More stories

  • in

    Primary and secondary aerenchyma oxygen transportation pathways of Syzygium kunstleri (King) Bahadur & R. C. Gaur adventitious roots in hypoxic conditions

    1.
    Boyer, J. S. Plant productivity and environment. Science 218, 443–448 (1982).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Abiko, T. et al. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp mays). Plant Cell Environ. 35, 1618–1630 (2012).
    CAS  PubMed  Article  Google Scholar 

    3.
    Jackson, M. B. Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. Plant Mol. Biol. 36, 145–174 (1985).
    CAS  Article  Google Scholar 

    4.
    Colmer, T. D. & Voesenek, L. A. C. J. Flooding tolerance: Suites of plant traits in variable environments. Funct. Plant Biol. 36, 665–681 (2009).
    CAS  PubMed  Article  Google Scholar 

    5.
    Bailey-Serres, J. & Voesenek, L. A. C. J. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313–339 (2008).
    CAS  PubMed  Article  Google Scholar 

    6.
    Colmer, T. D. & Greenway, H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J. Exp. Bot. 62, 39–57 (2011).
    CAS  PubMed  Article  Google Scholar 

    7.
    Huang, S., Greenway, H. & Colmer, T. D. Responses of coleoptiles of intact rice seedlings to anoxia: K+ net uptake from the external solution and translocation from the caryopses. Ann. Bot. 91, 271–278 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Vartapetian, B. B. et al. Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann. Bot. 91, 155–172 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Visser, E. J. W., Voesenek, L. A. C. J., Vartapetian, B. B. & Jackson, M. B. Flooding and plant growth. Ann. Bot. 91, 107–109 (2003).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    10.
    Voesenek, L. A. & Bailey-Serres, J. Flood adaptive traits and processes: An overview. New Phytol. 206, 57–73 (2015).
    CAS  PubMed  Article  Google Scholar 

    11.
    Evans, D. E. Aerenchyma formation. New Phytol. 161, 35–49 (2004).
    Article  Google Scholar 

    12.
    Armstrong, W. Aeration in higher plants. In Advances in Botanical Research (ed. Woolhouse, H. W.) (Academic Press, Burlington, 1980).
    Google Scholar 

    13.
    Colmer, T. D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann. Bot. 91, 301–309 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Jackson, M. B. & Armstrong, W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1, 274–287 (1999).
    CAS  Article  Google Scholar 

    15.
    Seago, J. L. et al. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann. Bot. 96, 565–579 (2005).
    PubMed  Article  Google Scholar 

    16.
    Drew, M. C., He, C. J. & Morgan, P. W. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 5, 123–127 (2000).
    CAS  PubMed  Article  Google Scholar 

    17.
    Yamauchi, T., Rajhi, I. & Nakazono, M. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal. Behav. 6, 759–761 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Takahashi, H., Yamauchi, T., Colmer, T. D. & Nakazono, M. Aerenchyma formation in plants. in Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia 247–265. (Springer, Wien, 2014).

    19.
    Stevens, K. J., Peterson, R. L. & Reader, R. J. The aerenchymatous phellem of Lythrum salicaria (L.): A pathway for gas transport and its role in flood tolerance. Ann. Bot. 89, 621–625 (2002).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Shimamura, S., Mochizuki, T., Nada, Y. & Fukuyama, M. Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions. Plant Soil 251, 351–359 (2003).
    CAS  Article  Google Scholar 

    21.
    Shimamura, S., Yamamoto, R., Nakamura, T., Shimada, S. & Komatsu, S. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann. Bot. 106, 277–284 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    De Simone, O. et al. Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct. Plant Biol. 29, 1025–1035 (2002).
    PubMed  Article  Google Scholar 

    23.
    Colmer, T. D. & Pedersen, O. Oxygen dynamics in submerged rice (Oryza sativa). New Phytol. 178, 326–334 (2008).
    CAS  PubMed  Article  Google Scholar 

    24.
    Haase, K., De Simone, O., Junk, W. J. & Schmidt, W. Internal oxygen transport in cuttings from flood-adapted várzea tree species. Tree Physiol. 23, 1069–1076 (2003).
    PubMed  Article  Google Scholar 

    25.
    Sou, H. D., Masumori, M., Kurokochi, H. & Tange, T. Histological observation of primary and secondary aerenchyma formation in adventitious roots of Syzygium kunstleri (King) Bahadur and R. C. Gaur grown in hypoxic medium. Forests 10, 137 (2019).
    Article  Google Scholar 

    26.
    Rubinigg, M., Stulen, I., Elzenga, J. T. M. & Colmer, T. D. Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. Funct. Plant Biol. 29, 1475–1481 (2002).
    CAS  PubMed  Article  Google Scholar 

    27.
    Kotula, L., Ranathunge, K., Schreiber, L. & Steudle, E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J. Exp. Bot. 60, 2155–2167 (2009).
    CAS  PubMed  Article  Google Scholar 

    28.
    Shiono, K. et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann. Bot. 107, 89–99 (2011).
    CAS  PubMed  Article  Google Scholar 

    29.
    Watanabe, K., Nishiuchi, S., Kulichikhin, K. & Nakazono, M. Does suberin accumulation in plant roots contribute to waterlogging tolerance?. Front. Plant Sci. 4, 178 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Khan, N. et al. Root iron plaque on wetland plants as dynamic pool of nutrients and contaminants. In Advances in Agronomy Vol. 138 (ed. Sparks, D. L.) 1–96 (Academic Press, Cambridge, 2016).
    Google Scholar 

    31.
    Uteau, D. et al. Oxygen and redox potential gradients in the rhizosphere of alfalfa grown on a loamy soil. J. Plant Nutr. Soil Sci. 178, 278–287 (2015).
    CAS  Article  Google Scholar 

    32.
    Tian, C., Wang, C., Tian, Y., Wu, X. & Xiao, B. Root radial oxygen loss and the effects on rhizosphere microarea of two submerged plants. Polish J. Environ. Studies 24, 1795–1802 (2015).
    Article  Google Scholar 

    33.
    Shimamura, S., Mochizuki, T., Nada, Y. & Fukuyama, M. Secondary aerenchyma formation and its relation to nitrogen fixation in root nodules of soybean plants (Glycine max) grown under flooded conditions. Plant Product. Sci. 5, 294–300 (2002).
    CAS  Article  Google Scholar 

    34.
    Shiba, H. & Daimon, H. Histological observation of secondary aerenchyma formed immediately after flooding in Sesbania cannabina and S. rostrata. Plant Soil 255, 209–215 (2003).
    CAS  Article  Google Scholar 

    35.
    Somavilla, N. S. & Graciano-Ribeiro, D. Ontogeny and characterization of aerenchymatous tissues of Melastomataceae in the flooded and well-drained soils of a Neotropical savanna. Flora 207, 212–222 (2012).
    Article  Google Scholar 

    36.
    Thomas, A. L., Guerreiro, S. M. C. & Sodek, L. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann. Bot. 96, 1191–1198 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Wiengweera, A., Greenway, H. & Thomson, C. J. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann. Bot. 80, 115–123 (1997).
    Article  Google Scholar 

    38.
    Dacey, J. W. Internal winds in water lilies: An adaptation for life in anaerobic sediments. Science 210, 1017–1019 (1980).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Drew, M. C., Saglio, P. H. & Pradet, A. J. P. Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport. Planta 165, 51–58 (1985).
    CAS  PubMed  Article  Google Scholar 

    40.
    Drew, M. C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 223–250 (1997).
    CAS  PubMed  Article  Google Scholar 

    41.
    Shimamura, S., Yoshida, S. & Mochizuki, T. Cortical aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding. Ann. Bot. 100, 1431–1439 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Armstrong, W., Cousins, D., Armstrong, J., Turner, D. W. & Beckett, P. M. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: A microelectrode and modelling study with Phragmites australis. Ann. Bot. 86, 687–703 (2000).
    Article  Google Scholar 

    43.
    Herzog, M. & Pedersen, O. Partial versus complete submergence: Snorkelling aids root aeration in Rumex palustris but not in R. acetosa. Plant Cell Environ. 37, 2381–2390 (2014).
    CAS  PubMed  Google Scholar 

    44.
    Tanaka, K., Masumori, M., Yamanoshita, T. & Tange, T. Morphological and anatomical changes of Melaleuca cajuputi under submergence. Trees 25, 695–704 (2011).
    Article  Google Scholar 

    45.
    Armstrong, W. Polarographic oxygen electrodes and their use in plant aeration studies. Proc. R. Soc. Edinburgh Sect. B. Biol. Sci. 102, 511–527 (1994).
    Article  Google Scholar 

    46.
    Hitchman, M. L. Measurement of Dissolved Oxygen (Wiley, New York, 1978).
    Google Scholar 

    47.
    Ober, E. S. & Sharp, R. E. A microsensor for direct measurement of O2 partial pressure within plant tissues. J. Exp. Bot. 47, 447–454 (1996).
    CAS  Article  Google Scholar  More

  • in

    Chimpanzees balance resources and risk in an anthropogenic landscape of fear

    1.
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl. Acad. Sci. 113, 6388–6396 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. In Advances in Ecological Research Vol. 46 (eds Jacob, U. & Woodward, G.) 89–210 (Academic Press, Cambridge, 2012).
    Google Scholar 

    5.
    Gallego-Zamorano, J. et al. Combined effects of land use and hunting on distributions of tropical mammals. Conserv. Biol. 34, 1271–1280 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).
    Article  Google Scholar 

    7.
    Estrada, A., Raboy, B. E. & Oliveira, L. C. Agroecosystems and primate conservation in the tropics: a review. Am. J. Primatol. 74, 696–711 (2012).
    PubMed  Article  Google Scholar 

    8.
    Bhagwat, S. A., Willis, K. J., Birks, H. J. B. & Whittaker, R. J. Agroforestry: a refuge for tropical biodiversity?. Trends Ecol. Evol. 23, 261–267 (2008).
    PubMed  Article  Google Scholar 

    9.
    Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 1–8 (2019).
    Article  CAS  Google Scholar 

    10.
    Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).
    PubMed  Article  Google Scholar 

    11.
    Kshettry, A., Vaidyanathan, S., Sukumar, R. & Athreya, V. Looking beyond protected areas: identifying conservation compatible landscapes in agro-forest mosaics in north-eastern India. Glob. Ecol. Conserv. 22, e00905 (2020).
    Article  Google Scholar 

    12.
    Osborn, F. V. & Hill, C. M. Techiques to reduce crop loss: human and technical dimensions in Africa. In People and Wildlife, Conflict or Co-existence? 72–85 (Cambridge University Press, Cambridge, 2005).

