaging of the critical zone. Rev. Geophys. 53, 1–26 (2015).
    ADS  Article  Google Scholar 

    19.
    Maxwell, R. M. & Kollet, S. J. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci. 1, 665–669 (2008).
    ADS  CAS  Article  Google Scholar 

    20.
    Eggleston, J. & McCoy, K. J. Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA. Hydrogeol. J. 23, 105–120 (2015).
    ADS  Article  Google Scholar 

    21.
    Williams, M. R. et al. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment. J. Hydrol. 511, 870–879 (2014).
    ADS  CAS  Article  Google Scholar 

    22.
    Cozzarelli, I. M. et al. Geochemical and geophysical indicators of oil and gas wastewater can trace potential exposure pathways following releases to surface waters. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142909 (2020).
    Article  PubMed  Google Scholar 

    23.
    Thompson, T. J. et al. Groundwater discharges as a source of phytoestrogens and other agriculturally derived contaminants to streams. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142873 (2020).

    24.
    Condon, L. E. et al. Where is the bottom of a watershed? Water Resour. Res. 56, e2019WR026010 (2020).
    ADS  Article  Google Scholar 

    25.
    Barnes, R. T., Butman, D. E., Wilson, H. F. & Raymond, P. A. Riverine export of aged carbon driven by flow path depth and residence time. Environ. Sci. Technol. 52, 1028–1035 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Zhi, W. & Li, L. The shallow and deep hypothesis: subsurface vertical chemical contrasts shape nitrate export patterns from different land uses. Environ. Sci. Technol. 54, 11915–11928 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    27.
    Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Essaid, H. I. & Caldwell, R. R. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed. Sci. Total Environ. 599–600, 581–596 (2017).
    ADS  PubMed  Article  CAS  Google Scholar 

    29.
    Burns, D. A., Murdoch, P. S., Lawrence, G. B. & Michel, R. L. Effect of groundwater springs on NO3/- concentrations during summer in Catskill Mountain streams. Water Resour. Res. 34, 1987–1996 (1998).
    ADS  CAS  Article  Google Scholar 

    30.
    Kalbus, E., Reinstorf, F. & Schirmer, M. Measuring methods for groundwater-surface water interactions: a review. Hydrol. Earth Syst. Sci. 10, 873–887 (2006).
    ADS  CAS  Article  Google Scholar 

    31.
    Kelleher, C. et al. Investigating controls on the thermal sensitivity of Pennsylvania streams. Hydrol. Process. 26, 771–785 (2012).
    ADS  Article  Google Scholar 

    32.
    Gustard, A., Bullock, A. & Dixon, J. M. Low flow estimation in the United Kingdom. Inst. Hydrol. 102, 1–292 (1992).
    Google Scholar 

    33.
    Essaid, H. I., Baker, N. T. & McCarthy, K. A. Contrasting nitrogen fate in watersheds using agricultural and water quality information. J. Environ. Qual. 45, 1616–1626 (2016).
    CAS  PubMed  Article  Google Scholar 

    34.
    Jasechko, S., Kirchner, J. W., Welker, J. M. & McDonnell, J. J. Substantial proportion of global streamflow less than three months old. Nat. Geosci. 9, 126–129 (2016).
    ADS  CAS  Article  Google Scholar 

    35.
    Letcher, B. H. et al. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags. PeerJ https://doi.org/10.7717/peerj.1727 (2016).

    36.
    Kędra, M. & Wiejaczka, Ł. Climatic and dam-induced impacts on river water temperature: Assessment and management implications. Sci. Total Environ. 626, 1474–1483 (2018).
    ADS  PubMed  Article  CAS  Google Scholar 

    37.
    Tague, C., Grant, G., Farrell, M., Choate, J. & Jefferson, A. Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades. Clim. Change 86, 189–210 (2008).
    ADS  Article  Google Scholar 

    38.
    Bense, V., Kurylyk, B. L., van Daal, J., van der Ploeg, M. J. & Carey, S. K. Interpreting repeated temperature-depth profiles for groundwater flow. Water Resour. Res. 53, 8639–8647 (2017).
    ADS  Article  Google Scholar 

    39.
    Burns, E. R. et al. Thermal effect of climate change on groundwater-fed ecosystems. Water Resour. Res. 53, 3341–3351 (2017).
    ADS  Article  Google Scholar 

    40.
    Johnson, Z. C. et al. Paired air-water annual temperature patterns reveal hydrogeological controls on stream thermal regimes at watershed to continental scales. J. Hydrol. 587, 124929 (2020).
    Article  Google Scholar 

    41.
    Briggs, M. A. et al. Shallow bedrock limits groundwater seepage-based headwater climate refugia. Limnologica 68, 142–156 (2018).
    Article  Google Scholar 

    42.
    Land, M., Ingri, J., Andersson, P. S. & Ohlander, B. Ba/Sr, Ca/Sr and Sr-87/Sr-86 ratios in soil water and groundwater: implications for relative contributions to stream water discharge. Appl. Geochem. 15, 311–325 (2000).
    CAS  Article  Google Scholar 

    43.
    Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground water and surface water: a single resource. U.S. Geological Survey circular: 1139 (1998).

    44.
    Briggs, M. A. et al. Hydrogeochemical controls on brook trout spawning habitats in a coastal stream. Hydrol. Earth Syst. Sci. 22, 6383–6398 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Johnson, Z. C., Snyder, C. D. & Hitt, N. P. Landform features and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams. Water Resour. Res. 53, 5788–5812 (2017).
    ADS  Article  Google Scholar 

    46.
    Jencso, K. G., Mcglynn, B. L., Gooseff, M. N., Bencala, K. E. & Wondzell, S. M. Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources. 46, 1–18 (2010).

    47.
    Helton, A. M., Poole, G. C., Payn, R. A., Izurieta, C. & Stanford, J. A. Relative influences of the river channel, floodplain surface, and alluvial aquifer on simulated hydrologic residence time in a montane river floodplain. Geomorphology 205, 17–26 (2012).
    ADS  Article  Google Scholar 

    48.
    Idaho Department of Environmental Quality Technical Services Division. Upper North Fork Clearwater River Subbasin Assessment and Total Maximum Daily Loads. 2017 Lake Creek Temperature TMDL (2018).

    49.
    Ledford, S. H., Lautz, L. K. & Stella, J. C. Hydrogeologic processes impacting storage, fate, and transport of chloride from road salt in urban riparian aquifers. Environ. Sci. Technol. 50, 4979–4988 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    50.
    Hill, R. A., Weber, M. H., Leibowitz, S. G., Olsen, A. R. & Thornbrugh, D. J. The stream-catchment (StreamCat) dataset: a database of watershed metrics for the conterminous United States. J. Am. Water Resour. Assoc. 52, 120–128 (2016).
    ADS  Article  Google Scholar 

    51.
    Falcone, J. A., Carlisle, D. M. & Weber, L. C. Quantifying human disturbance in watersheds: variable selection and performance of a GIS-based disturbance index for predicting the biological condition of perennial streams. Ecol. Indic. 10, 264–273 (2010).
    Article  Google Scholar 

    52.
    U.S. Geological Survey. GAGES-II—Geospatial attributes of gages for evaluating streamflow: U.S. Geological Survey database. https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml (2011).

