Primary and secondary aerenchyma oxygen transportation pathways of Syzygium kunstleri (King) Bahadur & R. C. Gaur adventitious roots in hypoxic conditions
1.
Boyer, J. S. Plant productivity and environment. Science 218, 443–448 (1982).
ADS CAS PubMed Article Google Scholar
2.
Abiko, T. et al. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp mays). Plant Cell Environ. 35, 1618–1630 (2012).
CAS PubMed Article Google Scholar
3.
Jackson, M. B. Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. Plant Mol. Biol. 36, 145–174 (1985).
CAS Article Google Scholar
4.
Colmer, T. D. & Voesenek, L. A. C. J. Flooding tolerance: Suites of plant traits in variable environments. Funct. Plant Biol. 36, 665–681 (2009).
CAS PubMed Article Google Scholar
5.
Bailey-Serres, J. & Voesenek, L. A. C. J. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313–339 (2008).
CAS PubMed Article Google Scholar
6.
Colmer, T. D. & Greenway, H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J. Exp. Bot. 62, 39–57 (2011).
CAS PubMed Article Google Scholar
7.
Huang, S., Greenway, H. & Colmer, T. D. Responses of coleoptiles of intact rice seedlings to anoxia: K+ net uptake from the external solution and translocation from the caryopses. Ann. Bot. 91, 271–278 (2003).
CAS PubMed PubMed Central Article Google Scholar
8.
Vartapetian, B. B. et al. Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann. Bot. 91, 155–172 (2003).
CAS PubMed PubMed Central Article Google Scholar
9.
Visser, E. J. W., Voesenek, L. A. C. J., Vartapetian, B. B. & Jackson, M. B. Flooding and plant growth. Ann. Bot. 91, 107–109 (2003).
CAS PubMed Central Article PubMed Google Scholar
10.
Voesenek, L. A. & Bailey-Serres, J. Flood adaptive traits and processes: An overview. New Phytol. 206, 57–73 (2015).
CAS PubMed Article Google Scholar
11.
Evans, D. E. Aerenchyma formation. New Phytol. 161, 35–49 (2004).
Article Google Scholar
12.
Armstrong, W. Aeration in higher plants. In Advances in Botanical Research (ed. Woolhouse, H. W.) (Academic Press, Burlington, 1980).
Google Scholar
13.
Colmer, T. D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann. Bot. 91, 301–309 (2003).
CAS PubMed PubMed Central Article Google Scholar
14.
Jackson, M. B. & Armstrong, W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1, 274–287 (1999).
CAS Article Google Scholar
15.
Seago, J. L. et al. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann. Bot. 96, 565–579 (2005).
PubMed Article Google Scholar
16.
Drew, M. C., He, C. J. & Morgan, P. W. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 5, 123–127 (2000).
CAS PubMed Article Google Scholar
17.
Yamauchi, T., Rajhi, I. & Nakazono, M. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal. Behav. 6, 759–761 (2011).
CAS PubMed PubMed Central Article Google Scholar
18.
Takahashi, H., Yamauchi, T., Colmer, T. D. & Nakazono, M. Aerenchyma formation in plants. in Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia 247–265. (Springer, Wien, 2014).
19.
Stevens, K. J., Peterson, R. L. & Reader, R. J. The aerenchymatous phellem of Lythrum salicaria (L.): A pathway for gas transport and its role in flood tolerance. Ann. Bot. 89, 621–625 (2002).
PubMed PubMed Central Article Google Scholar
20.
Shimamura, S., Mochizuki, T., Nada, Y. & Fukuyama, M. Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions. Plant Soil 251, 351–359 (2003).
CAS Article Google Scholar
21.
Shimamura, S., Yamamoto, R., Nakamura, T., Shimada, S. & Komatsu, S. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann. Bot. 106, 277–284 (2010).
PubMed PubMed Central Article Google Scholar
22.
De Simone, O. et al. Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct. Plant Biol. 29, 1025–1035 (2002).
PubMed Article Google Scholar
23.
Colmer, T. D. & Pedersen, O. Oxygen dynamics in submerged rice (Oryza sativa). New Phytol. 178, 326–334 (2008).
CAS PubMed Article Google Scholar
24.
Haase, K., De Simone, O., Junk, W. J. & Schmidt, W. Internal oxygen transport in cuttings from flood-adapted várzea tree species. Tree Physiol. 23, 1069–1076 (2003).
PubMed Article Google Scholar
25.
Sou, H. D., Masumori, M., Kurokochi, H. & Tange, T. Histological observation of primary and secondary aerenchyma formation in adventitious roots of Syzygium kunstleri (King) Bahadur and R. C. Gaur grown in hypoxic medium. Forests 10, 137 (2019).