    13.
    McLennan, M. R. & Asiimwe, C. Cars kill chimpanzees: case report of a wild chimpanzee killed on a road at Bulindi, Uganda. Primates J. Primatol. 57, 377–388 (2016).
    Article  Google Scholar 

    14.
    Chapman, C. A. et al. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?. Am. J. Phys. Anthropol. 131, 525–534 (2006).
    PubMed  Article  Google Scholar 

    15.
    Goldberg, T. L., Gillespie, T. R., Rwego, I. B., Estoff, E. L. & Chapman, C. A. Forest fragmentation as cause of bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerg. Infect. Dis. 14, 1375–1382 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    McLennan, M. R., Hyeroba, D., Asiimwe, C., Reynolds, V. & Wallis, J. Chimpanzees in mantraps: lethal crop protection and conservation in Uganda. Oryx 46, 598–603 (2012).
    Article  Google Scholar 

    17.
    Kalema-Zikusoka, G., Rubanga, S., Mutahunga, B. & Sadler, R. Prevention of Cryptosporidium and GIARDIA at the human/gorilla/livestock interface. Front. Public Health 6, (2018).

    18.
    Kenney, J., Allendorf, F. W., McDougal, C. & Smith, J. L. D. How much gene flow is needed to avoid inbreeding depression in wild tiger populations?. Proc. R. Soc. B Biol. Sci. 281, 20133337 (2014).
    Article  Google Scholar 

    19.
    Willems, E. P. & Hill, R. A. Predator-specific landscapes of fear and resource distribution: effects on spatial range use. Ecology 90, 546–555 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Coleman, B. T. & Hill, R. A. Living in a landscape of fear: the impact of predation, resource availability and habitat structure on primate range use. Anim. Behav. 88, 165–173 (2014).
    Article  Google Scholar 

    21.
    Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Laundré, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, (2010).

    23.
    Theuerkauf, J. & Rouys, S. Habitat selection by ungulates in relation to predation risk by wolves and humans in the Białowieża Forest, Poland. For. Ecol. Manag. 256, 1325–1332 (2008).
    Article  Google Scholar 

    24.
    Ciuti, S. et al. Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. PLoS ONE 7, e50611 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Nowak, K., Wimberger, K., Richards, S. A., Hill, R. A. & le Roux, A. Samango monkeys (Cercopithecus albogularis labiatus) manage risk in a highly seasonal, human-modified landscape in Amathole Mountains, South Africa. Int. J. Primatol. 38, 194–206 (2017).
    PubMed  Article  Google Scholar 

    26.
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).
    PubMed  Article  Google Scholar 

    27.
    Carter, N. H., Shrestha, B. K., Karki, J. B., Pradhan, N. M. B. & Liu, J. Coexistence between wildlife and humans at fine spatial scales. Proc. Natl. Acad. Sci. 109, 15360–15365 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Carter, N. H., Jasny, M., Gurung, B. & Liu, J. Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Glob. Ecol. Conserv. 3, 149–162 (2015).
    Article  Google Scholar 

    29.
    Lamb, C. T. et al. The ecology of human–carnivore coexistence. Proc. Natl. Acad. Sci. 117, 17876–17883. https://doi.org/10.1073/pnas.1922097117 (2020).
    CAS  Article  PubMed  Google Scholar 

    30.
    Bryson-Morrison, N., Tzanopoulos, J., Matsuzawa, T. & Humle, T. Activity and habitat use of chimpanzees (Pan troglodytes verus) in the anthropogenic landscape of Bossou, Guinea, West Africa. Int. J. Primatol. 38, 282–302 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    de Almeida-Rocha, J. M., Peres, C. A. & Oliveira, L. C. Primate responses to anthropogenic habitat disturbance: a pantropical meta-analysis. Biol. Conserv. 215, 30–38 (2017).
    Article  Google Scholar 

    32.
    Galán‐Acedo, C., Arroyo‐Rodríguez, V., Cudney‐Valenzuela, S. J. & Fahrig, L. A global assessment of primate responses to landscape structure. Biol. Rev. 94, 1605–1618 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Garriga, R. M. et al. Factors influencing wild chimpanzee (Pan troglodytes verus) relative abundance in an agriculture-swamp matrix outside protected areas. PLoS ONE 14, e0215545 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Hockings, K. J., Anderson, J. R. & Matsuzawa, T. Road crossing in chimpanzees: a risky business. Curr. Biol. 16, R668–R670 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3, e1600946 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    IUCN SSC Primate Specialist Group. Regional action plan for the conservation of western chimpanzees (Pan troglodytes verus) 2020–2030. (2020).

    37.
    Kalan, A. K. et al. Environmental variability supports chimpanzee behavioural diversity. Nat. Commun. 11, 4451 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Hockings, K. J., Anderson, J. R. & Matsuzawa, T. Socioecological adaptations by chimpanzees, Pan troglodytes verus, inhabiting an anthropogenically impacted habitat. Anim. Behav. 83, 801–810 (2012).
    Article  Google Scholar 

    39.
    McLennan, M. R. & Hockings, K. J. Wild chimpanzees show group differences in selection of agricultural crops. Sci. Rep. 4, 5956 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Kalan, A. K. et al. Novelty response of wild African apes to camera traps. Curr. Biol.  29, 1211–1217.e3 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Hockings, K. J. & McLennan, M. R. From forest to farm: systematic review of cultivar feeding by chimpanzees—management implications for wildlife in anthropogenic landscapes. PLoS ONE 7, e33391 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Hockings, K. J., Anderson, J. R. & Matsuzawa, T. Use of wild and cultivated foods by chimpanzees at Bossou, Republic of Guinea: feeding dynamics in a human-influenced environment. Am. J. Primatol. 71, 636–646 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    McLennan, M. R. Diet and feeding ecology of chimpanzees (Pan troglodytes) in Bulindi, Uganda: foraging strategies at the forest–farm interface. Int. J. Primatol. 34, 585–614 (2013).
    Article  Google Scholar 

    44.
    McLennan, M. R. & Ganzhorn, J. U. Nutritional characteristics of wild and cultivated foods for chimpanzees (Pan troglodytes) in agricultural landscapes. Int. J. Primatol. 38, 122–150 (2017).
    Article  Google Scholar 

    45.
    Matthews, A. & Matthews, A. Survey of gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in Southwestern Cameroon. Primates 45, 15–24 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Morgan, D. et al. African apes coexisting with logging: comparing chimpanzee (Pan troglodytes troglodytes) and gorilla (Gorilla gorilla gorilla) resource needs and responses to forestry activities. Biol. Conserv. 218, 277–286 (2018).
    Article  Google Scholar 

    47.
    Krief, S. et al. Wild chimpanzees on the edge: nocturnal activities in croplands. PLoS ONE 9, e109925 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Riley, E. P. & Priston, N. E. C. Macaques in farms and folklore: exploring the human–nonhuman primate interface in Sulawesi, Indonesia. Am. J. Primatol. 72, 848–854 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Parathian, H. E., McLennan, M. R., Hill, C. M., Frazão-Moreira, A. & Hockings, K. J. Breaking through disciplinary barriers: human–wildlife interactions and multispecies ethnography. Int. J. Primatol. 39, 749–775. https://doi.org/10.1007/s10764-018-0027-9 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    Fuentes, A. & Gamerl, S. Disproportionate participation by age/sex classes in aggressive interactions between long-tailed macaques (Macaca fascicularis) and human tourists at Padangtegal monkey forest, Bali, Indonesia. Am. J. Primatol. 66, 197–204 (2005).
    PubMed  Article  Google Scholar 

    51.
    McLennan, M. R. & Hockings, K. J. The aggressive apes? Causes and contexts of great ape attacks on local persons. In Problematic Wildlife (ed. Angelici, F. M.) 373–394 (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-22246-2_18.

    52.
    Hill, C. M. & Webber, A. D. Perceptions of nonhuman primates in human–wildlife conflict scenarios. Am. J. Primatol. 72, 919–924 (2010).
    PubMed  Article  Google Scholar 

    53.
    McLennan, M. R. & Hill, C. M. Troublesome neighbours: changing attitudes towards chimpanzees (Pan troglodytes) in a human-dominated landscape in Uganda. J. Nat. Conserv. 20, 219–227 (2012).
    Article  Google Scholar 

    54.
    Mito, Y. & Sprague, D. S. The Japanese and Japanese monkeys: dissonant neighbors seeking accommodation in a shared habitat. In The Macaque Connection: Cooperation and Conflict Between Humans and Macaques (eds Radhakrishna, S. et al.) 33–51 (Springer, Berlin, 2013).
    Google Scholar 

    55.
    Morzillo, A., de Beurs, K. & Martin-Mikle, C. A conceptual framework to evaluate human-wildlife interactions within coupled human and natural systems. Ecol. Soc. 19, (2014).

    56.
    Martin, J. et al. Coping with human disturbance: spatial and temporal tactics of the brown bear (Ursus arctos). Can. J. Zool. 88, 875–883 (2010).
    Article  Google Scholar 

    57.
    Hockings, K. J. et al. Chimpanzees share forbidden fruit. PLoS ONE 2, e886 (2007).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Duvall, C. S. Human settlement ecology and chimpanzee habitat selection in Mali. Landsc. Ecol. 23, 699 (2008).
    Article  Google Scholar 

    59.
    Hockings, K. J., Parathian, H., Bessa, J. & Frazão-Moreira, A. Extensive overlap in the selection of wild fruits by chimpanzees and humans: implications for the management of complex social-ecological systems. Front. Ecol. Evol. 8, (2020).

    60.
    Nowak, K., Hill, R. A., Wimberger, K. & le Roux, A. Risk-taking in samango monkeys in relation to humans at two sites in South Africa. In Ethnoprimatology: Primate Conservation in the 21st Century (ed. Waller, M. T.) 301–314 (Springer, Berlin, 2016).
    Google Scholar 

    61.
    INE. Recenseamento Geral da População e Habitação: População por Região, Sector e Localidades por Sexo Censo 2009. 160 (2009).

    62.
    Heinicke, S. et al. Characteristics of positive deviants in western chimpanzee populations. Front. Ecol. Evol. 7, (2019).

    63.
    Bersacola, E. Zooming in on Human-Wildlife Coexistence: Primate Community Responses in a Shared Agroforest Landscape in Guinea-Bissau (Oxford Brookes University, Oxford, 2020).
    Google Scholar 

    64.
    Bessa, J., Sousa, C. & Hockings, K. J. Feeding ecology of chimpanzees (Pan troglodytes verus) inhabiting a forest-mangrove-savanna-agricultural matrix at Caiquene-Cadique, Cantanhez National Park, Guinea-Bissau. Am. J. Primatol. 77, 651–665 (2015).
    PubMed  Article  Google Scholar 

    65.
    Hockings, K. J. et al. Leprosy in wild chimpanzees. bioRxiv 2020.11.10.374371 (2020) https://doi.org/10.1101/2020.11.10.374371.

