1.
Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).
2.
Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).
PubMed Google Scholar
3.
Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).
PubMed Google Scholar
4.
Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997).
CAS PubMed Google Scholar
5.
Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).
PubMed Google Scholar
6.
Leigh, D. M. et al. Estimated six per cent loss of genetic variation in wild populations since the Industrial Revolution. Evol. Appl. 12, 1505–1512 (2019).
PubMed PubMed Central Google Scholar
7.
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
CAS PubMed Google Scholar
8.
Laikre, L. et al. Post-2020 goals overlook genetic diversity. Science 367, 1083–1085 (2020).
PubMed Google Scholar
9.
The Red List of Threatened Species, Version 2019-3 (IUCN, 2019); http://www.iucnredlist.org
10.
DiBattista, J. D. Patterns of genetic variation in anthropogenically impacted populations. Conserv. Genet. 9, 141–156 (2008).
Google Scholar
11.
Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).
PubMed Google Scholar
12.
Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Conserv. 191, 495–503 (2015).
Google Scholar
13.
Living Planet Report (WWF, 2018).
14.
Laikre, L. & Ryman, N. Effects on intraspecific biodiversity from harvesting and enhancing natural populations. Ambio 25, 505–509 (1996).
Google Scholar
15.
Delaney, K. S., Riley, S. P. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5, e12767 (2010).
PubMed PubMed Central Google Scholar
16.
Pfenninger, M., Bálint, M. & Pauls, S. U. Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change. BMC Evol. Biol. 12, 224 (2012).
PubMed PubMed Central Google Scholar
17.
Rocha‐Olivares, A., Fleeger, J. W. & Foltz, D. W. Differential tolerance among cryptic species: a potential cause of pollutant-related reductions in genetic diversity. Environ. Toxicol. Chem. 23, 2132–2137 (2004).
PubMed Google Scholar
18.
Laikre, L., Schwartz, M. K., Waples, R. S. & Ryman, N. Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 25, 520–529 (2010).
PubMed Google Scholar
19.
Channell, R. & Lomolino, M. V. Trajectories to extinction: spatial dynamics of the contraction of geographical ranges. J. Biogeogr. 27, 169–179 (2000).
Google Scholar
20.
Bijlsma, R. & Loeschcke, V. Genetic erosion impedes adaptive responses to stressful environments. Evol. Appl. 5, 117–129 (2012).
CAS PubMed Google Scholar
21.
Ouborg, N. J., van Treuren, R. & van Damme, J. M. M. The significance of genetic erosion in the process of extinction. Oecologia 86, 359–367 (1991).
CAS PubMed Google Scholar
22.
Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl Acad. Sci. USA 104, 3883–3888 (2007).
CAS PubMed Google Scholar
23.
Sætre, G.-P. et al. Single origin of human commensalism in the house sparrow. J. Evol. Biol. 25, 788–796 (2012).
PubMed Google Scholar
24.
Millette, K. L., Gonzalez, A. & Cristescu, M. E. Breaking ecological barriers: anthropogenic disturbance leads to habitat transitions, hybridization, and high genetic diversity. Sci. Total Environ. 740, 140046 (2020).
CAS PubMed Google Scholar
25.
Millette, K. L. et al. No consistent effects of humans on animal genetic diversity worldwide. Ecol. Lett. 23, 55–67 (2020).
PubMed Google Scholar
26.
Allentoft, M. & O’Brien, J. Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2, 47–71 (2010).
Google Scholar
27.
Blomqvist, D., Pauliny, A., Larsson, M. & Flodin, L.-Å. Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population. BMC Evol. Biol. 10, 33 (2010).
PubMed PubMed Central Google Scholar
28.
Polfus, J. L. et al. Łeghágots’enetę (learning together): the importance of indigenous perspectives in the identification of biological variation. Ecol. Soc. 21, 18 (2016).
Google Scholar
29.
Marin, K., Coon, A. & Fraser, D. J. Traditional ecological knowledge reveals the extent of sympatric lake trout diversity and habitat preferences. Ecol. Soc. 22, 20 (2017).
Google Scholar
30.
Small, N. & Munday, M. & Durance, I. The challenge of valuing ecosystem services that have no material benefits. Glob. Environ. Change 44, 57–67 (2017).
Google Scholar
31.
Satz, D. et al. The challenges of incorporating cultural ecosystem services into environmental assessment. Ambio 42, 675–684 (2013).
PubMed PubMed Central Google Scholar
32.
Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–613 (2010).
CAS PubMed Google Scholar
33.
