More stories

  • in

    Author Correction: Vertical transmission of sponge microbiota is inconsistent and unfaithful

    Author notes
    These authors jointly supervised this work: Elizabeth A. Archie and José M. Montoya.

    Affiliations

    Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
    Johannes R. Björk & Elizabeth A. Archie

    Theoretical and Experimental Ecology Station, CNRS-University Paul Sabatier, Moulis, France
    Johannes R. Björk & José M. Montoya

    Natural History Museum, London, UK
    Cristina Díez-Vives

    School of Biological Sciences, University of Auckland, Auckland, New Zealand
    Carmen Astudillo-García

    Authors
    Johannes R. Björk

    Cristina Díez-Vives

    Carmen Astudillo-García

    Elizabeth A. Archie

    José M. Montoya

    Corresponding authors
    Correspondence to Johannes R. Björk or Elizabeth A. Archie or José M. Montoya. More

  • in

    Preparation and application of a thidiazuron·diuron ultra-low-volume spray suitable for plant protection unmanned aerial vehicles

    Screening of solvent and adjuvant
    The results of solvent screening are shown in Table 1. The original pesticide could not be completely dissolved using a single solvent. However, 5% N-methyl-2-pyrrolidone + 10% cyclohexanone could completely dissolve the original pesticide. There was no solid precipitation at room temperature, so the formulation could be used for the subsequent experiment. According to Table 2, a mixture of sulfonate adjuvants (70b) and fatty alcohol polyoxyethylene ether adjuvants (AEO-4, -5, -7, -9, 992) could stabilize the system in a single, transparent, homogeneous phase. Therefore, sulfonate adjuvant (70b) was selected and mixed with five adjuvants of the AEO series to prepare thidiazuron·diuron ultra-low-volume sprays, numbered 1–5 (as shown in Table 3).
    Table 1 Selection of solvent type and dosage (%: mass fraction).
    Full size table

    Table 2 Selection of adjuvants type and dosage (%: mass fraction).
    Full size table

    Table 3 Ultra-low-volume formulations used in this study.
    Full size table

    Surface tension measurement
    The critical surface tension of cotton leaves is 63.30–71.81 mN/m. Figure 1 shows that the surface tension of each sample was 31.67–33.37 mN/m, which was much lower than the critical surface tension of the leaf, indicating the agent was able to completely wet the leaf and be fully distributed on the leaf surface. The maximum surface tension of the reference product was 38.90 mN/m. Under the same dosage of adjuvant, sample 5 with adjuvant 992 had the smallest surface tension of 31.67 mN/m.
    Figure 1

    Surface tensions of different samples. Different letters (a–d) indicate significant differences between means. Means followed by the same letter are not significant at the 5% significance level by the LSD test (LSD = 0.05). Vertical bars indicate a standard deviation of the mean. The detailed data of the histogram is shown in Supplementary Table S1.

    Full size image

    Contact angle measurement
    According to Young’s equation, the smaller the surface tension, the smaller the contact angle40,41. Figure 2 shows the contact angle of different samples on cotton leaves and the change in contact angle over time. The contact angles of oil agents containing the adjuvant 992, AEO-7 and AEO-9 were smaller than that of the reference product, and the spreading effect was superior to that of the reference product. In the surface tension test, sample 5 had the smallest surface tension of 31.67 mN/m; this sample showed the minimum initial contact angle (39°) and a static contact angle (22°). The surface tension of the reference product was 38.90 mN/m., with the maximum initial contact angle (65.5°). Therefore, the relationship between surface tension and contact angle conformed to Young’s equation.
    Figure 2

    Contact angles of different samples on cotton leaves in 0–10 s. The detailed data of drawing the contact Angle curve is shown in Supplementary Table S2.

    Full size image

    Volatilization rate measurement
    As shown in Fig. 3, the volatilization rate of the oil agent was much lower than that of the reference product. The volatilization rate of the five treatments was 5.80–8.74%, while the volatilization rate of the reference product was 22.97%. The volatilization rate of the oil agent met the quality requirements of an ultra-low-volume spray (≤ 30%). A low volatilization rate helps with spraying defoliants in hot and dry areas such as Xinjiang, effectively preventing evaporation of the droplets and increasing deposition.
    Figure 3

    Volatilization of different samples on filter paper. Different letters (a–e) indicate significant differences between means. Means followed by the same letter are not significant at the 5% significance level by the LSD test (LSD = 0.05). Vertical bars indicate a standard deviation of the mean. The detailed data of the histogram is shown in Supplementary Table S3.

    Full size image

    Viscosity measurement
    Viscosity is an important factor affecting the atomization performance of a formulation42. Figure 4 shows that the viscosity of the five oil agents ranged from 12.9 to 18.3 mPa s, meeting the quality requirements of an ultra-low-volume spray ( 20 V), the droplet size distribution tended to be stable. This coincided with data shown in Fig. 6, where the inflection point appeared when rotation speed was 9600 rpm (voltage = 20 V).
    Figure 6

    Relationship between the rotation speed of the centrifugal spray atomizer and droplet size. D10: 10% cumulative volume diameter, D50: 50% cumulative volume diameter, D90: 90% cumulative volume diameter. The detailed data of drawing the curve is shown in Supplementary Table S6.

    Full size image

    Figure 7

    Relationship between the rotation speed of the centrifugal spray atomizer and the fog droplet spectrum. The detailed data of drawing the curve is shown in Supplementary Table S6.

    Full size image

    Therefore, we determined that the optimal working conditions for the rotary atomizer were achieved by setting the DC voltage stabilized power supply current to 1.00 A and voltage to 20 V, which were used for subsequent experiments.
    Atomization performance
    The relationship between viscosity and droplet spectrum are shown in Table 4 and Fig. 8. The cumulative volume diameter for the five treatments was less than 150 μm meeting the requirements of the ULV spray32. The cumulative volume diameter for the five treatments was larger than that for the reference product, the width of the droplet spectrum was narrower, and the droplet distribution was more uniform. Droplet size affects the drift of droplets43. The D10 of the reference product was 25.62 μm under these working conditions. This droplet size was highly susceptible to drift and deposition on non-target organisms. Water suspension was not suitable for this application at low dosage.
    Table 4 Droplet size and droplet size distribution of different sample sprays.
    Full size table

    Figure 8

    Relationship between formulation viscosity and droplet spectrum. The detailed data of drawing the figure is shown in Supplementary Table S7.