    66.
    Hockings, K. J. & Sousa, C. Differential utilization of cashew—a low-conflict crop—by sympatric humans and chimpanzees. Oryx 46, 375–381 (2012).
    Article  Google Scholar 

    67.
    Calenge, C. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
    Article  Google Scholar 

    68.
    Schmid, F. & Schmidt, A. Nonparametric estimation of the coefficient of overlapping—theory and empirical application. Comput. Stat. Data Anal. 50, 1583–1596 (2006).
    MathSciNet  MATH  Article  Google Scholar 

    69.
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).
    MathSciNet  MATH  Article  Google Scholar 

    70.
    Hijmans, R. J. Raster: geographic data analysis and modeling. (2020).

    71.
    Khorozyan, I., Stanton, D., Mohammed, M., Al-Rail, W. & Pittet, M. Patterns of co-existence between humans and mammals in Yemen: some species thrive while others are nearly extinct. Biodivers. Conserv. 23, 1995–2013 (2014).
    Article  Google Scholar 

    72.
    Sousa, J., Barata, A. V., Sousa, C., Casanova, C. C. N. & Vicente, L. Chimpanzee oil-palm use in southern Cantanhez National Park, Guinea-Bissau. Am. J. Primatol. 73, 485–497 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Tutin, C. E. G. et al. Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lope Reserve, Gabon [and discussion]. Philos. Trans. Biol. Sci. 334, 179–186 (1991).
    ADS  CAS  Article  Google Scholar 

    74.
    Yamakoshi, G. Dietary responses to fruit scarcity of wild chimpanzees at Bossou, Guinea: possible implications for ecological importance of tool use. Am. J. Phys. Anthropol. 106, 283–295 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Wilson, M. L., Hauser, M. D. & Wrangham, R. W. Chimpanzees (Pan troglodytes) modify grouping and vocal behaviour in response to location-specific risk. Behaviour 144, 1621–1653 (2007).
    Article  Google Scholar 

    76.
    Lindshield, S., Danielson, B. J., Rothman, J. M. & Pruetz, J. D. Feeding in fear? How adult male western chimpanzees (Pan troglodytes verus) adjust to predation and savanna habitat pressures. Am. J. Phys. Anthropol. 163, 480–496 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
    Article  Google Scholar 

    78.
    Sousa, J., Vicente, L., Gippoliti, S., Casanova, C. & Sousa, C. Local knowledge and perceptions of chimpanzees in Cantanhez National Park, Guinea-Bissau. Am. J. Primatol. 76, 122–134 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Sharma, K. et al. Conservation and people: towards an ethical code of conduct for the use of camera traps in wildlife research. Ecol. Solut. Evid. 1, e12033 (2020).
    Article  Google Scholar 

    80.
    Sun, C. et al. Tree phenology in a tropical montane forest in Rwanda. Biotropica 28, 668–681 (1996).
    Article  Google Scholar 

    81.
    McLennan, M. R. Chimpanzee Ecology and Interactions with People in an Unprotected Human-Dominated Landscape at Bulindi, Western Uganda (Oxford Brookes University, Oxford, 2010).
    Google Scholar 

    82.
    Jenks, K. E. et al. Using relative abundance indices from camera-trapping to test wildlife conservation hypotheses—an example from Khao Yai National Park, Thailand. Trop. Conserv. Sci. 4, 113–131 (2011).
    ADS  Article  Google Scholar 

    83.
    O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. Forum 6, 131–139 (2003).
    Article  Google Scholar 

    84.
    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).
    MathSciNet  MATH  Article  Google Scholar 

    85.
    Blangiardo, M., Cameletti, M., Baio, G. & Rue, H. Spatial and spatio-temporal models with R-INLA. Spat. Spatio-Temporal Epidemiol. 4, 33–49 (2013).
    Article  Google Scholar 

    86.
    Cameletti, M., Lindgren, F., Simpson, D. & Rue, H. Spatio-temporal modeling of particulate matter concentration through the SPDE approach. AStA Adv. Stat. Anal. 97, 109–131 (2013).
    MathSciNet  MATH  Article  Google Scholar 

    87.
    Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R Stat. Soc. Ser. B Stat. Methodol. 73, 423–498 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    88.
    Bakka, H. et al. Spatial modeling with R-INLA: a review. Wiley Interdiscip. Rev. Comput. Stat. 10, e1443 (2018).
    MathSciNet  Article  Google Scholar 

    89.
    Noor, A. M. et al. The changing risk of Plasmodium falciparum malaria infection in Africa: 2000–10: a spatial and temporal analysis of transmission intensity. Lancet 383, 1739–1747 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Rue, H. et al. Bayesian computing with INLA: a review. Annu. Rev. Stat. Its Appl. 4, 395–421 (2017).
    ADS  Article  Google Scholar 

    91.
    Cressie, N. & Wikle, C. K. Statistics for Spatio-Temporal Data (Wiley, Hoboken, 2015).
    Google Scholar 

    92.
    Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).
    Article  Google Scholar 

    93.
    Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Linde, A. V. D. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).
    MathSciNet  MATH  Article  Google Scholar 

    94.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020). More

  • in

    Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities

    1.
    Moran, N. A., Ochman, H. & Hammer, T. J. Evolutionary and ecological consequences of gut microbial communities. Annu. Rev. Ecol. Syst. 50, 451–475 (2019).
    Article  Google Scholar 
    2.
    Engel, P. & Moran, N. A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: Their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Mason, C. J. Complex relationships at the intersection of insect gut microbiomes and plant defenses. J. Chem. Ecol. 46, 793–807 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Jones, A., Mason, C., Felton, G. & Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 9, 2792 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. 114, 9641–9646 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Broderick, N. A., Raffa, K. F., Goodman, R. M. & Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70, 293–300 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Shao, Y., Arias-Cordero, E., Guo, H., Bartram, S. & Boland, W. In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. PLoS ONE 9, e85948 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Priya, N. G., Ojha, A., Kajla, M. K., Raj, A. & Rajagopal, R. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS ONE 7, e30768 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    12.
    Mason, C. J. & Raffa, K. F. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ. Entomol. 43, 595–604 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Martemyanov, V. V. et al. Phenological asynchrony between host plant and gypsy moth reduces insect gut microbiota and susceptibility to Bacillus thuringiensis. Ecol. Evol. 6, 7298–7310 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Chen, B. et al. Gut microbiota metabolic potential correlates with body size between mulberry-feeding lepidopteran pest species. Pest Manag. Sci. 76, 1313–1323 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Su’ad, A. Y. et al. Host plant-dependent effects of microbes and phytochemistry on the insect immune response. Oecologia 191, 141–152 (2019).
    Article  Google Scholar 

    16.
    Mason, C. J. et al. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc. Natl. Acad. Sci. 116, 15991–15996 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Staudacher, H. et al. Variability of bacterial communities in the moth Heliothis virescens indicates transient association with the host. PLoS ONE 11, e0154514 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Ericsson, A. C., Personett, A. R., Turner, G., Dorfmeyer, R. A. & Franklin, C. L. Variable colonization after reciprocal fecal microbiota transfer between mice with low and high richness microbiota. Front. Microbiol. 8, 196 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Kreisinger, J. et al. Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front. Microbiol. 8, 50 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Stappenbeck, T. S. & Virgin, H. W. Accounting for reciprocal host-microbiome interactions in experimental science. Nature 534, 191–199 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Mikaelyan, A., Thompson, C. L., Hofer, M. J. & Brune, A. Deterministic assembly of complex bacterial communities in guts of germ-free cockroaches. Appl. Environ. Microbiol. 82, 1256–1263 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: The extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142957 (2015).
    Google Scholar 

    23.
    Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).
    ADS  CAS  Article  Google Scholar 

    25.
    Chen, B. et al. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 12, 2252–2262 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Hannula, S., Zhu, F., Heinen, R. & Bezemer, T. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1254 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Montezano, D. G. et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 26, 286–300 (2018).
    Article  Google Scholar 

    28.
    Day, R. et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).
    Article  Google Scholar 

    29.
    Visôtto, L. E., Oliveira, M. G. A., Guedes, R. N. C., Ribon, A. O. B. & Good-God, P. I. V. Contribution of gut bacteria to digestion and development of the velvetbean caterpillar, Anticarsia gemmatalis. J. Insect Physiol. 55, 185–191 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    30.
    Xiang, H. et al. Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can. J. Microbiol. 1092, 1085–1092 (2006).
    Article  Google Scholar 

    31.
    Tang, X. et al. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE 7, e36978 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Gomes, A. F. F., Omoto, C. & Cônsoli, F. L. Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J. Pest Sci. 93, 833–851 (2020).
    Article  Google Scholar 

    33.
    Acevedo, F. E. et al. Fall armyworm-associated gut bacteria modulate plant defense responses. Mol. Plant-Microbe Interact. 30, 127–137 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Gichuhi, J. et al. Diversity of fall armyworm, Spodoptera fugiperda and their bacterial community in Kenya. PeerJ 8, e8701 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Wagner, M. R., Busby, P. E. & Balint-Kurti, P. Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytol. 225, 2152–2165 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K. & Sessitsch, A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot. 97, 30–39 (2014).
    CAS  Article  Google Scholar 

    37.
    Keshri, J. et al. Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant. Appl. Microbiol. Biotechnol. 102, 4025–4037 (2018).
    CAS  PubMed  Article  Google Scholar 

    38.
    Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15, e0229848 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Chan, Q. W. T., Melathopoulos, A. P., Pernal, S. F. & Foster, L. J. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genomics 10, 387 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Mazumdar, T. et al. Survival strategies of Enterococcus mundtii in the gut of Spodoptera littoralis: A live report. bioRxiv. https://doi.org/10.1101/2020.02.03.932053 (2020).

    41.
    Mason, C. J., Jones, A. G. & Felton, G. W. Co-option of microbial associates by insects and their impact on plant–folivore interactions. Plant Cell Environ. https://doi.org/10.1111/pce.13430 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Mason, C. J., Rubert-Nason, K. F., Lindroth, R. L. & Raffa, K. F. Aspen defense chemicals influence midgut bacterial community composition of gypsy moth. J. Chem. Ecol. 41, 75–84 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    43.
    Chaturvedi, S., Rego, A., Lucas, L. K. & Gompert, Z. Sources of variation in the gut microbial community of Lycaeides melissa caterpillars. Sci. Rep. https://doi.org/10.1038/s41598-017-11781-1 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Fescemyer, H. W. et al. Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut. Insect Biochem. Mol. Biol. 43, 280–291 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hammer, T. J., McMillan, W. O. & Fierer, N. Metamorphosis of a butterfly-associated bacterial community. PLoS ONE 9, e86995 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Chippendale, G. M. Metamorphic changes in haemolymph and midgut proteins of the southwestern corn borer, Diatraea grandiosella. J. Insect Physiol. 16, 1909–1920 (1970).
    CAS  Article  Google Scholar 

    47.
    Pechan, T., Cohen, A., Williams, W. P. & Luthe, D. S. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. 99, 13319–13323 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Mohan, S. et al. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J. Insect Physiol. 52, 21–28 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Tsuji, G. Y., Hoogenboom, G. & Thornton, P. K. Understanding Options for Agricultural Production Vol. 7 (Springer Science & Business Media, Berlin, 2013).
    Google Scholar 

    50.
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
    Article  Google Scholar 

    51.
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    R Core Team. R: A Language and Environment for Statistical Computing. (2020).

    54.
    Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12. https://CRAN.R-project.org/package=pheatmap (2018).

    55.
    Kay, M. & Wobbrock, J. ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. https://doi.org/10.5281/zenodo.594511, R package version 0.10.7, https://github.com/mjskay/ARTool (2020).

