Environmental impact of the cultivation of energy willow in Poland
1.
Roy, P., Tokuyasu, K., Orikasa, T., Nakamura, N. & Shiixa, T. A Review of life cycle assessment (LCA) of bioethanol from lignocellulosic biomass. JARQ 46, 41–57 (2012).
CAS Article Google Scholar
2.
Palmer, M. M., Forrester, J. A., Rothstein, D. E. & Mladenoff, D. J. Establishment phase greenhouse gas emissions in short rotation woody biomass plantations in the Northern Lake States, USA. Biomass Bioenergy 62, 26–36 (2014).
CAS Article Google Scholar
3.
González-García, S., Iribarren, D., Susmozas, A., Dufour, J. & Murphy, R. J. Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: bioethanol production and power generation. Appl. Energy 95, 111–122 (2012).
Article CAS Google Scholar
4.
Mizsey, P. & Racz, P. Cleaner production alternatives: biomass utilisation options. J. Clean. Prod. 18, 767–770 (2010).
CAS Article Google Scholar
5.
Igliński, B., Cichosz, M., Skrzatek, M. & Buczkowski, R. Potencjał energetyczny biomasy na gruntach ugorowanych i nieużytkach w Polsce. Inżynieria i Ochrona Środowiska 21, 79–87 (2018).
Google Scholar
6.
Stolarski, M., Szczukowski, S. & Tworkowski, J. Biopaliwa z biomasy wieloletnich roślin energetycznych. Energetyka 1, 77–80 (2008).
Google Scholar
7.
Murphy, F., Devlin, G. & McDonnell, K. Energy requirements and environmental impacts associated with the production of short rotation willow (Salix sp.) chip in Ireland. GCB Bioenergy 6, 727–739 (2014).
Article Google Scholar
8.
El Bassam, N. Handboook for Bioenergy Crops. Earthscan, London, 544 (2010).
9.
Eisenbies, M. H., Volk, T. A., Posselius, J., Foster, Ch. & Shi, S. Evaluation of a single-pass, cut and chip harvest system on commercial-scale, short-rotation shrub willow biomass crops. BioEnergy Res. 7(4), 1506–1518 (2014).
Article Google Scholar
10.
Nathan, J., Sleight, N. & Volk, T. A. Recently Bred Willow (Salix spp.) Biomass crops show stable yield trends over three rotations at two sites. BioEnergy Res. 9, 782–797 (2016).
Article Google Scholar
11.
Djomo, S. N., Kasmioui, O. E. & Ceulemans, R. Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenergy 3(3), 181–197 (2011).
CAS Article Google Scholar
12.
Hammar, T., Ericsson, N., Sundberg, C. & Hansson, P. A. Climate impact of willow grown for bioenergy in Sweden. BioEnergy Res. 7, 1529–1540 (2014).
Article Google Scholar
13.
Argus, G. W. Infrageneric classification of Salix (Salicaceae) in the new world. Syst. Bot. Monogr. 52, 101–121 (1997).
Article Google Scholar
14.
Keoleian, G. A. & Volk, T. A. Renewable energy from willow biomass crops: life cycle energy, environmental, and economic performance. Crit. Rev. Plant Sci. 24, 385–406 (2005).
Article Google Scholar
15.
Christersson, L., Sennerby-Forsse, L. & Zsuffa, L. The role and significance of woody biomass plantations in Swedish agriculture. For. Chron. 69, 687–693 (1993).
Article Google Scholar
16.
Schroeder, W., Kort, J., Savoie, P. & Preto, F. Biomass harvest from natural willow rings around prairie wetlands. BioEnergy Res. 2, 99–105 (2009).
Article Google Scholar
17.
Abrahamson, L. P., Volk, T. A. & Smart, L. P. Shrub Willow Producers Handbook (SUNY-ESF, Syracuse, 2010).
Google Scholar
18.
Heller, M. C., Keoleian, G. A. & Volk, T. A. Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenerg. 25, 147–165 (2003).
CAS Article Google Scholar
19.