    Full size image

    As presented in Table 4, droplet size increased with increasing viscosity, which influenced the droplet spectrum. The results in Fig. 8 show that the span of droplet size decreased with the increase of viscosity, indicating that droplets with more uniform distribution could be obtained by increasing the viscosity of the formulation41.
    Droplet deposition effect
    We tested the efficacy of the ULV spray formulation by spraying cotton plants using an UAV. The test results in Table 5 indicate that increasing the dosage of application would increase droplet size, coverage, and deposition density. At the same application dosage, the droplet size of the ultra-low-volume spray was slightly larger than that of the reference product, and the coverage and deposition density were greater than those of the reference product. The droplet spectral width (Rs) of the five treatments was less than 1, and the coefficient of variation was less than 7%, indicating that the droplet distribution was relatively uniform. Among treatments, T2 had the narrowest Rs and coefficient of variation (CV), where the droplet size distribution was the most uniform. For the ultra-low-volume spray, at the application dosage of 4.5–9.0 L/ha, the droplet coverage gradually increased from 0.85 to 4.15%; the droplet deposition densities were 15.63, 17.24, 28.45, and 42.57 pcs/cm2, which were larger than requirements suggested in the literature. The droplet coverage of the reference product (T5) was 0.73%, and the deposition density was only 11.32 pcs/cm2.
    Table 5 Droplet size, coverage, deposition density, spectral width and variation coefficient for each treatment.
    Full size table

    Efficacy trials
    The efficacy of cotton defoliant is reflected in the defoliation rate and boll opening rate of cotton after application. Therefore, we surveyed the defoliation rate and boll opening rate of cotton in the test area 3–15 days after application. The results are shown in Figs. 9 and 10.
    Figure 9

    Defoliation rate 3–15 days after treatment. The detailed data of drawing the curve is shown in Supplementary Table S8.

    Full size image

    Figure 10

    Boll opening rate 3–15 days after treatment. The detailed data of drawing the curve is shown in Supplementary Table S9.

    Full size image

    Figure 9 indicates that the defoliation rates of the five treatments 15 days after the pesticide treatment were 59.82%, 63.96%, 71.40%, 77.84%, and 54.58%, respectively. The defoliation rates of T1, T2, and T5 were less than 70%.
    Application of the ultra-low-volume spray at 4.50 L/ha or 6.00 L/ha and the reference product at 6.00 L/ha had a poor defoliation effect. T4 (9.00 L/ha) was superior to the others, and the defoliation rate reached 77.84% 15 days after application. As shown in Fig. 10, the boll opening rates of the five treatments were 58.54%, 67.74%, 95.35%, 100%, and 44.68% 15 days after application. Similarly, the boll opening rates of T1, T2, and T5 were poor, with the boll opening rate of the control T5 only 44.68%. We analyzed significant differences between the defoliation rates and boll opening rates of the five treatments. The results showed that the defoliation rate and boll opening rate associated with the thidiazuron·diuron ultra-low-volume spray on cotton plants were significantly different from those of the reference product.
    Overall, the defoliation rate and boll opening rate produced by the ultra-low-volume spray were superior to those produced by the reference product. This result was consistent with data shown in Table 5. The higher the droplet coverage rate, the higher the droplet deposition density and the higher the defoliation rate and boll opening rate. T1, T2 and T5 had poor deposition effect on cotton plants, and the effective pesticide utilization rate was low, resulting in dissatisfactory defoliation rates and boll opening rates. Both the droplet coverage rate and the droplet deposition density of T3 and T4 were large. Therefore, droplets of pesticide solution could deposit more easily and uniformly on cotton leaves, allowing the plants to defoliate and open their bolls easily. More

  • in

    The UN Environment Programme needs new powers

    Indian prime minister Indira Gandhi meets Maurice Strong, who chaired the 1972 Stockholm Conference on the Human Environment. Gandhi saw UNEP’s potential at a time when other countries doubted its value.Credit: Yutaka Nagata/UN Photo

    The United Nations Environment Programme (UNEP) will be 50 next year. But the globe’s green watchdog, which helped to create the Intergovernmental Panel on Climate Change (IPCC), very nearly didn’t exist.
    During talks hosted by Sweden in 1972, low- and middle-income countries were concerned that such a body would inhibit their industrial development. Some high-income countries also questioned its creation. UK representative Solly Zuckerman, a former chief scientific adviser to prime ministers including Winston Churchill, said the science did not justify warnings that human activities could have irreversible consequences for the planet. The view in London was that, on balance, environmental pollution was for individual nations to solve — not the UN.
    But the idea of UNEP had powerful supporters, too. India’s prime minister, Indira Gandhi, foresaw its potential in enabling industry to become cleaner and more humane. And the host nation made a wise choice in picking Canadian industrialist Maurice Strong to steer the often fractious talks to success. He would become UNEP’s first executive director. Two decades later, Strong re-emerged to chair the 1992 Earth Summit in Rio de Janeiro, Brazil, which created three landmark international agreements: to protect biodiversity, safeguard the climate and combat desertification.
    UNEP has chalked up some impressive achievements in science and legislation. In 1988, working with the World Meteorological Organization, it co-founded the IPCC, whose scientific assessments have been pivotal to global climate action. It also responded to scientists’ warnings about the hole in the ozone layer, leading to the creation of the 1987 Montreal Protocol, an international law to phase out ozone-depleting chemicals.
    Strong’s successors would go on to identify emerging green-policy issues and nudge them into the mainstream. UNEP has pushed the world of finance to think about how to stop funding polluting industries. It has also advocated working with China to green its rapid industrial growth — including the Belt and Road Initiative to develop global infrastructure. It is essential that this work continues.
    UNEP also accelerated the creation of environment ministries around the world. Their ministers sit on the programme’s governing council; at their annual meeting last week, they reflected on what UNEP must do to tackle the environmental crisis. Although the environment is a rising priority for governments, businesses and civil society, progress on the UN’s flagship Sustainable Development Goals — in biodiversity, climate, land degradation, pollution, finance and more — is next to non-existent. Moreover, the degradation of nature is putting hard-won gains at risk, argues a report that UNEP commissioned as part of its half-century commemorations.
    The report, Making Peace with Nature, assesses much of the same literature as would a climate- or land-degradation assessment, but its key strength is in how it brings together researchers from across environmental science. In doing so, UNEP is helping to accelerate a mode of working that should be standard. If, for example, there is to be an assessment of how climate change affects biodiversity, it makes much more sense for this to be carried out by a joint team from the IPCC and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) than by researchers from just one of these organizations.
    The UNEP report’s authors stop short of recommending such changes to the architecture of the UN’s scientific advisory bodies. That is a missed opportunity. Also missing is a discussion and recommendations on how to make countries more accountable for their environmental pledges.
    Both these actions are sorely needed if the world is to take more meaningful steps to battle climate change and biodiversity loss. Countries have become expert in capturing data and reporting them to UN organizations. But there is no mechanism that holds nations to account. For example, there is no system to ensure compliance with targets for the Sustainable Development Goals.
    Last week, the UN produced a report in which countries published their progress towards commitments under the 2015 Paris climate agreement, known as nationally determined contributions. The agreement includes almost 200 countries, but just 75 reported their data. There are few incentives for success and no penalties for failure. Without such measures, it is hard to see how meaningful change could ever happen.
    In the past, researchers have proposed that UNEP’s member states upgrade its powers so it becomes more of a compliance body — a World Environment Organization that, like the World Trade Organization, has the power to censure countries for failing to keep to agreements. But this has been resisted as too radical a step, which would upend the autonomy of the UN biodiversity and climate organizations that UNEP itself helped to bring into being.
    Twenty years ago, there might have been some justification for such a view, but now, with the world on a path to extreme climate change, any action will need to be radical, including considering how to give UNEP more teeth.
    UNEP helped to lay the foundations for a scientific consensus on environmental decline, and it should be proud of the body of law that has been enacted globally. Alas, such measures risk being too little, too late. As it embarks on a year of reflection ahead of its anniversary, member states must consider what more they need to do to empower UNEP to tackle the planetary emergency. More

