More stories

  • in

    The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons

    1.
    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Siles, J. A., Cajthaml, T., Filipová, A., Minerbi, S. & Margesin, R. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biol. Biochem. 112, 1–13 (2017).
    CAS  Article  Google Scholar 

    3.
    Sedjo, R. A. The carbon cycle and global forest ecosystem. Water Air Soil Pollut. 70, 295–307 (1993).
    ADS  CAS  Article  Google Scholar 

    4.
    Flato, G. & Marotzke, J. Evaluation of climate models. In Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (2013).

    5.
    Zhao, W. et al. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. CATENA 139, 191–198 (2016).
    CAS  Article  Google Scholar 

    6.
    Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2), 1–22 (2004).
    ADS  CAS  Article  Google Scholar 

    7.
    Yang, Y. & Tilman, D. Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res. J. 7(2), 1143–1148 (2020).
    Article  Google Scholar 

    8.
    Rovira, P. & Vallejo, V. R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach. Geoderma 107, 109–141 (2002).
    ADS  CAS  Article  Google Scholar 

    9.
    Zou, X., Ruan, H., Fu, Y., Yang, X. & Sha, L. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure. Soil Biol. Biochem. 37, 1923–1928 (2005).
    CAS  Article  Google Scholar 

    10.
    Liang, B. C. et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biol. Fertil. Soils 26, 88–94 (1997).
    Article  Google Scholar 

    11.
    Xu, G. et al. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil Biol. Biochem. 91, 1–13 (2015).
    CAS  Article  Google Scholar 

    12.
    Wolters, V. Invertebrate control of soil organic matter stability. Biol. Fertil. Soils 31, 1–19 (2000).
    MathSciNet  CAS  Article  Google Scholar 

    13.
    Marschner, P., Kandelerb, E. & Marschnerc, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453–461 (2003).
    CAS  Article  Google Scholar 

    14.
    Xiao, Y., Huang, Z. & Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 82, 381–389 (2015).
    Article  Google Scholar 

    15.
    Burke, D. J., Weintraub, M. N., Hewins, C. R. & Kalisz, S. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol. Biochem. 43, 795–803 (2011).
    CAS  Article  Google Scholar 

    16.
    Ljungdahl, L. G. & Eriksson, K. E. Ecology of microbial cellulose degradation. Adv. Microb. Ecol. 8, 237–299 (1985).
    CAS  Article  Google Scholar 

    17.
    Sinsabaugh, R. L., Hill, B. H. & Follstad-Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 468, 122–122 (2010).
    ADS  CAS  Article  Google Scholar 

    18.
    Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 68, 252–262 (2014).
    CAS  Article  Google Scholar 

    19.
    Chen, X. et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations. Appl. Soil Ecol. 107, 162–169 (2016).
    Article  Google Scholar 

    20.
    Qi, R. et al. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Appl. Soil Ecol. 102, 36–45 (2016).
    Article  Google Scholar 

    21.
    Rasche, F. et al. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5, 389–402 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Piao, H., Hong, Y. & Yuan, Z. Seasonal changes of microbial biomass carbon related to climatic factors in soils from karst areas of southwest China. Biol. Fertil. Soils 30, 294–297 (2000).
    CAS  Article  Google Scholar 

    23.
    Zhou, G., Xu, J. & Jiang, P. Effect of management practices on seasonal dynamics of organic carbon in soils under bamboo plantations. Pedosphere 16, 525–531 (2006).
    CAS  Article  Google Scholar 

    24.
    Thomas, G. W. Soil pH and soil acidity. Soil Sci. Soc. Am. J. 5, 475–490 (1996).
    Google Scholar 

    25.
    Walkley, A. An examination of methods for determining organic carbon and nitrogen in soils (with one text-figure). Indian. J. Agric. Sci. 25, 598–609 (1935).
    CAS  Article  Google Scholar 

    26.
    Jenkinson, D. S. & Powlson, D. S. The effects of biocidal treatments on metabolism in soil: A method for measuring soil biomass. Soil Biol. Biochem. 8, 209–213 (1976).
    CAS  Article  Google Scholar 

    27.
    Blair, G. J., Lefroy, R. & Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46, 393–406 (1995).
    Article  Google Scholar 

    28.
    Mcgill, W. B., Cannon, K. R., Robertson, J. A. & Cook, F. D. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66, 1–19 (1986).
    Article  Google Scholar 

    29.
    Marx, M. C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).
    CAS  Article  Google Scholar 

    30.
    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16s rrna gene sequencing on the illumina miseq platform. Microbiome 2, 1–7 (2014).
    Article  Google Scholar 

    31.
    Mukherjee, P. K. et al. Oral mycobiome analysis of HIV-infected patients: Identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10, e1003996 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Masella, A. P., Bartram, A. K., Truszkowski, J. M. & Brown, D. G. Neufeld JD (2012) PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 13, 31 (2014).
    Article  CAS  Google Scholar 

    33.
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Kemp, P. F. & Aller, J. Y. Bacterial diversity in aquatic and other environments: What 16S rDNA libraries can tell us. FEMS Microbiol. Ecol. 47, 161–177 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Cole, J. R. et al. Ribosomal Database Project, data and tools for high throughput rRNA analysis. Nucleic Acids. Res. 42, 633–642 (2014).
    Article  CAS  Google Scholar 

    36.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. App. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  Article  Google Scholar 

    37.
    Haynes, R. J. Labile organic matter fractions as central components of the quality of agricultural soils: An pverview. Adv. Agron. 85, 221–268 (2005).
    CAS  Article  Google Scholar 

    38.
    Wang, J., Song, C., Wang, X. & Song, Y. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in northeast china. CATENA 96, 83–89 (2012).
    CAS  Article  Google Scholar 

    39.
    Ma, W., Li, G., Wu, J., Xu, G. & Wu, J. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma 377, 114565 (2020).
    ADS  CAS  Article  Google Scholar 

    40.
    Smolander, A. & Kitunen, V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol. Biochem. 34, 651–660 (2002).
    CAS  Article  Google Scholar 

    41.
    Wang, Q. & Wang, S. Soil organic matter under different forest types in Southern China. Geoderma 142, 349–356 (2007).
    ADS  CAS  Article  Google Scholar 

    42.
    Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B. & Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 165, 277–304 (2000).
    ADS  CAS  Article  Google Scholar 

    43.
    Quideau, S. A. et al. Vegetation control on soil organic matter dynamics. Org. Geochem. 32, 247–252 (2001).
    CAS  Article  Google Scholar 

    44.
    Liu, C. et al. Standing fine root mass and production in four Chinese subtropical forests along a succession and species diversity gradient. Plant Soil 376, 445–459 (2014).
    CAS  Article  Google Scholar 

    45.
    Jiang, P., Xu, Q., Xu, Z. & Cao, Z. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. Forest Ecol. Manag. 236, 30–36 (2006).
    Article  Google Scholar 

    46.
    Hu, Y. et al. Climate change affects soil labile organic carbon fractions in a Tibetan alpine meadow. J. Soil Sediment 17, 326–339 (2016).
    Article  CAS  Google Scholar 

    47.
    Liu, G. et al. Seasonal changes in labile organic matter as a function of environmental factors in a relict permafrost region on the Qinghai-Tibetan Plateau. CATENA 180, 194–202 (2019).
    CAS  Article  Google Scholar 

    48.
    Mcdowell, W. H., Currie, W. S., Aber, J. D. & Yano, Y. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollut. 105, 175–182 (1998).
    ADS  CAS  Article  Google Scholar 

    49.
    Kurka, A. M., Starr, M., Heikinheimo, M. & Salkinojasalonen, M. Decomposition of cellulose strips in relation to climate, litterfall nitrogen, phosphorus and C/N ratio in natural boreal forests. Plant Soil 219, 91–101 (2000).
    CAS  Article  Google Scholar 

    50.
    Waldrop, M. P. & Firestone, M. K. Response of microbial community composition and function to soil climate change. Microb. Ecol. 52, 716–724 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Uselman, S. M., Qualls, R. G. & Thomas, R. B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree. Plant Soil 222, 191–202 (2000).
    CAS  Article  Google Scholar 

    52.
    Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J. & Fogel, M. L. Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biol. Biochem. 60, 23–32 (2013).
    CAS  Article  Google Scholar 

