More stories

  • in

    Decadal changes in fire frequencies shift tree communities and functional traits

    1.
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).
    CAS  PubMed  Article  Google Scholar 

    3.
    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    van der Werf, G. R. G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).
    Article  Google Scholar 

    6.
    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl Acad. Sci. USA 108, 13165–13170 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).
    Article  Google Scholar 

    9.
    Lewis, T. Very frequent burning encourages tree growth in sub-tropical Australian eucalypt forest. Forest Ecol. Manag. 459, 117842 (2020).
    Article  Google Scholar 

    10.
    Peterson, D. W. & Reich, P. B. Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecol. Appl. 11, 914–927 (2001).
    Article  Google Scholar 

    11.
    Tilman, D. et al. Fire suppression and ecosystem carbon storage. Ecology 81, 2680–2685 (2000).
    Article  Google Scholar 

    12.
    Pellegrini, A. F. A., Hedin, L. O., Staver, A. C. & Govender, N. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96, 1275–1285 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).
    Article  Google Scholar 

    14.
    Uhl, C. & Kauffman, J. B. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71, 437–449 (1990).
    Article  Google Scholar 

    15.
    Case, M. F., Wigley‐Coetsee, C., Nzima, N., Scogings, P. F. & Staver, A. C. Severe drought limits trees in a semi‐arid savanna. Ecology 100, e02842 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Schoennagel, T., Turner, M. G. & Romme, W. H. The influence of fire interval and serotiny on postfire lodgepole pine density in Yellowstone National Park. Ecology 84, 2967–2978 (2003).
    Article  Google Scholar 

    18.
    Higgins, S. I. et al. Which traits determine shifts in the abundance of tree species in a fire-prone savanna? J. Ecol. 100, 1400–1410 (2012).
    Article  Google Scholar 

    19.
    Lehmann, C. E. R. et al. Savanna vegetation–fire–climate relationships differ among continents. Science 343, 548–552 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Higgins, S. I., Bond, J. I. & Trollope, W. S. Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna. J. Ecol. 88, 213–229 (2000).
    Article  Google Scholar 

    22.
    Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Reich, P. B., Peterson, D. W., Wedin, D. A. & Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest–grassland continuum. Ecology 82, 1703–1719 (2001).
    Google Scholar 

    24.
    Phillips, R., Brzostek, E. & Midgley, M. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 99, 41–51 (2013).
    Article  CAS  Google Scholar 

    25.
    Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Read, D. J. & Perez‐Moreno, J. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol. 157, 475–492 (2003).
    Article  Google Scholar 

    27.
    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Whitman, E., Parisien, M. A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 9, 18796 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2019).
    Article  Google Scholar 

    31.
    Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).
    CAS  PubMed  Article  Google Scholar 

    32.
    Steel, Z. L., Safford, H. D. & Viers, J. H. The fire frequency–severity relationship and the legacy of fire suppression in California forests. Ecosphere 6, 1–23 (2015).
    Article  Google Scholar 

    33.
    Scott, J. & Burgan, R. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model General Technical Report RMRS-GTR-153 (USDA, Forest Service and Rocky Mountain Research Station, 2005).

    34.
    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).
    Article  Google Scholar 

    35.
    Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Butler, O. M., Elser, J. J., Lewis, T., Mackey, B. & Chen, C. The phosphorus-rich signature of fire in the soil–plant system: a global meta-analysis. Ecol. Lett. 21, 335–344 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Raison, R. J., Khanna, P. K. & Woods, P. V. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests. Can. J. Forest Res. 15, 657–664 (1985).
    CAS  Article  Google Scholar 

    38.
    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1906655116 (2019).

    39.
    Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 209, 1705–1719 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Woinarski, J. C. Z., Risler, J. & Kean, L. Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical eucalyptus open forest, Northern Territory, Australia. Austral Ecol. 29, 156–176 (2004).
    Article  Google Scholar 

    41.
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest–tree symbioses. Nature 569, 404–408 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Pellegrini, A. F. A. et al. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90, e01409 (2020).
    Article  Google Scholar 

    43.
    Newland, J. A. & DeLuca, T. H. Influence of fire on native nitrogen-fixing plants and soil nitrogen status in ponderosa pine – Douglas-fir forests in western Montana. Can. J. Forest Res. 30, 274–282 (2000).
    Article  Google Scholar 

    44.
    Johnson, D. W. & Curtis, P. S. Effects of forest management on soil C and N storage: meta analysis. Forest Ecol. Manag. 140, 227–238 (2001).
    Article  Google Scholar 

    45.
    Pellegrini, A. F. A. Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313–324 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    47.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, e4794 (2018).
    Article  Google Scholar 

    48.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    49.
    Jackson, J. F., Adams, D. C. & Jackson, U. B. Allometry of constitutive defense: a model and a comparative test with tree bark and fire regime. Am. Nat. 153, 614–632 (1999).
    PubMed  Article  PubMed Central  Google Scholar 

    50.
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Hoffmann, W. A., Marchin, R. M., Abit, P. & Lau, O. L. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob. Change Biol. 17, 2731–2742 (2011).
    Article  Google Scholar 

    52.
    Harmon, M. E. Decomposition of standing dead trees in the southern Appalachian Mountains. Oecologia 52, 214–215 (1982).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Article  Google Scholar 

    54.
    Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S. A meta-analysis of competition in field experiments. Am. Nat. 140, 539–572 (1992).
    Article  Google Scholar 

    55.
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Brockway, D. G. & Lewis, C. E. Long-term effects of dormant-season prescribed fire on plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem. Forest Ecol. Manag. 96, 167–183 (1997).
    Article  Google Scholar 

    59.
    Lewis, T. & Debuse, V. J. Resilience of a eucalypt forest woody understorey to long-term (34–55 years) repeated burning in subtropical Australia. Int. J. Wildl. Fire 21, 980–991 (2012).
    Article  Google Scholar 

    60.
    Scudieri, C. A., Sieg, C. H., Haase, S. M., Thode, A. E. & Sackett, S. S. Understory vegetation response after 30 years of interval prescribed burning in two ponderosa pine sites in northern Arizona, USA. Forest Ecol. Manag. 260, 2134–2142 (2010).
    Article  Google Scholar 

    61.
    Lewis, T., Reif, M., Prendergast, E. & Tran, C. The effect of long-term repeated burning and fire exclusion on above- and below-ground blackbutt (Eucalyptus pilularis) forest vegetation assemblages. Austral Ecol. 37, 767–778 (2012).
    Article  Google Scholar 

    62.
    Stratton, R. Effects of Long-Term Late Winter Prescribed Fire on Forest Stand Dynamics, Small Mammal Populations, and Habitat Demographics in a Tennessee Oak Barrens. MSc thesis, Univ. Tennessee (2007).

    63.
    Wade, D. D. Long-Term Site Responses to Season and Interval of Underburns on the Georgia Piedmont (Forest Service Research Data Archive, 2016).

    64.
    Pellegrini, A. F. A., Hoffmann, W. A. & Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342–352 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Nesmith, C. B., Caprio, A. C., Pfaff, A. H., McGinnis, T. W. & Keeley, J. E. A comparison of effects from prescribed fires and wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks. Forest Ecol. Manag. 261, 1275–1282 (2011).
    Article  Google Scholar 

    66.
    Haywood, J. D., Harris, F. L., Grelen, H. E. & Pearson, H. A. Vegetative response to 37 years of seasonal burning on a Louisiana longleaf pine site. South. J. Appl. For. 25, 122–130 (2001).
    Article  Google Scholar 

    67.
    Higgins, S. I. et al. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88, 1119–1125 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Gignoux, J., Lahoreau, G., Julliard, R. & Barot, S. Establishment and early persistence of tree seedlings in an annually burned savanna. J. Ecol. 97, 484–495 (2009).
    Article  Google Scholar 

    69.
    Tizon, F. R., Pelaez, D. V. & Elia, O. R. The influence of controlled fires on a plant community in the south of the Caldenal and its relationship with a regional state and transition model. Int. J. Exp. Bot. 79, 141–146 (2010).
    Google Scholar 

    70.
    Neill, C., Patterson, W. A. & Crary, D. W. Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak–pine forest. Forest Ecol. Manag. 250, 234–243 (2007).
    Article  Google Scholar 

    71.
    Ryan, C. M., Williams, M. & Grace, J. Above‐ and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).
    Article  Google Scholar 

    72.
    Scharenbroch, B. C., Nix, B., Jacobs, K. A. & Bowles, M. L. Two decades of low-severity prescribed fire increases soil nutrient availability in a midwestern, USA oak (Quercus) forest. Geoderma 183–184, 80–91 (2012).
    Article  CAS  Google Scholar 

    73.
    Burton, J. A., Hallgren, S. W., Fuhlendorf, S. D. & Leslie, D. M. Jr. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest. Plant Ecol. 212, 1513–1525 (2011).
    Article  Google Scholar 

    74.
    Stewart, J. F., Will, R. E., Robertson, K. M. & Nelson, C. D. Frequent fire protects shortleaf pine (Pinus echinata) from introgression by loblolly pine (P. taeda). Conserv. Genet. 16, 491–495 (2015).
    Article  Google Scholar 

    75.
    Knapp, B. O., Stephan, K. & Hubbart, J. A. Structure and composition of an oak–hickory forest after over 60 years of repeated prescribed burning in Missouri, U.S.A. Forest Ecol. Manag. 344, 95–109 (2015).
    Article  Google Scholar 

    76.
    Olson, M. G. Tree regeneration in oak–pine stands with and without prescribed fire in the New Jersey Pine Barrens: management implications. North. J. Appl. For. 28, 47–49 (2011).
    Article  Google Scholar  More

  • in

    Consistent trait–environment relationships within and across tundra plant communities

    1.
    Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Billings, W. D. Arctic and Alpine vegetations: similarities, differences, and susceptibility to disturbance. BioScience 23, 697–704 (1973).
    Article  Google Scholar 

    6.
    Graae, B. J. et al. Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).
    Article  Google Scholar 

    7.
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Choler, P. Consistent shifts in alpine plant traits along a mesotopographical gradient. Arct. Antarct. Alp. Res. 37, 444–453 (2005).
    Article  Google Scholar 

    9.
    Wullschleger, S. D. et al. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann. Bot. 114, 1–16 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).
    Article  Google Scholar 

    11.
    Myers-Smith, I. H., Thomas, H. J. D. & Bjorkman, A. D. Plant traits inform predictions of tundra responses to global change. New Phytol. 221, 1742–1748 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Robinson, S. A. et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat. Clim. Change 8, 879–884 (2018).
    CAS  Article  Google Scholar 

    13.
    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Saros, J. E. et al. Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environ. Res. Lett. 14, 074027 (2019).
    Article  Google Scholar 

