DNA traces the origin of honey by identifying plants, bacteria and fungi
1.
Bogdanov, S., Ruoff, K. & Persano Oddo, L. Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35, S4–S17 (2004).
Article Google Scholar
2.
Kwakman, P. H. S., te Velde, A. A., de Boer, L., Vandenbroucke-Grauls, C. M. J. E. & Zaat, S. A. J. Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS ONE 6, e17709 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
3.
Lu, J. et al. The effect of New Zealand Kanuka, Manuka and Clover Honeys on bacterial growth dynamics and cellular morphology varies according to the species. PLoS ONE 8, e55898 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
4.
Salonen, A., Ollikka, T., Grönlund, E., Ruottinen, L. & Julkunen-Tiitto, R. Pollen analyses of honey from Finland. Grana 48, 281–289 (2009).
Article Google Scholar
5.
Balkanska, R., Stefanova, K. & Stoikova-Grigorova, R. Main honey botanical components and techniques for identification: a review. J. Apic. Res. https://doi.org/10.1080/00218839.2020.1765481 (2020).
Article Google Scholar
6.
Soares, S., Amaral, J. S., Oliveira, M. B. P. P. & Mafra, I. A comprehensive review on the main honey authentication issues: production and origin. Compr. Rev. Food Sci. Food Saf. 16, 1072–1100 (2017).
CAS PubMed Article Google Scholar
7.
Beckmann, K., Beckh, G., Luellmann, C. & Speer, K. Characterization of filtered honey by electrophoresis of enzyme fractions. Apidologie 42, 59–66 (2011).
CAS Article Google Scholar
8.
Anklam, E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 63, 549–562 (1998).
CAS Article Google Scholar
9.
Von Der Ohe, W., Persano Oddo, L., Piana, M. L., Morlot, M. & Martin, P. Harmonized methods of melissopalynology. Apidologie 35, 18–25 (2004).
Article Google Scholar
10.
Bell, K. L. et al. Pollen DNA barcoding: Current applications and future prospects. Genome 59, 629–640 (2016).
PubMed Article PubMed Central Google Scholar
11.
Guertler, P., Eicheldinger, A., Muschler, P., Goerlich, O. & Busch, U. Automated DNA extraction from pollen in honey. Food Chem. 149, 302–306 (2014).
CAS PubMed Article Google Scholar
12.
Hawkins, J. et al. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS ONE 10, e0134735 (2015).
PubMed PubMed Central Article CAS Google Scholar
13.
Valentini, A., Miquel, C. & Taberlet, P. DNA barcoding for honey biodiversity. Diversity 2, 610–617 (2010).
CAS Article Google Scholar
14.
Prosser, S. W. J. & Hebert, P. D. N. Rapid identification of the botanical and entomological sources of honey using DNA metabarcoding. Food Chem. 214, 183–191 (2017).
CAS PubMed Article Google Scholar
15.
Olivieri, C., Marota, I., Rollo, F. & Luciani, S. Tracking plant, fungal, and bacterial DNA in honey specimens. J. Forensic Sci. 57, 222–227 (2012).
CAS PubMed Article Google Scholar
16.
Snowdon, J. A. & Cliver, D. O. Microorganisms in honey. Int. J. Food Microbiol. 31, 1–26 (1996).
CAS PubMed Article Google Scholar
17.
Manirajan, B. A. et al. Diversity, specificity, co-occurrence and hub taxa of the bacterial-fungal pollen microbiome. FEMS Microbiol. Ecol. 94, 1–11 (2018).
Article CAS Google Scholar
18.
Anderson, K. E. et al. Microbial ecology of the hive and pollination landscape: Bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS ONE 8, e83125 (2013).
ADS PubMed PubMed Central Article CAS Google Scholar
19.
Aizenberg-Gershtein, Y., Izhaki, I. & Halpern, M. Do honeybees shape the bacterial community composition in floral nectar?. PLoS ONE 8, e83125 (2013).
ADS Article CAS Google Scholar
20.