    53.
    Mondal, I. K. et al. Seasonal variation of soil enzymes in areas of fluoride stress in Birbhum District, West Bengal, India. J. Taibah. Univ. Sci. 9, 133–142 (2015).
    Article  Google Scholar 

    54.
    Wang, C., Lü, Y., Wang, L., Liu, X. & Tian, X. Insights into seasonal variation of litter decomposition and related soil degradative enzyme activities in subtropical forest in China. J. Forest Res. 24, 683–689 (2013).
    CAS  Article  Google Scholar 

    55.
    Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. & Šnajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil Ecol. 46, 177–182 (2010).
    Article  Google Scholar 

    56.
    Song, Y. et al. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in northeast China. Environ. Manag. 50, 418–426 (2012).
    ADS  Article  Google Scholar 

    57.
    Shi, W., Dell, E., Bowman, D. & Iyyemperumal, K. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant Soil 288, 285–296 (2006).
    CAS  Article  Google Scholar 

    58.
    Salazar, S. et al. Correlation among soil enzyme activities under different forest system management practices. Ecol. Eng. 37, 1123–1131 (2011).
    Article  Google Scholar 

    59.
    Waldrop, M. P. & Zak, D. R. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9, 921–933 (2006).
    CAS  Article  Google Scholar 

    60.
    Stursova, M., Zifcakova, L., Leigh, M. B., Burgess, R. & Baldrian, P. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 80, 735–746 (2012).
    CAS  PubMed  Article  Google Scholar 

    61.
    Pankratov, T. A., Ivanova, A. O., Dedysh, S. N. & Liesack, W. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ. Microbiol. 13, 1800–1814 (2011).
    CAS  PubMed  Article  Google Scholar 

    62.
    Eichorst, S. A., Kuske, C. R. & Schmidt, T. M. Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Appl. Environ. Microbiol. 77, 586–596 (2011).
    CAS  PubMed  Article  Google Scholar 

    63.
    Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B. & Coutinho, P. M. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. App. Environ. Microbiol. 75, 2046–2056 (2009).
    CAS  Article  Google Scholar 

    64.
    Bastida, F., Hernández, T., Albaladejo, J. & García, C. Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biol. Biochem. 65, 12–21 (2013).
    CAS  Article  Google Scholar 

    65.
    Hannula, S. E., Boschker, H. T. S., Boer, W. D. & Veen, J. A. V. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline. New Phytol. 194, 784–799 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Edwards, I. P., Zak, D. R., Kellner, H., Eisenlord, S. D. & Pregitzer, K. S. Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PLoS ONE 6, e20421 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: A question of microbial competition?. Soil Biol. Biochem. 35, 837–843 (2003).
    CAS  Article  Google Scholar  More

  • in

    Iron limitation by transferrin promotes simultaneous cheating of pyoverdine and exoprotease in Pseudomonas aeruginosa

    1.
    Smith P, Schuster M. Public goods and cheating in microbes. Curr Biol. 2019;29:R442–7.
    2.
    Harrison F, McNally A, Da Silva AC, Heeb S, Diggle SP. Optimised chronic infection models demonstrate that siderophore ‘cheating’ in Pseudomonas aeruginosa is context specific. ISME J. 2017;11:2492–509.

    3.
    Kümmerli R, Santorelli LA, Granato ET, Dumas Z, Dobay A, Griffin AS, et al. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J Evol Biol. 2015;28:2264–74.

    4.
    Stilwell P, Lowe C, Buckling A. The effect of cheats on siderophore diversity in Pseudomonas aeruginosa. J Evol Biol. 2018;31:1330–9.

    5.
    Butaite E, Baumgartner M, Wyder S, Kümmerli R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun. 2017;8:414.

    6.
    Jin Z, Li J, Ni L, Zhang R, Xia A, Jin F. Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion. Nat Commun. 2018;9:1383.

    7.
    Leinweber A, Fredrik Inglis R, Kümmerli R. Cheating fosters species co-existence in well-mixed bacterial communities. ISME J. 2017;11:1179–88.

    8.
    Özkaya Ö, Balbontín R, Gordo I, Xavier KB. Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa. Curr Biol. 2018;28:2070–80.

    9.
    O’Brien S, Kümmerli R, Paterson S, Winstanley C, Brockhurst MA. Transposable temperate phages promote the evolution of divergent social strategies in Pseudomonas aeruginosa populations. Proc R Soc B Biol Sci. 2019;286:20191794.

    10.
    Wolz C, Hohloch K, Ocaktan A, Poole K, Evans RW, Rochel N, et al. Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa. Infect Immun. 1994;62:4021–7.

    11.
    Kim SJ, Park RY, Kang SM, Choi MH, Kim CM, Shin SH. Pseudomonas aeruginosa alkaline protease can facilitate siderophore-mediated iron-uptake via the proteolytic cleavage of transferrins. Biol Pharm Bull. 2006;29:2295–300.

    12.
    Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci USA. 2007;104:15876–81.
    CAS  Article  Google Scholar 

    13.
    Diggle SP, Griffin AS, Campbell GS, West SA. Cooperation and conflict in quorum-sensing bacterial populations. Nature. 2007;450:411–4.
    CAS  Article  Google Scholar 

    14.
    Dandekar AA, Chugani S, Greenberg EP. Bacterial quorum sensing and metabolic incentives to cooperate. Science. 2012;338:264–6.
    CAS  Article  Google Scholar 

    15.
    Loarca D, Díaz D, Quezada H, Guzmán-Ortiz AL, Rebollar-Ruiz A, Presas AMF, et al. Seeding public goods is essential for maintaining cooperation in Pseudomonas aeruginosa. Front Microbiol. 2019;10:1–8.
    Article  Google Scholar 

    16.
    García-Contreras R, Loarca D, Pérez-González C, Jiménez-Cortés JG, Gonzalez-Valdez A, Soberón-Chávez G. Rhamnolipids stabilize quorum sensing mediated cooperation in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2020;367:1–5.

    17.
    García-Contreras R, Lira-Silva E, Jasso-Chávez R, Hernández-González IL, Maeda T, Hashimoto T, et al. Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants. Int J Med Microbiol. 2013;303:574–82.

    18.
    Castañeda-Tamez P, Ramírez-Peris J, Pérez-Velázquez J, Kuttler C, Jalalimanesh A, Saucedo-Mora M, et al. Pyocyanin restricts social cheating in Pseudomonas aeruginosa. Front Microbiol. 2018;9:1–10.
    Article  Google Scholar 

    19.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    20.
    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;00:1–3.

    21.
    Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing — Free bayes — Variant Calling — Longranger. arXiv Prepr arXiv12073907 2012.

    22.
    Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012;6:80–92.

    23.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    24.
    Quinlan AR, Hall IM BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    25.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    26.
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28:464–9.

    27.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Current protocols in molecular biology: preface. Curr Protoc Mol Biol. 2010;1:178–89.

    28.
    King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954;44:301–7.

    29.
    López-Jácome LE, Garza-Ramos G, Hernández-Durán M, Franco-Cendejas R, Loarca D, Romero-Martínez D, et al. AiiM lactonase strongly reduces quorum sensing controlled virulence factors in clinical strains of Pseudomonas aeruginosa isolated from burned patients. Front Microbiol. 2019;10:1–11.
    Article  Google Scholar 

    30.
    Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci USA. 2007;104:15876–81.

    31.
    D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol. 2010;17:254–64.

    32.
    Wang Y, Gao L, Rao X, Wang J, Yu H, Jiang J, et al. Characterization of lasR-deficient clinical isolates of Pseudomonas aeruginosa. Sci Rep. 2018;8:13344.

    33.
    Wilder CN, Allada G, Schuster M. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun. 2009;77:5631–9.
    CAS  Article  Google Scholar 

    34.
    Brown SP, West SA, Diggle SP, Griffin AS. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos Trans R Soc B Biol Sci. 2009;364:3157–68.

    35.
    Rumbaugh KP, Diggle SP, Watters CM, Ross-Gillespie A, Griffin AS, West SA. Quorum sensing and the social evolution of bacterial virulence. Curr Biol. 2009;19:341–5.

    36.
    Bonchi C, Frangipani E, Imperi F, Visca P. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum. Antimicrob Agents Chemother. 2015;59:5641–6.

    37.
    Sathe S, Mathew A, Agnoli K, Eberl L, Kümmerli R. Genetic architecture constrains exploitation of siderophore cooperation in the bacterium Burkholderia cenocepacia. Evol Lett. 2019;3:610–22.