  • in

    Large-scale spatial patterns of small-mammal communities in the Mediterranean region revealed by Barn owl diet

    1.
    de Lattin, G. Grundriss der Zoogeographie (Gustav Fischer Verlag, 1976).
    2.
    Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. Lond. 68, 87–112. https://doi.org/10.1006/bijl.1999.0332 (1999).
    Article  Google Scholar 

    3.
    Wallace, A. R. The geographical distribution of animals; with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth’s surface (Harper & Brothers, 1876).

    4.
    Mittermeier, R. A., Myers, N., Mittermeier, C. G. & Robles Gil, P. Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions (CEMEX, 1999).
    Google Scholar 

    5.
    Médail, F. & Quézel, P. Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv. Biol. 13(6), 1510–1513 (1999).
    Article  Google Scholar 

    6.
    Temple, H. J. & Cuttelod, A. (Compilers). The Status and Distribution of Mediterranean Mammals. Gland, Switzerland and Cambridge (UK: IUCN, vii+32pp, 2009).

    7.
    Blondel, J. The nature and origin of the vertebrate fauna. pp. 139–163 In: Woodward, C. J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    8.
    Aulagnier, S., Hafner, P., Mitchell-Jones, A. J., Moutou, F. & Zima, J. Mammals of Europe, North Africa and the Middle East (A&C Black Publishers, 2009).
    Google Scholar 

    9.
    Horáček, I., Hanák, V. & Gaisler, J. Bats of the Palearctic region: a taxonomic and biogeographic review. In Proceedings of the VIIIth European bat research symposium (Vol. 1, pp. 11–157) (Kraków, CIC ISEZ PAN, 2000).

    10.
    Smith, C. H. A system of world mammal faunal regions. I. Logical and statistical derivation of the regions. J. Biogeogr. 10, 455–466. https://doi.org/10.2307/2844752 (1983).

    11.
    Dobson, M. Mammal distributions in the western Mediterranean: the role of human intervention. Mammal Rev. 28(2), 77–88 (1998).
    Article  Google Scholar 

    12.
    Sans-Fuentes, M. A. & Ventura, J. Distribution patterns of the small mammals (Insectivora and Rodentia) in a transitional zone between the Eurosiberian and the Mediterranean regions. J. Biogeogr. 27(3), 755–764 (2000).
    Article  Google Scholar 

    13.
    Kryštufek, B. & Vohralík, V. Mammals of Turkey and Cyprus: introduction, checklist, Insectivora (Zgodovinsko društvo za južno Primorsko, 2001).

    14.
    Kryštufek, B. A quantitative assessment of Balkan mammal diversity. In Balkan Biodiversity (pp. 79–108) (Springer, Dordrecht, 2004).

    15.
    Kryštufek, B., Vohralík, V. & Janžekovič, F. Mammals of Turkey and Cyprus: Rodentia I: Sciuridae, Dipodidae, Gliridae (Arvicolinae, 2005).
    Google Scholar 

    16.
    Kryštufek, B. & Vohralík, V. Mammals of Turkey and Cyprus, Rodentia II: Cricetinae, Murridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae Castoridae. J. Mammal. 96, 1–373 (2010).
    Google Scholar 

    17.
    Kryštufek, B., Donev, N. R. & Skok, J. Species richness and distribution of non-volant small mammals along an elevational gradient on a Mediterranean mountain. Mammalia 75(1), 3–11 (2011).
    Article  Google Scholar 

    18.
    Svenning, J. C., Fløjgaard, C. & Baselga, A. Climate, history and neutrality as drivers of mammal beta diversity in Europe: Insights from multiscale deconstruction. J. Anim. Ecol. 80(2), 393–402 (2011).
    Article  Google Scholar 

    19.
    Gaston, K., & Blackburn, T. Pattern and process in macroecology (John Wiley & Sons, 2008).

    20.
    Darwin, C. On the Origin of Species by Means of Natural Selection (J. Murray, 1859).

    21.
    Wallace, A. R. Tropical Nature and Other Essays (Macmillan, 1878).

    22.
    Hawkins, B. A. et al. Energy, water and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117. https://doi.org/10.1890/03-8006 (2002).
    Article  Google Scholar 

    23.
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163(2), 192–211 (2004).
    Article  Google Scholar 

    24.
    Kindlmann P, Schödelbauerová I, Dixon AF.G. Inverse latitudinal gradients in species diversity. pp. 246–257 in Storch D. et al. (eds.) Scaling Biodiversity (Cambridge University Press, 2007).

    25.
    Boone, R. B. & Krohn, W. B. Relationship between avian range limits and plant transition zones in Maine. J. Biogeogr. 27, 471–482 (2000).
    Article  Google Scholar 

    26.
    Storch, D., Evans, K. L. & Gaston, K. J. The species-area-energy relationship in orchids. Ecol. Lett. 8, 487–492. https://doi.org/10.15517/lank.v7i1-2.19504 (2005).
    Article  PubMed  Google Scholar 

    27.
    Valladares, F. et al. Global change and Mediterranean forests: current impacts and potential responses in Forests and Global Change (eds. Burslem, D. F. R. & Simonson, W. D.), 47–75 (Cambridge University Press, 2014).