    15.
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Article  Google Scholar 

    16.
    Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    18.
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
    CAS  Article  Google Scholar 

    19.
    Thomas, H. J. D. et al. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat. Commun. 11, 1351 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Billings, W. D. & Bliss, L. C. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40, 388–397 (1959).
    Article  Google Scholar 

    21.
    Myers-Smith, I. H. & Hik, D. S. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol. Evol. 3, 3683–3700 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Chapin, F. S. III et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Cahoon, S. M. P. et al. Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecol. Lett. 15, 1415–1422 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
    Article  Google Scholar 

    25.
    Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).
    Article  Google Scholar 

    26.
    Cornelissen, J. H. C. et al. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol. Lett. 10, 619–627 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    Article  Google Scholar 

    29.
    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

    31.
    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).
    Article  Google Scholar 

    32.
    Bromwich, D. H. et al. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 6, 139–145 (2013).
    CAS  Article  Google Scholar 

    33.
    Turner, J. et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411–415 (2016).
    CAS  PubMed  Article  Google Scholar 

    34.
    Sonesson, M., Wielgolaski, F. E. & Kallio, P. in Fennoscandian Tundra Ecosystems. Ecological Studies (Analysis and Synthesis) Vol. 16 (ed. Wielgolaski, F. E.) 3–28 (Springer, 1975); https://doi.org/10.1007/978-3-642-80937-8_1

    35.
    Niittynen, P., Heikkinen, R. K. & Luoto, M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Clim. Change 8, 997–1001 (2018).
    Article  Google Scholar 

    36.
    Klikoff, L. G. Photosynthetic response to temperature and moisture stress of three timberline meadow species. Ecology 46, 516–517 (1965).
    Article  Google Scholar 

    37.
    Oberbauer, S. F. & Billings, W. D. Drought tolerance and water use by plants along an alpine topographic gradient. Oecologia 50, 325–331 (1981).
    PubMed  Article  Google Scholar 

    38.
    Eskelinen, A., Stark, S. & Männistö, M. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161, 113–123 (2009).
    PubMed  Article  Google Scholar 

    39.
    Ernakovich, J. G. et al. Predicted responses of Arctic and alpine ecosystems to altered seasonality under climate change. Glob. Change Biol. 20, 3256–3269 (2014).
    Article  Google Scholar 

    40.
    Galen, C. & Stanton, M. L. Responses of snowbed plant species to changes in growing-season length. Ecology 76, 1546–1557 (1995).
    Article  Google Scholar 

    41.
    Starr, G., Oberbauer, S. F. & Ahlquist, L. E. The photosynthetic response of Alaskan tundra plants to increased season length and soil warming. Arct. Antarct. Alp. Res. 40, 181–191 (2008).
    Article  Google Scholar 

    42.
    Happonen, K. et al. Snow is an important control of plant community functional composition in oroarctic tundra. Oecologia 191, 601–608 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Niittynen, P. & Luoto, M. The importance of snow in species distribution models of Arctic vegetation. Ecography 41, 1024–1037 (2018).
    Article  Google Scholar 

    44.
    le Roux, P. C., Aalto, J. & Luoto, M. Soil moisture’s underestimated role in climate change impact modelling in low-energy systems. Glob. Change Biol. 19, 2965–2975 (2013).
    Article  Google Scholar 

    45.
    Lembrechts, J. J. et al. SoilTemp: a global database of near-surface temperature. Glob. Change Biol. 26, 6616–6629 (2020).

    46.
    Bjorkman, A. D. et al. Tundra Trait Team: a database of plant traits spanning the tundra biome. Glob. Ecol. Biogeogr. 27, 1402–1411 (2018).
    Article  Google Scholar 

    47.
    Maitner, B. S. et al. The bien r package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).
    Article  Google Scholar 

    48.
    Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).
    Article  Google Scholar 

    49.
    Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Change 10, 1143–1148 (2020).

    51.
    Belluau, M. & Shipley, B. Predicting habitat affinities of herbaceous dicots to soil wetness based on physiological traits of drought tolerance. Ann. Bot. 119, 1073–1084 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Kemppinen, J., Niittynen, P., Riihimäki, H. & Luoto, M. Modelling soil moisture in a high-latitude landscape using LiDAR and soil data. Earth Surf. Proc. Land. 43, 1019–1031 (2018).
    Article  Google Scholar 

    53.
    Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C. & Luoto, M. Water as a resource, stress and disturbance shaping tundra vegetation. Oikos 128, 811–822 (2019).
    Article  Google Scholar 

    54.
    Giblin, A. E., Nadelhoffer, K. J., Shaver, G. R., Laundre, J. A. & McKerrow, A. J. Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecol. Monogr. 61, 415–435 (1991).
    Article  Google Scholar 

    55.
    le Roux, P. C., Virtanen, R. & Luoto, M. Geomorphological disturbance is necessary for predicting fine-scale species distributions. Ecography 36, 800–808 (2013).
    Article  Google Scholar 

    56.
    Finger Higgens, R., Hicks Pries, C. & Virginia, R. A. Trade-offs between wood and leaf production in Arctic shrubs along a temperature and moisture gradient in West Greenland. Ecosystems https://doi.org/10.1007/s10021-020-00541-4 (2020).

    57.
    Porporato, A. & Rodriguez-Iturbe, I. Ecohydrology-a challenging multidisciplinary research perspective / Ecohydrologie: une perspective stimulante de recherche multidisciplinaire. Hydrol. Sci. J. 47, 811–821 (2002).
    Article  Google Scholar 

    58.
    Legates, D. R. et al. Soil moisture: a central and unifying theme in physical geography. Prog. Phys. Geogr. 35, 65–86 (2011).
    Article  Google Scholar 

    59.
    McLaughlin, B. C. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).
    Article  Google Scholar 

    60.
    Choler, P. Winter soil temperature dependence of alpine plant distribution: implications for anticipating vegetation changes under a warming climate. Perspect. Plant Ecol. Evol. Syst. 30, 6–15 (2018).
    Article  Google Scholar 

    61.
    Happonen, K. et al. Snow is an important control of plant community functional composition in oroarctic tundra. Oecologia 191, 601–608 (2019).

    62.
    Doran, P. T. et al. Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517–520 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    French, D. D. & Smith, V. R. A comparison between Northern and Southern Hemisphere tundras and related ecosystems. Polar Biol. 5, 5–21 (1985).
    Article  Google Scholar 

    64.
    le Roux, P. C. in The Prince Edward Islands: Land–Sea Interactions in a Changing Ecosystem (eds Chown, S. L. & Froneman, P. W.) 39–64 (African Sun Media, 2008).

    65.
    Devau, N., Le Cadre, E., Jaillarda, B. & Gérarda, F. Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches. Appl. Geochem. 24, 2163–2174 (2009).

    66.
    Stevens, R. J., Laughlin, R. J. & Malone, J. P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol. Biochem. 30, 1119–1126 (1998).
    CAS  Article  Google Scholar 

    67.
    Freschet, G. T., Cornelissen, J. H. C., Van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373 (2010).
    Article  Google Scholar 

    68.
    Bergholz, K. et al. Fertilization affects the establishment ability of species differing in seed mass via direct nutrient addition and indirect competition effects. Oikos 124, 1547–1554 (2015).
    Article  Google Scholar 

    69.
    Curtin, D., Campbell, C. A. & Jalil, A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 30, 57–64 (1998).
    CAS  Article  Google Scholar 

    70.
    Blondeel, H. et al. Light and warming drive forest understorey community development in different environments. Glob. Change Biol. 26, 1681–1696 (2020).
    Article  Google Scholar 

    71.
    Dahlgren, J. P., Eriksson, O., Bolmgren, K., Strindell, M. & Ehrlén, J. Specific leaf area as a superior predictor of changes in field layer abundance during forest succession. J. Veg. Sci. 17, 577–582 (2006).
    Article  Google Scholar 

    72.
    Lembrechts, J. J. et al. Comparing temperature data sources for use in species distribution models: from in‐situ logging to remote sensing. Glob. Ecol. Biogeogr. 28, 1578–1596 (2019).
    Article  Google Scholar 

    73.
    Körner, C. & Hiltbrunner, E. The 90 ways to describe plant temperature. Perspect. Plant Ecol. Evol. Syst. 30, 16–21 (2018).
    Article  Google Scholar 

    74.
    Maclean, I. M. D. Predicting future climate at high spatial and temporal resolution. Glob. Change Biol. 26, 1003–1011 (2019).

    75.
    Aalto, J., Scherrer, D., Lenoir, J., Guisan, A. & Luoto, M. Biogeophysical controls on soil–atmosphere thermal differences: implications on warming Arctic ecosystems. Environ. Res. Lett. 13, 074003 (2018).
    Article  Google Scholar 

    76.
    Aalto, J., le Roux, P. C. & Luoto, M. Vegetation mediates soil temperature and moisture in Arctic-alpine environments. Arct. Antarct. Alp. Res. 45, 429–439 (2013).
    Article  Google Scholar 

    77.
    Moles, A. T. et al. Which is a better predictor of plant traits: temperature or precipitation? J. Veg. Sci. 25, 1167–1180 (2014).
    Article  Google Scholar 

    78.
    Taylor, R. V. & Seastedt, T. R. Short- and long-term patterns of soil moisture in alpine tundra. Arct. Alp. Res. 26, 14–20 (1994).
    Article  Google Scholar 

    79.
    Lembrechts, J. J. & Lenoir, J. Microclimatic conditions anywhere at any time! Glob. Change Biol. https://doi.org/10.1111/gcb.14942 (2019).

    80.
    Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Bramer, I. et al. Advances in monitoring and modelling climate at ecologically relevant scales. Adv. Ecol. Res. 58, 101–161 (2018).

    82.
    Halbritter, A. H. et al. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods Ecol. Evol. 2, 16147 (2019).
    Google Scholar 

    83.
    Wild, J. et al. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agr. Forest Meteorol. 268, 40–47 (2019).
    Article  Google Scholar 

    84.
    Aalto, J., Riihimäki, H., Meineri, E., Hylander, K. & Luoto, M. Revealing topoclimatic heterogeneity using meteorological station data. Int. J. Climatol. 37, 544–556 (2017).
    Article  Google Scholar 

    85.
    Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P. & Maclean, I. M. D. A method for computing hourly, historical, terrain‐corrected microclimate anywhere on Earth. Methods Ecol. Evol. https://doi.org/10.1111/2041-210x.13330 (2019).