    53.
    de Graaf, I. E. M., Gleeson, T., (Rens) van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).
    ADS  PubMed  Article  CAS  Google Scholar 

    54.
    Ledford, S. H., Zimmer, M. & Payan, D. Anthropogenic and biophysical controls on low flow hydrology in the Southeastern United States. Water Resour. Res. 56, 1–19 (2020).
    Article  Google Scholar 

    55.
    Kurylyk, B. L., Macquarrie, K. T. B. & Voss, C. I. Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resour. Res. 50, 3253–3274 (2014).
    ADS  Article  Google Scholar 

    56.
    Arismendi, I., Johnson, S. L., Dunham, J. B., Haggerty, R. & Hockman-Wert, D. The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States. Geophys. Res. Lett. 39, 1–7 (2012).
    Article  Google Scholar 

    57.
    Luce, C. H., Abatzoglou, J. T. & Holden, Z. A. The missing mountain water: slower westerlies decrease orographic enhancement in the pacific northwest USA. Science 342, 1360–1365 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Johnson, Z. C. et al. Heed the data gap: guidelines for using incomplete datasets in annual stream temperature analyses. Ecol. Indic. 122, 107229 (2021).
    Article  Google Scholar 

    59.
    U.S. Geological Survey. USGS water data for the Nation: U.S. Geological Survey National Water Information System database. (2019).

    60.
    Isaak, D. J. et al. The NorWeST summer stream temperature model and scenarios for the Western U.S.: a crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams. Water Resour. Res. 53, 9181–9205 (2017).
    ADS  Article  Google Scholar 

    61.
    Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. (2012)

    62.
    Chamberlain, S. rnoaa: ‘NOAA’ Weather Data from R. R package version 0.8.4. (2019).

    63.
    Falcone, J. A. U.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences: U.S. Geological Survey data release (2017).

    64.
    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods https://doi.org/10.1038/s41592-019-0686-2 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    65.
    Rosenberry, D. O., Briggs, M. A., Delin, G. & Hare, D. K. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream. Water Resour. Res. 52, 1–18 (2016).
    Article  Google Scholar 

    66.
    Barlow, P. M. & Hess, K. M. Simulated Hydrologic Responses of the Quashnet River Stream-Aquifer System to Proposed Ground-Water Withdrawals, Cape Cod, Massachusetts. U.S. Geological Survey, Water-Resources Investigations Report 93-4-64, Marlborough (1993).

    67.
    Herberich, E., Sikorski, J. & Hothorn, T. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS One 5, 1–8 (2010).
    Article  CAS  Google Scholar 

    68.
    Carslaw, D. C. & Ropkins, K. Openair – an r package for air quality data analysis. Environ. Model. Softw. 27–28, 52–61 (2012).
    Article  Google Scholar 

    69.
    Hare, D. K. Continental-scale analysis of shallow and deep groundwater contributions to streams. Haredkb/PairedAir-StreamAnnualTSignals https://doi.org/10.5281/zenodo.4313244 (2020).
    Article  Google Scholar 

    70.
    U.S. Geological Survey. USGS TNM Hydrography (NHD). https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServer (2016). More

  • in

    High resolution biologging of breaching by the world’s second largest shark species

    In the present study, we used accelerometer enabled animal-borne biologging tags (recording temperature, pressure and three-axis accelerometry) to describe in high temporal resolution the variability and repeatability of 67 breaches made by three sharks over 41 cumulative days (Fig. 1; shark 5 m length (n = 1) 678 kg estimated mass; and sharks 6 m length (n = 2) 160 kg estimated mass). Approximately half (n = 28) of all breaches were single breaches, but we also recorded 13 double breaches, three triple breaches and one shark that breached four times in 47 s (Fig. 2A-D). Consecutive breaches were 18 s apart (mean value ± 6 s.d, range 12–47 s); i.e. sharks ascend from depth to the surface, propel themselves out of the water and swim to depth before commencing the subsequent ascent. Breaching frequency varied among individuals. Shark 1 breached 0.4 ± 0.9 times per day (mean ± 1 s.d.; range 0–2, n = 2 breaches), shark 3 breached 0.9 per day (± 0.9 s.d, range 0–2, n = 5) and shark 2 breached 1.9 times per day (± 1.8 s.d, range 0–6, N = 60) over 4.8, 4.9 and 31.8 tracking days respectively), during both day and night (peak hour of breaching 04:00 am). Multiple breaches by the same sharks have never been empirically demonstrated before, and breaching has not been described to take place at night.
    Figure 1

    Basking shark breaching. Breaching recorded by a towed camera tag deployed in 2018. These data are from a shark that was not instrumented with an accelerometer, they are included to aid visualisation of the breaching process from a point-of-view perspective. For sharks instrumented with accelerometers in 2017, tags where attached flush to the surface of the animal at the base of the dorsal fin. (A) Basking shark breaching (photo: Youen Jacob). The timing and depth associated with each image (C–H) are identified on the breaching depth profile (B). (C,D) the shark starts to ascend from 72 m depth at 0.94 m of vertical gain per second, reaching the surface (in view, E) in 77 s. The shark can be seen completely out of the water (F), before descending (G,H) to depth again.

    Full size image

    Figure 2

    Characteristics of breaching. (A–D) A quadruple breach by a six-metre basking shark over 47 s showing changes in depth (A), tail beat amplitude (B), VeDBA (C) and speed (D) over the series of breaches. (E) Depth profiles of 16 single breaching events performed by a single shark, with time (in seconds) centred on the breach, overlaid on a common timescale showing repeatability of ascent angle and subsequent descent after breaching. (F) Dubai plot showing tri-axial acceleration data as a 3-dimensional histogram, with time spent by sharks in a particular posture on each facet of the sphere extruded as triangular bars, and colour scaling with the cumulative time in a given facet. Data show a right-handed breach of a single shark, where rapid rolling is indicated by short dark blue bars on the right face of the sphere.