Rogers, L. A. et al. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries. Proc. Natl Acad. Sci. USA 110, 1750–1755 (2013).
CAS PubMed Google Scholar
34.
Brennan, S. R. et al. Shifting habitat mosaics and fish production across river basins. Science 364, 783–786 (2019).
CAS PubMed Google Scholar
35.
Larson, W. A., Lisi, P. J., Seeb, J. E., Seeb, L. W. & Schindler, D. E. Major histocompatibility complex diversity is positively associated with stream water temperatures in proximate populations of sockeye salmon. J. Evol. Biol. 29, 1846–1859 (2016).
CAS PubMed Google Scholar
36.
Freshwater, C. et al. Individual variation, population-specific behaviours and stochastic processes shape marine migration phenologies. J. Anim. Ecol. 88, 67–78 (2018).
PubMed Google Scholar
37.
Moore, J. W., McClure, M., Rogers, L. A. & Schindler, D. E. Synchronization and portfolio performance of threatened salmon. Conserv. Lett. 3, 340–348 (2010).
Google Scholar
38.
Satterthwaite, W. H. & Carlson, S. M. Weakening portfolio effect strength in a hatchery-supplemented Chinook salmon population complex. Can. J. Fish. Aquat. Sci. 72, 1860–1875 (2015).
Google Scholar
39.
Araki, H., Berejikian, B. A., Ford, M. J. & Blouin, M. S. Fitness of hatchery-reared salmonids in the wild. Evol. Appl. 1, 342–355 (2008).
PubMed PubMed Central Google Scholar
40.
Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).
CAS PubMed Google Scholar
41.
Carlson, S. M. & Satterthwaite, W. H. Weakened portfolio effect in a collapsed salmon population complex. Can. J. Fish. Aquat. Sci. 68, 1579–1589 (2011).
Google Scholar
42.
Maldonado, C. et al. Phylogeny predicts the quantity of antimalarial alkaloids within the iconic yellow cinchona bark (Rubiaceae: Cinchona calisaya). Front. Plant Sci. 8, 391 (2017).
PubMed PubMed Central Google Scholar
43.
Cueva-Agila, A. et al. Genetic characterization of fragmented populations of Cinchona officinalis L. (Rubiaceae), a threatened tree of the northern Andean cloud forests. Tree Genet. Genomes 15, 81 (2019).
Google Scholar
44.
Simpson, R. D., Sedjo, R. A. & Reid, J. W. Valuing biodiversity for use in pharmaceutical research. J. Polit. Econ. 104, 163–185 (1996).
Google Scholar
45.
Graves, R. A., Pearson, S. M. & Turner, M. G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl Acad. Sci. USA 114, 3774–3779 (2017).
CAS PubMed Google Scholar
46.
Darwin, C. On the Origins of Species by Means of Natural Selection (John Murray, 1859).
47.
Weldon, W. F. R. Mendel’s laws of alternative inheritance in peas. Biometrika 1, 228–254 (1902).
Google Scholar
48.
Courchamp, F. et al. Rarity value and species extinction: the anthropogenic allee effect. PLoS Biol. 4, e415 (2006).
PubMed PubMed Central Google Scholar
49.
Davis, J. N. Color abnormalities in birds: a proposed nomenclature for birders. Birding 39, 36–46 (2007).
Google Scholar
50.
Kolbe, J. J. et al. The desire for variety: Italian wall lizard (Podarcis siculus) populations introduced to the United States via the pet trade are derived from multiple native-range sources. Biol. Invasions 15, 775–783 (2013).
Google Scholar
51.
Tapley, B., Griffiths, R. A. & Bride, I. Dynamics of the trade in reptiles and amphibians within the United Kingdom over a ten-year period. Herpetol. J. 21, 27–34 (2011).
Google Scholar
52.
Militz, T. A., Foale, S., Kinch, J. & Southgate, P. C. Natural rarity places clownfish colour morphs at risk of targeted and opportunistic exploitation in a marine aquarium fishery. Aquat. Living Resour. 31, 18 (2018).
Google Scholar
53.
Rowley, J. J. L., Emmett, D. A. & Voen, S. Harvest, trade and conservation of the Asian arowana Scleropages formosus in Cambodia. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1255–1262 (2008).
Google Scholar
54.
Clapp, R. A. Wilderness ethics and political ecology: remapping the Great Bear Rainforest. Polit. Geogr. 23, 839–862 (2004).
Google Scholar
55.
Cusack, C. M. Save the White Tiger. J Law Soc. Deviance 12, 1 (2016).