    28.
    MacArthur, R. H. Patterns of Species Diversity. Geographical Ecology: Patterns in the Distributions of Species (Harper & Row, 1972).

    29.
    Whittaker, R. J. & Fernández-Palacios, J. M. Island biogeography: ecology, evolution, and conservation. Oxford University Press (2007).

    30.
    Sólymos, P. & Lele, S. R. Global pattern and local variation in species-area relationships. Glob. Ecol. Biogeogr. 21, 109–120. https://doi.org/10.1111/j.1466-8238.2011.00655.x (2012).
    Article  Google Scholar 

    31.
    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: patterns, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309. https://doi.org/10.1146/annurev.ecolsys.34.012103.144032 (2003).
    Article  Google Scholar 

    32.
    Prevedello, J., Gotelli, N. J. & Metzger, J. A stochastic model for landscape patterns of biodiversity. Ecol. Monogr. 86, 462–479. https://doi.org/10.1002/ecm.1223 (2016).
    Article  Google Scholar 

    33.
    Blondel, J., Aronson, J., Bodiou, J. Y. & Boeuf, G. The Mediteranean region. Biological diversity in space and time (Oxford University Press, 2010).

    34.
    Vigne, J. D. The large “true” Mediterranean islands as a model for the Holocene human impact on the European vertebrate fauna? Recent data and new reflections. The Holocene history of the European vertebrate fauna. Modern aspects of research, 295–322 (1999).

    35.
    Harding, A.F., Palutikof, J. & Holt, T. The climate system. pp. 69–88 In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    36.
    Zdruli, P. Desertification in the Mediterranean Region. Mediterranean year book 2011 (European Institute of the Mediterranean, 2012).

    37.
    Bilton, D. T. et al. Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc. Royal Soc. B 265(1402), 1219–1226 (1998).
    CAS  Article  Google Scholar 

    38.
    Hewitt, G. M. Mediterranean peninsulas: The evolution of hotspots. In Biodiversity hotspots (pp. 123–147) (Springer, Berlin, Heidelberg, 2011).

    39.
    Bilgin, R. Back to the suture: the distribution of intraspecific genetic diversity in and around Anatolia. Int. J. Mol. Sci. 12, 4080–4103. https://doi.org/10.3390/ijms12064080 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Vigne, J. D. The origins of mammals on the Mediterranean islands as an indicator of early voyaging. Euras. Prehistory 10(1–2), 45–56 (2014).
    Google Scholar 

    41.
    Masseti, M. Mammals of the Mediterranean islands: Homogenisation and the loss of biodiversity. Mammalia 73, 169–202. https://doi.org/10.1515/MAMM.2009.029 (2009).
    Article  Google Scholar 

    42.
    Angelici, F. M., Laurenti, A. & Nappi, A. A. checklist of the mammals of small Italian islands. Hystrix 20, 3–27. https://doi.org/10.4404/hystrix-20.1-4429 (2009).
    Article  Google Scholar 

    43.
    Cunningham, P. L. & Aspinall, S. The diet of Little Owl Athene noctua in the UAE, with notes on Barn Owl Tyto alba and Desert Eagle Owl Bubo (b.) ascalaphus. Tribulus 11, 13–15 (2001).

    44.
    Taylor, I. R. How owls select their prey: A study of Barn owls Tyto alba and their small mammal prey. Ardea 97, 635–644. https://doi.org/10.5253/078.097.0433 (2009).
    Article  Google Scholar 

    45.
    Yom-Tov, Y. & Wool, D. Do the contents of barn owl pellets accurately represent the proportion of prey species in the field?. Condor 99, 972–976. https://doi.org/10.2307/1370149 (1997).
    Article  Google Scholar 

    46.
    Dodson, P. & Wexlar, D. Taphonomic investigations of owl pellets. Paleobiology 5, 275–284 (1979).
    Article  Google Scholar 

    47.
    Heisler, L., Somers, C. & Poulin, R. Owl pellets: A more effective alternative to conventional trapping for broad-scale studies of small mammal communities. Methods Ecol. Evol. 7, 96–103. https://doi.org/10.1111/2041-210X.12454 (2015).
    Article  Google Scholar 

    48.
    Torre, I., Arrizabalaga, A. & Flaquer, C. Three methods for assessing richness and composition of small mammal communities. J. Mammal. 85, 524–530. https://doi.org/10.1644/BJK-112 (2004).
    Article  Google Scholar 

    49.
    Yalden, D. W. & Morris, P. A. The analysis of owl pellet (Occasional publications)(The Mammal Society, 1990).

    50.
    Williams, D. F. & Braun, S. E. Comparison of pitfall and conventional traps for sampling small mammal populations. J. Wildl. Manage. 47, 841–845 (1983).
    Article  Google Scholar 

    51.
    Glennon, M. J., Porter, W. F. & Demers, C. L. An alternative field technique for estimating diversity of small-mammal populations. J. Mammal. 83, 734–742. https://doi.org/10.1644/1545-1542 (2002).
    Article  Google Scholar 

    52.
    Morris, P. A., Burgis, M. J., Morris, P. A. & Holloway, R. A method for estimating total body weight of avian prey items in the diet of owls. J. Zool. 210, 642–644 (1986).
    Article  Google Scholar 

    53.
    Vukićević Radić, O., Jovanović, T. B., Matić, R. & Katarinovski, D. Age structure of yellow-necked mouse (Apodemus flavicollis Melchior 1834) in two samples obtained from live traps and owl pellets. Arch. Biol. Sci. 57, 53–56 (2005).

