More stories

  • in

    Coastal reclamation alters soil microbial communities following different land use patterns in the Eastern coastal zone of China

    1.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565(7738), 222 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Bu, N. S. et al. Reclamation of coastal salt marshes promoted carbon loss from previously-sequestered soil carbon pool. Ecol. Eng. 81, 335–339 (2015).Article 

    Google Scholar 
    3.Cui, B. S., He, Q., Gu, B. H., Bai, J. H. & Liu, X. H. China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36(Suppl 1), S1–S9 (2016).Article 

    Google Scholar 
    4.Cao, Z. Q. et al. Heavy metal pollution and the risk from tidal flat reclamation in coastal areas of Jiangsu, China. Mar. Pollut. Bull. 158, 111427 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Yin, A. J. et al. Salinity evolution of coastal soils following reclamation and intensive usage, Eastern China. Environ. Earth Sci. 75, 1281 (2016).Article 
    CAS 

    Google Scholar 
    6.Wang, W., Liu, H., Li, Y. Q. & Su, J. L. Development and management of land reclamation in China. Ocean Coast. Manage. 102, 415–425 (2014).Article 

    Google Scholar 
    7.Laffoley, D. & Grimsditch, G. The Management of Natural Coastal Carbon Sinks (IUCN, 2009).
    Google Scholar 
    8.Cheong, S. et al. Coastal adaptation with ecological engineering. Nat. Clim. Change 3, 787–791 (2013).ADS 
    Article 

    Google Scholar 
    9.Yang, W. et al. Seawall construction alters soil carbon and nitrogen dynamics and soil microbial biomass in an invasive Spartina alterniflora salt marsh in eastern China. Appl. Soil Ecol. 110, 1–11 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Ding, L. J., Su, J. Q., Li, H., Zhu, Y. G. & Cao, Z. H. Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River Delta, China. Soil Biol. Biochem. 104, 59–67 (2017).CAS 
    Article 

    Google Scholar 
    11.Zhang, H. et al. Changes in surface soil organic/inorganic carbon concentrations and their driving forces in reclaimed coastal tidal flats. Geoderma 352, 150–159 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Han, G. X. et al. Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta. Agr. Ecosyst. Environ. 196, 187–198 (2014).Article 

    Google Scholar 
    13.Hargreaves, S. K. & Hofmockel, K. S. Physiological shifts in the microbial community drive changes in enzyme activity in a perennial agroecosystem. Biogeochemistry 117, 67–79 (2014).CAS 
    Article 

    Google Scholar 
    14.Ramirez, K. S., Lauber, C. L., Knight, R., Bradford, M. A. & Fierer, N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91, 3463–3470 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Rousk, J., Brookes, P. C. & Bååth, E. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 42, 516–520 (2010).CAS 
    Article 

    Google Scholar 
    16.Kamble, P. N., Gaikwad, V. B., Kuchekar, S. R. & Bååth, E. Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India). Eur. J. Soil Biol. 65, 87–95 (2014).CAS 
    Article 

    Google Scholar 
    17.Gao, Y. C. et al. Effects of salinization and crude oil contamination on soil bacterial community structure in the Yellow River Delta region, China. Appl. Soil Ecol. 86, 165–173 (2015).Article 

    Google Scholar 
    18.Placella, S. A., Brodie, E. L. & Firestone, M. K. Rainfall – induced carbon oxide pulses results from sequential resuscitation of phylogenetically cluster microbial groups. Proc. Natl. Acad. Sci. 109, 10931–10936 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Yuan, Y. et al. Responses of microbial community structure to land-use conversion and fertilization in southern China. Eur. J. Soil Biol. 70, 1–6 (2015).ADS 
    Article 

    Google Scholar 
    20.Iost, S., Landgraf, D. & Makeschin, F. Chemical soil properties of reclaimed marsh soil from Zhejiang Province P.R. China. Geoderma 142, 245–250 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Yang, W. et al. Shift in soil organic carbon and nitrogen pools in different reclaimed lands following intensive coastal reclamation on the coasts of eastern China. Sci. Rep. 9, 5921 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena 153, 89–99 (2017).CAS 
    Article 

    Google Scholar 
    23.Chen, G. X., Gao, D. Z., Wang, Z. P. & Zeng, C. S. Contents of carbon, nitrogen and phosphorus in sediments in aquaculture ponds for different reclamation years in Shanyutan wetlands and its pollution risk assessment. Wetland Sci. 15, 309–314 (2017).
    Google Scholar 
    24.Whitting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B. 53, 521–528 (2001).ADS 

    Google Scholar 
    25.Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage. Res. 126, 60–71 (2013).Article 

    Google Scholar 
    26.Xing, W. L., Cheng, X. R., Xiong, J., Yuan, H. J. & Yu, M. K. Variations in soil biological properties in poplar plantations along coastal reclamation stages. Appl. Soil Ecol. 154, 103649 (2020).Article 

    Google Scholar 
    27.Grybos, M., Davranche, M., Gruau, G., Petitjean, P. & Pedrot, M. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154, 13–19 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Krishnamoorthy, R., Kim, K., Kim, C. & Sa, T. Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol. Biochem. 72, 1–10 (2014).CAS 
    Article 

    Google Scholar 
    29.Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl. Soil Ecol. 64, 7–14 (2013).Article 

    Google Scholar 
    30.Peay, K. G., Baraloto, C. & Fine, P. V. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 7, 1852–1861 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815 (2017).Article 

    Google Scholar 
    32.Yang, W. et al. Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China. Plant Soil 408, 443–456 (2016).CAS 
    Article 

    Google Scholar 
    33.Anderson, C. R. et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54, 309–320 (2011).CAS 
    Article 

    Google Scholar 
    34.Mavi, M. S. & Marschner, P. Salinity affects the response of soil microbial activity and biomass to addition of carbon and nitrogen. Soil Res. 51, 68–75 (2013).CAS 
    Article 

    Google Scholar 
    35.Xie, X. F. et al. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 120, 106925 (2021).CAS 
    Article 

    Google Scholar 
    36.Mohammad, M. J., Malkawi, H. I. & Shibli, R. Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J. Plant Nutr. 26, 125–137 (2003).CAS 
    Article 

    Google Scholar 
    37.Cui, X. C., Hu, J. L., Wang, J. J., Yang, J. S. & Lin, X. G. Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Appl. Soil Ecol. 98, 140–149 (2016).Article 

    Google Scholar 
    38.Guo, X. & Gong, J. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 24, 79–94 (2014).PubMed 
    Article 

    Google Scholar 
    39.Yamato, M., Yagame, T., Yoshimura, Y. & Iwase, K. Effect of environmental gradient in coastal vegetation on communities of arbuscular mycorrhizal fungi associated with Ixeris repens (Asteraceae). Mycorrhiza 22, 622–630 (2012).Article 

    Google Scholar 
    40.Strickland, M. S. & Rousk, J. Considering fungal :bacterial dominance in soils: Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).CAS 
    Article 

    Google Scholar 
    41.Collins, C. G., Stajich, J. E., Weber, S. E., Pombubpa, N. & Diez, J. M. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol. Ecol. 27, 2461–2476 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Yang, W. et al. Soil fungal communities vary with invasion by the exotic Spartina alternifolia Loisel. in coastal salt marshes of eastern China. Plant Soil 442, 215–232 (2019).CAS 
    Article 

    Google Scholar 
    43.Yang, W. et al. Exotic Spartina alterniflora Loisel. invasion significantly shifts soil bacterial communities with the successional gradient of saltmarsh in eastern China. Plant Soil 449, 97–115 (2020).CAS 
    Article 

    Google Scholar 
    44.Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).CAS 
    Article 

    Google Scholar 
    45.Högberg, M. N., Baath, E., Nordgren, A., Arnebrant, K. & Högberg, P. Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs: A hypothesis based on field observations in boreal forests. New Phytol. 160, 225–238 (2003).Article 
    CAS 

    Google Scholar 
    46.Joergensen, R. G. & Wichern, F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol. Biochem. 40, 2977–2991 (2008).CAS 
    Article 

    Google Scholar 
    47.Xu, S. Q. et al. Comparison of microbial community composition and diversity in native coastal wetlands and wetlands that have undergone long-term agricultural reclamation. Wetlands 37, 99–108 (2017).CAS 
    Article 

    Google Scholar 
    48.Vangestel, M., Merckx, R. & Vlassak, K. Microbial biomass responses to soil drying and rewetting-the fate of fast-growing and slow-growing microorganisms in soils from different climates. Soil Biol. Biochem. 25, 109–123 (1993).Article 

    Google Scholar 
    49.Farrell, M. Microbial utilisation of biochar-derived carbon. Sci. Total Environ. 465, 288–297 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Luo, S. S. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma 329, 108–117 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Tripathi, B. M. et al. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb. Ecol. 64, 474–484 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Huang, Y. M., Liu, D. & An, S. S. Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. Catena 125, 135–145 (2015).CAS 
    Article 

    Google Scholar 
    54.Bossio, D. A., Fleck, J. A., Scow, K. M. & Fujii, R. Alteration of soil microbial communities and water quality in restored wetlands. Soil Biol. Biochem. 38, 1223–1233 (2006).CAS 
    Article 

    Google Scholar 
    55.Chang, E. H., Chen, C. P., Tian, G. L. & Chiu, C. Y. Replacement of natural hardwood forest with planted bamboo and cedar in a humid subtropical mountain affects soil microbial community. Appl. Soil Ecol. 124, 146–154 (2018).ADS 
    Article 

    Google Scholar 
    56.Cao, Y. S. et al. Soil microbial community composition under Eucalyptus plantations of different age in subtropical China. Eur. J. Soil Biol. 46, 128–135 (2010).CAS 
    Article 

    Google Scholar 
    57.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    58.Bossio, D. A. & Scow, K. M. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial. Ecol. 35, 265–278 (1998).CAS 
    Article 

    Google Scholar 
    59.Bååth, E. & Anderson, T. H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35, 955–963 (2003).Article 
    CAS 

    Google Scholar 
    60.Kourtev, P. S., Ehrenfeld, J. G. & Häggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83, 3152–3166 (2002).Article 

    Google Scholar  More

  • in

    A suite of rare microbes interacts with a dominant, heritable, fungal endophyte to influence plant trait expression

    1.Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 2008;278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x.Article 
    PubMed 

    Google Scholar 
    2.Rodriguez R, White J Jr, Arnold A, Redman R. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182:314–30.Article 

    Google Scholar 
    3.Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition Oikos. 1995;73:274–6.4.Harrison JG, Griffin EA. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: How far have we come and where do we go from here?. Environ Microbiol. 2020;22:2107–23. https://doi.org/10.1111/1462-2920.14968.Article 
    PubMed 

    Google Scholar 
    5.Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat. 2002;160:S99–S127. https://doi.org/10.1086/342161.Article 
    PubMed 

    Google Scholar 
    6.Rudgers JA, Afkhami ME, Rúa MA, Davitt AJ, Hammer S, Huguet VM. A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology. 2009;90:1531–9. https://doi.org/10.1890/08-0116.1.Article 
    PubMed 

