More stories

  • in

    The food web in a subterranean ecosystem is driven by intraguild predation

    1.
    Mulec, J. Phototrophs in caves. In Cave Ecology (eds Moldovan, O. T. et al.) 91–106 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-98852-8_6
    Google Scholar 
    2.
    Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats (Oxford University Press Inc., New York, 2009).
    Google Scholar 

    3.
    Engel, A. S. Chemoautotrophy. In Encyclopedia of caves 2nd edn (eds White, W. B. & Culver, D. C.) 125–134 (Elsevier, Amsterdam, 2012).
    Google Scholar 

    4.
    Kinkle, B. K. & Kane, T. C. Chemolithotrophic microorganisms and their potential role in subsurface environments. In Ecosystems of the World 30 Subterranean Ecosystems (eds Wilkens, H. et al.) 309–319 (Elsevier, Amsterdam, 2000).
    Google Scholar 

    5.
    Sarbu, S. M. Movile cave: A chemoautotrophically based groundwater ecosystem. In Ecosystems of the World 30 Subterranean Ecosystems (eds Wilkens, H. et al.) 319–343 (Elsevier, Amsterdam, 2001).
    Google Scholar 

    6.
    Simon, K. S., Pipan, T. & Culver, D. C. A conceptual model of the flow and distribution of organic carbon in caves. J. Cave Karst Stud. 69, 279–284 (2007).
    CAS  Google Scholar 

    7.
    Camassa, M. M. Food resources. In Encyclopaedia of Caves and Karst Science (ed. Gunn, J.) 755–760 (Fitzroy Dearborn, London, 2004).
    Google Scholar 

    8.
    Poulson, T. L. & Lavoie, K. H. (The trophic basis of subsurface ecosystems. In Ecosystems of the World 30 Subterranean Ecosystems (eds Wilkens, H. et al.) 323–334 (Elsevier, Amsterdam, 2000).
    Google Scholar 

    9.
    Gibert, J. & Deharveng, L. Subterranean ecosystems: A truncated functional biodiversity. Bioscience 52(6), 473–481. https://doi.org/10.1641/0006-3568(2002)052[0473:SEATFB]2.0 (2002).
    Article  Google Scholar 

    10.
    Chen, B. & Wise, D. H. Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80(3), 761–772. https://doi.org/10.2307/177015 (1999).
    Article  Google Scholar 

    11.
    Venarsky, M. P. & Huntsman, B. M. Food webs in caves. In Cave Ecology (eds Moldovan, O. T. et al.) 309–331 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-98852-8_14
    Google Scholar 

    12.
    Gnaspini, P. Guano communities. In Encyclopedia of caves 2nd edn (eds White, W. B. & Culver, D. C.) 357–364 (Elsevier, Amsterdam, 2012).
    Google Scholar 

    13.
    Ipsen, A. The Segeberger Höhle—A phylogenetically young cave ecosystem in northern Germany. In Ecosystems of the World 30. Subterranean Ecosystems (eds Wilkens, H. et al.) 569–579 (Elsevier, Amsterdam, 2000).
    Google Scholar 

    14.
    Stone, F. D., Howarth, F. G., Hoch, H. & Asche, M. Root communities in lava tubes. In Encyclopedia of Caves 2nd edn (eds White, W. B. & Culver, D. C.) 658–664 (Elsevier, Amsterdam, 2012).
    Google Scholar 

    15.
    Mammola, S., Piano, E. & Isaia, M. Step back! Niche dynamics in cave-dwelling predators. Acta Oecol. 75, 35–42. https://doi.org/10.1016/j.actao.2016.06.011 (2016).
    ADS  Article  Google Scholar 

    16.
    Mammola, S. & Isaia, M. Cave communities and species interactions. In Cave Ecology (eds Moldovan, O. T. et al.) 255–269 (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-98852-8_11
    Google Scholar 

    17.
    Scheu, S. & Setälä, H. Multitrophic interactions in decomposer food webs. In Multitrophic Interactions in Terrestrial Systems (eds Tscharntke, T. & Hawkins, B. A.) 223–264 (Cambridge, Cambridge University Press, 2001).
    Google Scholar 

    18.
    Wood, P. J. Subterranean ecology. In Encyclopaedia of Caves and Karst Science (ed. Gunn, J.) 1514–1519 (Fitzroy Dearborn, London, 2004).
    Google Scholar 

    19.
    Pekár, S., García, L. F. & Viera, C. Trophic niche and trophic adaptations of prey specialised spiders of the Neotropics: A guide. In Behavioural Ecology of Neotropical Spiders (eds Viera, C. & Gonzaga, M. O.) 247–274 (Springer, Cham, 2017).
    Google Scholar 

    20.
    Pohlman, J. W., Iliffe, T. M. & Cifuentes, L. A. A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar. Ecol. Prog. Ser. 155, 17–27 (1997).
    ADS  CAS  Article  Google Scholar 

    21.
    Pohlman, J. W., Cifuentes, L. A. & Iliffe, T. M. Food web dynamics and biogeochemistry of anchialine caves: A stable isotope approach. In Ecosystems of the World 30 Subterranean Ecosystems (eds Wilkens, H. et al.) 345–357 (Elsevier, Amsterdam, 2000).
    Google Scholar 

    22.
    Sarbu, S. M., Galdenzi, S., Menichetti, M. & Gentile, G. Geology and biology of the Frasassi caves in Central Italy: An ecological multi-disciplinary study of a hypogenic underground karst system. In Ecosystems of the World 30 Subterranean Ecosystems (eds Wilkens, H. et al.) 359–378 (Elsevier, Amsterdam, 2000).
    Google Scholar 

    23.
    Eitzinger, B., Micic, A., Körner, M., Traugott, M. & Scheu, S. Unveiling soil food web links: New PCR assays for detection of prey DNA in the gut of soil arthropod predators. Soil Biol. Biochem. 57, 943–945. https://doi.org/10.1016/j.soilbio.2012.09.001 (2013).
    CAS  Article  Google Scholar 

    24.
    Juen, A. & Traugott, M. Revealing species-specific trophic links in soil food webs: Molecular identification of scarab predators. Mol. Ecol. 16, 1545–1557. https://doi.org/10.1111/j.1365-294X.2007.03238.x (2007).
    CAS  Article  PubMed  Google Scholar 

    25.
    King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963. https://doi.org/10.1111/j.1365-294X.2007.03613.x (2008).
    CAS  Article  PubMed  Google Scholar 

    26.
    Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 11(4), 627–641. https://doi.org/10.1046/j.1365-294x.2002.01471.x (2002).
    CAS  Article  PubMed  Google Scholar 

    27.
    Traugott, M., Kamenova, S., Ruess, L., Seeber, J. & Plantegenest, M. Empirically characterising trophic networks: What emerging DNA-based methods, stable isotope and fatty acid analyses can offer. Adv. Ecol. Res. 49, 177–224. https://doi.org/10.1016/B978-0-12-420002-9.00003-2 (2013).
    Article  Google Scholar 

    28.
    Kováč, Ľ. et al. Terrestrial arthropods of the Domica Cave system and the Ardovská Cave (Slovak Karst): Principal microhabitats and diversity. In Contributions to Soil Zoology in Central Europe I (eds Tajovský, K. et al.) 61–70 (ISB AS CR, České Budějovice, 2005).
    Google Scholar 

    29.
    Kováč, Ľ. et al. The cave biota of Slovakia. Speleologia Slovaca 5. (Liptovský Mikuláš, State Nature Conservancy SR, Slovak Caves Administration, 2014). https://doi.org/10.13140/2.1.3473.0569

    30.
    Kováč, Ľ, Parimuchová, A. & Miklisová, D. Distributional patterns of cave Collembola (Hexapoda) in association with habitat conditions, geography and subterranean refugia in the Western Carpathians. Biol. J. Linn. Soc. Lond. 119(3), 571–592. https://doi.org/10.1111/bij.12555 (2016).
    Article  Google Scholar 

    31.
    Smrž, J., Kováč, Ľ, Mikeš, J. & Lukešová, A. Microwhip scorpions (Palpigradi) feed on heterotrophic Cyanobacteria in Slovak caves: A curiosity among Arachnida. PLoS ONE 8(10), e75989. https://doi.org/10.1371/journal.pone.0075989 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Pekár, S., Coddington, J. A. & Blackledge, T. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution 66(3), 776–806. https://doi.org/10.1111/j.1558-5646.2011.01471.x (2012).
    Article  Google Scholar 

