More stories

  • in

    Contrasting multitaxon responses to climate change in Mediterranean mountains

    1.
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
    ADS  Article  Google Scholar 
    2.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. Acad. Sci. 115, 1004–1008 (2018).
    CAS  PubMed  Article  Google Scholar 

    5.
    Lenoir, J. & Svenning, J.-C. Climate-related range shifts: a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
    Article  Google Scholar 

    6.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Article  CAS  Google Scholar 

    7.
    Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).
    ADS  Article  Google Scholar 

    8.
    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).
    ADS  Article  Google Scholar 

    9.
    Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).
    ADS  Article  Google Scholar 

    10.
    Forero-Medina, G., Joppa, L. & Pimm, S. L. Constraints to species’ elevational range shifts as climate changes: constraints to elevational range shifts. Conserv. Biol. 25, 163–171 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Pauli, H., Gottfried, M., Reiter, K., Klettner, C. & Grabherr, G. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob. Change Biol. 13, 147–156 (2007).
    ADS  Article  Google Scholar 

    12.
    Rehm, E. M., Olivas, P., Stroud, J. & Feeley, K. J. Losing your edge: climate change and the conservation value of range-edge populations. Ecol. Evol. 5, 4315–4326 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences—Tansley review. New Phytol. 160, 21–42 (2003).
    Article  Google Scholar 

    14.
    McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of life sciences (ed. John Wiley & Sons, Ltd) a0022548 (Wiley, Chichester, 2010). https://doi.org/10.1002/9780470015902.a0022548.
    Google Scholar 

    15.
    Vetaas, O. R., Paudel, K. P. & Christensen, M. Principal factors controlling biodiversity along an elevation gradient: water, energy and their interaction. J. Biogeogr. 46, 1652–1663 (2019).
    Article  Google Scholar 

    16.
    Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology: niche conservatism, ecology, and conservation. Ecol. Lett. 13, 1310–1324 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I. & LeRoy Poff, N. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol. Lett. 13, 267–283 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Nascimbene, J. & Spitale, D. Patterns of beta-diversity along elevational gradients inform epiphyte conservation in alpine forests under a climate change scenario. Biol. Conserv. 216, 26–32 (2017).
    Article  Google Scholar 

    21.
    Roos, R. E. et al. Contrasting drivers of community-level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Funct. Ecol. 33, 2430–2446 (2019).
    Article  Google Scholar 

    22.
    Conti, F., Ciaschetti, G., Di Martino, L. & Bartolucci, F. An annotated checklist of the vascular flora of Majella National Park (Central Italy). Phytotaxa 412, 1–90 (2019).
    Article  Google Scholar 

    23.
    Stanisci, A., Carranza, M. L., Pelino, G. & Chiarucci, A. Assessing the diversity pattern of cryophilous plant species in high elevation habitats. Plant Ecol. 212, 595–600 (2011).
    Article  Google Scholar 

    24.
    Alpert, P. The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol. 151, 5–17 (2000).
    ADS  Article  Google Scholar 

    25.
    Beckett, R. P., Minibayeva, F. V. & Kranner, I. Stress tolerance of lichens. In Lichen biology 2nd edn (ed. Nash, T. H.) 134–151 (Cambridge University Press, Cambridge, 2008).
    Google Scholar 

    26.
    Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).
    Article  Google Scholar 

    27.
    Blasi, C., Pietro, R. D. & Pelino, G. The vegetation of alpine belt karst-tectonic basins in the central Apennines (Italy). Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 139, 357–385 (2005).
    Google Scholar 

    28.
    Palombo, C., Chirici, G., Marchetti, M. & Tognetti, R. Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change?. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 147, 1–11 (2013).
    Google Scholar 

    29.
    Orange, A., James, P. W. & White, F. J. Microchemical methods for the identification of lichens (Twayne Publishers, Woodbridge, 2001).
    Google Scholar 

    30.
    Nimis, P. L. & Martellos, S. ITALIC-the information system on Italian Lichens. Version 5.0. University of Trieste, Department of Biology. http://dryades.units.it/italic (2017).

    31.
    Ros, R. M. et al. Mosses of the Mediterranean, an annotated checklist. Cryptogam. Bryol. 34, 99 (2013).
    Article  Google Scholar 

    32.
    Giordani, P. et al. Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. J. Veg. Sci. 25, 778–792 (2014).
    Article  Google Scholar 

    33.
    Spitale, D., Mair, P. & Nascimbene, J. Patterns of bryophyte life-forms are predictable across land cover types. Ecol. Indic. 109, 105799 (2020).
    Article  Google Scholar 

    34.
    Hill, M. O., Preston, C. D., Bosanquet, S. D. S. & Roy, D. B. BRYOATT: attributes of British and Irish mosses, liverworts and hornworts (Centre for Ecology and Hydrology, Bailrigg, 2007).
    Google Scholar 

    35.
    Glime, J. M. Physiological ecology. In Bryophyte ecology Volume 1. (Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://digitalcommons.mtu.edu/bryophyte-ecology1/ (25 March 2017), 2017).

    36.
    Pignatti, S. Flora d’Italia (Edagricole, Bologna, 1982).
    Google Scholar 

    37.
    Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
    Article  Google Scholar 

    38.
    Landolt, E. Flora indicativa: ecological indicator values and biological attributes of the flora of Switzerland and the Alps (Haupt Verlag, Bern, 2010).
    Google Scholar 

    39.
    Pignatti, S. Valori di bioindicazione delle piante vascolari della flora d’Italia. Braun-Blanquetia 39, 3–97 (2005).
    Google Scholar 

    40.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Davis, F. W., Borchert, M., Meentemeyer, R. K., Flint, A. & Rizzo, D. M. Pre-impact forest composition and ongoing tree mortality associated with sudden oak death in the Big Sur region, California. For. Ecol. Manag. 259, 2342–2354 (2010).
    Article  Google Scholar 

    42.
    Jaberalansar, Z., Tarkesh, M. & Bassiri, M. Spatial downscaling of climate variables using three statistical methods in Central Iran. J. Mt. Sci. 15, 606–617 (2018).
    Article  Google Scholar 

    43.
    R Core Team. R: a language and environment for statistical computing [Computer software, version 3.6. 2] (R Foundation for Statistical Computing, Vienna, 2019).
    Google Scholar 

    44.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, Berlin, 2009). https://doi.org/10.1007/978-0-387-87458-6.
    Google Scholar 

    45.
    Fournier, D. A. et al. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 233–249 (2012).
    MathSciNet  MATH  Article  Google Scholar 

    46.
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach (Springer, Berlin, 2002). https://doi.org/10.1007/b97636.
    Google Scholar 

    47.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
    Article  Google Scholar 

    49.
    Bartoń, K. MuMIn: multi-model inference. R package version 1.43. 17. (2020).

    50.
    Carvalho, J. C., Cardoso, P. & Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob. Ecol. Biogeogr. 21, 760–771 (2012).
    Article  Google Scholar 

    51.
    Cardoso, P., Rigal, F. & Carvalho, J. C. BAT: biodiversity assessment tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).
    Article  Google Scholar 

    52.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    53.
    Oksanen, J. et al. vegan: community ecology package. R package version 2.5-6 (2019).

    54.
    Brown, A. M. et al. The fourth-corner solution: using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).
    Article  Google Scholar 

    55.
    Wang, Y. et al. mvabund: statistical methods for analysing multivariate abundance data. R package version 4.1.3. (2020).

    56.
    Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008).
    ADS  Article  Google Scholar 

    57.
    Appiotti, F. et al. A multidisciplinary study on the effects of climate change in the northern Adriatic Sea and the Marche region (central Italy). Reg. Environ. Change 14, 2007–2024 (2014).
    Article  Google Scholar 

    58.
    Barredo, J. I., Mauri, A., Caudullo, G. & Dosio, A. Assessing Shifts of mediterranean and arid climates under RCP4.5 and RCP8.5 climate projections in europe. Pure Appl. Geophys. 175, 3955–3971 (2018).
    ADS  Article  Google Scholar 

    59.
    Nascimbene, J. & Marini, L. Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J. Biogeogr. 42, 1222–1232 (2015).
    Article  Google Scholar 

    60.
    Vanneste, T. et al. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32, 579–593 (2017).
    Article  Google Scholar 

    61.
    Vittoz, P. et al. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120, 139–149 (2010).
    Article  Google Scholar 

    62.
    Ellis, C. J. & Yahr, R. An interdisciplinary review of climate change trends and uncertainties: lichen biodiversity, arctic-alpine ecosystems and habitat loss. In Climate change, ecology and systematics (eds Hodkinson, T. R. et al.) 457–489 (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    63.
    Seymour, F. A., Crittenden, P. D. & Dyer, P. S. Sex in the extremes: lichen-forming fungi. Mycologist 19, 51–58 (2005).
    Article  Google Scholar 

    64.
    Giordani, P., Malaspina, P., Benesperi, R., Incerti, G. & Nascimbene, J. Functional over-redundancy and vulnerability of lichen communities decouple across spatial scales and environmental severity. Sci. Total Environ. 666, 22–30 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Manish, K., Telwala, Y., Nautiyal, D. C. & Pandit, M. K. Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya, India. Model. Earth Syst. Environ. 2, 92 (2016).
    Article  Google Scholar 

    66.
    Rosbakh, S. et al. Contrasting effects of extreme drought and snowmelt patterns on mountain plants along an elevation gradient. Front. Plant Sci. 8, 1478 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Choler, P., Michalet, R. & Callaway, R. M. Facilitation and competition on gradients in alpine plant communities. Ecology 82, 3295–3308 (2001).
    Article  Google Scholar 

    68.
    Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776 (2015).
    ADS  Article  Google Scholar 

