Prey removal in cotton crops next to woodland reveals periodic diurnal and nocturnal invertebrate predation gradients from the crop edge by birds and bats
1.
FAO. United Nations Food Agricultural Organisation. High Level Expert Forum (FAO, Rome, 2009).
Google Scholar
2.
Puig-Montserrat, X. et al. Pest control service provided by bats in Mediterranean rice paddies: Linking agroecosystems structure to ecological functions. Mamm. Biol. 80, 237–245. https://doi.org/10.1016/j.mambio.2015.03.008 (2015).
Article Google Scholar
3.
Cleveland, C. J. et al. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front. Ecol. Environ. 4, 238–243. https://doi.org/10.1890/1540-9295(2006)004[0238:Evotpc]2.0.Co;2 (2006).
Article Google Scholar
4.
Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Conservation. Economic importance of bats in agriculture. Science 332, 41–42. https://doi.org/10.1126/science.1201366 (2011).
Article PubMed ADS Google Scholar
5.
Naylor, R. L. & Ehrlich, P. R. In Nature’s Services: Societal Dependence on Natural Ecosystems (ed. Daily, G. C.) 151–174 (Island Press, New York, 1997).
Google Scholar
6.
Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56[311:Tevoes]2.0.Co;2 (2006).
Article Google Scholar
7.
Power, A. G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. Lond. B 365, 2959–2971. https://doi.org/10.1098/rstb.2010.0143 (2010).
Article Google Scholar
8.
Maine, J. J. & Boyles, J. G. Bats initiate vital agroecological interactions in corn. Proc. Natl. Acad. Sci. U.S.A. 112, 12438–12443. https://doi.org/10.1073/pnas.1505413112 (2015).
CAS Article PubMed PubMed Central ADS Google Scholar
9.
Tremblay, A., Mineau, P. & Stewart, R. K. Effects of bird predation on some pest insect populations in corn. Agric. Ecosyst. Environ. 83, 143–152. https://doi.org/10.1016/S0167-8809(00)00247-4 (2001).
Article Google Scholar
10.
Van Bael, S. A. et al. Birds as predators in tropical agroforestry systems. Ecology 89, 928–934 (2008).
Article Google Scholar
11.
Grass, I., Lehmann, K., Thies, C. & Tscharntke, T. Insectivorous birds disrupt biological control of cereal aphids. Ecology 98, 1583–1590. https://doi.org/10.1002/ecy.1814 (2017).
Article PubMed Google Scholar
12.
Karp, D. S. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347. https://doi.org/10.1111/ele.12173 (2013).
Article PubMed Google Scholar
13.
Maas, B. et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol. Rev. Camb. Philos. Soc. 91, 1081–1101. https://doi.org/10.1111/brv.12211 (2016).
Article PubMed Google Scholar
14.
Cohen, Y., Bar-David, S., Nielsen, M., Bohmann, K. & Korine, C. An appetite for pests: Synanthropic insectivorous bats exploit cotton pest irruptions and consume various deleterious arthropods. Mol. Ecol. 29, 1185–1198. https://doi.org/10.1111/mec.15393 (2020).
Article PubMed Google Scholar
15.
Chaplin-Kramer, R., de Valpine, P., Mills, N. J. & Kremen, C. Detecting pest control services across spatial and temporal scales. Agric. Ecosyst. Environ. 181, 206–212. https://doi.org/10.1016/j.agee.2013.10.007 (2013).
Article Google Scholar
16.
Speakman, J. R. & Thomas, D. W. In Bat ecology (eds Kunz, T. H. & Fenton, M. B.) 430–490 (University of Chicago Press, Chicago, 2003).
Google Scholar
17.
Norberg, U. M. Avian Energetics and Nutritional Ecology 199–249 (Springer, Berlin, 1996).
Google Scholar
18.
Nyffeler, M., Şekercioğlu, Ç. H. & Whelan, C. J. Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci. Nat. 105, 47. https://doi.org/10.1007/s00114-018-1571-z (2018).
CAS Article Google Scholar
19.
Sekercioglu, C. H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464–471. https://doi.org/10.1016/j.tree.2006.05.007 (2006).
Article PubMed Google Scholar
20.
Mols, C. M. M. & Visser, M. E. Great tits can reduce caterpillar damage in apple orchards. J. Appl. Ecol. 39, 888–899. https://doi.org/10.1046/j.1365-2664.2002.00761.x (2002).
Article Google Scholar
21.