    33.
    Alderweireldt, M. Prey selection and prey capture strategies of linyphiid spiders in highinput agricultural fields. Bull. Br. Arachnol. Soc. 9, 300–308 (1994).
    Google Scholar 

    34.
    Lukić, M., Collembola in caves. Croatian Biospeleological Society, DVD, 10.25 min (2012).

    35.
    Roewer, C. F. Palpigradi. In Klassen und Ordnungen des Tierreichs 5: Arthropoda IV: Arachnoidea (ed. Bronns, H. G.) 640–707 (Akademische Verlagsgesellschaft MBH, Leipzig, 1932).
    Google Scholar 

    36.
    van der Hammen, L. Comparative studies in Chelicerata II. Epimerata (Palpigradi and Actinotrichida). Zool. Verh. 196, 3–70 (1982).
    Google Scholar 

    37.
    Wheeler, W. M. A singular arachnid Koenenia mirabilis (Grassi) occurring in Texas. Am. Nat. 34, 837–850 (1900).
    Article  Google Scholar 

    38.
    Harwood, J. D., Phillips, S. W., Sunderland, K. D. & Symondson, W. O. C. Secondary predation: quantification of food chain errors in an aphid–spider–carabid system using monoclonal antibodies. Mol. Ecol. 10(8), 2049–2057. https://doi.org/10.1046/j.0962-1083.2001.01349.x (2001).
    CAS  Article  PubMed  Google Scholar 

    39.
    Szafranek, P., Lewandowski, M. & Kozak, M. Prey preference and life tables of the predatory mite Parasitus bituberosus (Acari: Parasitidae) when offered various prey combinations. Exp. Appl. Acarol. 61(1), 53–67. https://doi.org/10.1007/s10493-013-9701-y (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Al-Amidi, A. H. K. & Downes, M. J. Parasitus bituberosus (Acari: Parasitidae), a possible agent for biological control of Heteropeza pygmaea (Diptera: Cecidomyiidae) in mushroom compost. Exp. Appl. Acarol. 8(1–2), 13–25 (1990).
    Article  Google Scholar 

    41.
    Adams, B. J. & Nguyen, K. B. Nematode parasites of insects. In Encyclopedia of Entomology (ed. Capinera, J. L.) 2577–2584 (Springer, Cham, 2008).
    Google Scholar 

    42.
    Cokendolpher, J. C. Pathogens and parasites of opiliones (arthropoda: arachnida). J. Arachnol. 21(2), 120–146 (1993).
    Google Scholar 

    43.
    Kruse, P. D., Toft, S. & Sunderland, K. D. Temperature and prey capture: Opposite relationships in two predator taxa. Ecol. Entomol. 33(2), 305–312. https://doi.org/10.1111/j.1365-2311.2007.00978.x (2008).
    Article  Google Scholar 

    44.
    Krooss, S. & Schaefer, M. How predacious are predators? A study on Ocypus similis, a rove beetle of cereal fields. Ann. Appl. Biol. 133(1), 1–16. https://doi.org/10.1111/j.1744-7348.1998.tb05797.x (1998).
    Article  Google Scholar 

    45.
    Waldbauer, G. P. & Friedman, S. Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36(1), 43–63. https://doi.org/10.1146/annurev.en.36.010191.000355 (1991).
    Article  Google Scholar 

    46.
    Mayntz, D. & Toft, S. Nutrient composition of the prey’s diet affects growth and survivorship of a generalist predator. Oecologia 127, 207–213. https://doi.org/10.1007/s004420000591 (2001).
    ADS  Article  PubMed  Google Scholar 

    47.
    Finke, D. L. & Denno, R. F. Intraguild predation diminished in complex-structured vegetation: implications for prey suppression. Ecology 83, 643–652. https://doi.org/10.2307/3071870 (2002).
    Article  Google Scholar 

    48.
    Staudacher, K. et al. Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Funct. Ecol. 32(3), 809–819. https://doi.org/10.1111/1365-2435.13028 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Finke, D. L. & Denno, R. F. Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol. Lett. 8, 1299–1306. https://doi.org/10.1111/j.1461-0248.2005.00832.x (2005).
    Article  Google Scholar 

    50.
    Schausberger, P. & Croft, B. A. Nutritional benefits of intraguild predation and cannibalism among generalist and specialist phytoseiid mites. Ecol. Entomol. 25(4), 473–480. https://doi.org/10.1046/j.1365-2311.2000.00284.x (2000).
    Article  Google Scholar 

    51.
    Schausberger, P. Cannibalism among phytoseiid mites: a review. Exp. Appl. Acarol. 29(3/4), 173–191. https://doi.org/10.1023/a:1025839206394 (2003).
    Article  PubMed  Google Scholar 

    52.
    Elgar, M. A. & Crespi, B. J. Cannibalism: Ecology and Evolution Among Diverse Taxa (Oxford University Press, Oxford, 1992).
    Google Scholar 

    53.
    Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12(1), 225–251. https://doi.org/10.1146/annurev.es.12.110181.001301 (1981).
    Article  Google Scholar 

    54.
    Fagan, W. F. et al. Nitrogen in insects: Implications for trophic complexity and species diversification. Am. Nat. 160(6), 784–802. https://doi.org/10.1086/343879 (2002).
    Article  Google Scholar 

    55.
    Fagan, W. F. & Denno, R. F. Stoichiometry of actual vs. potential predator–prey interactions: Insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7(9), 876–883. https://doi.org/10.1111/j.1461-0248.2004.00641.x (2004).
    Article  Google Scholar 

    56.
    Denno, R. F. & Fagan, W. F. Might nitrogen limitation promote omnivory among carnivorous arthropods?. Ecology 84(10), 2522–2531. https://doi.org/10.1890/02-0370 (2003).
    Article  Google Scholar 

    57.
    Snyder, W. E., Joseph, S. B., Preziosi, R. F. & Moore, A. J. Nutritional benefits of cannibalism for the lady beetle Harmonia axyridis (Coleoptera: Coccinellidae) when prey quality is poor. Environ. Entomol. 29(6), 1173–1179. https://doi.org/10.1603/0046-225x-29.6.1173 (2000).
    Article  Google Scholar 

    58.
    Nováková, A. et al. Feeding sources of invertebrates in the Ardovská Cave and Domica Cave systems: preliminary results. In Contributions to Soil Zoology in Central Europe I (eds Tajovský, K. et al.) 107–112 (ISB AS CR, České Budějovice, 2005).
    Google Scholar 

    59.
    Crossley, D. & Blair, J. M. A high efficiency, “low-technology” Tullgren-type extractor for soil microarthropods. Agric. Ecosyst. Environ. 34, 187–192 (1991).
    Article  Google Scholar 

    60.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3(5), 294–299 (1994).
    CAS  PubMed  Google Scholar 

    61.
    de Groot, A. G., Laros, I. & Geisen, S. Molecular identification of soil eukaryotes and focused approaches targeting protist and faunal groups using high-throughput meta-barcoding methods in molecular biology. Methods Mol. Biol. 1399, 125–140. https://doi.org/10.1007/978-1-4939-3369-3_7 (2016).
    CAS  Article  Google Scholar 

    62.
    Aronesty, E. Comparison of sequencing utility programs. Open Bioinform. J. 7(1), 1–8. https://doi.org/10.2174/1875036201307010001 (2013).
    MathSciNet  Article  Google Scholar 

    63.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).
    Article  Google Scholar 

    64.
    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ. 2, e593 (2014).
    Article  Google Scholar 

    65.
    Belshaw, R., Lopez-Vaamonde, C., Degerli, N. & Quicke, D. L. J. Paraphyletic taxa and taxonomic chaining: Evaluation the classification of braconine wasps (Hymenoptera: Braconidae) using 28S D2–3 rDNA sequences and morphological characters. Biol. J. Linn. Soc. Lond. 73(4), 411–424. https://doi.org/10.1111/j.1095-8312.2001.tb01370.x (2001).
    Article  Google Scholar 

    66.
    Hurlbert, S. H. The measurement of niche overlap and some relatives. Ecology 59(1), 67–77. https://doi.org/10.2307/1936632 (1978).
    Article  Google Scholar 

    67.
    Novakowski, G. C., Hahn, N. S. & Fugi, R. Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotrop. Ichthyol. 6(4), 567–576. https://doi.org/10.1590/S1679-62252008000400004 (2008).
    Article  Google Scholar 

    68.
    Pianka, E. R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4(1), 53–74. https://doi.org/10.1146/annurev.es.04.110173.000413 (1973).
    Article  Google Scholar 

    69.
    Pekár, S. & Brabec, M. Modern Analysis of Biological Data. Generalized Linear Models in R (MUNI Press, Brno, 2016).
    Google Scholar 

    70.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna). https://www.R-project.org/ (2017).