Article Google Scholar
26.
Rubinigg, M., Stulen, I., Elzenga, J. T. M. & Colmer, T. D. Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. Funct. Plant Biol. 29, 1475–1481 (2002).
CAS PubMed Article Google Scholar
27.
Kotula, L., Ranathunge, K., Schreiber, L. & Steudle, E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J. Exp. Bot. 60, 2155–2167 (2009).
CAS PubMed Article Google Scholar
28.
Shiono, K. et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann. Bot. 107, 89–99 (2011).
CAS PubMed Article Google Scholar
29.
Watanabe, K., Nishiuchi, S., Kulichikhin, K. & Nakazono, M. Does suberin accumulation in plant roots contribute to waterlogging tolerance?. Front. Plant Sci. 4, 178 (2013).
PubMed PubMed Central Article Google Scholar
30.
Khan, N. et al. Root iron plaque on wetland plants as dynamic pool of nutrients and contaminants. In Advances in Agronomy Vol. 138 (ed. Sparks, D. L.) 1–96 (Academic Press, Cambridge, 2016).
Google Scholar
31.
Uteau, D. et al. Oxygen and redox potential gradients in the rhizosphere of alfalfa grown on a loamy soil. J. Plant Nutr. Soil Sci. 178, 278–287 (2015).
CAS Article Google Scholar
32.
Tian, C., Wang, C., Tian, Y., Wu, X. & Xiao, B. Root radial oxygen loss and the effects on rhizosphere microarea of two submerged plants. Polish J. Environ. Studies 24, 1795–1802 (2015).
Article Google Scholar
33.
Shimamura, S., Mochizuki, T., Nada, Y. & Fukuyama, M. Secondary aerenchyma formation and its relation to nitrogen fixation in root nodules of soybean plants (Glycine max) grown under flooded conditions. Plant Product. Sci. 5, 294–300 (2002).
CAS Article Google Scholar
34.
Shiba, H. & Daimon, H. Histological observation of secondary aerenchyma formed immediately after flooding in Sesbania cannabina and S. rostrata. Plant Soil 255, 209–215 (2003).
CAS Article Google Scholar
35.
Somavilla, N. S. & Graciano-Ribeiro, D. Ontogeny and characterization of aerenchymatous tissues of Melastomataceae in the flooded and well-drained soils of a Neotropical savanna. Flora 207, 212–222 (2012).
Article Google Scholar
36.
Thomas, A. L., Guerreiro, S. M. C. & Sodek, L. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann. Bot. 96, 1191–1198 (2005).
CAS PubMed PubMed Central Article Google Scholar
37.
Wiengweera, A., Greenway, H. & Thomson, C. J. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann. Bot. 80, 115–123 (1997).
Article Google Scholar
38.
Dacey, J. W. Internal winds in water lilies: An adaptation for life in anaerobic sediments. Science 210, 1017–1019 (1980).
ADS CAS PubMed Article Google Scholar
39.
Drew, M. C., Saglio, P. H. & Pradet, A. J. P. Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport. Planta 165, 51–58 (1985).
CAS PubMed Article Google Scholar
40.
Drew, M. C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 223–250 (1997).
CAS PubMed Article Google Scholar
41.
Shimamura, S., Yoshida, S. & Mochizuki, T. Cortical aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding. Ann. Bot. 100, 1431–1439 (2007).
PubMed PubMed Central Article Google Scholar
42.
Armstrong, W., Cousins, D., Armstrong, J., Turner, D. W. & Beckett, P. M. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: A microelectrode and modelling study with Phragmites australis. Ann. Bot. 86, 687–703 (2000).
Article Google Scholar
43.
Herzog, M. & Pedersen, O. Partial versus complete submergence: Snorkelling aids root aeration in Rumex palustris but not in R. acetosa. Plant Cell Environ. 37, 2381–2390 (2014).
CAS PubMed Google Scholar
44.
Tanaka, K., Masumori, M., Yamanoshita, T. & Tange, T. Morphological and anatomical changes of Melaleuca cajuputi under submergence. Trees 25, 695–704 (2011).
Article Google Scholar
45.
Armstrong, W. Polarographic oxygen electrodes and their use in plant aeration studies. Proc. R. Soc. Edinburgh Sect. B. Biol. Sci. 102, 511–527 (1994).
Article Google Scholar
46.
Hitchman, M. L. Measurement of Dissolved Oxygen (Wiley, New York, 1978).
Google Scholar
47.
Ober, E. S. & Sharp, R. E. A microsensor for direct measurement of O2 partial pressure within plant tissues. J. Exp. Bot. 47, 447–454 (1996).
CAS Article Google Scholar More