    54.
    Coda, J., Gomez, D., Steinmann, A. R. & Priotto, J. Small mammals in farmlands of Argentina: Responses to organic and conventional farming. Agric. Ecosyst. Environ. 211, 17–23 (2015).
    Article  Google Scholar 

    55.
    Andrade, A., de Menezes, J. F. S. & Monjeau, A. Are owl pellets good estimators of prey abundance?. J. King Saud Univ. Sci. 28, 239–244. https://doi.org/10.1016/j.jksus.2015.10.007 (2016).
    Article  Google Scholar 

    56.
    Moysi, M., Christou, M., Goutner, V., Kassinis, N. & Iezekiel, S. Spatial and temporal patterns in the diet of barn owl (Tyto alba) in Cyprus. J. Biol. Res-Thessalon. 25(1), 9 (2018).
    Article  Google Scholar 

    57.
    Romano, A., Séchaud, R. & Roulin, A. Global biogeographical patterns in the diet of a cosmopolitan predator. J. Biogeogr. 47, 1467–1481. https://doi.org/10.1111/jbi.13829 (2020).
    Article  Google Scholar 

    58.
    Baquero, R. A. & Tellería, J. L. Species richness, rarity and endemicity of European mammals: A biogeographical approach. Biodivers. Conserv. 10(1), 29–44 (2001).
    Article  Google Scholar 

    59.
    Mitchell-Jones, A. J. et al. The Atlas of European Mammals (T & AD Poyser, 1999).

    60.
    Kross, S. M., Bourbour, R. P. & Martinico, B. L. Agricultural land use, arn owl diet, and vertebrate pest control implications. Agric. Ecosyst. Environ. 223, 167–174. https://doi.org/10.1016/j.agee.2016.03.002 (2016).
    Article  Google Scholar 

    61.
    Krishnapriya, T. & Ramakrishnan, U. Higher speciation and lower extinction rates influence mammal diversity gradients in Asia. BMC Evol. Biol. 15, 11. https://doi.org/10.1186/s12862-015-0289-1 (2015).
    Article  Google Scholar 

    62.
    Kouki, J., Niemela, P. & Viitasaari, M. Reversed latitudinal gradient in species richness of sawflies (Hymenoptera, Symphyta). Ann. Zool. Fenn. 31, 83–88 (1994).
    Google Scholar 

    63.
    Rabenold, K. N. A reversed latitudinal diversity gradient in avian communities of eastern deciduous forests. Am. Nat. 114, 275–286. https://doi.org/10.1086/283474 (1979).
    Article  Google Scholar 

    64.
    Ruffino, L. & Vidal, E. Early colonization of Mediterranean islands by Rattus rattus: A review of zooarcheological data. Biol. Invasions 12(8), 2389–2394 (2010).
    Article  Google Scholar 

    65.
    Thomes, J. B. Land degradation. pp. 563–581. In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    66.
    Allen, H. D. Vegetation and ecosystem dynamics. pp. 203–227. In: Woodward, C.J. (ed.) The Physical Geography of the Mediterranean (Oxford University Press, Oxford, 2009).

    67.
    Dov Por, F. & Dimentman, C. Mare Nostrum. Neogene and anthropic natural history of the Mediterranean basin, with emphasis on the Levant (Pensoft, Sofia-Moscow, 2006).

    68.
    Zohary, D., Hopi, M. & Weiss, E. Domestication of Plants in the Old World 4th edn. (Oxford University Press, 2012).
    Google Scholar 

    69.
    Roulin, A. Spatial variation in the decline of European birds as shown by the Barn Owl Tyto alba diet. Bird Study 62, 271–275. https://doi.org/10.1080/00063657.2015.1012043 (2015).
    Article  Google Scholar 

    70.
    Pezzo, F. & Morimando, F. Food habits of the barn owl, Tyto alba, in a mediterranean rural area: Comparison with the diet of two sympatric carnivores. Boll. Zool. 62, 369–373. https://doi.org/10.1080/11250009509356091 (1995).
    Article  Google Scholar 

    71.
    Soranzo, N., Alia, R., Provan, J. & Powell, W. Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol. Ecol. 9, 1205–1211. https://doi.org/10.1046/j.1365-294x.2000.00994.x (2000).
    CAS  Article  PubMed  Google Scholar 

    72.
    van Andel, T. H. The climate and landscape of the middle part of the Weichselian Glaciation in Europe: The stage 3 project. Q. Res. 57, 2–8. https://doi.org/10.1006/qres.2001.2294 (2002).
    ADS  Article  Google Scholar 

    73.
    Johnston, D. W. & Hill, J. M. Prey selection of Common Barn-owls on islands and mainland sites. J. Raptor. Res. 21(1), 3–7 (1987).
    Google Scholar 

    74.
    Sommer, R., Zoller, H., Kock, D., Böhme, W. & Griesau, A. Feeding of the barn owl, Tyto alba with first record of the European free-tailed bat, Tadarida teniotis on the island of Ibiza (Spain, Balearics). Fol. Zool. 54, 364–370 (2005).
    Google Scholar 

    75.
    Kryštufek, B., Reed, J. Pattern and process in Balkan biodiversity – an overview in A quantitative assesment of Balkan mammal diversity (eds. Griffiths, H. I., Kryštufek, B. & Reed, J. M.) 79–108 (Kluwer Academic, 2004).

    76.
    Ricklefs, R. E. & Lovette, I. J. The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. J. Anim. Ecol. 68, 1142–1160 (1999).
    Article  Google Scholar 

    77.
    Heaney, L. R. Mammalian species richness on islands on the Sunda Shelf Southeast Asia. Oecologia 61, 11–17 (1984).
    ADS  Article  Google Scholar 

    78.
    Carvajal, A. & Adler, G. H. Biogeography of mammals on tropical Pacific islands. J. Biogeogr. 32, 1561–1569. https://doi.org/10.1111/j.1365-2699.2005.01302.x (2005).
    Article  Google Scholar 

    79.
    Millien-Parra, V. & Jaeger, J. J. Island biogeography of the Japanese terrestrial mammal assemblages: An example of a relict fauna. J. Biogeogr. 26, 959–972. https://doi.org/10.1046/j.1365-2699.1999.00346.x (1999).
    Article  Google Scholar 

    80.
    Amori, G., Rizzo Pinna, V., Sammuri, G. & Luiselli, L. Diversity of small mammal communities of the tuscan archipelago: Testing the effects of island size, distance from mainland and human density. Fol. Zool. 64, 161–166. https://doi.org/10.25225/fozo.v64.i2.a9.2015 (2015).