Fridman, S., Izhaki, I., Gerchman, Y. & Halpern, M. Bacterial communities in floral nectar. Environ. Microbiol. Rep. 4, 97–104 (2012).
PubMed Article PubMed Central Google Scholar
21.
Nevas, M. et al. High prevalence of Clostridium botulinum types A and B in honey samples detected by polymerase chain reaction. Int. J. Food Microbiol. 72, 45–52 (2002).
CAS PubMed Article PubMed Central Google Scholar
22.
Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).
CAS PubMed Article PubMed Central Google Scholar
23.
Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. U. S. A. 109, 11002–11007 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
24.
Oksanen, J. et al. Package ‘vegan’ Title Community Ecology Package Version 2.5-6. (2019).
25.
Larsson, J. Area-Proportional Euler and Venn Diagrams with Ellipses [R package eulerr version 6.1.0].
26.
Warton, D. I. et al. So many variables: Joint modeling in community ecology. Trends Ecol. Evol. 30, 766–779 (2015).
PubMed Article Google Scholar
27.
Tjur, T. Coefficients of determination in logistic regression models—A new proposal: The coefficient of discrimination. Am. Stat. 63, 366–372 (2009).
MathSciNet MATH Article Google Scholar
28.
Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models (2020).https://doi.org/10.1017/S0376892997000088
29.
Guisan, A. et al. Measuring model accuracy: Which metrics to use? in Habitat Suitability and Distribution Models 241–269 (Cambridge University Press, 2017). doi:https://doi.org/10.1017/9781139028271.022.
30.
Tikhonov, G. et al. Joint species distribution modelling with the r-package HMSC. Methods Ecol. Evol. 11, 442–447 (2020).
PubMed PubMed Central Article Google Scholar
31.
Moran, N. A., Hansen, A. K., Powell, J. E. & Sabree, Z. L. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE 7, 1–10 (2012).
Google Scholar
32.
Fünfhaus, A., Ebeling, J. & Genersch, E. Bacterial pathogens of bees. Curr. Opin. Insect Sci. 26, 89–96 (2018).
PubMed Article Google Scholar
33.
Fries, I. Nosema ceranae in European honey bees (Apis mellifera). J. Invertebr. Pathol. 103, (2010).
34.
Balvočiute, M. & Huson, D. H. SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare?. BMC Genomics 18, 114 (2017).
PubMed PubMed Central Article Google Scholar
35.
Meiklejohn, K. A., Damaso, N. & Robertson, J. M. Assessment of BOLD and GenBank—their accuracy and reliability for the identification of biological materials. PLoS One 14 (2019).
36.
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, 259–264 (2018).
Article CAS Google Scholar
37.
Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 1–9 (2015).
Article CAS Google Scholar
38.
Cole, J. R. et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141–145 (2008).
Article CAS Google Scholar
39.
Bell, K. L., Loeffler, V. M. & Brosi, B. J. An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding. Appl. Plant Sci. 5, 1600110 (2017).
Article Google Scholar
40.
Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).
CAS PubMed Article Google Scholar
41.
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
PubMed PubMed Central Article Google Scholar
42.
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ https://doi.org/10.7717/peerj.2584 (2016).
Article PubMed PubMed Central Google Scholar
43.
Vesterinen, E. J., Kaunisto, K. M. & Lilley, T. M. A global class reunion with multiple groups feasting on the declining insect smorgasbord. Sci. Rep. 10, 16595 (2020).
CAS PubMed PubMed Central Article Google Scholar
44.
Barcaccia, G., Lucchin, M. & Cassandro, M. DNA barcoding as a molecular tool to track down mislabeling and food piracy. Diversity 8, 2 (2015).
Article CAS Google Scholar
45.
Zábrodská, B. & Vorlová, L. Adulteration of honey and available methods for detection—a review. Acta Vet. Brno 83, S85–S102 (2014).
Article Google Scholar
46.
Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321 (2003).
CAS Article Google Scholar
47.
DeSalle, R. & Goldstein, P. Review and Interpretation of Trends in DNA Barcoding. Front. Ecol. Evol. 7, 302 (2019).