    71.
    Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56–71 (2017).
    Article  Google Scholar 

    72.
    Kučera, B. Krasová morfologie a vývoj Ardovské jeskyně v Jihoslovenském krasu. Československý Kras. 16, 41–56 (1964) ([in Czech]).
    Google Scholar  More

  • in

    Author Correction: Vertical transmission of sponge microbiota is inconsistent and unfaithful

    Author notes
    These authors jointly supervised this work: Elizabeth A. Archie and José M. Montoya.

    Affiliations

    Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
    Johannes R. Björk & Elizabeth A. Archie

    Theoretical and Experimental Ecology Station, CNRS-University Paul Sabatier, Moulis, France
    Johannes R. Björk & José M. Montoya

    Natural History Museum, London, UK
    Cristina Díez-Vives

    School of Biological Sciences, University of Auckland, Auckland, New Zealand
    Carmen Astudillo-García

    Authors
    Johannes R. Björk

    Cristina Díez-Vives

    Carmen Astudillo-García

    Elizabeth A. Archie

    José M. Montoya

    Corresponding authors
    Correspondence to Johannes R. Björk or Elizabeth A. Archie or José M. Montoya. More

  • in

    Preparation and application of a thidiazuron·diuron ultra-low-volume spray suitable for plant protection unmanned aerial vehicles

    Screening of solvent and adjuvant
    The results of solvent screening are shown in Table 1. The original pesticide could not be completely dissolved using a single solvent. However, 5% N-methyl-2-pyrrolidone + 10% cyclohexanone could completely dissolve the original pesticide. There was no solid precipitation at room temperature, so the formulation could be used for the subsequent experiment. According to Table 2, a mixture of sulfonate adjuvants (70b) and fatty alcohol polyoxyethylene ether adjuvants (AEO-4, -5, -7, -9, 992) could stabilize the system in a single, transparent, homogeneous phase. Therefore, sulfonate adjuvant (70b) was selected and mixed with five adjuvants of the AEO series to prepare thidiazuron·diuron ultra-low-volume sprays, numbered 1–5 (as shown in Table 3).
    Table 1 Selection of solvent type and dosage (%: mass fraction).
    Full size table

    Table 2 Selection of adjuvants type and dosage (%: mass fraction).
    Full size table

    Table 3 Ultra-low-volume formulations used in this study.
    Full size table

    Surface tension measurement
    The critical surface tension of cotton leaves is 63.30–71.81 mN/m. Figure 1 shows that the surface tension of each sample was 31.67–33.37 mN/m, which was much lower than the critical surface tension of the leaf, indicating the agent was able to completely wet the leaf and be fully distributed on the leaf surface. The maximum surface tension of the reference product was 38.90 mN/m. Under the same dosage of adjuvant, sample 5 with adjuvant 992 had the smallest surface tension of 31.67 mN/m.
    Figure 1

    Surface tensions of different samples. Different letters (a–d) indicate significant differences between means. Means followed by the same letter are not significant at the 5% significance level by the LSD test (LSD = 0.05). Vertical bars indicate a standard deviation of the mean. The detailed data of the histogram is shown in Supplementary Table S1.

    Full size image

    Contact angle measurement
    According to Young’s equation, the smaller the surface tension, the smaller the contact angle40,41. Figure 2 shows the contact angle of different samples on cotton leaves and the change in contact angle over time. The contact angles of oil agents containing the adjuvant 992, AEO-7 and AEO-9 were smaller than that of the reference product, and the spreading effect was superior to that of the reference product. In the surface tension test, sample 5 had the smallest surface tension of 31.67 mN/m; this sample showed the minimum initial contact angle (39°) and a static contact angle (22°). The surface tension of the reference product was 38.90 mN/m., with the maximum initial contact angle (65.5°). Therefore, the relationship between surface tension and contact angle conformed to Young’s equation.
    Figure 2

    Contact angles of different samples on cotton leaves in 0–10 s. The detailed data of drawing the contact Angle curve is shown in Supplementary Table S2.

    Full size image

    Volatilization rate measurement
    As shown in Fig. 3, the volatilization rate of the oil agent was much lower than that of the reference product. The volatilization rate of the five treatments was 5.80–8.74%, while the volatilization rate of the reference product was 22.97%. The volatilization rate of the oil agent met the quality requirements of an ultra-low-volume spray (≤ 30%). A low volatilization rate helps with spraying defoliants in hot and dry areas such as Xinjiang, effectively preventing evaporation of the droplets and increasing deposition.
    Figure 3

    Volatilization of different samples on filter paper. Different letters (a–e) indicate significant differences between means. Means followed by the same letter are not significant at the 5% significance level by the LSD test (LSD = 0.05). Vertical bars indicate a standard deviation of the mean. The detailed data of the histogram is shown in Supplementary Table S3.

    Full size image

    Viscosity measurement
    Viscosity is an important factor affecting the atomization performance of a formulation42. Figure 4 shows that the viscosity of the five oil agents ranged from 12.9 to 18.3 mPa s, meeting the quality requirements of an ultra-low-volume spray ( 20 V), the droplet size distribution tended to be stable. This coincided with data shown in Fig. 6, where the inflection point appeared when rotation speed was 9600 rpm (voltage = 20 V).
    Figure 6

    Relationship between the rotation speed of the centrifugal spray atomizer and droplet size. D10: 10% cumulative volume diameter, D50: 50% cumulative volume diameter, D90: 90% cumulative volume diameter. The detailed data of drawing the curve is shown in Supplementary Table S6.

    Full size image

    Figure 7

    Relationship between the rotation speed of the centrifugal spray atomizer and the fog droplet spectrum. The detailed data of drawing the curve is shown in Supplementary Table S6.

    Full size image

    Therefore, we determined that the optimal working conditions for the rotary atomizer were achieved by setting the DC voltage stabilized power supply current to 1.00 A and voltage to 20 V, which were used for subsequent experiments.
    Atomization performance
    The relationship between viscosity and droplet spectrum are shown in Table 4 and Fig. 8. The cumulative volume diameter for the five treatments was less than 150 μm meeting the requirements of the ULV spray32. The cumulative volume diameter for the five treatments was larger than that for the reference product, the width of the droplet spectrum was narrower, and the droplet distribution was more uniform. Droplet size affects the drift of droplets43. The D10 of the reference product was 25.62 μm under these working conditions. This droplet size was highly susceptible to drift and deposition on non-target organisms. Water suspension was not suitable for this application at low dosage.
    Table 4 Droplet size and droplet size distribution of different sample sprays.
    Full size table

    Figure 8

    Relationship between formulation viscosity and droplet spectrum. The detailed data of drawing the figure is shown in Supplementary Table S7.

    Full size image

    As presented in Table 4, droplet size increased with increasing viscosity, which influenced the droplet spectrum. The results in Fig. 8 show that the span of droplet size decreased with the increase of viscosity, indicating that droplets with more uniform distribution could be obtained by increasing the viscosity of the formulation41.
    Droplet deposition effect
    We tested the efficacy of the ULV spray formulation by spraying cotton plants using an UAV. The test results in Table 5 indicate that increasing the dosage of application would increase droplet size, coverage, and deposition density. At the same application dosage, the droplet size of the ultra-low-volume spray was slightly larger than that of the reference product, and the coverage and deposition density were greater than those of the reference product. The droplet spectral width (Rs) of the five treatments was less than 1, and the coefficient of variation was less than 7%, indicating that the droplet distribution was relatively uniform. Among treatments, T2 had the narrowest Rs and coefficient of variation (CV), where the droplet size distribution was the most uniform. For the ultra-low-volume spray, at the application dosage of 4.5–9.0 L/ha, the droplet coverage gradually increased from 0.85 to 4.15%; the droplet deposition densities were 15.63, 17.24, 28.45, and 42.57 pcs/cm2, which were larger than requirements suggested in the literature. The droplet coverage of the reference product (T5) was 0.73%, and the deposition density was only 11.32 pcs/cm2.
    Table 5 Droplet size, coverage, deposition density, spectral width and variation coefficient for each treatment.
    Full size table

    Efficacy trials
    The efficacy of cotton defoliant is reflected in the defoliation rate and boll opening rate of cotton after application. Therefore, we surveyed the defoliation rate and boll opening rate of cotton in the test area 3–15 days after application. The results are shown in Figs. 9 and 10.
    Figure 9

    Defoliation rate 3–15 days after treatment. The detailed data of drawing the curve is shown in Supplementary Table S8.