    Full size image

    At the onset of a breach, sharks switched from slow swimming at 0.3 m.s-1 (mean value ± 0.16 s.d., range 0.17–0.4 m.s-1) at 14.8 m depth (± 5, range 4.6–28 m), to swimming towards the surface (Fig. 1C-E) at an angle of 38.9° (± 13.2, 23.08 to 81.6°), and an average (mean) ascent speed of 2.7 m.s-1 ± 0.5 (1.2–3.8 m.s-1). The peak ascent phase of a breach was observed when the rates of ascent and swimming speed rapidly increased. Breaching metrics were calculated separately for this peak ascent phase, where basking sharks reached the surface in 6 s (± 2.1, 2–17), before breaching near vertically at 76° (± 9, 43.3–87.9°), leaving the water at a mean exit speed of 3.9 m.s-1 ± 0.6. range: 2.2–5.6 m.s-1) (Fig. 1F). To contextualise our observations, an 8 m basking shark breached at 5.1 m.s-1 from 28 m depth10 and oceanic whitetip sharks (Carcharhinus longimanus)11 and great white sharks (Carcharodon carcharias)11,12 ambush-breach their prey at 4 and up to 6.5 m s−1 respectively, but from considerably deeper ( > 100 m11) and are smaller sharks. The peak forces generated by the three tagged basking sharks (which were estimated to weigh up to 1160 kg) were 20 G at the peak of breaching. Breaches could be further characterised by whether sharks exited the water on a particular side of their body. Sharks rolled to their right side in 45 of the 67 breaches (representing 67% of breaches), which may be suggestive of lateralisation (Fig. 2F), the preference for breaching on one side consistently across events13,14. Dynamic body acceleration (VeDBA) (linear mixed effects model; χ2 7.6, p = 0.006) along with tailbeat amplitude (linear mixed effects model; χ2 5.54, p = 0.019) increased with the sharks’ ascent pitch towards the surface. Breaching events were highly repeatable, both among and between sharks, following a similar ascent rate, speed and angle, and from a similar starting depth (Fig. 2E). Breaching was more energetically demanding than routine swimming (breaching VeDBA 7.7 m s−2 ± 4.5, range 0.4–14.7 vs routine swimming VeDBA 0.24 m.s-2 ± 0.04, 0.2–0.27), requiring double the tail beat frequency (breaching 0.49 Hz ± 0.12 vs routine swimming 1.08 Hz ± 0.51) and 15 times the tail beat amplitude (breaching 1.5 ± 1.1 Hz vs. routine swimming 0.1 ± 0.05 Hz). During multiple breaching events, the ascent rate, swimming speed and acceleration were similar for every subsequent breach, although the ascent starting depth was often shallower than for the initial breach. The relatively low field metabolic rate that comes with being ectothermic makes energetically demanding behaviour relatively more expensive for sharks. Therefore, the costs of performing multiple breaches may accumulate more rapidly compared to endothermic whales, such as humpback whales (Megaptera novaeangliae), which have been recorded breaching 17 times in a 6.5 h deployment15. On average, sharks required an estimated 11.5 kJ (range 3–22 kJ) of mechanical energy (({E}_{m})) to perform a breach, and expended the same ({E}_{m}) for each breach, regardless of whether they breached once or several times (Wilcoxon rank sum test, W = 198.5, p = 0.87; ({E}_{m} single) = 11.5 to 11.8 kJ, ({E}_{m} multi) = 9.98 to 10.3 kJ). Comparatively, the energetic cost of breaching for an 8 m basking shark weighing 2700 kg was estimated six times greater (63 to 72 kJ10). These differences may be attributed to the sharks in the present study being smaller, with the cost of breaching found to increase with increasing body mass15. A breach likely constitutes approximately 0.05 to 0.09% of their daily metabolic cost, which ranged from 12.8 to 21.5 MJ per day16. For comparison, the relative cost of performing a single breach in a 7.8 m (7000 kg) humpback whale represents 0.08 to 0.5% of its daily field metabolic rate15.
    The question remains what the function of breaching is for basking sharks. We are still far from certain what the function of breaching is for many aquatic species, but spinner dolphins, blacktip sharks and humpback whales are known to breach to dislodge epiparasites17. Gore et al.9 noted that epiparasitic lampreys were not dislodged from basking sharks following breaching, suggesting that it may not function for parasite removal, or may require several breaches to dislodge such parasites. Breaching may be used to visually signal between spinner dolphins, and between humpback whales17. Basking sharks breached during the night-time as well as the daytime, and have small eyes, suggesting that breaching is unlikely to be a visual signal. However, breaching may play a role in acoustic communication between distant groups of sharks. Basking sharks can apparently detect weak electric signals produced by zooplankton18, and some elasmobranchs use electro-sensory cues during courtship19, suggesting that breaching could convey readiness to mate. It thus seems possible that the acoustic signal of breaching could be detectable and useful to basking sharks. We have no information in the present study about the presence of other sharks during breaching, although future work using animal-borne acoustic proximity receivers on large numbers of sharks, or aerial drones, could provide insight into the social networks of basking sharks, and whether they breach in proximity to conspecifics. We propose that in the absence of a better explanation and given the predictable and persistent aggregations of basking sharks in Scottish waters, that breaching may be more likely to be related to intra-specific signalling, than anything else yet described.
    We show using repeated direct measurements from three individuals, that the mechanical forces required for basking sharks to breach are considerable, but that basking sharks can breach repeatedly in quick succession. The role of breaching seems most likely to be related to intra-specific signalling and may add to a weight of evidence suggesting that Scottish waters may be an important site for breeding for the species. More

  • in

    Groundwater extraction reduces tree vitality, growth and xylem hydraulic capacity in Quercus robur during and after drought events

    1.
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).
    Article  Google Scholar 
    2.
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).
    Article  Google Scholar 

    3.
    Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).
    ADS  Article  Google Scholar 

    4.
    Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. PNAS 102, 15144–15148 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).
    ADS  Article  Google Scholar 

    6.
    Kannenberg, S. A. et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol. Lett. 22, 119–127 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
    ADS  Article  Google Scholar 

    8.
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Cunningham, S. C., Thomson, J. R., MacNally, R., Read, J. & Baker, P. J. Groundwater change forecasts widespread forest dieback across an extensive floodplain system. Freshw. Biol. 56, 1494–1508 (2011).
    Article  Google Scholar 

    10.
    Tockner, K. & Stanford, J. Riverine flood plains: Present state and future trends. Environ. Conserv. 29, 308–330 (2002).
    Article  Google Scholar 

    11.
    Kløve, B. et al. Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environ. Sci. Policy 14, 782–793 (2011).
    Article  Google Scholar 

    12.
    Griebler, C. & Avramov, M. Groundwater ecosystem services: A review. Freshw. Sci. 34, 355–367 (2015).
    Article  Google Scholar 

    13.
    Griebler, C., Avramov, M. & Hose, G. Groundwater ecosystems and their services: Current status and potential risks. In Atlas of Ecosystem Services (ed. Schröter, M.) 197–203 (Springer, 2019).
    Google Scholar 

    14.
    Kløve, B. et al. Groundwater dependent ecosystems part I: Hydroecological status and trends. Environ. Sci. Policy 14, 770–781 (2011).
    Article  Google Scholar 

    15.
    Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).
    ADS  Article  Google Scholar 

    16.
    Cuthbert, M. O. et al. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Change 9, 137–141 (2019).
    ADS  Article  Google Scholar 

    17.
    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).
    ADS  Article  Google Scholar 

    18.
    Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).
    ADS  Article  Google Scholar 

    19.
    Earman, S. & Dettinger, M. Potential impacts of climate change on groundwater resources—A global review. J. Water Clim. Change 2, 213–229 (2011).
    Article  Google Scholar 

    20.
    Skiadaresis, G., Schwarz, J. A. & Bauhus, J. Groundwater extraction in floodplain forests reduces radial growth and increases summer drought sensitivity of pedunculate oak trees (Quercus robur L.). Front. For. Glob. Change 2, 267 (2019).
    Article  Google Scholar 

    21.
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).
    PubMed  Article  Google Scholar 

    22.
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).
    CAS  PubMed  Article  Google Scholar 

    23.
    Martínez-Vilalta, J. The rear window: Structural and functional plasticity in tree responses to climate change inferred from growth rings. Tree physiol. 38, 155–158 (2018).
    PubMed  Article  Google Scholar 

    24.
    Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).
    Article  Google Scholar 

    25.
    McDowell, N. G., Brodribb, T. J. & Nardini, A. Hydraulics in the 21st century. New Phytol. 224, 537–542 (2019).
    PubMed  Article  Google Scholar 

    26.
    Anderegg, W. R. L. & Meinzer, F. C. Wood anatomy and plant hydraulics in a changing climate. In Functional and Ecological Xylem Anatomy (ed. Hacke, U.) 235–253 (Springer, 2015).
    Google Scholar 

    27.
    Fonti, P. et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New phytol. 185, 42–53 (2010).
    PubMed  Article  Google Scholar 

    28.
    Tulik, M. The anatomical traits of trunk wood and their relevance to oak (Quercus robur L.) vitality. Eur. J. For. Res. 133, 845–855 (2014).
    Article  Google Scholar 

    29.
    Fonti, P. & Jansen, S. Xylem plasticity in response to climate. New Phytol. 195, 734–736 (2012).
    PubMed  Article  Google Scholar 

    30.
    Brodribb, T. J. Xylem hydraulic physiology: The functional backbone of terrestrial plant productivity. Plant Sci. 177, 245–251 (2009).
    CAS  Article  Google Scholar 

    31.
    He, P. et al. Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob. Change Biol. 26, 1833–1841 (2019).
    ADS  Article  Google Scholar 

    32.
    Barbaroux, C. & Bréda, N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 22, 1201–1210 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Bréda, N. & Granier, A. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann. For. Sci. 53, 521–536 (1996).
    Article  Google Scholar 

    34.
    Pérez-de-Lis, G., Rozas, V., Vázquez-Ruiz, R. A. & García-González, I. Do ring-porous oaks prioritize earlywood vessel efficiency over safety? Environmental effects on vessel diameter and tyloses formation. Agric. For. Meteorol. 248, 205–214 (2018).
    ADS  Article  Google Scholar 