    Google Scholar 
    7.Clay K, Holah J. Fungal endophyte symbiosis and plant diversity in successional fields. Science. 1999;285:1742–4. https://doi.org/10.1126/science.285.5434.1742.Article 
    PubMed 

    Google Scholar 
    8.Afkhami ME, Strauss SY. Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales. Ecology. 2016;97:1159–69. https://doi.org/10.1890/15-1166.1.Article 
    PubMed 

    Google Scholar 
    9.Rudgers JA, Clay K. An invasive plant–fungal mutualism reduces arthropod diversity. Ecol Lett. 2008;11:831–40. https://doi.org/10.1111/j.1461-0248.2008.01201.x.Article 
    PubMed 

    Google Scholar 
    10.Gorischek AM, Afkhami ME, Seifert EK, Rudgers JA. Fungal symbionts as manipulators of plant reproductive biology. Am Nat. 2013;181:562–70. https://doi.org/10.1086/669606.Article 
    PubMed 

    Google Scholar 
    11.Malloch D, Blackwell M. Dispersal of fungal diaspores. The fungal community: Its organization and role in the ecosystem. 2nd ed. New York, NY: Marcel Dekker, Inc; 1992. p. 147–71.
    Google Scholar 
    12.Devarajan P, Suryanarayanan T. Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes. Fungal Divers. 2006;23:111–9.
    Google Scholar 
    13.Lodge DJ, Fisher P, Sutton B. Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia. 1996;88:733–8.14.Paine RT. A note on trophic complexity and community stability. Am Nat. 1969;103:91–93. https://doi.org/10.1086/282586.Article 

    Google Scholar 
    15.Jenkins SH, Busher PE. Castor canadensis, Mammalian Species. 1979. https://doi.org/10.2307/3503787.16.Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–25. https://doi.org/10.1038/nrmicro2873.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: How the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62. https://doi.org/10.1038/ismej.2016.174.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:58. https://doi.org/10.1186/s40168-018-0445-0.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Rockman MV. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution. 2012;66:1–17. https://doi.org/10.1111/j.1558-5646.2011.01486.x.Article 
    PubMed 

    Google Scholar 
    20.Beckers GJ, Conrath U. Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol. 2007;10:425–31. https://doi.org/10.1016/j.pbi.2007.06.002.Article 
    PubMed 

    Google Scholar 
    21.Hartmann A, Rothballer M, Hense BA, Schröder P. Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci. 2014;5. https://doi.org/10.3389/fpls.2014.00131.22.Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E. Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst. 2011;42:23–46. https://doi.org/10.1146/annurev-ecolsys-102710-145039.Article 

    Google Scholar 
    23.Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320. https://doi.org/10.1128/MMBR.00050-14.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Doty SL. Growth-promoting endophytic fungi of forest trees. In: Pirttilä AM, Frank AC, editors. Endophytes of forest trees: biology and applications. Dordrecht: Springer Netherlands; 2011;151–6.
    Google Scholar 
    25.Arnold AE, Herre EA. Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia. 2003;95:388–98. http://www.mycologia.org.unr.idm.oclc.org/content/95/3/388. Accessed 12 Dec 2016.Article 

    Google Scholar 
    26.Busby PE, Peay KG, Newcombe G. Common foliar fungi of Populus trichocarpa modify melampsora rust disease severity. New Phytol. 2016;209:1681–92. https://doi.org/10.1111/nph.13742.Article 
    PubMed 

    Google Scholar 
    27.Christian N, Herre EA, Mejia LC, Clay K. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc R Soc B. 2017;284:20170641. https://doi.org/10.1098/rspb.2017.0641.Article 
    PubMed 

    Google Scholar 
    28.Cheplick GP, Cho R. Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytol. 2003;158:183–91. https://doi.org/10.1046/j.1469-8137.2003.00723.x.Article 

    Google Scholar 
    29.Zahn G, Amend AS. Foliar fungi alter reproductive timing and allocation in arabidopsis under normal and water-stressed conditions. 2019. https://www.biorxiv.org/content/10.1101/519678v1.30.Christian N, Herre EA, Clay K. Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. New Phytol. 2019;222:1573–83. https://doi.org/10.1111/nph.15693.Article 
    PubMed 

    Google Scholar 
    31.Rosado BHP, Almeida LC, Alves LF, Lambais MR, Oliveira RS. The importance of phyllosphere on plant functional ecology: a phyllo trait manifesto. New Phytol. 2018;219:1145–9. https://doi.org/10.1111/nph.15235.Article 
    PubMed 

    Google Scholar 
    32.Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA, et al. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol. 2014;5:479.33.Dupont PY, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, et al. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol. 2015;208:1227–40. https://doi.org/10.1111/nph.13614.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Dinkins RD, Nagabhyru P, Graham MA, Boykin D, Schardl CL. Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. New Phytol. 2017;213:324–37. https://doi.org/10.1111/nph.14103.Article 
    PubMed 

    Google Scholar 
    35.Welsh S, North American species of astragalus Linnaeus (Leguminosae): a taxonomic revision. Provo, Utah: Brigham Young University; 2007.36.Knaus BJ. Morphometric architecture of the most taxon-rich species in the U.S. Flora: Astragalus lentiginosus (Fabaceae). Am J Bot. 2010;97;1816–26. https://doi.org/10.3732/ajb.0900145.37.Baucom DL, Romero M, Belfon R, Creamer R. Two new species of undifilum, fungal endophytes of astragalus (locoweeds) in the United States. Botany. 2012;90:866–75. https://doi.org/10.1139/b2012-056.Article 

    Google Scholar 
    38.Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. Alternaria redefined. Stud Mycol. 2013;75:171–212. https://doi.org/10.3114/sim0015.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Cook D, Gardner DR, Martinez A, Robles CA, Pfister JA. Screening for swainsonine among South American astragalus species. Toxicon. 2017;139:54–7. https://doi.org/10.1016/j.toxicon.2017.09.014.Article 
    PubMed 

    Google Scholar 
    40.Molyneux RJ, James LF. Loco intoxication: indolizidine alkaloids of spotted locoweed (Astragalus lentiginosus). Science. 1982;216:190–1. https://doi.org/10.1126/science.6801763.Article 
    PubMed 

    Google Scholar 
    41.Cook D, Gardner DR, Ralphs MH, Pfister JA, Welch KD, Green BT. Swainsoninine concentrations and endophyte amounts of Undifilum oxytropis in different plant parts of Oxytropis sericea. J Chem Ecol. 2009;35:1272–8. https://doi.org/10.1007/s10886-009-9710-9.Article 
    PubMed 

    Google Scholar 
    42.Harrison JG, Parchman TL, Cook D, Gardner DR, Forister ML. A heritable symbiont and host-associated factors shape fungal endophyte communities across spatial scales. J Ecol. 2018;106:2274–86. https://doi.org/10.1111/1365-2745.12967.Article 

    Google Scholar 
    43.Grum DS, Cook D, Baucom D, Mott IW, Gardner DR, Creamer R, et al. Production of the alkaloid swainsonine by a fungal endophyte in the host Swainsona canescens. J Nat Prod. 2013;76:1984–8. https://doi.org/10.1021/np400274n.44.Cook D, Gardner DR, Pfister JA. Swainsonine-containing plants and their relationship to endophytic fungi. J Agric Food Chem. 2014;62:7326–34. https://doi.org/10.1021/jf501674r.Article 
    PubMed 

    Google Scholar 
    45.Panaccione DG, Beaulieu WT, Cook D. Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol. 2014;28:299–314. https://doi.org/10.1111/1365-2435.12076.Article 

    Google Scholar 
    46.Thompson DC, Knight JL, Sterling TM, Murray LW. Preference for specific varieties of woolly locoweed by a specialist weevil, Cleonidius trivittatus (Say). Southwest Entomol. 1995;20:325–325.
    Google Scholar 
    47.Parker JE. Effects of insect herbivory by the four-lined locoweed weevil, Cleonidius trivittatus (say) (Coleoptera: Curculionidae), on the alkaloid swainsonine in locoweeds Astragalus mollissimus and Oxytropis sericea. Ph.D. thesis. Las Cruces, New Mexico: New Mexico State University; 2008.48.Creamer R, Baucom D. Fungal endophytes of locoweeds: a commensal relationship? J Plant Physiol Pathol. 2013;1. https://doi.org/10.4172/2329-955X.1000104.49.Lu H, Quan H, Zhou Q, Ren Z, Xue R, Zhao B, et al. Endogenous fungi isolated from three locoweed species from rangeland in western China. Afr J Microbiol Res. 2017;11:155–70. https://doi.org/10.5897/AJMR2016.8392.Article 

    Google Scholar 
    50.Schulthess FM, Faeth SH. Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia. 1998;90:569–78. https://doi.org/10.1080/00275514.1998.12026945.Article 

    Google Scholar 
    51.Cook D, Gardner DR, Pfister JA, Stonecipher CA, Robins JG, Morgan JA. Effects of elevated CO2 on the swainsonine chemotypes of Astragalus lentiginosus and Astragalus mollissimus. J Chem Ecol. 2017;43:307–16. https://doi.org/10.1007/s10886-017-0820-5.Article 
    PubMed 

    Google Scholar 
    52.Oldrup E, McLain-Romero J, Padilla A, Moya A, Gardner D, Creamer R. Localization of endophytic undifilum fungi in locoweed seed and influence of environmental parameters on a locoweed in vitro culture system. Botany. 2010;88:512–21. https://doi.org/10.1139/B10-026.Article 

    Google Scholar 
    53.Gardner DR, Molyneux RJ, Ralphs MH. Analysis of swainsonine: extraction methods, detection, and measurement in populations of locoweeds (oxytropis spp.). J Agric Food Chem. 2001;49:4573–80.Article 

    Google Scholar 
    54.Högberg P. 15N natural abundance in soil–plant systems. New Phytol. 1997;137:179–203. https://www.cambridge.org/core/journals/new-phytologist/article/tansley-review-no-95-15n-natural-abundance-in-soilplant-systems/304069FD5C8283EDB78D0AA594465E71. Accessed 2 Jul 2017.Article 

    Google Scholar 
    55.Wang Y, Qian P-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE. 2009;4:e7401. https://doi.org/10.1371/journal.pone.0007401.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Glefand DH, Sninsky JJ, White TJ, editors, PCR protocols: a guide to methods and applications. London: Academic Press; 1990.57.Harrison JG, Calder WJ, Shuman B, Buerkle CA, The quest for absolute abundance: the use of internal standards for DNA-based community ecology. Mol Ecol Resour. 2020, https://doi.org/10.1111/1755-0998.13247.58.Tourlousse DM, Yoshiike S, Ohashi A, Matsukura S, Noda N, Sekiguchi Y. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 2017;45:e23–e23. https://doi.org/10.1093/nar/gkw984.Article 
    PubMed 

    Google Scholar 
    59.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.Article 

