1.
Siano, R. et al. Citizen participation in monitoring phytoplankton seawater discolorations. Mar. Policy 117, 1–11. https://doi.org/10.1016/j.marpol.2018.01.022 (2018).
Article Google Scholar
2.
Elbrächter, M. & Schnepf, E. Gymnodinium chlorophorum, a new, green, bloom-forming dinoflagellate (Gymnodiniales, Dinophyceae) with a vestigial prasinophyte endosymbiont. Phycologia 35, 381–393 (1996).
Article Google Scholar
3.
Hansen, G., Botes, L. & De Salas, M. Ultrastructure and large subunit rDNA sequences of Lepidodinium viride reveal a close relationship to Lepidodinium chlorophorum comb. Nov. (=Gymnodinium chlorophorum). Phycol. Res. 55, 25–41. https://doi.org/10.1111/j.1440-1835.2006.00442.x (2007).
CAS Article Google Scholar
4.
Gavalás-Olea, A. et al. 19,19′-diacyloxy signature: An atypical level of structural evolution in carotenoid pigments. Org. Lett. 18, 4642–4645. https://doi.org/10.1021/acs.orglett.6b02272 (2016).
CAS Article PubMed Google Scholar
5.
Jackson, C., Knoll, A. H., Chan, C. X. & Verbruggen, H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci. Rep. 8, 1523. https://doi.org/10.1038/s41598-017-18805-w (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
6.
Kamikawa, R. et al. Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biol. Evol. 7, 1133–1140. https://doi.org/10.1093/gbe/evv060 (2015).
CAS Article PubMed PubMed Central Google Scholar
7.
Chapelle, A., Lazure, P. & Ménesguen, A. Modelling eutrophication events in a coastal ecosystem. Sensitivity analysis. Estuar. Coast. Shelf Sci. 39, 529–548. https://doi.org/10.1016/S0272-7714(06)80008-9 (1994).
ADS CAS Article Google Scholar
8.
Sournia, A. et al. The repetitive and expanding occurrence of a green, bloom-forming dinoflagellate (Dinophyceae) on the coast of France. Cryptogam. Algol. 13, 1–13 (1992).
Google Scholar
9.
Claquin, P., Probert, I., Lefebvre, S. & Veron, B. Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat. Microb. Ecol. 51, 1–11. https://doi.org/10.3354/ame01187 (2008).
Article Google Scholar
10.
Alldredge, A. L., Passow, U. & Logan, B. E. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res. 40, 1131–1140. https://doi.org/10.1016/0967-0637(93)90129-Q (1993).
CAS Article Google Scholar
11.
Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55, 287–333. https://doi.org/10.1016/S0079-6611(02)00138-6 (2002).
ADS Article Google Scholar
12.
Verdugo, P. et al. The oceanic gel phase: A bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. https://doi.org/10.1016/j.marchem.2004.06.017 (2004).
CAS Article Google Scholar
13.
Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nature 5, 782–791. https://doi.org/10.1038/nrmicro1747 (2007).
CAS Article Google Scholar
14.
Bittar, T. B., Passow, U., Hamaraty, L., Bidle, K. D. & Harvey, E. L. An updated method for the calibration of transparent exopolymer particle measurements. Limnol. Oceanogr. Methods. 16, 621–628. https://doi.org/10.1002/lom3.10268 (2018).
Article Google Scholar
15.
Mari, X., Passow, U., Migon, C., Burd, A. B. & Legendre, L. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Prog. Oceanogr. 151, 13–37. https://doi.org/10.1016/j.pocean.2016.11.002 (2017).
ADS Article Google Scholar
16.
Passow, U. et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont. Shelf. Res. 21, 327–346. https://doi.org/10.1016/S0278-4343(00)00101-1 (2001).
ADS Article Google Scholar
17.
Jenkinson, I. R. Oceanographic implications of non-newtonian properties found in phytoplankton cultures. Nature 323, 435–437. https://doi.org/10.1038/323435a0 (1986).
ADS Article Google Scholar
18.