    35.
    Tumajer, J. & Treml, V. Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. For. Ecol. Manag. 379, 185–194 (2016).
    Article  Google Scholar 

    36.
    Kniesel, B. M., Günther, B., Roloff, A. & von Arx, G. Defining ecologically relevant vessel parameters in Quercus robur L. for use in dendroecology: A pointer year and recovery time case study in Central Germany. Trees 29, 1041–1051 (2015).
    Article  Google Scholar 

    37.
    Gričar, J., de Luis, M., Hafner, P. & Levanič, T. Anatomical characteristics and hydrologic signals in tree-rings of oaks (Quercus robur L.). Trees 27, 1669–1680 (2013).
    Article  Google Scholar 

    38.
    Castagneri, D., Regev, L., Boaretto, E. & Carrer, M. Xylem anatomical traits reveal different strategies of two Mediterranean oaks to cope with drought and warming. Environ. Exp. Bot. 133, 128–138 (2017).
    Article  Google Scholar 

    39.
    Fonti, P. & García-González, I. Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. J. Biogeogr. 35, 2249–2257 (2008).
    Article  Google Scholar 

    40.
    González, I. G. & Eckstein, D. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol. 23, 497–504 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Pérez-de-Lis, G., Rossi, S., Vázquez-Ruiz, R. A., Rozas, V. & García-González, I. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytol. 209, 521–530 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    García-González, I., Souto-Herrero, M. & Campelo, F. Ring-porosity and earlywood vessels: A review on extracting environmental information through time. IAWA J. 37, 295–314 (2016).
    Article  Google Scholar 

    43.
    Friedrichs, D. A. et al. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23, 729–739 (2009).
    Article  Google Scholar 

    44.
    Büntgen, U. et al. Tree-ring indicators of German summer drought over the last millennium. Quat. Sci. Rev. 29, 1005–1016 (2010).
    ADS  Article  Google Scholar 

    45.
    Bhuyan, U., Zang, C. & Menzel, A. Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia 44, 1–8 (2017).
    Article  Google Scholar 

    46.
    Árvai, M., Morgós, A. & Kern, Z. Growth-climate relations and the enhancement of drought signals in pedunculate oak (Quercus robur L.) tree-ring chronology in Eastern Hungary. iForest 11, 267–274 (2018).
    Article  Google Scholar 

    47.
    Bramer, I. et al. Advances in monitoring and modelling climate at ecologically relevant scales. Adv. Ecol. Res. 58, 101–161 (2018).
    Article  Google Scholar 

    48.
    Sass-Klaassen, U., Sabajo, C. R. & den Ouden, J. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29, 171–175 (2011).
    Article  Google Scholar 

    49.
    Souto-Herrero, M., Rozas, V. & García-González, I. Earlywood vessels and latewood width explain the role of climate on wood formation of Quercus pyrenaica Willd. across the Atlantic-Mediterranean boundary in NW Iberia. For. Ecol. Manage. 425, 126–137 (2018).
    Article  Google Scholar 

    50.
    Fonti, P. & García-González, I. Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol. 163, 77–86 (2004).
    Article  Google Scholar 

    51.
    Jacobsen, A. L., Valdovinos-Ayala, J. & Pratt, R. B. Functional lifespans of xylem vessels: Development, hydraulic function, and post-function of vessels in several species of woody plants. Am. J. Bot. 105, 142–150 (2018).
    PubMed  Article  Google Scholar 

    52.
    Jia, X. et al. Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agric. For. Meteorol. 228, 120–129 (2016).
    ADS  Article  Google Scholar 

    53.
    Carter, J. L. & White, D. A. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth. Tree Physiol. 29, 1407–1418 (2009).
    PubMed  Article  Google Scholar 

    54.
    Zolfaghar, S., Villalobos-Vega, R., Zeppel, M. & Eamus, D. The hydraulic architecture of Eucalyptus trees growing across a gradient of depth-to-groundwater. Funct. Plant Biol. 42, 888–898 (2015).
    PubMed  Article  Google Scholar 

    55.
    Horton, J. L., Kolb, T. E. & Hart, S. C. Responses of riparian trees to interannual variation in ground water depth in a semi-arid river basin. Plant Cell Environ. 24, 293–304 (2001).
    Article  Google Scholar 

    56.
    Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).
    Article  Google Scholar 

    57.
    Garzón, M. B., Alía, R., Robson, T. M. & Zavala, M. A. Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr. 20, 766–778 (2011).
    Article  Google Scholar 

    58.
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Sperry, J. S., Meinzer, F. C. & McCulloh, K. A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 31, 632–645 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Tyree, M. T. & Ewers, F. W. The hydraulic architecture of trees and other woody plants. New Phytol. 119, 345–360 (1991).
    Article  Google Scholar 

    61.
    Oosterbaan, A. & Nabuurs, G. J. Relationships between oak decline and groundwater class in The Netherlands. Plant Soil 136, 87–93 (1991).
    Article  Google Scholar 

    62.
    Leuschner, C. & Ellenberg, H. Ecology of Central European Forests (Springer, 2017).
    Google Scholar 

    63.
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).
    PubMed  Article  Google Scholar 

    64.
    McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).
    PubMed  Article  Google Scholar 

    65.
    Pellizzari, E., Camarero, J. J., Gazol, A., Sangüesa-Barreda, G. & Carrer, M. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. Glob. Change Biol. 22, 2125–2137 (2016).
    ADS  Article  Google Scholar 

    66.
    McCarroll, D., Whitney, M., Young, G. H. F., Loader, N. J. & Gagen, M. H. A simple stable carbon isotope method for investigating changes in the use of recent versus old carbon in oak. Tree Physiol. 37, 1021–1027 (2017).
    CAS  PubMed  Article  Google Scholar 

    67.
    Hacke, U. G. Variable plant hydraulic conductance. Tree Physiol. 34, 105–108 (2014).
    PubMed  Article  Google Scholar 

    68.
    Hacke, U. G., Sperry, J. S., Wheeler, J. K. & Castro, L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26, 689–701 (2006).
    PubMed  Article  Google Scholar 

    69.
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    70.
    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
    ADS  Article  Google Scholar 

    71.
    Ehleringer, J. R. & Dawson, T. E. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ. 15, 1073–1082 (1992).
    CAS  Article  Google Scholar 

    72.
    Roloff, A. Baumkronen: Verständnis und praktische Bedeutung eines komplexen Naturphänomens [Tree crowns: comprehension and practical meaning of a complex phenomenon]. Ulmer, Stuttgart [original in German] (2001).

    73.
    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).
    Article  Google Scholar 

    74.
    Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258 (2010).
    Article  Google Scholar 

    75.
    R Core Team. R: A language and environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    76.
    García-González, I. & Fonti, P. Ensuring a representative sample of earlywood vessels for dendroecological studies: An example from two ring-porous species. Trees 22, 237–244 (2008).
    Article  Google Scholar 

    77.
    Kolb, K. J. & Sperry, J. S. Transport constraints on water use by the Great Basin shrub, Artemisia tridentata. Plant Cell Environ. 22, 925–936 (1999).
    Article  Google Scholar 

    78.
    Sterck, F. J., Zweifel, R., Sass-Klaassen, U. & Chowdhury, Q. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol. 28, 529–536 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K. & Carrer, M. Quantitative wood anatomy-practical guidelines. Front. Plant Sci. 7, 781 (2016).
    Google Scholar 

    80.
    Speer, J. H. Fundamentals of tree-ring research (University of Arizona Press, 2010).

    81.
    Cook, E. R. & Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. (1981).

    82.
    Carrer, M., von Arx, G., Castagneri, D. & Petit, G. Distilling allometric and environmental information from time series of conduit size: the standardization issue and its relationship to tree hydraulic architecture. Tree Physiol. 35, 27–33 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).
    ADS  Article  Google Scholar 

    84.
    Zink, M. et al. The German drought monitor. Environ. Res. Lett. 11, 74002 (2016).
    Article  Google Scholar 

    85.
    Samaniego, L., Kumar, R. & Zink, M. Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeor. 14, 47–68 (2013).
    ADS  Article  Google Scholar 

    86.
    Samaniego, L., Kumar, R. & Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 46, 1–25 (2010).
    Google Scholar 

    87.
    Zang, C. & Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 38, 431–436 (2015).
    Article  Google Scholar 

    88.
    Schwarz, J. et al. Quantifying growth responses of trees to drought—A critique of commonly used resilience indices and recommendations for future studies. Curr. For. Rep. 6, 185–200 (2020).
    Google Scholar 

    89.
    Jacobsen, A. L., Pratt, R. B., Venturas, M. D., & Hacke, U. G. Large volume vessels are vulnerable to water-stress-induced embolism in stems of poplar. IAWA J. 40(1), 4–S4 (2019).