    86.
    Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    Vandvik, V., Halbritter, A. H. & Telford, R. J. Greening up the mountain. Proc. Natl Acad. Sci. USA 115, 833–835 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. 7, 015503 (2012).
    Article  Google Scholar 

    89.
    Zwieback, S., Chang, Q., Marsh, P. & Berg, A. Shrub tundra ecohydrology: rainfall interception is a major component of the water balance. Environ. Res. Lett. 14, 055005 (2019).
    Article  Google Scholar 

    90.
    Robinson, D. A. et al. Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Glob. Change Biol. 25, 1895–1904 (2019).
    Article  Google Scholar 

    91.
    Loranty, M. M. et al. Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018).
    CAS  Article  Google Scholar 

    92.
    Parker, T. C., Subke, J.-A. & Wookey, P. A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Change Biol. 21, 2070–2081 (2015).
    Article  Google Scholar 

    93.
    DeMarco, J., Mack, M. C. & Bret-Harte, M. S. Effects of Arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95, 1861–1875 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    94.
    Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Change Biol. 16, 641–656 (2010).
    Article  Google Scholar 

    95.
    Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Climate in Svalbard 2100 – A Knowledge Base for Climate Adaptation (Norwegian Centre for Climate Services, 2019); https://go.nature.com/3tFTKAr

    97.
    Weather Observations from Greenland 1958–2018 – Observation Data with Description DMI Report 19-08 (Danish Meteorological Institute, 2019); https://go.nature.com/36RkdBk

    98.
    Enontekiö Kilpisjärvi Saana. Daily Climate Observations (Finnish Meteorological Institute, 2019); https://en.ilmatieteenlaitos.fi/download-observations

    99.
    Enontekiö Kilpisjärvi Kyläkeskus. Daily Climate Observations (Finnish Meteorological Institute, 2019); https://en.ilmatieteenlaitos.fi/download-observations

    100.
    Smith, V. R. & Steenkamp, M. Classification of the terrestrial habitats on Marion Island based on vegetation and soil chemistry. J. Veg. Sci. 12, 181–198 (2001).
    Article  Google Scholar 

    101.
    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    102.
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    103.
    Iversen, C. M. et al. The unseen iceberg: plant roots in Arctic tundra. New Phytol. 205, 34–58 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    104.
    Kern, R. et al. Comparative vegetation survey with focus on cryptogamic covers in the high Arctic along two differing catenas. Polar Biol. 42, 2131–2145 (2019).
    Article  Google Scholar 

    105.
    Miller, R. O. & Kissel, D. E. Comparison of soil pH methods on soils of North America. Soil Sci. Soc. Am. J. 74, 310–316 (2010).
    Article  CAS  Google Scholar 

    106.
    McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603 (2002).
    Article  Google Scholar 

    107.
    McCune, B. Improved estimates of incident radiation and heat load using non- parametric regression against topographic variables. J. Veg. Sci. 18, 751 (2007).
    Article  Google Scholar 

    108.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    109.
    NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team ASTER Global Digital Elevation Model (GDEM) V003 (NASA EOSDIS Land Processes DAAC, 2018); https://doi.org/10.5067/ASTER/ASTGTM.003

    110.
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    111.
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).

    112.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

    113.
    Husson, F., Le, S. & Pagès, J. Exploratory Multivariate Analysis by Example Using R (CRC, 2017).

    114.
    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 31844 (2008).
    Article  Google Scholar 

    115.
    Kemppinen, J. et al. Data from: Consistent trait–environment relationships within and across tundra plant communities. Zenodo https://doi.org/10.5281/zenodo.4362216 (2020). More

  • in

    Deep learning identification for citizen science surveillance of tiger mosquitoes

    Figure 2

    Schematic figure of the labeling process. Participants usually upload several images in a single report. The best photo is picked by the validator who first marks the harassing or non-appropriate photos as hidden. All the non-best photos are marked as not classified. In some rare events, two or three images are annotated from the same report. The mosquito images are classified into four different categories (Aedes albopictus, Aedes aegypti, other species or can not tell) and also the confidence of the label is marked as probable or confirmed. In this paper we excluded the not classified, the hidden and the can not tell images.

    Full size image

    Between 2014 and 2019, 7686 citizen-made mosquito photos were labeled through Mosquito Alert by entomology experts, with labels indicating whether Ae. albopictus appear in the photos. The photos were included in reports that Mosquito Alert participants uploaded, and each report could contain several photos, see Fig. 2. The entomology experts usually labeled the best photo of the report, but sometimes they labeled two (420 times) or three (49 times) for a single report, meaning that the dataset consisted of 7168 reports. For 6699 reports, only one image was labeled by the experts; for 420 reports two were labeled; for 49 reports three were labeled. Although these reports usually contain several photos, only the ones with expert labels were used in the analysis, as cannot be assumed that all of the photos in a report would have been given the same label.
    The main goals of Mosquito Alert during this 6 year period were to monitor Ae. albopictus spreading and provide early detection of Ae. aegypti in Spain. Although people participate in Mosquito Alert all over the world, the majority of the participants and the majority of the photos are in Spain (see Fig. 1). As Ae. aegypti has not been reported in Spain in recent times, most Mosquito Alert participants lived in areas where Ae. aegypti is not present, so most of the photos are of Ae. albopictus. For the detailed yearly distribution of the photos, see Table 1.
    Table 1 The collected and expert validated dataset for the period 2014–2019.
    Full size table

    A popular deep learning model, ResNet5026 was trained and evaluated on the collected dataset with yearly cross-validation. ResNet50 was used because of its wide popularity and its proven classification power in various datasets. As presenting infinitesimal increments of the classification power is not a goal of this paper, we do not report various ImageNet state-of-the-art model performances. Yearly cross-validation was used to rule out any possibility of information leakage (possibility of a user submitting multiple reports for the same mosquito).
    The trained model is not only capable of generating highly accurate predictions, but it can also ease the human annotator workload by auto-marking the images where the neural network is confident and more accurate, leaving more uncertain cases for the entomology experts. Moreover, while visualizing the erroneous predictions a few re-occurring patterns were identified, which can serve as a proposal for how to make images that can be best processed by the model.
    Several aspects of the dataset were explored as follows.
    Classification
    Since Mosquito Alert was centered around Ae. albopictus during the relevant time period (2014–2019), the collected dataset is biased towards this species (Table 1). We explored training classifiers on the Mosquito Alert dataset alone and also tied training on a balanced dataset, where 3896 negative samples were added from the IP10227 dataset of various non-mosquito insects as negative samples. From the IP102 dataset, images similar to mosquitoes, and images of striped insects were selected. Although the presented mosquito alert dataset is filtered to contain only mosquito images, in later use, non-mosquito images might be uploaded by the citizens. Training the CNN on a combination of mosquito and non-mosquito images can improve the model to make correct predictions, classifying non-tiger mosquitoes for those cases too. For testing, in each fold, only the Mosquito Alert dataset was used.
    The trained classifiers achieved an extremely high area under the receiver operating characteristic curve (ROC AUC) score of 0.96 (see Fig. 3). The fact that the ROC AUC score for each fold was always over 0.95 proves the consistency of our classifier. Inspecting the confusion matrix shows us that the model tends to make more false positive predictions (assuming tiger mosquito is defined as the positive outcome) than false negatives, resulting in high sensitivity. The augmentation of the Mosquito Alert dataset with various insects from IP102 images to make it more balanced resulted in a slight performance boost and narrowed the gap between the number of false positive and false negative samples as expected, see Table 2.
    Figure 3

    Left: ROC curve calculated on the prediction of the 7686 images in the Mosquito Alert dataset with yearly cross-validation. The blue line shows the case when only the Mosquito Alert dataset was used for training, the orange when the training dataset was balanced out with the addition of non-tiger mosquito insect images from the IP102 dataset. Also a zoom into the part of the ROC curve, where the two methods differ the most is highlighted. Right: the confusion matrix was calculated on the same predictions when only the Mosquito Alert dataset was used for training. For both, a positive label means tiger mosquito is present.

    Full size image

    Table 2 Yearly cross-validation results with using the Mosquito Alert dataset alone and its IP102 augmented version.
    Full size table

    How to take a good picture?
    Inspection of the weaknesses of a machine learning model is a fruitful way to gain a deeper understanding of the underlying problems and mechanisms. In our case, a careful review of the mispredicted images led us to useful insights into what makes a photo hard to classify for the deep learning model. On Fig. 8, a few selected examples are presented. Unlike humans, deep learning models rely more on textures than on shapes28. As a consequence, grid-like background patterns or striped objects may easily confuse the machine classifier. A larger rich training set can help to avoid these pitfalls, but we also have the option to advise the participants. If participants avoid confusing setups when taking photos, this can improve the accuracy of the automated classification. These guidelines can be added to the Mosquito Alert application to help participants make good images of mosquitoes.

    Do not use striped structure (e.g. mosquito net or fly-flap) as a background.

    Avoid complex backgrounds when possible. A few examples: patterned carpet, different nets, reflecting/shiny background, bumpy wallpaper.

    Use clear, white background (e.g. a sheet of plain paper is perfect if possible) or hold the mosquito with finger pads.

    Make sure that as much as possible the mosquito is in focus and covers a large area of the photo.

    In general, it is desirable to have a clean white background with the mosquito centered, and with the image containing as little background as possible.
    Dataset size impact on model performance
    Modern deep CNNs tend to generate better predictions when trained on larger datasets. In this experiment, we trained a ResNet50 model on 10–20–(cdots )–90–100% of 6686 images and evaluated the model on the remaining 1000 images. The 1000 images were selected from the same year (2019) and all of them came from reports with only one photo. There were 709 tiger mosquitoes out of the 1000 test images. ROC AUC and accuracy were calculated with a 500 round bootstrapping of the 1000 test images.
    Figure 4

    Training a ResNet50 model on a subsampled training dataset. The model was tested against the same 1000 test images for all the steps and statistics of the test metric was calculated with a 500 round bootstrapping. The curve proves the diversity of the Mosquito Alert dataset and also suggests that in the future when the dataset will be even larger, the classification performance will increase.