Alldredge, A. L. & Gotschalk, C. C. Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates. Deep-Sea Res. 36, 159–171. https://doi.org/10.1016/0198-0149(89)90131-3 (1989).
ADS CAS Article Google Scholar
19.
Schapira, M., McQuaid, C. D. & Froneman, P. W. Free-living and particle-associated prokaryote metabolism in giant kelp forests: Implications for carbon flux in a sub-Antarctic coastal area. Estuar. Coast. Shelf. Sci. 106, 69–79. https://doi.org/10.1016/j.ecss.2012.04.031 (2012).
ADS CAS Article Google Scholar
20.
Schapira, M., McQuaid, C. D. & Froneman, P. W. Metabolism of free-living particle-associated prokaryotes: Consequences for carbon flux around a Southern Ocean archipelago. J. Mar. Syst. 90, 58–66. https://doi.org/10.1016/j.jmarsys.2011.08.009 (2012).
Article Google Scholar
21.
Bhaskar, P.V. & Bhosle, N.B. Microbial extracellular polymeric substances in marine biogeochemical processes. Curr. Sci. 88, 45–53. http://drs.nio.org/drs/handle/2264/89 (2005).
22.
Passow, U. & Alldredge, A. L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr. 40, 1326–1335. https://doi.org/10.4319/lo.1995.40.7.1326 (1995).
ADS CAS Article Google Scholar
23.
Gärdes, A., Iversen, M. H., Grossart, H. P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445. https://doi.org/10.1038/ismej.2010.145 (2011).
CAS Article PubMed Google Scholar
24.
Nosaka, Y., Yamashita, Y. & Suzuki, K. Dynamics and origin of transparent exopolymer particles in the Oyashio region of the Western Subarctic Pacific during the spring diatom bloom. Front. Mar. Sci. 4, 1–16. https://doi.org/10.3389/fmars.2017.00079 (2017).
Article Google Scholar
25.
Burns, W. G., Marchetti, A. & Ziervogel, K. Enhanced formation of transparent exopolymer particles (TEP) under turbulence during phytoplankton growth. J. Plankton Res. 41, 349–361. https://doi.org/10.1093/plankt/fbz018 (2019).
CAS Article Google Scholar
26.
Riebesell, U., Reigstad, M., Wassmann, P., Noji, T. & Passow, U. On the trophic fate of Phaeocystis pouchetii (hariot): Significance of Phaeocystis-derived mucus for vertical flux. Neth. J. Sea Res. 33, 193–203. https://doi.org/10.1016/0077-7579(95)90006-3 (1995).
Article Google Scholar
27.
Alderkamp, A. C., Buma, A. G. J. & van Rijssel, M. The carbohydrates of Phaeocystis and their degradation in the microbial food web. Biogeochemistry 83, 1–3. https://doi.org/10.1007/s10533-007-9078-2 (2007).
CAS Article Google Scholar
28.
Grossart, H. P., Simon, M. & Logan, B. E. Formation of macroscopic organic aggregates (lake snow) in a large lake: The significance of transparent exopolymer particles, phytoplankton, and zooplankton. Limnol. Oceanogr. 42, 1651–1659. https://doi.org/10.4319/lo.1997.42.8.1651 (1997).
ADS CAS Article Google Scholar
29.
Iuculano, F., Mazuecos, I. P., Reche, I. & Agusti, S. Prochlorococcus as a possible source for transparent exopolymer particles (TEP). Front. Microbiol. 8, 1–11. https://doi.org/10.3389/fmicb.2017.00709 (2017).
Article Google Scholar
30.
Thornton, D. C. O. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46. https://doi.org/10.1080/09670262.2013.875596 (2014).
CAS Article Google Scholar
31.
Zhang, Z. et al. The fate of marine bacterial exopolysaccharide in natural marine microbial communities. PLoS One 10, 1–16. https://doi.org/10.1371/journal.pone.0142690 (2015).
CAS Article Google Scholar
32.
Xiao, R. & Zheng, Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv. 34, 1225–1244. https://doi.org/10.1016/j.biotechadv.2016.08.004 (2016).
CAS Article PubMed Google Scholar
33.