    56.
    Wobbrock, J., Findlater, L., Gergle, D., & Higgins, J.. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only ANOVA Procedures. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ’11), 143–146.(2011).

    57.
    Raubenheimer, D. & Simpson, S. L. Analysis of covariance: An alternative to nutritional indices. Entomol. Exp. Appl. 62, 221–231 (1992).
    Article  Google Scholar  More

  • in

    Stable isotope turnover rates and fractionation in captive California yellowtail (Seriola dorsalis): insights for application to field studies

    Ethics statement
    All procedures used in these experiments were in accordance with protocol SW1401 of the SWFSC Animal Care and Use Committee. YOY California yellowtail were collected under California Department of Fish and Wildlife Scientific Collection Permit #SC-12372. Experimental protocols were approved by the National Oceanic & Atmospheric Administration Southwest Fisheries Science Center (NOAA SWFSC) Animal Care & Use Committee. Reporting of methods and results were in compliance with ARRIVE guidelines for animal research53.
    Collection and captive husbandry of yellowtail
    YOY California yellowtail (14–19 cm) were collected from offshore floating kelp mats near San Diego, CA, USA on September 12, 2012. Fish were caught using unbaited sabiki bait rigs, then immediately transferred to an onboard flow-through holding tank. On land, fish were transported in the holding tank on the trailered vessel to NOAA’s SWFSC Experimental Aquaria Facility in La Jolla, CA where they were transferred via dipnet to holding tanks. Fish were first held in 300 × 150 × 90 cm oval tanks (~ 3200 L) with flow-through, filtered local seawater at local ambient seawater temperature (~ 18 °C) and reared on a diet of Bio-Oregon BioTrout feed pellets. Pellets were presented immediately to newly transferred fish and fish began feeding 0–7 days after capture. Yellowtail were fed pellets 6 days/week to apparent satiation. After 525 days, the now larger yellowtail (42–50 cm) were transferred to a larger circular tank (diameter 3.7 m, capacity 9600 L) with the same filtered seawater at the same ambient temperatures (~ 18 °C) and tagged in the dorsal musculature with uniquely numbered and colored Floy plastic spaghetti tags. Yellowtail were switched to a diet of Pacific mackerel (Scomber japonicus) and market squid (Doryteuthis opalescens), both sourced off the coast of southern California (McRoberts Sales Co.). Yellowtail were fed mackerel and squid (by mass: 62% mackerel, 38% squid) 6 days/week to apparent satiation.
    Yellowtail muscle was sampled at t = 0 (the day of diet switch), followed by sampling intervals ranging from 27 to 119 days (mean interval 60 ± 27 days) depending on perceived condition of yellowtail and conditions for sampling. Samples were collected by lowering tank water levels, capturing yellowtail in a rubber knotless net, then transferring fish to vinyl cradles. Biopsy punches (Cook Quick-Core G07821) were used to remove 0.1–0.2 g of white muscle from the dorsal musculature. When possible, fork length (FL; cm) was measured at the time of sampling. Muscle tissue was also collected from the diet (dorsal musculature from mackerel and mantle tissue, with the outer membrane removed, from squid) throughout the study for SIA. Sampling continued until yellowtail were removed due to poor condition, suffered natural mortality, or became too large to remain in the holding tank (t = 753 days after diet switch, the endpoint of the study).
    YOY yellowtail (13.7–18.8 cm, 15.7 cm ± 1.7; 0.02–0.08 kg; 0.04 kg ± 0.02) fed well on pellet diet, increasing ~ threefold in length and ~ 40-fold in mass over 525 days. After 525 days, 21 similar-sized (42–50 cm FL, 46.0 cm ± 2.5; 1.0–2.2 kg, 1.7 kg ± 0.3) individual yellowtail were selected for the diet switch experiment to fish/squid (Fig. 1). During the course of the diet switch experiment, 11 individual fish were removed from captive conditions before reaching apparent isotopic steady-state due to poor physical condition, lack of feeding, or natural mortality. A total of 10 yellowtail fed consistently in captivity for a long enough period to reach apparent steady-state with new diet (595–753 days) allowing calculation of individual turnover rates in these fish. This allowed for estimates of Δ15Nlow and Δ13Clow and population-wide isotopic turnover estimates from 21 fish subjected to the diet switch, and Δ15Nhigh and Δ13Chigh and individual yellowtail turnover estimates from 10 individuals in captive conditions for 595–753 days that reached steady-state with new diet.
    SIA of yellowtail and diet
    Yellowtail dorsal muscle tissue and prey muscle tissue samples were immediately stored in cryovials at  − 20 °C. Feed pellets were analyzed whole. All samples were then frozen at  − 80 °C and subsequently lyophilized and ground to a homogenous powder for isotope analysis. The δ13C and δ15N values of all samples were determined at the University of Hawaii using an on-line C–N analyzer coupled with a Delta XP isotope ratio mass spectrometer. Replicate reference materials of atmospheric nitrogen and V-PDB were analyzed every 10 samples, and analytical precision was  More

  • in

    Contrasting multitaxon responses to climate change in Mediterranean mountains

    1.
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
    ADS  Article  Google Scholar 
    2.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. Acad. Sci. 115, 1004–1008 (2018).
    CAS  PubMed  Article  Google Scholar 

    5.
    Lenoir, J. & Svenning, J.-C. Climate-related range shifts: a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
    Article  Google Scholar 

    6.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Article  CAS  Google Scholar 

    7.
    Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).
    ADS  Article  Google Scholar 

    8.
    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).
    ADS  Article  Google Scholar 

    9.
    Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).
    ADS  Article  Google Scholar 

    10.
    Forero-Medina, G., Joppa, L. & Pimm, S. L. Constraints to species’ elevational range shifts as climate changes: constraints to elevational range shifts. Conserv. Biol. 25, 163–171 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Pauli, H., Gottfried, M., Reiter, K., Klettner, C. & Grabherr, G. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob. Change Biol. 13, 147–156 (2007).
    ADS  Article  Google Scholar 

    12.
    Rehm, E. M., Olivas, P., Stroud, J. & Feeley, K. J. Losing your edge: climate change and the conservation value of range-edge populations. Ecol. Evol. 5, 4315–4326 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences—Tansley review. New Phytol. 160, 21–42 (2003).
    Article  Google Scholar 

    14.
    McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of life sciences (ed. John Wiley & Sons, Ltd) a0022548 (Wiley, Chichester, 2010). https://doi.org/10.1002/9780470015902.a0022548.
    Google Scholar 

    15.
    Vetaas, O. R., Paudel, K. P. & Christensen, M. Principal factors controlling biodiversity along an elevation gradient: water, energy and their interaction. J. Biogeogr. 46, 1652–1663 (2019).
    Article  Google Scholar 

    16.
    Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology: niche conservatism, ecology, and conservation. Ecol. Lett. 13, 1310–1324 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I. & LeRoy Poff, N. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol. Lett. 13, 267–283 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Nascimbene, J. & Spitale, D. Patterns of beta-diversity along elevational gradients inform epiphyte conservation in alpine forests under a climate change scenario. Biol. Conserv. 216, 26–32 (2017).
    Article  Google Scholar 

    21.
    Roos, R. E. et al. Contrasting drivers of community-level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Funct. Ecol. 33, 2430–2446 (2019).
    Article  Google Scholar 

    22.
    Conti, F., Ciaschetti, G., Di Martino, L. & Bartolucci, F. An annotated checklist of the vascular flora of Majella National Park (Central Italy). Phytotaxa 412, 1–90 (2019).
    Article  Google Scholar 

    23.
    Stanisci, A., Carranza, M. L., Pelino, G. & Chiarucci, A. Assessing the diversity pattern of cryophilous plant species in high elevation habitats. Plant Ecol. 212, 595–600 (2011).
    Article  Google Scholar 

    24.
    Alpert, P. The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol. 151, 5–17 (2000).
    ADS  Article  Google Scholar 

    25.
    Beckett, R. P., Minibayeva, F. V. & Kranner, I. Stress tolerance of lichens. In Lichen biology 2nd edn (ed. Nash, T. H.) 134–151 (Cambridge University Press, Cambridge, 2008).
    Google Scholar 

    26.
    Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).
    Article  Google Scholar 

    27.
    Blasi, C., Pietro, R. D. & Pelino, G. The vegetation of alpine belt karst-tectonic basins in the central Apennines (Italy). Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 139, 357–385 (2005).
    Google Scholar 

    28.
    Palombo, C., Chirici, G., Marchetti, M. & Tognetti, R. Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change?. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 147, 1–11 (2013).
    Google Scholar 

    29.
    Orange, A., James, P. W. & White, F. J. Microchemical methods for the identification of lichens (Twayne Publishers, Woodbridge, 2001).
    Google Scholar 

    30.
    Nimis, P. L. & Martellos, S. ITALIC-the information system on Italian Lichens. Version 5.0. University of Trieste, Department of Biology. http://dryades.units.it/italic (2017).

    31.
    Ros, R. M. et al. Mosses of the Mediterranean, an annotated checklist. Cryptogam. Bryol. 34, 99 (2013).
    Article  Google Scholar 

    32.
    Giordani, P. et al. Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. J. Veg. Sci. 25, 778–792 (2014).
    Article  Google Scholar 

    33.
    Spitale, D., Mair, P. & Nascimbene, J. Patterns of bryophyte life-forms are predictable across land cover types. Ecol. Indic. 109, 105799 (2020).
    Article  Google Scholar 

    34.
    Hill, M. O., Preston, C. D., Bosanquet, S. D. S. & Roy, D. B. BRYOATT: attributes of British and Irish mosses, liverworts and hornworts (Centre for Ecology and Hydrology, Bailrigg, 2007).
    Google Scholar 

    35.
    Glime, J. M. Physiological ecology. In Bryophyte ecology Volume 1. (Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://digitalcommons.mtu.edu/bryophyte-ecology1/ (25 March 2017), 2017).

    36.
    Pignatti, S. Flora d’Italia (Edagricole, Bologna, 1982).
    Google Scholar 

    37.
    Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
    Article  Google Scholar 

    38.
    Landolt, E. Flora indicativa: ecological indicator values and biological attributes of the flora of Switzerland and the Alps (Haupt Verlag, Bern, 2010).
    Google Scholar 

    39.
    Pignatti, S. Valori di bioindicazione delle piante vascolari della flora d’Italia. Braun-Blanquetia 39, 3–97 (2005).
    Google Scholar 

    40.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Davis, F. W., Borchert, M., Meentemeyer, R. K., Flint, A. & Rizzo, D. M. Pre-impact forest composition and ongoing tree mortality associated with sudden oak death in the Big Sur region, California. For. Ecol. Manag. 259, 2342–2354 (2010).
    Article  Google Scholar 

    42.
    Jaberalansar, Z., Tarkesh, M. & Bassiri, M. Spatial downscaling of climate variables using three statistical methods in Central Iran. J. Mt. Sci. 15, 606–617 (2018).
    Article  Google Scholar 

    43.
    R Core Team. R: a language and environment for statistical computing [Computer software, version 3.6. 2] (R Foundation for Statistical Computing, Vienna, 2019).
    Google Scholar 

    44.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, Berlin, 2009). https://doi.org/10.1007/978-0-387-87458-6.
    Google Scholar 

    45.
    Fournier, D. A. et al. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 233–249 (2012).
    MathSciNet  MATH  Article  Google Scholar 

    46.
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach (Springer, Berlin, 2002). https://doi.org/10.1007/b97636.
    Google Scholar 

    47.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
    Article  Google Scholar 

    49.
    Bartoń, K. MuMIn: multi-model inference. R package version 1.43. 17. (2020).

    50.
    Carvalho, J. C., Cardoso, P. & Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob. Ecol. Biogeogr. 21, 760–771 (2012).
    Article  Google Scholar 

    51.
    Cardoso, P., Rigal, F. & Carvalho, J. C. BAT: biodiversity assessment tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).
    Article  Google Scholar 

    52.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    53.
    Oksanen, J. et al. vegan: community ecology package. R package version 2.5-6 (2019).