Van Bael, S. A., Bichier, P. & Greenberg, R. Bird predation on insects reduces damage to the foliage of cocoa trees (Theobroma cacao) in western Panama. J. Trop. Ecol. 23, 715–719. https://doi.org/10.1017/s0266467407004440 (2007).
Article Google Scholar
22.
Federico, P. et al. Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops. Ecol. Appl. 18, 826–837. https://doi.org/10.1890/07-0556.1 (2008).
Article PubMed Google Scholar
23.
McCracken, G. F. et al. Bats track and exploit changes in insect pest populations. PLoS ONE 7, e43839. https://doi.org/10.1371/journal.pone.0043839 (2012).
CAS Article PubMed PubMed Central ADS Google Scholar
24.
Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. 10, 371–388. https://doi.org/10.1002/ece3.5901 (2020).
Article PubMed Google Scholar
25.
Maas, B., Clough, Y. & Tscharntke, T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol. Lett. 16, 1480–1487. https://doi.org/10.1111/ele.12194 (2013).
Article PubMed Google Scholar
26.
Kalka, M. B., Smith, A. R. & Kalko, E. K. Bats limit arthropods and herbivory in a tropical forest. Science 320, 71. https://doi.org/10.1126/science.1153352 (2008).
CAS Article PubMed ADS Google Scholar
27.
Williams-Guillen, K., Perfecto, I. & Vandermeer, J. Bats limit insects in a neotropical agroforestry system. Science 320, 70. https://doi.org/10.1126/science.1152944 (2008).
CAS Article PubMed ADS Google Scholar
28.
Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T. & Fleming, T. H. In Year in Ecology and Conservation Biology (eds Ostfeld, R. S. & Schlesinger, W. H.) 1–38 (New York Academy of Sciences, New York, 2011).
Google Scholar
29.
Taylor, P. J., Grass, I., Alberts, A. J., Joubert, E. & Tscharntke, T. Economic value of bat predation services: A review and new estimates from macadamia orchards. Ecosyst. Serv. 30, 372–381. https://doi.org/10.1016/j.ecoser.2017.11.015 (2018).
Article Google Scholar
30.
Redlich, S., Martin Emily, A. & Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13126 (2018).
Article Google Scholar
31.
Hooks, C., Pandey, R. R., & Johnson, M. W. Unlikely guardians of cropping systems: Can birds and spiders protect broccoli from caterpillar pests? Insect Pests (2007).
32.
Martin, E. A., Reineking, B., Seo, B. & Steffan-Dewenter, I. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc. Natl. Acad. Sci. U.S.A. 110, 5534–5539. https://doi.org/10.1073/pnas.1215725110 (2013).
CAS Article PubMed PubMed Central ADS Google Scholar
33.
Karp, D. S. & Daily, G. C. Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology 95, 1065–1074. https://doi.org/10.1890/13-1012.1 (2014).
Article PubMed Google Scholar
34.
Barbaro, L. et al. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. J. Appl. Ecol. 54, 500–508. https://doi.org/10.1111/1365-2664.12740 (2017).
Article Google Scholar
35.
Rey Benayas, J. M., Meltzer, J., de las Heras-Bravo, D. & Cayuela, L. Potential of pest regulation by insectivorous birds in Mediterranean woody crops. PLoS ONE 12, 15. https://doi.org/10.1371/journal.pone.0180702 (2017).
CAS Article Google Scholar
36.
Morrison, E. B. & Lindell, C. A. Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecol. Appl. 22, 1526–1534 (2012).
Article Google Scholar
37.
Ndanganga, P. K., Njoroge, J. B. M. & Vickery, J. Quantifying the contribution of birds to the control of arthropod pests on kale, Brassica oleracea acephala, a key crop in East African highland farmland. Int. J. Pest Manage. https://doi.org/10.1080/09670874.2013.820005 (2013).
Article Google Scholar
38.
Tschumi, M., Ekroos, J., Hjort, C., Smith, H. G. & Birkhofer, K. Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes. Oecologia 188, 863–873. https://doi.org/10.1007/s00442-018-4242-z (2018).
Article PubMed PubMed Central ADS Google Scholar
39.
Elkinton, J. S., Liebhold, A. M. & Muzika, R.-M. Effects of alternative prey on predation by small mammals on gypsy moth pupae. Popul. Ecol. 46, 171–178. https://doi.org/10.1007/s10144-004-0175-y (2004).
Article Google Scholar
40.
Dyrcz, A. Breeding biology and behaviour of the willie wagtail (Rhipidura leucophrys) in the madang region Papua New Guinea. Emu 94, 17–26. https://doi.org/10.1071/MU9940017 (1994).