Thavasi, R. & Banat, I. M. Biosurfactant and bioemulsifiers from marine sources. In Biosurfactants: Research Trends and Applications, ***Chap 5 (eds Mulligan, C. N. et al.) 125–146 (CRC Press, Boca Raton, 2014).
Google Scholar
34.
Decho, A. W. & Gutierrez, T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 8, 1–28. https://doi.org/10.3389/fmicb.2017.00922 (2017).
Article Google Scholar
35.
Parker, C. The effect of environmental stressors on biofilm formation of Chlorella vulgaris. Master thesis Appalachian State University (2013).
36.
Zhou, J., Mopper, K. & Passow, U. The role of surface-active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater. Limnol. Oceanogr. 43, 1860–1871. https://doi.org/10.4319/lo.1998.43.8.1860 (1998).
ADS CAS Article Google Scholar
37.
Fukao, T., Kimoto, K. & Kotani, Y. Production of transparent exopolymer particles by four diatom species. Fish Sci. 76, 755–760. https://doi.org/10.1007/s12562-010-0265-z (2010).
CAS Article Google Scholar
38.
Seebah, S., Fairfield, C., Ullrich, M. S. & Passow, U. Aggregation and sedimentation of Thalassiosira weissflogii (diatom) in a warmer and more acidified Future Ocean. PLoS One 9, 1–9. https://doi.org/10.1371/journal.pone.0112379 (2014).
CAS Article Google Scholar
39.
Staats, N., Stal, L. J. & Mur, L. R. Exopolysaccharide production by the epipelic diatom Cylindrotheca fusiformis: Effects of nutrient conditions. J. Exp. Mar. Biol. Ecol. 249, 13–27. https://doi.org/10.1016/S0022-0981(00)00166-0 (2000).
CAS Article PubMed Google Scholar
40.
Underwood, G. J. C., Boulcott, M., Raines, C. A. & Waldron, K. Environmental effects on exopolymer production by marine benthic diatoms: Dynamics, changes in composition, and pathways of production. J. Phycol. 40, 293–304. https://doi.org/10.1111/j.1529-8817.2004.03076.x (2004).
CAS Article Google Scholar
41.
Engel, A. et al. Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms. J. Plankton Res. 36, 641–657. https://doi.org/10.1093/plankt/fbt125 (2014).
CAS Article Google Scholar
42.
Thornton, D. C. O. & Chen, J. Exopolymer production as a function of cell permeability and death in a diatom (Thalassiosira weissflogii) and a cyanobacterium (Synechococcus elongatus). J. Phycol. 53, 245–260. https://doi.org/10.1111/jpy.12470 (2017).
CAS Article PubMed Google Scholar
43.
Sugimoto, K., Fukuda, H., Abdul Baki, M. & Koike, I. Bacterial contribution to formation of transparent exopolymer particles (TEP) and seasonal trends in coastal waters of Sagami Bay, Japan. Aquat. Microb. Ecol. 46, 31–41. https://doi.org/10.3354/ame046031 (2007).
Article Google Scholar
44.
Gordillo, F. J. L., Jiménez, C., Chavarria, J. & Niell, F. X. Photosynthetic acclimation to photon irradiance and its relation to chlorophyll fluorescence and carbon assimilation in the halotolerant green alga Dunaliella viridis. Photosynth. Res. 68, 225–235. https://doi.org/10.1023/a:1012969324756 (2001).
CAS Article PubMed Google Scholar
45.
Ekelund, N. G. A. & Aronsson, K. A. Changes in chlorophyll a fluorescence in Euglena gracilis and Chlamydomonas reinhardii after exposure to wood-ash. Environ. Exp. Bot. 59, 92–98. https://doi.org/10.1016/j.envexpbot.2005.10.004 (2007).
CAS Article Google Scholar
46.
Cole, J. J. Interactions between bacteria and algae in aquatic ecosystems. Ann. Rev. Ecol. Syst. 13, 291–314. https://doi.org/10.1146/annurev.es.13.110182.001451 (1982).
Article Google Scholar
47.
Joint, I. et al. Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms. Aquat. Microb. Ecol. 29, 145–159. https://doi.org/10.3354/ame029145 (2002).
