The food web in a subterranean ecosystem is driven by intraguild predation
1.
Mulec, J. Phototrophs in caves. In Cave Ecology (eds Moldovan, O. T. et al.) 91–106 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-98852-8_6
Google Scholar
2.
Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats (Oxford University Press Inc., New York, 2009).
Google Scholar
3.
Engel, A. S. Chemoautotrophy. In Encyclopedia of caves 2nd edn (eds White, W. B. & Culver, D. C.) 125–134 (Elsevier, Amsterdam, 2012).
Google Scholar
4.
Kinkle, B. K. & Kane, T. C. Chemolithotrophic microorganisms and their potential role in subsurface environments. In Ecosystems of the World 30 Subterranean Ecosystems (eds Wilkens, H. et al.) 309–319 (Elsevier, Amsterdam, 2000).
Google Scholar
5.
Sarbu, S. M. Movile cave: A chemoautotrophically based groundwater ecosystem. In Ecosystems of the World 30 Subterranean Ecosystems (eds Wilkens, H. et al.) 319–343 (Elsevier, Amsterdam, 2001).
Google Scholar
6.
Simon, K. S., Pipan, T. & Culver, D. C. A conceptual model of the flow and distribution of organic carbon in caves. J. Cave Karst Stud. 69, 279–284 (2007).
CAS Google Scholar
7.
Camassa, M. M. Food resources. In Encyclopaedia of Caves and Karst Science (ed. Gunn, J.) 755–760 (Fitzroy Dearborn, London, 2004).
Google Scholar
8.
Poulson, T. L. & Lavoie, K. H. (The trophic basis of subsurface ecosystems. In Ecosystems of the World 30 Subterranean Ecosystems (eds Wilkens, H. et al.) 323–334 (Elsevier, Amsterdam, 2000).
Google Scholar
9.
Gibert, J. & Deharveng, L. Subterranean ecosystems: A truncated functional biodiversity. Bioscience 52(6), 473–481. https://doi.org/10.1641/0006-3568(2002)052[0473:SEATFB]2.0 (2002).
Article Google Scholar
10.
Chen, B. & Wise, D. H. Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80(3), 761–772. https://doi.org/10.2307/177015 (1999).
Article Google Scholar
11.
Venarsky, M. P. & Huntsman, B. M. Food webs in caves. In Cave Ecology (eds Moldovan, O. T. et al.) 309–331 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-98852-8_14
Google Scholar
12.
Gnaspini, P. Guano communities. In Encyclopedia of caves 2nd edn (eds White, W. B. & Culver, D. C.) 357–364 (Elsevier, Amsterdam, 2012).
Google Scholar
13.
Ipsen, A. The Segeberger Höhle—A phylogenetically young cave ecosystem in northern Germany. In Ecosystems of the World 30. Subterranean Ecosystems (eds Wilkens, H. et al.) 569–579 (Elsevier, Amsterdam, 2000).
Google Scholar
14.
Stone, F. D., Howarth, F. G., Hoch, H. & Asche, M. Root communities in lava tubes. In Encyclopedia of Caves 2nd edn (eds White, W. B. & Culver, D. C.) 658–664 (Elsevier, Amsterdam, 2012).
Google Scholar
15.
Mammola, S., Piano, E. & Isaia, M. Step back! Niche dynamics in cave-dwelling predators. Acta Oecol. 75, 35–42. https://doi.org/10.1016/j.actao.2016.06.011 (2016).
ADS Article Google Scholar
16.
Mammola, S. & Isaia, M. Cave communities and species interactions. In Cave Ecology (eds Moldovan, O. T. et al.) 255–269 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-98852-8_11
Google Scholar
17.
Scheu, S. & Setälä, H. Multitrophic interactions in decomposer food webs. In Multitrophic Interactions in Terrestrial Systems (eds Tscharntke, T. & Hawkins, B. A.) 223–264 (Cambridge, Cambridge University Press, 2001).
Google Scholar
18.
Wood, P. J. Subterranean ecology. In Encyclopaedia of Caves and Karst Science (ed. Gunn, J.) 1514–1519 (Fitzroy Dearborn, London, 2004).
Google Scholar
19.