    Full size image

    The mean and the standard deviation of the 500 rounds are shown in Fig. 4 for each training data size. From the figure, we can conclude that the predictive power of the model increases as more data are used. The shape of the curves also suggests that the dataset did not reach its plateau. In the upcoming years, as the dataset size increases, ROC AUC and accuracy enhancement is expected.
    On measuring image quality
    Through the examined period, Mosquito Alert outreach was promoting a mosquito-targeted data collection strategy. Participants were expected to report two mosquito species (Ae. aegypti and Ae. albopictus). By defining these species as positive samples and all the other potential species of mosquito as negative, the submission decision by participants becomes a binary classification problem. In the majority of cases, when participants submit an image we should expect them to think of having a positive sample. Later, based on entomological expert validation, the true label for the image was obtained.
    The main goal of such a surveillance system is to keep the sensitivity of the users as high as possible while keeping their specificity at an acceptable level. Therefore, measuring the sensitivity and specificity of the users would be a plausible quality measure. Unfortunately, there is no available information regarding the non-submitted mosquitoes (the true negative and false negative ones), meaning it is impossible to measure sensitivity. The specificity can be measured only in a special case, when there are no false positive images submitted by the user, resulting in a specificity of 1. Based on the latter argument, focusing on metrics derived from the ratio of the submitted tiger mosquito images vs. all submitted images is not meaningful. Instead, the quality can be measured by the usefulness of the photos from the viewpoint of the expert validator or a CNN, as presented in the next chapter.
    Quality evolution of the images through time and space
    The Mosquito Alert dataset is a unique collection of mosquito images, because, among other things, it is built from 5 consecutive years (not counting 2014, where less than 100 reports were submitted) and it also provides geolocation tags. This uniqueness of the dataset provides potential identification of time and spatial evolution and dependence of the citizen-based mosquito image quality. To explore such an evolution, we performed two different experiments. Geolocation tags were converted to country, region, and city-level information via the geopy Python package. It was found, that the vast majority (95% of all) of the reports were coming from Spain so we performed the analysis only for the Spanish data.
    Figure 5

    Number of submitted reports and the fraction of their ratio where the entomology expert annotator could tell if tiger mosquito was presented on the photo or not. The charts are shown for the four cities, where Mosquito Alert was the most popular.

    Full size image

    First, we explored the fraction of the photos, where the entomology expert marked “can not tell”, because the photo was not descriptive enough to decide which species were presented. Figure 5 shows the ratio of the useful mosquito reports, when mosquito decision was possible, compared to all the mosquito reports. The chart shows the above-mentioned ratio for four Spanish cities, which have the most reports submitted (the same information is showed on Supplementary Fig. S1 as a heatmap over Spain). The Mann–Kendall test on the fraction of useful reports shows p-values of 0.09, 0.09, 0.81, 0.22 for Barcelona, Valencia, Málaga, and Girona, which does not justify the presence of a significant trend in image quality, although any conclusions drawn from five data points must be handled with a pinch of salt. It does not mean anything about the individual participants’ quality progression, because Mosquito Alert is highly open and dynamic, and active participants can constantly change. Of note, through these years, the tiger mosquitoes have widely spread from the east coast to the southern and western regions of Spain29. New (and naive) citizen scientists living in the newly colonized regions have been systematically called to action and participation, thus, limiting the overall learning rate of the Mosquito Alert participants’ population. Our results suggest, that either a dynamic balance exists between naive and experienced participants over the period of data recollection, or mosquito photographing skills are independent of the user experience level. The expectation would be that as the population in Spain became more aware of the presence of tiger mosquitoes and their associated public health risks, the system should experience an increase in the useful report ratio, at least for tiger mosquitoes, and most tiger mosquito photos maybe classified automatically.
    Figure 6

    1000 random samples were selected for each years data. Separated ResNet50 models were trained on each of the years and each model was tested on the rest of the years data. Metrics were calculated with a 500 round random sampling with replacement from the test data. Left: mean of the 500 round bootstrapped accuracy calculations. Right: mean of the 500 round bootstrapped ROC AUC calculations.

    Full size image

    Second, we subsampled randomly 1000 images from all years between 2015 and 2019. Then we trained a different ResNet50 on data from the different years and generated predictions for the rest of the data, for each year separately. This way we can explore if data from any year is a “better training material” than the others. The results see Fig. 6, shows that 2015 is the worst training material, providing 0.83–0.84 ROC AUC score for the test period, while the rest (period 2016–2019) is similar, ROC AUC varies between 0.90 and 0.93. The reason why the 2015 data found to be the least favourable for training is its class imbalance, meaning that data from 2015 is extremely biased towards tiger mosquitoes (94%), so when training on 2015 data, the model does not see enough non-tiger mosquito samples, while for the other years lower class imbalance was found (70–80%), see Table 1. In general, machine learning models for classification require a substantial amount of examples for each possible class, in our case tiger and non-tiger mosquitoes, therefore worse performance is expected when training on the 2015 data.
    Other than the varying class imbalance, we can conclude that the Mosquito Alert dataset quality is consistent, we did not find any concerning difference between training and testing our model for any of the 2016–2017–2018–2019 data pairs.
    Pre-filtering the images before expert validation
    Generating human annotations for an image classification task is a labour-intensive and expensive part of any project especially if the annotation requires expert knowledge. Therefore, having a model that generates accurate predictions for a well-defined subset of the data saves a lot of time and cost. We assume that the trained classifier is more accurate when the prediction probability is whether high or low and more inaccurate when it is close to 0.5. With this assumption in mind one can tune the (p_{low}) and (p_{high}) probabilities, in a way that images with a prediction probability (p_{low}< p < p_{high}) are discarded and sent to human validation. Figure 7 Randomly selecting 100,000 (p_{low}) and (p_{high}) thresholds on the predictions which were created via yearly cross-validation. Each time only samples were kept where the predicted probability were out of the ([p_{low};p_{high}]) interval. Each point shows the kept data fraction and the prediction accuracy. Varying the lower and upper predicted probability almost 98% of the images are correctly predicted while keeping 80% of all the images. Full size image Varying (p_{low}) and (p_{high}) provides a trade-off between prediction accuracy and the portion of images sent to human validation. Based on Fig. 7 sending 20% of the images to human validation while having an almost 98% accurate prediction for 80% of the dataset is a fruitful way to combine human labour-power and machine learning together. More

  • in

    Variation in wood physical properties and effects of climate for different geographic sources of Chinese fir in subtropical area of China

    Variation in wood density
    The values of Chinese fir’s wood physical properties varied considerably among different geographic sources and Tukey-HSD testing showed that some of these differences were statistically significant (Fig. 1). The maximum value (HNYX-T) of wood all-dry density (WDD) was 62.70% higher than the minimum (FJYK-P). The WDD of each source was consistent with the classification and performance indexes of conifer trees in the timber strength grade for structural use, a standard in China’s forestry industry39: FJYK-P was at level S10 ( HNZJJ-P  > FJYK-P, for which the maximum 58.0% higher than the minimum value. According to the wood grading standards in the grain compression index, HNZJJ-P and FJYK-P were at level II (29.1–44.0 MPa) and the rest of geographic sources were at level III (44.1–59.0 MPa) (Table 3).
    The compression strength perpendicular to the grain of total tensile (CPG.TT) among geographic sources was ranked as follows: HNYX-T  > JXCS-R  > HNYX-P  > HNZJJ-P  > FJYK-P (Table 4). Its maximum value (HNYX-T) was 29.3% higher than the minimum (FJYK-P). The ranking for compression strength perpendicular to the grain of total radial (CPG.TR) was slightly different: HNYX-T  > JXCS-R  > HNYX-P  > HNZJJ-P  > FJYK-P, for which the maximum was 42.1% higher than the minimum value. Compression strength perpendicular to the grain of part radial (CPG.PR) had the same rank order as CPG.TT, with a maximum value (HNYX-T) 35.0% higher than the minimum (FJYK-P). Finally, compression strength perpendicular to the grain of part tensile (CPG.PT) was ranked as HNYX-T  > JXCS-R  > HNZJJ-P  > HNYX-P  > FJYK-P for the five geographic sources of Chinese fir.
    Table 4 The statistical analysis of wood mechanical properties of Chinese fir.
    Full size table

    Factors influencing wood physical properties
    Climate factors effect on wood physical properties
    The influence of precipitation on the three kinds of density was consistent. Pre in January, October, November, and December was positively related to wood density, while it was negatively correlated with density in others months, especially in May (r = − 0.39), June (r = − 0.59), and August (r = − 0.64). On a seasonal scale, Pre in summer was negatively correlated with density (r = − 0.77), but it was positively correlated with autumn (r = 0.22). MaxT was positively correlated with density during the whole year, except in May (r = − 0.34), and likewise with wood density but most strongly in summer (r = 0.75). MinT was positively correlated with density, especially in Jan (r  > 0.7), though it was not significantly so in February and October (r  0.45). Pre showed no significant correlation with TSR.LD, RSR.LD, DDS.LD, and DDS.RD, whose correlation coefficients were 0.1–0.3. But Pre was negatively correlated with VSR.LD most of the year (except July, October). AveT was negatively correlation with TSR.RD, RSR.RD, and VSR.RD in January, February, March, and winter; however, AveT showed no significant correlation with DDS.RD. AveT was negatively correlated with TSR.LD, RSR.LD, DDS.LD, and VSR.LD during the whole year. In general, MinT had a significant positive relationship to TSR.RD (r = 0.47), RSR.RD (r = 0.48), and VSR.RD (r = 0.52), except in October, and it was negatively correlated with DDS.RD. MinT was positively related to RSR.LD, VSR.LD, yet negative related to DDS.LD. MaxT was negatively correlated with TSR.RD, RSR.RD, VSR.RD in January, February, May, and December, and winter. MaxT showed no significant correlation with DDS.RD, RSR.LD, DDS.LD or VSR.LD (Fig. 2c).
    Pre had significant negative correlations with all of the mechanical properties in May, June, August, and summer, as evince by Fig. 2b, which also showed positive correlations in October. As we can seen, the effects of Pre on wood density and mechanical properties have the same tendency. Pre in all other months was not significantly correlated with mechanical properties (r  0.75), while it was showed no significant correlation in Feb and Oct (r  1000. Through stepwise regression modeling, 14 variables without multicollinearity were retained (i.e., MOE, MOR, TSG, CSG, CPG.TT, CPG.TR, CPG.PT, CPG.PR, DDS.RD, WDD, DDS.LD, TSR.RD, RSR.RD, VSR.LD).
    PCA was applied to the above 14 selected physical variables. These results showed that the physical properties of wood loaded strongly on the first axis of the PCA, explaining 51.8% of variation in the 14 tested properties, while the second axis explained 11.0% of it. MOE, MOR, TSR.RD, RSR.RD, and VSR.LD loaded on the positive axis of PC1 and PC2. Both DDS.LD and DDS.RD loaded on the negative axis of PC1 and PC2, while TSG, CSG, CPG.TT, CPG.TR, CPG.PT, CPG.PR, and WDD loaded on the positive axis of PC1 and the negative axis of PC2 (Fig. 3). For a comprehensive evaluation of Chinese fir’s wood physical properties, we calculated the comprehensive scores of five geographic sources via the PCA. In this respect, significant differences were detected among the five geographic sources. Among them, the comprehensive score of HNYX-T was the highest whereas that of FJYK-P was the lowest (Fig. 4).
    Figure 3

    Sequence diagram plot of PCA analysis showing the relationship among physical properties of wood.

    Full size image

    Figure 4

    Mean comprehensive score of PCA plot with 95% CI. Different letters (a, b, c, d, e) mean significant difference at 0.05 level.