    38.
    Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA. 2006;103:2833–8.

    39.
    Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW, Rasko DA, et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol. 2019;201. More

  • in

    Expansion of the mangrove species Rhizophora mucronata in the Western Indian Ocean launched contrasting genetic patterns

    1.
    Bryan-Brown, D. N., Brown, C. J., Hughes, J. M. & Connolly, R. M. Patterns and trends in marine population connectivity research. Mar. Ecol. Prog. Ser. 585, 243–256 (2017).
    ADS  Article  Google Scholar 
    2.
    Tomlinson, P. B. The Botany of Mangroves (Cambridge University Press, Cambridge, 2016).
    Google Scholar 

    3.
    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669. https://doi.org/10.3390/rs10101669 (2018).
    ADS  Article  Google Scholar 

    4.
    Ward, R. D., Friess, D. A., Day, R. H. & MacKenzie, R. A. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Health Sustain. 2, 01211. https://doi.org/10.1002/ehs2.1211 (2016).
    Article  Google Scholar 

    5.
    Richards, D. R. & Friess, D. A. Rates of drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 113, 344–349 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Hermansen, T. D., Britton, D. R., Ayre, D. J. & Minchonton, T. E. Identifying the real pollinators? Exotic honeybees are the dominant flower visitors and only effective pollinators of Avicennia marina in Australian temperate mangroves. Estuar. Coast. 37, 621–635 (2014).
    Article  Google Scholar 

    7.
    Wee, A. K. S., Low, S. Y. & Webb, E. L. Pollen limitation affects reproductive outcome in the bird-pollinated mangrove Bruguiera gymnorrhiza (Lam.) in a highly urbanized environment. Aquat. Bot. 120, 240–243 (2015).
    Article  Google Scholar 

    8.
    Rabinowitz, D. Dispersal properties of mangrove propagules. Biotropica 10, 47–57 (1978).
    Article  Google Scholar 

    9.
    Drexler, J. Z. Maximum longevities of Rhizophora apiculataand R. mucronatapropagules. Pac. Sci. 55, 17–22 (2001).
    Article  Google Scholar 

    10.
    Nettel, A. & Dodd, R. S. Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 61, 958–971 (2007).
    CAS  PubMed  Article  Google Scholar 

    11.
    Takayama, K., Tamura, M., Tateshi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in red mangroves Rhizophora (Rhizophoraceae), revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).
    CAS  PubMed  Article  Google Scholar 

    12.
    Lo, E. Y., Duke, N. C. & Sun, M. Phylogeographic pattern of Rhizophora(Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol. Biol. 14, 83. https://doi.org/10.1186/1471-2148-14-83 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Van der Stocken, T. et al. A general framework for propagule dispersal in mangroves. Biol. Rev. 94, 1547–1575 (2019).
    PubMed  Article  Google Scholar 

    14.
    Thomas, L. et al. Isolation by resistance across a complex coral reef seascape. Proc. R. Soc. B Biol. Sci. 282, 20151217. https://doi.org/10.1098/rspb.2015.1217 (2015).
    CAS  Article  Google Scholar 

    15.
    Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Contrasting effects of historical sea level rise and contemporary ocean currents on regional gene flow of Rhizophora racemosain eastern Atlantic mangroves. PLoS ONE 11, e0150950. https://doi.org/10.1371/journal.pone.0150950 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Wee, A. K. S. et al. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronataLam. (Rhizophoraceae) in Southeast Asia. J. Biogeogr. 41, 954–964 (2014).
    Article  Google Scholar 

    17.
    Wee, A. K. S. et al. Genetic structures across a biogeographical barrier reflect dispersal potential of four Southeast Asian mangrove plant species. J. Biogeogr. 47, 1258–1271 (2020).
    Article  Google Scholar 

    18.
    Lessios, H. A. & Robertson, D. R. Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc. R. Soc. B: Biol. Sci. 273, 2201–2208 (2006).
    CAS  Article  Google Scholar 

    19.
    Ng, W. L., Chan, H. T. & Szmidt, A. E. Molecular identification of natural mangrove hybrids of Rhizophora in Peninsular Malaysia. Tree Genet. Genomes 9, 1151–1160 (2013).
    Article  Google Scholar 

    20.
    Guo, Z. et al. Genetic discontinuities in a dominant mangrove Rhizophora apiculata (Rhizophoraceae) in the Indo-Malaysian region. J. Biogeogr. 43, 1856–1868 (2016).
    Article  Google Scholar 

    21.
    Yan, Y.-B., Duke, N. & Sun, M. Comparative analysis of the pattern of population genetic diversity in three Indo-West Pacific Rhizophora mangrove species. Front. Plant Sci. 7, 1434. https://doi.org/10.3389/fpls.2016.01434 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Triest, L., Hasan, S., Motro, P. R. & De Ryck, D. J. R. Geographical distance and large rivers shape genetic structure of Avicennia officinalis in the highly dynamic Sundarbans mangrove forest and Ganges Delta region. Estuar. Coast. 41, 908–920 (2018).
    Article  Google Scholar 

    23.
    Do, B. T. N., Koedam, N. & Triest, L. Avicennia marina maintains genetic structure whereas Rhizophora stylosa connects mangroves in a flooded, former inner sea (Vietnam). Estuar. Coast. Shelf Sci. 222, 195–204 (2019).
    ADS  Article  Google Scholar 

    24.
    He, Z. et al. Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. Natl. Sci. Rev. 6, 272–288 (2019).
    Google Scholar 

    25.
    Pil, M. W. et al. Postglacial north-south expansion of populations of Rhizophora mangle (Rhizophoraceae) along the Brazilian coast revealed by microsatellite analysis. Am. J. Bot. 98, 1031–1039 (2011).
    PubMed  Article  Google Scholar 

    26.
    Cerón-Souza, I. et al. Contrasting demographic history and gene flow patterns of two mangrove species on either side of the Central American Isthmus. Ecol. Evol. 5, 3486–3499 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Sandoval-Castro, E. et al. Post-glacial expansion and population genetic divergence of mangrove species Avicennia germinans (L.) Stearn and Rhizophora mangle L. along the Mexican coast. PLoS ONE 9, 93358. https://doi.org/10.1371/journal.pone.0093358 (2014).
    ADS  CAS  Article  Google Scholar 

    28.
    Kennedy, J. P. et al. Contrasting genetic effects of red mangrove (Rhizophora mangleL.) range expansion along West and East Florida. J. Biogeogr. 44, 335–347 (2017).
    Article  Google Scholar 

    29.
    Francisco, P. M., Mori, G. M., Alves, F. A., Tambarussi, E. V. & de Souza, A. P. Population genetic structure, introgression, and hybridization in the genus Rhizophora along the Brazilian coast. Ecol. Evol. 8, 3491–3504. https://doi.org/10.1002/ece3.3900 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia 803, 189–207 (2017).
    Article  Google Scholar 

    31.
    Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108 (2017).
    Article  Google Scholar 

    32.
    De Ryck, D. J. R. et al. Dispersal limitation of the mangrove Avicennia marina at its South African range limit in strong contrast to connectivity in its core East African region. Mar. Ecol. Prog. Ser. 545, 123–134 (2016).
    ADS  Article  CAS  Google Scholar 

    33.
    Duke, N. C., Lo, E. Y. Y. & Sun, M. Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees Struct. Funct. 16, 65–79 (2002).
    Article  Google Scholar 

    34.
    Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves (Earthscan and James & James, 2010).

    35.
    Osland, M. J. et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 87, 341–359 (2017).
    Article  Google Scholar 

    36.
    Duke, N. et al. Rhizophora mucronata. The IUCN Red List of Threatened Species 2010: e.T178825A7618520.https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T178825A7618520.en (2010). Downloaded on 27 January 2020.