Pekár, S., García, L. F. & Viera, C. Trophic niche and trophic adaptations of prey specialised spiders of the Neotropics: A guide. In Behavioural Ecology of Neotropical Spiders (eds Viera, C. & Gonzaga, M. O.) 247–274 (Springer, Cham, 2017).
Google Scholar
20.
Pohlman, J. W., Iliffe, T. M. & Cifuentes, L. A. A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar. Ecol. Prog. Ser. 155, 17–27 (1997).
ADS CAS Article Google Scholar
21.
Pohlman, J. W., Cifuentes, L. A. & Iliffe, T. M. Food web dynamics and biogeochemistry of anchialine caves: A stable isotope approach. In Ecosystems of the World 30 Subterranean Ecosystems (eds Wilkens, H. et al.) 345–357 (Elsevier, Amsterdam, 2000).
Google Scholar
22.
Sarbu, S. M., Galdenzi, S., Menichetti, M. & Gentile, G. Geology and biology of the Frasassi caves in Central Italy: An ecological multi-disciplinary study of a hypogenic underground karst system. In Ecosystems of the World 30 Subterranean Ecosystems (eds Wilkens, H. et al.) 359–378 (Elsevier, Amsterdam, 2000).
Google Scholar
23.
Eitzinger, B., Micic, A., Körner, M., Traugott, M. & Scheu, S. Unveiling soil food web links: New PCR assays for detection of prey DNA in the gut of soil arthropod predators. Soil Biol. Biochem. 57, 943–945. https://doi.org/10.1016/j.soilbio.2012.09.001 (2013).
CAS Article Google Scholar
24.
Juen, A. & Traugott, M. Revealing species-specific trophic links in soil food webs: Molecular identification of scarab predators. Mol. Ecol. 16, 1545–1557. https://doi.org/10.1111/j.1365-294X.2007.03238.x (2007).
CAS Article PubMed Google Scholar
25.
King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963. https://doi.org/10.1111/j.1365-294X.2007.03613.x (2008).
CAS Article PubMed Google Scholar
26.
Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 11(4), 627–641. https://doi.org/10.1046/j.1365-294x.2002.01471.x (2002).
CAS Article PubMed Google Scholar
27.
Traugott, M., Kamenova, S., Ruess, L., Seeber, J. & Plantegenest, M. Empirically characterising trophic networks: What emerging DNA-based methods, stable isotope and fatty acid analyses can offer. Adv. Ecol. Res. 49, 177–224. https://doi.org/10.1016/B978-0-12-420002-9.00003-2 (2013).
Article Google Scholar
28.
Kováč, Ľ. et al. Terrestrial arthropods of the Domica Cave system and the Ardovská Cave (Slovak Karst): Principal microhabitats and diversity. In Contributions to Soil Zoology in Central Europe I (eds Tajovský, K. et al.) 61–70 (ISB AS CR, České Budějovice, 2005).
Google Scholar
29.
Kováč, Ľ. et al. The cave biota of Slovakia. Speleologia Slovaca 5. (Liptovský Mikuláš, State Nature Conservancy SR, Slovak Caves Administration, 2014). https://doi.org/10.13140/2.1.3473.0569
30.
Kováč, Ľ, Parimuchová, A. & Miklisová, D. Distributional patterns of cave Collembola (Hexapoda) in association with habitat conditions, geography and subterranean refugia in the Western Carpathians. Biol. J. Linn. Soc. Lond. 119(3), 571–592. https://doi.org/10.1111/bij.12555 (2016).
Article Google Scholar
31.
Smrž, J., Kováč, Ľ, Mikeš, J. & Lukešová, A. Microwhip scorpions (Palpigradi) feed on heterotrophic Cyanobacteria in Slovak caves: A curiosity among Arachnida. PLoS ONE 8(10), e75989. https://doi.org/10.1371/journal.pone.0075989 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
32.
Pekár, S., Coddington, J. A. & Blackledge, T. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution 66(3), 776–806. https://doi.org/10.1111/j.1558-5646.2011.01471.x (2012).
Article Google Scholar
33.
Alderweireldt, M. Prey selection and prey capture strategies of linyphiid spiders in highinput agricultural fields. Bull. Br. Arachnol. Soc. 9, 300–308 (1994).
Google Scholar
34.
Lukić, M., Collembola in caves. Croatian Biospeleological Society, DVD, 10.25 min (2012).
