Expansion of the mangrove species Rhizophora mucronata in the Western Indian Ocean launched contrasting genetic patterns
1.
Bryan-Brown, D. N., Brown, C. J., Hughes, J. M. & Connolly, R. M. Patterns and trends in marine population connectivity research. Mar. Ecol. Prog. Ser. 585, 243–256 (2017).
ADS Article Google Scholar
2.
Tomlinson, P. B. The Botany of Mangroves (Cambridge University Press, Cambridge, 2016).
Google Scholar
3.
Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669. https://doi.org/10.3390/rs10101669 (2018).
ADS Article Google Scholar
4.
Ward, R. D., Friess, D. A., Day, R. H. & MacKenzie, R. A. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst. Health Sustain. 2, 01211. https://doi.org/10.1002/ehs2.1211 (2016).
Article Google Scholar
5.
Richards, D. R. & Friess, D. A. Rates of drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 113, 344–349 (2016).
ADS CAS PubMed Article Google Scholar
6.
Hermansen, T. D., Britton, D. R., Ayre, D. J. & Minchonton, T. E. Identifying the real pollinators? Exotic honeybees are the dominant flower visitors and only effective pollinators of Avicennia marina in Australian temperate mangroves. Estuar. Coast. 37, 621–635 (2014).
Article Google Scholar
7.
Wee, A. K. S., Low, S. Y. & Webb, E. L. Pollen limitation affects reproductive outcome in the bird-pollinated mangrove Bruguiera gymnorrhiza (Lam.) in a highly urbanized environment. Aquat. Bot. 120, 240–243 (2015).
Article Google Scholar
8.
Rabinowitz, D. Dispersal properties of mangrove propagules. Biotropica 10, 47–57 (1978).
Article Google Scholar
9.
Drexler, J. Z. Maximum longevities of Rhizophora apiculataand R. mucronatapropagules. Pac. Sci. 55, 17–22 (2001).
Article Google Scholar
10.
Nettel, A. & Dodd, R. S. Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 61, 958–971 (2007).
CAS PubMed Article Google Scholar
11.
Takayama, K., Tamura, M., Tateshi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in red mangroves Rhizophora (Rhizophoraceae), revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).
CAS PubMed Article Google Scholar
12.
Lo, E. Y., Duke, N. C. & Sun, M. Phylogeographic pattern of Rhizophora(Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol. Biol. 14, 83. https://doi.org/10.1186/1471-2148-14-83 (2014).
Article PubMed PubMed Central Google Scholar
13.
Van der Stocken, T. et al. A general framework for propagule dispersal in mangroves. Biol. Rev. 94, 1547–1575 (2019).
PubMed Article Google Scholar
14.
Thomas, L. et al. Isolation by resistance across a complex coral reef seascape. Proc. R. Soc. B Biol. Sci. 282, 20151217. https://doi.org/10.1098/rspb.2015.1217 (2015).
CAS Article Google Scholar
15.
Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Contrasting effects of historical sea level rise and contemporary ocean currents on regional gene flow of Rhizophora racemosain eastern Atlantic mangroves. PLoS ONE 11, e0150950. https://doi.org/10.1371/journal.pone.0150950 (2016).
CAS Article PubMed PubMed Central Google Scholar
16.
Wee, A. K. S. et al. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronataLam. (Rhizophoraceae) in Southeast Asia. J. Biogeogr. 41, 954–964 (2014).
Article Google Scholar
17.
Wee, A. K. S. et al. Genetic structures across a biogeographical barrier reflect dispersal potential of four Southeast Asian mangrove plant species. J. Biogeogr. 47, 1258–1271 (2020).
Article Google Scholar
18.
Lessios, H. A. & Robertson, D. R. Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc. R. Soc. B: Biol. Sci. 273, 2201–2208 (2006).
CAS Article Google Scholar
19.
Ng, W. L., Chan, H. T. & Szmidt, A. E. Molecular identification of natural mangrove hybrids of Rhizophora in Peninsular Malaysia. Tree Genet. Genomes 9, 1151–1160 (2013).
Article Google Scholar
20.
Guo, Z. et al. Genetic discontinuities in a dominant mangrove Rhizophora apiculata (Rhizophoraceae) in the Indo-Malaysian region. J. Biogeogr. 43, 1856–1868 (2016).
Article Google Scholar
21.
Yan, Y.-B., Duke, N. & Sun, M. Comparative analysis of the pattern of population genetic diversity in three Indo-West Pacific Rhizophora mangrove species. Front. Plant Sci. 7, 1434. https://doi.org/10.3389/fpls.2016.01434 (2016).