    37.
    Schouten, M. W., de Ruijter, W. P. M., van Leeuwen, P. J. & Ridderinkhof, H. Eddies and variability in the Mozambique Channel. Deep-Sea Res. II(50), 1987–2003 (2003).
    ADS  Google Scholar 

    38.
    Ternon, J. F., Roberts, M. J., Morris, T., Hancke, L. & Backeberg, B. In situ measured current structures of the eddy field in the Mozambique Channel. Deep-Sea Res. II 100, 10–26 (2014).
    Article  Google Scholar 

    39.
    Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P. & Fifield, K. L. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Van der Stocken, T., Carroll, D., Menemenlis, D., Simard, M. & Koedam, N. Global-scale dispersal and connectivity in mangroves. Proc. Natl. Acad. Sci. USA 116, 915–922 (2019).
    PubMed  Article  CAS  Google Scholar 

    41.
    Schott, F. A., Shang-Ping, X. & McCreary, J. P. Jr. Indian Ocean circulation and climate variability. Rev. Geophys. 47, RG1002. https://doi.org/10.1029/2007RG000245 (2009).
    ADS  Article  Google Scholar 

    42.
    Hume, J. P., Martill, D. & Hing, R. A. Terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group. Seychelles. PLoS ONE 13, e0192675. https://doi.org/10.1371/journal.pone.0192675 (2018).
    CAS  Article  PubMed  Google Scholar 

    43.
    Braithwaite, C. J. R., Taylor, J. D. & Kennedy, W. J. The evolution of an atoll: the depositional and erosional history of Aldabra. Philos. Trans. R. Soc. Lond. B. 266, 307–340 (1973).
    ADS  Article  Google Scholar 

    44.
    Obura, D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013. https://doi.org/10.1371/journal.pone.0045013 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Urashi, C., Teshima, K. M., Minobe, S., Koizumi, O. & Inomata, N. Inferences of evolutionary history of a widely distributed mangrove species, Bruguiera gymnorrhiza, in the Indo-West Pacific region. Ecol. Evol. 3, 2251–2261 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Tomizawa, Y. et al. Genetic structure and population demographic history of a widespread mangrove plant Xylocarpus granatum J. Koenig across the Indo-West Pacific region. Forests 8, 480 (2017).
    Article  Google Scholar 

    47.
    van der Ven, R. M. et al. Population genetic structure of the stony coral Acropora tenius shows high but variable connectivity in East Africa. J. Biogeogr. 43, 510–519 (2016).
    Article  Google Scholar 

    48.
    Jahnke, M. et al. Population genetic structure and connectivity of the seagrass Thalassia hemprichii in the Western Indian Ocean is influenced by predominant ocean currents. Ecol. Evol. 9, 8953–8964 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Muths, D., Tessier, E. & Bourjea, J. Genetic structure of the reef grouper Epinephelus merra in the West Indian Ocean appears congruent with biogeographic and oceanographic boundaries. Mar. Ecol. 36, 447–461 (2015).
    ADS  Article  Google Scholar 

    50.
    Mori, G. M., Zucchi, M. I. & Souza, A. P. Multiple-geographic-scale genetic structure of two mangrove tree species: the roles of mating system, hybridization, limited dispersal and extrinsic factors. PLoS ONE 10, 0118710. https://doi.org/10.1371/journal.pone.0118710 (2015).
    CAS  Article  Google Scholar 

    51.
    Hancke, L., Roberts, M. J. & Ternon, J. F. Surface drifter trajectories highlight flow pathways in the Mozambique Channel. Deep-Sea Res. II(100), 27–37 (2014).
    Google Scholar 

    52.
    Gamoyo, M., Obura, D. & Reason, C. J. C. Estimating connectivity through larval dispersal in the Western Indian Ocean. J. Geophys. Res. Biogeo. 124, 2446–2459. https://doi.org/10.1029/2019JG005128 (2019).
    Article  Google Scholar 

    53.
    Silva, I., Mesquita, N. & Paula, J. Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura Sesarmidae) along an East African latitudinal gradient. Biol. J. Linn. Soc. 99, 28–46 (2010).
    Article  Google Scholar 

    54.
    Madeira, C., Alves, M. J., Mesquita, N., Silva, I. & Paula, J. Tracing geographical patterns of population differentiation in a widespread mangrove gastropod: genetic and geometric morphometrics surveys along the eastern African coast. Biol. J. Linn. Soc. 107, 647–663 (2012).
    Article  Google Scholar 

    55.
    Fatoyinbo, E. T., Simard, M., Washington-Allen, R. A. & Shugart, H. H. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. J. Geophys. Res. Biogeo. 113, G02S06. https://doi.org/10.1029/2007JG000551 (2008).
    ADS  Article  Google Scholar 

    56.
    Lutjeharms, J. R. E. & Da Silva, A. J. The Delagoa bight eddy. Deep-Sea Res. 35, 619–634 (1988).
    ADS  Article  Google Scholar 

    57.
    Quartly, G. D. & Srokosz, M. A. Eddies in the southern Mozambique Channel. Dee-Sea Res. II: Top. Stud. Oceanogr. 51, 69–83 (2004).
    ADS  CAS  Article  Google Scholar 

    58.
    Paula, J., Dray, T. & Queiroga, H. Interaction of offshore and inshore processes controlling settlement of brachyuran megalopae in Saco mangrove creek, Inhaca Island (South Mozambique). Mar. Ecol. Prog. Ser. 215, 251–260 (2001).
    ADS  Article  Google Scholar 

    59.
    Singh, S. P., Groeneveld, J. C., Hart-Davis, M. G., Backeberg, B. C. & Willows-Munro, S. Seascape genetics of the spiny lobster Panulirus homarus in the Western Indian Ocean: understanding how oceanographic features shape the genetic structure of species with high larval dispersal potential. Ecol. Evol. 8, 12221–12237 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Ngeve, M., Koedam, N. & Triest, L. Runaway fathers? Limited pollen dispersal and mating system in Rhizophora racemosa populations of a disturbed mangrove estuary. Aquat. Bot. 165, 103241. https://doi.org/10.1016/j.aquabot.2020.103241 (2020).
    Article  Google Scholar 

    61.
    Kondo, K., Nakamura, T., Tsuruda, K., Saito, N. & Yaguchi, Y. Pollination in Bruguiera gymnorrhiza and Rhizophora mucronata (Rhizophoraceae) in Ishigaki Island, The Ryukyu Islands, Japan. Biotropica 19, 377–380 (1987).
    Article  Google Scholar 

    62.
    Islam, M. S., Lian, C., Kameyama, N., Wu, B. & Hogetsu, T. Development of microsatellite markers in Rhizophora stylosa using a dual-suppression-polymerase chain reaction technique. Mol. Ecol. Notes 4, 110–112 (2004).
    CAS  Article  Google Scholar 

    63.
    Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv. Genet. 9, 1323–1325 (2008).
    CAS  Article  Google Scholar 

    64.
    Takayama, K. et al. Isolation and characterization of microsatellite loci in a mangrove species, Rhizophora stylosa (Rhizophoraceae). Conserv. Genet. Resour. 1, 175. https://doi.org/10.1007/s12686-009-9042-7 (2009).
    Article  Google Scholar 

    65.
    Shinmura, Y. et al. Isolation and characterization of 14 microsatellite markers for Rhizophora mucronata (Rhizophoraceae) and their potential use in range-wide population studies. Conserv. Genet. Resour. 4, 951–954 (2012).
    Article  Google Scholar 

    66.
    Wee, A. K. S., Takayama, K., Kajita, T. & Webb, E. L. Microsatellite loci for Avicennia alba (Acanthaceae), Sonneratia alba (Lythraceae) and Rhizophora mucronata (Rhizophoraceae). J. Trop. For. Sci. 25, 131–136 (2013).
    Google Scholar 

    67.
    Ribeiro, D. O. et al. Isolation of microsatellite markers for the red mangrove, Rhizophora mangle (Rhizophoraceae). Appl. Plant Sci. 1, 1300003. https://doi.org/10.3732/apps.1300003 (2013).
    Article  Google Scholar 

    68.
    Goudet, J. FSTAT, version 2.9.3, a program to estimate and test gene diversities and fixation indices. (2001).

    69.
    van Oosterhout, C., Hutchison, W. F., Wills, D. P. M. & Shipley, P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    70.
    Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Hered. 100, 106113 (2009).
    Article  CAS  Google Scholar 

    71.
    Campagne, P., Smouse, P. E., Varouchas, G., Silvain, J.-F. & Leru, B. Comparing the van Oosterhout and Chybicki-Burczyk methods of estimating null allele frequencies for inbred populations. Mol. Ecol. Resour. 12, 975–982 (2012).
    CAS  PubMed  Article  Google Scholar 

    72.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Hardy, O. & Vekemans, X. spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).
    Article  CAS  Google Scholar 

    74.
    Loiselle, B., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82, 1420–1425 (1995).
    Article  Google Scholar 

    75.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    76.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    77.
    Earl, D. M. & von Holdt, B. M. Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Article  Google Scholar 