    Google Scholar 
    60.Rognes T, Flouri T, Nichols B, Quince C, Mahé F, “VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016. https://doi.org/10.7717/peerj.2584.61.Edgar RC, UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. 2016. https://www.biorxiv.org/content/10.1101/081257v1.full.62.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017:2639. https://doi.org/10.1038/ismej.2017.119.63.Edgar R, “SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. 2016. https://www.biorxiv.org/content/10.1101/074161v1.64.Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018, https://doi.org/10.1093/nar/gky1022.65.Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal database project: data and tools for high throughput rRNA analysis Nucleic Acids Res. 2014. 42, https://doi.org/10.1093/nar/gkt1244.66.Machida RJ, Leray M, Ho S-L, Knowlton N. Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci Data. 2017;4:17007 https://doi.org/10.1038/sdata.2017.27.Article 

    Google Scholar 
    67.Fordyce JA, Gompert Z, Forister ML, Nice CC. A hierarchical Bayesian approach to ecological count data: A flexible tool for ecologists. PLoS ONE. 2011;6;e26785. https://doi.org/10.1371/journal.pone.0026785.68.Harrison JG, Calder WJ, Shastry V, Buerkle CA. Dirichlet-multinomial modelling outperforms alternatives for analysis of microbiome and other ecological count data. Mol Ecol Resour. 2020;20:481–97. https://doi.org/10.1111/1755-0998.13128.Article 
    PubMed 

    Google Scholar 
    69.R Core Team, R: a language and environment for statistical computing. Vienna: R Core Team; 2019.70.Harrison J, Shastry V, Calder WJ, Buerkle CA, “CNVRG: Dirichlet-multinomial modelling of relative abundance data.” Sep. 2020. https://CRAN.R-project.org/package=CNVRG. Accessed 28 Oct 2020.71.S. D. Team, Stan modeling language users guide and reference manual. 2020. https://mc-stan.org/users/documentation/72.S. D. Team, “RStan: The R interface to Stan. R package.” 2020. http://mc-stan.org/.73.Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7:457–72. http://www.jstor.org/stable/2246093. Accessed 16 Jun 2018.
    Google Scholar 
    74.Gloor GB, Macklaim JM, Vu M, Fernandes AD. Compositional uncertainty should not be ignored in high-throughput sequencing data analysis. Austrian J Stat. 2016;45:73–87. http://ajs.data-analysis.at/index.php/ajs/article/view/vol45-4-5. Accessed 4 Dec 2017.Article 

    Google Scholar 
    75.Jost L. Entropy and diversity. Oikos. 2006;113:363–75.Article 

    Google Scholar 
    76.Marion ZH, Fordyce JA, Fitzpatrick BM. A hierarchical Bayesian model to incorporate uncertainty into methods for diversity partitioning. Ecology. 2018;99:947–56. https://doi.org/10.1002/ecy.2174.Article 
    PubMed 

    Google Scholar 
    77.Harrison JG, Gompert Z, Fordyce JA, Buerkle CA, Grinstead R, Jahner JP. et al. The many dimensions of diet breadth: phytochemical, genetic, behavioral, and physiological perspectives on the interaction between a native herbivore and an exotic host. PLoS ONE. 2016;11:e0147971. https://doi.org/10.1371/journal.pone.0147971.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Plummer M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling,”. Proc 3rd Int workshop Distrib Stat Comput. 2003;124:1–8. 10.2003.
    Google Scholar 
    79.Plummer M. Rjags: Bayesian graphical models using MCMC. R package version 3-15. 2015. Https://CRAN.R-project.org/package=rjags.80.Breiman L. Random forests. Mach Learn. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.Article 

    Google Scholar 
    81.Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
    Google Scholar 
    82.Grum DS, Cook D, Gardner DR, Roper JM, Pfister JA, Ralphs MH. Influence of seed endophyte amounts on swainsonine concentrations in astragalus and oxytropis locoweeds. J Agric Food Chem. 2012;60:8083–9. https://doi.org/10.1021/jf3024062.Article 
    PubMed 

    Google Scholar 
    83.Marion ZH, Fordyce JA, Fitzpatrick BM. Extending the concept of diversity partitioning to characterize phenotypic complexity. Am Nat. 2015;186:348–61.Article 

    Google Scholar 
    84.Arnold AE, Lutzoni F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?”. Ecology. 2007;88:541–49. https://doi.org/10.1890/05-1459.Article 
    PubMed 

    Google Scholar 
    85.Strong DR, Lawton JH, Southwood SR. Insects on plants. Community patterns and mechanisms. Oxford, UK: Blackwell Scientific Publicatons; 1984.
    Google Scholar 
    86.Carmona D, Lajeunesse MJ, Johnson MTJ. Plant traits that predict resistance to herbivores. Funct Ecol. 2011;25:358–67. https://doi.org/10.1111/j.1365-2435.2010.01794.x.Article 

    Google Scholar 
    87.Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5. https://doi.org/10.3389/fmicb.2014.00219.88.Trosvik P, de Muinck EJ. Ecology of bacteria in the human gastrointestinal tract—identification of keystone and foundation taxa. Microbiome. 2015;3:44 https://doi.org/10.1186/s40168-015-0107-4.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Banerjee S, Schlaeppi K, van der Heijden MGA, Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567. https://doi.org/10.1038/s41579-018-0024-1.90.Braun K, Romero J, Liddell C, Creamer R. Production of swainsonine by fungal endophytes of locoweed. Mycological Res. 2003;107:980–8. https://doi.org/10.1017/S095375620300813X.Article 

    Google Scholar 
    91.Noor AI, Nava A, Cooke P, Cook D, Creamer R. Evidence for nonpathogenic relationships of alternaria section undifilum endophytes within three host locoweed plant species. Botany. 2018;96:187–200. https://doi.org/10.1139/cjb-2017-0117.Article 

    Google Scholar 
    92.Kulpa SM, Leger EA. Strong natural selection during plant restoration favors an unexpected suite of plant traits. Evolut Appl. 2013;6:510–23. https://doi.org/10.1111/eva.12038.Article 

    Google Scholar 
    93.Leger EA, Baughman OW. What seeds to plant in the Great Basin? Comparing traits prioritized in native plant cultivars and releases with those that promote survival in the field. Nat Areas J. 2015;35:54–68. https://doi.org/10.3375/043.035.0108.Article 

    Google Scholar 
    94.Klypina N, Pinch M, Schutte BJ, Maruthavanan J, Sterling TM, Water-deficit stress tolerance differs between two locoweed genera (astragalus and oxytropis) with fungal endophytes. Weed Sci. 2017:1–13. https://doi.org/10.1017/wsc.2017.21.95.Stamp N. Out of the quagmire of plant defense hypotheses. Q Rev Biol. 2003;78:23–55. https://doi.org/10.1086/367580.Article 
    PubMed 

    Google Scholar 
    96.Eades CJ, Hintz WE. Characterization of the α-mannosidase gene family in filamentous fungi: N-glycan remodelling for the development of eukaryotic expression systems. Biotechnol Bioprocess Eng. 2000;5:227. https://doi.org/10.1007/BF02942178.Article 

    Google Scholar 
    97.Schmid J, Day R, Zhang N, Dupont PY, Cox MP, Schardl CL, et al. Host tissue environment directs activities of an epichloë endophyte, while it induces systemic hormone and defense responses in its native perennial ryegrass host. Mol Plant Microbe Interact. 2016;30:138–49. https://doi.org/10.1094/MPMI-10-16-0215-R.98.Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact. 2011;25:139–50. https://doi.org/10.1094/MPMI-06-11-0179.Article 

    Google Scholar 
    99.Kannadan S, Rudgers JA. Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol. 2008;22:706–13. https://doi.org/10.1111/j.1365-2435.2008.01395.x.Article 

    Google Scholar 
    100.Barillas JRV, Paschke MW, Ralphs MH, Child RD. White locoweed toxicity is facilitated by a fungal endophyte and nitrogen-fixing bacteria. Ecology. 2007;88:1850–6. https://doi.org/10.1890/06-0728.1.Article 

    Google Scholar 
    101.Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, et al. High plant diversity is needed to maintain ecosystem services. Nature. 2011;477:199–202. https://doi.org/10.1038/nature10282. More

  • in

    Unveiling the unknown phylogenetic position of the scallop Austrochlamys natans and its implications for marine stewardship in the Magallanes Province