    54.
    Brown, A. M. et al. The fourth-corner solution: using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).
    Article  Google Scholar 

    55.
    Wang, Y. et al. mvabund: statistical methods for analysing multivariate abundance data. R package version 4.1.3. (2020).

    56.
    Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008).
    ADS  Article  Google Scholar 

    57.
    Appiotti, F. et al. A multidisciplinary study on the effects of climate change in the northern Adriatic Sea and the Marche region (central Italy). Reg. Environ. Change 14, 2007–2024 (2014).
    Article  Google Scholar 

    58.
    Barredo, J. I., Mauri, A., Caudullo, G. & Dosio, A. Assessing Shifts of mediterranean and arid climates under RCP4.5 and RCP8.5 climate projections in europe. Pure Appl. Geophys. 175, 3955–3971 (2018).
    ADS  Article  Google Scholar 

    59.
    Nascimbene, J. & Marini, L. Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J. Biogeogr. 42, 1222–1232 (2015).
    Article  Google Scholar 

    60.
    Vanneste, T. et al. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32, 579–593 (2017).
    Article  Google Scholar 

    61.
    Vittoz, P. et al. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120, 139–149 (2010).
    Article  Google Scholar 

    62.
    Ellis, C. J. & Yahr, R. An interdisciplinary review of climate change trends and uncertainties: lichen biodiversity, arctic-alpine ecosystems and habitat loss. In Climate change, ecology and systematics (eds Hodkinson, T. R. et al.) 457–489 (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    63.
    Seymour, F. A., Crittenden, P. D. & Dyer, P. S. Sex in the extremes: lichen-forming fungi. Mycologist 19, 51–58 (2005).
    Article  Google Scholar 

    64.
    Giordani, P., Malaspina, P., Benesperi, R., Incerti, G. & Nascimbene, J. Functional over-redundancy and vulnerability of lichen communities decouple across spatial scales and environmental severity. Sci. Total Environ. 666, 22–30 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Manish, K., Telwala, Y., Nautiyal, D. C. & Pandit, M. K. Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya, India. Model. Earth Syst. Environ. 2, 92 (2016).
    Article  Google Scholar 

    66.
    Rosbakh, S. et al. Contrasting effects of extreme drought and snowmelt patterns on mountain plants along an elevation gradient. Front. Plant Sci. 8, 1478 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Choler, P., Michalet, R. & Callaway, R. M. Facilitation and competition on gradients in alpine plant communities. Ecology 82, 3295–3308 (2001).
    Article  Google Scholar 

    68.
    Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776 (2015).
    ADS  Article  Google Scholar 

    69.
    Di Musciano, M. et al. Distribution of plant species and dispersal traits along environmental gradients in central mediterranean summits. Diversity 10, 58 (2018).
    Article  Google Scholar  More

  • in

    The environmental and ecological determinants of elevated Ross River Virus exposure in koalas residing in urban coastal landscapes

    1.
    Gonzalez-Astudillo, V., Allavena, R., McKinnon, A., Larkin, R. & Henning, J. Decline causes of Koalas in South East Queensland, Australia: a 17-year retrospective study of mortality and morbidity. Sci. Rep. 7, 42587 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Ward, M. S. et al. Lots of loss with little scrutiny: The attrition of habitat critical for threatened species in Australia. Conserv. Sci. Pract. 1, e117 (2019).
    Google Scholar 

    3.
    Martin, R. & Handasyde, K. The Koala: Natural History, Conservation and Management (University of New South Wales Press Ltd (Hong Kong, Australian Natural History Series, 1999).
    Google Scholar 

    4.
    McAlpine, C. et al. Conserving koalas: A review of the contrasting regional trends, outlooks and policy challenges. Biol. Conserv. 192, 226–236 (2015).
    Article  Google Scholar 

    5.
    Shumway, N., Lunney, D., Seabrook, L. & McAlpine, C. Saving our national icon: An ecological analysis of the 2011 Australian Senate inquiry into status of the koala. Environ. Sci. Policy 54, 297–303 (2015).
    Article  Google Scholar 

    6.
    Adams-Hosking, C., Grantham, H. S., Rhodes, J. R., McAlpine, C. & Moss, P. T. Modelling climate-change-induced shifts in the distribution of the koala. Wildlife Res. 38, 122–130 (2011).
    Article  Google Scholar 

    7.
    Rhodes, J. R., Beyer, H., Preece, H. & McAlpine, C. South East Queensland koala population modelling study. UniQuest (2015).

    8.
    Dique, D. S., Preece, H. J., Thompson, J. & de Villiers, D. L. Determining the distribution and abundance of a regional koala population in south-east Queensland for conservation management. Wildlife Res. 31, 109–117 (2004).
    Article  Google Scholar 

    9.
    Thompson, J. The comparative ecology and population dynamics of koalas in the Koala Coast region of south-east Queensland. PhD Thesis, School of Integrative Biology, University of Queensland (2006).

    10.
    Rhodes, J. R. et al. Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biol. Conserv. 144, 1081–1088 (2011).
    Article  Google Scholar 

    11.
    Denner, J. & Young, P. R. Koala retroviruses: Characterization and impact on the life of koalas. Retrovirology 10, 108 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Nyari, S. et al. Epidemiology of chlamydial infection and disease in a free-ranging koala (Phascolarctos cinereus) population. PloS One 12 (2017).

    13.
    Waugh, C. A. et al. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus). Sci. Rep. 7, 1–11 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    McCallum, H., Kerlin, D. H., Ellis, W. & Carrick, F. Assessing the significance of endemic disease in conservation—koalas, chlamydia, and koala retrovirus as a case study. Conserv. Lett. 11, e12425 (2018).
    Article  Google Scholar 

    15.
    Aldred, J., Campbell, J., Mitchell, G., Davis, G. & Elliott, J. Involvement of wildlife in the natural cycle of Ross River and Barmah Forest viruses (Wildlife Disease Association Meeting, Melbourne, Australia, 1991).
    Google Scholar 

    16.
    Russell, R. C. Arboviruses and their vectors in Australia: An update on the ecology and epidemiology of some mosquito-borne arboviruses. Rev. Med. Vet. Entomol. 83, 141–158 (1995).
    Google Scholar 

    17.
    Harley, D., Sleigh, A. & Ritchie, S. Ross River virus transmission, infection, and disease: A cross-disciplinary review. Clin. Microbiol. Rev. 14, 909–932 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Seay, A. R. & Wolinsky, J. S. Ross river virus-induced demyelination: I Pathogenesis and histopathology. Ann. Neurol. 12, 380–389 (1982).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Azuolas, J., Wishart, E., Bibby, S. & Ainsworth, C. Isolation of Ross River virus from mosquitoes and from horses with signs of musculoskeletal disease. Aust. Vet. J. 81, 344–347 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Stephenson, E. B., Peel, A. J., Reid, S. A., Jansen, C. C. & McCallum, H. The non-human reservoirs of Ross River virus: A systematic review of the evidence. Parasite. Vector. 11, 188 (2018).
    Article  Google Scholar 

    21.
    Skinner, E. B. et al. Associations between Ross River Virus infection in humans and vector-vertebrate community ecology in Brisbane Australia. Vector-borne Zoonot. https://doi.org/10.1089/vbz.2019.2585 (2020).
    Article  Google Scholar 

    22.
    Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. T. R. Soc. B. 363, 321–339 (2008).
    Article  Google Scholar 

    23.
    Nelson, R. J. & Demas, G. E. Seasonal changes in immune function. Quart. Rev. Biol. 71, 511–548 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Old, J. M. & Deane, E. M. Antibodies to the Ross River virus in captive marsupials in urban areas of eastern New South Wales Australia. J. Wildlife Dis. 41, 611–614 (2005).
    Article  Google Scholar 

    25.
    Muhar, A., Dale, P. E., Thalib, L. & Arito, E. The spatial distribution of Ross River virus infections in Brisbane: Significance of residential location and relationships with vegetation types. Environ. Health Prev. 4, 184–189 (2000).
    CAS  Article  Google Scholar 

    26.
    Ryan, P., Alsemgeest, D., Gatton, M. & Kay, B. Ross River virus disease clusters and spatial relationship with mosquito biting exposure in Redland Shire, southern Queensland Australia. J. Med. Entomol. 43, 1042–1059 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Davies, N. et al. Movement patterns of an arboreal marsupial at the edge of its range: A case study of the koala. Movement Ecol. 1, 8 (2013).
    Article  Google Scholar 

    28.
    Murphy, A. K. et al. Spatial and temporal patterns of Ross River virus in South East Queensland, Australia: Identification of hot spots at the rural-urban interface. Preprint available at Research Square. https://doi.org/10.21203/rs.3.rs-16140/v1 (2020).

    29.
    Potter, A., Johansen, C. A., Fenwick, S., Reid, S. A. & Lindsay, M. D. The seroprevalence and factors associated with Ross River virus infection in western grey kangaroos (Macropus fuliginosus) in Western Australia. Vector-borne Zoonot. 14, 740–745 (2014).
    Article  Google Scholar 

    30.
    Kay, B. H., Boyd, A. M., Ryan, P. A. & Hall, R. A. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane Australia. Am. J. Trop. Med. Hyg. 76, 417–423 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Doak, D. F., Marino, P. C. & Kareiva, P. M. Spatial scale mediates the influence of habitat fragmentation on dispersal success: Implications for conservation. Theor. Popul. Biol. 41, 315–336 (1992).
    Article  Google Scholar 

    32.
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. S. 34, 487–515 (2003).
    Article  Google Scholar 

    33.
    Di Giulio, M., Holderegger, R. & Tobias, S. Effects of habitat and landscape fragmentation on humans and biodiversity in densely populated landscapes. J. Environ. Manag. 90, 2959–2968 (2009).
    Article  Google Scholar 

    34.
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Article  Google Scholar 

    35.
    Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17, 267–272 (2003).
    Article  Google Scholar 

    36.
    Ostfeld, R. S. Biodiversity loss and the rise of zoonotic pathogens. Clin. Microbiol. Infect. 15, 40–43 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Johnson, B. J. et al. The roles of mosquito and bird communities on the prevalence of West Nile virus in urban wetland and residential habitats. Urban Ecosyst. 15, 513–531 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Quigley, B. L., Ong, V. A., Hanger, J. & Timms, P. Molecular dynamics and mode of transmission of koala retrovirus as it invades and spreads through a wild Queensland koala population. J. Virology 92 (2018).

