Climate-driven flyway changes and memory-based long-distance migration
1.
McRae, L. et al. Arctic Species Trend Index 2010. Tracking Trends in Arctic Wildlife (CAFF International Secretariat, 2010).
2.
Lameris, T. K. et al. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification. Glob. Change Biol. 23, 4058–4067 (2017).
Article Google Scholar
3.
Trautmann, S. in Bird Species (ed. Tietze, D. T.) 217–234 (Springer, 2018).
4.
Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Change 8, 992–996 (2018).
ADS Article Google Scholar
5.
Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).
ADS CAS Article Google Scholar
6.
White, C. M., Cade, T. J. & Enderson, J. H. Peregrine Falcons of the World (Lynx, 2013).
7.
Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
8.
Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).
ADS CAS PubMed Article PubMed Central Google Scholar
9.
Brambilla, M., Rubolini, D. & Guidali, F. Factors affecting breeding habitat selection in a cliff-nesting peregrine Falco peregrinus population. J. Ornithol. 147, 428–435 (2006).
Article Google Scholar
10.
Hausdorff, F. Bemerkung über den Inhalt von Punktmengen. Math. Ann. 75, 428–433 (1914).
MathSciNet MATH Article Google Scholar
11.
Pulido, F. The genetics and evolution of avian migration. Bioscience 57, 165–174 (2007).
Article Google Scholar
12.
Perdeck, A. C. An experiment on the ending of autumn migration in starlings. Ardea 52, 133–139 (1964).
Google Scholar
13.
Delmore, K. E., Toews, D. P., Germain, R. R., Owens, G. L. & Irwin, D. E. The genetics of seasonal migration and plumage color. Curr. Biol. 26, 2167–2173 (2016).
CAS PubMed Article PubMed Central Google Scholar
14.
Impey, S. et al. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595–601 (1998).
CAS PubMed Article PubMed Central Google Scholar
15.
Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).
CAS PubMed Article PubMed Central Google Scholar
16.
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
CAS PubMed PubMed Central Article Google Scholar
17.
Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).
CAS PubMed Article PubMed Central Google Scholar
18.
Iguchi-Ariga, S. M. & Schaffner, W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612–619 (1989).
CAS PubMed Article PubMed Central Google Scholar
19.
Bartsch, D. et al. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83, 979–992 (1995).
CAS PubMed Article PubMed Central Google Scholar
20.
Wieczorek, L. et al. Absence of Ca2+-stimulated adenylyl cyclases leads to reduced synaptic plasticity and impaired experience-dependent fear memory. Transl. Psychiatry 2, e126 (2012).
CAS PubMed PubMed Central Article Google Scholar
21.
Rosenegger, D., Wright, C. & Lukowiak, K. A quantitative proteomic analysis of long-term memory. Mol. Brain 3, 9 (2010).
PubMed PubMed Central Article CAS Google Scholar
22.
Ferguson, G. D. & Storm, D. R. Why calcium-stimulated adenylyl cyclases? Physiology (Bethesda) 19, 271–276 (2004).
CAS Google Scholar
23.
Zhang, M. et al. Ca-stimulated type 8 adenylyl cyclase is required for rapid acquisition of novel spatial information and for working/episodic-like memory. J. Neurosci. 28, 4736–4744 (2008).
CAS PubMed PubMed Central Article Google Scholar
24.
Yin, J. C. & Tully, T. CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 6, 264–268 (1996).
CAS PubMed Article PubMed Central Google Scholar
25.
Wauchope, H. S. et al. Rapid climate-driven loss of breeding habitat for Arctic migratory birds. Glob. Change Biol. 23, 1085–1094 (2017).
ADS Article Google Scholar
26.
Lok, T., Overdijk, O. & Piersma, T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett. 11, 20140944 (2015).
PubMed PubMed Central Article Google Scholar
27.
Brown, J. W. et al. Appraisal of the consequences of the DDT-induced bottleneck on the level and geographic distribution of neutral genetic variation in Canadian peregrine falcons, Falco peregrinus. Mol. Ecol. 16, 327–343 (2007).
CAS PubMed Article PubMed Central Google Scholar
28.
Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing. PLoS Biol. 6, e188 (2008).
PubMed PubMed Central Article CAS Google Scholar
29.
Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. Lond. B 278, 2848–2856 (2011).
CAS Google Scholar
30.
Peterson, M. P. et al. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco. F1000Res. 2, 115 (2013).
ADS PubMed PubMed Central Article Google Scholar
31.
Douglas, D. C. et al. Moderating Argos location errors in animal tracking data. Methods Ecol. Evol. 3, 999–1007 (2012).
Article Google Scholar
32.
Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).
ADS CAS Article Google Scholar
33.
Trierweiler, C. et al. Migratory connectivity and population-specific migration routes in a long-distance migratory bird. Proc. R. Soc. Lond. B 281, 20132897 (2014).
Google Scholar
34.
Ambrosini, R., Møller, A. P. & Saino, N. A quantitative measure of migratory connectivity. J. Theor. Biol. 257, 203–211 (2009).
MathSciNet PubMed Article Google Scholar
35.
Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC, 2015).
36.
López-López, D. P., García-Ripollés, C. & Urios, V. Individual repeatability in timing and spatial flexibility of migration routes of trans-Saharan migratory raptors. Curr. Zool. 60, 642–652 (2014).
Article Google Scholar
37.
Benhamou, S. How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J. Theor. Biol. 229, 209–220 (2004).
MathSciNet PubMed MATH Article Google Scholar
38.
Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
Article Google Scholar
39.
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge Academic, 1988).
40.
Ganusevich, S. A. et al. Autumn migration and wintering areas of peregrine falcons Falco peregrinus nesting on the Kola Peninsula, northern Russia. Ibis 146, 291–297 (2004).