35.
Roewer, C. F. Palpigradi. In Klassen und Ordnungen des Tierreichs 5: Arthropoda IV: Arachnoidea (ed. Bronns, H. G.) 640–707 (Akademische Verlagsgesellschaft MBH, Leipzig, 1932).
Google Scholar
36.
van der Hammen, L. Comparative studies in Chelicerata II. Epimerata (Palpigradi and Actinotrichida). Zool. Verh. 196, 3–70 (1982).
Google Scholar
37.
Wheeler, W. M. A singular arachnid Koenenia mirabilis (Grassi) occurring in Texas. Am. Nat. 34, 837–850 (1900).
Article Google Scholar
38.
Harwood, J. D., Phillips, S. W., Sunderland, K. D. & Symondson, W. O. C. Secondary predation: quantification of food chain errors in an aphid–spider–carabid system using monoclonal antibodies. Mol. Ecol. 10(8), 2049–2057. https://doi.org/10.1046/j.0962-1083.2001.01349.x (2001).
CAS Article PubMed Google Scholar
39.
Szafranek, P., Lewandowski, M. & Kozak, M. Prey preference and life tables of the predatory mite Parasitus bituberosus (Acari: Parasitidae) when offered various prey combinations. Exp. Appl. Acarol. 61(1), 53–67. https://doi.org/10.1007/s10493-013-9701-y (2013).
Article PubMed PubMed Central Google Scholar
40.
Al-Amidi, A. H. K. & Downes, M. J. Parasitus bituberosus (Acari: Parasitidae), a possible agent for biological control of Heteropeza pygmaea (Diptera: Cecidomyiidae) in mushroom compost. Exp. Appl. Acarol. 8(1–2), 13–25 (1990).
Article Google Scholar
41.
Adams, B. J. & Nguyen, K. B. Nematode parasites of insects. In Encyclopedia of Entomology (ed. Capinera, J. L.) 2577–2584 (Springer, Cham, 2008).
Google Scholar
42.
Cokendolpher, J. C. Pathogens and parasites of opiliones (arthropoda: arachnida). J. Arachnol. 21(2), 120–146 (1993).
Google Scholar
43.
Kruse, P. D., Toft, S. & Sunderland, K. D. Temperature and prey capture: Opposite relationships in two predator taxa. Ecol. Entomol. 33(2), 305–312. https://doi.org/10.1111/j.1365-2311.2007.00978.x (2008).
Article Google Scholar
44.
Krooss, S. & Schaefer, M. How predacious are predators? A study on Ocypus similis, a rove beetle of cereal fields. Ann. Appl. Biol. 133(1), 1–16. https://doi.org/10.1111/j.1744-7348.1998.tb05797.x (1998).
Article Google Scholar
45.
Waldbauer, G. P. & Friedman, S. Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36(1), 43–63. https://doi.org/10.1146/annurev.en.36.010191.000355 (1991).
Article Google Scholar
46.
Mayntz, D. & Toft, S. Nutrient composition of the prey’s diet affects growth and survivorship of a generalist predator. Oecologia 127, 207–213. https://doi.org/10.1007/s004420000591 (2001).
ADS Article PubMed Google Scholar
47.
Finke, D. L. & Denno, R. F. Intraguild predation diminished in complex-structured vegetation: implications for prey suppression. Ecology 83, 643–652. https://doi.org/10.2307/3071870 (2002).
Article Google Scholar
48.
Staudacher, K. et al. Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Funct. Ecol. 32(3), 809–819. https://doi.org/10.1111/1365-2435.13028 (2018).
Article PubMed PubMed Central Google Scholar
49.
Finke, D. L. & Denno, R. F. Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol. Lett. 8, 1299–1306. https://doi.org/10.1111/j.1461-0248.2005.00832.x (2005).
Article Google Scholar
50.
Schausberger, P. & Croft, B. A. Nutritional benefits of intraguild predation and cannibalism among generalist and specialist phytoseiid mites. Ecol. Entomol. 25(4), 473–480. https://doi.org/10.1046/j.1365-2311.2000.00284.x (2000).
Article Google Scholar
51.
Schausberger, P. Cannibalism among phytoseiid mites: a review. Exp. Appl. Acarol. 29(3/4), 173–191. https://doi.org/10.1023/a:1025839206394 (2003).
