Contrasting multitaxon responses to climate change in Mediterranean mountains
1.
Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
ADS Article Google Scholar
2.
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
ADS CAS PubMed Article Google Scholar
3.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
PubMed PubMed Central Article Google Scholar
4.
Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. Acad. Sci. 115, 1004–1008 (2018).
CAS PubMed Article Google Scholar
5.
Lenoir, J. & Svenning, J.-C. Climate-related range shifts: a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
Article Google Scholar
6.
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
PubMed Article CAS Google Scholar
7.
Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).
ADS Article Google Scholar
8.
Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).
ADS Article Google Scholar
9.
Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).
ADS Article Google Scholar
10.
Forero-Medina, G., Joppa, L. & Pimm, S. L. Constraints to species’ elevational range shifts as climate changes: constraints to elevational range shifts. Conserv. Biol. 25, 163–171 (2011).
PubMed Article PubMed Central Google Scholar
11.
Pauli, H., Gottfried, M., Reiter, K., Klettner, C. & Grabherr, G. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob. Change Biol. 13, 147–156 (2007).
ADS Article Google Scholar
12.
Rehm, E. M., Olivas, P., Stroud, J. & Feeley, K. J. Losing your edge: climate change and the conservation value of range-edge populations. Ecol. Evol. 5, 4315–4326 (2015).
PubMed PubMed Central Article Google Scholar
13.
Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences—Tansley review. New Phytol. 160, 21–42 (2003).
Article Google Scholar
14.
McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of life sciences (ed. John Wiley & Sons, Ltd) a0022548 (Wiley, Chichester, 2010). https://doi.org/10.1002/9780470015902.a0022548.
Google Scholar
15.
Vetaas, O. R., Paudel, K. P. & Christensen, M. Principal factors controlling biodiversity along an elevation gradient: water, energy and their interaction. J. Biogeogr. 46, 1652–1663 (2019).
Article Google Scholar
16.
Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).
PubMed Article PubMed Central Google Scholar
17.
Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
18.
Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology: niche conservatism, ecology, and conservation. Ecol. Lett. 13, 1310–1324 (2010).
PubMed Article PubMed Central Google Scholar
19.
Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I. & LeRoy Poff, N. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol. Lett. 13, 267–283 (2010).
PubMed Article PubMed Central Google Scholar
20.
Nascimbene, J. & Spitale, D. Patterns of beta-diversity along elevational gradients inform epiphyte conservation in alpine forests under a climate change scenario. Biol. Conserv. 216, 26–32 (2017).
Article Google Scholar
21.
Roos, R. E. et al. Contrasting drivers of community-level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Funct. Ecol. 33, 2430–2446 (2019).
Article Google Scholar
22.
Conti, F., Ciaschetti, G., Di Martino, L. & Bartolucci, F. An annotated checklist of the vascular flora of Majella National Park (Central Italy). Phytotaxa 412, 1–90 (2019).
Article Google Scholar
23.
Stanisci, A., Carranza, M. L., Pelino, G. & Chiarucci, A. Assessing the diversity pattern of cryophilous plant species in high elevation habitats. Plant Ecol. 212, 595–600 (2011).
Article Google Scholar
24.
Alpert, P. The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol. 151, 5–17 (2000).
ADS Article Google Scholar
25.
Beckett, R. P., Minibayeva, F. V. & Kranner, I. Stress tolerance of lichens. In Lichen biology 2nd edn (ed. Nash, T. H.) 134–151 (Cambridge University Press, Cambridge, 2008).
Google Scholar
26.
Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).
Article Google Scholar
27.
Blasi, C., Pietro, R. D. & Pelino, G. The vegetation of alpine belt karst-tectonic basins in the central Apennines (Italy). Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 139, 357–385 (2005).
Google Scholar
28.
Palombo, C., Chirici, G., Marchetti, M. & Tognetti, R. Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change?. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 147, 1–11 (2013).
Google Scholar
29.
Orange, A., James, P. W. & White, F. J. Microchemical methods for the identification of lichens (Twayne Publishers, Woodbridge, 2001).
Google Scholar
30.
Nimis, P. L. & Martellos, S. ITALIC-the information system on Italian Lichens. Version 5.0. University of Trieste, Department of Biology. http://dryades.units.it/italic (2017).
31.
Ros, R. M. et al. Mosses of the Mediterranean, an annotated checklist. Cryptogam. Bryol. 34, 99 (2013).
Article Google Scholar
32.
Giordani, P. et al. Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. J. Veg. Sci. 25, 778–792 (2014).
Article Google Scholar
33.
Spitale, D., Mair, P. & Nascimbene, J. Patterns of bryophyte life-forms are predictable across land cover types. Ecol. Indic. 109, 105799 (2020).
Article Google Scholar
34.
Hill, M. O., Preston, C. D., Bosanquet, S. D. S. & Roy, D. B. BRYOATT: attributes of British and Irish mosses, liverworts and hornworts (Centre for Ecology and Hydrology, Bailrigg, 2007).
Google Scholar
35.
