1.Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).ADS
PubMed
PubMed Central
Article
Google Scholar
2.Baillie, J. E. ., Hilton-Taylor, C. & Stuart, S. N. 2004 IUCN Red List of Threatened Species. A Global Species Assessment. (2004).3.Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. 101, 8998–9002 (2004).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
4.Cowen, R. K. Scaling of connectivity in marine populations. Science 311, 522–527 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
5.Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).Article
Google Scholar
6.Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed
Article
PubMed Central
Google Scholar
7.White, J. W. et al. Connectivity, dispersal, and recruitment. Oceanography 32, 50–59 (2019).Article
Google Scholar
8.Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395 (2009).ADS
Article
Google Scholar
9.Saunders, M. I. et al. Human impacts on connectivity in marine and freshwater ecosystems assessed using graph theory: A review. Mar. Freshw. Res. 67, 277 (2016).Article
Google Scholar
10.Peyran, C., Morage, T., Nebot-Colomer, E., Iwankow, G. & Planes, S. Unexpected residual habitats raise hope for the survival of the over the edge of extinction fan mussel, Pinna nobilis, along the Occitan coast (north-western Mediterranean Sea) (2020).11.De Gaulejac, B. Mise en évidence de l’hermaphrodisme successif à maturation asynchrone de Pinna nobilis. Biol. Pathol. Anim. 1, 99–103 (1995).
Google Scholar
12.Butler, A., Vicente, N. & de Gaulejac, B. Ecology of the pterioid bivalves Pinna bicolor Gmelin and Pinna nobilis L. Mar. Life 3, 37–45 (1993).
Google Scholar
13.Trigos, S., Vicente, N., Prado, P. & Espinós, F. J. Adult spawning and early larval development of the endangered bivalve Pinna nobilis. Aquaculture 483, 102–110 (2018).Article
Google Scholar
14.Öndes, F., Kaiser, M. J. & Güçlüsoy, H. Human impacts on the endangered fan mussel, Pinna nobilis. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 31–41 (2020).Article
Google Scholar
15.IOPR. Premier séminaire international sur la grande nacre de Méditerranée : Pinna nobilis. Mém. Inst. Océanogr. Paul Ricard 134 (2003).16.Katsares, V., Tsiora, A., Galinou-Mitsoudi, S. & Imsiridou, A. Genetic structure of the endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences. Biologia 63, 412–417 (2008).CAS
Article
Google Scholar
17.Rabaoui, L. et al. Genetic variation among populations of the endangered fan mussel Pinna nobilis (Mollusca: Bivalvia) along the Tunisian coastline. Hydrobiologia 678, 99–111 (2011).CAS
Article
Google Scholar
18.Sanna, D. et al. Mitochondrial DNA reveals genetic structuring of Pinna nobilis across the mediterranean sea. PLoS ONE 8, e67372 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
19.González-Wangüemert, M. et al. Gene pool and connectivity patterns of Pinna nobilis in the Balearic Islands (Spain, Western Mediterranean Sea): Implications for its conservation through restocking. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 175–188 (2019).Article
Google Scholar
20.Wesselmann, M. et al. Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis. Sci. Rep. 8, 4770 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
21.Sanna, D. et al. New mitochondrial and nuclear primers for the Mediterranean marine bivalve Pinna nobilis. Mediterr. Mar. Sci. 15, 416 (2014).Article
Google Scholar
22.Catanese, G. et al. Haplosporidium pinnae sp. nov., a haplosporidan parasite associated with mass mortalities of the fan mussel, Pinna nobilis, in the Western Mediterranean Sea. J. Invertebr. Pathol. 157, 9–24 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
23.Scarpa, F. et al. Multiple non-species-specific pathogens possibly triggered the mass mortality in Pinna nobilis. Life 10, 238 (2020).CAS
PubMed Central
Article
Google Scholar
24.Grau, A. et al. Wide-geographic and long-term analysis of the role of pathogens in the decline of Pinna nobilis to critically endangered species. (2021).25.Vázquez-Luis, M. et al. Pinna nobilis: A mass mortality event in Western Mediterranean Sea. Front. Mar. Sci. 4, 1–6 (2017).Article
Google Scholar
26.Cabanellas-Reboredo, M. et al. Tracking a mass mortality outbreak of pen shell Pinna nobilis populations: A collaborative effort of scientists and citizens. Sci. Rep. 9, 13355 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