    69.
    Di Musciano, M. et al. Distribution of plant species and dispersal traits along environmental gradients in central mediterranean summits. Diversity 10, 58 (2018).
    Article  Google Scholar  More

  • in

    The environmental and ecological determinants of elevated Ross River Virus exposure in koalas residing in urban coastal landscapes

    1.
    Gonzalez-Astudillo, V., Allavena, R., McKinnon, A., Larkin, R. & Henning, J. Decline causes of Koalas in South East Queensland, Australia: a 17-year retrospective study of mortality and morbidity. Sci. Rep. 7, 42587 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Ward, M. S. et al. Lots of loss with little scrutiny: The attrition of habitat critical for threatened species in Australia. Conserv. Sci. Pract. 1, e117 (2019).
    Google Scholar 

    3.
    Martin, R. & Handasyde, K. The Koala: Natural History, Conservation and Management (University of New South Wales Press Ltd (Hong Kong, Australian Natural History Series, 1999).
    Google Scholar 

    4.
    McAlpine, C. et al. Conserving koalas: A review of the contrasting regional trends, outlooks and policy challenges. Biol. Conserv. 192, 226–236 (2015).
    Article  Google Scholar 

    5.
    Shumway, N., Lunney, D., Seabrook, L. & McAlpine, C. Saving our national icon: An ecological analysis of the 2011 Australian Senate inquiry into status of the koala. Environ. Sci. Policy 54, 297–303 (2015).
    Article  Google Scholar 

    6.
    Adams-Hosking, C., Grantham, H. S., Rhodes, J. R., McAlpine, C. & Moss, P. T. Modelling climate-change-induced shifts in the distribution of the koala. Wildlife Res. 38, 122–130 (2011).
    Article  Google Scholar 

    7.
    Rhodes, J. R., Beyer, H., Preece, H. & McAlpine, C. South East Queensland koala population modelling study. UniQuest (2015).

    8.
    Dique, D. S., Preece, H. J., Thompson, J. & de Villiers, D. L. Determining the distribution and abundance of a regional koala population in south-east Queensland for conservation management. Wildlife Res. 31, 109–117 (2004).
    Article  Google Scholar 

    9.
    Thompson, J. The comparative ecology and population dynamics of koalas in the Koala Coast region of south-east Queensland. PhD Thesis, School of Integrative Biology, University of Queensland (2006).

    10.
    Rhodes, J. R. et al. Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biol. Conserv. 144, 1081–1088 (2011).
    Article  Google Scholar 

    11.
    Denner, J. & Young, P. R. Koala retroviruses: Characterization and impact on the life of koalas. Retrovirology 10, 108 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Nyari, S. et al. Epidemiology of chlamydial infection and disease in a free-ranging koala (Phascolarctos cinereus) population. PloS One 12 (2017).

    13.
    Waugh, C. A. et al. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus). Sci. Rep. 7, 1–11 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    McCallum, H., Kerlin, D. H., Ellis, W. & Carrick, F. Assessing the significance of endemic disease in conservation—koalas, chlamydia, and koala retrovirus as a case study. Conserv. Lett. 11, e12425 (2018).
    Article  Google Scholar 

    15.
    Aldred, J., Campbell, J., Mitchell, G., Davis, G. & Elliott, J. Involvement of wildlife in the natural cycle of Ross River and Barmah Forest viruses (Wildlife Disease Association Meeting, Melbourne, Australia, 1991).
    Google Scholar 

    16.
    Russell, R. C. Arboviruses and their vectors in Australia: An update on the ecology and epidemiology of some mosquito-borne arboviruses. Rev. Med. Vet. Entomol. 83, 141–158 (1995).
    Google Scholar 

    17.
    Harley, D., Sleigh, A. & Ritchie, S. Ross River virus transmission, infection, and disease: A cross-disciplinary review. Clin. Microbiol. Rev. 14, 909–932 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Seay, A. R. & Wolinsky, J. S. Ross river virus-induced demyelination: I Pathogenesis and histopathology. Ann. Neurol. 12, 380–389 (1982).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Azuolas, J., Wishart, E., Bibby, S. & Ainsworth, C. Isolation of Ross River virus from mosquitoes and from horses with signs of musculoskeletal disease. Aust. Vet. J. 81, 344–347 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Stephenson, E. B., Peel, A. J., Reid, S. A., Jansen, C. C. & McCallum, H. The non-human reservoirs of Ross River virus: A systematic review of the evidence. Parasite. Vector. 11, 188 (2018).
    Article  Google Scholar 

    21.
    Skinner, E. B. et al. Associations between Ross River Virus infection in humans and vector-vertebrate community ecology in Brisbane Australia. Vector-borne Zoonot. https://doi.org/10.1089/vbz.2019.2585 (2020).
    Article  Google Scholar 

    22.
    Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. T. R. Soc. B. 363, 321–339 (2008).
    Article  Google Scholar 

    23.
    Nelson, R. J. & Demas, G. E. Seasonal changes in immune function. Quart. Rev. Biol. 71, 511–548 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Old, J. M. & Deane, E. M. Antibodies to the Ross River virus in captive marsupials in urban areas of eastern New South Wales Australia. J. Wildlife Dis. 41, 611–614 (2005).
    Article  Google Scholar 

    25.
    Muhar, A., Dale, P. E., Thalib, L. & Arito, E. The spatial distribution of Ross River virus infections in Brisbane: Significance of residential location and relationships with vegetation types. Environ. Health Prev. 4, 184–189 (2000).
    CAS  Article  Google Scholar 

    26.
    Ryan, P., Alsemgeest, D., Gatton, M. & Kay, B. Ross River virus disease clusters and spatial relationship with mosquito biting exposure in Redland Shire, southern Queensland Australia. J. Med. Entomol. 43, 1042–1059 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Davies, N. et al. Movement patterns of an arboreal marsupial at the edge of its range: A case study of the koala. Movement Ecol. 1, 8 (2013).
    Article  Google Scholar 

    28.
    Murphy, A. K. et al. Spatial and temporal patterns of Ross River virus in South East Queensland, Australia: Identification of hot spots at the rural-urban interface. Preprint available at Research Square. https://doi.org/10.21203/rs.3.rs-16140/v1 (2020).

    29.
    Potter, A., Johansen, C. A., Fenwick, S., Reid, S. A. & Lindsay, M. D. The seroprevalence and factors associated with Ross River virus infection in western grey kangaroos (Macropus fuliginosus) in Western Australia. Vector-borne Zoonot. 14, 740–745 (2014).
    Article  Google Scholar 

    30.
    Kay, B. H., Boyd, A. M., Ryan, P. A. & Hall, R. A. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane Australia. Am. J. Trop. Med. Hyg. 76, 417–423 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Doak, D. F., Marino, P. C. & Kareiva, P. M. Spatial scale mediates the influence of habitat fragmentation on dispersal success: Implications for conservation. Theor. Popul. Biol. 41, 315–336 (1992).
    Article  Google Scholar 

    32.
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. S. 34, 487–515 (2003).
    Article  Google Scholar 

    33.
    Di Giulio, M., Holderegger, R. & Tobias, S. Effects of habitat and landscape fragmentation on humans and biodiversity in densely populated landscapes. J. Environ. Manag. 90, 2959–2968 (2009).
    Article  Google Scholar 

    34.
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Article  Google Scholar 

    35.
    Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17, 267–272 (2003).
    Article  Google Scholar 

    36.
    Ostfeld, R. S. Biodiversity loss and the rise of zoonotic pathogens. Clin. Microbiol. Infect. 15, 40–43 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Johnson, B. J. et al. The roles of mosquito and bird communities on the prevalence of West Nile virus in urban wetland and residential habitats. Urban Ecosyst. 15, 513–531 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Quigley, B. L., Ong, V. A., Hanger, J. & Timms, P. Molecular dynamics and mode of transmission of koala retrovirus as it invades and spreads through a wild Queensland koala population. J. Virology 92 (2018).

    39.
    Woodward, W. et al. Koalas on North Stradbroke Island: diet, tree use and reconstructed landscapes. Wildlife Res. 35, 606–611 (2008).
    Article  Google Scholar 

    40.
    De Oliveira, S., Murray, P., De Villiers, D. & Baxter, G. Ecology and movement of urban koalas adjacent to linear infrastructure in coastal south-east Queensland. Aust. Mammal. 36, 45–54 (2014).
    Article  Google Scholar 

    41.
    Callaghan, J. et al. Ranking and mapping koala habitat quality for conservation planning on the basis of indirect evidence of tree-species use: A case study of Noosa Shire, south-eastern Queensland. Wildlife Res. 38, 89–102 (2011).
    Article  Google Scholar 

    42.
    MBRC. Koala Management Plan: The Mill at Moreton Bay Redevelopment, Moreton Bay Regional Council. www.moretonbay.qld.gov.au/files/assets/public/services/projects/the-mill/the-mill-koala-management-plan.pdf (2016).