Article PubMed Google Scholar
52.
Elgar, M. A. & Crespi, B. J. Cannibalism: Ecology and Evolution Among Diverse Taxa (Oxford University Press, Oxford, 1992).
Google Scholar
53.
Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12(1), 225–251. https://doi.org/10.1146/annurev.es.12.110181.001301 (1981).
Article Google Scholar
54.
Fagan, W. F. et al. Nitrogen in insects: Implications for trophic complexity and species diversification. Am. Nat. 160(6), 784–802. https://doi.org/10.1086/343879 (2002).
Article Google Scholar
55.
Fagan, W. F. & Denno, R. F. Stoichiometry of actual vs. potential predator–prey interactions: Insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7(9), 876–883. https://doi.org/10.1111/j.1461-0248.2004.00641.x (2004).
Article Google Scholar
56.
Denno, R. F. & Fagan, W. F. Might nitrogen limitation promote omnivory among carnivorous arthropods?. Ecology 84(10), 2522–2531. https://doi.org/10.1890/02-0370 (2003).
Article Google Scholar
57.
Snyder, W. E., Joseph, S. B., Preziosi, R. F. & Moore, A. J. Nutritional benefits of cannibalism for the lady beetle Harmonia axyridis (Coleoptera: Coccinellidae) when prey quality is poor. Environ. Entomol. 29(6), 1173–1179. https://doi.org/10.1603/0046-225x-29.6.1173 (2000).
Article Google Scholar
58.
Nováková, A. et al. Feeding sources of invertebrates in the Ardovská Cave and Domica Cave systems: preliminary results. In Contributions to Soil Zoology in Central Europe I (eds Tajovský, K. et al.) 107–112 (ISB AS CR, České Budějovice, 2005).
Google Scholar
59.
Crossley, D. & Blair, J. M. A high efficiency, “low-technology” Tullgren-type extractor for soil microarthropods. Agric. Ecosyst. Environ. 34, 187–192 (1991).
Article Google Scholar
60.
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3(5), 294–299 (1994).
CAS PubMed Google Scholar
61.
de Groot, A. G., Laros, I. & Geisen, S. Molecular identification of soil eukaryotes and focused approaches targeting protist and faunal groups using high-throughput meta-barcoding methods in molecular biology. Methods Mol. Biol. 1399, 125–140. https://doi.org/10.1007/978-1-4939-3369-3_7 (2016).
CAS Article Google Scholar
62.
Aronesty, E. Comparison of sequencing utility programs. Open Bioinform. J. 7(1), 1–8. https://doi.org/10.2174/1875036201307010001 (2013).
MathSciNet Article Google Scholar
63.
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).
Article Google Scholar
64.
Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ. 2, e593 (2014).
Article Google Scholar
65.
Belshaw, R., Lopez-Vaamonde, C., Degerli, N. & Quicke, D. L. J. Paraphyletic taxa and taxonomic chaining: Evaluation the classification of braconine wasps (Hymenoptera: Braconidae) using 28S D2–3 rDNA sequences and morphological characters. Biol. J. Linn. Soc. Lond. 73(4), 411–424. https://doi.org/10.1111/j.1095-8312.2001.tb01370.x (2001).
Article Google Scholar
66.
Hurlbert, S. H. The measurement of niche overlap and some relatives. Ecology 59(1), 67–77. https://doi.org/10.2307/1936632 (1978).
Article Google Scholar
67.
Novakowski, G. C., Hahn, N. S. & Fugi, R. Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotrop. Ichthyol. 6(4), 567–576. https://doi.org/10.1590/S1679-62252008000400004 (2008).
Article Google Scholar
68.
Pianka, E. R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4(1), 53–74. https://doi.org/10.1146/annurev.es.04.110173.000413 (1973).
Article Google Scholar
69.
Pekár, S. & Brabec, M. Modern Analysis of Biological Data. Generalized Linear Models in R (MUNI Press, Brno, 2016).
Google Scholar
70.
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna). https://www.R-project.org/ (2017).
71.
Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56–71 (2017).
Article Google Scholar
72.
Kučera, B. Krasová morfologie a vývoj Ardovské jeskyně v Jihoslovenském krasu. Československý Kras. 16, 41–56 (1964) ([in Czech]).
Google Scholar More