Volk, T. A., Verwijst, T., Tharakan, P. J., Abrahamson, L. P. & White, E. H. Growing fuel: a sustainability assessment of willow biomass crops. Front. Ecol. Evol. 2(8), 411–418 (2004).
Article Google Scholar
20.
Rowe, R. L., Street, N. R. & Taylor, G. Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew. Sustain. Energy Rev. 13, 271–290 (2009).
Article Google Scholar
21.
Lippke, B. et al. Comparing life-cycle carbon and energy impacts for biofuel, wood product, and forest management alternatives. Forest Prod. J. 62, 247–257 (2012).
CAS Article Google Scholar
22.
Caputo, J. et al. Incorporating uncertainty into a life cycle assessment (LCA) model of short-rotation willow biomass (Salix spp) crops. BioEnergy Res. 7(1), 48–59 (2014).
CAS Article Google Scholar
23.
Davis, S. C. et al. Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corngrowing regions of the US. Front. Ecol. Environ. 10, 69–74 (2012).
Article Google Scholar
24.
Arevalo, C. B. M., Bhatti, J. S., Chang, S. X. & Skidders, D. Land use change effects on ecosystem carbon balance: from agricultural to hybrid poplar plantation. Agric. Ecosyst. Environ. 141, 342–349 (2011).
Article Google Scholar
25.
Pietrzykowski, M. et al. Carbon sink potential and allocation in above-and below-ground biomass in willow coppice. J. For. Res. https://doi.org/10.1007/s11676-019-01089-3 (2020).
Article Google Scholar
26.
Langholtz, M. et al. Economic comparative advantage of willow biomass in the Northeast USA. Biofuels Bioprod. Biorefin. 13(1), 74–85 (2019).
CAS Article Google Scholar
27.
Kimming, M. et al. Biomass from agriculture in small-scale combined heat and power plants. Comp. Life Cycle Assess. Biomass Bioenergy 35, 1572–1581 (2011).
CAS Article Google Scholar
28.
Fargione, J. E., Plevin, R. J. & Hill, J. D. The ecological impact of biofuels. Annu. Rev. Ecol. Evol. 41, 351–377 (2010).
Article Google Scholar
29.
Zhao, F., Wu, J., Wang, L., Liu, S., Wei, X., Xiao, J., Qiu, L., & Sun, P. Multi-environmental impacts of biofuel production in the US Corn Belt: a coupled hydro-biogeochemical modeling approach. J. Clea. Prod. 251, 119561, ISSN 0959-6526 (2020).
30.
Wu, Y., Liu, S. & Li, Z. Identifying potential areas for biofuel production and evaluating the environmental effects: a case study of the James River Basin in the Midwestern United States. Glob. Change Biol. Bioenergy 4, 875–888 (2012).
Article Google Scholar
31.
Wu, Y. et al. Bioenergy production and environmental impacts. Geosci. Lett. 5, 14 (2018).
ADS Article Google Scholar
32.
Meehan, T. D., Hurlbert, A. H. & Gratton, C. Bird communities in future bioenergy landscapes of the Upper Midwest. Proc. Natl. Acad. Sci. 107, 18533–18538 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar
33.
Murphy, R., Woods, J., Black, M. & McManus, M. Global developments in the competition for land from biofuels. Food Policy 36, 52–61 (2011).
Article Google Scholar
34.
Styles, D., Borjesson, P., d’Hertefeldt, T., Birkhofer, K., Dauber, J., Adams, P., & Vaneeckhaute, C. Climate regulation, energy provisioning and water purification (2019).
35.
Zhang, Y. K. & Schilling, K. E. Increasing streamflow and baseflow in Mississippi River since the 1940s: effect of land use change. J. Hydrol. 324, 412–422 (2006).
ADS Article Google Scholar
36.
Pacaldo, R. S., Volk, T. A. & Briggs, R. D. No significant differences in soil organic carbon contents along a chronosequence of shrub willow biomass crop fields. Biomass Bioenerg. 58, 136–142 (2013).
CAS Article Google Scholar
37.
Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta-analysis. Glob. Change Biol. 8, 345–360 (2002).
ADS Article Google Scholar
38.