    90.
    Cai, J., & Tyree, M. T. (2010). The impact of vessel size on vulnerability curves: data and models for within‐species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ. 33(7), 1059–1069. More

  • in

    Population genomics and conservation management of a declining tropical rodent

    Abbott I (2000) Improving the conservation of threatened and rare mammal species through translocation to islands: case study Western Australia. Biol Conserv 93:195–201
    Article  Google Scholar 

    Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5:384–387
    Article  Google Scholar 

    Aplin KP (2006) Ten million years of rodent evolution in Australasia: phylogenetic evidence and a speculative historical biogeography. In: Merrick JR (ed) Evolution and biogeography of Australasian vertebrates. Auscipub, Sydney, pp 707–744

    Ball IR, Possingham H, Watts M (2009) Marxan and relatives: software for spatial conservation prioritization. In: Moilanen A, Wilson KA, Possingham H (eds) Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford, p 320

    Berger-Tal O, Blumstein DT, Swaisgood RR (2020) Conservation translocations: a review of common difficulties and promising directions. Anim Conserv 23:121–131
    Article  Google Scholar 

    Blonder B, Harris DJ (2018) hypervolume: High dimensional geometry and set operations using kernel density estimation, support vector machines, and convex hulls. R Package Version 2.0.11. https://CRAN.R-project.org/package=hypervolume

    Blonder B, Morrow CB, Maitner B, Harris DJ, Lamanna C, Violle C et al. (2018) New approaches for delineating n-dimensional hypervolumes. Methods Ecol Evol 9:305–319
    Article  Google Scholar 

    Breed M, Ford F (2007) Native mice and rats. CSIRO Publishing, Collingwood, Victoria
    Google Scholar 

    Cardoso MJ, Eldridge MDB, Oakwood M, Rankmore B, Sherwin WB, Firestone KB (2009) Effects of founder events on the genetic variation of translocated island populations: implications for conservation management of the northern quoll. Conserv Genet 10:1719–1733
    Article  Google Scholar 

    Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140
    PubMed  PubMed Central  Article  Google Scholar 

    Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244
    Article  Google Scholar 

    Cramb J, Hocknull S (2010) New Quaternary records of Conilurus (Rodentia: Muridae) from eastern and northern Australia with the description of a new species. Zootaxa 2634:41–56
    Article  Google Scholar 

    Davies HF, Maier SW, Murphy BP (2020) Feral cats are more abundant under severe disturbance regimes in an Australian tropical savanna. Wildl Res 47:624–632
    Article  Google Scholar 

    Davies HF, McCarthy MA, Firth RSC, Woinarski JCZ, Gillespie GR, Andersen AN et al. (2017) Top-down control of species distributions: feral cats driving the regional extinction of a threatened rodent in northern Australia (N Roura-Pascual, Ed.). Divers Distrib 23:272–283
    Article  Google Scholar 

    Davies HF, McCarthy MA, Firth RSC, Woinarski JCZ, Gillespie GR, Andersen AN et al. (2018) Declining populations in one of the last refuges for threatened mammal species in northern Australia. Austral Ecol 43:602–612
    Article  Google Scholar 

    Davies HF, McCarthy MA, Rioli W, Puruntatameri J, Roberts W, Kerinaiua C et al. (2018) An experimental test of whether pyrodiversity promotes mammal diversity in a northern Australian savanna. J Appl Ecol 55:2124–2134
    Article  Google Scholar 

    DoE (2015) Threatened species strategy. Australian Government Department of the Environment, Canberra, ACT

    Doherty TS, Driscoll DA (2018) Competition in the historical niche: a response to Scheele et al. Trends Ecol Evol 33:147–148
    PubMed  Article  PubMed Central  Google Scholar 

    Dyer R (2016) gstudio: tools related to the spatial analysis of genetic marker data. R Package Version 1.5.2

    Firth RSC, Brook BW, Woinarski JCZ, Fordham DA (2010) Decline and likely extinction of a northern Australian native rodent, the brush-tailed rabbit-rat Conilurus penicillatus. Biol Conserv 143:1193–1201
    Article  Google Scholar 

    Firth RSC, Jefferys E, Woinarski JCZ, Noske RA (2005) The diet of the brush-tailed rabbit-rat (Conilurus penicillatus) from the monsoonal tropics of the Northern Territory. Aust Wildl Res 32:517–523
    Article  Google Scholar 

    Firth RSC, Woinarski JCZ, Brennan KG, Hempel C (2006) Environmental relationships of the brush-tailed rabbit-rat, Conilurus penicillatus, and other small mammals on the Tiwi Islands, northern Australia. J Biogeogr 33:1820–1837
    Article  Google Scholar 

    Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140
    Article  Google Scholar 

    Frankham R, Ballou JD, Ralls K, Eldridge MDB, Dudash MR, Fenster CB et al. (2019) Population fragmentation causes inadequate gene flow and increases extinction risk. In: A practical guide for genetic management of fragmented animal and plant populations. Oxford University Press, New York

    Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol Conserv 170:56–63
    Article  Google Scholar 

    Frichot E, François O (2015) LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929
    Article  Google Scholar 

    Frichot E, Mathieu F, Trouillon T, Bouchard G, François O (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics 196:973–983
    PubMed  PubMed Central  Article  Google Scholar 

    Goudet J (2005) hierfstat, a package for r to compute and test hierarchical F‐statistics. Mol Ecol Notes 5:184–186
    Article  Google Scholar 

    Green AW, Correll MD, George TL, Davidson I, Gallagher S, West C et al. (2018) Using structured decision making to prioritize species assemblages for conservation. J Nat Conserv 45:48–57
    Article  Google Scholar 

    Hanson JO, Schuster R, Morrell N, Strimas-Mackey M, Watts ME, Arcese P et al. (2020) prioritizr: systematic conservation prioritization in R. R Package Version 4.1.5. https://CRAN.R-project.org/package=prioritizr

    Hanson JO, Veríssimo A, Velo‐Antón G, Marques A, Camacho‐Sanchez M, Martínez‐Solano Í et al. (2020) Evaluating surrogates of genetic diversity for conservation planning. Conserv Biol

    Jolly CJ, Webb JK, Phillips BL (2018) The perils of paradise: an endangered species conserved on an island loses antipredator behaviours within 13 generations. Biol Lett 14:20180222
    PubMed  PubMed Central  Article  Google Scholar 

    Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281
    PubMed  PubMed Central  Article  Google Scholar 

    Kemper CM (2020) Growth and development of the brush-tailed rabbit-rat (Conilurus penicillatus), a threatened tree-rat from northern Australia. Aust Mammal

    Kemper CM, Schmitt LH (1992) Morphological variation between populations of the brush-tailed tree rat (Conilurus penicillatus) in Northern Australia and New-Guinea. Aust J Zool 40:437–452
    Article  Google Scholar 