    81.
    Audoin-Rouzeau, F. & La Vigne, J. D. colonisation de l’Europe par le rat noir (Rattus rattus). Rev. de Paléobiologie 13, 125–145. https://doi.org/10.1134/S1062359011020130 (1994).
    Article  Google Scholar 

    82.
    Towns, D. R., Atkinson, I. A. E. & Daugherty, Ch. H. Have the harmful effects of introduced rats on islands been exaggerated?. Biol. Invasions 8, 863–891. https://doi.org/10.1007/s10530-005-0421-z (2006).
    Article  Google Scholar 

    83.
    Martin, J. L., Thibault, J. C. & Bretagnolle, V. Black rats, island characteristics, and colonial nesting birds in the Mediterranean: Consequences of an ancient introduction. Conserv. Biol. 14, 1452–1466. https://doi.org/10.1046/j.1523-1739.2000.99190.x (2000).
    Article  Google Scholar 

    84.
    Landová, E., Horáček, I. & Frynta, D. Have black rats evolved a culturally-transmitted technique of pinecone opening independently in Cyprus and Israel?. Isr. J. Ecol. Evol. 52(2), 151–158 (2006).
    Article  Google Scholar 

    85.
    Sarà, M. & Morand, S. Island incidence and mainland population density: Mammals from Mediterranean islands. Divers. Distrib. 8, 1–9 (2002).
    Article  Google Scholar 

    86.
    Libois, M. R., Fons, R., Saint Girons, M. C. Le régime alimentaire de la chouette effraie Tyto alba, dans les Pyrénées-orientales. Etude des variations ecogéographiques. Rev. Ecol.-Terre Vie 37, 187–217 (1983).

    87.
    Di Russo, C. Dati sui micromammiferi da borre di barbacianni, Tyto alba, di un Sito della Sardegna Centro-orientale. Hystrix 2, 57–62. https://doi.org/10.4404/hystrix-2.1-3885 (1987).
    Article  Google Scholar 

    88.
    Guerra, C., García, D. & Alcover, J. A. Unusual foraging patterns of the barn owl, Tyto alba (Strigiformes: Tytonidae), on small islets from the Pityusic archipelago (Western Mediterranean Sea). Fol. Zool. 63, 180–187. https://doi.org/10.25225/fozo.v63.i3.a5.2014 (2014).

    89.
    Patterson, B. D. & Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. Lond. 28, 65–82. https://doi.org/10.1111/j.1095-8312.1986.tb01749.x (1986).
    Article  Google Scholar 

    90.
    Kutiel, P., Peled, Y. & Geffen, E. The effect of removing shrub cover on annual plants and small mammals in a coastal sand dune ecosystem. Biol. Conserv. 94, 235–242. https://doi.org/10.1016/S0006-3207(99)00172-X (2000).
    Article  Google Scholar 

    91.
    Tores, M., Motro, Y., Motro, U. & Yom-Tov, Y. The barn owl-a selective opportunist predator. Israel J. Zool. 51, 349–360. https://doi.org/10.1560/7862-9E5G-RQJJ-15BE (2005).
    Article  Google Scholar 

    92.
    Obuch, J. & Benda, P. Food of the Barn Owl (Tyto alba) in the Eastern Mediterranean. Slovak Raptor J. 3, 41–50. https://doi.org/10.2478/v10262-012-0032-4 (2009).
    Article  Google Scholar 

    93.
    Anděra, M. & Horáček, I. Determining our mammals (Sobotáles, 2005).

    94.
    Dor, M. Observations sur les Micromammiferes trouves dans les Pelotes de la Chouette effraye (Tyto alba) en Palestine. Mammalia 11, 50–54 (1947).
    Article  Google Scholar 

    95.
    De Pablo, F. Alimentación de la Lechuza Común (Tyto alba) en Menorca. Bolleti Soc. Hist. Nat. Balear. 43, 15–26 (2000).
    Google Scholar 

    96.
    Rihane, A. Contribution to the study of the diet of Barn Owl Tyto alba in the semi-arid plains of Atlantic Morocco. Alauda 71, 363–369 (2003).
    Google Scholar 

    97.
    Kennedy, C. M., J. R. Oakleaf, D. M. Theobald, Baruch-Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biol. 25(3), 811–826. https://doi.org/10.1111/gcb.14549 (2019).

    98.
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Global Human Modification of Terrestrial Systems. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/edbc-3z60. Accessed DAY MONTH YEAR (2020).

    99.
    Shannon, C. & Weaver, W. The Mathematical Theory of Communication (The University of Illinois Press, 1964).

    100.
    R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Found Stat Comp (2011).

    101.
    Anderson, D. R. & Burnham, K. P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 66, 912–918 (2002).
    Article  Google Scholar 

    102.
    Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75, 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x (2006).
    Article  PubMed  Google Scholar 

    103.
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35. https://doi.org/10.1007/s00265-010-1039-4 (2011).
    Article  Google Scholar 

    104.
    ter Braak, C. & Šmilauer, P. Canoco reference manual and user’s quide: software for ordination, version 5.0 (Microcomputer Power, 2012).

    105.
    StatSoft Inc. Statistica (data analysis software system), version 12. http://www.statsoft.com (2013). More

  • in

    Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity

    1.
    Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).
    CAS  Article  Google Scholar 
    2.
    Kenchington, R. & Hutchings, P. Some implications of high biodiversity for management of tropical marine ecosystems—an Australian perspective. Diversity 10, 1 (2017).
    Article  Google Scholar 

    3.
    Field, C. et al. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 7, 3–14 (1998).
    Article  Google Scholar 

    4.
    Honda, K., Nakamura, Y., Nakaoka, M., Uy, W. H. & Fortes, M. D. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE 8, e65735 (2013).
    CAS  Article  Google Scholar 

    5.
    Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).
    Article  Google Scholar 

    6.
    Unsworth, R. K. et al. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Prog. Ser. 353, 213–224 (2008).
    Article  Google Scholar 

    7.
    Hoeksema, B. W. in Biogeography, Time, and Place: Distributions, Barriers, and Islands. Topics in Geobiology (ed. Renema, W.) 117–178 (Springer, 2007).

    8.
    Pitcher, C. R. et al. Seabed Biodiversity on the Continental Shelf of the Great Barrier Reef World Heritage Area AIMS/CSIRO/QM/QDPI Final Report to CRC Reef Research (CSIRO Marine and Atmospheric Research, 2007); http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2003-021-DLD.pdf

    9.
    Richards, Z. T. & Day, J. C. Biodiversity of the Great Barrier Reef—how adequately is it protected? PeerJ 6, e4747 (2018).
    Article  Google Scholar 

    10.
    Harris, P. T. et al. Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J. Mar. Sci. 70, 284–293 (2013).
    Article  Google Scholar 

    11.
    Chin, A. in State of the Great Barrier Reef Report 2003 (ed. Chin, A.) 1–16 (Great Barrier Reef Marine Park Authority, 2003); https://hdl.handle.net/11017/669

    12.
    Whiteway, T., Smithers, S., Potter, A. & Brooke, B. Geological and Geomorphological Features of Outstanding Universal Value in the Great Barrier Reef World Heritage Area. Report prepared for SEWPaC (Coastal Marine and Climate Change Group, Geoscience Australia and School of Earth and Environmental Sciences, James Cook Univ., 2013).