Glime, J. M. Physiological ecology. In Bryophyte ecology Volume 1. (Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://digitalcommons.mtu.edu/bryophyte-ecology1/ (25 March 2017), 2017).
36.
Pignatti, S. Flora d’Italia (Edagricole, Bologna, 1982).
Google Scholar
37.
Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
Article Google Scholar
38.
Landolt, E. Flora indicativa: ecological indicator values and biological attributes of the flora of Switzerland and the Alps (Haupt Verlag, Bern, 2010).
Google Scholar
39.
Pignatti, S. Valori di bioindicazione delle piante vascolari della flora d’Italia. Braun-Blanquetia 39, 3–97 (2005).
Google Scholar
40.
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
PubMed PubMed Central Article Google Scholar
41.
Davis, F. W., Borchert, M., Meentemeyer, R. K., Flint, A. & Rizzo, D. M. Pre-impact forest composition and ongoing tree mortality associated with sudden oak death in the Big Sur region, California. For. Ecol. Manag. 259, 2342–2354 (2010).
Article Google Scholar
42.
Jaberalansar, Z., Tarkesh, M. & Bassiri, M. Spatial downscaling of climate variables using three statistical methods in Central Iran. J. Mt. Sci. 15, 606–617 (2018).
Article Google Scholar
43.
R Core Team. R: a language and environment for statistical computing [Computer software, version 3.6. 2] (R Foundation for Statistical Computing, Vienna, 2019).
Google Scholar
44.
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, Berlin, 2009). https://doi.org/10.1007/978-0-387-87458-6.
Google Scholar
45.
Fournier, D. A. et al. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 233–249 (2012).
MathSciNet MATH Article Google Scholar
46.
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach (Springer, Berlin, 2002). https://doi.org/10.1007/b97636.
Google Scholar
47.
Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).
PubMed PubMed Central Article Google Scholar
48.
Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
Article Google Scholar
49.
Bartoń, K. MuMIn: multi-model inference. R package version 1.43. 17. (2020).
50.
Carvalho, J. C., Cardoso, P. & Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob. Ecol. Biogeogr. 21, 760–771 (2012).
Article Google Scholar
51.
Cardoso, P., Rigal, F. & Carvalho, J. C. BAT: biodiversity assessment tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).
Article Google Scholar
52.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Google Scholar
53.
Oksanen, J. et al. vegan: community ecology package. R package version 2.5-6 (2019).
54.
Brown, A. M. et al. The fourth-corner solution: using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).
Article Google Scholar
55.
Wang, Y. et al. mvabund: statistical methods for analysing multivariate abundance data. R package version 4.1.3. (2020).
56.
Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008).
ADS Article Google Scholar
57.
Appiotti, F. et al. A multidisciplinary study on the effects of climate change in the northern Adriatic Sea and the Marche region (central Italy). Reg. Environ. Change 14, 2007–2024 (2014).
Article Google Scholar
58.
Barredo, J. I., Mauri, A., Caudullo, G. & Dosio, A. Assessing Shifts of mediterranean and arid climates under RCP4.5 and RCP8.5 climate projections in europe. Pure Appl. Geophys. 175, 3955–3971 (2018).
ADS Article Google Scholar
59.
Nascimbene, J. & Marini, L. Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J. Biogeogr. 42, 1222–1232 (2015).
Article Google Scholar
60.
Vanneste, T. et al. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32, 579–593 (2017).
Article Google Scholar
61.
Vittoz, P. et al. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120, 139–149 (2010).
Article Google Scholar
62.
Ellis, C. J. & Yahr, R. An interdisciplinary review of climate change trends and uncertainties: lichen biodiversity, arctic-alpine ecosystems and habitat loss. In Climate change, ecology and systematics (eds Hodkinson, T. R. et al.) 457–489 (Cambridge University Press, Cambridge, 2011).
Google Scholar
63.
Seymour, F. A., Crittenden, P. D. & Dyer, P. S. Sex in the extremes: lichen-forming fungi. Mycologist 19, 51–58 (2005).
Article Google Scholar
64.
Giordani, P., Malaspina, P., Benesperi, R., Incerti, G. & Nascimbene, J. Functional over-redundancy and vulnerability of lichen communities decouple across spatial scales and environmental severity. Sci. Total Environ. 666, 22–30 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar
65.
Manish, K., Telwala, Y., Nautiyal, D. C. & Pandit, M. K. Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya, India. Model. Earth Syst. Environ. 2, 92 (2016).
Article Google Scholar
66.
Rosbakh, S. et al. Contrasting effects of extreme drought and snowmelt patterns on mountain plants along an elevation gradient. Front. Plant Sci. 8, 1478 (2017).
PubMed PubMed Central Article Google Scholar
67.
Choler, P., Michalet, R. & Callaway, R. M. Facilitation and competition on gradients in alpine plant communities. Ecology 82, 3295–3308 (2001).
Article Google Scholar
68.
Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776 (2015).
ADS Article Google Scholar
69.
Di Musciano, M. et al. Distribution of plant species and dispersal traits along environmental gradients in central mediterranean summits. Diversity 10, 58 (2018).
Article Google Scholar More