Google Scholar
56.
Zhao, S. et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45, 67–71 (2013).
CAS PubMed Google Scholar
57.
Gaos, A. R. et al. Hawksbill turtle terra incognita: conservation genetics of eastern Pacific rookeries. Ecol. Evol. 6, 1251–1264 (2016).
PubMed PubMed Central Google Scholar
58.
Read, T. D. et al. Draft sequencing and assembly of the genome of the world’s largest fish, the whale shark: Rhincodon typus Smith 1828. BMC Genom. 18, 532 (2017).
Google Scholar
59.
Wilting, A. et al. Planning tiger recovery: understanding intraspecific variation for effective conservation. Sci. Adv. 1, e1400175 (2015).
PubMed PubMed Central Google Scholar
60.
Hedrick, P. W. Gene flow and genetic restoration: the florida panther as a case study. Conserv. Biol. 9, 996–1007 (1995).
Google Scholar
61.
Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).
CAS PubMed PubMed Central Google Scholar
62.
Crutsinger, G. M., Souza, L. & Sanders, N. J. Intraspecific diversity and dominant genotypes resist plant invasions. Ecol. Lett. 11, 16–23 (2007).
PubMed Google Scholar
63.
Lahr, E. C., Backe, K. M. & Frank, S. D. Intraspecific variation in morphology, physiology, and ecology of wildtype relative to horticultural varieties of red maple (Acer rubrum). Trees 34, 603–614 (2020).
CAS Google Scholar
64.
Yoshihara, Y. & Isogai, T. Does genetic diversity of grass improve yield, digestibility, and resistance to weeds, pests and disease infection? Arch. Agron. Soil Sci. 65, 1623–1629 (2019).
Google Scholar
65.
Busby, P. E., Newcombe, G., Dirzo, R. & Whitham, T. G. Genetic basis of pathogen community structure for foundation tree species in a common garden and in the wild. J. Ecol. 101, 867–877 (2013).
Google Scholar
66.
Berrang, P., Karnosky, D. F., Mickler, R. A. & Bennett, J. P. Natural selection for ozone tolerance in Populustremuloides. Can. J. Res. 16, 1214–1216 (1986).
CAS Google Scholar
67.
Kremp, A. et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol. Evol. 2, 1195–1207 (2012).
PubMed PubMed Central Google Scholar
68.
Boyden, S., Binkley, D. & Stape, J. L. Competition among eucalyptus trees depends on genetic variation and resource supply. Ecology 89, 2850–2859 (2008).
PubMed Google Scholar
69.
Crutsinger, G. M., Reynolds, W. N., Classen, A. T. & Sanders, N. J. Disparate effects of plant genotypic diversity on foliage and litter arthropod communities. Oecologia 158, 65–75 (2008).
PubMed Google Scholar
70.
Dubs, F. et al. Positive effects of wheat variety mixtures on aboveground arthropods are weak and variable. Basic Appl. Ecol. 33, 66–78 (2018).
Google Scholar
71.
Mansion-Vaquié, A., Wezel, A. & Ferrer, A. Wheat genotypic diversity and intercropping to control cereal aphids. Agric. Ecosyst. Environ. 285, 106604 (2019).
Google Scholar
72.
Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985 (2012).
Google Scholar
73.
Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).
CAS PubMed Google Scholar
74.
Vytopil, E. & Willis, B. L. Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity. Coral Reefs 20, 281–288 (2001).
Google Scholar
75.
Mercado-Molina, A. E., Ruiz-Diaz, C. P. & Sabat, A. M. Branching dynamics of transplanted colonies of the threatened coral Acropora cervicornis: morphogenesis, complexity, and modeling. J. Exp. Mar. Biol. Ecol. 482, 134–141 (2016).
Google Scholar
76.
Lohr, K. E. & Patterson, J. T. Intraspecific variation in phenotype among nursery-reared staghorn coral Acropora cervicornis (Lamarck, 1816). J. Exp. Mar. Biol. Ecol. 486, 87–92 (2017).
Google Scholar
77.
Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl Acad. Sci. USA 116, 10586–10591 (2019).
CAS PubMed Google Scholar
78.
Contolini, G. M., Reid, K. & Palkovacs, E. P. Climate shapes population variation in dogwhelk predation on foundational mussels. Oecologia 192, 553–564 (2020).
PubMed Google Scholar
79.
Allgeier, J. E. et al. Individual behavior drives ecosystem function and the impacts of harvest. Sci. Adv. 6, eaax8329 (2020).