Article PubMed PubMed Central Google Scholar
22.
Triest, L., Hasan, S., Motro, P. R. & De Ryck, D. J. R. Geographical distance and large rivers shape genetic structure of Avicennia officinalis in the highly dynamic Sundarbans mangrove forest and Ganges Delta region. Estuar. Coast. 41, 908–920 (2018).
Article Google Scholar
23.
Do, B. T. N., Koedam, N. & Triest, L. Avicennia marina maintains genetic structure whereas Rhizophora stylosa connects mangroves in a flooded, former inner sea (Vietnam). Estuar. Coast. Shelf Sci. 222, 195–204 (2019).
ADS Article Google Scholar
24.
He, Z. et al. Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. Natl. Sci. Rev. 6, 272–288 (2019).
Google Scholar
25.
Pil, M. W. et al. Postglacial north-south expansion of populations of Rhizophora mangle (Rhizophoraceae) along the Brazilian coast revealed by microsatellite analysis. Am. J. Bot. 98, 1031–1039 (2011).
PubMed Article Google Scholar
26.
Cerón-Souza, I. et al. Contrasting demographic history and gene flow patterns of two mangrove species on either side of the Central American Isthmus. Ecol. Evol. 5, 3486–3499 (2015).
PubMed PubMed Central Article Google Scholar
27.
Sandoval-Castro, E. et al. Post-glacial expansion and population genetic divergence of mangrove species Avicennia germinans (L.) Stearn and Rhizophora mangle L. along the Mexican coast. PLoS ONE 9, 93358. https://doi.org/10.1371/journal.pone.0093358 (2014).
ADS CAS Article Google Scholar
28.
Kennedy, J. P. et al. Contrasting genetic effects of red mangrove (Rhizophora mangleL.) range expansion along West and East Florida. J. Biogeogr. 44, 335–347 (2017).
Article Google Scholar
29.
Francisco, P. M., Mori, G. M., Alves, F. A., Tambarussi, E. V. & de Souza, A. P. Population genetic structure, introgression, and hybridization in the genus Rhizophora along the Brazilian coast. Ecol. Evol. 8, 3491–3504. https://doi.org/10.1002/ece3.3900 (2018).
Article PubMed PubMed Central Google Scholar
30.
Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N. & Triest, L. Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia 803, 189–207 (2017).
Article Google Scholar
31.
Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108 (2017).
Article Google Scholar
32.
De Ryck, D. J. R. et al. Dispersal limitation of the mangrove Avicennia marina at its South African range limit in strong contrast to connectivity in its core East African region. Mar. Ecol. Prog. Ser. 545, 123–134 (2016).
ADS Article CAS Google Scholar
33.
Duke, N. C., Lo, E. Y. Y. & Sun, M. Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees Struct. Funct. 16, 65–79 (2002).
Article Google Scholar
34.
Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves (Earthscan and James & James, 2010).
35.
Osland, M. J. et al. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol. Monogr. 87, 341–359 (2017).
Article Google Scholar
36.
Duke, N. et al. Rhizophora mucronata. The IUCN Red List of Threatened Species 2010: e.T178825A7618520.https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T178825A7618520.en (2010). Downloaded on 27 January 2020.
37.
Schouten, M. W., de Ruijter, W. P. M., van Leeuwen, P. J. & Ridderinkhof, H. Eddies and variability in the Mozambique Channel. Deep-Sea Res. II(50), 1987–2003 (2003).
ADS Google Scholar
38.
Ternon, J. F., Roberts, M. J., Morris, T., Hancke, L. & Backeberg, B. In situ measured current structures of the eddy field in the Mozambique Channel. Deep-Sea Res. II 100, 10–26 (2014).
Article Google Scholar
39.
Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P. & Fifield, K. L. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716 (2000).
ADS CAS PubMed Article Google Scholar
40.
Van der Stocken, T., Carroll, D., Menemenlis, D., Simard, M. & Koedam, N. Global-scale dispersal and connectivity in mangroves. Proc. Natl. Acad. Sci. USA 116, 915–922 (2019).
PubMed Article CAS Google Scholar
41.
Schott, F. A., Shang-Ping, X. & McCreary, J. P. Jr. Indian Ocean circulation and climate variability. Rev. Geophys. 47, RG1002. https://doi.org/10.1029/2007RG000245 (2009).
ADS Article Google Scholar
42.