    78.
    Li, Y. L. & Liu, J. X. Structureselector: a web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
    PubMed  Article  Google Scholar 

    79.
    Manni, F., Guerard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum. Biol. 76, 173190 (2004).
    Article  Google Scholar 

    80.
    Beerli, P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22, 341–345 (2006).
    CAS  PubMed  Article  Google Scholar 

    81.
    Beerli, P. & Palczewski, M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185, 313–326 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Cornuet, J. M. et al. DIYABC v2.0: a software to make approximate bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Article  Google Scholar 

    83.
    Lutjeharms, J. R. E., Biastoch, A., Van der Werf, P. M., Ridderinkhof, H. & De Ruijter, W. P. M. On the discontinuous nature of the Mozambique Current. S. Afr. J. Sci. https://doi.org/10.4102/sajs.v108i1/2.428 (2012).
    Article  Google Scholar  More

  • in

    ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species

    Evolution of ACE2 in bats inhabiting urban or rural areas
    We collected ACE2 orthologues from 46 bat species across the phylogeny (Fig. 1 and Supplementary Table 1). These species contained 28 species that roost or forage in urban areas near humans and 18 species more restricted to rural areas and hence likely to have minimal contact with humans (Supplementary Table 2). In total, we examined 46 species representing 11 bat families (Supplementary Table 3). After aligning the protein sequences of bat ACE2 orthologues, we examined 25 critical residues involved in the binding of the surface spike glycoprotein (S protein) of SARS-CoV-2 (ref. 9) (Extended Data Fig. 1). Genetic variations were observed in nearly all these 25 sites, which may have led to different abilities to support entry of SARS-CoV and SARS-CoV-2 (ref. 9). Furthermore, we detected at least 22 amino acid sites that are putatively under positive selection (Supplementary Table 4), which is indicative of heterogeneous selection pressure across sites. Notably, four of these positively selected sites are in the binding region of ACE2 to the SARS-CoV-2 S protein (Supplementary Table 4).
    Fig. 1: Phylogenetic tree of 46 bat species in this study.

    The labels of bat species in our experiments are indicated. Expression levels determined by western blot (Fig. 2a) are shown with asterisk symbols compared with human ACE2: the triple asterisk indicates high expression, the double asterisk indicates medium expression and the single asterisk indicates low but detectable expression. The ability of bat ACE2 to support SARS-CoV and SARS-CoV-2 pseudovirus entry is shown with different signs (Fig. 3a,b): infection data are presented as percentage mean values of bat ACE2 supporting infection compared with the infection supported by human ACE2. Infection efficiency 50% with a double plus sign. Bat phylogeny was taken from previous studies28,29,30.

    Full size image

    Interaction between bat ACE2 orthologues and SARS-CoV or SARS-CoV-2 receptor binding domain
    Efficient binding between the S protein and the ACE2 receptor is essential for SARS-CoV and SARS-CoV-2 entry. This binding is mainly mediated by the interaction between the critical residues on the receptor-binding domain (RBD) and ACE2. To characterize the receptor function of ACE2 orthologues in a range of diverse bat species, we generated a stable cell library consisting of cell lines expressing the respective 46 bat ACE2 orthologues through lentiviral transduction of 293T cells lacking ACE2 expression10. All bat ACE2 orthologues were exogenously expressed at a comparable level after puromycin selection, as indicated by western blot and immunofluorescence assays detecting the C-terminal 3×FLAG-tag (Fig. 2a,b).
    Fig. 2: Expression of bat ACE2 orthologues and their interaction with the SARS-CoV and SARS-CoV-2 RBD.

    a, Western blot detected the expression levels of ACE2 orthologues on 293T stable cells by targeting the C-terminal 3×FLAG-tag. Glyceraldehyde 3-phosphate dehydrogenase was employed as a loading control. b, Visualization of the intracellular bat ACE2 expression level by immunofluorescence assay detecting the C-terminal 3×FLAG-tag. Scale bar, 100 μm. c,d, Assessment of the interaction between different ACE2 orthologues and SARS-CoV-RBD-hFc (c) or SARS-CoV-2-RBD-hFc (d) proteins. Species that do not support efficient binding are underlined. 293T cells stably expressing the different bat ACE2 orthologues were incubated with 5 μg ml−1 of the recombinant proteins at 37 °C for 1 h; binding efficiency was examined by Alexa Fluor 488 goat anti-human IgG via fluorescence assay. Scale bar, 200 μm.

    Full size image

    To analyse the interaction, we produced recombinant SARS-CoV or SARS-CoV-2 RBD human immunoglobulin G (IgG) Fc fusion proteins (RBD-hFc), previously reported to be sufficient to bind human ACE2 efficiently11,12. Protein binding efficiency was tested on the bat ACE2 cell library by means of immunofluorescence or flow cytometry targeting the human Fc. As expected, binding was almost undetectable on mock 293T cells but a strong binding signal was detected in the 293T cells expressing human ACE2 (Fig. 2c,d). Consistent with previous reports13,14, SARS-CoV-2 RBD showed higher binding to human ACE2 than SARS-CoV, which can also be observed on many bat ACE2 orthologues (Fig. 2c,d). Previous reports have shown that only a small fraction of ACE2 orthologues from tested mammalian species could not bind with SARS-CoV-2 S protein (n = 6 of 49 species7; n = 5 of 17 species15). However, our study revealed that many bat species (n = 32 and n = 28 of 46 species) do not support efficient binding with SARS-CoV-RBD and SARS-CoV-2-RBD, respectively (Fig. 2c,d). The overall profiles of bat ACE2 to bind to SARS-CoV and SARS-CoV-2 RBD are generally comparable; a few showed contrasting modes of binding preferences (Fig. 2c,d). For instance, Bat22 could bind to SARS-CoV but not SARS-CoV-2, whereas Bat14, 21 and 40 could bind to SARS-CoV-2 but not SARS-CoV (Fig. 2c,d). Flow cytometry analysis showed consistent results (Extended Data Fig. 2).
    Overall, the RBD-hFc binding assays demonstrated that bat ACE2 orthologues showed different affinity and selectivity levels to SARS-CoV and SARS-CoV-2, indicating that the ACE2 receptors of many bat species may not support efficient SARS-CoV and SARS-CoV-2 infection.
    Receptor function of bat ACE2 orthologues to support the entry of SARS-CoV and SARS-CoV-2 using pseudotyped and live viruses
    To further evaluate the receptor function of different bat ACE2 orthologues, we employed a vesicular stomatitis virus (VSV)-based rhabdoviral pseudotyping system to mimic the coronavirus spike protein-mediated single-round entry15. SARS-CoV and SARS-CoV-2 pseudotypes were generated by assembling the coronavirus spike proteins and replication-deficient VSV with the VSV glycoprotein gene replaced with a fluorescence protein (VSV-dG-GFP) or a firefly luciferase (VSV-dG-Luc) reporter15. Both viruses showed minimal background infection on 293T cells, but efficient infection on 293T-human ACE2 cells (Extended Data Fig. 3). The susceptibility of the 293T cells expressing bat ACE2 orthologues was then examined with SARS-CoV and SARS-CoV-2 pseudotypes. The results showed that bat ACE2 orthologues have varying abilities to support coronavirus entry and different preferences for SARS-CoV and SARS-CoV-2. (Fig. 3a,b and Extended Data Fig. 4). Pseudotypes with green fluorescent protein (GFP) reporter showed similar results (Extended Data Fig. 5). Notably, we found that 24, 21 and 16 of the 46 bat species showed almost no entry for SARS-CoV, SARS-CoV-2 and both viruses, respectively (Figs. 1 and 3a,b and Supplementary Table 5), suggesting that these species are not likely to be potential hosts of either or both coronaviruses. The bat species showing no viral entry include those that occur in urban areas and those more restricted to rural areas (Fig. 1), suggesting that there is no correlation between proximity to humans and probability of being natural hosts of SARS-CoV or SARS-CoV-2. Although horseshoe bats were suggested as potential natural hosts of SARS-CoV and SARS-CoV-2 (refs. 1,2,3), only one of the three species examined (Rhinolophus sinicus) supported SARS-CoV entry; this species was suggested as the potential host of SARS-CoV3,16. None of these tested horseshoe bats showed entry for SARS-CoV-2 (Figs. 1 and 3). These results unambiguously indicate that ACE2 receptor usage is species-dependent.
    Fig. 3: Characterization of bat ACE2 orthologues mediating entry of SARS-CoV and SARS-CoV-2 viruses.

    a,b, Ability of bat ACE2 orthologues to support the entry of SARS-CoV and SARS-CoV-2 pseudovirus. 293T cells expressing bat ACE2 orthologues in a 96-well plate were infected with VSV-dG-Luc pseudotyped with SARS-CoV (a) and SARS-CoV-2 (b) spike proteins, respectively. Intracellular luciferase activity was determined at 20 h post-infection. RLU, relative light unit. c, 293T cells expressing bat ACE2 orthologues were inoculated with the SARS-CoV-2 live virus at an MOI = 0.01. N protein (red) in the infected cells was detected through immunofluorescence assay at 48 h post-infection. Scale bar, 200 μm. Samples expressing the indicated ACE2 orthologues that showed almost no entry for SARS-CoV-2 live virus are underlined. Data shown are representative results from 3 independent experiments and are presented as the mean ± s.d. (n = 3 for a and n = 2 for b).