    43.
    Hanger, J. et al. Final Technical Report: Moreton Bay Rail Koala Management Program (Department of Transport and Main Roads, Queensland, 2017).
    Google Scholar 

    44.
    Fabijan, J. et al. Prevalence and clinical significance of koala retrovirus in two South Australian koala (Phascolarctos cinereus) populations. J. Med. Microbiol. 68, 1072–1080 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Whisson, D. A., Zylinski, S., Ferrari, A., Yokochi, K. & Ashman, K. R. Patchy resources and multiple threats: How do koalas navigate an urban landscape?. Landsc. Urban Plan. 201, 103854 (2020).
    Article  Google Scholar 

    46.
    Mitchell, P. in Biology of the Koala (eds AK Lee, KA Handasyde, & GD Sanson) 171–187 (1990).

    47.
    Jansen, C. C., Zborowski, P., Ritchie, S. A. & Van Den Hurk, A. F. Efficacy of bird-baited traps placed at different heights for collecting ornithophilic mosquitoes in eastern Queensland Australia. Aust. J. Med. Entomol. 48, 53–59 (2009).
    Article  Google Scholar 

    48.
    Johnston, E. et al. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: Implications for disease vector surveillance. J. Vect. Ecol. 39, 48–55 (2014).
    Article  Google Scholar 

    49.
    Kay, B., Boreham, P. & Fanning, I. Host-feeding patterns of Culex annulirostris and other mosquitoes (Diptera: Culicidae) at Charleville, southwestern Queensland Australia. J. Med. Entomol. 22, 529–535 (1985).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Johansen, C., Power, S. & Broom, A. Determination of mosquito (Diptera: Culicidae) bloodmeal sources in Western Australia: Implications for arbovirus transmission. J. Med. Entomol. 46, 1167–1175 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Kay, B., Fanning, I. & Carley, J. The vector competence of Australian Culex annulirostris with Murray Valley encephalitis and Kunjin viruses. A J. Exp. Biol. Med. 62, 641–650 (1984).
    Article  Google Scholar 

    52.
    Jacups, S. P., Whelan, P. I. & Currie, B. J. Ross River virus and Barmah Forest virus infections: A review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector-Borne Zoonot. 8, 283–298 (2008).
    Article  Google Scholar 

    53.
    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Kelly, T. R. et al. One Health proof of concept: Bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. Prev. Vet. Med. 137, 112–118 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jansen, C. C. et al. Epidemiologic, entomologic, and virologic factors of the 2014–15 Ross River Virus outbreak, Queensland Australia. Emerg. Infect. Dis. 25, 2243 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Woodruff, R. E. et al. Predicting Ross River virus epidemics from regional weather data. Epidemiology 1, 384–393 (2002).
    Article  Google Scholar 

    57.
    Kelly-Hope, L. A., Purdie, D. M. & Kay, B. H. Ross River virus disease in Australia, 1886–1998, with analysis of risk factors associated with outbreaks. J. Med. Entomol. 41, 133–150 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Flies, E. J., Flies, A. S., Fricker, S. R., Weinstein, P. & Williams, C. R. Regional comparison of mosquito bloodmeals in South Australia: Implications for Ross River virus ecology. J. Med. Entomol. 53, 902–910 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Stephenson, E. B., Murphy, A. K., Jansen, C. C., Peel, A. J. & McCallum, H. Interpreting mosquito feeding patterns in Australia through an ecological lens: An analysis of blood meal studies. Parasite. Vector. 12, 156 (2019).
    Article  Google Scholar 

    60.
    Gordon, G. Estimation of the age of the Koala, Phascolarctos cinereus (Marsupialia: Phascolarctidae), from tooth wear and growth. Aust. Mammal. 14, 5–12 (1991).
    Google Scholar 

    61.
    Robbins, A., Loader, J., Timms, P. & Hanger, J. Optimising the short and long-term clinical outcomes for koalas (Phascolarctos cinereus) during treatment for chlamydial infection and disease. PLoS ONE 13(12), e0209673. https://doi.org/10.1371/journal.pone.0209679 (2018).
    Article  Google Scholar 

    62.
    Calenge, C. Home range estimation in R: the adehabitatHR package (Saint Benoist, Auffargis, France, Office national de la classe et de la faune sauvage, 2011).
    Google Scholar 

    63.
    Quantum, G. QGIS geographic information system. Open source geospatial foundation project. https://qgis.osgeo.org (2015).

    64.
    Doherty, R., Whitehead, R. & Gorman, B. The isolation of a third group A arbovirus in Australia, with preliminary observations on its relationship to epidemic polyarthritis. Aust. J. Sci. 26, 183–184 (1963).
    Google Scholar 

    65.
    Gyawali, N., Taylor-Robinson, A. W., Bradbury, R. S., Potter, A. & Aaskov, J. G. Infection of Western Gray Kangaroos (Macropus fuliginosus) with Australian arboviruses associated with human infection. Vector-Born Zoonotic Dis. 20, 33–39 (2020).
    Article  Google Scholar 

    66.
    Togami, E. et al. First evidence of concurrent enzootic and endemic transmission of Ross River virus in the absence of marsupial reservoirs in Fiji. Int. J. Infect. Dis. 96, 94–96 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gyawali, N., Murphy, A. K., Hugo, L. E. & Devine, G. J. A micro-PRNT for the detection of Ross River virus antibodies in mosquito blood meals: A useful tool for inferring transmission pathways. PLoS ONE 15, e0229314. https://doi.org/10.1371/journal.pone.0229314 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    68.
    Gatton, M. L., Kay, B. H. & Ryan, P. A. Environmental predictors of Ross River virus disease outbreaks in Queensland Australia. Am. J. Trop. Med. Hyg. 72, 792–799 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    McGrath, J. C., Drummond, G. B., McLachlan, E. M., Kilkenny, C. & Wainwright, C. L. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br. J. Pharmacol. 160(7), 1573–1576 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    QDES. Queensland Department of Environment and Science, Wetland data – version 5 – Queensland series. https://www.des.qld.gov.au (2015).

    71.
    QDES. Queensland Department of Environment and Science, Matters of state environmental significance—wildlife habitat—koala habitat areas—core. https://www.des.qld.gov.au (2020).

    72.
    ESRI. Environmental Systems Research Institute. ArcGIS Desktop. Release 10.4 ed. Redlands, CA, USA. https://esri.com (2020). More

  • in

    Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes

    1.
    Fletcher, D. & Ross, K. Regulation of reproduction in eusocial Hymenoptera. Annu. Rev. Entomol. 30, 319–343. https://doi.org/10.1146/annurev.en.30.010185.001535 (1985).
    Article  Google Scholar 
    2.
    Bonabeau, E. Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443. https://doi.org/10.1007/s100219900038 (1998).
    Article  Google Scholar 

    3.
    Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University, Cambridge, 1990).
    Google Scholar 

    4.
    Beekman, M. & Oldroyd, B. P. Conflict and major transitions—why we need true queens. Curr. Opin. Insect Sci. 34, 73–79. https://doi.org/10.1016/j.cois.2019.03.009 (2019).
    Article  PubMed  Google Scholar 

    5.
    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16. https://doi.org/10.1016/0022-5193(64)90038-4 (1964).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fletcher, D. J. C. & Blum, M. S. Regulation of queen number by workers in colonies of social insects. Science 219, 312–314. https://doi.org/10.1126/science.219.4582.312 (1983).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    Liebig, J., Peeters, C. & Holldobler, B. Worker policing limits the number of reproductives in a ponerine ant. Proc. Biol. Sci. 266, 1865–1870 (1999).
    Article  Google Scholar 

    8.
    West, M. J. Foundress associations in polistine wasps: dominance hierarchies and the evolution of social behavior. Science 157, 1584–1585. https://doi.org/10.1126/science.157.3796.1584 (1967).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 218–222. https://doi.org/10.1038/nature02949 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Fukumoto, Y. A novel form of colony organization in the “queenless” ant Diacamma rugosum. Physiol. Ecol. Jpn. 26, 55–61 (1989).
    Google Scholar 

    11.
    Grüter, C. & Czaczkes, T. J. Communication in social insects and how it is shaped by individual experience. Anim. Behav. 151, 207–215. https://doi.org/10.1016/j.anbehav.2019.01.027 (2019).
    Article  Google Scholar 

    12.
    Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol. News 30, 1–26 (2020).
    Google Scholar 

    13.
    Blomquist, G. J. & Bagneres, A. G. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    14.
    Kather, R. & Martin, S. J. Evolution of cuticular hydrocarbons in the hymenoptera: a meta-analysis. J. Chem. Ecol. 41, 871–883. https://doi.org/10.1007/s10886-015-0631-5 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Van Oystaeyen, A. et al. Conserved class of queen pheromones stops social insect workers from reproducing. Science 343, 287–290. https://doi.org/10.1126/science.1244899 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    16.
    Keller, L. & Nonacs, P. The role of queen pheromones in social insects: queen control or queen signal?. Anim. Behav. 45, 787–794. https://doi.org/10.1006/anbe.1993.1092 (1993).
    Article  Google Scholar 

    17.
    Heinze, J. & d’Ettorre, P. Honest and dishonest communication in social Hymenoptera. J. Exp. Biol. 212, 1775–1779. https://doi.org/10.1242/jeb.015008 (2009).
    CAS  Article  PubMed  Google Scholar 

    18.
    Gobin, B., Billen, J. & Peeters, C. Policing behaviour towards virgin egg layers in a polygynous ponerine ant. Anim. Behav. 58, 1117–1122. https://doi.org/10.1006/anbe.1999.1245 (1999).
    CAS  Article  PubMed  Google Scholar 

    19.
    Holman, L., Dreier, S. & d’Ettorre, P. Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc. R. Soc. B Biol. Sci. 277, 2007–2015. https://doi.org/10.1098/rspb.2009.2311 (2010).
    CAS  Article  Google Scholar 

    20.
    Oi, C. A. et al. The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37, 808–821. https://doi.org/10.1002/bies.201400180 (2015).
    CAS  Article  PubMed  Google Scholar 

    21.
    Holman, L., Helanterä, H., Trontti, K. & Mikheyev, A. S. Comparative transcriptomics of social insect queen pheromones. Nat. Commun. 10, 1593. https://doi.org/10.1038/s41467-019-09567-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Kocher, S. D. & Grozinger, C. M. Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263–1275. https://doi.org/10.1007/s10886-011-0036-z (2011).
    CAS  Article  PubMed  Google Scholar 

    23.
    Butler, C. G., Callow, R. K. & Johnston, N. C. Extraction and purification of ‘queen substance’ from queen bees. Nature 184, 1871–1871. https://doi.org/10.1038/1841871a0 (1959).
    ADS  CAS  Article  Google Scholar 