    Full size image

    Figure 10

    Boll opening rate 3–15 days after treatment. The detailed data of drawing the curve is shown in Supplementary Table S9.

    Full size image

    Figure 9 indicates that the defoliation rates of the five treatments 15 days after the pesticide treatment were 59.82%, 63.96%, 71.40%, 77.84%, and 54.58%, respectively. The defoliation rates of T1, T2, and T5 were less than 70%.
    Application of the ultra-low-volume spray at 4.50 L/ha or 6.00 L/ha and the reference product at 6.00 L/ha had a poor defoliation effect. T4 (9.00 L/ha) was superior to the others, and the defoliation rate reached 77.84% 15 days after application. As shown in Fig. 10, the boll opening rates of the five treatments were 58.54%, 67.74%, 95.35%, 100%, and 44.68% 15 days after application. Similarly, the boll opening rates of T1, T2, and T5 were poor, with the boll opening rate of the control T5 only 44.68%. We analyzed significant differences between the defoliation rates and boll opening rates of the five treatments. The results showed that the defoliation rate and boll opening rate associated with the thidiazuron·diuron ultra-low-volume spray on cotton plants were significantly different from those of the reference product.
    Overall, the defoliation rate and boll opening rate produced by the ultra-low-volume spray were superior to those produced by the reference product. This result was consistent with data shown in Table 5. The higher the droplet coverage rate, the higher the droplet deposition density and the higher the defoliation rate and boll opening rate. T1, T2 and T5 had poor deposition effect on cotton plants, and the effective pesticide utilization rate was low, resulting in dissatisfactory defoliation rates and boll opening rates. Both the droplet coverage rate and the droplet deposition density of T3 and T4 were large. Therefore, droplets of pesticide solution could deposit more easily and uniformly on cotton leaves, allowing the plants to defoliate and open their bolls easily. More

  • in

    The UN Environment Programme needs new powers

    Indian prime minister Indira Gandhi meets Maurice Strong, who chaired the 1972 Stockholm Conference on the Human Environment. Gandhi saw UNEP’s potential at a time when other countries doubted its value.Credit: Yutaka Nagata/UN Photo

    The United Nations Environment Programme (UNEP) will be 50 next year. But the globe’s green watchdog, which helped to create the Intergovernmental Panel on Climate Change (IPCC), very nearly didn’t exist.
    During talks hosted by Sweden in 1972, low- and middle-income countries were concerned that such a body would inhibit their industrial development. Some high-income countries also questioned its creation. UK representative Solly Zuckerman, a former chief scientific adviser to prime ministers including Winston Churchill, said the science did not justify warnings that human activities could have irreversible consequences for the planet. The view in London was that, on balance, environmental pollution was for individual nations to solve — not the UN.
    But the idea of UNEP had powerful supporters, too. India’s prime minister, Indira Gandhi, foresaw its potential in enabling industry to become cleaner and more humane. And the host nation made a wise choice in picking Canadian industrialist Maurice Strong to steer the often fractious talks to success. He would become UNEP’s first executive director. Two decades later, Strong re-emerged to chair the 1992 Earth Summit in Rio de Janeiro, Brazil, which created three landmark international agreements: to protect biodiversity, safeguard the climate and combat desertification.
    UNEP has chalked up some impressive achievements in science and legislation. In 1988, working with the World Meteorological Organization, it co-founded the IPCC, whose scientific assessments have been pivotal to global climate action. It also responded to scientists’ warnings about the hole in the ozone layer, leading to the creation of the 1987 Montreal Protocol, an international law to phase out ozone-depleting chemicals.
    Strong’s successors would go on to identify emerging green-policy issues and nudge them into the mainstream. UNEP has pushed the world of finance to think about how to stop funding polluting industries. It has also advocated working with China to green its rapid industrial growth — including the Belt and Road Initiative to develop global infrastructure. It is essential that this work continues.
    UNEP also accelerated the creation of environment ministries around the world. Their ministers sit on the programme’s governing council; at their annual meeting last week, they reflected on what UNEP must do to tackle the environmental crisis. Although the environment is a rising priority for governments, businesses and civil society, progress on the UN’s flagship Sustainable Development Goals — in biodiversity, climate, land degradation, pollution, finance and more — is next to non-existent. Moreover, the degradation of nature is putting hard-won gains at risk, argues a report that UNEP commissioned as part of its half-century commemorations.
    The report, Making Peace with Nature, assesses much of the same literature as would a climate- or land-degradation assessment, but its key strength is in how it brings together researchers from across environmental science. In doing so, UNEP is helping to accelerate a mode of working that should be standard. If, for example, there is to be an assessment of how climate change affects biodiversity, it makes much more sense for this to be carried out by a joint team from the IPCC and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) than by researchers from just one of these organizations.
    The UNEP report’s authors stop short of recommending such changes to the architecture of the UN’s scientific advisory bodies. That is a missed opportunity. Also missing is a discussion and recommendations on how to make countries more accountable for their environmental pledges.
    Both these actions are sorely needed if the world is to take more meaningful steps to battle climate change and biodiversity loss. Countries have become expert in capturing data and reporting them to UN organizations. But there is no mechanism that holds nations to account. For example, there is no system to ensure compliance with targets for the Sustainable Development Goals.
    Last week, the UN produced a report in which countries published their progress towards commitments under the 2015 Paris climate agreement, known as nationally determined contributions. The agreement includes almost 200 countries, but just 75 reported their data. There are few incentives for success and no penalties for failure. Without such measures, it is hard to see how meaningful change could ever happen.
    In the past, researchers have proposed that UNEP’s member states upgrade its powers so it becomes more of a compliance body — a World Environment Organization that, like the World Trade Organization, has the power to censure countries for failing to keep to agreements. But this has been resisted as too radical a step, which would upend the autonomy of the UN biodiversity and climate organizations that UNEP itself helped to bring into being.
    Twenty years ago, there might have been some justification for such a view, but now, with the world on a path to extreme climate change, any action will need to be radical, including considering how to give UNEP more teeth.
    UNEP helped to lay the foundations for a scientific consensus on environmental decline, and it should be proud of the body of law that has been enacted globally. Alas, such measures risk being too little, too late. As it embarks on a year of reflection ahead of its anniversary, member states must consider what more they need to do to empower UNEP to tackle the planetary emergency. More

  • in

    Fish heating tolerance scales similarly across individual physiology and populations

    1.
    Hutchinson, G. E. Cold spring harbor symposium on quantitative biology. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
    Article  Google Scholar 
    2.
    Chown, S., Gaston, K. & Robinson, D. Macrophysiology: large‐scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159–167 (2004).
    Article  Google Scholar 

    3.
    Spicer, J. I., Morley, S. A. & Bozinovic, F. Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen. Philos. Trans. R. Soc. B 374 (2019).

    4.
    Chown, S. L. & Gaston, K. J. Macrophysiology—progress and prospects. Funct. Ecol. 30, 330–344 (2016).
    Article  Google Scholar 

    5.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    Article  Google Scholar 

    6.
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105, 6668–6672 (2008).
    CAS  Article  Google Scholar 

    7.
    Waldock, C., Stuart‐Smith, R. D., Edgar, G. J., Bird, T. J. & Bates, A. E. The shape of abundance distributions across temperature gradients in reef fishes. Ecol. Lett. 22, 685–696 (2019).
    Article  Google Scholar 

    8.
    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).
    Article  Google Scholar 

    9.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B. 278, 1823–1830 (2011).
    Article  Google Scholar 

    10.
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS 111, 5610–5615 (2014).
    CAS  Article  Google Scholar 

    11.
    Araujo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    Article  Google Scholar 

    12.
    Payne, N. L. & Smith, J. A. An alternative explanation for global trends in thermal tolerance. Ecol. Lett. 20, 70–77 (2017).
    Article  Google Scholar 

    13.
    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).
    Article  Google Scholar 

    14.
    Rezende, E. L. & Bozinovic, F. Thermal performance across levels of biological organization. Philos. Trans. R. Soc. B 374, 20180549 (2019).
    CAS  Article  Google Scholar 