    This is the first comparative study of commercial scallop species in the Pacific coast of the MP combining morphological and molecular characters. Our phylogenetic analyses highlight the association between A. natans and Ad. colbecki; two members of monospecific tribes and last extant representatives of their Southern Ocean-restricted genera.These results confirm the presence of both Magallanes scallops in the MP, as well as the so-far unsuspected presence of mixed “banks” where both species occur in sympatry. The BND/VH ratio helps discriminate between two distinct entities that belong to the genetic lineage of Z. patagonica and to a different lineage, highly divergent from the former, which corresponds to A. natans. A. natans is the only species of a whole lineage with a particular phylogenetic value, therefore having developed and tested an accurate identification criterion for both scallops will allow efficient fishery management in the future.Here we discuss the phylogenetic position and the taxonomic status of both Magallanes scallops, as well as the implications of these results for the future management and conservation of Z. patagonica and A. natans in the Magallanes Region. Despite the numerous classifications built on morphological, ecological or molecular data, the relationships among pectinids are still under constant modification depending on the number of taxa, loci, length of the sequence and the selected outgroups1,4. The work of Alejandrino et al.7 is the most inclusive so far in terms of taxon sampling, with 81 species. Although Scherrat et al.25 included 143 species, the node supports of the phylogenetic trees are not provided, making it difficult to assess the robustness of this large phylogeny. In order to define the phylogenetic position of Zygochlamys patagonica and Austrochlamys natans, we included 93 pectinid taxa (43 genera) representative of tribes Chlamydini, Crassadomini, Fortipectini, Palliolini, Aequipectinini, Pectinini and Amussini. Comparing to Waller’s5 and Dijkstra’s15 classifications, only the subfamily Camptonectinae and the tribe Mesoplepini are missing. We used three ribosomal regions (one nuclear and two mitochondrial). Compared to Alejandrino et al.7, histone H3 is missing here, however this locus is among the least informative4. The family Pectinidae appears to be monophyletic with high support values (Fig. 5, S2), as previously demonstrated4,7,26,27,28. According to Dijkstra15 there are currently five subfamilies of Pectinidae, two of which are absent from our analysis: Camptonectinae and Pedinae. This topology supports the classifications of Waller5 and Dijkstra15, except for the position of the tribe Austrochlamydini.Our Magallanes scallops separated into two very divergent clades: Z. patagonica is associated with its conspecifics and congenerics in a single lineage (Fig. 5), which also contains species of Veprichlamys and Talochlamys. This lineage already appeared well supported as the sister clade to Palliolinae and Pectininae in Alejandrino7. For the first time, Talochlamys dichroa and T. gemmulata are nested with high support values into the Zygochlamys clade, making this latter genus paraphyletic (Fig. 5). These taxa are all restricted to high latitudes of the Southern Ocean. Due to phylogenetic and geographic affinities, we suggest that these three genera may constitute a tribe separate from Chlamydini. Since Dijkstra15 moved the two Atlantic ‘Crassadoma’ into the genus Talochlamys, the affinities among Talochlamys spp. had not been explored until now. Talochlamys species rather associate according to geographic affinities, splitting the genus into two highly divergent entities corresponding to European and New Zealand Talochlamys. A systematic revision of these four species would be useful.Austrochlamys natans associated with the Palliolinae, which was elevated to a subfamily rank by Waller5. Of the three extant tribes that compose this group, Mesopleplini are missing from our phylogenetic analyses. We included 4 genera (8 species) of the remaining two tribes: Adamussium (Adamussini) and Palliolum, Pseudamussium, Placopecten (Palliolini). The present sampling of Palliolini is the most inclusive to date and led to the monophyly and full support of the tribe Palliolini. Our phylogenetic results do not support any of the previous classifications of the tribe Austrochlamydini1,5,9,13,15, and introduce this monospecific tribe as a new member of the subfamily Palliolinae. Indeed, Austrochlamys natans clusters together with Adamussium colbecki, both in a sister clade to Palliolini. The first molecular characterization of Ad. colbecki did not lead to a clear classification due to the low polymorphism of the 18S26. Later, Ad. colbecki appears either as sister species to Chlamydinae or to Palliolini, depending on tribe sampling and the choice of outgroup and loci4,10,11. However, in the most recent and inclusive studies of taxon sampling7 (present study) or genomic cover29, Ad. colbecki is the sister group of the tribe Palliolini, as in the present phylogeny.The subfamily Palliolinae originated from a Chlamydinine ancestor in the Cretaceous and subsequently underwent diversification in the Northern Hemisphere1 and in the Southern Hemisphere, where the extinct genus Lentipecten spread in the Paleocene–Eocene Thermal Maximum30. The genus Adamussium derived from Lentipecten and appeared in the early Oligocene; it comprises 5 endemic Antarctic species; Ad. colbecki is the only one extant13,31,32. The genus Austrochlamys also appeared in the Oligocene and was first restricted to King George Island (South Shetlands), then spread around the north of the Antarctic Peninsula and achieved a circum-Antarctic distribution until the Pliocene13,33,34. Austrochlamys persisted during the progressive cooling of the Antarctic Continent from the Paleocene to the Pliocene, dominating the coastal areas, while Adamussium occupied the deep seas and continental platform33. The opening and deepening of the Drake Passage and the intensification of the Antarctic Circumpolar Current during the Pliocene provoked a drastic cooling and the extension of sea ice over the coastal habitat, which caused the northward movement of Austrochlamys and its subsequent disappearance from Antarctica, along with the circumpolar expansion of Ad. colbecki in Antarctic shallow waters33. The colonization of the coastal habitat has been related to the sea ice extent that provided a more stable environment and low-energy fine-grained sediment with which Adamussium was associated in the deep waters. Austrochlamys fossils appear in the Subantarctic Heard Island in late Pliocene layers (3.62–2.5 Ma35). Today Ad. colbecki is a circum-Antarctic and eurybathic species that reaches high local density in protected locations13,36, while all Austrochlamys became extinct except for A. natans, which is restricted to southern South America33. The phylogenetic affinity highlighted here between A. natans and Ad. colbecki has its origins in the Southern Ocean; the deep divergence between the lineages of these monospecific tribes attests to the long time since their common origin in the Paleogene. These results point out both species as relevant biogeographic models to address longstanding questions regarding the origin of marine biota from Southern Ocean.The nomenclature, taxonomy and ecology of both A. natans and Z. patagonica have been problematic for almost 200 years. Since its original description37, Z. patagonica, a.k.a. the “Ostión Patagónico” has been named with more than 10 synonyms, probably due to the great intra-specific morphological variability throughout its distribution19,38 (see the nomenclatural history in Supplementary Table S1). In contrast, there are very few records in the scientific literature and no genetic data on A. natans, a.k.a. the “Ostión del Sur”13,14,17,19, and some problems of nomenclature and establishing diagnostic characters persist since its description13,39. Many of the current junior synonyms of both species were described from small and juvenile specimens (under 52 mm VH39,40,41). Indeed, all deposited type material of A. natans ranges from 23.5 to 52 mm VH; the latter is half of the maximum size39. The criteria most commonly used for the identification of both scallops were number of radial primary ribs, maximum size, shell colour and presence of laminated concentric lines (Supplementary Table S1). Specimens with marked primary and secondary radial ribs alternated regularly and more whitish colouring of the right shell were attributed to Z. patagonica, while those with weaker and less markedly coloured radial ribs and the maximum size were considered as A. natans42. However, the number of radial ribs overlaps between Z. patagonica (26–4212,43) and A. natans (22–5017,19). These characters also have high variability across different environments and during ontogeny13,17. Thus the use of a taxonomy based on environment-sensitive and allometric characters has led to confusion in the morphological identification of these species13,38. The criterion used in the present study, the BND/VH ratio established by Jonkers13, discriminates the species efficiently. As attested by the narrow dispersal cluster in Fig. 3, this character has low intra-population variability13. In some cases a level of intraspecific variation can be detected, and this is mainly due to the environments where the scallop populations inhabit19 (e.g. exposed, protected, substrate type, fjord, oceanic). However, although there may be some intraspecific variability between populations, this variability does not generate problems for the identification of the two species. Individuals of A. natans generally presented a significantly greater BND/VH ratio than those of Z. patagonica. However, it is important to consider that, given that this character varies during ontogeny, it is more accurate in individuals over 25 mm VH13. Only the molecular identification was able to discriminate juvenile scallops of both species accurately.According to the literature, A. natans is restricted to interior waters of channels and is associated with kelp forests of M. pyrifera (Supplementary Table S1). Z. patagonica inhabits a wider range of environments such as bottoms of shells, sand, mud and gravel in protected and exposed areas, between 2 and 300 m depth (Supplementary Table S1), but is also associated with kelp forests in fjords with different degrees of glacial retreat12,16,44. The juveniles of both scallops recruit in kelp forests44,45. According to the local artisanal fishermen, adults of “Ostión del Sur” (A. natans) occur in fjords with glaciers (orange circles in Fig. 123). We included two sampling locations near glaciers (in Pia and Montañas fjords), where large individuals (between 46 and 86 mm) of A. natans and Z. patagonica occur in sympatry. This sympatry was previously reported in Silva Palma Fjord between 5 and 25 m depth16. In conclusion, scallop banks are not monospecific but rather mixed and Z. patagonica occurs in the interior waters of the channels and fjords. Consequently, these two species have overlapping ecology (recruiting zone and glacial affinity) in the channels and fjords, overturning a long-held view that these scallops have marked habitat segregation.The fishery for both species was established in the 1990s in the political-administrative Region of Magallanes16, despite the complexity of the morphological recognition of scallops. The distinction between species was based on shell colour and radial ribs42, two characters that, given the results of this study, do not have this diagnostic capacity. Consequently, the scallop fisheries in the Magallanes Region are currently based on inaccurately discriminative characters. Scallop banks in MP have always been considered as monospecific16,47. A great part of scallop landing has always been attributed to A. natans47, about which the scientific literature is scarce (Supplementary Table S1). Conversely, Z. patagonica, which was erroneously considered as the commercial species of southern Chile, has more scientific research (Supplementary Table S1).The difficulty to discriminate A. natans and Z. patagonica morphologically may lead to incorrect fishery statistics and uncertain conservation status of A. natans. Incorrect fishery statistics could overestimate the abundance of banks of A. natans compared to Z. patagonica. If the minimum catch size is reduced23 in the context of the fishing overuse of the last decade, A. natans may suffer a reduction of its maximum size48. Therefore, an identification criterion between species is a need to improve fishery management. We showcased a quantified criterion that is useful to identify both species. In the short-term, this method can be used, but it is difficult to enforce in practical ways. We suggest to train fishing inspectors, following three guidelines. First, the identification should consider only the right valve (RV) for species identification, since the left valve is not taxonomically informative. Second, for visual classification, check the outline of the BN, mainly because the individuals of Z. patagonica have a more arcute BN. Third, a reliable identification has to measure the depth of the byssal notch (BND) and shell height (VH) ratio. Lastly, future research and fishery monitoring should follow these criteria to carry out a correct identification and subsequently better landings statistics.Molecular tools allowed evaluating the phylogenetic relationships of scallops globally or regionally and incorporating parameters that can be used for the management and conservation of species of commercial interest49. For example, in the last few decades metrics have been developed to address conservation problems that give us a measure of the current state of particular taxa. These conservation priorities are often seen as measures for threatened species categorized by the IUCN Red List (World Conservation Union, 1980), one of the most widely and recognized systems. Although this prioritization metric incorporates phylogenetic distinctiveness (PD), this factor has been updated due to the importance of quantifying the loss of evolutionary diversity that would be implied by the extinction of a species50. The magnitude of the PD loss from any species will depend (but not exclusively) on the fate of its close relatives51. The “Ostión del Sur”, Austrochlamys natans is the last representative of its tribe (Austrochlamydini) in the Southern Ocean. Its phylogenetic position and the long branch length (i.e. the length of the branch from the tip to where it joins the tree), which represents an important amount of evolutionary change, highlights the degree of isolation of A. natans and calls attention to the possible loss of a unique genetic lineage. There is currently no conservation value for this relict species; we sought to alert the current fishery management that the “Ostión del Sur” is a distinct taxon and provide integrative evidence for further conservation studies.Finally, regarding the overlapping niche of these scallops and the conservation importance of the clade of A. natans, we propose three key recommendations for the future scallop fishery policies in the sub-Antarctic channels. First, it is necessary to assess the proportion of both species per bank and landing to generate a distribution map through the sub-Antarctic channels. For this assessment, the byssal notch depth is the most appropriate morphological character. Second, we recommend reassessments of biological and ecological parameters (e.g. size at first maturity) for A. natans across the glacial fjords, which are the most relevant fishing sites. As a final point, today there is a complete lack of knowledge of the genetic connectivity along the Subantarctic Channels. Thus we should generate more research about spatial population genetics at different temporal scales. The integration of genomic approaches (e.g. SNPs) with macro- and micro-environmental modelling approaches provide enormous opportunity to establish a new regional zoning for fishery management and conservation scallop strategy. More

  • in

    Assessing multiple threats to seabird populations using flesh-footed shearwaters Ardenna carneipes on Lord Howe Island, Australia as case study

    1.Dias, M. P. et al. Threats to seabirds: A global assessment. Biol. Cons. 237, 525–537 (2019).Article 

    Google Scholar 
    2.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 

    Google Scholar 
    3.Michael, P. E. et al. Illegal fishing bycatch overshadows climate as a driver of albatross population decline. Mar. Ecol. Prog. Ser. 579, 185–199 (2017).ADS 
    Article 

    Google Scholar 
    4.Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).Article 

    Google Scholar 
    5.Rayner, M. J. et al. Predictive habitat modelling for the population census of a burrowing seabird: A study of the endangered Cook’s petrel. Biol. Cons. 138, 235–247 (2007).Article 

    Google Scholar 
    6.Habeeb, R. L., Trebilco, J., Wotherspoon, S. & Johnson, C. R. Determining natural scales of ecological systems. Ecol. Monogr. 75, 467–487 (2005).Article 

    Google Scholar 
    7.Li, G. D., Sun, S. A. & Fang, C. L. The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landscape Urban Plan. 174, 63–77 (2018).Article 