27.García-March, J. R. et al. Can we save a marine species affected by a highly infective, highly lethal, waterborne disease from extinction?. Biol. Conserv. 243, 108498 (2020).Article
Google Scholar
28.Kersting, D. et al. Pinna nobilis. The IUCN Red List of Threatened Species 2019. (2019). https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T160075998A160081499.en29.Ifremer. Réseau de Suivi Lagunaire du Languedoc-Roussillon. (2014).30.García-March, J. R., García-Carrascosa, A. M. & Pena, Á. L. In situ measurement of Pinna nobilis shells for age and growth studies: A new device. Mar. Ecol. 23, 207–217 (2002).ADS
Article
Google Scholar
31.De Gaulejac, B. Etude écophysiologique du mollusque bivalve méditerranéen Pinna nobilis L. reproduction; croissance; respiration. (1993).32.Peyran, C., Planes, S., Tolou, N., Iwankow, G. & Boissin, E. Development of 26 highly polymorphic microsatellite markers for the highly endangered fan mussel Pinna nobilis and cross-species amplification. Mol. Biol. Rep. https://doi.org/10.1007/s11033-020-05338-1 (2020).Article
PubMed
Google Scholar
33.González-Wangüemert, M. et al. Highly polymorphic microsatellite markers for the Mediterranean endemic fan mussel Pinna nobilis. Mediterr. Mar. Sci. 16, 31 (2014).Article
Google Scholar
34.Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article
CAS
Google Scholar
35.Peakall, R. & Smouse, P. E. GenAlEx 65: Genetic analysis in Excel. Population genetic software for teaching and research: An update. Bioinformatics 28, 2537–2539 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Szpiech, Z. A., Jakobsson, M. & Rosenberg, N. A. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24, 2498–2504 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed
Article
Google Scholar
38.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358 (1984).CAS
PubMed
PubMed Central
Google Scholar
39.Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, Population genetics software for Windows TM. Université de Montpellier II (2004).40.Robertson, A. & Hill, W. G. Deviations from Hardy–Weinberg proportions: Sampling variances and use in estimation of inbreeding coefficients. Genetics 107, 703–718 (1984).CAS
PubMed
PubMed Central
Article
Google Scholar
41.Raufaste, N. & Bonhomme, F. Properties of bias and variance of two multiallelic estimators of FST. Theor. Popul. Biol. 57, 285–296 (2000).CAS
PubMed
MATH
Article
PubMed Central
Google Scholar
42.Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225 (1989).PubMed
Article
PubMed Central
Google Scholar
43.R Core Team. R: A Language and Environment for Statistical Computing. (2018).44.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 35: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed
PubMed Central
Article
Google Scholar
45.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. (2000).46.Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article
Google Scholar
47.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Puechmaille, S. J. The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).PubMed
Article
PubMed Central
Google Scholar
49.Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).PubMed
Article
PubMed Central
Google Scholar
50.Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
51.Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258 (1989).PubMed
Article
PubMed Central
Google Scholar
52.Kraemer, P. & Gerlach, G. Demerelate: Calculating interindividual relatedness for kinship analysis based on codominant diploid genetic markers using R. Mol. Ecol. Resour. 17, 1371–1377 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
53.Hare, M. P., Karl, S. A. & Avise, J. C. Anonymous nuclear DNA markers in the American oyster and their implications for the heterozygote deficiency phenomenon in marine bivalves. Mol. Biol. Evol. 13, 334–345 (1996).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Giantsis, I. A., Mucci, N., Randi, E., Abatzopoulos, T. J. & Apostolidis, A. P. Microsatellite variation of mussels (Mytilus galloprovincialis) in central and eastern Mediterranean: Genetic panmixia in the Aegean and the Ionian Seas. J. Mar. Biol. Assoc. UK 94, 797–809 (2014).Article
Google Scholar