    Korneliussen TS, Albrechtsen A, Nielsen R (2014) Open Access ANGSD: analysis of Next Generation Sequencing Data. BMC Bioinforma 15:1–13
    Article  Google Scholar 

    Kutt A, Felderhof L, Vanderwal J, Stone P, Perkins G (2009) Terrestrial ecosystems of northern Australia. In: Stone P (ed) Northern Australia land and water science review. Department of Infrastructure, Transport, Regional Development and Local Government, Canberra, ACT, pp 1–42

    Laurie CC, Nickerson DA, Anderson AD, Weir BS, Livingston RJ, Dean MD et al. (2007) Linkage disequilibrium in wild mice. Plos Genet 3:e144
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Legge S, Kennedy MS, Lloyd R, Murphy SA, Fisher A (2011) Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following the removal of introduced herbivores. Austral Ecol 36:791–799
    Article  Google Scholar 

    Legge S, Woinarski JCZ, Burbidge AA, Palmer R, Ringma J, Radford JQ et al. (2018) Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildl Res 45:627–644
    Article  Google Scholar 

    Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997

    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    McGregor H, Legge S, Jones ME, Johnson CN (2014) Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats. PLoS ONE 9:e109097
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    McGregor H, Legge S, Jones ME, Johnson CN (2015) Feral cats are better killers in open habitats, revealed by animal-borne video. PLoS ONE 10:e0133915
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Moritz C (1999) Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130:217–228
    Article  Google Scholar 

    Orsini L, Vanoverbeke J, Swillen I, Mergeay J, Meester L (2013) Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol 22:5983–5999
    PubMed  Article  PubMed Central  Google Scholar 

    Ottewell KM, Bickerton DC, Byrne M, Lowe AJ (2016) Bridging the gap: a genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers Distrib 22:174–188
    Article  Google Scholar 

    Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16
    PubMed  Article  PubMed Central  Google Scholar 

    Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
    Article  Google Scholar 

    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Penton CE, Woolley L-A, Radford IJ, Murphy BP (2020) Overlapping den tree selection by three declining arboreal mammal species in an Australian tropical savanna. J Mammal 101:1165–1176

    Pérez I, Anadón JD, Díaz M, Nicola GG, Tella JL, Giménez A (2012) What is wrong with current translocations? A review and a decision-making proposal. Front Ecol Environ 10:494–501
    Article  Google Scholar 

    Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Petit RJ, Mousadik AE, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855
    Article  Google Scholar 

    R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    Google Scholar 

    Radford IJ, Woolley L-A, Corey B, Vigilante T, Hatherley E, Fairman R et al. (2020) Prescribed burning benefits threatened mammals in northern Australia. Biodivers Conserv 29:2985–3007
    Article  Google Scholar 

    Radford IJ, Woolley L-A, Dickman CR, Corey B, Trembath D, Fairman R (2020) Invasive anuran driven trophic cascade: an alternative hypothesis for recent critical weight range mammal collapses across northern Australia. Biol Invasions 22:1967–1982
    Article  Google Scholar 

    Ralls K, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC et al. (2018) Call for a paradigm shift in the genetic management of fragmented populations. Conserv Lett 11:e12412
    Article  Google Scholar 

    Roycroft EJ, Moussalli A, Rowe KC (2020) Phylogenomics uncovers confidence and conflict in the rapid radiation of Australo-Papuan rodents. Syst Biol 69:431–444

    Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494
    CAS  Article  Google Scholar 

    Scheele BC, Foster CN, Banks SC, Lindenmayer DB (2017) Niche contractions in declining species: mechanisms and consequences. Trends Ecol Evol 32:346–355
    PubMed  Article  PubMed Central  Google Scholar 

    Silcock JL, Simmons CL, Monks L, Dillon R, Reiter N, Jusaitis M et al. (2019) Threatened plant translocation in Australia: a review. Biol Conserv 236:211–222
    Article  Google Scholar 

    Smouse PE, Banks SC, Peakall R (2017) Converting quadratic entropy to diversity: Both animals and alleles are diverse, but some are more diverse than others. PLoS ONE 12:1–19
    Article  CAS  Google Scholar 

    Soulé ME (1985) What is conservation biology? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems. BioScience 35:727–734
    Article  Google Scholar 

    Stobo‐Wilson AM, Stokeld D, Einoder LD, Davies HF, Fisher A, Hill BM et al. (2020) Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia. Divers Distrib 26:832–842
    Article  Google Scholar 

    Stobo-Wilson AM, Stokeld D, Einoder LD, Davies HF, Fisher A, Hill BM et al. (2020) Bottom-up and top-down processes influence contemporary patterns of mammal species richness in Australia’s monsoonal tropics. Biol Conserv 247:108638
    Article  Google Scholar 

    Storck-Tonon D, Peres CA (2017) Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26years old archipelago. Biol Conserv 214:270–277
    Article  Google Scholar 

    Traill LW, Perhans K, Lovelock CE, Prohaska A, McFallan S, Rhodes JR et al. (2011) Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Divers Distrib 17:1225–1233
    Article  Google Scholar 

    Van Dyck S, Gynther I, Baker A (eds) (2013) Field companion to the mammals of Australia. New Holland Publishers, London, Sydney

    Van Dyck S, Strahan R (2008) The mammals of Australia. 3rd edn. Reed New Holland, Chatswood, Australia

    Vavrek M (2011) Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol Electron 14:16
    Google Scholar 

    Vladislav K (2018) lpsymphony: symphony integer linear programming solver in R. R Package Version 1.18.0. http://R-Forge.R-project.org/projects/rsymphony

    von Takach Dukai B, Peakall R, Lindenmayer DB, Banks SC (2020) The influence of fire and silvicultural practices on the landscape-scale genetic structure of an Australian foundation tree species. Conserv Genet 21:231–246
    Article  CAS  Google Scholar 

    von Takach B, Scheele BC, Moore H, Murphy BP, Banks SC (2020) Patterns of niche contraction identify vital refuge areas for declining mammals. Divers Distrib 26:1467–1482
    Article  Google Scholar 

    Watts ME, Ball IR, Stewart RS, Klein CJ, Wilson K, Steinback C et al. (2009) Marxan with Zones: software for optimal conservation based land- and sea-use zoning. Environ Model Softw 24:1513–1521
    Article  Google Scholar 

    Winter DJ (2012) mmod: an R library for the calculation of population differentiation statistics. Mol Ecol Resour 12:1158–1160
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Woinarski JCZ, Braby MF, Burbidge AA, Coates D, Garnett ST, Fensham RJ et al. (2019) Reading the black book: the number, timing, distribution and causes of listed extinctions in Australia. Biol Conserv 239:108261
    Article  Google Scholar 

    Woinarski JC, Burbidge AA, Harrison P (2014) The action plan for Australian mammals 2012. CSIRO Publishing, Collingwood, Australia
    Google Scholar 

    Woinarski JCZ, Legge S, Fitzsimons JA, Traill BJ, Burbidge AA, Fisher A et al. (2011) The disappearing mammal fauna of northern Australia: context, cause, and response. Conserv Lett 4:192–201
    Article  Google Scholar 

    Woinarski JCZ, Milne DJ, Wanganeen G (2001) Changes in mammal populations in relatively intact landscapes of Kakadu National Park, Northern Territory, Australia. Austral Ecol 26:360–370
    Article  Google Scholar 

    Woinarski JCZ, Palmer C, Fisher A, Brennan K, Southgate R, Masters P (1999) Distributional patterning of mammals on the Wessel and English Company Islands, Arnhem Land, Northern Territory, Australia. Aust J Zool 47:87–111
    Article  Google Scholar 

    Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    A refined proposal for the origin of dogs: the case study of Gnirshöhle, a Magdalenian cave site