    15.
    Barnes, D. K., Peck, L. S. & Morley, S. A. Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change. Glob. Change Biol. 16, 3164–3169 (2010).
    Article  Google Scholar 

    16.
    Clark, T. D., Sandblom, E. & Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782 (2013).
    Article  Google Scholar 

    17.
    Norin, T., Malte, H. & Clark, T. D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J. Exp. Biol. 217, 244–251 (2014).
    Article  Google Scholar 

    18.
    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).
    Article  Google Scholar 

    19.
    Buckley, L. B. et al. Can mechanism inform species’ distribution models? Ecol. Lett. 13, 1041–1054 (2010).
    Article  Google Scholar 

    20.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    21.
    Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248–256 (2009).
    Article  Google Scholar 

    22.
    Richard, J., Morley, S. A., Thorne, M. A. & Peck, L. S. Estimating long-term survival temperatures at the assemblage level in the marine environment: towards macrophysiology. PLoS ONE 7, e34655 (2012).
    CAS  Article  Google Scholar 

    23.
    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).
    CAS  Article  Google Scholar 

    24.
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    CAS  Article  Google Scholar 

    25.
    Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).
    Article  Google Scholar 

    26.
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
    Article  Google Scholar 

    27.
    Martin, T. L. & Huey, R. B. Why “Suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171, E102–E118 (2008).
    Article  Google Scholar 

    28.
    Pörtner, H.-O. et al. Cod and climate in a latitudinal cline: physiological analyses of climate effects in marine fishes. Clim. Res. 37, 253–270 (2008).
    Article  Google Scholar 

    29.
    Sylvestre, E.-L., Lapointe, D., Dutil, J.-D. & Guderley, H. Thermal sensitivity of metabolic rates and swimming performance in two latitudinally separated populations of cod, Gadus morhua L. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 177, 447–460 (2007).
    Article  Google Scholar 

    30.
    Claireaux, G., Webber, D., Lagardère, J.-P. & Kerr, S. Influence of water temperature and oxygenation on the aerobic metabolic scope of Atlantic cod (Gadus morhua). J. Sea Res. 44, 257–265 (2000).
    Article  Google Scholar 

    31.
    Björnsson, B. & Steinarsson, A. The food-unlimited growth rate of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 59, 494–502 (2002).
    Article  Google Scholar 

    32.
    Morley, S., Peck, L., Sunday, J., Heiser, S. & Bates, A. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).
    Article  Google Scholar 

    33.
    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).
    Article  Google Scholar 

    34.
    Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 326, 119–157 (1989).
    CAS  Google Scholar 

    35.
    Orme, D., Freckleton, R., Thomas, G., Petzoldt, T. & Fritz, S. The caper package: comparative analysis of phylogenetics and evolution in R. R. Package Version 5, 1–36 (2013).
    Google Scholar 

    36.
    Halsey, L. G., Butler, P. J. & Blackburn, T. M. A phylogenetic analysis of the allometry of diving. Am. Nat. 167, 276–287 (2006).
    Article  Google Scholar 

    37.
    Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).
    Article  Google Scholar 

    38.
    Freckleton, R. The seven deadly sins of comparative analysis. J. Evol. Biol. 22, 1367–1375 (2009).
    CAS  Article  Google Scholar 

    39.
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).
    CAS  Article  Google Scholar  More

  • in

    Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity

    1.
    Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).
    CAS  Article  Google Scholar 
    2.
    Kenchington, R. & Hutchings, P. Some implications of high biodiversity for management of tropical marine ecosystems—an Australian perspective. Diversity 10, 1 (2017).
    Article  Google Scholar 

    3.
    Field, C. et al. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 7, 3–14 (1998).
    Article  Google Scholar 

    4.
    Honda, K., Nakamura, Y., Nakaoka, M., Uy, W. H. & Fortes, M. D. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE 8, e65735 (2013).
    CAS  Article  Google Scholar 

    5.
    Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).
    Article  Google Scholar 

    6.
    Unsworth, R. K. et al. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Prog. Ser. 353, 213–224 (2008).
    Article  Google Scholar 

    7.
    Hoeksema, B. W. in Biogeography, Time, and Place: Distributions, Barriers, and Islands. Topics in Geobiology (ed. Renema, W.) 117–178 (Springer, 2007).

    8.
    Pitcher, C. R. et al. Seabed Biodiversity on the Continental Shelf of the Great Barrier Reef World Heritage Area AIMS/CSIRO/QM/QDPI Final Report to CRC Reef Research (CSIRO Marine and Atmospheric Research, 2007); http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2003-021-DLD.pdf

    9.
    Richards, Z. T. & Day, J. C. Biodiversity of the Great Barrier Reef—how adequately is it protected? PeerJ 6, e4747 (2018).
    Article  Google Scholar 

    10.
    Harris, P. T. et al. Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J. Mar. Sci. 70, 284–293 (2013).
    Article  Google Scholar 

    11.
    Chin, A. in State of the Great Barrier Reef Report 2003 (ed. Chin, A.) 1–16 (Great Barrier Reef Marine Park Authority, 2003); https://hdl.handle.net/11017/669

    12.
    Whiteway, T., Smithers, S., Potter, A. & Brooke, B. Geological and Geomorphological Features of Outstanding Universal Value in the Great Barrier Reef World Heritage Area. Report prepared for SEWPaC (Coastal Marine and Climate Change Group, Geoscience Australia and School of Earth and Environmental Sciences, James Cook Univ., 2013).

    13.
    Mathews, E., Heap, A. & Woods, M. Inter-Reefal Seabed Sediments and Geomorphology of the Great Barrier Reef: A Spatial Analysis (Geoscience Australia, 2007).

    14.
    Huang, Z. et al. A conceptual surrogacy framework to evaluate the habitat potential of submarine canyons. Prog. Oceanogr. 169, 199–213 (2018).
    Article  Google Scholar 

    15.
    McNeil, M. A., Webster, J. M., Beaman, R. J. & Graham, T. L. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 35, 1343–1355 (2016).
    Article  Google Scholar 

    16.
    Cumings, E. R. Reefs or bioherms? Geol. Soc. Am. Bull. 43, 331–352 (1932).
    Article  Google Scholar 

    17.
    Klement, K. W. Practical classification of reefs and banks, bioherms and biostromes. Am. Assoc. Pet. Geol. Bull. 51, 167–168 (1967).

    18.
    Beaman, R. J. High-Resolution Depth Model for the Great Barrier Reef—30 m (Geoscience Australia 2017); https://doi.org/10.4225/25/5a207b36022d2

    19.
    Orme, G. The sedimentological importance of Halimeda in the development of back reef lithofacies, northern Great Barrier Reef (Australia). In Proc. 5th International Coral Reef Symposium 31–37 (1985).

    20.
    Orme, G. R. & Salama, M. S. Form and seismic stratigraphy of Halimeda banks in part of the northern Great Barrier Reef Province. Coral Reefs 6, 131–137 (1988).
    Article  Google Scholar 

    21.
    Davies, P. in Encyclopaedia of Modern Coral Reefs—Structure, Form and Process (ed. Hopley, D.) 539–549 (Springer, 2011).

    22.
    Marshall, J. F. & Davies, P. J. Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6, 139–148 (1988).
    Article  Google Scholar 

    23.
    McNeil, M. A., Nothdurft, L. D., Dyriw, N. J., Webster, J. M. & Beaman, R. J. Morphotype differentiation in the Great Barrier Reef Halimeda bioherm carbonate factory: internal architecture and surface geomorphometrics. Depos. Rec. https://doi.org/10.1002/dep2.122 (2020).

    24.
    Great Barrier Reef Outlook Report 2009 (Great Barrier Reef Marine Park Authority, 2009).

    25.
    Great Barrier Reef Outlook Report 2014 (Great Barrier Reef Marine Park Authority, 2014).

    26.
    Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077–1091 (2017).
    Article  Google Scholar 

    27.
    Ferrari, R. et al. Quantifying the response of structural complexity and community composition to environmental change in marine communities. Glob. Change Biol. 22, 1965–1975 (2016).
    Article  Google Scholar 

    28.
    Dustan, P., Doherty, O. & Pardede, S. Digital reef rugosity estimates coral reef habitat complexity. PLoS ONE 8, e57386 (2013).
    CAS  Article  Google Scholar 

    29.
    Pyle, R. L. & Copus, J. M. in Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 3–27 (Springer International Publishing, 2019).

    30.
    Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change (Cambridge Univ. Press, 2007).