55.Tarnowska, K., Chenuil, A., Nikula, R., Féral, J. & Wolowicz, M. Complex genetic population structure of the bivalve Cerastoderma glaucum in a highly fragmented lagoon habitat. Mar. Ecol. Prog. Ser. 406, 173–184 (2010).ADS
Article
Google Scholar
56.Šegvić-Bubić, T. et al. Translocation and aquaculture impact on genetic diversity and composition of wild self-sustainable Ostrea edulis populations in the Adriatic sea. Front. Mar. Sci. 7, 1–13 (2020).Article
Google Scholar
57.Dupont, L., Ellien, C. & Viard, F. Limits to gene flow in the slipper limpet Crepidula fornicata as revealed by microsatellite data and a larval dispersal model. Mar. Ecol. Prog. Ser. 349, 125–138 (2007).ADS
Article
Google Scholar
58.Ellegren, H. & Ellegren, N. Determinants of genetic diversity. Nat. Publ. Gr. 17, 422–433 (2016).CAS
Google Scholar
59.Mendo, T., Moltschaniwskyj, N., Lyle, J. M., Tracey, S. R. & Semmens, J. M. Role of density in aggregation patterns and synchronization of spawning in the hermaphroditic scallop Pecten fumatus. Mar. Biol. 161, 2857–2868 (2014).Article
Google Scholar
60.Žuljević, A., Despalatović, M., Cvitković, I., Morton, B. & Antolić, B. Mass spawning by the date mussel Lithophaga lithophaga. Sci. Rep. 8, 10781 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
61.Lamare, M. D. & Stewart, B. G. Mass spawning by the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea) in a New Zealand fiord. Mar. Biol. 132, 135–140 (1998).Article
Google Scholar
62.Soong, K., Chang, D. & Chao, S. Presence of spawn-inducing pheromones in two brittle stars (Echinodermata: Ophiuroidea). Mar. Ecol. Prog. Ser. 292, 195–201 (2005).ADS
Article
Google Scholar
63.Watson, G., Bentley, M., Gaudron, S. & Hardege, J. The role of chemical signals in the spawning induction of polychaete worms and other marine invertebrates. J. Exp. Mar. Biol. Ecol. 294, 169–187 (2003).CAS
Article
Google Scholar
64.Gaulejac, B. D., Henry, M. & Vicente, N. An ultrastructural study of gametogenesis of the marine bivalve Pinna nobilis (Linnaeus 1758) II, Spermatogenesis. J. Molluscan Stud. 61, 393–403 (1995).Article
Google Scholar
65.Cabanellas-Reboredo, M. et al. Recruitment of Pinna nobilis (Mollusca: Bivalvia) on artificial structures. Mar. Biodivers. Rec. 2, e126 (2009).Article
Google Scholar
66.Prado, P. et al. Breeding, planktonic and settlement factors shape recruitment patterns of one of the last remaining major population of Pinna nobilis within Spanish waters. Hydrobiologia 847, 771–786 (2020).Article
Google Scholar
67.Deudero, S. et al. Reproductive investment of the pen shell Pinna nobilis Linnaeus, 1758 in Cabrera National Park (Spain). Mediterr. Mar. Sci. 18, 271 (2017).Article
Google Scholar
68.Costantini, F., Rugiu, L., Cerrano, C. & Abbiati, M. Living upside down: Patterns of red coral settlement in a cave. Mediterr. Mar. Sci. https://doi.org/10.7717/peerj.4649 (2018).Article
Google Scholar
69.Cárdenas, L., Castilla, J. C. & Viard, F. Hierarchical analysis of the population genetic structure in Concholepas concholepas, a marine mollusk with a long-lived dispersive larva. Mar. Ecol. 37, 359–369 (2016).ADS
Article
Google Scholar
70.Morvezen, R. et al. Genetic structure of a commercially exploited bivalve, the great scallop Pecten maximus, along the European coasts. Conserv. Genet. 17, 57–67 (2016).Article
Google Scholar
71.Borsa, P., Jarne, P., Belkhir, K. & Bonhomme, F. Genetic structure of the palourde 103. Genet. Evol. Aquat. Org. 103, 1–12 (1994).
Google Scholar
72.Skalamera, J., Renaud, F., Raymond, M. & de Meeûs, T. No evidence for genetic differentiation of the mussel Mytilus galloprovincialis between lagoons and the seaside. Mar. Ecol. Prog. Ser. 178, 251–258 (1999).ADS
Article
Google Scholar
73.Boissin, E., Hoareau, T. B. & Berrebi, P. Effects of current and historic habitat fragmentation on the genetic structure of the sand goby Pomatoschistus minutus (Osteichthys, Gobiidae). Biol. J. Linn. Soc. 102, 175–198 (2011).Article
Google Scholar
74.Pérez-Ruzafa, A. et al. Connectivity between coastal lagoons and sea: Asymmetrical effects on assemblages’ and populations’ structure. Estuar. Coast. Shelf Sci. 216, 171–186 (2019).ADS
Article
Google Scholar
75.Frankham, R. Quantitative genetics in conservation biology. Genet. Res. 74, 237–244 (1999).CAS
PubMed
Article
Google Scholar More