Article Google Scholar
48.
Hawkins, J. et al. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS One 10 (2015).
49.
De Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7, 1–10 (2017).
Article CAS Google Scholar
50.
Lucek, K. et al. Metabarcoding of honey to assess differences in plant-pollinator interactions between urban and non-urban sites. https://doi.org/10.1007/s13592-019-00646-3.
51.
Bruni, I. et al. A DNA barcoding approach to identify plant species in multiflower honey. Food Chem. 170, 308–315 (2015).
CAS PubMed Article Google Scholar
52.
Laha, R. C. et al. Meta-barcoding in combination with palynological inference is a potent diagnostic marker for honey floral composition. AMB Express 7, 132 (2017).
PubMed PubMed Central Article CAS Google Scholar
53.
Utzeri, V. J., Ribani, A. & Fontanesi, L. Authentication of honey based on a DNA method to differentiate Apis mellifera subspecies: Application to Sicilian honey bee (A. m. siciliana) and Iberian honey bee (A. m. iberiensis) honeys. Food Control 91, 294–301 (2018).
CAS Article Google Scholar
54.
Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS ONE 13, e0205575 (2018).
PubMed PubMed Central Article CAS Google Scholar
55.
Bovo, S., Utzeri, V. J., Ribani, A. & Cabbri, R. Shotgun sequencing of honey DnA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. https://doi.org/10.1038/s41598-020-66127-1.
56.
Vesterinen, E. J., Puisto, A. I. E., Blomberg, A. S. & Lilley, T. M. Table for five, please: Dietary partitioning in boreal bats. Ecol. Evol. 8, 10914–10937 (2018).
PubMed PubMed Central Article Google Scholar
57.
Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).
CAS PubMed Article Google Scholar
58.
Functional Genomics Unit, University of Helsinki, Finland. www.helsinki.fi/en/infrastructures/genome-analysis/biomedicum-functional-genomics-unit.
59.
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
CAS PubMed Article Google Scholar
60.
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).
CAS PubMed PubMed Central Article Google Scholar
61.
Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
CAS PubMed PubMed Central Article Google Scholar
62.
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
CAS PubMed PubMed Central Article Google Scholar
63.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
CAS Article Google Scholar
64.
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 39, D28–D31 (2011).
Article CAS Google Scholar
65.
Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).
CAS PubMed PubMed Central Article Google Scholar
66.
Lee, T., Alemseged, Y. & Mitchell, A. Dropping Hints: Estimating the diets of livestock in rangelands using DNA metabarcoding of faeces. Metabarcoding Metagenomics 2, e22467 (2018).
Article Google Scholar
67.
Alberdi, A., Garin, I., Aizpurua, O. & Aihartza, J. The foraging ecology of the Mountain Long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes. PLoS One 7, (2012).
68.
Bolger, A. M., Lohse, M. & Usadel, B. Genome analysis Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
CAS PubMed PubMed Central Article Google Scholar
69.
Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 1–13 (2019).
Article CAS Google Scholar
70.
National Center for Biotechnology Information (NCBI); Bethesda (MD): National Library of Medicine (US). https://www.ncbi.nlm.nih.gov/ (1988).
71.
Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2017, e104 (2017).
Article Google Scholar
72.
Breitwieser, F. P. & Salzberg, S. L. Pavian: Interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics 36, 1303–1304 (2020).
CAS PubMed Article Google Scholar
73.
DIN (Deutsches Institut für Normung),. Untersuchung von Honig – Bestimmung der relativen Pollenhäufigkeit. DIN 10760, 2002–2005 (2002).
Google Scholar
74.
Persano Oddo, L. et al. Main European unifloral honeys: descriptive sheets 1. Apidologie 35, 38–81 (2004).
Article Google Scholar
75.
Piper, A. M. et al. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. Gigascience 8, 1–22 (2019).
Article Google Scholar
76.
Ovaskainen, O. & Abrego, N. Joint species distribution modelling joint species distribution modelling (Cambridge University Press, Cambridge, 2020). https://doi.org/10.1017/9781108591720.
Google Scholar More