    Google Scholar 
    8.Ranjeva, S. L. et al. Untangling the dynamics of persistence and colonization in microbial communities. ISME J. 13, 2998–3010 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Thurman, L. L., Barner, A. K., Garcia, T. S. & Chestnut, T. Testing the link between species interactions and species co-occurrence in a trophic network. Ecography 42, 1658–1670 (2019).Article 

    Google Scholar 
    10.Murcia, C. Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Jonzen, N., Wilcox, C. & Possingham, H. P. Habitat selection and population regulation in temporally fluctuating environments. Am. Nat. 164, 103–114 (2004).Article 

    Google Scholar 
    12.Coulson, J. C. Difference in the quality of birds nesting in the centre and on the edges of a colony. Nature 217, 478–479 (1968).ADS 
    Article 

    Google Scholar 
    13.Reid, T., Hindell, M., Lavers, J. L. & Wilcox, C. Re-examining mortality sources and population trends in a declining seabird: using Bayesian methods to incorporate existing information and new data. PLoS ONE 8(4), e58230 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Lavers, J. L., Hutton, I. & Bond, A. L. Changes in technology and imperfect detection of nest contents impedes reliable estimates of population trends in burrowing seabirds. Global Ecol. Conserv. 17, e00579 (2019).Article 

    Google Scholar 
    15.Priddel, D., Carlile, N., Fullagar, P., Hutton, I. & O’Neill, L. Decline in the distribution and abundance of flesh-footed shearwaters (Puffinus carneipes) on Lord Howe Island, Australia. Biol. Cons. 128, 412–424 (2006).Article 

    Google Scholar 
    16.Baker, G. B. & Wise, G. S. The impact of pelagic longline fishing on the flesh-footed shearwater Puffinus carneipes in Eastern Australia. Biol. Cons. 126, 306–136 (2005).Article 

    Google Scholar 
    17.Tuck, G. N. & Wilcox, C. Assessing the potential impacts of fishing on the Lord Howe Island population of flesh-footed shearwaters 86 (Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, 2010).
    Google Scholar 
    18.Carlile, N., Priddel, D., Reid, T. & Fullager, P. Flesh-footed shearwater decline on Lord Howe Island: rebuttal to Lavers et al 2019. Global Ecol. Conserv. 20, 1–3 (2019).
    Google Scholar 
    19.Lavers, J. L. Population status and threats to flesh-footed shearwater (Puffinus carneipes) in Western and South Australia. ICES J. Mar. Sci. 72, 316–327 (2014).Article 

    Google Scholar 
    20.Carey, M. J. The effects of investigator disturbance on procellariiform seabirds: a review. N. Z. J. Zool. 36, 367–377 (2009).Article 

    Google Scholar 
    21.Carey, M. J. Investigator disturbance reduces reproductive success in Short-tailed Shearwaters Puffinus tenuirostris. Ibis 153, 363–372 (2011).Article 

    Google Scholar 
    22.Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B Biol. Sci. 287, 20200421. https://doi.org/10.1098/rspb.2020.0421 (2020).Article 

    Google Scholar 
    23.Piggott, J. J., Townsend, C. R. & Matthael, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5(7), 1538–1547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Ormerod, S. J., Dobson, M., Hildrew, A. G. & Townsend, C. R. Multiple stressors in freshwater ecosystems. Freshw. Biol. 55(Suppl. 1), 1–4. https://doi.org/10.1111/j.1365-2427.2009.02395.x (2010).Article 

    Google Scholar 
    25.Powell, C. D. L. Foraging movements and the migration trajectory of Flesh-footed Shearwaters Puffinus carneipes from the south coast of Western Australia. Mar. Ornithol. 37, 115–120 (2009).
    Google Scholar 
    26.Rexer-Huber, K., Parker, G. C., Ryan, P. G. & Cuthbert, R. J. Burrow occupancy and population size in the Atlantic Petrel Pterodroma incerta: a comparison of methods. Mar. Ornithol. 42, 137–141 (2014).
    Google Scholar 
    27.Rebstock, G. A., Boersma, P. D. & Garcia-Barbaroglu, P. Changes in habitat use and nesting density in a declining seabird Colony. Popul. Ecol. 58, 105–119 (2016).Article 

    Google Scholar 
    28.Ponchon, A. et al. When things go wrong: intra-season dynamics of breeding failure in a seabird. Ecosphere 5(1), 4. https://doi.org/10.1890/ES13-00233.1 (2014).Article 

    Google Scholar 
    29.Jackson, A. L., Bearhop, S. & Thompson, D. R. Shape can influence the rate of colony fragmentation in ground nesting seabirds. Oikos 111, 473–478 (2005).Article 

    Google Scholar 
    30.Martinez-Abrain, A. Why do ecologists aim to get positive results? Once again, negative results are necessary for better knowledge accumulation. Anim. Biodivers. Conserv. 36, 33–36 (2013).Article 

    Google Scholar 
    31.Gales, R., Brothers, N. & Reid, T. Seabird mortality in the Japanese longline tuna fishery around Australia, 1988–1995. Biol. Cons. 86, 37–56 (1997).Article 

    Google Scholar 
    32.Trebilco, R. et al. Characterizing seabird bycatch in the eastern Australian tuna and billfish pelagic longline fishery in relation to temporal, spatial and biological influences. Aquat. Conserv. Mar. Freshwat. Ecosyst. 20, 531–542 (2010).Article 

    Google Scholar 
    33.Chan, K. M. A. Value and advocacy in conservation biology: crisis discipline or discipline in crisis. Conserv. Biol. 22, 1–3 (2008).PubMed 
    Article 

    Google Scholar 
    34.Hindwood, K. A. The birds of Lord Howe Island. Emu 40, 1–86 (1940).Article 

    Google Scholar 
    35.McDougall, I., Embleton, B. J. J. & Stone, D. B. Origin and evolution of Lord Howe Island, Southwest Pacific Ocean. J. Geol. Soc. Aust. 28, 155–176 (1981).CAS 
    Article 

    Google Scholar 
    36.Pickard, J. Vegetation of Lord Howe Island. Cunninghamia 1, 133–265 (1983).
    Google Scholar 
    37.Marchant, S. & Higgins, P. J. (eds) Handbook of Australian, New Zealand and Antarctic Birds. Ratites to Ducks Vol. 1 (Oxford University Press, 1990).
    Google Scholar 
    38.Serventy, D. L. & Whittell, H. M. A Handbook of the Birds of Western Australia 2nd edn. (Paterson Brokensha Pty., Ltd, 1951).
    Google Scholar 
    39.Powell, C. D. L., Wooller, R. D. & Bradley, J. S. Breeding biology of the flesh-footed shearwater (Puffinus carneipes) on Woody Island, Western Australia. Emu 107, 275–283 (2007).Article 

    Google Scholar 
    40.Reid, T. A. et al. Nonbreeding distribution of flesh-footed shearwaters and the potential for overlap with north Pacific fisheries. Biol. Cons. 166, 3–10 (2013).Article 

    Google Scholar 
    41.Lombal, A. J. et al. Genetic divergence between colonies of flesh-footed shearwaters Ardenna carneipes exhibiting different foraging strategies. Conserv. Genet. 9, 27–41 (2018).Article 

    Google Scholar 
    42.Carlile, N. & Priddel, D. Seabird islands No. 261: Mutton Bird Island, Lord Howe Group, New South Wales. Corella 37(4), 94–96 (2013).
    Google Scholar 
    43.Carlile, N., Priddel, D. & Bower, H. Seabird islands No. 256: Roach Island, Lord Howe Group, New South Wales. Corella 37(4), 82–85 (2013).
    Google Scholar 
    44.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. (2015)45.Wood, S. N. Generalised Additive Models: An Introduction with R (Chapman and Hall/CRC, 2006).
    Google Scholar 
    46.Burnham, K. R. & Anderson, D. R. Model Selection and Multimodal Inference: A Practical Information Theoretic Approach (Springer, 2002).
    Google Scholar 
    47.Barton, K. MuMIn: Multi-Model Inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn (2015).48.Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2), https://cran.r-project.org/doc/Rnews/.(2005).49.Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn. (Springer, 2013).
    Google Scholar  More

  • in

    Geographical distribution of the dispersal ability of alien plant species in China and its socio-climatic control factors

    1.Bartz, R. & Kowarik, I. Assessing the environmental impacts of invasive alien plants: a review of assessment approaches. Neobiota https://doi.org/10.3897/neobiota.43.30122 (2019).Article 

    Google Scholar 
    2.Chen, C. et al. Historical introduction, geographical distribution, and biological characteristics of alien plants in China. Biodivers. Conserv. 26, 353–381. https://doi.org/10.1007/s10531-016-1246-z (2017).Article 

    Google Scholar 
    3.Feng, J. & Zhu, Y. Alien invasive plants in China: risk assessment and spatial patterns. Biodivers. Conserv. 19, 3489–3497. https://doi.org/10.1007/s10531-010-9909-7 (2010).Article 

    Google Scholar 
    4.Thapa, S., Chitale, V., Rijal, S. J., Bisht, N. & Shrestha, B. B. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. Plos One https://doi.org/10.1371/journal.pone.0195752 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Majewska, M. L. et al. Do the impacts of alien invasive plants differ from expansive native ones? An experimental study on arbuscular mycorrhizal fungi communities. Biol. Fertil. Soils 54, 631–643. https://doi.org/10.1007/s00374-018-1283-8 (2018).Article 

    Google Scholar 
    6.Shi, J., Luo, Y.-Q., Zhou, F. & He, P. The relationship between invasive alien species and main climatic zones. Biodivers. Conserv. 19, 2485–2500. https://doi.org/10.1007/s10531-010-9855-4 (2010).Article 

    Google Scholar 
    7.Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x (2009).Article 

    Google Scholar 
    8.Hulme, P. E. et al. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J. Appl. Ecol. 45, 403–414. https://doi.org/10.1111/j.1365-2664.2007.01442.x (2008).Article 

    Google Scholar 
    9.Jara-Guerrero, A., De la Cruz, M. & Mendez, M. Seed dispersal spectrum of woody species in south ecuadorian dry forests: environmental correlates and the effect of considering species abundance. Biotropica 43, 722–730. https://doi.org/10.1111/j.1744-7429.2011.00754.x (2011).Article 

    Google Scholar 
    10.van Oudtshoorn, K. v. R. & van Rooyen, M. W. Dispersal biology of desert plants. (Springer 1999).11.Liu, J., Liang, S. C., Liu, F. H., Wang, R. Q. & Dong, M. Invasive alien plant species in China: regional distribution patterns. Divers. Distrib. 11, 341–347. https://doi.org/10.1111/j.1366-9516.2005.00162.x (2005).Article 

    Google Scholar 
    12.Caughlin, T. T., Ferguson, J. M., Lichstein, J. W., Bunyavejchewin, S. & Levey, D. J. The importance of long-distance seed dispersal for the demography and distribution of a canopy tree species. Ecology 95, 952–962. https://doi.org/10.1890/13-0580.1 (2014).Article 
    PubMed 

    Google Scholar 
    13.Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647. https://doi.org/10.1016/j.tree.2008.08.003 (2008).Article 
    PubMed 