CAS PubMed PubMed Central Google Scholar
80.
Isaac, M. E. et al. Farmer perception and utilization of leaf functional traits in managing agroecosystems. J. Appl. Ecol. 55, 69–80 (2018).
Google Scholar
81.
Thomas, E. et al. NTFP harvesters as citizen scientists: validating traditional and crowdsourced knowledge on seed production of Brazil nut trees in the Peruvian Amazon. PLoS ONE 12, e0183743 (2017).
PubMed PubMed Central Google Scholar
82.
Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 44, 825–830 (2012).
CAS PubMed PubMed Central Google Scholar
83.
Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29 (2013).
CAS PubMed PubMed Central Google Scholar
84.
Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017).
CAS PubMed Google Scholar
85.
Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).
CAS PubMed Google Scholar
86.
Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B Biol. Sci. 285, 20172746 (2018).
Google Scholar
87.
Coddington, J., Lewin, H. A., Robinson, G. E. & Kress, W. J. The Earth Biogenome Project. Biodivers. Inf. Sci. Stand. 3, e37344 (2019).
Google Scholar
88.
Crain, R., Cooper, C. & Dickinson, J. L. Citizen science: a tool for integrating studies of human and natural systems. Annu. Rev. Environ. Resour. 39, 641–665 (2014).
Google Scholar
89.
Kerstes, N. A. G., Breeschoten, T., Kalkman, V. J. & Schilthuizen, M. Snail shell colour evolution in urban heat islands detected via citizen science. Commun. Biol. 2, 264 (2019).
PubMed PubMed Central Google Scholar
90.
Searfoss, A. M., Liu, W. & Creanza, N. Geographically well-distributed citizen science data reveals range-wide variation in the chipping sparrow’s simple song. Anim. Behav. 161, 63–76 (2020).
Google Scholar
91.
Sauer, J. R., Link, W. A., Fallon, J. E., Pardieck, K. L. & David, J. Ziolkowski Jr. The North American Breeding Bird Survey 1966–2011: summary analysis and species accounts. North Am. Fauna 79, 1–32 (2013).
Google Scholar
92.
Nugent, J. iNaturalist: citizen science for 21st-century naturalists. Sci. Scope 41, 12 (2018).
Google Scholar
93.
McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 208, 15–28 (2017).
Google Scholar
94.
Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).
PubMed Google Scholar
95.
Waples, R. S. Pacific salmon, Oncorhynchus spp., and the definition of ‘species’ under the endangered species. Act. Mar. Fish. Rev. 53, 11–22 (1991).
Google Scholar
96.
Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).
CAS PubMed Google Scholar
97.
Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).
PubMed PubMed Central Google Scholar
98.
Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with the speciespopulation continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).
Google Scholar
99.
Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).
PubMed Google Scholar
100.
Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).
CAS PubMed PubMed Central Google Scholar
101.
Des Roches, S. et al. Socio-eco-evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).
PubMed Google Scholar
102.
Drury, C. et al. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity. Ecol. Evol. 7, 6188–6200 (2017).
PubMed PubMed Central Google Scholar
103.
Vasconcelos, R. et al. Combining molecular and landscape tools for targeting evolutionary processes in reserve design: an approach for islands. PLoS ONE 13, e0200830 (2018).
PubMed PubMed Central Google Scholar
104.
Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).
Google Scholar
105.
Hoffmann, A. A., Sgrò, C. M. & Kristensen, T. N. Revisiting adaptive potential, population size, and conservation. Trends Ecol. Evol. 32, 506–517 (2017).
PubMed Google Scholar
106.
Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).
PubMed Google Scholar
107.
Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2020).
PubMed PubMed Central Google Scholar
108.
Oke, K. B. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).
CAS PubMed PubMed Central Google Scholar
109.
Thompson, J., Stow, A. & Raftos, D. Lack of genetic introgression between wild and selectively bred Sydney rock oysters Saccostrea glomerata. Mar. Ecol. Prog. Ser. 570, 127–139 (2017).
Google Scholar
110.
Schindler, D. E., Leavitt, P. R., Brock, C. S., Johnson, S. P. & Quay, P. D. Marine-derived nutrients, commercial fisheries, and production of salmon and lake algae in Alaska. Ecology 86, 3225–3231 (2005).
Google Scholar
111.
Ainsworth, E. A. The importance of intraspecific variation in tree responses to elevated [CO2]: breeding and management of future forests. Tree Physiol. 36, 679–681 (2016).
CAS PubMed Google Scholar More