Article Google Scholar
48.
Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684. https://doi.org/10.1128/MMBR.00007-12 (2012).
CAS Article PubMed PubMed Central Google Scholar
49.
Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M. & Kim, H. S. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 34, 14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003 (2016).
CAS Article PubMed Google Scholar
50.
Ray, S. & Bagchi, S. N. Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol. 149, 455–460. https://doi.org/10.1046/j.1469-8137.2001.00061.x (2001).
CAS Article Google Scholar
51.
Oremland, R. S. & Capone, D. G. Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10, 285–383. https://doi.org/10.1007/978-1-4684-5409-3_8 (1988).
CAS Article Google Scholar
52.
Middelburg, J. J. & Nieuwenhuize, J. Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary. Mar. Ecol. Prog. Ser. 203, 13–21. https://doi.org/10.3354/meps203013 (2000).
ADS CAS Article Google Scholar
53.
Mulholland, M. R., Rocha, A. M. & Boncillo, G. E. Incorporation of leucine and thymidine by estuarine phytoplankton: Implications for bacteria productivity estimates. Estuar. Coasts 34, 310–325. https://doi.org/10.1007/s12237-010-9366-2 (2010).
CAS Article Google Scholar
54.
Prieto, A. et al. Assessing the role of phytoplankton–bacterioplankton coupling in the response of microbial plankton to nutrient additions. J. Plankton Res. 38, 55–63. https://doi.org/10.1093/plankt/fbv101 (2016).
CAS Article Google Scholar
55.
Dakhama, A., de la Noüe, J. & Lavoie, M. C. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. J. Appl. Phycol. 5, 297–306. https://doi.org/10.1007/BF02186232 (1993).
CAS Article Google Scholar
56.
Bowman, L. P. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5, 220–241. https://doi.org/10.3390/md504220 (2007).
CAS Article PubMed PubMed Central Google Scholar
57.
Meseck, S. L., Smith, B. C., Wikfors, G. H., Alix, J. H. & Kapareiko, D. Nutrient interactions between phytoplankton and bacterioplankton under different carbon dioxide regimes. J. Appl. Phycol. 19, 229–237. https://doi.org/10.1007/s10811-006-9128-5 (2007).
CAS Article Google Scholar
58.
Guerrini, F., Mazzotti, A., Boni, L. & Pistocchi, R. Bacterial-algal interactions in polysaccharide production. Aquat. Microb. Ecol. 15, 247–253. https://doi.org/10.3354/ame015247 (1998).
Article Google Scholar
59.
Lu, X. et al. A marine algicidal Thalassiosira and its active substance against the harmful algal bloom species Karenia mikimotoi. Appl. Microbiol. Biotechnol. 100, 5131–5139. https://doi.org/10.1007/s00253-016-7352-8 (2016).
CAS Article PubMed Google Scholar
60.
Li, Y. et al. Chitinase producing bacteria with direct algicidal activity on marine diatoms. Sci. Rep. 6, 1–13. https://doi.org/10.1038/srep21984 (2016).
CAS Article Google Scholar
61.
Li, Y. et al. The first evidence of deinoxanthin from Deinococcus sp Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense. J. Hazard. Mater. 290, 87–95. https://doi.org/10.1016/j.jhazmat.2015.02.070 (2015).
ADS CAS Article PubMed Google Scholar
62.
Lovejoy, C., Bowman, J. P. & Hallegraeff, G. M. Algicidal effects of a novel marine Pseudomonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium and Heterosigma. Appl. Environ. Microbiol. 64, 2806–2813 (1998).
CAS Article Google Scholar
63.
Honsell, G. & Talarico, L. Gymnodinium chlorophorum (Dinophyceae) in the Adriatic Sea: Electron microscopical observations. Bot. Mar. 47, 152–166. https://doi.org/10.1515/BOT.2004.016 (2004).
Article Google Scholar
64.
Iriarte, J. L., Quiñones, R. A. & González, R. R. Relationship between biomass and enzymatic activity of a bloom-forming dinoflagellate (Dinophyceae) in southern Chile (41°S): A field approach. J. Plankton. Res. 27, 159–161. https://doi.org/10.1093/plankt/fbh167 (2005).