Article Google Scholar
41.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
CAS PubMed PubMed Central Google Scholar
42.
Zhao, S. et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45, 67–71 (2013).
CAS PubMed Article PubMed Central Google Scholar
43.
Damas, J. et al. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res. 27, 875–884 (2017).
CAS PubMed PubMed Central Article Google Scholar
44.
Zhan, X. et al. Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat. Genet. 45, 563–566 (2013).
CAS PubMed Article PubMed Central Google Scholar
45.
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
CAS PubMed PubMed Central Article Google Scholar
46.
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
CAS PubMed PubMed Central Article Google Scholar
47.
Rodríguez-Ramilo, S. T. & Wang, J. The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Mol. Ecol. Resour. 12, 873–884 (2012).
PubMed Article PubMed Central Google Scholar
48.
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
CAS PubMed PubMed Central Article Google Scholar
49.
Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
CAS PubMed Article PubMed Central Google Scholar
50.
Tang, H. et al. Genetic structure, self-identified race/ethnicity, and confounding in case–control association studies. Am. J. Hum. Genet. 76, 268–275 (2005).
CAS PubMed Article PubMed Central Google Scholar
51.
Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).
CAS PubMed Article PubMed Central Google Scholar
52.
Staab, P. R., Zhu, S., Metzler, D. & Lunter, G. scrm: efficiently simulating long sequences using the approximated coalescent with recombination. Bioinformatics 31, 1680–1682 (2015).
CAS PubMed PubMed Central Article Google Scholar
53.
Pudlo, P. et al. Reliable ABC model choice via random forests. Bioinformatics 32, 859–866 (2016).
CAS PubMed Article PubMed Central Google Scholar
54.
Csilléry, K., François, O. & Blum, M. G. abc: an R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3, 475–479 (2012).
Article Google Scholar
55.
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modeling. R package version 1.3-3 https://cran.r-project.org/package=dismo (2020).
56.
Calenge, C. adhabitatHR: home range estimation. R package version 0.4.19 https://cran.r-project.org/package=adehabitatHR (2021).
57.
Fick, S. E. & Hijmans, R. J. WorldClim2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Article Google Scholar
58.
Beyer, R. M., Krapp, M. & Manica, A. High-resolution terrestrial climate, bioclimate and vegetation for the last 120,000 years. Sci. Data 7, 236 (2020).
PubMed PubMed Central Article Google Scholar
59.
Cao, X., Tian, F., Dallmeyer, A. & Herzschuh, U. Northern Hemisphere biome changes ( > 30° N) since 40 cal ka bp and their driving factors inferred from model-data comparisons. Quat. Sci. Rev. 220, 291–309 (2019).
60.
Borchers, H. W. pracma: practical numerical math functions. R package version 2.3.3 https://cran.r-project.org/package=pracma (2021).
61.
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
CAS PubMed PubMed Central Article Google Scholar
62.
Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).
PubMed PubMed Central Article Google Scholar
63.
Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).
ADS CAS PubMed PubMed Central Article Google Scholar
64.
Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D. & de Leon, N. Defining window-boundaries for genomic analyses using smoothing spline techniques. Genet. Sel. Evol. 47, 30 (2015).
PubMed PubMed Central Article CAS Google Scholar
65.
Szpiech, Z. A. & Hernandez, R. D. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824–2827 (2014).
CAS PubMed PubMed Central Article Google Scholar
66.
Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).
CAS PubMed PubMed Central Article Google Scholar
67.
Zheng, G. X. et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 34, 303–311 (2016).
CAS PubMed PubMed Central Article Google Scholar
68.
François, O., Martins, H., Caye, K. & Schoville, S. D. Controlling false discoveries in genome scans for selection. Mol. Ecol. 25, 454–469 (2016).
PubMed Article CAS PubMed Central Google Scholar
69.
Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M. & Servin, B. Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 193, 929–941 (2013).
PubMed PubMed Central Article Google Scholar
70.
Bonhomme, M. et al. Detecting selection in population trees: the Lewontin and Krakauer test extended. Genetics 186, 241–262 (2010).
PubMed PubMed Central Article Google Scholar
71.
Frichot, E. & François, O. LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
Article Google Scholar
72.
Pan, S. et al. Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai–Tibetan Plateau in a predatory bird. Mol. Ecol. 26, 2993–3010 (2017).
CAS PubMed Article Google Scholar
73.
Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).
CAS PubMed PubMed Central Article Google Scholar
74.
Yang, L. et al. TFBSshape: a motif database for DNA shape features of transcription factor binding sites. Nucleic Acids Res. 42, D148–D155 (2014).
CAS PubMed Article Google Scholar
75.
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21–29 (2015).
PubMed PubMed Central Article Google Scholar
76.
Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).
CAS PubMed PubMed Central Article Google Scholar
77.
Barbato, M., Orozco-terWengel, P., Tapio, M. & Bruford, M. W. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front. Genet. 6, 109 (2015).
PubMed PubMed Central Article CAS Google Scholar
78.
Pitt, D. et al. Demography and rapid local adaptation shape Creole cattle genome diversity in the tropics. Evol. Appl. 12, 105–122 (2019).
PubMed Article Google Scholar
79.
Carlzon, L., Karlsson, A., Falk, K., Liess, A. & Møller, S. Extreme weather affects peregrine falcon (Falco peregrinus tundrius) breeding success in South Greenland. Ornis Hungarica 26, 38–50 (2018).
Article Google Scholar
80.
Franke, A. et al. Status and trends of circumpolar peregrine falcon and gyrfalcon populations. Ambio 49, 762–783 (2020).
PubMed Article PubMed Central Google Scholar More