The Fennoscandian Shield deep terrestrial virosphere suggests slow motion ‘boom and burst’ cycles
1.
Edwards, K. J., Becker, K. & Colwell, F. The deep, dark energy biosphere: intraterrestrial life on Earth. Ann. Rev. Earth Planet Sci. 40, 551–568 (2012).
CAS Article Google Scholar
2.
Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Nat. Acad. Sci. USA 109, 16213–16216 (2012).
CAS PubMed Article PubMed Central Google Scholar
3.
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Nat. Acad. Sci. USA 115, 6506–6511 (2018).
CAS PubMed Article PubMed Central Google Scholar
4.
Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).
CAS Article Google Scholar
5.
Lau, M. C. Y. et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc. Nat. Acad. Sci. USA 113, E7927–E7936 (2016).
CAS PubMed Article PubMed Central Google Scholar
6.
Lopez-Fernandez, M., Broman, E., Simone, D., Bertilsson, S. & Dopson, M. Statistical analysis of community RNA transcripts between organic carbon and ‘geogas’ fed continental deep biosphere groundwaters. mBio 10, e01470–01419 (2019).
CAS PubMed PubMed Central Article Google Scholar
7.
Lopez-Fernandez, M. et al. Metatranscriptomes reveal all three domains of life are active, but are dominated by bacteria in the Fennoscandian crystalline granitic continental deep biosphere. mBio 9, e01792–01718 (2018).
PubMed PubMed Central Article Google Scholar
8.
Borgonie, G. et al. Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa. Nat. Comm. 6, 8952 (2015).
CAS Article Google Scholar
9.
Wilkins, M. J. et al. Trends and future challenges in sampling the deep terrestrial biosphere. Front. Microbiol. 5, 481 (2014).
PubMed PubMed Central Google Scholar
10.
Guemes, A. G. C. et al. Viruses as winners in the Game of Life. Ann. Rev. Virol. 3, 197–214 (2016).
Article CAS Google Scholar
11.
Dávila-Ramos, S. et al. A review on viral metagenomics in extreme environments. Front. Microbiol. 10, 2403 (2019).
PubMed PubMed Central Article Google Scholar
12.
Roudnew, B. et al. Bacterial and virus-like particle abundances in purged and unpurged groundwater depth profiles. Ground Water Monit. Remed. 32, 72–77 (2012).
Article Google Scholar
13.
Nyyssönen, M. et al. Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME J. 8, 126–138 (2014).
PubMed Article CAS PubMed Central Google Scholar
14.
Daly, R. A. et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat. Microbiol. 1, 16146 (2016).
CAS PubMed Article PubMed Central Google Scholar
15.
Anderson, R. E., Brazelton, W. J. & Baross, J. A. Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front. Microbiol. 2, 219–219 (2011).
PubMed PubMed Central Article Google Scholar
16.
Anderson, R. E., Brazelton, W. J. & Baross, J. A. The deep viriosphere: assessing the viral impact on microbial community dynamics in the deep subsurface. Rev. Min. Geochem. 75, 649–675 (2013).
CAS Article Google Scholar
17.
Labonté, J. M. et al. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front. Microbiol. 6, 349–349 (2015).
PubMed PubMed Central Google Scholar
18.
Hallbeck, L. & Pedersen, K. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Appl. Geochem. 23, 1796–1819 (2008).
CAS Article Google Scholar
19.
Ström, A., Andersson, J., Skagius, K. & Winberg, A. Site descriptive modelling during characterization for a geological repository for nuclear waste in Sweden. Appl. Geochem. 23, 1747–1760 (2008).
Article CAS Google Scholar
20.
Jägevall, S., Rabe, L. & Pedersen, K. Abundance and diversity of biofilms in natural and artificial aquifers of the Äspö Hard Rock Laboratory, Sweden. Microb. Ecol. 61, 410–422 (2011).
PubMed Article Google Scholar
21.
Pedersen, K. Influence of H2 and O2 on sulphate-reducing activity of a subterranean community and the coupled response in redox potential. FEMS Microbiol. Ecol. 82, 653–665 (2012).
CAS PubMed Article Google Scholar
22.