    31.
    Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci 345, 101–118 (1994).
    CAS  Article  Google Scholar 

    32.
    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
    Article  Google Scholar 

    33.
    Chao, A. Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43, 783–791 (1987).
    CAS  Article  Google Scholar 

    34.
    IUCN Red List of Threatened Species. Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org

    35.
    Obura, D., Fenner, D., Hoeksema, B., Devantier, L. & Sheppard, C. Tubipora musica. IUCN Red List of Threatened Species 2008: e.T133065A3589084 (IUCN, 2008); https://doi.org/10.2305/IUCN.UK.2008.RLTS.T133065A3589084.en

    36.
    Turak, E., Sheppard, C. & Wood, E. Catalaphyllia jardinei. IUCN Red List of Threatened Species 2008: e.T132890A3479919 (IUCN, 2008); https://doi.org/10.2305/IUCN.UK.2008.RLTS.T132890A3479919.en

    37.
    Cappo, M. & Kelley, R. in Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef (ed. Wolanski, E.) 161–187(CRC Press, 2000).

    38.
    Cappo, M., De’ath, G. & Speare, P. Inter-reef vertebrate communities of the Great Barrier Reef Marine Park determined by baited remote underwater video stations. Mar. Ecol. Prog. Ser. 350, 209–221 (2007).
    Article  Google Scholar 

    39.
    Sambrook, K. et al. Beyond the reef: the widespread use of non-reef habitats by coral reef fishes. Fish Fish. (Oxf.) 20, 903–920 (2019).
    Article  Google Scholar 

    40.
    Hurrey, L. P., Pitcher, C. R., Lovelock, C. E. & Schmidt, S. Macroalgal species richness and assemblage composition of the Great Barrier Reef seabed. Mar. Ecol. Prog. Ser. 492, 69–83 (2013).
    Article  Google Scholar 

    41.
    Kämpf, J. & Chapman, P. Upwelling Systems of the World: A Scientific Journey to the Most Productive Marine Ecosystems (Springer International Publishing, 2016).

    42.
    Wolanski, E., Drew, E., Abel, K. M. & O’Brien, J. Tidal jets, nutrient upwelling and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef. Estuar. Coast. Shelf Sci. 26, 169–201 (1988).
    CAS  Article  Google Scholar 

    43.
    Andrews, J. C. & Gentien, P. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin’s question?. Mar. Ecol. Prog. Ser. 8, 257–269 (1982).
    Article  Google Scholar 

    44.
    Benthuysen, J. A., Tonin, H., Brinkman, R., Herzfeld, M. & Steinberg, C.Intrusive upwelling in the Central Great Barrier Reef. J. Geophys. Res. Oceans 121, 8395–8416 (2016).
    Article  Google Scholar 

    45.
    Berkelmans, R., Weeks, S. J. & Steinberg, C. R. Upwelling linked to warm summers and bleaching on the Great Barrier Reef. Limnol. Oceanogr. 55, 2634–2644 (2010).
    Article  Google Scholar 

    46.
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
    CAS  Article  Google Scholar 

    47.
    Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nat. Clim. Change 3, 528–530 (2013).
    Article  Google Scholar 

    48.
    Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D. & Leichter, J. J.Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408, 32–41(2011).
    Article  Google Scholar 

    49.
    Campbell, J. E., Fisch, J., Langdon, C. & Paul, V. J. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35, 357–368 (2016).
    Article  Google Scholar 

    50.
    Mongin, M. et al. The exposure of the Great Barrier Reef to ocean acidification. Nat. Commun. 7, 10732 (2016).
    CAS  Article  Google Scholar 

    51.
    Price, N. N., Hamilton, S. L., Tootell, J. S. & Smith, J. E. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar. Ecol. Prog. Ser. 440, 67–78 (2011).
    CAS  Article  Google Scholar 

    52.
    Sinutok, S., Hill, R., Doblin, M. A., Kühl, M. & Ralph, P. J. Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31, 1201–1213 (2012).
    Article  Google Scholar 

    53.
    Wizemann, A., Meyer, F. W., Hofmann, L. C., Wild, C. & Westphal, H. Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia. Coral Reefs 34, 941–954 (2015).
    Article  Google Scholar 

    54.
    Smithers, S., Harvey, N., Hopley, D. & Woodroffe, C. D. in Climate Change and the Great Barrier Reef: A Vulnerability Assessment (eds Johnson, J. E. & Marshall, P. A.) 667–716 (Great Barrier Reef Marine Park Authority, 2007).

    55.
    Cappo, M., Speare, P. & De’ath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123–152 (2004).
    Article  Google Scholar 

    56.
    Pitcher, C. R. GBR Seabed Biodiversity Mapping Project: Phase 1. Draft Report to CRC-Reef (Australian Institute of Marine Science, 2002).

    57.
    Ugland, K. I., Gray, J. S. & Ellingsen, K. E. The species–accumulation curve and estimation of species richness. J. Anim. Ecol. 72, 888–897 (2003).
    Article  Google Scholar 

    58.
    Clarke, K. & Gorley, R. PRIMER v7: User Manual/Tutorial (PRIMER-e, 2015).

    59.
    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation 3rd edn (PRIMER-e, 2014).

    60.
    Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).
    Article  Google Scholar  More

  • in

    Fine-scale metabolic discontinuity in a stratified prokaryote microbiome of a Red Sea deep halocline

    1.
    Merlino G, Barozzi A, Michoud G, Ngugi DK, Daffonchio D. Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbiol Ecol. 2018;94:1–15.
    Article  CAS  Google Scholar 
    2.
    Antunes A, Ngugi DK, Stingl U. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep. 2011;3:416–33.
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, et al. Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings. Environ Microbiol. 2011;13:2250–68.
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, et al. Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature. 2006;440:203–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, et al. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science. 2005;307:121–3.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    6.
    Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, et al. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA. 2009;106:9151–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Joye SB, Samarkin VA, Orcutt BN, MacDonald IR, Hinrichs K-U, Elvert M, et al. Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci. 2009;2:349–54.
    CAS  Article  Google Scholar 

    8.
    Guan Y, Hikmawan T, Antunes A, Ngugi DK, Stingl U. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea. Res Microbiol. 2015;166:688–99.
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Pachiadaki MG, Yakimov M, LaCono V, Leadbetter E, Edgcomb V. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. ISME J. 2014;8:1–12.
    Article  CAS  Google Scholar 

    10.
    Borin S, Mapelli F, Rolli E, Song B, Tobias C, Schmid MC, et al. Anammox bacterial populations in deep marine hypersaline gradient systems. Extremophiles. 2013;17:289–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Yakimov MM, La Cono V, Spada GL, Bortoluzzi G, Messina E, Smedile F, et al. Microbial community of the deep-sea brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. Environ Microbiol. 2015;17:364–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Ngugi DK, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, et al. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J. 2015;9:396–411.
    Article  CAS  Google Scholar 

    13.
    Ngugi DK, Blom J, Stepanauskas R, Stingl U. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. ISME J. 2016;10:1383–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Zhang W, Ding W, Yang B, Tian RM, Gu S, Luo H, et al. Genomic and transcriptomic evidence for carbohydrate consumption among microorganisms in a cold seep brine pool. Front Microbiol. 2016;7:1825.
    PubMed  PubMed Central  Google Scholar 

    15.
    Bougouffa S, Yang JK, Lee OO, Wang Y, Batang Z, Al-Suwailem A, et al. Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol. 2013;79:3425–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, et al. Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front Microbiol. 2014;5:1–16.
    Article  Google Scholar 

    17.
    Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev. 2009;33:855–69.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42:353–75.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Yakimov M, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN, et al. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J. 2007;1:743–55.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Brune A, Frenzel P, Cypionka H. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev. 2000;24:691–710.
    CAS  PubMed  Article  Google Scholar 

    21.
    Oren A. Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol. 2011;13:1908–23.
    CAS  PubMed  Article  Google Scholar 

    22.
    Baumann A, Richter H, Schoell M. Suakin deep: brines and hydrothermal sediments in the deepest part of the Red Sea. Geol Rundsch. 1973;62:684–97.
    CAS  Article  Google Scholar 

    23.
    Backer H, Schoell M. New deeps with brines and metalliferous sediments in the red sea. Nat Phys Sci. 1972;240:153–8.
    Article  Google Scholar 

    24.
    Schmidt, M, Al-Farawati R, Botz R. Geochemical classification of brine-filled Red Sea Deeps. In: Rasul NMA, Stewart ICF, editors. The Red Sea. Springer; 2015. p. 219–233.