    Google Scholar 
    14.Wang, R. et al. Multiple mechanisms underlie rapid expansion of an invasive alien plant. New Phytol. 191, 828–839. https://doi.org/10.1111/j.1469-8137.2011.03720.x (2011).Article 
    PubMed 

    Google Scholar 
    15.Vittoz, P. & Engler, R. Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot. Helv. 117, 109–124. https://doi.org/10.1007/s00035-007-0797-8 (2007).Article 

    Google Scholar 
    16.Willson, M. F., Rice, B. L. & Westoby, M. Seed dispersal spectra – a comparison of temperate plant-communities. J. Veg. Sci. 1, 547–562. https://doi.org/10.2307/3235789 (1990).Article 

    Google Scholar 
    17.Nilsson, C., Brown, R. L., Jansson, R. & Merritt, D. M. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 85, 837–858. https://doi.org/10.1111/j.1469-185X.2010.00129.x (2010).Article 
    PubMed 

    Google Scholar 
    18.Eminniyaz, A. et al. Dispersal Mechanisms of the Invasive Alien Plant Species Buffalobur (Solanum rostratum) in Cold Desert Sites of Northwest China. Weed Sci. 61, 557–563. https://doi.org/10.1614/ws-d-13-00011.1 (2013).CAS 
    Article 

    Google Scholar 
    19.Soons, M. B., Heil, G. W., Nathan, R. & Katul, G. G. Determinants of long-distance seed dispersal by wind in grasslands. Ecology 85, 3056–3068. https://doi.org/10.1890/03-0522 (2004).Article 

    Google Scholar 
    20.Tackenberg, O. Modeling long-distance dispersal of plant diaspores by wind. Ecol. Monogr. 73, 173–189. https://doi.org/10.1890/0012-9615(2003)073[0173:mldopd]2.0.co;2 (2003).Article 

    Google Scholar 
    21.Wallace, H. M., Howell, M. G. & Lee, D. J. Standard yet unusual mechanisms of long-distance dispersal: seed dispersal of Corymbia torelliana by bees. Divers. Distrib. 14, 87–94. https://doi.org/10.1111/j.1472-4642.2007.00427.x (2008).Article 

    Google Scholar 
    22.Soons, M. B., Nathan, R. & Katul, G. G. Human effects on long-distance wind dispersal and colonization by grassland plants. Ecology 85, 3069–3079. https://doi.org/10.1890/03-0398 (2004).Article 

    Google Scholar 
    23.Taylor, K., Brummer, T., Taper, M. L., Wing, A. & Rew, L. J. Human-mediated long-distance dispersal: an empirical evaluation of seed dispersal by vehicles. Divers. Distrib. 18, 942–951. https://doi.org/10.1111/j.1472-4642.2012.00926.x (2012).Article 

    Google Scholar 
    24.Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227. https://doi.org/10.2307/2656714 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Thomson, F. J., Moles, A. T., Auld, T. D. & Kingsford, R. T. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 99, 1299–1307. https://doi.org/10.1111/j.1365-2745.2011.01867.x (2011).Article 

    Google Scholar 
    26.Zhu, J., Liu, M., Xin, Z., Zhao, Y. & Liu, Z. Which factors have stronger explanatory power for primary wind dispersal distance of winged diaspores: the case of Zygophyllum xanthoxylon (Zygophyllaceae)?. J Plant Ecol 9, 346–356. https://doi.org/10.1093/jpe/rtv051 (2016).Article 

    Google Scholar 
    27.Jones, F. A. & Muller-Landau, H. C. Measuring long-distance seed dispersal in complex natural environments: an evaluation and integration of classical and genetic methods. J. Ecol. 96, 642–652. https://doi.org/10.1111/j.1365-2745.2008.01400.x (2008).Article 

    Google Scholar 
    28.Snell, R. S. Simulating long-distance seed dispersal in a dynamic vegetation model. Glob. Ecol. Biogeogr. 23, 89–98. https://doi.org/10.1111/geb.12106 (2014).Article 

    Google Scholar 
    29.Jongejans, E. & Telenius, A. Field experiments on seed dispersal by wind in ten umbelliferous species (Apiaceae). Plant Ecol. 152, 67–78. https://doi.org/10.1023/a:1011467604469 (2001).Article 

    Google Scholar 
    30.Guitian, J. & Sanchez, J. M. Seed dispersal spectra of plant-communities in the Iberian Peninsula. Vegetatio 98, 157–164. https://doi.org/10.1007/bf00045553 (1992).Article 

    Google Scholar 
    31.Ou, H., Lu, C. & O’Toole, D. K. A risk assessment system for alien plant bio-invasion in Xiamen China. J. Environ. Sci. 20, 989–997. https://doi.org/10.1016/s1001-0742(08)62198-1 (2008).Article 

    Google Scholar 
    32.Huang, Q. Q., Wu, J. M., Bai, Y. Y., Zhou, L. & Wang, G. X. Identifying the most noxious invasive plants in China: role of geographical origin, life form and means of introduction. Biodivers. Conserv. 18, 305–316. https://doi.org/10.1007/s10531-008-9485-2 (2009).Article 

    Google Scholar 
    33.Liu, J. et al. Invasive alien plants in China: role of clonality and geographical origin. Biol. Invasions 8, 1461–1470. https://doi.org/10.1007/s10530-005-5838-x (2006).Article 

    Google Scholar 
    34.Xu, H., Wang, J., Qiang, S. & Wang, C. Study of key issues under the convention on biological diversity: alien species invasion, biosafety, genetic resources. (Science Press, 2004).35.Ma, J. & Li, H. The checklist of the alien invasive plants in China. (Higher Education Press, 2018).36.Wang, C., Liu, J., Xiao, H., Zhou, J. & Du, D. Floristic characteristics of alien invasive seed plant species in China. Anais Da Academia Brasileira De Ciencias 88, 1791–1797. https://doi.org/10.1590/0001-3765201620150687 (2016).Article 
    PubMed 

    Google Scholar 
    37.Xie, Y., Li, Z. Y., Gregg, W. P. & Dianmo, L. Invasive species in China – an overview. Biodivers. Conserv. 10, 1317–1341 (2001).Article 

    Google Scholar 
    38.Qi, W., Liu, S. H., Zhao, M. F. & Liu, Z. China’s different spatial patterns of population growth based on the “Hu Line”. J. Geog. Sci. 26, 1611–1625. https://doi.org/10.1007/s11442-016-1347-3 (2016).Article 

    Google Scholar 
    39.Chen, M. X., Gong, Y. H., Li, Y., Lu, D. D. & Zhang, H. Population distribution and urbanization on both sides of the Hu Huanyong Line: answering the Premier’s question. J. Geog. Sci. 26, 1593–1610. https://doi.org/10.1007/s11442-016-1346-4 (2016).Article 

    Google Scholar 
    40.Pan, X. B. et al. Spatial similarity in the distribution of invasive alien plants and animals in China. Nat. Hazards 77, 1751–1764. https://doi.org/10.1007/s11069-015-1672-3 (2015).Article 

    Google Scholar 
    41.Yan, X. et al. The categorization and analysis on the geographic distribution patterns of Chinese alien invasive plants. Biodiv. Sci. 22, 667–676 (2014).Article 

    Google Scholar 
    42.Wang, G., Bai, F. & Sang, W. Spatial distribution of invasive alien animal and plant species and its influencing factors in China. Plant Sci. J. 35, 513–524 (2017).
    Google Scholar 
    43.Weber, E., Sun, S. G. & Li, B. Invasive alien plants in China: diversity and ecological insights. Biol. Invasions 10, 1411–1429. https://doi.org/10.1007/s10530-008-9216-3 (2008).Article 

    Google Scholar 
    44.Zhou, Q. et al. Geographical distribution and determining factors of different invasive ranks of alien species across China. Sci. Total Environ. 722, 137929. https://doi.org/10.1016/j.scitotenv.2020.137929 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Ding, J., Mack, R. N., Lu, P., Ren, M. & Huang, H. China’s booming economy is sparking and accelerating biological invasions. Bioscience 58, 317–324. https://doi.org/10.1641/b580407 (2008).Article 

    Google Scholar 
    46.Pysek, P. et al. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53, 131–143. https://doi.org/10.2307/4135498 (2004).Article 

    Google Scholar 
    47.Zeng, C. & Chen, W. A forecasting model of urban underground space development intensity. Chin. J. Undergr. Space Eng. 14, 1154–1160 (2018).
    Google Scholar 
    48.Shao, M. N. et al. Outbreak of a new alien invasive plant Salvia reflexa in north-east China. Weed Res. 59, 201–208. https://doi.org/10.1111/wre.12357 (2019).Article 

    Google Scholar 
    49.Wan, F. H. et al. Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Sci. China-Life Sci. 53, 1291–1298. https://doi.org/10.1007/s11427-010-4080-7 (2010).Article 
    PubMed 

    Google Scholar 
    50.Poudel, A. S., Jha, P. K., Shrestha, B. B. & Muniappan, R. Biology and management of the invasive weed Ageratina adenophora (Asteraceae): current state of knowledge and future research needs. Weed Res. 59, 79–92. https://doi.org/10.1111/wre.12351 (2019).Article 

    Google Scholar 
    51.Datta, A., Schweiger, O. & Kuehn, I. Niche expansion of the invasive plant species Ageratina adenophora despite evolutionary constraints. J. Biogeogr. 46, 1306–1315. https://doi.org/10.1111/jbi.13579 (2019).Article 

    Google Scholar 
    52.Guo, X., Ren, M. & Ding, J. Do the introductions by botanical gardens facilitate the invasion of Solidago canadensis (Asterceae) in China?. Weed Res. 56, 442–451. https://doi.org/10.1111/wre.12227 (2016).Article 

    Google Scholar 
    53.Ganneru, S., Shaik, H., Peddi, K. & Mudiam, M. K. R. Evaluating the metabolic perturbations in Mangifera indica (mango) ripened with various ripening agents/practices through gas chromatography – mass spectrometry based metabolomics. J. Sep. Sci. 42, 3086–3094. https://doi.org/10.1002/jssc.201900291 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Mahandran, V., Murugan, C. M., Marimuthu, G. & Nathan, P. T. Seed dispersal of a tropical deciduous Mahua tree, Madhuca latifolia (Sapotaceae) exhibiting bat-fruit syndrome by pteropodid bats. Glob. Ecol. Conserv. 14, e00396. https://doi.org/10.1016/j.gecco.2018.e00396 (2018).Article 

    Google Scholar 
    55.Weber, E. & Li, B. Plant invasions in China: What is to be expected in the wake of economic development?. Bioscience 58, 437–444. https://doi.org/10.1641/b580511 (2008).Article 

    Google Scholar 
    56.Jian, L., Hua, C., Kowarik, I., Zhang, Y. & Wang, R. Plant invasions in China: an emerging hot topic in invasion science. Neobiota 15, 27–41 (2012).Article 

    Google Scholar  More

  • in

    Contracting eastern African C4 grasslands during the extinction of Paranthropus boisei

    1.Leakey, L. S. B., Tobias, P. V. & Napier, J. R. A new species of the genus Homo from Olduvai Gorge. Nature 202, 7–9 (1964).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Bromage, T. G. & Schrenk, F. Biogeographic and climatic basis for a narrative of early hominid evolution. J. Hum. Evol. 28, 109–114 (1995).Article 