    Full size image

    The SARS-CoV-2 S protein used in this study for pseudotyping contains a D614G mutation, which is currently a dominant variation17. The D614G mutation remarkably improved the in vitro infectivity of SARS-CoV-2 but may not significantly affect the receptor interaction since it is not in the RBD18. Indeed, we identified a very similar susceptibility profile using an original strain without D614G (Extended Data Fig. 4). We further demonstrated that the pseudotyped entry assay mimics the entry of live viruses through a SARS-CoV-2 infection assay (Fig. 3c). As expected, the profile of SARS-CoV-2 N protein expression is highly consistent with the results from the VSV-dG-based pseudotyped virus entry assay, except for some ACE2 that showed relatively higher infection efficiency (for example, Bat43–46) compared with the pseudovirus infection assay, which may be attributed to the different virus strains used (Fig. 3c). In addition, the live virus infection resulted in the phenotype of plaque formation, while the pseudotypes showed evenly distributed, single-round infection (Extended Data Fig. 5), which also partially explains why some bat ACE2 showed higher infection in the live virus infection assay.
    When comparing the RBD-hFc binding and pseudotyped entry profiles, we found that binding and susceptibility are not always consistent, although the phenotypes were reproducible. For instance, some species (Bat12, 13, 14) were able to bind to SARS-CoV-2 RBD-hFc efficiently but could not support infection of the same virus, indicating that high binding affinity does not guarantee efficient viral entry (Figs. 2 and 3). In contrast, some species (Bat3–8) were defective or less efficient in SARS-CoV RBD-hFc binding but supported the entry of the same virus to some degree (Figs. 2 and 3). We hypothesize that such minimal binding may be sufficient for viral entry mediated by those ACE2 orthologues; alternatively, additional residues outside the traditional RBD region might be required for efficient interaction. These hypotheses should be tested in the future. Together, our results demonstrated dramatic variation of susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species, suggesting that SARS-CoV and SARS-CoV-2 can selectively use some bat ACE2 as functional receptors for viral entry and many—if not most—bat ACE2 are not favoured by one or both viruses.
    Evaluation of critical residues in bat ACE2 orthologues affecting viral binding and entry efficiency or specificity
    We comprehensively analysed the relationship between critical RBD binding sites in bat ACE2 sequences and their ability to support SARS-CoV and SARS-CoV-2 RBD binding and viral entry. Several critical residues were identified that may play critical roles in the determination of species specificity (Extended Data Fig. 1). According to the sequence alignment, two species pairs (Bat33 and Bat34 and Bat38 and Bat40) were selected to demonstrate the role of critical residues in RBD binding and viral entry because they were phylogenetically close but showed contrasting phenotypes for supporting RBD binding and viral entry. Specifically, Bat34 and Bat38 do not support SARS-CoV and SARS-CoV-2 RBD binding and infection, while Bat33 supports efficient binding and infection of both viruses and Bat40 supports infection of both viruses and to a lesser degree SARS-RBD binding (Figs. 2 and 3). We compared their protein sequences and highlighted the residues that may affect RBD interaction. For example, substitutions I27K, N31G and K42E were observed when comparing Bat33 with Bat34, while Q24L, E30K, K35Q and G354N were present between Bat38 and Bat40 (Fig. 4a). We hypothesized that the discrepancy in binding and infection phenotype is determined by their differences in critical residues for RBD interaction. To test this hypothesis, we designed a residue swap mutagenesis assay to investigate the role of critical residues on RBD binding and virus entry (Fig. 4a). We generated four swap mutations and corresponding 293T stable cell lines to test whether these substitutions could achieve gain-of-function and loss-of-function. All bat ACE2 orthologues and related mutants were expressed at a comparable level after lentiviral transduction, as indicated by the immunofluorescence of the C-terminal 3×FLAG-tag (Fig. 4b). Recombinant SARS-CoV and SARS-CoV-2 RBD-hFc proteins were applied to the cells expressing different ACE2 and binding efficiency was evaluated by immunofluorescence (Fig. 4c) and flow cytometry assays (Fig. 4d). As expected, the swap of critical residues on the selected four bat ACE2 changed their receptor function to the opposite, except for Bat38 mutant, which remained unable to bind SARS-CoV RBD-hFc (Fig. 4c,d). GFP (Fig. 4e) and luciferase levels (Fig. 4f) from the pseudotyped virus entry assay and the N protein staining from the live SARS-CoV-2 infection assay (Fig. 4g) further confirmed our hypothesis at the viral entry level. Structure modelling of bat ACE2/SARS-CoV-2-RBD complexes showed that the substitutions of I27K and N31G between Bat33 and Bat34 lead to a reduced packing interaction and the substitution of K42E disrupts the hydrogen bond with Y449, which may be related to the difference of susceptibility between Bat33 and Bat34 (Fig. 4h,i and Extended Data Fig. 6). In comparison, the substitutions of Q24L and E30K between Bat38 and Bat40 destroyed the favourable hydrophilic interactions with N487 and K417, respectively (Extended Data Fig. 6).
    Fig. 4: Evaluation of the critical binding sites determining the species-specific restriction of SARS-CoV and SARS-CoV-2 binding and entry.

    a, Swap mutagenesis assay to investigate the role of critical residues on bat ACE2 orthologues for tropism determination. Residues involved in RBD (according to the structure between SARS2-RBD and human ACE2, Protein Data Bank 6M0J) interaction are shown in the table. Residues that changed in the mutagenesis assay are marked in red. b, The expression level of the bat ACE2 orthologues and related mutants in transduced 293T cells was determined by an immunofluorescence assay recognizing the 3×FLAG-tag. Scale bar, 200 μm. c,d, Binding efficiency of SARS2-RBD-hFc and SARS2-RBD-hFc on 293T cells expressing bat ACE2 and related mutants. Cells were incubated with 5 μg ml−1 of recombinant proteins at 37 °C for 1 h and then washed and incubated with a secondary antibody recognizing human Fc. Immunostaining (c) and flow cytometry (d) were conducted to show binding efficiency. Scale bar, 200 μm. e,f, Ability of the indicated ACE2 and related mutants to support the entry of coronavirus pseudotypes. The 293T cells expressing the indicated ACE2 and their mutants were infected with SARS-CoV and SARS-CoV-2 pseudotypes expressing GFP (e) and luciferase (f). Infection was analysed at 20 h post-infection. Scale bar, 200 μm. Data are presented as the mean with s.d. (n = 2). g, 293T cells infected by the SARS-CoV-2 live virus at an MOI = 0.01; the infection was examined at 48 h post-infection through N protein (red) immunostaining. Nuclei were stained with Hoechst 33342 (blue). Scale bar, 200 μm. h,i, Comparison of the interface between Bat33/SARS-CoV-2-RBD and Bat34/SARS-CoV-2-RBD. Bat33 and its complexed RBD are coloured cyan and gold, respectively (h); Bat34 and its complexed RBD are coloured wheat and green, respectively (i). The mutated residues in ACE2 and the corresponding residues in SARS-CoV-2-RBD are shown and labelled. The red dotted lines between residues indicate hydrogen or ionic bonds.