    39.
    Woodward, W. et al. Koalas on North Stradbroke Island: diet, tree use and reconstructed landscapes. Wildlife Res. 35, 606–611 (2008).
    Article  Google Scholar 

    40.
    De Oliveira, S., Murray, P., De Villiers, D. & Baxter, G. Ecology and movement of urban koalas adjacent to linear infrastructure in coastal south-east Queensland. Aust. Mammal. 36, 45–54 (2014).
    Article  Google Scholar 

    41.
    Callaghan, J. et al. Ranking and mapping koala habitat quality for conservation planning on the basis of indirect evidence of tree-species use: A case study of Noosa Shire, south-eastern Queensland. Wildlife Res. 38, 89–102 (2011).
    Article  Google Scholar 

    42.
    MBRC. Koala Management Plan: The Mill at Moreton Bay Redevelopment, Moreton Bay Regional Council. www.moretonbay.qld.gov.au/files/assets/public/services/projects/the-mill/the-mill-koala-management-plan.pdf (2016).

    43.
    Hanger, J. et al. Final Technical Report: Moreton Bay Rail Koala Management Program (Department of Transport and Main Roads, Queensland, 2017).
    Google Scholar 

    44.
    Fabijan, J. et al. Prevalence and clinical significance of koala retrovirus in two South Australian koala (Phascolarctos cinereus) populations. J. Med. Microbiol. 68, 1072–1080 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Whisson, D. A., Zylinski, S., Ferrari, A., Yokochi, K. & Ashman, K. R. Patchy resources and multiple threats: How do koalas navigate an urban landscape?. Landsc. Urban Plan. 201, 103854 (2020).
    Article  Google Scholar 

    46.
    Mitchell, P. in Biology of the Koala (eds AK Lee, KA Handasyde, & GD Sanson) 171–187 (1990).

    47.
    Jansen, C. C., Zborowski, P., Ritchie, S. A. & Van Den Hurk, A. F. Efficacy of bird-baited traps placed at different heights for collecting ornithophilic mosquitoes in eastern Queensland Australia. Aust. J. Med. Entomol. 48, 53–59 (2009).
    Article  Google Scholar 

    48.
    Johnston, E. et al. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: Implications for disease vector surveillance. J. Vect. Ecol. 39, 48–55 (2014).
    Article  Google Scholar 

    49.
    Kay, B., Boreham, P. & Fanning, I. Host-feeding patterns of Culex annulirostris and other mosquitoes (Diptera: Culicidae) at Charleville, southwestern Queensland Australia. J. Med. Entomol. 22, 529–535 (1985).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Johansen, C., Power, S. & Broom, A. Determination of mosquito (Diptera: Culicidae) bloodmeal sources in Western Australia: Implications for arbovirus transmission. J. Med. Entomol. 46, 1167–1175 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Kay, B., Fanning, I. & Carley, J. The vector competence of Australian Culex annulirostris with Murray Valley encephalitis and Kunjin viruses. A J. Exp. Biol. Med. 62, 641–650 (1984).
    Article  Google Scholar 

    52.
    Jacups, S. P., Whelan, P. I. & Currie, B. J. Ross River virus and Barmah Forest virus infections: A review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector-Borne Zoonot. 8, 283–298 (2008).
    Article  Google Scholar 

    53.
    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Kelly, T. R. et al. One Health proof of concept: Bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. Prev. Vet. Med. 137, 112–118 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jansen, C. C. et al. Epidemiologic, entomologic, and virologic factors of the 2014–15 Ross River Virus outbreak, Queensland Australia. Emerg. Infect. Dis. 25, 2243 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Woodruff, R. E. et al. Predicting Ross River virus epidemics from regional weather data. Epidemiology 1, 384–393 (2002).
    Article  Google Scholar 

    57.
    Kelly-Hope, L. A., Purdie, D. M. & Kay, B. H. Ross River virus disease in Australia, 1886–1998, with analysis of risk factors associated with outbreaks. J. Med. Entomol. 41, 133–150 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Flies, E. J., Flies, A. S., Fricker, S. R., Weinstein, P. & Williams, C. R. Regional comparison of mosquito bloodmeals in South Australia: Implications for Ross River virus ecology. J. Med. Entomol. 53, 902–910 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Stephenson, E. B., Murphy, A. K., Jansen, C. C., Peel, A. J. & McCallum, H. Interpreting mosquito feeding patterns in Australia through an ecological lens: An analysis of blood meal studies. Parasite. Vector. 12, 156 (2019).
    Article  Google Scholar 

    60.
    Gordon, G. Estimation of the age of the Koala, Phascolarctos cinereus (Marsupialia: Phascolarctidae), from tooth wear and growth. Aust. Mammal. 14, 5–12 (1991).
    Google Scholar 

    61.
    Robbins, A., Loader, J., Timms, P. & Hanger, J. Optimising the short and long-term clinical outcomes for koalas (Phascolarctos cinereus) during treatment for chlamydial infection and disease. PLoS ONE 13(12), e0209673. https://doi.org/10.1371/journal.pone.0209679 (2018).
    Article  Google Scholar 

    62.
    Calenge, C. Home range estimation in R: the adehabitatHR package (Saint Benoist, Auffargis, France, Office national de la classe et de la faune sauvage, 2011).
    Google Scholar 

    63.
    Quantum, G. QGIS geographic information system. Open source geospatial foundation project. https://qgis.osgeo.org (2015).

    64.
    Doherty, R., Whitehead, R. & Gorman, B. The isolation of a third group A arbovirus in Australia, with preliminary observations on its relationship to epidemic polyarthritis. Aust. J. Sci. 26, 183–184 (1963).
    Google Scholar 

    65.
    Gyawali, N., Taylor-Robinson, A. W., Bradbury, R. S., Potter, A. & Aaskov, J. G. Infection of Western Gray Kangaroos (Macropus fuliginosus) with Australian arboviruses associated with human infection. Vector-Born Zoonotic Dis. 20, 33–39 (2020).
    Article  Google Scholar 

    66.
    Togami, E. et al. First evidence of concurrent enzootic and endemic transmission of Ross River virus in the absence of marsupial reservoirs in Fiji. Int. J. Infect. Dis. 96, 94–96 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gyawali, N., Murphy, A. K., Hugo, L. E. & Devine, G. J. A micro-PRNT for the detection of Ross River virus antibodies in mosquito blood meals: A useful tool for inferring transmission pathways. PLoS ONE 15, e0229314. https://doi.org/10.1371/journal.pone.0229314 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    68.
    Gatton, M. L., Kay, B. H. & Ryan, P. A. Environmental predictors of Ross River virus disease outbreaks in Queensland Australia. Am. J. Trop. Med. Hyg. 72, 792–799 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    McGrath, J. C., Drummond, G. B., McLachlan, E. M., Kilkenny, C. & Wainwright, C. L. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br. J. Pharmacol. 160(7), 1573–1576 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    QDES. Queensland Department of Environment and Science, Wetland data – version 5 – Queensland series. https://www.des.qld.gov.au (2015).

    71.
    QDES. Queensland Department of Environment and Science, Matters of state environmental significance—wildlife habitat—koala habitat areas—core. https://www.des.qld.gov.au (2020).

    72.
    ESRI. Environmental Systems Research Institute. ArcGIS Desktop. Release 10.4 ed. Redlands, CA, USA. https://esri.com (2020). More

  • in

    Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes

    1.
    Fletcher, D. & Ross, K. Regulation of reproduction in eusocial Hymenoptera. Annu. Rev. Entomol. 30, 319–343. https://doi.org/10.1146/annurev.en.30.010185.001535 (1985).
    Article  Google Scholar 
    2.
    Bonabeau, E. Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443. https://doi.org/10.1007/s100219900038 (1998).
    Article  Google Scholar 

    3.
    Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University, Cambridge, 1990).
    Google Scholar 

    4.
    Beekman, M. & Oldroyd, B. P. Conflict and major transitions—why we need true queens. Curr. Opin. Insect Sci. 34, 73–79. https://doi.org/10.1016/j.cois.2019.03.009 (2019).
    Article  PubMed  Google Scholar 

    5.
    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16. https://doi.org/10.1016/0022-5193(64)90038-4 (1964).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fletcher, D. J. C. & Blum, M. S. Regulation of queen number by workers in colonies of social insects. Science 219, 312–314. https://doi.org/10.1126/science.219.4582.312 (1983).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    Liebig, J., Peeters, C. & Holldobler, B. Worker policing limits the number of reproductives in a ponerine ant. Proc. Biol. Sci. 266, 1865–1870 (1999).
    Article  Google Scholar 

    8.
    West, M. J. Foundress associations in polistine wasps: dominance hierarchies and the evolution of social behavior. Science 157, 1584–1585. https://doi.org/10.1126/science.157.3796.1584 (1967).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 218–222. https://doi.org/10.1038/nature02949 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Fukumoto, Y. A novel form of colony organization in the “queenless” ant Diacamma rugosum. Physiol. Ecol. Jpn. 26, 55–61 (1989).
    Google Scholar 

    11.
    Grüter, C. & Czaczkes, T. J. Communication in social insects and how it is shaped by individual experience. Anim. Behav. 151, 207–215. https://doi.org/10.1016/j.anbehav.2019.01.027 (2019).
    Article  Google Scholar 

    12.
    Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol. News 30, 1–26 (2020).
    Google Scholar 

    13.
    Blomquist, G. J. & Bagneres, A. G. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    14.
    Kather, R. & Martin, S. J. Evolution of cuticular hydrocarbons in the hymenoptera: a meta-analysis. J. Chem. Ecol. 41, 871–883. https://doi.org/10.1007/s10886-015-0631-5 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Van Oystaeyen, A. et al. Conserved class of queen pheromones stops social insect workers from reproducing. Science 343, 287–290. https://doi.org/10.1126/science.1244899 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    16.
    Keller, L. & Nonacs, P. The role of queen pheromones in social insects: queen control or queen signal?. Anim. Behav. 45, 787–794. https://doi.org/10.1006/anbe.1993.1092 (1993).
    Article  Google Scholar 

    17.
    Heinze, J. & d’Ettorre, P. Honest and dishonest communication in social Hymenoptera. J. Exp. Biol. 212, 1775–1779. https://doi.org/10.1242/jeb.015008 (2009).
    CAS  Article  PubMed  Google Scholar 

    18.
    Gobin, B., Billen, J. & Peeters, C. Policing behaviour towards virgin egg layers in a polygynous ponerine ant. Anim. Behav. 58, 1117–1122. https://doi.org/10.1006/anbe.1999.1245 (1999).
    CAS  Article  PubMed  Google Scholar 