    13.
    Mathews, E., Heap, A. & Woods, M. Inter-Reefal Seabed Sediments and Geomorphology of the Great Barrier Reef: A Spatial Analysis (Geoscience Australia, 2007).

    14.
    Huang, Z. et al. A conceptual surrogacy framework to evaluate the habitat potential of submarine canyons. Prog. Oceanogr. 169, 199–213 (2018).
    Article  Google Scholar 

    15.
    McNeil, M. A., Webster, J. M., Beaman, R. J. & Graham, T. L. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 35, 1343–1355 (2016).
    Article  Google Scholar 

    16.
    Cumings, E. R. Reefs or bioherms? Geol. Soc. Am. Bull. 43, 331–352 (1932).
    Article  Google Scholar 

    17.
    Klement, K. W. Practical classification of reefs and banks, bioherms and biostromes. Am. Assoc. Pet. Geol. Bull. 51, 167–168 (1967).

    18.
    Beaman, R. J. High-Resolution Depth Model for the Great Barrier Reef—30 m (Geoscience Australia 2017); https://doi.org/10.4225/25/5a207b36022d2

    19.
    Orme, G. The sedimentological importance of Halimeda in the development of back reef lithofacies, northern Great Barrier Reef (Australia). In Proc. 5th International Coral Reef Symposium 31–37 (1985).

    20.
    Orme, G. R. & Salama, M. S. Form and seismic stratigraphy of Halimeda banks in part of the northern Great Barrier Reef Province. Coral Reefs 6, 131–137 (1988).
    Article  Google Scholar 

    21.
    Davies, P. in Encyclopaedia of Modern Coral Reefs—Structure, Form and Process (ed. Hopley, D.) 539–549 (Springer, 2011).

    22.
    Marshall, J. F. & Davies, P. J. Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6, 139–148 (1988).
    Article  Google Scholar 

    23.
    McNeil, M. A., Nothdurft, L. D., Dyriw, N. J., Webster, J. M. & Beaman, R. J. Morphotype differentiation in the Great Barrier Reef Halimeda bioherm carbonate factory: internal architecture and surface geomorphometrics. Depos. Rec. https://doi.org/10.1002/dep2.122 (2020).

    24.
    Great Barrier Reef Outlook Report 2009 (Great Barrier Reef Marine Park Authority, 2009).

    25.
    Great Barrier Reef Outlook Report 2014 (Great Barrier Reef Marine Park Authority, 2014).

    26.
    Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077–1091 (2017).
    Article  Google Scholar 

    27.
    Ferrari, R. et al. Quantifying the response of structural complexity and community composition to environmental change in marine communities. Glob. Change Biol. 22, 1965–1975 (2016).
    Article  Google Scholar 

    28.
    Dustan, P., Doherty, O. & Pardede, S. Digital reef rugosity estimates coral reef habitat complexity. PLoS ONE 8, e57386 (2013).
    CAS  Article  Google Scholar 

    29.
    Pyle, R. L. & Copus, J. M. in Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 3–27 (Springer International Publishing, 2019).

    30.
    Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change (Cambridge Univ. Press, 2007).

    31.
    Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci 345, 101–118 (1994).
    CAS  Article  Google Scholar 

    32.
    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).
    Article  Google Scholar 

    33.
    Chao, A. Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43, 783–791 (1987).
    CAS  Article  Google Scholar 

    34.
    IUCN Red List of Threatened Species. Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org

    35.
    Obura, D., Fenner, D., Hoeksema, B., Devantier, L. & Sheppard, C. Tubipora musica. IUCN Red List of Threatened Species 2008: e.T133065A3589084 (IUCN, 2008); https://doi.org/10.2305/IUCN.UK.2008.RLTS.T133065A3589084.en

    36.
    Turak, E., Sheppard, C. & Wood, E. Catalaphyllia jardinei. IUCN Red List of Threatened Species 2008: e.T132890A3479919 (IUCN, 2008); https://doi.org/10.2305/IUCN.UK.2008.RLTS.T132890A3479919.en

    37.
    Cappo, M. & Kelley, R. in Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef (ed. Wolanski, E.) 161–187(CRC Press, 2000).

    38.
    Cappo, M., De’ath, G. & Speare, P. Inter-reef vertebrate communities of the Great Barrier Reef Marine Park determined by baited remote underwater video stations. Mar. Ecol. Prog. Ser. 350, 209–221 (2007).
    Article  Google Scholar 

    39.
    Sambrook, K. et al. Beyond the reef: the widespread use of non-reef habitats by coral reef fishes. Fish Fish. (Oxf.) 20, 903–920 (2019).
    Article  Google Scholar 

    40.
    Hurrey, L. P., Pitcher, C. R., Lovelock, C. E. & Schmidt, S. Macroalgal species richness and assemblage composition of the Great Barrier Reef seabed. Mar. Ecol. Prog. Ser. 492, 69–83 (2013).
    Article  Google Scholar 

    41.
    Kämpf, J. & Chapman, P. Upwelling Systems of the World: A Scientific Journey to the Most Productive Marine Ecosystems (Springer International Publishing, 2016).

    42.
    Wolanski, E., Drew, E., Abel, K. M. & O’Brien, J. Tidal jets, nutrient upwelling and their influence on the productivity of the alga Halimeda in the Ribbon Reefs, Great Barrier Reef. Estuar. Coast. Shelf Sci. 26, 169–201 (1988).
    CAS  Article  Google Scholar 

    43.
    Andrews, J. C. & Gentien, P. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin’s question?. Mar. Ecol. Prog. Ser. 8, 257–269 (1982).
    Article  Google Scholar 

    44.
    Benthuysen, J. A., Tonin, H., Brinkman, R., Herzfeld, M. & Steinberg, C.Intrusive upwelling in the Central Great Barrier Reef. J. Geophys. Res. Oceans 121, 8395–8416 (2016).
    Article  Google Scholar 

    45.
    Berkelmans, R., Weeks, S. J. & Steinberg, C. R. Upwelling linked to warm summers and bleaching on the Great Barrier Reef. Limnol. Oceanogr. 55, 2634–2644 (2010).
    Article  Google Scholar 

    46.
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
    CAS  Article  Google Scholar 

    47.
    Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nat. Clim. Change 3, 528–530 (2013).
    Article  Google Scholar 

    48.
    Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D. & Leichter, J. J.Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408, 32–41(2011).
    Article  Google Scholar 

    49.
    Campbell, J. E., Fisch, J., Langdon, C. & Paul, V. J. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35, 357–368 (2016).
    Article  Google Scholar 