CAS Article Google Scholar
65.
Gárate-Lizárraga, I., Muñetón-Gómez, M. S., Pérez-Cruz, B. & Díaz-Ortíz, J. A. Bloom of Gonyaulax spinifera (Dinophyceae: Gonyaulacales) in Ensenada de la Paz Lagoon, Gulf of California. CICIMAR Oceán. 29, 1–18 (2014).
Google Scholar
66.
McCarthy, P.M. Census of Australian Marine Dinoflagellates. Australian Biological Resources Study, Canberra. http://www.anbg.gov.au/abrs/Dinoflagellates/index_Dino.html. Accessed 11 July 2013 (2013).
67.
Azam, F. & Smith, D. C. Bacterial influence on the variability in the ocean’s biogeochemical state: A mechanistic view. In Particle Analysis in Oceanography. NATO ASI Series (Series G: Ecological Sciences), ***27 (ed. Demers, S.) (Springer, Berlin, 1991). https://doi.org/10.1007/978-3-642-75121-9_9.
Google Scholar
68.
Smith, D. C., Steward, G. F., Long, R. A. & Azam, F. Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm. Deep-Sea Res. 442, 75–97. https://doi.org/10.1016/0967-0645(95)00005-B (1995).
ADS Article Google Scholar
69.
Schuster, S. & Herndl, G. J. Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea. Mar. Ecol. Prog. Ser. 124, 227–236. https://doi.org/10.3354/meps124227 (1995).
ADS Article Google Scholar
70.
Engel, A. & Passow, U. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Mar. Ecol. Prog. Ser. 219, 1–10. https://doi.org/10.3354/meps219001 (2001).
ADS CAS Article Google Scholar
71.
Hasui, M., Matsuda, M., Okutani, K. & Shigeta, S. In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int. J. Biol. Macromol. 17, 293–297. https://doi.org/10.1016/0141-8130(95)98157-T (1995).
CAS Article PubMed Google Scholar
72.
Yim, J. H., Kim, S. J., Ahn, S. H. & Lee, H. K. Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresour. Technol. 98, 361–367. https://doi.org/10.1016/j.biortech.2005.12.021 (2007).
CAS Article PubMed Google Scholar
73.
Mandal, S. K., Singh, R. P. & Patel, V. Isolation and characterization of exopolysaccharide secreted by a toxic dinoflagellate, Amphidinium carterae Hulburt 1957 and its probable role in harmful algal blooms (HABs). Microb. Ecol. 62, 518–527. https://doi.org/10.1007/s00248-011-9852-5 (2011).
CAS Article PubMed Google Scholar
74.
Kesaulya, I., Leterme, S. C., Mitchell, J. G. & Seuront, L. The impact of turbulence and phytoplankton dynamics on foam formation, seawater viscosity and chlorophyll concentration in the eastern English Channel. Oceanologia 50, 167–182 (2008).
Google Scholar
75.
Seuront, L. & Vincent, D. Increased seawater viscosity, Phaeocystis globosa spring bloom and Temora longicornis feeding and swimming behaviours. Mar. Ecol. Prog. Ser. 363, 131–145. https://doi.org/10.3354/meps07373 (2008).
ADS CAS Article Google Scholar
76.
Seuront, L., Vincent, D. & Mitchell, J. G. Biologically induced modification of seawater viscosity in the Eastern English Channel during a Phaeocystis globosa spring bloom. J. Mar. Syst. 61, 118–133. https://doi.org/10.1016/j.jmarsys.2005.04.010 (2006).
Article Google Scholar
77.
Seuront, L. et al. The influence of Phaeocystis globosa on microscale spatial patterns of chlorophylla and bulk-phase seawater viscosity. Biogeochemistry 83, 173–188. https://doi.org/10.1007/s10533-007-9097-z (2007).
CAS Article Google Scholar
78.