Hume, J. P., Martill, D. & Hing, R. A. Terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group. Seychelles. PLoS ONE 13, e0192675. https://doi.org/10.1371/journal.pone.0192675 (2018).
CAS Article PubMed Google Scholar
43.
Braithwaite, C. J. R., Taylor, J. D. & Kennedy, W. J. The evolution of an atoll: the depositional and erosional history of Aldabra. Philos. Trans. R. Soc. Lond. B. 266, 307–340 (1973).
ADS Article Google Scholar
44.
Obura, D. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013. https://doi.org/10.1371/journal.pone.0045013 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
45.
Urashi, C., Teshima, K. M., Minobe, S., Koizumi, O. & Inomata, N. Inferences of evolutionary history of a widely distributed mangrove species, Bruguiera gymnorrhiza, in the Indo-West Pacific region. Ecol. Evol. 3, 2251–2261 (2013).
PubMed PubMed Central Article Google Scholar
46.
Tomizawa, Y. et al. Genetic structure and population demographic history of a widespread mangrove plant Xylocarpus granatum J. Koenig across the Indo-West Pacific region. Forests 8, 480 (2017).
Article Google Scholar
47.
van der Ven, R. M. et al. Population genetic structure of the stony coral Acropora tenius shows high but variable connectivity in East Africa. J. Biogeogr. 43, 510–519 (2016).
Article Google Scholar
48.
Jahnke, M. et al. Population genetic structure and connectivity of the seagrass Thalassia hemprichii in the Western Indian Ocean is influenced by predominant ocean currents. Ecol. Evol. 9, 8953–8964 (2019).
PubMed PubMed Central Article Google Scholar
49.
Muths, D., Tessier, E. & Bourjea, J. Genetic structure of the reef grouper Epinephelus merra in the West Indian Ocean appears congruent with biogeographic and oceanographic boundaries. Mar. Ecol. 36, 447–461 (2015).
ADS Article Google Scholar
50.
Mori, G. M., Zucchi, M. I. & Souza, A. P. Multiple-geographic-scale genetic structure of two mangrove tree species: the roles of mating system, hybridization, limited dispersal and extrinsic factors. PLoS ONE 10, 0118710. https://doi.org/10.1371/journal.pone.0118710 (2015).
CAS Article Google Scholar
51.
Hancke, L., Roberts, M. J. & Ternon, J. F. Surface drifter trajectories highlight flow pathways in the Mozambique Channel. Deep-Sea Res. II(100), 27–37 (2014).
Google Scholar
52.
Gamoyo, M., Obura, D. & Reason, C. J. C. Estimating connectivity through larval dispersal in the Western Indian Ocean. J. Geophys. Res. Biogeo. 124, 2446–2459. https://doi.org/10.1029/2019JG005128 (2019).
Article Google Scholar
53.
Silva, I., Mesquita, N. & Paula, J. Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura Sesarmidae) along an East African latitudinal gradient. Biol. J. Linn. Soc. 99, 28–46 (2010).
Article Google Scholar
54.
Madeira, C., Alves, M. J., Mesquita, N., Silva, I. & Paula, J. Tracing geographical patterns of population differentiation in a widespread mangrove gastropod: genetic and geometric morphometrics surveys along the eastern African coast. Biol. J. Linn. Soc. 107, 647–663 (2012).
Article Google Scholar
55.
Fatoyinbo, E. T., Simard, M., Washington-Allen, R. A. & Shugart, H. H. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. J. Geophys. Res. Biogeo. 113, G02S06. https://doi.org/10.1029/2007JG000551 (2008).
ADS Article Google Scholar
56.
Lutjeharms, J. R. E. & Da Silva, A. J. The Delagoa bight eddy. Deep-Sea Res. 35, 619–634 (1988).
ADS Article Google Scholar
57.
Quartly, G. D. & Srokosz, M. A. Eddies in the southern Mozambique Channel. Dee-Sea Res. II: Top. Stud. Oceanogr. 51, 69–83 (2004).
ADS CAS Article Google Scholar
58.
Paula, J., Dray, T. & Queiroga, H. Interaction of offshore and inshore processes controlling settlement of brachyuran megalopae in Saco mangrove creek, Inhaca Island (South Mozambique). Mar. Ecol. Prog. Ser. 215, 251–260 (2001).
ADS Article Google Scholar
59.
Singh, S. P., Groeneveld, J. C., Hart-Davis, M. G., Backeberg, B. C. & Willows-Munro, S. Seascape genetics of the spiny lobster Panulirus homarus in the Western Indian Ocean: understanding how oceanographic features shape the genetic structure of species with high larval dispersal potential. Ecol. Evol. 8, 12221–12237 (2018).