Gelfand, I., Snapp, S. S. & Robertson, G. P. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the US Midwest. Environ. Sci. Technol. 44, 4006–4011 (2010).
ADS CAS PubMed Article Google Scholar
39.
Zenone, T. et al. CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation. Glob. Change Biol. Bioenergy 3, 401–412 (2011).
Article Google Scholar
40.
Henner, D., Smith, P., Davies, C., McNamara, N., Balkovic, J. Sustainable whole system: Miscanthus, Willow and Poplar bioenergy crops for carbon stabilisation and erosion control in agricultural systems. In Geophysical Research Abstracts 21 (2019).
41.
Bouwman, A. F., van Grinsven, J. M. & Eickhout, B. Consequences of the cultivation of energy crops for the global nitrogen cycle. Ecol. Appl. 20, 101–109 (2010).
CAS PubMed Article PubMed Central Google Scholar
42.
Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
43.
Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
44.
Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319, 1238–1240 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
45.
Sikora, J. et al. The impact of a controlled-release fertilizer on greenhouse gas emissions and the efficiency of the production of Chinese cabbage. Energies 8(13), 2063 (2020).
Article CAS Google Scholar
46.
Tonini, D. & Astrup, T. LCA of biomass-based energy systems: a case 2008 study for Denmark. Appl. Energy 99, 234–246 (2012).
CAS Article Google Scholar
47.
Caserini, S., Livio, S., Giugliano, M., Grosso, M. & Rigamonti, L. LCA of domestic and centralized biomass combustion: the case of Lombardy (Italy). Biomass Bioenerg. 34, 474–482 (2010).
CAS Article Google Scholar
48.
Kowalczyk, Z. Environmental impact of potato cultivation on plantations covering areas of various sizes. In Web of Conferences, E3S Web Conferences, 2019, XXII International Scientific Conference POLSITA, Progress of Mechanical Engineering Supported by Information Technology Vol. 132 (2019).
49.
Kowalczyk, Z. Life cycle assessment (LCA) of potato production. In Web of Conferences, E3S Web Conferences, 2019, XXII International Scientific Conference POLSITA Progress of Mechanical Engineering Supported by Information Technology Vol. 132 (2019).
50.
Roy, P. et al. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 90, 1–10 (2009).
Article Google Scholar
51.
Klein, D., Wolf, Ch., Schulz, Ch. & Weber-Blaschke, G. 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. Int. J. Life Cycle Assess. 20, 556–575 (2015).
CAS Article Google Scholar
52.
Cherubini, F. GHG balances of bioenergy systems—overview of key steps in the production chain and methodological concerns. Renew. Energy 35(7), 1565–1573 (2010).
CAS Article Google Scholar
53.
Supasri, T. et al. Life cycle assessment of maize cultivation and biomass utilization in northern Thailand. Sci. Rep. 10, 3516 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
54.
Turconi, R., Boldrin, A. & Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew. Sustain. Energy Rev. 28, 555–565 (2013).
CAS Article Google Scholar
55.
Finnveden, G. et al. Recent developments in life cycle assessment. J. Environ. Manage. 91(1), 1–21 (2009).
PubMed Article PubMed Central Google Scholar
56.
Guidi Nissim, W., Pitre, F. E., Teodorescu, T. I. & Labrecque, M. Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec Canada. Biomass Bioenergy 56, 361–369 (2013).
Article Google Scholar
57.
Kowalczyk, Z. & Kwaśniewski, D. Life cycle assessment (LCA) in energy willow cultivation on plantations with varied surface area. Agric. Eng. 23(4), 11–19 (2019).
Google Scholar
58.
Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).
Article Google Scholar
59.
IPCC Climate change 2013: the physical science basis. In: Stocker TF, QinD, PlattnerGK, TignorM, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press, 1535 (2013).
60.
Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).
ADS Article CAS Google Scholar
61.
WMO Scientific assessment of ozone depletion. 2010, Global Ozone Research and Monitoring Project-Report 52 (World Meteorological Organization, Geneva, 2011).
Google Scholar
62.