    Full size image

    In addition, two bat cell lines, the lung epithelial cell line Tb 1 Lu of Tadarida brasiliensis (Bat31) and the kidney epithelial cell line of Pteropus alecto (Bat2), were used to validate our findings derived from human HEK293T cells. Endogenous ACE2 expression was almost undetectable in these two cell lines, accounting for at least 1,000 folds lower than the susceptible Vero-E6 cells (Extended Data Fig. 7a). Therefore, these cells cannot support the entry of SARS-CoV and SARS-CoV-2. We successfully generated Tb 1 Lu stable cell lines expressing human ACE2 and bat ACE2 (Bat2, 3, 31, 32) since the transduction efficiency of Tb 1 Lu is much higher than that of PakiT03 cells (Extended Data Fig. 7b). As expected, Tu 1 Lu were susceptible to both SARS-CoV and SARS-CoV-2 when human ACE2 or some bat ACE2 orthologues (Bat2, 3 and 31) were expressed, yet remained non-susceptible when an ACE2 of a closely related species (Bat32) was expressed (Extended Data Fig. 7c–e). Furthermore, we conducted SARS-CoV and SARS-CoV-2 pseudovirus entry assays on the two bat cell lines transiently transfected with various bat ACE2 (Bat2, 3, 31, 32, 33, 34, 38, 40) and their mutants (mutant Bat33, 34, 38 and 40m). The results were consistent with those derived from human cells, further confirming that ACE2 is the main receptor for the species-specific entry of SARS-CoV and SARS-CoV-2 in these bat cells (Extended Data Fig. 7f,g). More

  • in

    My race against time to capture the sounds of ancient rainforests

    Natural soundscapes have always called to me. As an eco- and electro-acoustics researcher, with a background in sound engineering and electronic music composition, I have always tried to strike a balance between art and science in my work.
    In 1998, when I first heard about the extinction crisis — more than 35,500 species of flora and fauna are endangered — the idea for the Fragments of Extinction project came to me very quickly. My vision was to build a collection of 24-hour-long ‘acoustic fragments’, recorded at the highest definition possible, capturing the sonic heritage of ancient, biodiverse, untouched tropical rainforests — before climate change damages them irreversibly.
    In these forests, some species vocalize from the canopy, some from the ground and others from big tree trunks that act like sound diffusers. To capture a 3D acoustic portrait of the forest, we simultaneously record on 38 audio channels and microphones.
    In this photograph, I am standing in the Sonosfera, a geodesic theatre in Pesaro, Italy, in which audiences can experience rainforest soundscapes captured in the Amazon, Africa and Borneo. Forty-five high-definition loudspeakers are positioned in an isolated, acoustically perfect space, realistically reproducing the ecosystems’ natural sounds.
    For the first 15 minutes of the performance, the Sonosfera is completely dark. Sound helps listeners to ‘build’ the forest space around them — the position of every insect and amphibian; the birds and mammals moving through the canopy. My team then projects the spectrograms shown here to explain the sounds, and present data showing that these ecosystems are disappearing.
    We have captured the deep infrasound calls of elephants and have recorded insects that sound exactly like violins or trumpets. Our ecosystem recordings are very different. But I don’t have a favourite — they’re a collection. More

  • in

    A coffee berry borer (Hypothenemus hampei) genome assembly reveals a reduced chemosensory receptor gene repertoire and male-specific genome sequences

    Genome sequencing and assembly
    We performed a de novo genome sequencing and assembly of CBB using a hybrid approach by combining 454-FLX and Illumina reads from female and male individuals. A total of 3.02 Gb of high-quality 454-FLX sequences and 26 Gb of Illumina sequences were obtained in this study (Table S1), which represent approximate 19 × and 160 × genome coverage respectively based on a previously estimated CBB genome size of 163Mb21. The genome hybrid assembly approach we used involved an initial pre-assembly of the 454FLX data with Newbler and the Illumina data with ABySS22, followed by merging of these two pre-assemblies into a single genome consensus with Metassembler23. Our final hybrid H. hampei CENICAFE_Hham1.1 (Hham1.1) genome assembly had a size of 162.57 Mb, comprising 8198 genome scaffolds (Table 1). This assembly represents an improvement in sequence contiguity, containing a 36.3-Kb contig-N50; 340.2-Kb scaffold-N50 and 4.9 Mb for the largest genome scaffold, compared with a previously published CBB genome assembly21, which resulted in contig and scaffold N50 of 10.5-Kb and 44.7-Kb respectively and largest genome scaffold of 440-Kb. The Hham1.1 genome assembly completeness was assessed using Benchmarking Universal Single-Copy Orthologs (BUSCO)24. BUSCO recovered 98.22% of the 1066 Arthropoda core gene set, from which 96.25% were complete genes and 2% were fragmented genes (Fig. S1). BUSCO results indicate that almost the entire genome of H. hampei was sequenced and de novo assembled in this study.
    Table 1 Hypothenemus hampei genome assembly (CENICAFE_Hham1.1) statistics.
    Full size table

    Transcriptome assembly
    Illumina RNA-seq data obtained from whole-body female and male adults were de novo assembled using rnaSPades25 and sequence redundancy reduced by CD-HIT26. The resulting transcript assembly was composed of 64,244 contigs (available at NCBI TSA accession: GIPB00000000.1). The average transcript length was 1103-bp, transcript N50 of 2145-bp and largest transcript of 26,019-bp. The transcript assembly completeness with BUSCO recovered 99.6% (98.97% completed and 0.65% fragmented genes) of the 1066 Arthropoda core gene set. (Fig. S1). Using TransDecoder27, we extracted 35,558 protein-encoding transcripts with full Open Reading Frames (ORFs), from which 33,378 (95%) were annotated against InterPro and NCBI NR proteins. As expected, top BLAST hits were against the Coleoptera species, including D. ponderosae (61%) Sitophilus orizae (22%), Anoplophora glabripennis (3%) and Tribolium castaneum (5.7%); whereas the remaining hits were against other insect species (14%).
    Gene prediction and functional assignations
    We identified 18,765 gene models encoding 20,801 proteins on the Hham1.1 genome assembly using BRAKER2 gene predictor and all available RNA-seq evidence for H. hampei at NCBI. The number of gene models found here for our Hham1.1 assembly is slightly smaller than the previous gene prediction (19,222) performed on the first published H. hampei genome draft21. Completeness of the Hham1.1 gene set using BUSCO recovered 97.2% (94.1% completed and 3.1% fragmented genes) of the Arthropoda core gene set (Fig. S1). BLASTP found 18,364 (88.3%) Hham1.1 predicted proteins similar (e-value  More

  • in

    The population sizes and global extinction risk of reef-building coral species at biogeographic scales

    1.
    Wilkinson, C. Status of Coral Reefs of the World: 2008 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, 2008).
    2.
    Jackson, J. B. C., Donovan, M. K., Cramer, K. L. & Lam, V. V. Status and Trends of Caribbean Coral Reefs: 1970–2012 (Global Coral Reef Monitoring Network, 2014).

    3.
    Eakin, C. M. et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).
    Article  Google Scholar 

    5.
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
    CAS  Article  PubMed  Google Scholar 

    6.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    CAS  PubMed  Article  Google Scholar 

    7.
    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl Acad. Sci. USA 109, 17995–17999 (2012).
    PubMed  Article  Google Scholar 

    8.
    Gardner, T. A. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).
    CAS  PubMed  Article  Google Scholar 

    9.
    Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).
    CAS  PubMed  Article  Google Scholar 

    10.
    ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 1, e1500936 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun. 6, 6857 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).
    CAS  PubMed  Article  Google Scholar 

    13.
    Connell, J., Hughes, T. & Wallace, C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
    Article  Google Scholar 

    14.
    Hughes, T. P. & Jackson, J. B. C. Population dynamics and life histories of foliaceous corals. Ecol. Monogr. 55, 141–166 (1985).
    Article  Google Scholar 

    15.
    ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).
    PubMed  Article  CAS  Google Scholar 

    16.
    Gaston, K. J. & Blackburn, T. M. How many birds are there? Biodivers. Conserv. 6, 615–625 (1997).
    Article  Google Scholar 

    17.
    Kerry, J. T. & Bellwood, D. R. Do tabular corals constitute keystone structures for fishes on coral reefs? Coral Reefs 34, 41–50 (2015).
    Article  Google Scholar 

    18.
    Connolly, S. R., Hughes, T. P., Bellwood, D. R. & Karlson, R. H. Community structure of corals and reef fishes at multiple scales. Science 309, 1363–1365 (2005).
    CAS  PubMed  Article  Google Scholar 