    1.
    Darwin, C. On the Origin of Species by Means of Natural Selection Vol. 167 (John Murray, London, 1859).
    Google Scholar 
    2.
    Kahlke, R.-D. The origin of Eurasian mammoth faunas (Mammuthus–Coelodonta faunal complex). Quatern. Sci. Rev. 96, 32–49 (2014).
    ADS  Article  Google Scholar 

    3.
    Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 37, 1407–1413 (2010).
    Google Scholar 

    4.
    Tarkhnishvili, D., Gavashelishvili, A. & Mumladze, L. Palaeoclimatic models help to understand current distribution of Caucasian forest species. Biol. J. Lin. Soc. 105, 231–248 (2012).
    Article  Google Scholar 

    5.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).
    ADS  CAS  Article  Google Scholar 

    6.
    Lumibao, C. Y., Hoban, S. M. & McLachlan, J. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 20, 1459–1468 (2017).
    Article  Google Scholar 

    7.
    Williams, E. E. in Evolutionary Biology 47–89 (Springer, 1972).

    8.
    Peters, G. in Handbuch der Säugetiere Europas: Raubsäuger (Teil 1) (eds M. Stubbe & F. Krapp) 47–106 (AULA-Verlag, 1993).

    9.
    Leonard, J. A. et al. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Curr. Biol. 17, 1146–1150 (2007).
    CAS  Article  Google Scholar 

    10.
    Perri, A. A wolf in dog’s clothing: Initial dog domestication and Pleistocene wolf variation. J. Archaeol. Sci. 68, 1–4. https://doi.org/10.1016/j.jas.2016.02.003 (2016).
    Article  Google Scholar 

    11.
    Weniger, G.-C. in The Pleistocene Old World: Regional Perspectives (ed Olga Soffer) 201–215 (Springer, 1987).

    12.
    Weniger, G.-C. Magdalenian settlement and subsistence in South-west Germany. Proc. Prehist. Soc. 53, 293–307. https://doi.org/10.1017/S0079497X0000623X (1987).
    ADS  Article  Google Scholar 

    13.
    Taller, A., Bolus, M. & Conard, N. The Magdalenian of Hohle Fels Cave and the resettlement of the Swabian Jura after the LGM. in Modes de Contacts et de Déplacements au Paléolithique Eurasiatique/Modes of Contact and Mobility During the Eurasian Palaeolithic. ERAUL Vol. 140, 383–399 (2014).

    14.
    Maier, A. Population and settlement dynamics from the Gravettian to the Magdalenian. Mitteilungen Gesellschaft Urgeschichte 26, 83–101 (2017).
    Google Scholar 

    15.
    Hulme-Beaman, A., Dobney, K., Cucchi, T. & Searle, J. B. An ecological and evolutionary framework for commensalism in anthropogenic environments. Trends Ecol. Evol. 31, 633–645. https://doi.org/10.1016/j.tree.2016.05.001 (2016).
    Article  PubMed  Google Scholar 

    16.
    Baumann, C. et al. Dietary niche partitioning among Magdalenian canids in southwestern Germany and Switzerland. Quatern. Sci. Rev. 227, 106032 (2020).
    Article  Google Scholar 

    17.
    Baumann, C., Bocherens, H., Drucker, D. G. & Conard, N. J. Fox dietary ecology as a tracer of human impact on Pleistocene ecosystems. PLoS ONE 15, e0235692. https://doi.org/10.1371/journal.pone.0235692 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    18.
    Smith, B. D. A cultural niche construction theory of initial domestication. Biol. Theory 6, 260–271 (2011).
    Article  Google Scholar 

    19.
    Zeder, M. A. Domestication as a model system for niche construction theory. Evol. Ecol. 30, 325–348 (2016).
    Article  Google Scholar 

    20.
    Belyaev, D. K., Plyusnina, I. Z. & Trut, L. N. Domestication in the silver fox (Vulpes fulvus Desm): Changes in physiological boundaries of the sensitive period of primary socialization. Appl. Anim. Behav. Sci. 13, 359–370. https://doi.org/10.1016/0168-1591(85)90015-2 (1985).
    Article  Google Scholar 

    21.
    Germonpré, M., Láznickova-Galetova, M., Sablin, M. V. & Bocherens, H. in Hybrid Communities, Biosocial Approaches to Domestication and Other Trans-Species Relationships Routledge Studies in Anthropology (eds C. Stépanoff & J.-D. Vigne) (Routledge, 2018).

    22.
    Thalmann, O. & Perri, A. Population Genetics 1–34 (Springer, Cham, 2018).
    Google Scholar 

    23.
    MacHugh, D. E., Larson, G. & Orlando, L. Taming the past: Ancient DNA and the study of animal domestication. Annu. Rev. Anim. Biosci. 5, 329–351. https://doi.org/10.1146/annurev-animal-022516-022747 (2017).
    CAS  Article  PubMed  Google Scholar 

    24.
    Frantz, L. A. et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352, 1228–1231 (2016).
    ADS  CAS  Article  Google Scholar 

    25.
    Thalmann, O. et al. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 342, 871–874 (2013).
    ADS  CAS  Article  Google Scholar 

    26.
    Bocherens, H. et al. Reconstruction of the Gravettian food-web at Předmostí I using multi-isotopic tracking (13C, 15N, 34S) of bone collagen. Quatern. Int. 359–360, 211–228. https://doi.org/10.1016/j.quaint.2014.09.044 (2015).  
    Article  Google Scholar 

    27.
    Prassack, K. A., DuBois, J., Lázničková-Galetová, M., Germonpré, M. & Ungar, P. S. Dental microwear as a behavioral proxy for distinguishing between canids at the Upper Paleolithic (Gravettian) site of Předmostí, Czech Republic. J. Archaeol. Sci. 115, 105092 (2020).
    Article  Google Scholar 

    28.
    Wilczyński, J. et al. Friend or foe? Large canid remains from Pavlovian sites and their archaeozoological context. J. Anthropol. Archaeol. 59, 101197. https://doi.org/10.1016/j.jaa.2020.101197 (2020).
    Article  Google Scholar 

    29.
    Street, M., Napierala, H. & Janssens, L. The late Paleolithic dog from Bonn-Oberkassel in context. in The Late Glacial Burial from Oberkassel Revisited 253–274. (Verlag Phillip von Zabern, Darmstadt, 2015).

    30.
    Janssens, L. et al. A new look at an old dog: Bonn-Oberkassel reconsidered. J. Archaeol. Sci. 92, 126–138. https://doi.org/10.1016/j.jas.2018.01.004 (2018).
    Article  Google Scholar 

    31.
    Rütimeyer, L. Die Knochenhöhle von Thayingen bei Schaffhausen. (F. Vieweg & Sohn, 1875).

    32.
    Napierala, H. & Uerpmann, H.-P. A ‘new’ palaeolithic dog from central Europe. Int. J. Osteoarchaeol. 22, 127–137. https://doi.org/10.1002/oa.1182 (2012).
    Article  Google Scholar 

    33.
    Napierala, H. Die Tierknochen aus dem Kesslerloch: Neubearbeitung der paläolithischen Fauna (Baudepartement des Kantons Schaffhausen, Kantonsarchäologie Schaffhausen, 2008).
    Google Scholar 

    34.
    Albrecht, G., Drautz, D. & Kind, J. Eine Station des Magdalénien in der Gnirshöhle bei Engen- Bittelbrunn im Hegau. Archäol. Korrespondenzblatt 7, 161–179 (1977).
    Google Scholar 

    35.
    Germonpré, M., Lázničková-Galetová, M., Losey, R. J., Räikkönen, J. & Sablin, M. V. Large canids at the Gravettian Předmostí site, the Czech Republic: The mandible. Quatern. Int. 359–360, 261–279. https://doi.org/10.1016/j.quaint.2014.07.012 (2015).
    Article  Google Scholar 

    36.
    Von den Driesch, A. A Guide to the Measurement of Animal Bones from Archaeological Sites: as Developed by the Institut für Palaeoanatomie, Domestikationsforschung und Geschichte der Tiermedizin of the University of Munich. Vol. 1 (Peabody Museum Press, 1976).