    Full size image More

  • in

    Disentangling the role of environment in cross-taxon congruence of species richness along elevational gradients

    1.
    Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Classen, A. et al. Temperature versus resource constraints: Which factors determine bee diversity on Mount Kilimanjaro, Tanzania? Glob. Ecol. Biogeogr. 24, 642–652 (2015).
    Article  Google Scholar 

    3.
    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Toranza, C. & Arim, M. Cross-taxon congruence and environmental conditions. BMC Ecol. 10, 18 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Gioria, M., Bacaro, G. & Feehan, J. Evaluating and interpreting cross-taxon congruence: Potential pitfalls and solutions. Acta Oecol. 37, 187–194 (2011).
    ADS  Article  Google Scholar 

    6.
    Graham, C. H. et al. The origin and maintenance of montane diversity: Integrating evolutionary and ecological processes. Ecography (Cop.) 37, 711–719 (2014).
    Article  Google Scholar 

    7.
    Westgate, M. J., Tulloch, A. I. T., Barton, P. S., Pierson, J. C. & Lindenmayer, D. B. Optimal taxonomic groups for biodiversity assessment: A meta-analytic approach. Ecography (Cop.) 40, 539–548 (2017).
    Article  Google Scholar 

    8.
    Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 8, 1–2 (2001).
    Google Scholar 

    9.
    McCain, C. M. Global analysis of bird elevational diversity. Glob. Ecol. Biogeogr. 18, 346–360 (2009).
    Article  Google Scholar 

    10.
    Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280 (2013).
    Article  Google Scholar 

    12.
    Ruggiero, A. & Hawkins, B. A. Why do mountains support so many species of birds? Ecography (Cop.) 31, 306–315 (2008).
    Article  Google Scholar 

    13.
    Mccain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
    Article  Google Scholar 

    15.
    Currie, D. J. Energy and large-scale patterns of animal and plant species richness. Am. Nat. 137, 27–49 (1991).
    Article  Google Scholar 

    16.
    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Costanza, J. K., Moody, A. & Peet, R. K. Multi-scale environmental heterogeneity as a predictor of plant species richness. Landsc. Ecol. 26, 851–864 (2011).
    Article  Google Scholar 

    18.
    Vetaas, O. R., Paudel, K. P. & Christensen, M. Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. J. Biogeogr. https://doi.org/10.1111/jbi.13564 (2019).
    Article  Google Scholar 

    19.
    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Kaspari, M., Alonso, L. & O’Donnell, S. Three energy variables predict ant abundance at a geographical scale. Proc. R. Soc. B Biol. Sci. 267, 485–489 (2000).
    CAS  Article  Google Scholar 

    21.
    Pianka, E. R. Latitudinal gradients in species diversity: A review of concepts. Am. Nat. 100, 33–46 (1966).
    Article  Google Scholar 

    22.
    Werenkraut, V. & Ruggiero, A. The richness and abundance of epigaeic mountain beetles in north-western Patagonia, Argentina: Assessment of patterns and environmental correlates. J. Biogeogr. 41, 561–573 (2014).
    Article  Google Scholar 

    23.
    R Core Team. R version 3.6.2 ‘Dark and Stormy Night’ (2019). (Accessed 12 December 2019). https://www.r-project.org. 

    24.
    Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).
    PubMed  Article  Google Scholar 

    25.
    Hodkinson, I. D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 80, 489–513 (2005).
    PubMed  Article  Google Scholar 

    26.
    Kampmann, D. et al. Mountain grassland biodiversity: Impact of site conditions versus management type. J. Nat. Conserv. 16, 12–25 (2008).
    Article  Google Scholar 

    27.
    Janzen, D. H. et al. Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica 8, 193–203 (1976).
    Article  Google Scholar 

    28.
    Sirin, D., Eren, O. & Ciplak, B. Grasshopper diversity and abundance in relation to elevation and vegetation from a snapshot in Mediterranean Anatolia: Role of latitudinal position in altitudinal differences. J. Nat. Hist. 44, 1343–1363 (2010).
    Article  Google Scholar 

    29.
    Alexander, G. & Hilliard, J. R. Altitudinal and seasonal distribution of Orthoptera in the Rocky Mountains of northern Colorado. Ecol. Monogr. 39, 385–432 (1969).
    Article  Google Scholar 

    30.
    Mojica, A. S. & Fagua, G. Estructura de las comunidades de orthoptera (insecta) en un gradiente altitudinal de un bosque andino. Rev. Colomb. Entomol. 32, 200–213 (2006).
    Google Scholar 

    31.
    Grytnes, J. A. Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography (Cop.) 26, 291–300 (2003).
    Article  Google Scholar 

    32.
    McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. Encyl. Life Sci. https://doi.org/10.1002/9780470015902.a0022548 (2010).
    Article  Google Scholar 

    33.
    Xu, X. et al. Altitudinal patterns of plant species richness in the Honghe region of China. Pak. J. Bot. 49, 1039–1048 (2017).
    Google Scholar 

    34.
    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).
    ADS  CAS  Article  Google Scholar 

    35.
    Röder, J. et al. Heterogeneous patterns of abundance of epigeic arthropod taxa along a major elevation gradient. Biotropica 49, 217–228 (2017).
    Article  Google Scholar 

    36.
    Evans, K. L., Warren, P. H. & Gaston, K. J. Species-energy relationships at the macroecological scale: A review of the mechanisms. Biol. Rev. Camb. Philos. Soc. 80, 1–25 (2005).
    PubMed  Article  Google Scholar 

    37.
    Kissling, W. D., Rahbek, C. & Böhning-Gaese, K. Food plant diversity as broad-scale determinant of avian frugivore richness. Proc. R. Soc. Biol. Sci. 274, 799–808 (2007).
    Article  Google Scholar 

    38.
    Kissling, W. D., Field, R. & Böhning-Gaese, K. Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? Glob. Ecol. Biogeogr. 17, 327–339 (2008).
    Article  Google Scholar 

    39.
    Chown, S. L. & Gaston, K. J. Exploring links between physiology and ecology at macro scales: The role of respiratory metabolism in insects. Biol. Rev. 74, 87–120 (1999).
    Article  Google Scholar 

    40.
    de Araújo, W. S. Different relationships between galling and non-galling herbivore richness and plant species richness: A meta-analysis. Arthropod. Plant. Interact. 7, 373–377 (2013).
    Article  Google Scholar 

    41.
    Qian, H. & Kissling, W. D. Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China. Ecology 91, 1172–1183 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Burrascano, S. et al. Congruence across taxa and spatial scales: Are we asking too much of species data? Glob. Ecol. Biogeogr. 27, 980–990 (2018).
    Article  Google Scholar 

    43.
    Field, R. et al. Spatial species-richness gradients across scales: A meta-analysis. J. Biogeogr. 36, 132–147 (2009).
    Article  Google Scholar 

    44.
    Giorgis, M. A. et al. Composición florística del Bosque Chaqueño Serrano de la provincia de Córdoba, Argentina. Kurtziana 36, 9–43 (2011).
    Google Scholar 

    45.
    Cabido, M., Funes, G., Pucheta, E., Vendramani, F. & Díaz, S. A chorological analysis of the mountains from Central Argentina. Is all what we call Sierra Chaco really Chaco? Contribution to the study of the flora and vegetation of the Chaco: 12. Candollea 53, 321–331 (1998).
    Google Scholar 

    46.
    Giorgis, M. A. et al. Changes in floristic composition and physiognomy are decoupled along elevation gradients in central Argentina. Appl. Veg. Sci. 20, 553–571 (2017).
    Article  Google Scholar 

    47.
    Cabrera, A. L. Fitogeografia de la República Argentina. In Enciclopedia Argentina de Agricultura y Jardinería Vol. 14 (ed. Kugler, W. F.) 1–42 (ACME, New York, 1976).
    Google Scholar 

    48.
    Giorgis, M. A. et al. Diferencias en la estructura de la vegetación del sotobosque entre una plantación de Pinus taedaL. (Pinaceae) y un matorral serrano (Cuesta Blanca, Córdoba). Kurtziana 31, 39–49 (2005).
    Google Scholar 

    49.
    Martínez, G. A., Arana, M. D., Oggero, A. J. & Natale, E. S. Biogeographical relationships and new regionalisation of high-altitude grasslands and woodlands of the central Pampean Ranges (Argentina), based on vascular plants and vertebrates. Aust. Syst. Bot. 29, 473–488 (2016).
    Article  Google Scholar 

    50.
    QGIS Development Team. QGIS Geographic Information System (Accessed 19 April 2019). (2019).

    51.
    Kent, M. The description of vegetation in the field. In Vegetation Description and Data Analysis: A Practical Approach (ed. Kent, M.) 65–116 (Wiley-Blackwell, Hoboken, 2012).
    Google Scholar 

    52.
    Catálogo de las plantas vasculares del Cono Sur : (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). (Missouri Botanical Garden Press, 2008).

    53.
    Haddad, N., Tilman, D., Haarstad, J., Ritchie, M. & Knops, J. M. N. Contrasting effects of plant richness and composition on insect communities: a field experiment. Am. Nat. 158, 17–35 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Braun, H. & Zubarán, G. Tettigoniidae (Orthoptera) Species from Argentina and Uruguay (2019).

    55.
    Carbonell, C. S., Cigliano, M. M. & Lange, C. E. Acridomorph (Orthoptera) Species of Argentina and Uruguay. Version II [2019]. https://biodar.unlp.edu.ar/acridomorph/.

    56.
    Cigliano, M. M., Braun, H., Eades, D. C. & Otte, D. Orthoptera Species File. Version 5.0/5.0 (2018). http://orthoptera.speciesfile.org.

    57.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar 

    58.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    59.
    Carrara, R., Silvestro, V. A., Cheli, G. H., Campón, F. F. & Flores, G. E. Disentangling the effect of climate and human influence on distribution patterns of the darkling beetle Scotobius pilularius Germar, 1823 (Coleoptera: Tenebrionidae). Ann. Zool. 66, 693–701 (2016).
    Article  Google Scholar 

    60.
    Aisen, S., Werenkraut, V., Márquez, M. E. G., Ramírez, M. J. & Ruggiero, A. Environmental heterogeneity, not distance, structures montane epigaeic spider assemblages in north-western Patagonia (Argentina). J. Insect Conserv. 21, 1–12 (2017).
    Article  Google Scholar 

    61.
    Bilskie, J. Soil Water Status: Content and Potential (Campbell Scientific Inc., Logan, 2001).
    Google Scholar 

    62.
    Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).
    ADS  Article  Google Scholar 

    63.
    Wang, J., Rich, P. M., Price, K. P. & Dean-Kettle, W. Relations between NDVI, grassland production, and crop yield in the central great plains. Geocarto Int. 20, 5–11 (2005).
    Article  Google Scholar 

    64.
    Oindo, B. O., de By, R. A. & Skidmore, A. K. Interannual variability of NDVI and bird species diversity in Kenya. Int. J. Appl. Earth Obs. Geoinf. 2, 172–180 (2000).
    ADS  Article  Google Scholar 

    65.
    IGN. Modelo Digital de Elevaciones de la República Argentina. (Instituto Geográfico Nacional—Dirección General de Servicios Geográficos—Dirección de Geodesia, 2016).