Article Google Scholar
41.
Adriano, S. & Calver, M. C. Diet of breeding willie wagtails (Rhipidura leucophrys) in suburban Western Australia. Emu 95, 138–141. https://doi.org/10.1071/MU9950138 (1995).
Article Google Scholar
42.
Razeng, E. & Watson, D. M. What do declining woodland birds eat? A synthesis of dietary records. Emu 112, 149–156. https://doi.org/10.1071/MU11099 (2012).
Article Google Scholar
43.
Brandl, R., Kristín, A. & Leisler, B. Dietary niche breadth in a local community of passerine birds: An analysis using phylogenetic contrasts. Oecologia 98, 109–116. https://doi.org/10.1007/bf00326096 (1994).
CAS Article PubMed ADS Google Scholar
44.
Kaplan, G. Australian Magpie: Biology and Behaviour of an Unusual Songbird (CSIRO Publishing, Clayton, 2019).
Google Scholar
45.
Puckett, H. L., Brandle, J. R. & Johnson, R. J. Avian foraging patterns in crop field edges adjacent to woody habitat. Agric. Ecosyst. Environ. 131, 9–15 (2009).
Article Google Scholar
46.
Best, L. B., Whitmore, R. C. & Booth, G. M. Use of cornfields by birds during the breeding season: the importance of edge habitat. Am. Midl. Nat. 123, 84–99. https://doi.org/10.2307/2425762 (1990).
Article Google Scholar
47.
Hansen, N. A., Sato, C. F., Michael, D. R., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43. https://doi.org/10.1111/1365-2664.13269 (2019).
Article Google Scholar
48.
Storch, I., Woitke, E. & Krieger, S. Landscape-scale edge effect in predation risk in forest-farmland mosaics of Central Europe. Landsc. Ecol. 20, 927–940. https://doi.org/10.1007/s10980-005-7005-2 (2005).
Article Google Scholar
49.
Douglas, D. J. T., Vickery, J. A. & Benton, T. G. Improving the value of field margins as foraging habitat for farmland birds. J. Appl. Ecol. 46, 353–362. https://doi.org/10.1111/j.1365-2664.2009.01613.x (2009).
Article Google Scholar
50.
Stephens, D. W. & Krebs, J. R. Foraging Theory (University Press, 1986).
Google Scholar
51.
Denzinger, A. & Schnitzler, H.-U. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front. Physiol. 4, 164. https://doi.org/10.3389/fphys.2013.00164 (2013).
Article PubMed PubMed Central Google Scholar
52.
Schnitzler, H.-U. & Kalko, E. K. V. Echolocation by insect-eating bats. Vol. 51 (SPIE, 2001).
53.
Neuweiler, G. Foraging, echolocation and audition in bats. Naturwissenschaften 71, 446–455. https://doi.org/10.1007/BF00455897 (1984).
Article ADS Google Scholar
54.
Fenton, M. B. The foraging behaviour and ecology of animal-eating bats. Can. J. Zool. 68, 411–422. https://doi.org/10.1139/z90-061 (1990).
Article Google Scholar
55.
Jantzen, M. K. & Fenton, M. B. The depth of edge influence among insectivorous bats at forest–field interfaces. Can. J. Zool. 91, 287–292. https://doi.org/10.1139/cjz-2012-0282 (2013).
Article Google Scholar
56.
Estur, G. Cotton Exporter’s Guide. (International Trade Centre UNCTAD/WTO, 2007).
57.
RBG In State of the World’s Plants 2017 (ed. Willis, K.) 64–71 (Board of Trustees of the Royal Botanic Gardens, Kew, 2017).
Google Scholar
58.
Rencken, I. An Investigation of the Importance of Native and Non-Crop Vegetation to Beneficial Generalist Predators in Australian Cotton Agroecosystems PhD thesis, University of New England (2006).
59.
Holloway, J. C., Furlong, M. J. & Bowden, P. I. Management of beneficial invertebrates and their potential role in integrated pest management for Australian grain systems. Aust. J. Exp. Agric. 48, 1531–1542. https://doi.org/10.1071/EA07424 (2008).
Article Google Scholar
60.
Schellhorn, N. A., Bianchi, F. J. & Hsu, C. L. Movement of entomophagous arthropods in agricultural landscapes: Links to pest suppression. Annu. Rev. Entomol. 59, 559–581. https://doi.org/10.1146/annurev-ento-011613-161952 (2014).
CAS Article PubMed Google Scholar
61.
Whitehouse, M. E. A., Wilson, L. J. & Fitt, G. P. A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ. Entomol. 34, 1224–1241 (2005).