    Google Scholar 
    3.Klein, R. The causes of “robust” australopithecine extinction in Evolutionary history of the “robust” australopithecines (ed. Grine, F.E.) 499–505 (Aldine de Gruyter, 1988).4.McPherron, S.P. et al. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466, 857–860 (2010).5.Harmand, S. et al. Before the Oldowan: 3.3 Ma Stone Tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315 (2015).6.Cerling, T. E. et al. Diet of Panthropus boisei in the early Pleistocene of East Africa. Proc. Natl. Acad. Sci. USA 108, 9337–9341 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Ungar, P. S. & Sponheiner, M. The diets of early hominins. Science 334, 190–193 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Cerling, T. E. et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl. Acad. Sci. USA 110, 10501–10506 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Cerling, T. E. et al. Diet of Theropithecus from 4 to 1 Ma in Kenya. Proc. Natl. Acad. Sci. 110, 10507–10512 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Ungar, P. S., Grine, F. E. & Teaford, M. F. Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS ONE 3, e2044 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Ludecke, T. et al. Dietary versatility of early Pleistocene hominins. Proc. Natl. Acad. Sci. USA 115, 13330–13335 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Wynn, J. G. et al. Isotopic evidence for the timing of the dietary shift toward C4 foods in eastern African Paranthropus. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2006221117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Martin, J. E., Tacail, T., Braga, J., Cerling, T. E. & Balter, V. Calcium isotopic ecology of Turkana Basin hominins. Nat. Commun. 11, 3587 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Dominguez-Rodrigo, M. et al. First partial skeleton of a 1.34-million-year-old Paranthropus boisei from Bed II, Oluvai Gorge, Tanzania. PLoS ONE 8, e80347 (2013).15.Wood, B., Wood, C. & Konigsberg, L. Paranthropus boisei: An example of evolutionary stasis?. Am. J. Phys. Anthropol. 95, 117–136 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Wood, B. A. & Patterson, B. A. Paranthropus through the looking glass. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2016445117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Antón, S. C., Potts, R. & Aiello, L. C. Evolution of early Homo: an integrated biological perspective. Science 345, 1236828 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Wood, B. & Constantino, P. Paranthropus boisei: Fifty years of evidence and analysis. Yrbk. Phys. Anthropol. 50, 106–132 (2007).Article 

    Google Scholar 
    19.Muttoni, G., Scardia, G. & Kent, D. V. Early hominins in Europe: The Galerian migration hypothesis. Quat. Sci. Rev. 180, 1–29 (2018).ADS 
    Article 

    Google Scholar 
    20.Shultz, S., Nelson, E. & Dunbar, R. I. M. Hominin cognitive evolution: identifying patterns and processes in the fossil and archaeological record. Phil. Trans. R. Soc. B 367, 2130–2140 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).ADS 
    Article 

    Google Scholar 
    22.Raymo, M. E., Oppo, D. W. & Curry, W. The mid-Pleistocene climate transition: a deep sea carbon isotopic perspective. Paleoceanogr. 12, 546–559 (1997).ADS 
    Article 

    Google Scholar 
    23.Levin, N. E. Environment and climate of early human evolution. Ann. Rev. Earth Planet. Sci. 43, 405–429 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Potts, R. & Faith, J. T. Alternating high and low climate variability: the context of natural selection and speciation in Plio-Pleistocene hominin evolution. J. Hum. Evol. 87, 5–20 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl. Acad. Sci. USA 112, 11467–11472 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Negash, E. W. et al. Dietary trends in herbivores from the Shungura Formation, southwestern Ethiopia. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2006982117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Pasquette, J. & Drapeau, M. S. M. Environmental comparisons of the Awash Valley, Turkana Basin and lower Omo Valley from upper Miocene to Holocene as assessed from stable carbon and oxygen isotopes of mammalian enamel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110099 (2021).Article 

    Google Scholar 
    29.Bobe, R. & Behrensmeyer, A. K. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origins of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).Article 

    Google Scholar 
    30.Nutz, A. et al. Plio-Pleistocene sedimentation in West Turkana (Turkana Depression, Kenya, East African Rift System): paleolake fluctuations, paleolandscapes and controlling factors. Earth-Sci. Rev. 211, 103415 (2020).CAS 
    Article 

    Google Scholar 
    31.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole in the tropical Indian Ocean. Nature 401, 360–363 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Peterson, L. C., Haug, G. H., Hughen, K. A. & Rohl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the Last Glacial. Science 290, 1947–1951 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Schefuß, E., Schouten, S., Jansen, J.H.F., Sinninghe Damste, J.S. African vegetation controlled sea surface temperatures in the mid-Pleistocene period. Nature 422, 418–421 (2003).35.deMenocal, P.B. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).36.Trauth, M. H., Maslin, M. A., Deino, A. & Strecker, M. R. Late Cenozoic moisture history of East Africa. Science 309, 2051–2053 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Donges, J. F. et al. Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc. Natl. Acad. Sci. USA 108, 20422–20427 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Gathogo, P. N. & Brown, F. H. Stratigraphy of the Koobi Fora Formation (Pliocene and Pleistocene) in the Ileret region of northern Kenya. J. Afr. Earth Sci. 45, 369–390 (2006).ADS 
    Article 

    Google Scholar 
    40.Feibel, C. S. A geological history of the Turkana Basin. Evol. Anthropol. 20, 206–216 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Faith, T. J., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: No evidence for ancient hominin impacts. Science 362, 938–941 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl. Acad. Sci. USA 114, 7331–7336 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Lepre, C. J. Constraints on Fe-oxide formation in monsoonal Vertisols of Pliocene Kenya using rock magnetism and spectroscopy. Geochem. Geophys. Geosyst. 20, 4998–5013 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Faurby, S., Silvestro, D., Werdelin, L. & Antonelli, A. Brain expansion in early hominins predicts carnivore extinctions in East Africa. Ecol. Lett. 23, 537–544 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Faith, T. J., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl. Acad. Sci. USA 116, 21478–21483 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Bond, W. J., Midgley, G. F. & Woodward, F. I. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Change Biol. 9, 973–982 (2003).ADS 
    Article 

    Google Scholar 
    47.Bragg, F. J. et al. Stable isotope and modeling evidence for CO2 as a driver of glacial-interglacial vegetation shifts in southern Africa. Biogeosci. 10, 2001–2010 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Da, J., Zhang, Y., Li, G., Meng, X. & Ji, J. Low CO2 levels of the entire Pleistocene epoch. Nat. Commun. 10, 4342 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Stap, L. B. et al. CO2 over the past 5 million years: continuous simulation and new δ11B-based proxy data. Earth Planet. Sci. Lett. 439, 1–10 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    51.van de Wal, R.S.W., de Boer, B., Lourens, LJ.., Kohler, P., Bintanja, R. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 7, 1459–69 (2011).52.Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H. & Eiler, J. M. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc. Nat. Acad. Sci. USA 107, 11245–11249 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Petit, J.R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica: Nature 399, 429–436 (1999).54.Schefuß, E. & Dupont, L. M. Multiple drivers of Miocene C4 ecosystem expansions. Nat. Geosci. 13, 463–464 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    55.Johnson, T.C. et al. A progressively wetter climate in southern East Africa over the past 1.3 million years. Nature 537, 220–224 (2016).56.Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).57.Caley, T. et al. A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. Nature 560, 76–79.58.Kim, S.-J. et al. High-resolution climate simulation of the last glacial maximum. Clim Dyn 31, 1–16 (2008).Article 

    Google Scholar 
    59.Tierney, J. E., Russell, J. M., Sinninghe Damsté, J. S., Huang, Y. & Verschuren, D. Late quaternary behavior of the East African monsoon and the importance of the Congo Air Boundary. Quatern. Sci. Rev. 30, 798–807 (2011).ADS 
    Article 

    Google Scholar 
    60.Kingston, J. D. & Harrison, T. Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 272–306 (2007).Article 

    Google Scholar 
    61.Quinn, R. L. Isotopic equifinality and rethinking the diet of Australopithecus anamensis. Am. J. Phys. Anthropol. 169, 403–421 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Wood, D. Strait, Patterns of resource use in early Homo and Paranthropus. J. Hum. Evol. 46, 119–162 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Patterson, D. B. et al. Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-0916-0 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Lepre, C. J. et al. An earlier origin for the Acheulian. Nature 477, 82–85 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Braun, D.R. et al. Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight technological diversity. Proc. Natl. Acad. Sci. USA 116, 11712–11717 (2019).66.Mana, S., Hemming, S., Kent, D. V. & Lepre, C. J. Temporal and stratigraphic framework for paleoanthropology site within East-Central Area 130, Koobi Fora Kenya. Front. Earth Sci. 7, 230 (2019).ADS 
    Article 

    Google Scholar 
    67.Shea, J. J. Occasional, obligatory, and habitual stone tool use in hominin evolution. Evol. Anthropol. 26, 200–217 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.de la Torre, I. The origins of the Acheulean: past and present perspectives on a major transition in human evolution. Philos. Trans. R. Soc. B 371, 20150245 (2016).Article 

    Google Scholar 
    69.Harris, J. M., Brown, F. H. & Leakey, M. G. Geology and paleontology of Plio-Pleistocene localities west of Lake Turkana Kenya. Contrib. Sci. 399, 1–128 (1988).
    Google Scholar 
    70.McDougall, I. et al. New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo-Turkana Basin East Africa. J. Geol. Soc. Lond. 169, 213–226 (2012).CAS 
    Article 

    Google Scholar 
    71.Quinn, R. L. et al. Pedogenic carbonate stable isotopic evidence for wooded habitat preference of early Pleistocene tool makers in the Turkana Basin. J. Hum. Evol. 65, 65–78 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Potts, R. et al. Environmental dynamics during the onset of the Middle Stone Age in eastern Africa. Science 360, 86–90 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Levin, N. E., Zipser, E. J. & Cerling, T. E. isotopic compositions of waters from Ethiopia and Kenya: insights into moisture sources for eastern Africa. J. Geophys. Res. 114, D23306 (2009).ADS 
    Article 
    CAS 

    Google Scholar  More

  • in

    First insights into the impacts of benthic cyanobacterial mats on fish herbivory functions on a nearshore coral reef

    1.Ford, A. K. et al. Reefs under siege: the rise, putative drivers, and consequences of benthic cyanobacterial mats. Front. Mar. Sci. 5, 18 (2018).Article 

    Google Scholar 
    2.Brocke, H. J. et al. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs. PLoS ONE 10, e0125445 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Charpy, L., Casareto, B. E., Langlade, M. J. & Suzuki, Y. Cyanobacteria in coral reef ecosystems: a review. J. Mar. Biol. 2012, e259571 (2012).Article 

    Google Scholar 
    4.Mangubhai, S. & Obura, D. O. Silent killer: black reefs in the Phoenix Islands Protected Area. Pac. Conserv. Biol. 25, 213 (2019).Article 

    Google Scholar 
    5.de Bakker, D. M. et al. 40 years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats. Coral Reefs 36, 355–367 (2017).ADS 
    Article 