Pedersen, K. Metabolic activity of subterranean microbial communities in deep granitic groundwater supplemented with methane and H2. ISME J. 7, 839–849 (2013).
CAS PubMed Article PubMed Central Google Scholar
23.
Lopez-Fernandez, M., Broman, E., Wu, X., Bertilsson, S. & Dopson, M. Investigation of viable taxa in the deep terrestrial biosphere suggests high rates of nutrient recycling. FEMS Microbiol. Ecol. 94, fiy121 (2018).
24.
Lopez-Fernandez, M., Åström, M., Bertilsson, S. & Dopson, M. Depth and dissolved organic carbon shape microbial communities in surface influenced but not ancient saline terrestrial aquifers. Front. Microbiol. 9, 2880 (2018).
PubMed PubMed Central Article Google Scholar
25.
Wu, X. et al. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. ISME J. 10, 1192–1203 (2015).
PubMed PubMed Central Article CAS Google Scholar
26.
Kyle, J. E., Eydal, H. S., Ferris, F. G. & Pedersen, K. Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. ISME J. 2, 571–574 (2008).
PubMed Article PubMed Central Google Scholar
27.
Eydal, H. S., Jagevall, S., Hermansson, M. & Pedersen, K. Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. ISME J. 3, 1139–1147 (2009).
PubMed Article PubMed Central Google Scholar
28.
Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).
CAS PubMed Article PubMed Central Google Scholar
29.
Hurwitz, B. L. & Sullivan, M. B. The Pacific Ocean Virome (POV): A marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS ONE 8, e57355 (2013).
CAS PubMed PubMed Central Article Google Scholar
30.
Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, e368 (2006).
PubMed PubMed Central Article CAS Google Scholar
31.
Holmfeldt, K. et al. Twelve previously unknown phage genera are ubiquitous in global oceans. Proc. Nat. Acad. Sci. USA 110, 12798–12803 (2013).
CAS PubMed Article PubMed Central Google Scholar
32.
Nilsson, E. et al. Genomic and seasonal variations among aquatic phages infecting the Baltic Sea Gammaproteobacterium Rheinheimera sp. strain BAL341. Appl. Environ. Microbiol. 85, e01003-19, https://doi.org/10.1128/aem.01003-19 (2019).
PubMed PubMed Central Article Google Scholar
33.
Hurwitz, B. L., U’Ren, J. M. & Youens-Clark, K. Computational prospecting the great viral unknown. FEMS Microbiol. Lett. 363, fnw077 (2016).
PubMed Article CAS PubMed Central Google Scholar
34.
Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 5, e3243–e3243 (2017).
PubMed PubMed Central Article Google Scholar
35.
Lundin, D. & Holmfeldt, K. The deep terrestrial virosphere. Figshare, https://doi.org/10.6084/m6089.figshare.11590494.v11590491 (2020).
36.
Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).
PubMed Article CAS PubMed Central Google Scholar
37.
Kadnikov, V. V. et al. Genomes of three bacteriophages from the deep subsurface aquifer. Data Brief. 22, 488–491 (2019).
PubMed Article PubMed Central Google Scholar
38.
Starnawski, P. et al. Microbial community assembly and evolution in subseafloor sediment. Proc. Nat. Acad. Sci. USA 114, 2940–2945 (2017).
CAS PubMed Article PubMed Central Google Scholar
39.
Broman, E., Sjöstedt, J., Pinhassi, J. & Dopson, M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5, 96 (2017).
PubMed PubMed Central Article Google Scholar
40.
Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).
CAS PubMed Article PubMed Central Google Scholar
41.
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048, https://doi.org/10.1038/nmicrobiol.2016.48 (2016).
CAS PubMed Article PubMed Central Google Scholar
42.
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004, https://doi.org/10.1038/nbt.4229 (2018).
Article PubMed PubMed Central Google Scholar
43.
Herrmann, M. et al. Predominance of Cand. Patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions. Front. Microbiol. 10, 1407 (2019).
PubMed PubMed Central Article Google Scholar
44.
Probst, A. J. et al. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nat. Microbiol. 3, 328–336 (2018).
CAS PubMed PubMed Central Article Google Scholar
45.
Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Comm. 7, https://doi.org/10.1038/ncomms13219 (2016).
46.
Bouvier, T. & del Giorgio, P. A. Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ. Microbiol. 9, 287–297 (2007).
CAS PubMed Article PubMed Central Google Scholar
47.
Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).
CAS PubMed PubMed Central Article Google Scholar
48.
Craig, W. A. & Andes, D. R. in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (eds Bennett, J. E., Dolin, R. & Blaser, M. J.) 278–292.e274 (2015).
49.
Hubalek, V. et al. Connectivity to the surface determines diversity patterns in subsurface aquifers of the Fennoscandian shield. ISME J. 10, 2447–2458 (2016).
PubMed PubMed Central Article Google Scholar
50.
Laaksoharju, M., Gascoyne, M. & Gurban, I. Understanding groundwater chemistry using mixing models. Appl. Geochem. 23, 1921–1940 (2008).
CAS Article Google Scholar
51.
Mathurin, F. A., Astrom, M. E., Laaksoharju, M., Kalinowski, B. E. & Tullborg, E. L. Effect of tunnel excavation on source and mixing of groundwater in a coastal granitoidic fracture network. Environ. Sci. Technol. 46, 12779–12786 (2012).
CAS PubMed Article PubMed Central Google Scholar
52.
Smellie, J. A. T., Laaksoharju, M., Wikberg, P. & Äspö, S. E. Sweden—a natural groundwater-flow model derived from hydrogeological observations. J. Hydrol. 172, 147–169 (1995).
CAS Article Google Scholar
53.
John, S. G. et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ. Microbiol. Rep. 3, 195–202 (2011).
CAS PubMed PubMed Central Article Google Scholar
54.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
CAS PubMed PubMed Central Article Google Scholar
55.
Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F. & Corbeil, J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol. 13, R122 (2012).
PubMed PubMed Central Article CAS Google Scholar
56.
Rodriguez-R, L. M., Gunturu, S., Tiedje, J. M., Cole, J. R. & Konstantinidis, K. T. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems 3, e00039–00018 (2018).
PubMed PubMed Central Article Google Scholar
57.
Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985–e985 (2015).
PubMed PubMed Central Article CAS Google Scholar
58.
Brum, J. R. et al. Illuminating structural proteins in viral “dark matter” with metaproteomics. Proc. Nat. Acad. Sci. USA 113, 2436–2441 (2016).
CAS PubMed Article PubMed Central Google Scholar
59.
Hugerth, L. W. et al. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol. 16, 279 (2015).
PubMed PubMed Central Article CAS Google Scholar
60.
Dupont, C. L. et al. Functional tradeoffs underpin salinity-driven divergence in microbial community composition. PloS One 9, e89549 (2014).
PubMed PubMed Central Article CAS Google Scholar
61.
Chow, C. E., Winget, D. M., White, R. A., 3rd, Hallam, S. J. & Suttle, C. A. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Front. Microbiol. 6, 265, https://doi.org/10.3389/fmicb.2015.00265 (2015).
62.
Tangherlini, M., Dell’Anno, A., Zeigler Allen, L., Riccioni, G. & Corinaldesi, C. Assessing viral taxonomic composition in benthic marine ecosystems: reliability and efficiency of different bioinformatic tools for viral metagenomic analyses. Sci. Rep. 6, 28428, https://doi.org/10.1038/srep28428 (2016).
63.
Sible, E. et al. Survey of viral populations within Lake Michigan nearshore waters at four Chicago area beaches. Data Brief. 5, 9–12 (2015).
PubMed PubMed Central Article Google Scholar
64.
Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689 (2016).
CAS PubMed PubMed Central Article Google Scholar
65.
Wu, X. et al. Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters. Microbiome 5, 37, https://doi.org/10.1186/s40168-40017-40253-y (2017).
66.
Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
CAS PubMed PubMed Central Article Google Scholar
67.
Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).
CAS PubMed PubMed Central Article Google Scholar
68.
Simone, D. Domenico-simone/deep-metaviriomes: analysis for paper. Zenodo https://doi.org/10.5281/zenodo.3700451 (2020).
Article Google Scholar More