Seuront, L. et al. Role of microbial and phytoplankton communities in the control of seawater viscosity off East Antarctica (30–80° E). Deep-Sea Res. 57, 877–886. https://doi.org/10.1016/j.dsr2.2008.09.018 (2010).
ADS CAS Article Google Scholar
79.
Stoderegger, K. E. & Herndl, G. J. Production of exopolymer particles by marine bacterioplankton under contrasting turbulence conditions. Mar. Ecol. Prog. Ser. 189, 9–16. https://doi.org/10.3354/meps189009 (1999).
ADS CAS Article Google Scholar
80.
Alunno-Bruscia, M. et al. A single bio-energetics growth and reproduction model for the oyster Crassostrea gigas in six Atlantic ecosystems. J. Sea Res. 66, 340–348. https://doi.org/10.1016/j.seares.2011.07.008 (2011).
ADS Article Google Scholar
81.
Thomas, Y. et al. Global change and climate-driven invasion of the Pacific oyster (Crassostrea gigas) along European coasts: A bioenergetics modelling approach. J. Biogeogr. 43, 568–579. https://doi.org/10.1111/jbi.12665 (2016).
Article Google Scholar
82.
Guillard, R. & Hargraves, P. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32, 234–236. https://doi.org/10.2216/i0031-8884-32-3-234.1 (1993).
Article Google Scholar
83.
Scholin, C. A., Herzog, M., Sogin, M. & Anderson, D. M. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 30, 999–1011. https://doi.org/10.1111/j.0022-3646.1994.00999.x (1994).
CAS Article Google Scholar
84.
Nunn, G. B., Theisen, B. F., Christensen, B. & Arctander, P. Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J. Mol. Evol. 42, 211–223. https://doi.org/10.1007/BF02198847 (1996).
ADS CAS Article PubMed Google Scholar
85.
Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193. https://doi.org/10.1128/aem.63.1.186-193.1997 (1997).
CAS Article PubMed PubMed Central Google Scholar
86.
Wood, A. M., Everroad, R. C. & Wingard, L. M. Measuring growth rates in microalgal cultures. In Algal Culturing Techniques (ed. Anderson, R. A.) 269–285 (Elsevier, Amsterdam, 2005).
Google Scholar
87.
Kromkamp, J. C. & Forster, R. M. The use of variable fluorescence measurements in aquatic ecosystems: Differences between multiple and single turnover measuring protocols and suggested terminology. Eur. J. Phycol. 38, 103–112. https://doi.org/10.1080/0967026031000094094 (2003).
Article Google Scholar
88.
Aminot, A. & Kérouel, R. Dosage Automatique des Nutriments dans les Eaux Marines: Méthodes en flux Continu (in French) (Ed. Ifremer, Plouzané, 2007).
Google Scholar
89.
Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. https://doi.org/10.1016/0003-2697(85)90442-7 (1985).
CAS Article PubMed Google Scholar
90.
Kamerling, J. P., Gerwig, G. J., Vliegenthart, J. F. G. & Clamp, J. R. Characterization by gas-liquid chromatography mass spectrometry of pertrimethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycolipids. Biochem. J. 151, 491–495. https://doi.org/10.1042/bj1510491 (1975).
CAS Article PubMed PubMed Central Google Scholar
91.
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22, 680–685. https://doi.org/10.1038/227680a0 (1970).
ADS Article Google Scholar
92.
Rigouin, C., Delbarre Ladrat, C., Sinquin, C., Colliec-Jouault, S. & Dion, M. Assessment of biochemical methods to detect enzymatic depolymerization of polysaccharides. Carbohydr. Polym. 76, 279–284. https://doi.org/10.1016/j.carbpol.2008.10.022 (2009).
CAS Article Google Scholar
93.
Dubray, G. & Bezard, G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal. Biochem. 119, 325–329. https://doi.org/10.1016/0003-2697(82)90593-0 (1982).
CAS Article PubMed Google Scholar
94.
Aminot, A. & Kérouel, R. Hydrologie des Écosystèmes Marins: Paramètres et Analyses (in French) (Ed Ifremer, Plouzané, 2004).
Google Scholar
95.
R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org (2018).
96.
Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
Article Google Scholar More