    25.
    Calleja ML, Al-Otaibi N, Morán XAG. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci Rep. 2019;9:4690.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Duarte CM, Røstad A, Michoud G, Barozzi A, Merlino G, Delgado-Huertas A, et al. Discovery of Afifi, the shallowest and southernmost brine pool reported in the Red Sea. Sci Rep. 2020;10:910.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B Stat Methodol. 2011;73:3–36.
    Article  Google Scholar 

    28.
    Salata GG, Roelke LA, Cifuentes LA. A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Mar Chem. 2000;69:153–61.
    CAS  Article  Google Scholar 

    29.
    McIlvin MR, Altabet MA. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem. 2005;77:5589–95.
    CAS  PubMed  Article  Google Scholar 

    30.
    Green MR, Sambrook J. Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb Protoc. 2017;2017:pdb.prot093450.

    31.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Bushnell B. BBMap short read aligner. https://sourceforge.net/projects/bbmap/. 2016. Accessed 03 Feb 2021.

    33.
    Andrews S. FastQC A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010. Accessed 30 Jan 2021.

    34.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Parks DH, Beiko RG. Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities. ISME J. 2013;7:173–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26:680–2.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16:51.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Alam I, Antunes A, Kamau AA, Alawi WB, Kalkatawi M, Stingl U, et al. INDIGO – Integrated data warehouse of microbial genomes with examples from the red sea extremophiles. PLoS ONE. 2013;8:e82210.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Llorens-Marès T, Yooseph S, Goll J, Hoffman J, Vila-Costa M, Borrego CM, et al. Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics. ISME J. 2015;9:1648–61.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Lüke C, Speth DR, Kox MAR, Villanueva L, Jetten MSM. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. PeerJ. 2016;4:e1924.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Wickham H. ggplot2: elegant graphics for data analysis. Springer New York; 2016.

    46.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. https://github.com/vegandevs/vegan, https://cran.r-project.org/package=vegan. 2017. Accessed 28 November 2020.

    47.
    Blanchet FG, Legendre P, Borcard D. Forward selection of explanatory variables. Ecology. 2008;89:2623–32.
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    50.
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  Article  Google Scholar 

    54.
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 2010;11:538.
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–27.
    CAS  Google Scholar 

    56.
    Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Rambaut A. FigTree. http://tree.bio.ed.ac.uk/software/figtree/. 2009. Accessed 04 Jan 2011.

    60.
    Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79:7696–701.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: various r programming tools for plotting data. 2019. https://cran.r-project.org/package=gplots. Accessed 28 Nov 2020.

    63.
    Long A, Heitman J, Tobias C, Philips R, Song B. Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl Environ Microbiol. 2013;79:168–76.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Shu D, He Y, Yue H, Wang Q. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems. Chem Eng J. 2016;290:21–30.
    CAS  Article  Google Scholar 

    65.
    Augustin N, Devey CW, van der Zwan FM. A Modern view on the Red Sea Rift: tectonics, volcanism and salt blankets. In: Rasul NMA, Stewart ICF, editors. Geological setting, palaeoenvironment and archaeology of the Red Sea. Springer International Publishing, 2019. p. 37–52.

    66.
    Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.
    CAS  PubMed  Article  Google Scholar 

    67.
    Ward BB, Kilpatrick KA. Relationship between substrate concentration and oxidation of ammonium and methane in a stratified water column. Cont Shelf Res. 1990;10:1193–208.
    Article  Google Scholar 

    68.
    Stedmon CA, Thomas DN, Papadimitriou S, Granskog MA, Dieckmann GS. Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines. J Geophys Res. 2011;116:G03027.
    Google Scholar 

    69.
    Taylor PG, Townsend AR. Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature. 2010;464:1178–81.
    CAS  PubMed  Article  Google Scholar 

    70.
    Granger J, Sigman DM, Lehmann MF, Tortell PD. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr. 2008;53:2533–45.
    CAS  Article  Google Scholar 

    71.
    Nigro LM, Hyde AS, MacGregor BJ. Teske A. Phylogeography, salinity adaptations and metabolic potential of the candidate division kb1 bacteria based on a partial single cell genome. Front Microbiol. 2016;7:1266.

    72.
    Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W, Anthony Kamau A, et al. Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea. Sci Rep. 2016;6:19181.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Pereira AD, Leal CD, Dias MF, Etchebehere C, Chernicharo CAL, de Araújo JC. Effect of phenol on the nitrogen removal performance and microbial community structure and composition of an anammox reactor. Bioresour Technol. 2014;166:103–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Yamada T, Sekiguchi Y. Anaerolineaceae. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA et al, editors. Bergey’s manual of systematics of archaea and bacteria. Wiley, 2018. p. 1–5.

    76.
    Browne P, Tamaki H, Kyrpides N, Woyke T, Goodwin L, Imachi H, et al. Genomic composition and dynamics among Methanomicrobiales predict adaptation to contrasting environments. ISME J. 2017;11:87–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Youssef NH, Ashlock-Savage KN, Elshahed MS. Phylogenetic diversities and community structure of members of the extremely halophilic archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol. 2012;78:1332–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Sorokin DY, Merkel AY, Abbas B, Makarova KS, Rijpstra WIC, Koenen M, et al. Methanonatronarchaeum thermophilum gen. nov., sp. nov. and ‘Candidatus Methanohalarchaeum thermophilum’, extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov. Int J Syst Evol Microbiol. 2018;68:2199–208.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    van Niftrik L, Geerts WJC, van Donselaar EG, Humbel BM, Webb RI, Fuerst JA, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome c proteins. J Bacteriol. 2008;190:708–17.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    80.
    Muck S, De Corte D, Clifford EL, Bayer B, Herndl GJ, Sintes E. Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front Microbiol. 2019;10:2141.
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Jensen MM, Lam P, Revsbech NP, Nagel B, Gaye B, Jetten MS, et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J. 2011;5:1660–70.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Tian R, Ning D, He Z, Zhang P, Spencer SJ, Gao S, et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome. 2020;8:51.
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E, et al. Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep. 2013;3:3554.
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Jayakumar A, Chang BX, Widner B, Bernhardt P, Mulholland MR, Ward BB. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean. ISME J. 2017;11:2356–67.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, et al. A microdiversity study of anammox bacteria reveals a novel Candidatus scalindua phylotype in marine oxygen minimum zones. Environ Microbiol. 2008;10:3106–19.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Speth DR, Lagkouvardos I, Wang Y, Qian P-Y, Dutilh BE, Jetten MSM. Draft genome of Scalindua rubra, obtained from the interface above the discovery deep brine in the red sea, sheds light on potential salt adaptation strategies in anammox bacteria. Micro Ecol. 2017;74:1–5.
    CAS  Article  Google Scholar 

    87.
    Ali M, Shaw DR, Saikaly PE. Application of an enrichment culture of the marine anammox bacterium “Ca. Scalindua” for nitrogen removal under moderate salinity and in the presence of organic carbon. Water Res. 2020;170:115345.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 2019;13:2150–61.
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Awata T, Goto Y, Kindaichi T, Ozaki N, Ohashi A. Nitrogen removal using an anammox membrane bioreactor at low temperature. Water Sci Technol. 2015;72:2148–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Pappalardo RT. Seeking Europa’s ocean. Proc Int Astron Union. 2010;6:101–14.
    Article  Google Scholar 

    91.
    Martínez GM, Renno NO. Water and brines on mars: current evidence and implications for MSL. Space Sci Rev. 2013;175:29–51.
    Article  CAS  Google Scholar 

    92.
    Jokinen SA, Virtasalo JJ, Jilbert T, Kaiser J, Dellwig O, Arz HW, et al. A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century. Biogeosciences. 2018;15:3975–4001.
    CAS  Article  Google Scholar  More

  • in

    The potential risk of exposure to Borrelia garinii, Anaplasma phagocytophilum and Babesia microti in the Wolinski National Park (north-western Poland)

    1.
    Nowak-Chmura, M. Fauna of ticks (Ixodida) of Central Europe (Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, Kraków, 2013).
    Google Scholar 
    2.
    Balmelli, T. & Piffaretti, J. C. Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res. Microbiol. 146, 329–340 (1995).
    CAS  Article  Google Scholar 

    3.
    Strzelczyk, J. K. et al. Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from southern Poland. Acta Parasitol. 60, 666–674 (2015).
    CAS  Article  Google Scholar 