    19.
    Holman, L., Dreier, S. & d’Ettorre, P. Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc. R. Soc. B Biol. Sci. 277, 2007–2015. https://doi.org/10.1098/rspb.2009.2311 (2010).
    CAS  Article  Google Scholar 

    20.
    Oi, C. A. et al. The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37, 808–821. https://doi.org/10.1002/bies.201400180 (2015).
    CAS  Article  PubMed  Google Scholar 

    21.
    Holman, L., Helanterä, H., Trontti, K. & Mikheyev, A. S. Comparative transcriptomics of social insect queen pheromones. Nat. Commun. 10, 1593. https://doi.org/10.1038/s41467-019-09567-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Kocher, S. D. & Grozinger, C. M. Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263–1275. https://doi.org/10.1007/s10886-011-0036-z (2011).
    CAS  Article  PubMed  Google Scholar 

    23.
    Butler, C. G., Callow, R. K. & Johnston, N. C. Extraction and purification of ‘queen substance’ from queen bees. Nature 184, 1871–1871. https://doi.org/10.1038/1841871a0 (1959).
    ADS  CAS  Article  Google Scholar 

    24.
    van Zweden, J. S., Bonckaert, W., Wenseleers, T. & d’Ettorre, P. Queen signaling in social wasps. Evolution 68, 976–986. https://doi.org/10.1111/evo.12314 (2014).
    Article  PubMed  Google Scholar 

    25.
    Mitra, A. & Gadagkar, R. Queen signal should be honest to be involved in maintenance of eusociality: chemical correlates of fertility in Ropalidia marginata. Insectes Soc. 59, 251–255. https://doi.org/10.1007/s00040-011-0214-6 (2012).
    Article  Google Scholar 

    26.
    Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. R. Soc. B Biol. Sci. 277, 3793–3800. https://doi.org/10.1098/rspb.2010.0984 (2010).
    CAS  Article  Google Scholar 

    27.
    Hanus, R., Vrkoslav, V., Hrdý, I., Cvačka, J. & Šobotník, J. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc. R. Soc. B Biol. Sci. 277, 995–1002. https://doi.org/10.1098/rspb.2009.1857 (2010).
    CAS  Article  Google Scholar 

    28.
    Myles, T. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–91 (1999).
    Google Scholar 

    29.
    Vargo, E. L. & Husseneder, C. Biology of subterranean termites: Insights from molecular studies of Reticulitermes and Coptotermes. Annu. Rev. Entomol. 54, 379–403. https://doi.org/10.1146/annurev.ento.54.110807.090443 (2009).
    CAS  Article  PubMed  Google Scholar 

    30.
    Lainé, L. V. & Wright, D. J. The life cycle of Reticulitermes spp. (Isoptera: Rhinotermitidae): what do we know?. Bull. Entomol. Res. 93, 267–278. https://doi.org/10.1079/ber2003238 (2003).
    Article  PubMed  Google Scholar 

    31.
    Thorne, B. L., Traniello, J. F. A., Adams, E. S. & Bulmer, M. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol. Ecol. Evol. 11, 149–169. https://doi.org/10.1080/08927014.1999.9522833 (1999).
    Article  Google Scholar 

    32.
    Hu, X. Recent Advances in Entomological Research: From Molecular Biology to Pest Management (eds Liu, T. & Kang, L.) 213–226 (Springer, Berlin, 2011).

    33.
    Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968. https://doi.org/10.1073/pnas.1004675107 (2010).
    ADS  Article  PubMed  Google Scholar 

    34.
    Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79. https://doi.org/10.1007/s00114-017-1501-5 (2017).
    CAS  Article  Google Scholar 

    35.
    Havlíčková, J. et al. (3R,6E)-nerolidol, a fertility-related volatile secreted by the queens of higher termites (Termitidae: Syntermitinae). Zeitschrift für Naturforschung C 74, 251–264. https://doi.org/10.1515/znc-2018-0197 (2019).
    CAS  Article  Google Scholar 

    36.
    Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1721419115 (2018).
    Article  PubMed  Google Scholar 

    37.
    Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, e0209810. https://doi.org/10.1371/journal.pone.0209810 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898. https://doi.org/10.1002/ece3.6325 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Yamamoto, Y. & Matsuura, K. Queen pheromone regulates egg production in a termite. Biol. Let. 7, 727–729. https://doi.org/10.1098/rsbl.2011.0353 (2011).
    Article  Google Scholar 

    40.
    Sun, Q., Haynes, K. F. & Zhou, X. Temporal changes in cuticular hydrocarbons during worker-reproductive transition in the eastern subterranean termite (Blattodea: Rhinotermitidae). Ann. Entomol. Soc. Am. https://doi.org/10.1093/aesa/saaa027 (2020).
    Article  Google Scholar 

    41.
    Perdereau, E., Dedeine, F., Christidès, J.-P. & Bagnères, A.-G. Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J. Chem. Ecol. 36, 1189–1198. https://doi.org/10.1007/s10886-010-9860-9 (2010).
    CAS  Article  PubMed  Google Scholar 

    42.
    Tarver, M. R., Schmelz, E. A., Rocca, J. R. & Scharf, M. E. Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes. J. Chem. Ecol. 35, 256–264. https://doi.org/10.1007/s10886-009-9594-8 (2009).
    CAS  Article  PubMed  Google Scholar 

    43.
    Tarver, M. R., Zhou, X. & Scharf, M. E. Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Mol. Biol. 11, 28. https://doi.org/10.1186/1471-2199-11-28 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780. https://doi.org/10.1098/rspb.2020.0780 (2020).
    Article  Google Scholar 

    45.
    Chen, Y. P. & Vinson, S. B. Effects of queen attractiveness to workers on the queen nutritional status and egg production in the polygynous Solenopsis invicta (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 93, 295–302. https://doi.org/10.1603/0013-8746(2000)093[0295:eoqatw]2.0.co;2 (2000).
    Article  Google Scholar 

    46.
    Ortius, D. & Heinze, J. Fertility signaling in queens of a North American ant. Behav. Ecol. Sociobiol. 45, 151–159 (1999).
    Article  Google Scholar 

    47.
    Hannonen, M. & Sundström, L. Proximate determinants of reproductive skew in polygyne colonies of the ant Formica fusca. Ethology 108, 961–973. https://doi.org/10.1046/j.1439-0310.2002.00829.x (2002).
    Article  Google Scholar 

    48.
    Keller, L. Evolutionary implications of polygyny in the Argentine ant, Iridomyrmex humilis (Mayr) (Hymenoptera: Formicinae): an experimental study. Anim. Behav. 36, 159–165 (1988).
    Article  Google Scholar 

    49.
    Vargo, E. L. Mutual pheromonal inhibition among queens in polygyne colonies of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 31, 205–210. https://doi.org/10.1007/bf00168648 (1992).
    Article  Google Scholar 

    50.
    Vander Meer, R. K., Morel, L. & Lofgren, C. S. A comparison of queen oviposition rates from monogyne and polygyne fire ant, Solenopsis invicta, colonies. Physiol. Entomol. 17, 384–390. https://doi.org/10.1111/j.1365-3032.1992.tb01036.x (1992).
    Article  Google Scholar 

    51.
    Lenoir, A., D’Ettorre, P., Errard, C. & Hefetz, A. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599. https://doi.org/10.1146/annurev.ento.46.1.573 (2001).
    CAS  Article  PubMed  Google Scholar 

    52.
    Martin, S. J., Carruthers, J. M., Williams, P. H. & Drijfhout, F. P. Host specific social parasites (Psithyrus) indicate chemical recognition system in bumblebees. J. Chem. Ecol. 36, 855–863. https://doi.org/10.1007/s10886-010-9805-3 (2010).
    CAS  Article  PubMed  Google Scholar 

    53.
    Kreuter, K. et al. How the social parasitic bumblebee Bombus bohemicus sneaks into power of reproduction. Behav. Ecol. Sociobiol. 66, 475–486 (2012).
    Article  Google Scholar 

    54.
    Mori, A. et al. Behavioural assays testing the appeasement allomone of Polyergus rufescens queens during host-colony usurpation. Ethol. Ecol. Evol. 12, 315–322. https://doi.org/10.1080/08927014.2000.9522804 (2000).
    Article  Google Scholar 

    55.
    Ruano, F., Hefetz, A., Lenoir, A., Francke, W. & Tinaut, A. Dufour’s gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. J. Insect Physiol. 51, 1158–1164. https://doi.org/10.1016/j.jinsphys.2005.06.005 (2005).
    CAS  Article  PubMed  Google Scholar 

    56.
    Martin, S. J., Jenner, E. A. & Drijfhout, F. P. Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proc. Biol. Sci. 274, 2717–2721. https://doi.org/10.1098/rspb.2007.0795 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Lhomme, P., Ayasse, M., Valterová, I., Lecocq, T. & Rasmont, P. Born in an alien nest: how do social parasite male offspring escape from host aggression?. PLoS ONE 7, e43053. https://doi.org/10.1371/journal.pone.0043053 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Hanus, R., Piskorski, R., Šobotník, J., Urbanová, K. & Valterová, I. Congress of Entomology 2008 (Durban, South Africa, 2008).

    59.
    Penick, C., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).
    Article  Google Scholar 

    60.
    Monnin, T. Chemical recognition of reproductive status in social insects. Ann. Zoolgici Fenn. 43, 515–530 (2006).
    Google Scholar 

    61.
    Endler, A., Liebig, J. & Hölldobler, B. Queen fertility, egg marking and colony size in the ant Camponotus floridanus. Behav. Ecol. Sociobiol. 59, 490–499 (2006).
    Article  Google Scholar 

    62.
    Foster, K. R. & Ratnieks, F. L. W. Facultative worker policing in a wasp. Nature 407, 692–693. https://doi.org/10.1038/35037665 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Bonckaert, W., Van Zweden, J. S., D’Ettorre, P., Billen, J. & Wenseleers, T. Colony stage and not facultative policing explains pattern of worker reproduction in the Saxon wasp. Mol. Ecol. 20, 3455–3468. https://doi.org/10.1111/j.1365-294X.2011.05200.x (2011).
    CAS  Article  PubMed  Google Scholar 

    64.
    Haverty, M. I., Grace, J. K., Nelson, L. J. & Yamamoto, R. T. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Copotermes formosanus shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22, 1813–1834. https://doi.org/10.1007/bf02028506 (1996).
    CAS  Article  PubMed  Google Scholar 

    65.
    Howard, R. & Haverty, M. I. Seasonal variation in caste proportions of field colonies of Reticulitermes flavipes (Kollar) 1. Environ. Entomol. 10, 546–549. https://doi.org/10.1093/ee/10.4.546 (1981).
    Article  Google Scholar 

    66.
    Gordon, J. M., Šobotník, J. & Chouvenc, T. Colony-age-dependent variation in cuticular hydrocarbon profiles in subterranean termite colonies. Ecol. Evol. 10, 10095–10104. https://doi.org/10.1002/ece3.6669 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).
    Article  Google Scholar 

    68.
    Eyer, P. A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Authorea 1, 1–20 (2020).

    69.
    Dronnet, S., Chapuisat, M., Vargo, E. L., Lohou, C. & Bagnères, A.-G. Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol. Ecol. 14, 1311–1320. https://doi.org/10.1111/j.1365-294X.2005.02508.x (2005).
    CAS  Article  PubMed  Google Scholar 

    70.
    Junker, R. R. et al. Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications. New Phytol. 220, 739–749. https://doi.org/10.1111/nph.14505 (2018).
    Article  PubMed  Google Scholar 

    71.
    Aguero, C., Eyer, P. A. & Vargo, E. L. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10, 4212 (2020).
    ADS  CAS  Article  Google Scholar 

    72.
    polymorphism and chemotaxonomy. Bagneres, A. G. et al. Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud). J. Chem. Ecol. 16, 3213–3244 (1990).
    Article  Google Scholar 

    73.
    Clément, J. L. et al. Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Soc. 408, 202–215 (2001).
    Article  Google Scholar 

    74.
    Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R package. https://CRAN.R-project.org/package=PMCMR (2014).