Frischknecht, R., Braunschweig, A., Hofstetter, P. & Suter, P. Human health damages due to ionising radiation in life cycle impact assessment. Environ. Impact Asses Rev. 20, 159–189 (2000).
Article Google Scholar
63.
Van Zelm, R., Preiss, P., Van Goethem, T., Van Dingenen, R. & Huijbregts, M. A. J. Regionalized life cycle impact assessment of air pollution on the global scale: damage to human health and vegetation. Atmos. Environ. 134, 129–137 (2016).
ADS Article CAS Google Scholar
64.
Roy, P. O. et al. Characterization factors for terrestrial acidification at the global scale: a systematic analysis of spatial variability and uncertainty. Sci. Total Environ. 500, 270–276 (2014).
ADS PubMed Article CAS Google Scholar
65.
Helmes, R. J. K., Huijbregts, M. A. J., Henderson, A. D. & Jolliet, O. Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. Int. J. Life Cycle Assess. 17, 646–654 (2012).
CAS Article Google Scholar
66.
VanZelm, R., Huijbregts, M. A. J. & VandeMeent, D. USES-LCA 2.0: aglobal nested multi-media fate, exposure and effects model. Int. J. Life Cycle Assess. 14(30), 282–284 (2009).
Article Google Scholar
67.
De Baan, L., Alkemade, R. & Köllner, T. Land use impacts on biodiversity in LCA: a global approach. Int. J. Life Cycle Assess. 18, 1216–1230 (2013).
Article Google Scholar
68.
Curran, M., Hellweg, S. & Beck, J. Is there any empirical support for biodiversity offset policy?. Ecol. Appl. 24, 617–632 (2014).
PubMed Article PubMed Central Google Scholar
69.
Döll, P. & Siebert, S. Global modelling of irrigation water requirements. Water Resour. Res. 38, 1037 (2002).
ADS Article Google Scholar
70.
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. PNAS 109, 3232–3237 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
71.
Vieira, M. D. M., Ponsioen, T. C., Goedkoop, M. & Huijbregts, M. A. J. Surplus ore potential as a scarcity indicator for resource extraction. J. Indus. Ecol. 21(2), 381–390 (2016).
Article Google Scholar
72.
Jungbluth, N., & Frischknecht, R. Cumulative energy demand. In Hischier, R., Weidema, B. (Eds) Implementation of Life Cycle Impact Assessment Methods, St Gallen Ecoinvent Centre, pp. 33–40.
73.
Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F. et al. ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level report I. Charact. RIVM Rep. 2016–0104 (2016).
74.
Spinelli, R., Schweier, J. & De Francesco, F. Harvesting techniques for non-industrial biomass plantations. Biosyst. Eng. 113, 319–324 (2012).
Article Google Scholar
75.
Kwaśniewski, D., Mudryk, K. & Wróbel, M. Zbiór wierzby energetycznej z użyciem piły łańcuchowej. Inżynieria Rolnicza 13, 271–277 (2006).
Google Scholar
76.
Wiloso, E. I. et al. Production of sorghum pellets for electricity generation in Indonesia: a life cycle assessment. Biofuel Res. J. 27, 1178–1194 (2020).
Article Google Scholar
77.
Yang, Y. & Tilman, D. Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res. J. 26, 1143–1148 (2020).
Article Google Scholar
78.
Heller, M. C., Keoleian, G. A., Mann, M. K. & Volk, T. A. Life cycle energy and environmental benefits of generating electricity from willow biomass. Renew. Energy 29(7), 1023–1042 (2004).
CAS Article Google Scholar
79.
Fernandez-Tirado, F. & Parra-Lo´pez C, Calatrava-Requena JA, ,. methodological proposal for life cycle inventory of fertilization in energy crops: the case of Argentinean soybean and Spanish rapeseed. Biomass Bioenergy 58, 104–116 (2013).
CAS Article Google Scholar
80.
Goglioa, P. & Owende, P. M. O. A screening LCA of short rotation coppice willow (Salix sp.) feedstock production system for small-scale electricity generation. Biosyst. Eng. 103, 389–394 (2009).
Article Google Scholar More