    66.
    Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27 (1999).
    Google Scholar 

    67.
    Stein, A. & Kreft, H. Terminology and quantification of environmental heterogeneity in species-richness research. Biol. Rev. 90, 815–836 (2015).
    PubMed  Article  Google Scholar 

    68.
    Tilman, D. & Pacala, S. W. The maintenance of species richness in plant communities. In Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schulter, D.) 13–25 (University of Chicago Press, Chicago, 1993).
    Google Scholar 

    69.
    Cleveland, W. S., Grosse, E. & Shyu, W. M. Local regresion models. In Statistical Models in S (eds Chambers, J. M. & Hastie, T. J.) 227 (Chapman and Hall, London, 1993).
    Google Scholar 

    70.
    Szewczyk, T. & Mccain, C. M. A systematic review of global drivers of ant elevational diversity. PLoS ONE 11, e0155404 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: A global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).
    Article  Google Scholar 

    72.
    Bolker, B. M. Ecological Statistics: Contemporary Theory and Application (Oxford University Press Inc., Oxford, 2015).
    Google Scholar 

    73.
    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, Cambridge, 2006).
    Google Scholar 

    74.
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Article  Google Scholar 

    75.
    Jiménez-Alfaro, B., Chytrý, M., Mucina, L., Grace, J. B. & Rejmánek, M. Disentangling vegetation diversity from climate-energy and habitat heterogeneity for explaining animal geographic patterns. Ecol. Evol. 6, 1515–1526 (2016).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    The concerted emergence of well-known spatial and temporal ecological patterns in an evolutionary food web model in space

    We have introduced and investigated a spatially explicit evolutionary food web model that allows us to explore the distribution of species in space and time, as well as the waxing and waning of species ranges with time. This is the first model that makes it possible to explore these features in the context of trophic networks, showing how they are influenced by competition as well as by predators and prey. Indeed, our model produces empirically well-known patterns in space and time, such as lifetime distributions, species-area relationships, distance decay of similarity, and temporal change of geographic range. On top, we obtain a variety of additional result and gain insights into the mechanisms that generate these patterns. While one might argue that some patterns must emerge trivially in a model like ours, the multitude of patterns emerging together is remarkable.
    We find that most species only appear for short times and have small ranges. For species that conquer larger portions of the web we analysed the shape of the range evolution and found that basal species show the empirically observed “hat” pattern more often than species in higher trophic levels. This indicates that the trophic position of a species plays a major role for its range expansion success as well as the shape of its range expansion trajectory over time. To our knowledge, this has not been discussed in the literature so far.
    Recently Zliobaite et al.11 analyzed which factors are more correlated to the rise and fall of the range expansion trajectory in fossil data sets of basal mammals. The range expansion follows the so called “hat pattern” that consists of five phases in a species lifetime: origination, expansion, peak, decline and extinction. They found that the temporal location of the peak of the hat pattern is more impacted by competition while the brims are more influenced by abiotic environmental factors. They also compared the range curves of different random walk models with the shape of empirical data and found that a random walk model with competition and environmental factor provides the most realistic looking curves.
    Our results for basal species provide an illustration of the mechanism that might lead to these findings. There is one major difference in assumptions: the “environment” in our case is the trophic environment (network structure and abundance distribution). We do not model an abiotic surrounding, yet basal range curves look strikingly hat shaped. A species needs to fit into this trophic environment (network) to first establish a viable population (origination). To successfully increase its range it needs to disperse to neighbouring habitats and be a viable competitor there as well. This leads to the extinction of another species as the dispersing competitor takes its place. As neighbouring basal communities are similar in our systems, the chances are high that the species can spread on a large portion on the grid replacing other species (expansion). This continues until the species has reached the maximum range (peak). It is only a matter of time then until this process is repeated with the species having become the inferior competitor. The species is then successively replaced by a better adapted species (decline). The species thus ages as the network structure changes. At some point the species has vanished on all habitats (extinction). This means that we observe the same dynamics as suggested by Zliobaite et al., but with the trophic and not the abiotic environment as the main driver of the initial increase and later decrease of the range. The truth is probably that both the trophic and abiotic environment are important, as both play an important role in real ecosystems.
    Regarding higher trophic species in our system the range expansion curves look more diverse and often do not resemble the hat shape. These species depend on the composition on the layer below. As this layer changes the fate of the higher species changes as well. The emergence of a new prey species that spreads over the network can save a consumer species from extinction. This cannot happen for basal species as these are more or less completely controlled by competition. The studies that we know often deal with basal species, so we are not convinced that the hat pattern is ubiquitous for all species. Future empirical work could focus on predator range expansion and try to find a case where a predator species could regain its range after the emergence of a new prey.
    A qualitative difference between the basic trophic layer and higher layers occurred in our data also with respect to the similarity of networks in nearby habitats. The similarity index decays particularly slowly for the basal layer. Theory on distance decay suggests that spatial heterogeneity is a main driver in community turnover in two ways: (1) competitive species sorting along environmental gradients and (2) topological influences that let species with different dispersal abilities experience different landscapes6. As we use a homogeneous landscape we expect the first driver to be non-existent for the basal layer, as all habitats hold the same type and amount of resource. As species do not fundamentally differ in their dispersal abilities and we do not have a heterogeneous spatial topology, the second point is only weakly relevant for the basal species. They have slightly different chances of being chosen for dispersal as we choose the next disperser depending on the biomass density. As we have seen, biomass densities are quite similar for basal species. What remains is a temporal aspect: species that are older can reside on more habitats and have thus a higher chance of being chosen to disperse. To put the cart before the horse, this confirms the theory on distance decay: we expect a much faster decay in a heterogeneous environment, and this is exactly what we observe for higher trophic layers, which experience heterogeneity due to the spatial turnover in basal species composition. A trend to faster decay rates in higher trophic levels was also found in a meta-study7.
    A model is always a simplification of reality. Some of the assumptions underlying our model are worth discussing. Species in nature are not restricted to the one-dimensional niche space that we assume. In fact, the original Webworld model characterised species by a large vector of traits31. We, in contrast, characterized species by three traits, all of which are based on body mass. We think that this is the reason why we do not observe super abundant species, but species densities are all of a similar order of magnitude. With a higher-dimensional trait space there must exist more diverse species types and probably also super abundant species, which have a globally optimal trait vector. Nevertheless, our simplification leads to an overall shape of the rank abundance curves that is realistic, as one would expect from a niche apportionment model40. Harpole and Tilman showed that diversity and evenness of grassland communities decreased when niche dimensionality was reduced by adding limiting nutrients to plot experiments41. In turn this indicates that rank abundance curves for less dimensional communities will be flatter. This is in line with the shape of our rank abundance curves.
    The probably most interesting trait to add to each species would be its dispersal rate, and to let the dispersal rate evolve. We would expect that this would lead to higher-level species dispersing faster than lower-level species, thus making the differences in range between the different trophic levels smaller. In fact, a previous predator-prey model showed that the predator’s dispersal ability evolved in accordance to spatio-temporal fluctuations of the prey; with higher dispersal rates evolving for larger fluctuations in prey42. However, in the context of food webs the evolution of dispersal is poorly understood and a model like ours would be a good starting point.
    Our choice of parameters is guided by the aim to make the model feasible. To be able to perform computer simulations on a large number of habitats we chose a relatively small value for the amount of resource R, so that the number of species of a local food web remained below 25. As we wanted to simulate food webs and not only basal communities we needed to choose a value of the efficiency (lambda ) that allows for the emergence of several trophic layers. In the original Webworld Model, (lambda ) was identified with the proportion of biomass that is passed from one trophic layer to the next. The value of 0.65 that we use here is much larger than the empirically established value of 0.143. However, in the original Webworld model no distinction was made between resident biomass and biomass fluxes. Therefore the variable B was identified with biomass, while its occurrence in Eq. (4) in fact suggests that it represents biomass flux. A further reason for the difference between the model value and the empirical value of (lambda ) is that the model does not take into account energy input due to the below-ground ecological processes. Due to all these simplifications of the model, we do not consider it important to provide an empirical justification of the precise value of the parameter (lambda ), but base its value on the condition that the model yields food webs with several trophic levels.
    In contrast to other models, the model used here does not rely on an extrinsic extinction rate that randomly extirpates species that might be well adapted to the network. All extinction events are driven by the trophic dynamics, yet we observe an ongoing species turn over. We thus study the pure food web dynamics without a heterogeneous or fluctuating environment and still observe ecological reasonable species distributions. This indicates that incorporating abiotic environments and their fluctuations is not necessarily needed to study food web dynamics.
    Rogge et al. analysed lifetime distributions and SAR curves in a model that is simpler than ours as it does not include population sizes22. The lifetime distributions that we find are considerably steeper (slope (-2.4)) compared to their value around (-1.7). It is also larger than the values reported for empirical findings, which lie between 1 and 2; Newman and Palmer pin them down to (1.7pm 0.3)10. Data for contemporary lifetime distributions show a power-law like shape23,44 with exponents that are in agreement with the exponent of paleological data10. It is noteworthy that there is no consensus whether lifetime distributions follow a power-law or an exponential law, as data often allow for both types of fit, due to (large) uncertainties in fossil data10,45. Exponentials, of course, have a changing slope in a double-logarithmic plot and can thus also be compatible with the exponent observed by us.
    Curiously, our model shows steep lifetime distributions even though there is no external random extinction implemented as in other models22. One implication of our value (alpha > 2) is that our distribution has a well-defined mean. This features is shared with exponential distributions.
    McPeek argues that lifetime distributions depend on the number and survival time of “transient” species, i.e. species that are on their way to extinction25. He reasons that the time to extinction is elongated for species that are similar, because the inferior competitor holds out longer when it competes with more similar species. If this applies to our type of model, this indicates that species in our system are, despite the one-dimensional niche axis, not as similar as species in the model of Rogge et al.22 that uses the same niche axis, as we observe shorter lifetimes. The difference is that interaction links in22 are binary (presence versus absence), whilst we use Gaussian feeding kernels. The fact that this difference affects the lifetime distributions emphasises the importance of considering details of the trophic interactions. The SAR curves on the contrary are flatter in our model than in the model by Rogge et al.  and in better agreement with empirical data.
    O’Sullivan et al.18 found in a competitive metacommunity assembly models a similar collection of macroecological patterns (SAD, range size distribution RSD and SAR) as we did, when regional diversity was near equilibrium. They refer to the work of McGill16 who analysed the assumptions underlying models of macroecological patterns and found that three key ingredients seem to be sufficient for such patterns to emerge. Those are a left skewed SAD, clumping of populations in space, and species distributions in space that are uncorrelated from other species spatial distributions. O’Sullivan et al.18 report that all three ingredients occur in their model and are shaped by regional diversity equilibrium. The closer the system to regional equilibrium the stronger are the observed key patterns (SAD, RSD, Spatial non-correlation). They relate their finding with the theory of ecological structural stability, which revolves around the dynamics on a regional scale. Our communities, in contrast, are trophic communities, operate always near local and regional species equilibrium, i.e. in the regime where O’Sullivan and coauthors18 find the most prominent form of the basic patterns. Comparing the patterns we observe, we also see SADs that are left skewed, and a local clumping of species. We did not analyse the spatial correlation between species. As we have trophic layers of species there will be some correlation between predators and their prey as they can only persist in a habitat if prey is present. In addition to the results obtained by O’Sullivan et al.18, we also derive liefetime distributions, i.e., a paleoecological pattern that also seem to be connected to the metacommunity dynamics. This might indicate that spatial non-correlation is not the most important factor in the mechanisms producing macroecological patterns.
    To conclude, our evolutionary food web model produces empirically well studied ecological and paleological patterns. We thus are armed with a valuable tool to broaden our understanding of the mechanisms behind those patterns. Our findings that trophic position influences geographic range and lifetime of a species might motivate further work regarding the interplay of abiotic and trophic factors on range expansion on evolutionary time scales.
    More generally, evolutionary models can assist us in forming a deeper knowledge of the processes that lead to what is remnant in fossils. As recently pointed out by Marshall46 in his fifth law of paleobiology, extinction erases information. It is a strength of evolutionary food web models that they allow us to study processes whose extent eludes direct observations. More