PubMed PubMed Central Article Google Scholar
60.
Ngeve, M., Koedam, N. & Triest, L. Runaway fathers? Limited pollen dispersal and mating system in Rhizophora racemosa populations of a disturbed mangrove estuary. Aquat. Bot. 165, 103241. https://doi.org/10.1016/j.aquabot.2020.103241 (2020).
Article Google Scholar
61.
Kondo, K., Nakamura, T., Tsuruda, K., Saito, N. & Yaguchi, Y. Pollination in Bruguiera gymnorrhiza and Rhizophora mucronata (Rhizophoraceae) in Ishigaki Island, The Ryukyu Islands, Japan. Biotropica 19, 377–380 (1987).
Article Google Scholar
62.
Islam, M. S., Lian, C., Kameyama, N., Wu, B. & Hogetsu, T. Development of microsatellite markers in Rhizophora stylosa using a dual-suppression-polymerase chain reaction technique. Mol. Ecol. Notes 4, 110–112 (2004).
CAS Article Google Scholar
63.
Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv. Genet. 9, 1323–1325 (2008).
CAS Article Google Scholar
64.
Takayama, K. et al. Isolation and characterization of microsatellite loci in a mangrove species, Rhizophora stylosa (Rhizophoraceae). Conserv. Genet. Resour. 1, 175. https://doi.org/10.1007/s12686-009-9042-7 (2009).
Article Google Scholar
65.
Shinmura, Y. et al. Isolation and characterization of 14 microsatellite markers for Rhizophora mucronata (Rhizophoraceae) and their potential use in range-wide population studies. Conserv. Genet. Resour. 4, 951–954 (2012).
Article Google Scholar
66.
Wee, A. K. S., Takayama, K., Kajita, T. & Webb, E. L. Microsatellite loci for Avicennia alba (Acanthaceae), Sonneratia alba (Lythraceae) and Rhizophora mucronata (Rhizophoraceae). J. Trop. For. Sci. 25, 131–136 (2013).
Google Scholar
67.
Ribeiro, D. O. et al. Isolation of microsatellite markers for the red mangrove, Rhizophora mangle (Rhizophoraceae). Appl. Plant Sci. 1, 1300003. https://doi.org/10.3732/apps.1300003 (2013).
Article Google Scholar
68.
Goudet, J. FSTAT, version 2.9.3, a program to estimate and test gene diversities and fixation indices. (2001).
69.
van Oosterhout, C., Hutchison, W. F., Wills, D. P. M. & Shipley, P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Article CAS Google Scholar
70.
Chybicki, I. J. & Burczyk, J. Simultaneous estimation of null alleles and inbreeding coefficients. J. Hered. 100, 106113 (2009).
Article CAS Google Scholar
71.
Campagne, P., Smouse, P. E., Varouchas, G., Silvain, J.-F. & Leru, B. Comparing the van Oosterhout and Chybicki-Burczyk methods of estimating null allele frequencies for inbred populations. Mol. Ecol. Resour. 12, 975–982 (2012).
CAS PubMed Article Google Scholar
72.
Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).
CAS PubMed PubMed Central Article Google Scholar
73.
Hardy, O. & Vekemans, X. spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).
Article CAS Google Scholar
74.
Loiselle, B., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82, 1420–1425 (1995).
Article Google Scholar
75.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
76.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
CAS PubMed Article Google Scholar
77.
Earl, D. M. & von Holdt, B. M. Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Article Google Scholar
78.
Li, Y. L. & Liu, J. X. Structureselector: a web based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
PubMed Article Google Scholar
79.
Manni, F., Guerard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum. Biol. 76, 173190 (2004).
Article Google Scholar
80.
Beerli, P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22, 341–345 (2006).
CAS PubMed Article Google Scholar
81.
Beerli, P. & Palczewski, M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185, 313–326 (2010).
PubMed PubMed Central Article Google Scholar
82.
Cornuet, J. M. et al. DIYABC v2.0: a software to make approximate bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
CAS PubMed Article Google Scholar
83.
Lutjeharms, J. R. E., Biastoch, A., Van der Werf, P. M., Ridderinkhof, H. & De Ruijter, W. P. M. On the discontinuous nature of the Mozambique Current. S. Afr. J. Sci. https://doi.org/10.4102/sajs.v108i1/2.428 (2012).
Article Google Scholar More