    24.
    van Zweden, J. S., Bonckaert, W., Wenseleers, T. & d’Ettorre, P. Queen signaling in social wasps. Evolution 68, 976–986. https://doi.org/10.1111/evo.12314 (2014).
    Article  PubMed  Google Scholar 

    25.
    Mitra, A. & Gadagkar, R. Queen signal should be honest to be involved in maintenance of eusociality: chemical correlates of fertility in Ropalidia marginata. Insectes Soc. 59, 251–255. https://doi.org/10.1007/s00040-011-0214-6 (2012).
    Article  Google Scholar 

    26.
    Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. R. Soc. B Biol. Sci. 277, 3793–3800. https://doi.org/10.1098/rspb.2010.0984 (2010).
    CAS  Article  Google Scholar 

    27.
    Hanus, R., Vrkoslav, V., Hrdý, I., Cvačka, J. & Šobotník, J. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc. R. Soc. B Biol. Sci. 277, 995–1002. https://doi.org/10.1098/rspb.2009.1857 (2010).
    CAS  Article  Google Scholar 

    28.
    Myles, T. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–91 (1999).
    Google Scholar 

    29.
    Vargo, E. L. & Husseneder, C. Biology of subterranean termites: Insights from molecular studies of Reticulitermes and Coptotermes. Annu. Rev. Entomol. 54, 379–403. https://doi.org/10.1146/annurev.ento.54.110807.090443 (2009).
    CAS  Article  PubMed  Google Scholar 

    30.
    Lainé, L. V. & Wright, D. J. The life cycle of Reticulitermes spp. (Isoptera: Rhinotermitidae): what do we know?. Bull. Entomol. Res. 93, 267–278. https://doi.org/10.1079/ber2003238 (2003).
    Article  PubMed  Google Scholar 

    31.
    Thorne, B. L., Traniello, J. F. A., Adams, E. S. & Bulmer, M. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol. Ecol. Evol. 11, 149–169. https://doi.org/10.1080/08927014.1999.9522833 (1999).
    Article  Google Scholar 

    32.
    Hu, X. Recent Advances in Entomological Research: From Molecular Biology to Pest Management (eds Liu, T. & Kang, L.) 213–226 (Springer, Berlin, 2011).

    33.
    Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968. https://doi.org/10.1073/pnas.1004675107 (2010).
    ADS  Article  PubMed  Google Scholar 

    34.
    Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79. https://doi.org/10.1007/s00114-017-1501-5 (2017).
    CAS  Article  Google Scholar 

    35.
    Havlíčková, J. et al. (3R,6E)-nerolidol, a fertility-related volatile secreted by the queens of higher termites (Termitidae: Syntermitinae). Zeitschrift für Naturforschung C 74, 251–264. https://doi.org/10.1515/znc-2018-0197 (2019).
    CAS  Article  Google Scholar 

    36.
    Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1721419115 (2018).
    Article  PubMed  Google Scholar 

    37.
    Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, e0209810. https://doi.org/10.1371/journal.pone.0209810 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898. https://doi.org/10.1002/ece3.6325 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Yamamoto, Y. & Matsuura, K. Queen pheromone regulates egg production in a termite. Biol. Let. 7, 727–729. https://doi.org/10.1098/rsbl.2011.0353 (2011).
    Article  Google Scholar 

    40.
    Sun, Q., Haynes, K. F. & Zhou, X. Temporal changes in cuticular hydrocarbons during worker-reproductive transition in the eastern subterranean termite (Blattodea: Rhinotermitidae). Ann. Entomol. Soc. Am. https://doi.org/10.1093/aesa/saaa027 (2020).
    Article  Google Scholar 

    41.
    Perdereau, E., Dedeine, F., Christidès, J.-P. & Bagnères, A.-G. Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J. Chem. Ecol. 36, 1189–1198. https://doi.org/10.1007/s10886-010-9860-9 (2010).
    CAS  Article  PubMed  Google Scholar 

    42.
    Tarver, M. R., Schmelz, E. A., Rocca, J. R. & Scharf, M. E. Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes. J. Chem. Ecol. 35, 256–264. https://doi.org/10.1007/s10886-009-9594-8 (2009).
    CAS  Article  PubMed  Google Scholar 

    43.
    Tarver, M. R., Zhou, X. & Scharf, M. E. Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Mol. Biol. 11, 28. https://doi.org/10.1186/1471-2199-11-28 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780. https://doi.org/10.1098/rspb.2020.0780 (2020).
    Article  Google Scholar 

    45.
    Chen, Y. P. & Vinson, S. B. Effects of queen attractiveness to workers on the queen nutritional status and egg production in the polygynous Solenopsis invicta (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 93, 295–302. https://doi.org/10.1603/0013-8746(2000)093[0295:eoqatw]2.0.co;2 (2000).
    Article  Google Scholar 

    46.
    Ortius, D. & Heinze, J. Fertility signaling in queens of a North American ant. Behav. Ecol. Sociobiol. 45, 151–159 (1999).
    Article  Google Scholar 

    47.
    Hannonen, M. & Sundström, L. Proximate determinants of reproductive skew in polygyne colonies of the ant Formica fusca. Ethology 108, 961–973. https://doi.org/10.1046/j.1439-0310.2002.00829.x (2002).
    Article  Google Scholar 

    48.
    Keller, L. Evolutionary implications of polygyny in the Argentine ant, Iridomyrmex humilis (Mayr) (Hymenoptera: Formicinae): an experimental study. Anim. Behav. 36, 159–165 (1988).
    Article  Google Scholar 

    49.
    Vargo, E. L. Mutual pheromonal inhibition among queens in polygyne colonies of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 31, 205–210. https://doi.org/10.1007/bf00168648 (1992).
    Article  Google Scholar 

    50.
    Vander Meer, R. K., Morel, L. & Lofgren, C. S. A comparison of queen oviposition rates from monogyne and polygyne fire ant, Solenopsis invicta, colonies. Physiol. Entomol. 17, 384–390. https://doi.org/10.1111/j.1365-3032.1992.tb01036.x (1992).
    Article  Google Scholar 

    51.
    Lenoir, A., D’Ettorre, P., Errard, C. & Hefetz, A. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599. https://doi.org/10.1146/annurev.ento.46.1.573 (2001).
    CAS  Article  PubMed  Google Scholar 

    52.
    Martin, S. J., Carruthers, J. M., Williams, P. H. & Drijfhout, F. P. Host specific social parasites (Psithyrus) indicate chemical recognition system in bumblebees. J. Chem. Ecol. 36, 855–863. https://doi.org/10.1007/s10886-010-9805-3 (2010).
    CAS  Article  PubMed  Google Scholar 

    53.
    Kreuter, K. et al. How the social parasitic bumblebee Bombus bohemicus sneaks into power of reproduction. Behav. Ecol. Sociobiol. 66, 475–486 (2012).
    Article  Google Scholar 

    54.
    Mori, A. et al. Behavioural assays testing the appeasement allomone of Polyergus rufescens queens during host-colony usurpation. Ethol. Ecol. Evol. 12, 315–322. https://doi.org/10.1080/08927014.2000.9522804 (2000).
    Article  Google Scholar 

    55.
    Ruano, F., Hefetz, A., Lenoir, A., Francke, W. & Tinaut, A. Dufour’s gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. J. Insect Physiol. 51, 1158–1164. https://doi.org/10.1016/j.jinsphys.2005.06.005 (2005).
    CAS  Article  PubMed  Google Scholar 

    56.
    Martin, S. J., Jenner, E. A. & Drijfhout, F. P. Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proc. Biol. Sci. 274, 2717–2721. https://doi.org/10.1098/rspb.2007.0795 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Lhomme, P., Ayasse, M., Valterová, I., Lecocq, T. & Rasmont, P. Born in an alien nest: how do social parasite male offspring escape from host aggression?. PLoS ONE 7, e43053. https://doi.org/10.1371/journal.pone.0043053 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Hanus, R., Piskorski, R., Šobotník, J., Urbanová, K. & Valterová, I. Congress of Entomology 2008 (Durban, South Africa, 2008).

    59.
    Penick, C., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).
    Article  Google Scholar 

    60.
    Monnin, T. Chemical recognition of reproductive status in social insects. Ann. Zoolgici Fenn. 43, 515–530 (2006).
    Google Scholar 

    61.
    Endler, A., Liebig, J. & Hölldobler, B. Queen fertility, egg marking and colony size in the ant Camponotus floridanus. Behav. Ecol. Sociobiol. 59, 490–499 (2006).
    Article  Google Scholar 

    62.
    Foster, K. R. & Ratnieks, F. L. W. Facultative worker policing in a wasp. Nature 407, 692–693. https://doi.org/10.1038/35037665 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Bonckaert, W., Van Zweden, J. S., D’Ettorre, P., Billen, J. & Wenseleers, T. Colony stage and not facultative policing explains pattern of worker reproduction in the Saxon wasp. Mol. Ecol. 20, 3455–3468. https://doi.org/10.1111/j.1365-294X.2011.05200.x (2011).
    CAS  Article  PubMed  Google Scholar 

    64.
    Haverty, M. I., Grace, J. K., Nelson, L. J. & Yamamoto, R. T. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Copotermes formosanus shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22, 1813–1834. https://doi.org/10.1007/bf02028506 (1996).
    CAS  Article  PubMed  Google Scholar 

    65.
    Howard, R. & Haverty, M. I. Seasonal variation in caste proportions of field colonies of Reticulitermes flavipes (Kollar) 1. Environ. Entomol. 10, 546–549. https://doi.org/10.1093/ee/10.4.546 (1981).
    Article  Google Scholar 

    66.
    Gordon, J. M., Šobotník, J. & Chouvenc, T. Colony-age-dependent variation in cuticular hydrocarbon profiles in subterranean termite colonies. Ecol. Evol. 10, 10095–10104. https://doi.org/10.1002/ece3.6669 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).
    Article  Google Scholar 

    68.
    Eyer, P. A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Authorea 1, 1–20 (2020).

    69.
    Dronnet, S., Chapuisat, M., Vargo, E. L., Lohou, C. & Bagnères, A.-G. Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol. Ecol. 14, 1311–1320. https://doi.org/10.1111/j.1365-294X.2005.02508.x (2005).
    CAS  Article  PubMed  Google Scholar 

    70.
    Junker, R. R. et al. Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications. New Phytol. 220, 739–749. https://doi.org/10.1111/nph.14505 (2018).
    Article  PubMed  Google Scholar 

    71.
    Aguero, C., Eyer, P. A. & Vargo, E. L. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10, 4212 (2020).
    ADS  CAS  Article  Google Scholar 

    72.
    polymorphism and chemotaxonomy. Bagneres, A. G. et al. Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud). J. Chem. Ecol. 16, 3213–3244 (1990).
    Article  Google Scholar 

    73.
    Clément, J. L. et al. Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Soc. 408, 202–215 (2001).
    Article  Google Scholar 

    74.
    Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R package. https://CRAN.R-project.org/package=PMCMR (2014).