  • in

    Capital-income breeding in wild boar: a comparison between two sexes

    1.
    Bednekoff, P. A. Life histories and Predation risk. In Encyclopedia of Animal Behavior 283–287 (Elsevier, Amsterdam, 2010).
    Google Scholar 
    2.
    Jönsson, K. I. Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78, 57 (1997).
    Article  Google Scholar 

    3.
    Stephens, P. A., Boyd, I. L., McNamara, J. M. & Houston, A. I. Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90, 2057–2067 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Kerby, J. & Post, E. Capital and income breeding traits differentiate trophic match–mismatch dynamics in large herbivores. Philos. Trans. R. Soc. B 368, 20120484 (2013).
    Article  Google Scholar 

    5.
    Williams, C. T. et al. Seasonal reproductive tactics: annual timing and the capital-to-income breeder continuum. Philos. Trans. R. Soc. B 372, 20160250 (2017).
    Article  Google Scholar 

    6.
    Apollonio, M. et al. Capital-income breeding in male ungulates: Causes and consequences of strategy differences among species. Front. Ecol. Evol. 8, 308 (2020).
    Article  Google Scholar 

    7.
    Brivio, F., Grignolio, S. & Apollonio, M. To feed or not to feed? Testing different hypotheses on rut-induced hypophagia in a mountain ungulate. Ethology 116, 406–415 (2010).
    Article  Google Scholar 

    8.
    Corlatti, L. & Bassano, B. Contrasting alternative hypotheses to explain rut-induced hypophagia in territorial male chamois. Ethology 120, 32–41 (2014).
    Article  Google Scholar 

    9.
    Miquelle, D. G. Why don’t bull moose eat during the rut?. Behav. Ecol. Sociobiol. 27, 145–151 (1990).
    Article  Google Scholar 

    10.
    Apollonio, M. & Di Vittorio, I. Feeding and reproductive behaviour in fallow bucks (Dama dama). Naturwissenschaften 91, 579–584 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Mysterud, A., Langvatn, R. & Stenseth, N. C. Patterns of reproductive effort in male ungulates. J. Zool. 264, 209–215 (2004).
    Article  Google Scholar 

    12.
    Coltman, D. W., Festa-Bianchet, M., Jorgenson, J. T. & Strobeck, C. Age-dependent sexual selection in bighorn rams. Proc. R. Soc. Lond. B 269, 165–172 (2002).
    CAS  Article  Google Scholar 

    13.
    Apollonio, M., Brivio, F., Rossi, I., Bassano, B. & Grignolio, S. Consequences of snowy winters on male mating strategies and reproduction in a mountain ungulate. Behav. Process. 98, 44–50 (2013).
    Article  Google Scholar 

    14.
    Mysterud, A., Solberg, E. J. & Yoccoz, N. G. Ageing and reproductive effort in male moose under variable levels of intrasexual competition. J. Anim. Ecol. 74, 742–754 (2005).
    Article  Google Scholar 

    15.
    Garel, M. et al. Sex-specific growth in Alpine Chamois. J. Mammal. 90, 954–960 (2009).
    Article  Google Scholar 

    16.
    Mason, T. H. E. et al. Contrasting life histories in neighbouring populations of a large mammal. PLoS ONE 6, e28002 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Dardaillon, M. Le sanglier et le milieu Camarguais: Dynamique Coadaptative. (1984).

    18.
    Spitz, F., Valet, G. & Lehr Brisbin, I. Variation in body mass of wild boars from southern France. J. Mammal. 79, 251–259 (1998).
    Article  Google Scholar 

    19.
    Servanty, S., Gaillard, J., Toïgo, C., Brandt, S. & Baubet, E. Pulsed resources and climate-induced variation in the reproductive traits of wild boar under high hunting pressure. J. Anim. Ecol. 78, 1278–1290 (2009).
    Article  Google Scholar 

    20.
    Gamelon, M. et al. Fluctuating food resources influence developmental plasticity in wild boar. Biol. Lett. 9, 20130419 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Frauendorf, M., Gethöffer, F., Siebert, U. & Keuling, O. The influence of environmental and physiological factors on the litter size of wild boar (Sus scrofa) in an agriculture dominated area in Germany. Sci. Total Environ. 541, 877–882 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Gamelon, M. et al. Reproductive allocation in pulsed-resource environments: a comparative study in two populations of wild boar. Oecologia 183, 1065–1076 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Massei, G., Genov, P. V. & Staines, B. W. Diet, food availability and reproduction of wild boar in a Mediterranean coastal area. Acta Theriol. (Warsz.) 41, 307–320 (1996).
    Article  Google Scholar 

    24.
    Schley, L. & Roper, T. J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mamm. Rev. 33, 43–56 (2003).
    Article  Google Scholar 

    25.
    Canu, A. et al. Reproductive phenology and conception synchrony in a natural wild boar population. Hystrix 26, 77–84 (2015).
    Google Scholar 

    26.
    Allen, J. A. The influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).
    Google Scholar 

    27.
    Fernández-Llario, P., Carranza, J. & De Trucios, S. H. Social organization of the wild boar (Sus scrofa) in Doñana National Park. Misc. Zool. 19, 9–18 (1996).
    Google Scholar 

    28.
    Bywater, K. A., Apollonio, M., Cappai, N. & Stephens, P. A. Litter size and latitude in a large mammal: the wild boar Sus scrofa. Mamm. Rev. 40, 212–220 (2010).
    Google Scholar 

    29.
    Merta, D., Mocała, P., Pomykacz, M. & Frąckowiak, W. Autumn-winter diet and fat reserves of wild boars (Sus scrofa) inhabiting forest and forest-farmland environment in south-western Poland. J. Vertebr. Biol. 63, 95–102 (2014).
    Google Scholar 

    30.
    Ježek, M., Štípek, K., Kušta, T., Červený, J. & Vícha, J. Reproductive and morphometric characteristics of wild boar (Sus scrofa) in the Czech Republic. J. For. Sci. 57, 285–292 (2011).
    Article  Google Scholar 

    31.
    Markina, F. A., Cortezo, R. G. & Gómez, C.S.-R. Physical development of wild boar in the Cantabric Mountains, Álava, Nothern Spain. Galemys Bol. Inf Soc. Esp. Para Conserv. Estud. Los Mamíferos 16, 25–34 (2004).
    Google Scholar 

    32.
    Gallo Orsi, U., Macchi, E., Perrone, A. & Durio, P. Biometric data and growth rates of a wild boar population living in the Italian Alps. J. Mt. Ecol. 3, 60–63 (1995).
    Google Scholar 

    33.
    Pedone, P., Mattioli, S. & Mattioli, L. Body size and growth patterns in wild boars of Tuscany, Central Italy. J. Mt. Ecol. 3, 66–68 (1995).
    Google Scholar 

    34.
    Šprem, N. et al. Morphometrical analysis of reproduction traits for the wild boar (Sus scrofa L.) in Croatia. Agric. Conspec. Sci. 76, 263–265 (2011).
    Google Scholar 

    35.
    Merli, E., Grignolio, S., Marcon, A. & Apollonio, M. Wild boar under fire: the effect of spatial behaviour, habitat use and social class on hunting mortality. J. Zool. 303, 155–164 (2017).
    Article  Google Scholar 

    36.
    Poteaux, C. et al. Socio-genetic structure and mating system of a wild boar population. J. Zool. 278, 116–125 (2009).
    Article  Google Scholar 

    37.
    Mauget, R. & Boissin, J. Seasonal changes in testis weight and testosterone concentration in the European wild boar (Sus scrofa L.). Anim. Reprod. Sci. 13, 67–74 (1987).
    CAS  Article  Google Scholar 

    38.
    Bisi, F. et al. Climate, tree masting and spatial behaviour in wild boar (Sus scrofa L.): Insight from a long-term study. Ann. For. Sci. 75, 46 (2018).
    Article  Google Scholar 

    39.
    Keuling, O., Stier, N. & Roth, M. How does hunting influence activity and spatial usage in wild boar Sus scrofa L.?. Eur. J. Wildl. Res. 54, 729–737 (2008).
    Article  Google Scholar 

    40.
    Brivio, F. et al. An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: the wild boar. Mamm. Biol. 84, 73–81 (2017).
    Article  Google Scholar 

    41.
    Singer, F. J., Otto, D. K., Tipton, A. R. & Hable, C. P. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).
    Article  Google Scholar 

    42.
    Dardaillon, M. Wild boar social groupings and their seasonal changes in the Camargue, southern France. Z. Für Säugetierkd. 53, 22–30 (1988).
    Google Scholar 

    43.
    Treyer, D. et al. Influence of sex, age and season on body weight, energy intake and endocrine parameter in wild living wild boars in southern Germany. Eur. J. Wildl. Res. 58, 373–378 (2012).
    Article  Google Scholar 