Article Google Scholar
62.
Smith, R., Reid, J., Scott-Morales, L., Green, S. & Reid, N. A baseline survey of birds in native vegetation on cotton farms in inland eastern Australia. Wildl. Res. 46, 304–316. https://doi.org/10.1071/WR18038 (2019).
Article Google Scholar
63.
Ford, G. & Thomson, N. Birds on Cotton Farms: A Guide to Common Species and Habitat Management (Cotton Catchment Communities CRC, Boca Raton, 2006).
Google Scholar
64.
Whelan, C. J., Wenny, D. G. & Marquis, R. J. In Year in Ecology and Conservation Biology (eds Ostfeld, R. S. & Schlesinger, W. H.) 25–60 (Annals of the New York Academy of Sciences, New York, 2008).
Google Scholar
65.
Rodríguez, A., Andrén, H. & Jansson, G. Habitat-mediated predation risk and decision making of small birds at forest edges. Oikos 95, 383–396 (2001).
Article Google Scholar
66.
Sekercioglu, C. H. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153, 153–161. https://doi.org/10.1007/s10336-012-0869-4 (2012).
Article Google Scholar
67.
Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782. https://doi.org/10.1002/ecy.2378 (2018).
Article PubMed PubMed Central Google Scholar
68.
Nelson, J. J. & Gillam, E. H. Selection of foraging habitat by female little brown bats (Myotis lucifugus). J. Mammal. 98, 222–231. https://doi.org/10.1093/jmammal/gyw181 (2016).
Article Google Scholar
69.
Rohner, C. & Krebs, C. J. Owl predation on snowshoe hares: Consequences of antipredator behaviour. Oecologia 108, 303–310. https://doi.org/10.1007/bf00334655 (1996).
Article PubMed ADS Google Scholar
70.
Rockwell, C., Gabriel, P. O. & Black, J. M. Bolder, older, and selective: Factors of individual-specific foraging behaviors in Steller’s jays. Behav. Ecol. 23, 676–683. https://doi.org/10.1093/beheco/ars015 (2012).
Article Google Scholar
71.
Krebs, J. R. In Perspectives in Ethology (eds Bateson, P. P. G. & Klopfer, P. H.) 73–111 (Springer US, Berlin, 1973).
Google Scholar
72.
Lövei, G. L. & Ferrante, M. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 24, 528–542. https://doi.org/10.1111/1744-7917.12405 (2017).
Article PubMed Google Scholar
73.
Nagy, R. K., Schellhorn, N. A. & Zalucki, M. P. Fresh, frozen or fake: A comparison of predation rates measured by various types of sentinel prey. J. Appl. Entomol. 144, 407–416. https://doi.org/10.1111/jen.12745 (2020).
Article Google Scholar
74.
Ravzanaadii, N., Kim, S.-H., Choi, W. H., Seong-Jin, H. & Kim, N. J. Nutritional value of mealworm, tenebrio molitor as food source. Int. J. Ind. Ergon. 25, 93–98 (2012).
Google Scholar
75.
Barbaro, L., Giffard, B., Charbonnier, Y., van Halder, I. & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: A transcontinental experiment. Divers. Distrib. 20, 149–159. https://doi.org/10.1111/ddi.12132 (2014).
Article Google Scholar
76.
Environment Australia. Revision of the Interim Biogeographic Regionalisation of Australia (IBRA) and Development of Version 5.0: Summary Report. (Department of Environment and Heritage, Canberra, 2000).
77.
OEH. NSW (Mitchell) Landscapes. Vol. version 3.1 (State of New South Wales and Office of Environment and Heritage 2002).
78.
Keith, D. A. Ocean Shores to Desert Dunes: The Native Vegetation of NEW South Wales and the ACT (Department of Environment and Conservation, 2004).
Google Scholar
79.
R Core Team, R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/, 2018).
80.
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 400. https://doi.org/10.3929/ethz-b-000240890 (2017).
Article Google Scholar
81.
Lüdecke, D. ggeffects: Create Tidy Data Frames of Marginal Effects for ‘ggplot’ from Model Outputs (v0.16.0). https://CRAN.R-project.org/package=ggeffects. (2017).
82.
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/mixed) Regression Models (v0.3.3). https://CRAN.R-project.org/package=DHARMa (2017).
83.
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Estimated Marginal Means, aka Least-Squares Means (v1.5.3). https://www.rdocumentation.org/packages/emmeans (2019).
84.
Szumilas, M. Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 19, 227–229 (2010).
Article Google Scholar More