    75.
    Kassambara, A. & Mundt, F. Extract and visualize the results of multivariate data analyses. Package ‘factoextra’, vol. 76. http://www.sthda.com/english/rpkgs/factoextra (2017).

    76.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020). More

  • in

    Identification of microalgae cultured in Bold’s Basal medium from freshwater samples, from a high-rise city

    1.
    Mobin, S., Chowdhury, H. & Alam, F. Commercially important bioproducts from microalgae and their current applications—a review. Energy Procedia. 60, 752–760 (2002).
    Google Scholar 
    2.
    Tragin, M. & Vaulot, D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci. Rep. https://doi.org/10.1038/s41598-018-32338-w (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Phang, S. M. et al. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore Thailand and Vietnam. Raffles B Zool. 34, 13–59 (2016).
    Google Scholar 

    4.
    Pham, M. N., Tan, H. T. W., Mitrovic, S., & Yeo, H. H. T. A checklist of the algae of Singapore. In Raffles Museum of Biodiversity Research, 2nd edn (2011).

    5.
    Omar, W. M. W. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop. Life Sci. Res. 21, 51–67 (2010).
    PubMed  PubMed Central  Google Scholar 

    6.
    Emporis GMBH. https://www.emporis.com/city/100422/singapore-singapore (2020).

    7.
    Waterways and Waterbodies. https://www.mewr.gov.sg/ssb/our-targets/green-blue-spaces/waterways-and-waterbodies (2020).

    8.
    Darienko, T., Gustavs, L., Eggert, A., Wolf, W., Proschold, T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE. 10; e0127838. https://doi.org/10.1371/journal.pone.0127838 (2015).

    9.
    Radha, S., Fathima, A., Iyappan, S. & Mohandas, R. Direct colony PCR for rapid identification of varied microalgae from freshwater environment. J. Appl. Phycol. https://doi.org/10.1007/s10811-012-9895-0 (2013).
    Article  Google Scholar 

    10.
    Domozych, D. et al. The cell walls of green algae: a journey through evolution and diversity. Front. Plant. Sci. https://doi.org/10.3389/fpls.2012.00082 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Te, S. & Gin, K. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae. 10(3), 319–329. https://doi.org/10.1016/j.hal.2010.11.006 (2011).
    CAS  Article  Google Scholar 

    12.
    Hirano, K. et al. Detection of the oil-producing microalga Botryococcus braunii in natural freshwater environments by targeting the hydrocarbon biosynthesis gene SSL-3. Sci. Rep. https://doi.org/10.1038/s41598-019-53619-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Newman, S. M. et al. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126, 875–888 (1990).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Martin-Laurent, F. et al. DNA extraction from soils: Old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67, 2354–2359 (2001).
    CAS  Article  Google Scholar 

    15.
    Eland, L., Davenport, R. & Mota, C. R. Evaluation of DNA extraction methods for freshwater eukaryotic microalgae. Water Res. 46, 5355–5364 (2012).
    CAS  Article  Google Scholar 

    16.
    Simonelli, P. et al. Evaluation of DNA extraction and handling procedures for PCR-based copepod feeding studies. J. Plankton Res. 31, 1465–1474 (2009).
    CAS  Article  Google Scholar 

    17.
    Frazão, B. & Silva, A. Molecular tools for phytoplankton monitoring samples. BioRxiv https://doi.org/10.1101/339655 (2018).
    Article  Google Scholar 

    18.
    Fei, C. et al. A quick method for obtaining high-quality DNA barcodes without DNA extraction in microalgae. J. Appl. Phycol. https://doi.org/10.1007/s10811-019-01926-2 (2020).
    Article  Google Scholar 

    19.
    Sonnenberg, R., Nolte, A. W. & Tautz, D. An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Front. Zool. https://doi.org/10.1186/1742-9994-4-6 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Beals, L., Gross, M., & Harrell, S. Diversity indices. http://www.tiem.utk.edu/~gross/bioed/bealsmodules/shannonDI.html (2000).

    21.
    Khan, M. I., Jin, H. S. & Jong, D. K. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. https://doi.org/10.1186/s12934-018-0879-x (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Ji, M. K. et al. Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus. J. Environ. Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000726 (2020).
    Article  Google Scholar 

    23.
    Patnaik, R., Singh, N., Bagchi, S., Rao, P. S. & Mallick, N. Utilization of Scenedesmus obliquus protein as a replacement of the commercially available fish meal under an algal refinery approach. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02114 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Mata, T. et al. Potential of microalgae Scendesmus obliquus grown in brewery wastewater for biodiesel production. Chem. Eng. Trans. 32, 901–906 (2013).
    Google Scholar 

    25.
    Afify, A. E. M. M. R., ElBaroty, G. S., ElBaz, F. K., AbdElBaky, H. H. & Murad, S. A. Scenedesmus obliquus: antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. J. Gen. Eng. Biotech. 16, 399–408 (2018).
    Article  Google Scholar 

    26.
    Kent, M., Welladsen, H. M., Mangott, A. & Lee, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE https://doi.org/10.1371/journal.pone.0118985 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Unpaprom, Y., Tipnee, S. & Ramaraj, R. Biodiesel from green alga Scenedesmus acuminatus. Int. J. Sustain. Green Energy 4, 1–6 (2015).
    CAS  Article  Google Scholar 

    28.
    De Alva, S. M., Luna-Pabello, V., Cadena, E. & Ortíz, E. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresour. Technol. 146, 744–748 (2013).
    Article  Google Scholar 

    29.
    Patil, L. & Kaliwal, B. B. Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess. Biosyst. Eng. 42, 1–16 (2019).
    CAS  Article  Google Scholar 

    30.
    Henard, C., Guarnieri, M. & Knoshaug, E. The Chlorella vulgaris S-nitrosoproteome under nitrogen-replete and -deplete conditions. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2016.00100 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Chai, S. et al. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS ONE https://doi.org/10.1371/journal.pone.0199873 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    32.
    Ishiguro, S. et al. Cell wall membrane fraction of Chlorella sorokiniana enhances host antitumor immunity and inhibits colon carcinoma growth in mice. Integr. Cancer Ther. https://doi.org/10.1177/1534735419900555 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Barone, R. S. C., Sonoda, D. Y., Lorenz, E. K. & Cyrino, J. E. P. Digestibility and pricing of Chlorella sorokiniana meal for use in tilapia feeds. Sci. Agric. https://doi.org/10.1590/1678-992x-2016-0457 (2018).
    Article  Google Scholar 

    34.
    Guo, M. et al. Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague-Dawley rats, as revealed by high-throughput 16S rRNA sequencing. World J. Microbiol. Biotechnol. https://doi.org/10.1007/s11274-015-1994-z (2016).
    Article  PubMed  Google Scholar 

    35.
    El-Dalatony, M. et al. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol. Bioproc. E 19, 510–518 (2014).
    Article  Google Scholar 

    36.
    Scaife, M. et al. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 82, 532–546 (2015).
    CAS  Article  Google Scholar 

    37.
    Kamyab, H. et al. Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia. 75, 2400–2408 (2015).
    CAS  Article  Google Scholar 

    38.
    Ciorba, D. & Truta, A. A. C. Cytotoxic exposure of green algas Chlamydomonas peterfii Gerloff in radon aerosols. J. Phys. Rom. https://doi.org/10.1016/j.biortech.2013.07.061 (2013).
    Article  Google Scholar 

    39.
    Santhakumaran, P., Kookal, S., Mathew, L. & Ray, J. G. Bioprospecting of three rapid-growing freshwater green algae, promising biomass for biodiesel production. BioEnergy Res. 12, 680–693 (2019).
    CAS  Article  Google Scholar 

    40.
    Rauytanapanit, M. et al. Nutrient deprivation-associated changes in green microalga Coelastrum sp. TISTR 9501RE enhanced potent antioxidant carotenoids. Mar. Drugs https://doi.org/10.3390/md17060328 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Kumar, M. S. et al. Influence of CO2 and light spectra on the enhancement of microalgal growth and lipid content. J. Renew. Sustain. Energ. https://doi.org/10.1063/1.4901541 (2014).
    Article  Google Scholar 

    42.
    Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R. & Singh, R. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS ONE 14(e0221930), 2019. https://doi.org/10.1371/journal.pone.0221930 (2019).
    CAS  Article  Google Scholar 

    43.
    Mourelle, M., Gómez, C. & Legido, J. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics. https://doi.org/10.3390/cosmetics4040046 (2017).
    Article  Google Scholar 