    19.
    Connolly, S. R., Hughes, T. P. & Bellwood, D. R. A unified model explains commonness and rarity on coral reefs. Ecol. Lett. 20, 477–486 (2017).
    PubMed  Article  Google Scholar 

    20.
    Hubbell, S. P. Estimating the global number of tropical tree species, and Fisher’s paradox. Proc. Natl Acad. Sci. USA 112, 7343–7344 (2015).
    CAS  PubMed  Article  Google Scholar 

    21.
    Hughes, T. P., Bellwood, D. R. & Connolly, S. R. Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecol. Lett. 5, 775–784 (2002).
    Article  Google Scholar 

    22.
    Hughes, T. P., Bellwood, D. R., Connolly, S. R. & Cornell, H. V. Double jeopardy and global extinction risk in corals and reef fishes. Curr. Biol. 24, 2946–2951 (2014).
    CAS  PubMed  Article  Google Scholar 

    23.
    Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).
    Article  Google Scholar 

    24.
    Hull, P. M., Darroch, S. A. F. & Erwin, D. H. Rarity in mass extinctions and the future of ecosystems. Nature 528, 345–351 (2015).
    CAS  PubMed  Article  Google Scholar 

    25.
    Cardoso, P., Borges, P. A. V., Triantis, K. A., Ferrández, M. A. & Martín, J. L. Adapting the IUCN Red List criteria for invertebrates. Biol. Conserv. 144, 2432–2440 (2011).
    Article  Google Scholar 

    26.
    Cardoso, P., Borges, P. A. V., Triantis, K. A., Ferrández, M. A. & Martín, J. L. The underrepresentation and misrepresentation of invertebrates in the IUCN Red List. Biol. Conserv. 149, 147–148 (2012).
    Article  Google Scholar 

    27.
    Estes, J. A., Duggins, D. O. & Rathbun, G. B. The ecology of extinctions in kelp forest communities. Conserv. Biol. 3, 252–264 (1989).
    Article  Google Scholar 

    28.
    Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417 (1992).
    CAS  PubMed  Article  Google Scholar 

    29.
    Knowlton, N., Lang, J. C. & Keller, B. D. Case study of natural population collapse: post-hurricane predation on Jamaican staghorn corals. Smithson. Contrib. Mar. Sci. 31, 1–25 (1990).
    Google Scholar 

    30.
    Gaston, K. J. & Fuller, R. A. Commonness, population depletion and conservation biology. Trends Ecol. Evol. 23, 14–19 (2008).
    PubMed  Article  Google Scholar 

    31.
    Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).
    PubMed  Article  CAS  Google Scholar 

    32.
    Pratchett, M. S. Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Mar. Biol. 148, 373–382 (2005).
    Article  Google Scholar 

    33.
    Huang, D., Licuanan, W. Y., Baird, A. H. & Fukami, H. Cleaning up the ‘Bigmessidae’: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol. Biol. 11, 37 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Knowlton, N. & Jackson, J. B. C. New taxonomy and niche partitioning on coral reefs: jack of all trades or master of some? Trends Ecol. Evol. 9, 7–9 (1994).
    CAS  PubMed  Article  Google Scholar 

    35.
    Gilpin, M. E. & Soulé, M. E. in Conservation Biology: The Science of Scarcity and Diversity (ed, Soulé, M. E.) 19–34 (Sinauer Associates, 1986).

    36.
    Bak, R. P. M. & Meesters, E. H. Population structure as a response of coral communities to global change. Am. Zool. 39, 56–65 (1999).
    Article  Google Scholar 

    37.
    McClanahan, T. R., Ateweberhan, M. & Omukoto, J. Long-term changes in coral colony size distributions on Kenyan reefs under different management regimes and across the 1998 bleaching event. Mar. Biol. 153, 755–768 (2008).
    Article  Google Scholar 

    38.
    Riegl, B. M., Bruckner, A. W., Rowlands, G. P., Purkis, S. J. & Renaud, P. Red Sea coral reef trajectories over 2 decades suggest increasing community homogenization and decline in coral size. PLoS ONE 7, e38396 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    CAS  Article  Google Scholar 

    40.
    Global Distribution of Coral Reefs (UNEP-WCMC, WorldFish Centre, WRI & TNC, 2018); https://data.unep-wcmc.org/datasets/

    41.
    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 29778 (2016).

    42.
    Bruno, J. Data from: Coral reef degradation is not correlated with local human population density. Dryad Digital Repository https://doi.org/10.5061/dryad.48r68 (2016).

    43.
    Karlson, R. H., Cornell, H. V. & Hughes, T. P. Coral communities are regionally enriched along an oceanic biodiversity gradient. Nature 429, 867–870 (2004).
    CAS  PubMed  Article  Google Scholar 

    44.
    Cornell, H. V., Karlson, R. H. & Hughes, T. P. Scale-dependent variation in coral community similarity across sites, islands, and island groups. Ecology 88, 1707–1715 (2007).
    PubMed  Article  Google Scholar 

    45.
    Cornell, H. V., Karlson, R. H. & Hughes, T. P. Local-regional species richness relationships are linear at very small to large scales in west-central Pacific corals. Coral Reefs 27, 145–151 (2008).
    Article  Google Scholar 

    46.
    Connolly, S. R., Dornelas, M., Bellwood, D. R. & Hughes, T. P. Testing species abundance models: a new bootstrap approach applied to Indo-Pacific coral reefs. Ecology 90, 3138–3149 (2009).
    PubMed  Article  Google Scholar 

    47.
    Reef Habitat Maps (NOAA-NCCOS, accessed 10 November 2017); https://products.coastalscience.noaa.gov/collections/benthic/default.aspx

    48.
    Purkis, S. J. et al. High-resolution habitat and bathymetry maps for 65,000 sq. km of Earth’s remotest coral reefs. Coral Reefs 38, 467–488 (2019).
    Article  Google Scholar 

    49.
    Roelfsema, C., Phinn, S., Jupiter, S., Comley, J. & Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 34, 6367–6388 (2013).
    Article  Google Scholar 

    50.
    Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Article  Google Scholar 

    51.
    Warton, D. I. & Hui, F. K. C. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92, 3–10 (2011).
    PubMed  Article  Google Scholar 

    52.
    Marsh, L. M., Bradbury, R. H. & Reichelt, R. E. Determination of the physical parameters of coral distributions using line transect data. Coral Reefs 2, 175–180 (1984).
    Google Scholar 

    53.
    Hughes, T. P. Population dynamics based on individual size rather than age: a general model with a reef coral example. Am. Nat. 123, 778–795 (1984).
    Article  Google Scholar 

    54.
    Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77, 950–963 (1996).
    Article  Google Scholar 

    55.
    Hughes, T. P., Connolly, S. R. & Keith, S. A. Geographic ranges of reef corals (Cnidaria: Anthozoa: Scleractinia) in the Indo-Pacific. Ecology 94, 1659 (2013).
    Article  Google Scholar 

    56.
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
    CAS  PubMed  Article  Google Scholar 

    57.
    van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
    PubMed  Article  CAS  Google Scholar 

    58.
    Hubbell, S. P. et al. How many tree species are there in the Amazon and how many of them will go extinct? Proc. Natl Acad. Sci. USA 105, 11498–11504 (2008).
    CAS  PubMed  Article  Google Scholar 

    59.
    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Sea Res. I 56, 727–740 (2009).
    Article  Google Scholar 

    60.
    Current World Population (Worldometer, accessed 13 May 2020); https://www.worldometers.info/world-population/

    61.
    California Condor Recovery Program: 2017 Annual Population Status (US Fish and Wildlife Service, 2017).

    62.
    Goodrich, J. M. et al. Panthera tigris. The IUCN Red List of Threatened Species 2015 Report number e.T15955A50659951 (IUCN, 2015). More

  • in

    Effects of Sitka spruce masting on phenology and demography of siskins Spinus spinus

    Study site
    Small passerines were caught using a 13 m mist net placed between trees and shrubs on the edge of the village of Tarbet, Argyll & Bute (56.21 N 4.71 W), adjacent to a large forestry plantation. Siskins can forage up to at least 5 km from their nest during the breeding season5,18, and the area within 5 km was therefore considered likely to include breeding siskins that would move through the catching site. Plantation forestry species, age, and area were determined from maps from the Forestry Commission compartment data base. There were 1152 ha of plantation forestry within 5 km of the catching site, comprising 79% Sitka spruce, 7% Norway spruce Picea abies, 13% larch and  More