    4.
    Blanco, J. R. & Oteo, J. A. Human granulocytic ehrlichiosis in Europe. Clin. Microbiol. Infect. 8, 763–772 (2002).
    CAS  Article  Google Scholar 

    5.
    Boustani, M. R. & Gelfand, J. A. Babesiosis. Clin. Infect. Dis. 22, 611–614 (1996).
    CAS  Article  Google Scholar 

    6.
    Siuda, K. Kleszcze (Acari: Ixodida) Polski Część II Systematyka i Rozmieszczenie (Polskie Towarzystwo Parazytologiczne, Warsaw, 1993).
    Google Scholar 

    7.
    Guy, E. & Stanek, G. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J. Clin. Pathol. 29, 610–611 (1991).
    Article  Google Scholar 

    8.
    Wójcik-Fatla, A., Szymańska, J., Wdowiak, L., Buczek, A. & Dutkiewicz, J. Coincidence of three pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti) in Ixodes ricinus ticks in the Lublin macroregion. Ann. Agric. Environ. Med. 16, 151–158 (2009).
    PubMed  Google Scholar 

    9.
    Wodecka, B., Rymaszewska, A., Sawczuk, M. & Skotarczak, B. Detectability of tick-borne agents DNA in the blood of dogs, undergoing treatment for borreliosis. Ann. Agric. Environ. Med. 16, 9–14 (2009).
    CAS  PubMed  Google Scholar 

    10.
    Wodecka, B. FlaB gene as a molecular marker for distinct identification of Borrelia species in environmental samples by the PCR-restriction fragment length polymorphism method. Appl. Environ. Microbiol. 77, 7088–7092 (2011).
    CAS  Article  Google Scholar 

    11.
    Massung, R. F. et al. Nested PCR assay for detection of granulocytic ehrlichiae. J. Clin. Microbiol. 36, 1090–1095 (1998).
    CAS  Article  Google Scholar 

    12.
    Persing, D. H. et al. Detection of Babesia microti by polymerase chain reaction. J. Clin. Microbiol. 30, 2097–2103 (1992).
    CAS  Article  Google Scholar 

    13.
    Stańczak, J., Kubica-Biernat, B., Racewicz, M., Kruminis-Łozowska, W. & Kur, J. Detection of three genospecies of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in different regions of Poland. Int. J. Med. Microbiol. 290, 559–566 (2000).
    Article  Google Scholar 

    14.
    Wodecka, B. & Skotarczak, B. First isolation of Borrelia lusitaniae DNA from Ixodes ricinus ticks in Poland. Scand. J. Infect. Dis. 37, 27–34 (2005).
    CAS  Article  Google Scholar 

    15.
    Kiewra, D., Stańczak, J. & Richter, M. Ixodes ricinus ticks (Acari, Ixodidae) as a vector of Borrelia burgdorferi sensu lato and Borrelia miyamotoi in Lower Silesia. Tick Tick-borne Dis. 5, 892–897 (2014).
    Article  Google Scholar 

    16.
    Asman, M. et al. Occupational risk of infections with Borrelia burgdorferi sensu lato, B. burgdorferi sensu stricto, B. garinii and B. afzelii in agricultural workers on the territory of Beskid Żywiecki. in Arthropods: Medical and Economical Significance (ed. Buczek, A. & Błaszak, Cz.) 163–170 (Akapit, 2012).

    17.
    Asman, M., Witecka, J., Solarz, K., Zwonik, A. & Szilman, P. Occurrence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Ixodes ricinus ticks collected from selected areas of Opolskie Province in south-west Poland. Ann. Agric. Environ. Med. 26, 544–547 (2019).
    CAS  Article  Google Scholar 

    18.
    Wodecka, B. & Skotarczak, B. Genetic diversity of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in north-west Poland. Wiad Parazytol. 46, 475–485 (2000).
    CAS  PubMed  Google Scholar 

    19.
    Bartosik, K., Lachowska-Kotowska, P., Szymańska, J., Pabis, A. & Buczek, A. Lyme borreliosis in south-eastern Poland: Relationships with environmental factors and medical attention standards. Ann. Agric. Environ. Med. 18, 131–137 (2011).
    PubMed  Google Scholar 

    20.
    Hubálek, Z., Halouzka, J., Juricová, Z., Sikutová, S. & Rudolf, I. Effect of forest clearing on the abundance of Ixodes ricinus ticks and the prevalence of Borrelia burgdorferi s.l. Med. Vet. Entomol. 20, 166–172 (2006).
    Article  Google Scholar 

    21.
    Hanincova, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20 (2003).
    CAS  Article  Google Scholar 

    22.
    Hanincova, K. et al. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl. Environ. Microbiol. 69, 2825–2830 (2003).
    CAS  Article  Google Scholar 

    23.
    Kurtenbach, K. et al. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl. Environ. Microbiol. 64, 1169–1174 (1998).
    CAS  Article  Google Scholar 

    24.
    Rauter, C. & Hartung, T. Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: A metaanalysis. Appl. Environ. Microbiol. 71, 7203–7216 (2005).
    CAS  Article  Google Scholar 

    25.
    Wodecka, B. Significance of red deer (Cervus elaphus) in the ecology of Borrelia burgdorferi sensu lato. Wiad Parazytol. 53, 231–237 (2007).
    PubMed  Google Scholar 

    26.
    Chen, S.-M., Dumler, J. S., Bakken, J. S. & Walker, D. H. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J. Clin. Microbiol. 32, 589–595 (1994).
    CAS  Article  Google Scholar 

    27.
    Zhang, Y., Cui, Y., Sun, Y., Jing, H. & Ning, Ch. Novel Anaplasma variants in small ruminants from central China. Front. Vet. Sci. 7, 1–7 (2020).
    ADS  Article  Google Scholar 

    28.
    Petrovec, M. et al. Human disease in Europe caused by a granulocytic Ehrlichia species. J. Clin. Microbiol. 35, 1556–1559 (1997).
    CAS  Article  Google Scholar 

    29.
    Siński, E. Enzoonotic reservoir for new Ixodes ricinus—Transmitted infections. Wiad Parazytol. 45, 135–142 (1999).
    PubMed  Google Scholar 

    30.
    Kiewra, D., Zaleśny, G. & Czułowska, A. The risk of infection with Anaplasma phagocytophilum and Babesia microti in Lower Silesia, SW Poland. in Arthropods: Threat to Human and Animals Health (ed. Buczek, A. & Błaszak, Cz.) 103–110 (Koliber, 2014).

    31.
    Asman, M. et al. The risk of exposure to Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Babesia sp. and coinfections in Ixodes ricinus ticks on the territory of Niepołomice Forest (southern Poland). Ann. Parasitol. 59, 13–19 (2013).
    PubMed  Google Scholar 

    32.
    Asman, M. et al. Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi sensu lato, and Toxoplasma gondii in Ixodes ricinus (Acari, Ixodida) ticks collected from Slowinski National Park (Northern Poland). J. Vector Ecol. 42, 200–202 (2017).
    Article  Google Scholar 

    33.
    Stańczak, J., Gabre, M. R., Kruminis-Łozowska, W., Racewicz, M. & Kubica-Biernat, B. Ixodes riciuns as a vector of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in urban and suburban forests. Ann. Agric. Environ. Med. 11, 109–114 (2004).
    PubMed  Google Scholar 

    34.
    Asman, M. et al. Detection of protozoans Babesia microti and Toxoplasma gondii and their co-existence in ticks (Acari: Ixodida) collected in Tarnogórski district (Upper Silesia, Poland). Ann. Agric. Environ. Med. 22, 80–83 (2015).
    Article  Google Scholar 

    35.
    Yabsley, M. J. & Shock, B. C. Natural history of Zoonotic Babesia: Role of wildlife reservoirs. Int. J. Parasitol. Parasites Wildl. 2, 18–31 (2013).
    Article  Google Scholar 

    36.
    Sytykiewicz, H. et al. Molecular evidence of Anaplasma phagocytophilum and Babesia microti co-infections in Ixodes ricinus ticks in central-eastern region of Poland. Ann. Agric. Environ. Med. 19, 45–49 (2012).
    CAS  PubMed  Google Scholar 

    37.
    Asman, M. et al. The occurrence of three tick-borne pathogens in Ixodes ricinus ticks collected from the area of the Kraków—Czestochowa Upland (Southern Poland). Acarologia 58, 967–975 (2018).
    Google Scholar  More