    44.
    Singh, G. & Thomas, P. Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresour. Technol. 117, 80–85 (2012).
    CAS  Article  Google Scholar 

    45.
    Sathasivam, R., Radhakrishnan, R., Hashem, A. & AbdAllah, E. F. Microalgae metabolites: a rich source for food and medicine. Saudi J. Biol. Sci. 26, 709–722 (2019).
    CAS  Article  Google Scholar 

    46.
    Neustupa, J. & Škaloud, P. Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant. Ecol. Evol. 143, 51–62 (2010).
    Article  Google Scholar 

    47.
    Prakash, J., Antonisamy, J. & Jeeva, S. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac. J. Trop. Biomed. 1, S170–S173. https://doi.org/10.1016/s2221-1691(11)60149-4 (2011).
    Article  Google Scholar 

    48.
    Gumbi, S., Majeke, B., Olaniran, A. & Mutanda, T. Isolation, identification and high-throughput screening of neutral lipid producing indigenous microalgae from South African aquatic habitats. Appl. Biochem. Biotech. 182, 382–399. https://doi.org/10.1007/s12010-016-2333-z (2016).
    CAS  Article  Google Scholar 

    49.
    Lee, K., Eisterhold, M. L., Rindi, F., Palanisami, S. & Nam, P. Isolation and screening of microalgae from natural habitats in the midwestern United States of America for biomass and biodiesel sources. J. Nat. Sci. Biol. Med. https://doi.org/10.4103/0976-9668.136178 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    Lewandowska, A., Śliwińska-Wilczewska, S. & Woźniczka, D. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Mar. Pollut. Bull. 125, 30–38. https://doi.org/10.1016/j.marpolbul.2017.07.064 (2017).
    CAS  Article  PubMed  Google Scholar  More

  • in

    Stress hormone-mediated antipredator morphology improves escape performance in amphibian tadpoles

    1.
    Tollrian, R. & Harvell, C. D. The Ecology and Evolution of Inducible Defenses (Princeton University Press, Princeton, 1998).
    Google Scholar 
    2.
    Ohgushi, T., Schmitz, O. J. & Holt, R. D. Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    3.
    Ellers, J. & Stuefer, J. F. Frontiers in phenotypic plasticity research: new questions about mechanisms, induced responses, and ecological impacts. Evol. Ecol. 24, 523–526 (2010).
    Article  Google Scholar 

    4.
    Mitchell, M. D., Bairos-Novak, K. R. & Ferrari, M. C. Mechanisms underlying the control of responses to predator odours in aquatic prey. J. Exp. Biol. 220, 1937–1946 (2017).
    PubMed  Article  Google Scholar 

    5.
    Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. Roy. Soc. B Biol. Sci. 272, 2627–2634 (2005).
    Google Scholar 

    6.
    Brönmark, C. & Hansson, L.-A. Chemical Ecology in Aquatic Systems (Oxford University Press, Oxford, 2012).
    Google Scholar 

    7.
    Middlemis Maher, J., Werner, E. E. & Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc. R. Soc. B Biol. Sci. 280, 20123075 (2013).
    Article  CAS  Google Scholar 

    8.
    Dennis, S. R., LeBlanc, G. A. & Beckerman, A. P. Endocrine regulation of predator-induced phenotypic plasticity. Oecologia 176, 625–635 (2014).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Matsunami, M. et al. Transcriptome analysis of predator- and prey-induced phenotypic plasticity in the Hokkaido salamander (Hynobius retardatus). Mol. Ecol. 24, 3064–3076 (2015).
    CAS  PubMed  Article  Google Scholar 

    10.
    Weiss, L. C. Sensory ecology of predator-induced phenotypic plasticity. Front. Behav. Neurosci. 12, 330 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).
    PubMed  Article  Google Scholar 

    12.
    Auld, J. R. & Relyea, R. A. Adaptive plasticity in predator-induced defenses in a common freshwater snail: altered selection and mode of predation due to prey phenotype. Evol. Ecol. 25, 189–202 (2011).
    Article  Google Scholar 

    13.
    Meuthen, D., Baldauf, S. A., Bakker, T. C. & Thünken, T. Neglected patterns of variation in phenotypic plasticity: age-and sex-specific antipredator plasticity in a cichlid fish. Am. Nat. 191, 475–490 (2018).
    PubMed  Article  Google Scholar 

    14.
    Schoeppner, N. M. & Relyea, R. A. Interpreting the smells of predation: how alarm cues and kairomones induce different prey defenses. Func. Ecol. 23, 1114–1121 (2009).
    Article  Google Scholar 

    15.
    Hettyey, A. et al. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia 179, 699–710 (2015).
    ADS  PubMed  Article  Google Scholar 

    16.
    Fraker, M. E. et al. Characterization of an alarm pheromone secreted by amphibian tadpoles that induces behavioral inhibition and suppression of the neuroendocrine stress axis. Horm. Behav. 55, 520–529 (2009).
    CAS  PubMed  Article  Google Scholar 

    17.
    Hossie, T. J., Ferland-Raymond, B., Burness, G. & Murray, D. L. Morphological and behavioural responses of frog tadpoles to perceived predation risk: a possible role for corticosterone mediation?. Écoscience 17, 100–108 (2010).
    Article  Google Scholar 

    18.
    McDiarmid, R. W. & Altig, R. Tadpoles: the Biology of Anuran Larvae (University of Chicago Press, Chicago, 1999).
    Google Scholar 

    19.
    Relyea, R. A. Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85, 172–179 (2004).
    Article  Google Scholar 

    20.
    Wilson, R. S., Kraft, P. G. & Van Damme, R. Predator-specific changes in the morphology and swimming performance of larval Rana lessonae. Func. Ecol. 19, 238–244 (2005).
    Article  Google Scholar 

    21.
    Van Buskirk, J. & McCollum, S. A. Influence of tail shape on tadpole swimming performance. J. Exp. Biol. 203, 2149–2158 (2000).
    PubMed  Google Scholar 

    22.
    Eidietis, L. Size-related performance variation in the wood frog (Rana sylvatica) tadpole tactile-stimulated startle response. Can. J. Zool. 83, 1117–1127 (2005).
    Article  Google Scholar 

    23.
    Perotti, M. G., Pueta, M., Jara, F. G., Úbeda, C. A. & Moreno Azocar, D. L. Lack of functional link in the tadpole morphology induced by predators. Curr. Zool. 62, 227–235 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Mori, T. et al. The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in Xenopus tadpoles. Biol. Open 6, 1726–1733 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Lindgren, B., Orizaola, G. & Laurila, A. Interacting effects of predation risk and resource level on escape speed of amphibian larvae along a latitudinal gradient. J. Evol. Biol. 31, 1216–1226 (2018).
    PubMed  Article  Google Scholar 

    26.
    Van Buskirk, J., Anderwald, P., Lüpold, S., Reinhardt, L. & Schuler, H. The lure effect, tadpole tail shape, and the target of dragonfly strikes. J. Herp. 37, 420–424 (2003).
    Article  Google Scholar 

    27.
    Dijk, B., Laurila, A., Orizaola, G. & Johansson, F. Is one defence enough? Disentangling the relative importance of morphological and behavioural predator-induced defences. Behav. Ecol. Sociobiol. 70, 237–246 (2016).
    Article  Google Scholar 

    28.
    Glennemeier, K. A. & Denver, R. J. Moderate elevation of corticosterone content affects fitness components in northern leopard frog (Rana pipiens) tadpoles. Gen. Comp. Endocrinol. 127, 16–25 (2002).
    CAS  PubMed  Article  Google Scholar 

    29.
    Glennemeier, K. A. & Denver, R. J. Role for corticoids in mediating the response of Rana pipiens tadpoles to intraspecific competition. J. Exp. Zool. 292, 32–40 (2002).
    CAS  PubMed  Article  Google Scholar 

    30.
    Muir, A. M., Vecsei, P. & Krueger, C. C. A perspective on perspectives: methods to reduce variation in shape analysis of digital images. Trans. Am. Fish. Soc. 141, 1161–1170 (2012).
    Article  Google Scholar 

    31.
    Fraker, M. E. & Luttbeg, B. Predator-prey space use and the spatial distribution of predation events. Behaviour 149, 555–574 (2012).
    Article  Google Scholar 

    32.
    Denver, R. J. Hormonal correlates of environmentally induced metamorphosis in the western spadefoot toad, Scaphiopus hammondii. Gen. Comp. Endocrinol. 110, 326–336 (1998).
    CAS  PubMed  Article  Google Scholar 

    33.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).
    Article  Google Scholar 

    34.
    R Core Team. R: A language and environment for statistical computing, version 3.6.1. (R Foundation for Statistical Computing, 2019).