    37.
    Benecke, N. Archäozoologische Studien zur Entwicklung der Haustierhaltung. (Akademie Verlag, 1994).

    38.
    Ameen, C. et al. A landmark-based approach for assessing the reliability of mandibular tooth crowding as a marker of dog domestication. J. Archaeol. Sci. 85, 41–50. https://doi.org/10.1016/j.jas.2017.06.014 (2017).
    Article  Google Scholar 

    39.
    Bocherens, H., Drucker, D., Billiou, D. & Moussa, I. Une nouvelle approche pour évaluer l’état de conservation de l’os et du collagène pour les mesures isotopiques (datation au radiocarbone, isotopes stables du carbone et de l’azote). l’Anthropologie 109, 557–567 (2005).

    40.
    Bocherens, H. et al. Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: Prey choice, competition and implications for extinction. Quatern. Int. 245, 249–261. https://doi.org/10.1016/j.quaint.2011.02.023 (2011).
    Article  Google Scholar 

    41.
    Loog, L. et al. Ancient DNA suggests modern wolves trace their origin to a late Pleistocene expansion from Beringia. Mol. Ecol. 1–15 (2019).

    42.
    Nei, M. & Miller, J. C. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics 125, 873–879 (1990).
    CAS  Article  Google Scholar 

    43.
    Botigué, L. R. et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 8, 1–11 (2017).
    ADS  Article  Google Scholar 

    44.
    Nichols, R. Gene trees and species trees are not the same. Trends Ecol. Evol. 16, 358–364 (2001).
    CAS  Article  Google Scholar 

    45.
    Ollivier, M. et al. Dogs accompanied humans during the Neolithic expansion into Europe. Biol. Lett. 14, 20180286 (2018).
    Article  Google Scholar 

    46.
    Bergström, A. et al. Origins and genetic legacy of prehistoric dogs. Science 370, 557–564 (2020).
    Article  Google Scholar 

    47.
    Larson, G. et al. Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc. Natl. Acad. Sci. 109, 8878 (2012).
    ADS  CAS  Article  Google Scholar 

    48.
    Bocherens, H. et al. Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina Cave (Sclayn, Belgium). Quatern. Res. 48, 370–380 (1997).
    ADS  Article  Google Scholar 

    49.
    Bocherens, H. & Drucker, D. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: Case studies from recent and ancient terrestrial ecosystems. Int. J. Osteoarchaeol. 13, 46–53. https://doi.org/10.1002/oa.662 (2003).
    Article  Google Scholar 

    50.
    Krajcarz, M. T., Krajcarz, M. & Bocherens, H. Collagen-to-collagen prey-predator isotopic enrichment ( Δ 13C, Δ 15N) in terrestrial mammals – A case study of a subfossil red fox den. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490, 563–570. https://doi.org/10.1016/j.palaeo.2017.11.044 (2018).
    Article  Google Scholar 

    51.
    von Seth, J., Niemann, J. & Dalén, L. in Paleogenomics 393–418 (Springer, 2018).

    52.
    Orlando, L. in Paleogenomics 325–351 (Springer, 2018).

    53.
    Janssens, L. A. A. From Wolf to Dog, Uitgever Niet Vastgesteld (2019).

    54.
    Zeder, M. A. The domestication of animals. J. Anthropol. Res. 68, 161–190 (2012).
    Article  Google Scholar 

    55.
    Zeder, M. A. Pathways to animal domestication. in Biodiversity in Agriculture: Domestication, Evolution, and Sustainability, 227–259 (2012).

    56.
    Albrecht, G. Magdalénien-Inventare vom Petersfels: Siedlungsarchäologische Ergebnisse der Ausgrabungen 1974–1976. Vol. 6 (Verlag Archaeologica Venatoria, 1979).

    57.
    Albrecht, G. in Urgeschichte in Baden-Württemberg (ed Hansjürgen Müller-Beck) 331–353 (Theiss Verlag, 1983).

    58.
    Albrecht, G. & Berke, H. in De la Loire à l’Oder BAR International Series (ed Marcel Otte) 465–473 (1988).

    59.
    Albrecht, G., Wong, G. L. & Münzel, S. C. in „All der holden Hügel ist keiner mir fremd…“ Festschrift zum 65. Geburtstag von Claus-Joachim Kind. (eds M. Baales & C. Pasda) 301–310 (Archaeologica Venatoria, 2019).

    60.
    Nobis, G. Die Wildsäugetiere in der Umwelt des Menschen von Oberkassel bei Bonn und das Domestikationsproblem von Wölfen im Jungpaläolithikum. in Bonner Jahrbücher, 367–376 (1986).

    61.
    Boessneck, J., von den Driesch, A., Lepiksaar, J., Riek, G. & Storch, G. Das Paläolithikum der Brillenhöhle bei Blaubeuren (Schwäbische Alb) II: Die Jungpleistozänen Tierknochenfunde aus der Brillenhöhle. (Verlag Müller & Gräff, 1973).

    62.
    Münzel, S. C. in Geißenklösterle: Chronostratigraphie, Paläoumwelt und Subsistenz im Mittel- und Jungpaläolithikum der Schwäbischen Alb (eds Nicholas J. Conard, M. Bolus, & Susanne C. Münzel) 147–327 (Kerns Verlag, 2019).

    63.
    Team, R. C. R: A Language and Environment for Statistical Computing, https://www.R-project.org.

    64.
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).
    Article  PubMed  Google Scholar 

    65.
    Stock, B. C. & Semmens, B. X. MixSIAR GUI User Manual v3.1. (2016).

    66.
    Cooper, A. & Poinar, H. N. Ancient DNA: Do it right or not at all. Science 289, 1139–1139 (2000).
    CAS  Article  Google Scholar 

    67.
    Knapp, M. & Hofreiter, M. Next generation sequencing of ancient DNA: Requirements, strategies and perspectives. Genes 1, 227–243 (2010).
    CAS  Article  Google Scholar 

    68.
    Peltzer, A. et al. EAGER: Efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
    Article  Google Scholar 

    69.
    Andrews, S. Babraham Bioinformatics (Babraham Institute, Cambridge, 2010).
    Google Scholar 

    70.
    Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 1–7 (2016).
    Article  Google Scholar 

    71.
    Ginolhac, A., Rasmussen, M., Gilbert, M. T. P., Willerslev, E. & Orlando, L. mapDamage: Testing for damage patterns in ancient DNA sequences. Bioinformatics 27, 2153–2155 (2011).
    CAS  Article  Google Scholar 

    72.
    Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl. Acad. Sci. 111, 2229–2234 (2014).
    ADS  CAS  Article  Google Scholar 

    73.
    Skoglund, P., Ersmark, E., Palkopoulou, E. & Dalén, L. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 25, 1515–1519 (2015).
    CAS  Article  Google Scholar 

    74.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  Article  Google Scholar 

    75.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  Article  Google Scholar 

    76.
    Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  Article  Google Scholar 

    77.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).
    CAS  PubMed  Google Scholar 

    78.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolut. 4, vey016 (2018).

    79.
    Gill, M. S. et al. Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).
    CAS  Article  Google Scholar 

    80.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901 (2018).

    81.
    Rambaut, A. FigTree 1.4. 2 Software. (Institute of Evolutionary Biology, Univ. Edinburgh, 2014).

    82.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  Article  Google Scholar 

    83.
    Nei, M. Molecular Evolutionary Genetics. (Columbia University Press, 1987). More