    75.
    Kassambara, A. & Mundt, F. Extract and visualize the results of multivariate data analyses. Package ‘factoextra’, vol. 76. http://www.sthda.com/english/rpkgs/factoextra (2017).

    76.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020). More

  • in

    Identification of microalgae cultured in Bold’s Basal medium from freshwater samples, from a high-rise city

    1.
    Mobin, S., Chowdhury, H. & Alam, F. Commercially important bioproducts from microalgae and their current applications—a review. Energy Procedia. 60, 752–760 (2002).
    Google Scholar 
    2.
    Tragin, M. & Vaulot, D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci. Rep. https://doi.org/10.1038/s41598-018-32338-w (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Phang, S. M. et al. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore Thailand and Vietnam. Raffles B Zool. 34, 13–59 (2016).
    Google Scholar 

    4.
    Pham, M. N., Tan, H. T. W., Mitrovic, S., & Yeo, H. H. T. A checklist of the algae of Singapore. In Raffles Museum of Biodiversity Research, 2nd edn (2011).

    5.
    Omar, W. M. W. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop. Life Sci. Res. 21, 51–67 (2010).
    PubMed  PubMed Central  Google Scholar 

    6.
    Emporis GMBH. https://www.emporis.com/city/100422/singapore-singapore (2020).

    7.
    Waterways and Waterbodies. https://www.mewr.gov.sg/ssb/our-targets/green-blue-spaces/waterways-and-waterbodies (2020).

    8.
    Darienko, T., Gustavs, L., Eggert, A., Wolf, W., Proschold, T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE. 10; e0127838. https://doi.org/10.1371/journal.pone.0127838 (2015).

    9.
    Radha, S., Fathima, A., Iyappan, S. & Mohandas, R. Direct colony PCR for rapid identification of varied microalgae from freshwater environment. J. Appl. Phycol. https://doi.org/10.1007/s10811-012-9895-0 (2013).
    Article  Google Scholar 

    10.
    Domozych, D. et al. The cell walls of green algae: a journey through evolution and diversity. Front. Plant. Sci. https://doi.org/10.3389/fpls.2012.00082 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Te, S. & Gin, K. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae. 10(3), 319–329. https://doi.org/10.1016/j.hal.2010.11.006 (2011).
    CAS  Article  Google Scholar 

    12.
    Hirano, K. et al. Detection of the oil-producing microalga Botryococcus braunii in natural freshwater environments by targeting the hydrocarbon biosynthesis gene SSL-3. Sci. Rep. https://doi.org/10.1038/s41598-019-53619-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Newman, S. M. et al. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126, 875–888 (1990).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Martin-Laurent, F. et al. DNA extraction from soils: Old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67, 2354–2359 (2001).
    CAS  Article  Google Scholar 

    15.
    Eland, L., Davenport, R. & Mota, C. R. Evaluation of DNA extraction methods for freshwater eukaryotic microalgae. Water Res. 46, 5355–5364 (2012).
    CAS  Article  Google Scholar 

    16.
    Simonelli, P. et al. Evaluation of DNA extraction and handling procedures for PCR-based copepod feeding studies. J. Plankton Res. 31, 1465–1474 (2009).
    CAS  Article  Google Scholar 

    17.
    Frazão, B. & Silva, A. Molecular tools for phytoplankton monitoring samples. BioRxiv https://doi.org/10.1101/339655 (2018).
    Article  Google Scholar 

    18.
    Fei, C. et al. A quick method for obtaining high-quality DNA barcodes without DNA extraction in microalgae. J. Appl. Phycol. https://doi.org/10.1007/s10811-019-01926-2 (2020).
    Article  Google Scholar 

    19.
    Sonnenberg, R., Nolte, A. W. & Tautz, D. An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Front. Zool. https://doi.org/10.1186/1742-9994-4-6 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Beals, L., Gross, M., & Harrell, S. Diversity indices. http://www.tiem.utk.edu/~gross/bioed/bealsmodules/shannonDI.html (2000).

    21.
    Khan, M. I., Jin, H. S. & Jong, D. K. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. https://doi.org/10.1186/s12934-018-0879-x (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Ji, M. K. et al. Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus. J. Environ. Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000726 (2020).
    Article  Google Scholar 

    23.
    Patnaik, R., Singh, N., Bagchi, S., Rao, P. S. & Mallick, N. Utilization of Scenedesmus obliquus protein as a replacement of the commercially available fish meal under an algal refinery approach. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02114 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Mata, T. et al. Potential of microalgae Scendesmus obliquus grown in brewery wastewater for biodiesel production. Chem. Eng. Trans. 32, 901–906 (2013).
    Google Scholar 

    25.
    Afify, A. E. M. M. R., ElBaroty, G. S., ElBaz, F. K., AbdElBaky, H. H. & Murad, S. A. Scenedesmus obliquus: antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. J. Gen. Eng. Biotech. 16, 399–408 (2018).
    Article  Google Scholar 

    26.
    Kent, M., Welladsen, H. M., Mangott, A. & Lee, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE https://doi.org/10.1371/journal.pone.0118985 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Unpaprom, Y., Tipnee, S. & Ramaraj, R. Biodiesel from green alga Scenedesmus acuminatus. Int. J. Sustain. Green Energy 4, 1–6 (2015).
    CAS  Article  Google Scholar 

    28.
    De Alva, S. M., Luna-Pabello, V., Cadena, E. & Ortíz, E. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresour. Technol. 146, 744–748 (2013).
    Article  Google Scholar 

    29.
    Patil, L. & Kaliwal, B. B. Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess. Biosyst. Eng. 42, 1–16 (2019).
    CAS  Article  Google Scholar 

    30.
    Henard, C., Guarnieri, M. & Knoshaug, E. The Chlorella vulgaris S-nitrosoproteome under nitrogen-replete and -deplete conditions. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2016.00100 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Chai, S. et al. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS ONE https://doi.org/10.1371/journal.pone.0199873 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    32.
    Ishiguro, S. et al. Cell wall membrane fraction of Chlorella sorokiniana enhances host antitumor immunity and inhibits colon carcinoma growth in mice. Integr. Cancer Ther. https://doi.org/10.1177/1534735419900555 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Barone, R. S. C., Sonoda, D. Y., Lorenz, E. K. & Cyrino, J. E. P. Digestibility and pricing of Chlorella sorokiniana meal for use in tilapia feeds. Sci. Agric. https://doi.org/10.1590/1678-992x-2016-0457 (2018).
    Article  Google Scholar 

    34.
    Guo, M. et al. Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague-Dawley rats, as revealed by high-throughput 16S rRNA sequencing. World J. Microbiol. Biotechnol. https://doi.org/10.1007/s11274-015-1994-z (2016).
    Article  PubMed  Google Scholar 

    35.
    El-Dalatony, M. et al. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol. Bioproc. E 19, 510–518 (2014).
    Article  Google Scholar 

    36.
    Scaife, M. et al. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 82, 532–546 (2015).
    CAS  Article  Google Scholar 

    37.
    Kamyab, H. et al. Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia. 75, 2400–2408 (2015).
    CAS  Article  Google Scholar 

    38.
    Ciorba, D. & Truta, A. A. C. Cytotoxic exposure of green algas Chlamydomonas peterfii Gerloff in radon aerosols. J. Phys. Rom. https://doi.org/10.1016/j.biortech.2013.07.061 (2013).
    Article  Google Scholar 

    39.
    Santhakumaran, P., Kookal, S., Mathew, L. & Ray, J. G. Bioprospecting of three rapid-growing freshwater green algae, promising biomass for biodiesel production. BioEnergy Res. 12, 680–693 (2019).
    CAS  Article  Google Scholar 

    40.
    Rauytanapanit, M. et al. Nutrient deprivation-associated changes in green microalga Coelastrum sp. TISTR 9501RE enhanced potent antioxidant carotenoids. Mar. Drugs https://doi.org/10.3390/md17060328 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Kumar, M. S. et al. Influence of CO2 and light spectra on the enhancement of microalgal growth and lipid content. J. Renew. Sustain. Energ. https://doi.org/10.1063/1.4901541 (2014).
    Article  Google Scholar 

    42.
    Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R. & Singh, R. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS ONE 14(e0221930), 2019. https://doi.org/10.1371/journal.pone.0221930 (2019).
    CAS  Article  Google Scholar 

    43.
    Mourelle, M., Gómez, C. & Legido, J. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics. https://doi.org/10.3390/cosmetics4040046 (2017).
    Article  Google Scholar 

    44.
    Singh, G. & Thomas, P. Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresour. Technol. 117, 80–85 (2012).
    CAS  Article  Google Scholar 

    45.
    Sathasivam, R., Radhakrishnan, R., Hashem, A. & AbdAllah, E. F. Microalgae metabolites: a rich source for food and medicine. Saudi J. Biol. Sci. 26, 709–722 (2019).
    CAS  Article  Google Scholar 

    46.
    Neustupa, J. & Škaloud, P. Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant. Ecol. Evol. 143, 51–62 (2010).
    Article  Google Scholar 

    47.
    Prakash, J., Antonisamy, J. & Jeeva, S. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac. J. Trop. Biomed. 1, S170–S173. https://doi.org/10.1016/s2221-1691(11)60149-4 (2011).
    Article  Google Scholar 

    48.
    Gumbi, S., Majeke, B., Olaniran, A. & Mutanda, T. Isolation, identification and high-throughput screening of neutral lipid producing indigenous microalgae from South African aquatic habitats. Appl. Biochem. Biotech. 182, 382–399. https://doi.org/10.1007/s12010-016-2333-z (2016).
    CAS  Article  Google Scholar 

    49.
    Lee, K., Eisterhold, M. L., Rindi, F., Palanisami, S. & Nam, P. Isolation and screening of microalgae from natural habitats in the midwestern United States of America for biomass and biodiesel sources. J. Nat. Sci. Biol. Med. https://doi.org/10.4103/0976-9668.136178 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    Lewandowska, A., Śliwińska-Wilczewska, S. & Woźniczka, D. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Mar. Pollut. Bull. 125, 30–38. https://doi.org/10.1016/j.marpolbul.2017.07.064 (2017).
    CAS  Article  PubMed  Google Scholar  More