    44.
    Festa-Bianchet, M. The cost of trying: weak interspecific correlations among life-history components in male ungulates. Can. J. Zool. 90, 1072–1085 (2012).
    Article  Google Scholar 

    45.
    Knott, K. K., Barboza, P. S. & Bowyer, R. T. Growth in arctic ungulates: postnatal development and organ maturation in Rangifer tarandus and Ovibos moschatus. J. Mammal. 86, 121–130 (2005).
    Article  Google Scholar 

    46.
    Briedermann, L. Wild boars. Deutscher Landwirtschaftsverlag (1990).

    47.
    Chianucci, F. et al. Multi-temporal dataset of stand and canopy structural data in temperate and Mediterranean coppice forests. Ann. For. Sci. 76, 80 (2019).
    Article  Google Scholar 

    48.
    Zullinger, E. M., Ricklefs, R. E., Redford, K. H. & Mace, G. M. Fitting sigmoidal equations to mammalian growth curves. J. Mammal. 65, 607–636 (1984).
    Article  Google Scholar 

    49.
    Sand, H., Cederlund, G. & Danell, K. Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102, 433–442 (1995).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).
    Google Scholar 

    51.
    Henry, V. G. Length of estrous cycle and gestation in European Wild Hogs. J. Wildl. Manag. 32, 406 (1968).
    Article  Google Scholar 

    52.
    Vericad Corominas, J. R. Estimación de la edad fetal y períodos de concepción y parto del jabalí (Sus scrofa L.) en los Pirineos occidentales. (1981).

    53.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, Berlin, 2009).
    Google Scholar 

    54.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Article  Google Scholar 

    55.
    Symonds, M. R. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).
    Article  Google Scholar  More

  • in

    Primary and secondary aerenchyma oxygen transportation pathways of Syzygium kunstleri (King) Bahadur & R. C. Gaur adventitious roots in hypoxic conditions

    1.
    Boyer, J. S. Plant productivity and environment. Science 218, 443–448 (1982).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Abiko, T. et al. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp mays). Plant Cell Environ. 35, 1618–1630 (2012).
    CAS  PubMed  Article  Google Scholar 

    3.
    Jackson, M. B. Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. Plant Mol. Biol. 36, 145–174 (1985).
    CAS  Article  Google Scholar 

    4.
    Colmer, T. D. & Voesenek, L. A. C. J. Flooding tolerance: Suites of plant traits in variable environments. Funct. Plant Biol. 36, 665–681 (2009).
    CAS  PubMed  Article  Google Scholar 

    5.
    Bailey-Serres, J. & Voesenek, L. A. C. J. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313–339 (2008).
    CAS  PubMed  Article  Google Scholar 

    6.
    Colmer, T. D. & Greenway, H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J. Exp. Bot. 62, 39–57 (2011).
    CAS  PubMed  Article  Google Scholar 

    7.
    Huang, S., Greenway, H. & Colmer, T. D. Responses of coleoptiles of intact rice seedlings to anoxia: K+ net uptake from the external solution and translocation from the caryopses. Ann. Bot. 91, 271–278 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Vartapetian, B. B. et al. Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann. Bot. 91, 155–172 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Visser, E. J. W., Voesenek, L. A. C. J., Vartapetian, B. B. & Jackson, M. B. Flooding and plant growth. Ann. Bot. 91, 107–109 (2003).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    10.
    Voesenek, L. A. & Bailey-Serres, J. Flood adaptive traits and processes: An overview. New Phytol. 206, 57–73 (2015).
    CAS  PubMed  Article  Google Scholar 

    11.
    Evans, D. E. Aerenchyma formation. New Phytol. 161, 35–49 (2004).
    Article  Google Scholar 

    12.
    Armstrong, W. Aeration in higher plants. In Advances in Botanical Research (ed. Woolhouse, H. W.) (Academic Press, Burlington, 1980).
    Google Scholar 

    13.
    Colmer, T. D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann. Bot. 91, 301–309 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Jackson, M. B. & Armstrong, W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1, 274–287 (1999).
    CAS  Article  Google Scholar 

    15.
    Seago, J. L. et al. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann. Bot. 96, 565–579 (2005).
    PubMed  Article  Google Scholar 

    16.
    Drew, M. C., He, C. J. & Morgan, P. W. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 5, 123–127 (2000).
    CAS  PubMed  Article  Google Scholar 

    17.
    Yamauchi, T., Rajhi, I. & Nakazono, M. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal. Behav. 6, 759–761 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Takahashi, H., Yamauchi, T., Colmer, T. D. & Nakazono, M. Aerenchyma formation in plants. in Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia 247–265. (Springer, Wien, 2014).

    19.
    Stevens, K. J., Peterson, R. L. & Reader, R. J. The aerenchymatous phellem of Lythrum salicaria (L.): A pathway for gas transport and its role in flood tolerance. Ann. Bot. 89, 621–625 (2002).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Shimamura, S., Mochizuki, T., Nada, Y. & Fukuyama, M. Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions. Plant Soil 251, 351–359 (2003).
    CAS  Article  Google Scholar 

    21.
    Shimamura, S., Yamamoto, R., Nakamura, T., Shimada, S. & Komatsu, S. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann. Bot. 106, 277–284 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    De Simone, O. et al. Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct. Plant Biol. 29, 1025–1035 (2002).
    PubMed  Article  Google Scholar 

    23.
    Colmer, T. D. & Pedersen, O. Oxygen dynamics in submerged rice (Oryza sativa). New Phytol. 178, 326–334 (2008).
    CAS  PubMed  Article  Google Scholar 

    24.
    Haase, K., De Simone, O., Junk, W. J. & Schmidt, W. Internal oxygen transport in cuttings from flood-adapted várzea tree species. Tree Physiol. 23, 1069–1076 (2003).
    PubMed  Article  Google Scholar 

    25.
    Sou, H. D., Masumori, M., Kurokochi, H. & Tange, T. Histological observation of primary and secondary aerenchyma formation in adventitious roots of Syzygium kunstleri (King) Bahadur and R. C. Gaur grown in hypoxic medium. Forests 10, 137 (2019).
    Article  Google Scholar 

    26.
    Rubinigg, M., Stulen, I., Elzenga, J. T. M. & Colmer, T. D. Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. Funct. Plant Biol. 29, 1475–1481 (2002).
    CAS  PubMed  Article  Google Scholar 

    27.
    Kotula, L., Ranathunge, K., Schreiber, L. & Steudle, E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J. Exp. Bot. 60, 2155–2167 (2009).
    CAS  PubMed  Article  Google Scholar 

    28.
    Shiono, K. et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann. Bot. 107, 89–99 (2011).
    CAS  PubMed  Article  Google Scholar 

    29.
    Watanabe, K., Nishiuchi, S., Kulichikhin, K. & Nakazono, M. Does suberin accumulation in plant roots contribute to waterlogging tolerance?. Front. Plant Sci. 4, 178 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Khan, N. et al. Root iron plaque on wetland plants as dynamic pool of nutrients and contaminants. In Advances in Agronomy Vol. 138 (ed. Sparks, D. L.) 1–96 (Academic Press, Cambridge, 2016).
    Google Scholar 

    31.
    Uteau, D. et al. Oxygen and redox potential gradients in the rhizosphere of alfalfa grown on a loamy soil. J. Plant Nutr. Soil Sci. 178, 278–287 (2015).
    CAS  Article  Google Scholar 

    32.
    Tian, C., Wang, C., Tian, Y., Wu, X. & Xiao, B. Root radial oxygen loss and the effects on rhizosphere microarea of two submerged plants. Polish J. Environ. Studies 24, 1795–1802 (2015).
    Article  Google Scholar 

    33.
    Shimamura, S., Mochizuki, T., Nada, Y. & Fukuyama, M. Secondary aerenchyma formation and its relation to nitrogen fixation in root nodules of soybean plants (Glycine max) grown under flooded conditions. Plant Product. Sci. 5, 294–300 (2002).
    CAS  Article  Google Scholar 

    34.
    Shiba, H. & Daimon, H. Histological observation of secondary aerenchyma formed immediately after flooding in Sesbania cannabina and S. rostrata. Plant Soil 255, 209–215 (2003).
    CAS  Article  Google Scholar 

    35.
    Somavilla, N. S. & Graciano-Ribeiro, D. Ontogeny and characterization of aerenchymatous tissues of Melastomataceae in the flooded and well-drained soils of a Neotropical savanna. Flora 207, 212–222 (2012).
    Article  Google Scholar 

    36.
    Thomas, A. L., Guerreiro, S. M. C. & Sodek, L. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann. Bot. 96, 1191–1198 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Wiengweera, A., Greenway, H. & Thomson, C. J. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann. Bot. 80, 115–123 (1997).
    Article  Google Scholar 

    38.
    Dacey, J. W. Internal winds in water lilies: An adaptation for life in anaerobic sediments. Science 210, 1017–1019 (1980).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Drew, M. C., Saglio, P. H. & Pradet, A. J. P. Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport. Planta 165, 51–58 (1985).
    CAS  PubMed  Article  Google Scholar 

    40.
    Drew, M. C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 223–250 (1997).
    CAS  PubMed  Article  Google Scholar 

    41.
    Shimamura, S., Yoshida, S. & Mochizuki, T. Cortical aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding. Ann. Bot. 100, 1431–1439 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Armstrong, W., Cousins, D., Armstrong, J., Turner, D. W. & Beckett, P. M. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: A microelectrode and modelling study with Phragmites australis. Ann. Bot. 86, 687–703 (2000).
    Article  Google Scholar 

    43.
    Herzog, M. & Pedersen, O. Partial versus complete submergence: Snorkelling aids root aeration in Rumex palustris but not in R. acetosa. Plant Cell Environ. 37, 2381–2390 (2014).
    CAS  PubMed  Google Scholar 

    44.
    Tanaka, K., Masumori, M., Yamanoshita, T. & Tange, T. Morphological and anatomical changes of Melaleuca cajuputi under submergence. Trees 25, 695–704 (2011).
    Article  Google Scholar 

    45.
    Armstrong, W. Polarographic oxygen electrodes and their use in plant aeration studies. Proc. R. Soc. Edinburgh Sect. B. Biol. Sci. 102, 511–527 (1994).
    Article  Google Scholar 

    46.
    Hitchman, M. L. Measurement of Dissolved Oxygen (Wiley, New York, 1978).
    Google Scholar 

    47.
    Ober, E. S. & Sharp, R. E. A microsensor for direct measurement of O2 partial pressure within plant tissues. J. Exp. Bot. 47, 447–454 (1996).
    CAS  Article  Google Scholar  More