    Google Scholar 
    6.Albert, S., Dunbabin, M., Skinner, M., Moore, B. & Grinham, A. Benthic shift in a Solomon Islands’ lagoon: corals to cyanobacteria. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012 1–5 (2012).7.Puyana, M., Acosta, A., Bernal-Sotelo, K., Velásquez-Rodríguez, T. & Ramos, F. Spatial scale of cyanobacterial blooms in Old Providence Island Colombian Caribbean. Universitas Scientiarum 20, 83–105 (2015).Article 

    Google Scholar 
    8.Ford, A. K. et al. High sedimentary oxygen consumption indicates that sewage input from small islands drives benthic community shifts on overfished reefs. Environ. Conserv. 44, 405–411 (2017).Article 

    Google Scholar 
    9.Chapra, S. C. et al. Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment. Environ. Sci. Technol. 51, 8933–8943 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Gobler, C. J. Climate change and harmful algal blooms: insights and perspective. Harmful Algae 91, 101731 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Wood, S. A. et al. Toxic benthic freshwater cyanobacterial proliferations: challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshw. Biol. 65, 1824–1842 (2020).Article 

    Google Scholar 
    13.Brown, K. T., Bender-Champ, D., Bryant, D. E. P., Dove, S. & Hoegh-Guldberg, O. Human activities influence benthic community structure and the composition of the coral-algal interactions in the central Maldives. J. Exp. Mar. Biol. Ecol. 497, 33–40 (2017).Article 

    Google Scholar 
    14.Titlyanov, E. A., Yakovleva, I. M. & Titlyanova, T. V. Interaction between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact. J. Exp. Mar. Biol. Ecol. 342, 282–291 (2007).Article 

    Google Scholar 
    15.Carmichael, W. W. Cyanobacteria secondary metabolites—the cyanotoxins. J. Appl. Bacteriol. 72, 445–459 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Ritson-Williams, R., Paul, V. J. & Bonito, V. Marine benthic cyanobacteria overgrow coral reef organisms. Coral Reefs 24, 629–629 (2005).ADS 
    Article 

    Google Scholar 
    17.Kuffner, I. et al. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323, 107–117 (2006).ADS 
    Article 

    Google Scholar 
    18.Kuffner, I. B. & Paul, V. J. Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs 23, 455–458 (2004).Article 

    Google Scholar 
    19.Ritson-Williams, R., Arnold, S. N. & Paul, V. J. The impact of macroalgae and cyanobacteria on larval survival and settlement of the scleractinian corals Acropora palmata, A cervicornis and Pseudodiploria strigosa. Mar. Biol. 167, 31 (2020).Article 

    Google Scholar 
    20.McClanahan, T. R. et al. Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS ONE 7, e42884 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Cardini, U., Bednarz, V. N., Foster, R. A. & Wild, C. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol. Evol. 4, 1706–1727 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Brocke, H. J. et al. Nitrogen fixation and diversity of benthic cyanobacterial mats on coral reefs in Curaçao. Coral Reefs 37, 861–874 (2018).ADS 
    Article 

    Google Scholar 
    23.Brocke, H. J. et al. High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Sci. Rep. 5, 8852 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    25.Box, S. J. & Mumby, P. J. Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342, 139–149 (2007).ADS 
    Article 

    Google Scholar 
    26.Webster, F. J., Babcock, R. C., Keulen, M. V. & Loneragan, N. R. Macroalgae inhibits larval settlement and increases recruit mortality at Ningaloo Reef, Western Australia. PLoS ONE 10, e0124162 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Barott, K. et al. Natural history of coral−algae competition across a gradient of human activity in the Line Islands. Mar. Ecol. Prog. Ser. 460, 1–12 (2012).ADS 
    Article 

    Google Scholar 
    28.Bonaldo, R. M. & Hay, M. E. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience. PLoS ONE 9, e85786 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Rasher, D. B., Hoey, A. S. & Hay, M. E. Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94, 1347–1358 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Capper, A., Cruz-Rivera, E., Paul, V. J. & Tibbetts, I. R. Chemical deterrence of a marine cyanobacterium against sympatric and non-sympatric consumers. Hydrobiologia 553, 319 (2006).CAS 
    Article 

    Google Scholar 
    31.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. https://doi.org/10.1111/bij.12914 (2016).Article 

    Google Scholar 
    32.Cissell, E. C., Manning, J. C. & McCoy, S. J. Consumption of benthic cyanobacterial mats on a Caribbean coral reef. Sci. Rep. 9, 12693 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc. Biol. Sci. 281, 20131835 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Goatley, C., Bonaldo, R., Fox, R. & Bellwood, D. Sediments and herbivory as sensitive indicators of coral reef degradation. Ecol. Soc. 21, 29 (2016).35.Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).Article 

    Google Scholar 
    36.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    38.Duperron, S. et al. New benthic cyanobacteria from Guadeloupe mangroves as producers of antimicrobials. Mar. Drugs https://doi.org/10.3390/md18010016 (2020).Article 

    Google Scholar 
    39.Bonaldo, R. M., Pires, M. M., Junior, P. R. G., Hoey, A. S. & Hay, M. E. Small marine protected areas in Fiji provide refuge for reef fish assemblages, feeding groups, and corals. PLoS ONE 12, e0170638 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Ford, A. K. et al. Evaluation of coral reef management effectiveness using conventional versus resilience-based metrics. Ecol. Ind. 85, 308–317 (2018).Article 

    Google Scholar 
    41.Robinson, J. P. W. et al. Environmental conditions and herbivore biomass determine coral reef benthic community composition: implications for quantitative baselines. Coral Reefs 37, 1157–1168 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Capper, A. et al. Palatability and chemical defences of benthic cyanobacteria to a suite of herbivores. J. Exp. Mar. Biol. Ecol. 474, 100–108 (2016).CAS 
    Article 

    Google Scholar 
    43.Cruz-Rivera, E. & Paul, V. J. Chemical deterrence of a cyanobacterial metabolite against generalized and specialized grazers. J. Chem. Ecol. 33, 213–217 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bejarano, S. et al. The shape of success in a turbulent world: wave exposure filtering of coral reef herbivory. Funct. Ecol. 31, 1312–1324 (2017).Article 

    Google Scholar 
    45.Lefcheck, J. S. et al. Tropical fish diversity enhances coral reef functioning across multiple scales. Sci. Adv. 5, eaav6420 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Nagle, D. G. & Paul, V. J. Chemical defense of a marine cyanobacterial bloom. J. Exp. Mar. Biol. Ecol. 225, 29–38 (1998).CAS 
    Article 

    Google Scholar 
    47.Wilson, S. K., Graham, N. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob. Change Biol. 12, 2220–2234 (2006).ADS 
    Article 

    Google Scholar 
    48.Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanogr. Mar. Biol. Ann. Rev. 46, 251–296 (2006).
    Google Scholar 
    49.Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).Article 

    Google Scholar 
    50.Potts, D. C. Suppression of coral populations by filamentous algae within damselfish territories. J. Exp. Mar. Biol. Ecol. 28, 207–216 (1977).Article 

    Google Scholar 
    51.Mumby, P. J. et al. Empirical relationships among resilience indicators on Micronesian reefs. Coral Reefs https://doi.org/10.1007/s00338-012-0966-0 (2012).Article 

    Google Scholar 
    52.Birrell, C. L., McCook, L. J. & Willis, B. L. Effects of algal turfs and sediment on coral settlement. Mar. Pollut. Bull. 51, 408–414 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.de la Morinière, E. C. et al. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser. 246, 279–289 (2003).ADS 
    Article 

    Google Scholar 
    55.Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 51, 346–353 (2016).Article 
    CAS 

    Google Scholar 
    56.Xiao, X. et al. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS ONE 9, e106510 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Palinska, K. A. & Surosz, W. Taxonomy of cyanobacteria: a contribution to consensus approach. Hydrobiologia 740, 1–11 (2014).Article 

    Google Scholar 
    58.Li, X. et al. Factors related to aggravated Cylindrospermopsis (cyanobacteria) bloom following sediment dredging in an eutrophic shallow lake. Environ. Sci. Ecotechnol. 2, 100014 (2020).Article 

    Google Scholar 
    59.Taton, A., Grubisic, S., Brambilla, E., De Wit, R. & Wilmotte, A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69, 5157–5169 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Knight, R. et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Kim, M., Oh, H.-S., Park, S.-C. & Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346–351 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Hoffmann, L. & Demoulin, V. Marine Cyanophyceae of Papua New Guinea. III. The genera Borzia and Oscillatoria. Bot. Mar. 36, 451–459 (1993).Article 

    Google Scholar 
    63.Engene, N. et al. Moorea producens gen. nov., sp. Nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 62, 1171–1178 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Engene, N. et al. Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoriales, Cyanoprokaryota). J. Phycol. 49, 1095–1106 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Komarek, J., Kaštovský, J., Mares, J. & Johansen, J. R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295–335 (2014).
    Google Scholar 
    66.Wilmotte, A., Laughinghouse, H. D. I., Capelli, C., Rippka, R. & Salmaso, N. Taxonomic Identification of Cyanobacteria by a Polyphasic Approach. Molecular Tools for the Detection and Quantification of Toxigenic Cyanobacteria (Wiley, 2017).
    Google Scholar 
    67.Salmaso, N. et al. Diversity and cyclical seasonal transitions in the bacterial community in a large and deep perialpine lake. Microb. Ecol. 76, 125–143 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Zubia, M. et al. Benthic cyanobacteria on coral reefs of Moorea Island (French Polynesia): diversity response to habitat quality. Hydrobiologia 843, 61–78 (2019).Article 

    Google Scholar 
    69.Bernard, C. et al. Appendix 2: Cyanobacteria Associated with the Production of Cyanotoxins. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis 501–525 (Wiley, 2017). https://doi.org/10.1002/9781119068761.app2.
    Google Scholar 
    70.Moritz, C. et al. Status and Trends of Coral Reefs in the Pacific (Global Coral Reef Monitoring Network, 2018).
    Google Scholar 
    71.Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B Biol. Sci. 283, 20151985 (2016).Article 
    CAS 

    Google Scholar 
    72.Kelly, L. W. et al. Black reefs: iron-induced phase shifts on coral reefs. ISME J. 6, 638–649 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Bohnsack, J. A. & Bannerot, S. P. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. NOAA Technical Report NMFS 41, 21 (1986).74.Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. www.fishbase.orghttps://www.fishbase.org/.75.Heenan, A., Hoey, A. S., Williams, G. J. & Williams, I. D. Natural bounds on herbivorous coral reef fishes. Proc. R. Soc. B Biol. Sci. 283, 20161716 (2016).Article 

    Google Scholar 
    76.R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).77.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    78.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.3.3.0. (2020). http://florianhartig.github.io/DHARMa/79.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
    Google Scholar 
    80.Komárek, J. & Anagnostidis, K. Cyanoprokaryota 2.Teil: Oscillatoriales (Elsevier, 2005).
    Google Scholar 
    81.Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. BMC Bioinform. 12, 38 (2011).Article 

    Google Scholar 
    82.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Ramos, V., Morais, J. & Vasconcelos, V. M. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies. Sci. Data 4, 170054 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More