    35.
    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Soft. 69, 1–33 (2016).
    Article  Google Scholar 

    36.
    Therneau, T. M. & Lumley, T. R Package ‘survival’ version 3.1-8 (2019).

    37.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 541–554 (2001).
    Article  Google Scholar 

    39.
    Berner, D. Size correction in biology: how reliable are approaches based on (common) principal component analysis?. Oecologia 166, 961–971 (2011).
    ADS  PubMed  Article  Google Scholar 

    40.
    Humphreys, R. K. & Ruxton, G. D. What is known and what is not yet known about deflection of the point of a predator’s attack. Biol. J. Linn. Soc. 123, 483–495 (2018).
    Article  Google Scholar 

    41.
    Blair, J. & Wassersug, R. J. Variation in the pattern of predator-induced damage to tadpole tails. Copeia 2000, 390–401 (2000).
    Article  Google Scholar 

    42.
    Van Buskirk, J., Ferrari, M., Kueng, D., Näpflin, K. & Ritter, N. Prey risk assessment depends on conspecific density. Oikos 120, 1235–1239 (2011).
    Article  Google Scholar 

    43.
    McCoy, M. W. Conspecific density determines the magnitude and character of predator-induced phenotype. Oecologia 153, 871–878 (2007).
    ADS  PubMed  Article  Google Scholar 

    44.
    Van Buskirk, J. & McCollum, S. A. Functional mechanisms of an inducible defence in tadpoles: morphology and behaviour influence mortality risk from predation. J. Evol. Biol 13, 336–347 (2000).
    Article  Google Scholar 

    45.
    Van Buskirk, J. Phenotypic lability and the evolution of predator-induced plasticity in tadpoles. Evolution 56, 361–370 (2002).
    PubMed  Article  Google Scholar 

    46.
    Hossie, T., Landolt, K. & Murray, D. L. Determinants and co-expression of anti-predator responses in amphibian tadpoles: a meta-analysis. Oikos 126, 173–184 (2017).
    Article  Google Scholar 

    47.
    Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).
    PubMed  Article  Google Scholar 

    48.
    Steiner, U. K. & Van Buskirk, J. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff. PLoS ONE 4, e6160 (2009).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Ferrari, M. C., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88, 698–724 (2010).
    Article  Google Scholar 

    50.
    Luttbeg, B., Ferrari, M. C., Blumstein, D. T. & Chivers, D. P. Safety cues can give prey more valuable information than danger cues. Am. Nat. 195, 636–648 (2020).
    PubMed  Article  Google Scholar 

    51.
    Schmitz, O. J. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions. F1000Research 6, 1767 (2017).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Experimentally constrained early reproduction shapes life history trajectories and behaviour

    Study system and study population
    We used the seed beetle Callosobruchus maculatus (Chrysomelidae, Bruchinae). In the laboratory, these beetles are kept under conditions (dry legume storage environments; see below) that mimic the conditions in which they have evolved for thousands of generations, since this species has adapted to exploiting dry seeds in human grain storages for several thousands of years16,17. In our study, we used one of the preferred hosts of this beetle, the mung bean (Vigna radiata, hereafter referred simply as beans). After mating, the inseminated females glue eggs on the surface of the beans. After hatching, the first larval instar burrows into the bean’s endosperm where it feeds and completes development. Importantly, females are able to discriminate clean from previously infested beans18. Whenever possible, females prefer to distribute their eggs uniformly (1 egg/seed), trying to avoid laying eggs on beans on which an egg (own or non-own) has already been deposited. This is because only a very small fraction of eggs deposited in an already parasitized bean develop successfully as a result of bean size limitations and larval competition19. When host deprivation is maintained for a long time ( > 4 days20) females may lay eggs on unsuitable substrates as well. In our population, infested Vigna radiata beans typically contain a single larva developing inside, and generally, a bean of this species provides resources to support only the development of one individual21. The species is sexually dimorphic, has a short generation time ( 0.95; p  More

  • in

    Multi-kingdom ecological drivers of microbiota assembly in preterm infants

    1.
    Charbonneau, M. R. et al. A microbial perspective of human developmental biology. Nature 535, 48–55 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Derrien, M., Alvarez, A. S. & de Vos, W. M. The gut microbiota in the first decade of life. Trends Microbiol. 27, 997–1010 (2019).
    CAS  PubMed  Article  Google Scholar 

    5.
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).
    CAS  PubMed  Article  Google Scholar 

    9.
    Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Fischbach, M. A. Microbiome: focus on causation and mechanism. Cell 174, 785–790 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Widder, S. et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J. 10, 2557–2568 (2016).
    MathSciNet  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Vrancken, G., Gregory, A. C., Huys, G. R. B., Faust, K. & Raes, J. Synthetic ecology of the human gut microbiota. Nat. Rev. Microbiol. 17, 754–763 (2019).
    CAS  PubMed  Article  Google Scholar 

    13.
    Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).
    CAS  PubMed  Article  Google Scholar 

    14.
    Wolfe, B. E., Button, J. E., Santarelli, M. & Dutton, R. J. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158, 422–433 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).
    Article  Google Scholar 

    16.
    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).
    CAS  PubMed  Article  Google Scholar 

    17.
    Shade, A. et al. Macroecology to unite all life, large and small. Trends Ecol. Evol. 33, 731–744 (2018).
    PubMed  Article  Google Scholar 

    18.
    Gregory, K. E. et al. Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome 4, 68 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Gibson, M. K. et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 1, 16024 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    DiBartolomeo, M. E. & Claud, E. C. The developing microbiome of the preterm infant. Clin. Ther. 38, 733–739 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    La Rosa, P. S. et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl Acad. Sci. USA 111, 12522–12527 (2014).
    ADS  PubMed  Article  CAS  Google Scholar 

    22.
    Costello, E. K., Carlisle, E. M., Bik, E. M., Morowitz, M. J. & Relman, D. A. Microbiome assembly across multiple body sites in low-birthweight infants. MBio 4, e00782-13 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Stewart, C. J. et al. Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome 4, 67 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Pammi, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5, 31 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Gasparrini, A. J. et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 4, 2285–2297 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Reynolds, L. A. & Finlay, B. B. Early life factors that affect allergy development. Nat. Rev. Immunol. 17, 518–528 (2017).
    CAS  PubMed  Article  Google Scholar 

    27.
    Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 569, 641–648 (2019).
    ADS  Article  CAS  Google Scholar 

    32.
    Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Limon, J. J., Skalski, J. H. & Underhill, D. M. Commensal fungi in health and disease. Cell Host Microbe 22, 156–165 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Koskinen, K. et al. First insights into the diverse human archaeome: specific detection of Archaea in the gastrointestinal tract, lung, and nose and on skin. MBio 8, 00824-17 (2017).
    Article  Google Scholar 

    35.
    Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in microbial ecology. ISME J. 13, 2647–2655 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Contijoch, E. J. et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 8, e40553 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 28 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Ishwaran, H. & Rao, J. S. Spike and slab variable selection: frequentist and Bayesian strategies. Ann. Stat. 33, 730–773 (2005).
    MathSciNet  MATH  Article  Google Scholar 

    41.
    Gonze, D., Coyte, K. Z., Lahti, L. & Faust, K. Microbial communities as dynamical systems. Curr. Opin. Microbiol. 44, 41–49 (2018).
    PubMed  Article  Google Scholar 

    42.
    Bucci, V. et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A. & Navarrete, S. A. Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? Ecology 99, 690–699 (2018).
    PubMed  Article  Google Scholar 

    44.
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLOS Comput. Biol. 8, e1002687 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLOS Comput. Biol. 8, e1002606 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066 (2019).
    CAS  PubMed  Article  Google Scholar 

    47.
    Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLOS Comput. Biol. 9, e1003388 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, e102451 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Pammi, M., Liang, R., Hicks, J., Mistretta, T. A. & Versalovic, J. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol. 13, 257 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Sublethal concentrations of clothianidin affect honey bee colony growth and hive CO2 concentration

    Syrup preparation
    Control (0 ppb clothianidin) sucrose solution was mixed at 1:1 w:w (e.g. 500 g sucrose:500 mL distilled water). Sucrose was added to distilled water in a 5-gallon bucket and mixed using an electric drill with a mortar mixing attachment until sugar was completely dissolved. Sucrose solution for solutions with clothianidin (PESTANAL, CAS# 210880-92-5) was mixed in the same manner but 50 mL was withheld (thus “short”) to allow for the added volume of respective clothianidin spikes. 500 g of sugar is dissolved in 450 mL of distilled water to allow for the addition of a 50 mL spike to achieve 1 kg of treatment solution. 950 g of “short” sugar solution was transferred to a Nalgene bottle, then the spike added to each individual bottle. A 10 ppm clothianidin stock solution was made by dissolving 1.0 mg of clothianidin, in 100 mL of distilled water, using a mixing bar but without heat. To avoid problems with static electricity, the clothianidin was weighed into a small, nonreactive plastic receptacles and those receptacles were placed in the solution, the solution stirred, and the receptacles removed after confirming the clothianidin had dissolved. For the 5-ppb solution: 0.5 mL of the stock solution was mixed into 49.5 mL of distilled water to achieve 50 mL of spike solution, which was then added to 950 g of the short sucrose solution to achieve 1 kg of 5-ppb clothianidin syrup. For the 20-ppb solution (only in 2nd experiment) 2.0 mL of stock solution was mixed into 48.0 mL of distilled water, and that solution added to 950 g of the short solution to achieve 1 kg of 20-ppb clothianidin syrup.
    AZ 2017 experiment
    On 20 April, 2017, 24 bee colonies were established from packages of Italian honey bees (A. mellifera ligustica) (C.F. Koehnen & Sons, Inc., Glenn, CA 95,943) of approximately 1 kg honey bees in painted, 10-frame, wooden Langstroth boxes (43.7 l capacity) (Mann Lake Ltd., Hackensack, MN) with migratory wooden lids. At establishment, each colony was given 4 full or partial frames of capped honey, 2 frames of drawn but empty comb, 2 frames of partially drawn with some capped honey, 3 frames of foundation and a 1-frame feeder. Queens were marked, and during the course of the studies any queen replacements, such as for supersedure queens, was done with queens from the same breeder. Hives were placed on stainless steel electronic scales (Tekfa model B-2418 and Avery Weigh-Tronix model BSAO1824-200) (max. capacity: 100 kg, precision: ± 20 g; operating temperature: − 30 °C to 70 °C) and linked to 16-bit dataloggers (Hobo UX120-006 M External Channel datalogger, Onset Computer Corporation, Bourne, MA) with weight recorded every 5 min. The scales were powered by deep-cycle batteries connected to solar panels. The system had an overall precision of approximately ± 20 g. Hives were arranged in a circular pattern around a central box that contained the batteries and electronic gear. Hives within such a group were 0.5- 1 m apart and groups were > 3 m apart. During the course of the experiments the power systems had occasional malfunctions, resulting in short periods of missing data for some hives.
    Colonies were all fed 2 kg sugar syrup (1:1 w:w) and 250 g pollen patty, made at a ratio of 1: 1: 1 corbicular pollen (Great Lakes Bee Co.): granulated sugar: drivert sugar (dry fondant sugar with approximately 8% invert sugar) (Domino Foods, Yonkers, NY). On 10 July a temperature sensor (iButton Thermochron, precision ± 0.06 °C) enclosed in plastic tissue embedding cassettes (Thermo Fisher Scientific, Waltham, MA) was stapled to the center of the top bar on the 5th frame in the bottom box of each hive and set to record every 15 min. The same day, pieces of slick paperboard coated with petroleum jelly and covered with mesh screens were inserted onto the hive floor to monitor Varroa mite fall within the hive58. The boards were removed 2 days later, and the number of mites counted on each board. Infestation levels of Varroa were again monitored during and post-treatment. Colonies were treated with amitraz (Apivar, Arysta LifeScience America Inc., New York, NY) on 19 October.
    Hives were assessed on 12 July, and approximately every 5–6 weeks thereafter until November, the again 13 February 2020 and finally on 29 March using a published protocol21,28. Briefly, the hive was opened after the application of smoke, and each frame was lifted out sequentially, gently shaken to dislodge adult bees, photographed using a 16.3 megapixel digital camera (Canon Rebel SL1, Canon USA, Inc., Melville, NY), weighed on a portable scale (model EC15, OHaus Corp., Parsippany, NJ), and replaced in the hive. Frame photographs were analyzed later in the laboratory (see below). During this first assessment (but not subsequent assessments), all hive components (i.e. lid, inner cover, box, bottom board, frames, entrance reducer, internal feeder) were also shaken free of bees and weighed to yield an initial mass of all hive components. At the initial inspection, 3–5 g of wax and honey were collected from each hive into 50 ml centrifuge tubes and stored at − 80 °C; samples collected in September, prior to treatment, were pooled and subjected to a full panel analysis for residues of pesticides and fungicides, from all major classes, by the Laboratory Approval and Testing Division, Agricultural Marketing Service, USDA. Wax samples were collected only at the initial assessment in order to establish a baseline exposure—the lack of agriculture or landscaping within foraging distance excluded the possibility of further exposure. Honey samples from later assessments were pooled within treatment group and subjected only to neonicotinoid residue analysis.
    Newly-emerged bees (NEBs) were sampled by pressing an 8 cm × 8 cm × 2 cm cage of wire mesh into a section of capped brood, then returning the following day to collect NEBs that had emerged within the cage over the previous 24 h. The NEBs were then placed in a 50 mL centrifuge tube, frozen on dry ice, and stored at − 80 °C. At the laboratory, 5 bees per hive per assessment date were placed in Eppendorf tubes, weighed, dried for 72 h at 60 °C, then re-weighed to determine average wet and dry weight per bee. NEBs were collected on 12 July and 24 August 2017 (brood levels were too low in October 2017 for sampling).
    After the first assessment, hives were ranked with respect to adult bee mass and then randomly assigned to treatment group, ensuring that the average bee masses per group were approximately equal and after eliminating assignments that resulted in excessive spatial clumping of the colonies. Just prior to treatment all broodless frames containing honey and/or pollen were replaced with frames of empty drawn comb collected earlier from the same apiary. Colonies were then fed 2–3 kg syrup twice per week from 14 July to 21 August, with clothianidin concentrations depending on their treatment group. Syrup consumption per colony was recorded. Hives were assessed approximately every 5–6 weeks thereafter until November, and again in February and March. At each of those subsequent assessments, the same protocol was followed but only the frames, hive lid and inner cover were weighed. The hive lid and inner cover weights were compared to previous values and used to correct for moisture content changes in the hive components and improve estimates of adult bee mass. Food resources in the colonies were very low by mid-November so all colonies were provided with an additional 2 kg sugar syrup at that time.
    AZ 2018 experiment
    The 2017–2018 experiment was conducted in the same manner, with the same or similar equipment and using the same bee suppliers. Varroa mite fall onto adhesive boards was monitored 6–9 July, and hives were assessed and sampled on 5 July in the same manner as before. NEBS were sampled on 6 July, 23 August and 4 October, 2018. CO2 probes (Vaisala Inc., Helsinki, Finland), calibrated for 0–20% concentrations, were installed in five hives in each treatment group and set to record CO2 concentration every 5 min. Colonies were fed 3 kg sugar syrup twice per week from 12 July to 20 August with the same pesticide concentrations as the previous year and assessed as before, with the experiment ending in February. Varroa infestation levels were monitored at the end of August and again at the beginning of November. Colonies were treated with amitraz (Apivar) on 19 October. Unlike the previous year, colonies were found to have sufficient resources to last to spring and so they were not fed any additional syrup after the treatment period.
    MS 2018 experiment
    Full bee colonies, each comprised of two “deep” boxes as described above, were obtained from a local bee supplier (Gunter Apiaries, Lumberton MS) as nucleus colonies the previous year. Queens were bred locally and subspecies was unspecified. Colonies were placed on hive scales (Tekfa model B-2418) on 16 May 2018. Colonies were assessed, using the methods described above, on 11 July 2018 and temperature sensors (iButtons) were installed on 12 July 2018. Frames of honey were removed on 18 July and colonies were randomly placed in treatment groups. Treatment feeding commenced 24 July, lasting 31 August, using the same concentrations and amounts as described above. Colonies were not fed pollen patty because sufficient pollen was available. Colonies were assessed again 18 September 2018 and finally on 27 March 2019. Samples of 300 bees were collected on 7 May 2018, washed in 70% ethanol and the Varroa mites counted. Colonies were treated for Varroa (Checkmite, Mann Lake Ltd) on 28 June 2018. The apiary site was assessed using the National Agricultural Statistical Service (NASS) Cropscape web site (https://nassgeodata.gmu.edu/ CropScape) to obtain acreage estimates for all land use categories within an approximately 1.8 km radius of the apiary. Bees can forage beyond that distance; the radius was chosen to provide a sufficient area ( > 1000 ha) to be representative of the forage available to the bees.
    Data analysis
    The total weight of the adult bee population was calculated by subtracting the combined weights of hive components (i.e. lid, inner cover, box, bottom board, frames, entrance reducer, internal feeder) obtained at the start of the experiment (model EC15, OHaus) from the total hive weight recorded the midnight prior to the inspection. The area of sealed brood per frame was estimated from the photographs using ImageJ version 1.47 software (W. Rasband, National Institutes of Health, USA) or CombCount59; this method has been described elsewhere20,28. Food resources in the colonies were calculated as the total frame weight, less (1) the mass of the brood (calculated at 0.77 g/cm2) and (2) the mass of an empty frame of drawn comb (555 g)28.
    Honey bee colony survivorship was analyzed using Proc LifeReg (SAS Inc. 2002). Survivorship curves were generated for each treatment group within each experiment. Treatments compared using ANOVA (α = 0.05) (Proc Glimmix, SAS Inc. 2002), with experiment as a random factor, with respect to three parameters: (1) the 30th percentile; (2) the 50th percentile; and 3) a shape variable calculated by subtracting the 40th from the 30th percentile.
    Daily hive weight change was calculated as the difference between the weight at midnight of a given day to the weight 23 h 55 min later. Continuous temperature data were divided into daily average data and within-day detrended data. Detrended data were obtained as the difference between the 24 h running average and the raw data. Sine curves were fit to 3-day subsamples of the detrended data, taken sequentially by day28. Curve amplitudes, representing estimates of daily variability, were reduced to a data point every 3 days, to ensure no overlap between data subsamples, for repeated measures MANOVA analyses. CO2 concentration data were treated in the same fashion.
    Adult bee masses , brood surface area, and total food resources for the 1st sampling occasion after treatment were analyzed across all three experiments using ANOVA (Proc Glimmix, SAS Inc. 2002). Further analyses were conducted among the Arizona experiments across multiple sampling occasions using repeated-measure MANOVA (Proc Glimmix, SAS Inc. 2002). A similar approach was taken with newly-emerged bee weights, i.e. initial analysis across AZ 2017 and AZ 2018 using ANOVA for a single sampling occasion, then for AZ 2018 using MANOVA across two sampling occasions. Daily hive weight change, internal hive temperature average and variability (i.e. amplitudes of fit sine curves) and CO2 concentration average and variability were used as response variables in repeated-measures MANOVA with treatment, sampling date, experiment and day, and all 2-way interactions, as fixed effects and with pre-treatment values as a covariate to control for pre-existing differences. Proc Univariate was used with all response variables to inspect the data for normality. Log transformations were conducted where necessary to improve normality. Analyses of hive weight and temperature were limited to approximately 3 months after the end of treatment to focus on the active season, and consisted of omnibus tests that initially included all three field experiments followed by analyses within each experiment. The reason for this is that effects that are significant in one trial might not be so in another, or might be significant but in a contrary fashion. CO2 concentration data were only collected in AZ 2018.
    NEB data were analyzed with Treatment, Sampling date and their interaction, with the July values as a covariate. Varroa fall were analyzed within each Arizona experiment, with the pre-treatment values used as covariates where applicable. Varroa alcohol wash data for MS 2018 were analyzed separately.
    Rainfall, and ambient temperature and CO2 data, were obtained for the Arizona site: AmeriFlux US-SRM Santa Rita Mesquite, https://doi.org/10.17190/AMF/1246104; and temperature and rainfall data for Mississippi: National Environmental Satellite, Data, and Information Service, National Oceanic and Atmospheric Administration, Poplarville Experimental Station, MS US USC00227128. More