    50.
    Mongin, M. et al. The exposure of the Great Barrier Reef to ocean acidification. Nat. Commun. 7, 10732 (2016).
    CAS  Article  Google Scholar 

    51.
    Price, N. N., Hamilton, S. L., Tootell, J. S. & Smith, J. E. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar. Ecol. Prog. Ser. 440, 67–78 (2011).
    CAS  Article  Google Scholar 

    52.
    Sinutok, S., Hill, R., Doblin, M. A., Kühl, M. & Ralph, P. J. Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31, 1201–1213 (2012).
    Article  Google Scholar 

    53.
    Wizemann, A., Meyer, F. W., Hofmann, L. C., Wild, C. & Westphal, H. Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia. Coral Reefs 34, 941–954 (2015).
    Article  Google Scholar 

    54.
    Smithers, S., Harvey, N., Hopley, D. & Woodroffe, C. D. in Climate Change and the Great Barrier Reef: A Vulnerability Assessment (eds Johnson, J. E. & Marshall, P. A.) 667–716 (Great Barrier Reef Marine Park Authority, 2007).

    55.
    Cappo, M., Speare, P. & De’ath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123–152 (2004).
    Article  Google Scholar 

    56.
    Pitcher, C. R. GBR Seabed Biodiversity Mapping Project: Phase 1. Draft Report to CRC-Reef (Australian Institute of Marine Science, 2002).

    57.
    Ugland, K. I., Gray, J. S. & Ellingsen, K. E. The species–accumulation curve and estimation of species richness. J. Anim. Ecol. 72, 888–897 (2003).
    Article  Google Scholar 

    58.
    Clarke, K. & Gorley, R. PRIMER v7: User Manual/Tutorial (PRIMER-e, 2015).

    59.
    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation 3rd edn (PRIMER-e, 2014).

    60.
    Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares—application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).
    Article  Google Scholar  More

  • in

    Fine-scale metabolic discontinuity in a stratified prokaryote microbiome of a Red Sea deep halocline

    1.
    Merlino G, Barozzi A, Michoud G, Ngugi DK, Daffonchio D. Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbiol Ecol. 2018;94:1–15.
    Article  CAS  Google Scholar 
    2.
    Antunes A, Ngugi DK, Stingl U. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep. 2011;3:416–33.
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, et al. Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: prokaryotes and environmental settings. Environ Microbiol. 2011;13:2250–68.
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, et al. Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature. 2006;440:203–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, et al. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science. 2005;307:121–3.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    6.
    Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, et al. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA. 2009;106:9151–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Joye SB, Samarkin VA, Orcutt BN, MacDonald IR, Hinrichs K-U, Elvert M, et al. Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nat Geosci. 2009;2:349–54.
    CAS  Article  Google Scholar 

    8.
    Guan Y, Hikmawan T, Antunes A, Ngugi DK, Stingl U. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea. Res Microbiol. 2015;166:688–99.
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Pachiadaki MG, Yakimov M, LaCono V, Leadbetter E, Edgcomb V. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. ISME J. 2014;8:1–12.
    Article  CAS  Google Scholar 

    10.
    Borin S, Mapelli F, Rolli E, Song B, Tobias C, Schmid MC, et al. Anammox bacterial populations in deep marine hypersaline gradient systems. Extremophiles. 2013;17:289–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Yakimov MM, La Cono V, Spada GL, Bortoluzzi G, Messina E, Smedile F, et al. Microbial community of the deep-sea brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. Environ Microbiol. 2015;17:364–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Ngugi DK, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, et al. Comparative genomics reveals adaptations of a halotolerant thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J. 2015;9:396–411.
    Article  CAS  Google Scholar 

    13.
    Ngugi DK, Blom J, Stepanauskas R, Stingl U. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. ISME J. 2016;10:1383–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Zhang W, Ding W, Yang B, Tian RM, Gu S, Luo H, et al. Genomic and transcriptomic evidence for carbohydrate consumption among microorganisms in a cold seep brine pool. Front Microbiol. 2016;7:1825.
    PubMed  PubMed Central  Google Scholar 

    15.
    Bougouffa S, Yang JK, Lee OO, Wang Y, Batang Z, Al-Suwailem A, et al. Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol. 2013;79:3425–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, et al. Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front Microbiol. 2014;5:1–16.
    Article  Google Scholar 

    17.
    Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev. 2009;33:855–69.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42:353–75.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Yakimov M, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN, et al. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J. 2007;1:743–55.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Brune A, Frenzel P, Cypionka H. Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev. 2000;24:691–710.
    CAS  PubMed  Article  Google Scholar 

    21.
    Oren A. Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol. 2011;13:1908–23.
    CAS  PubMed  Article  Google Scholar 

    22.
    Baumann A, Richter H, Schoell M. Suakin deep: brines and hydrothermal sediments in the deepest part of the Red Sea. Geol Rundsch. 1973;62:684–97.
    CAS  Article  Google Scholar 

    23.
    Backer H, Schoell M. New deeps with brines and metalliferous sediments in the red sea. Nat Phys Sci. 1972;240:153–8.
    Article  Google Scholar 

    24.
    Schmidt, M, Al-Farawati R, Botz R. Geochemical classification of brine-filled Red Sea Deeps. In: Rasul NMA, Stewart ICF, editors. The Red Sea. Springer; 2015. p. 219–233.

    25.
    Calleja ML, Al-Otaibi N, Morán XAG. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci Rep. 2019;9:4690.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Duarte CM, Røstad A, Michoud G, Barozzi A, Merlino G, Delgado-Huertas A, et al. Discovery of Afifi, the shallowest and southernmost brine pool reported in the Red Sea. Sci Rep. 2020;10:910.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B Stat Methodol. 2011;73:3–36.
    Article  Google Scholar 

    28.
    Salata GG, Roelke LA, Cifuentes LA. A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Mar Chem. 2000;69:153–61.
    CAS  Article  Google Scholar 

    29.
    McIlvin MR, Altabet MA. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem. 2005;77:5589–95.
    CAS  PubMed  Article  Google Scholar 

    30.
    Green MR, Sambrook J. Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb Protoc. 2017;2017:pdb.prot093450.

    31.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Bushnell B. BBMap short read aligner. https://sourceforge.net/projects/bbmap/. 2016. Accessed 03 Feb 2021.

    33.
    Andrews S. FastQC A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010. Accessed 30 Jan 2021.

    34.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Parks DH, Beiko RG. Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities. ISME J. 2013;7:173–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26:680–2.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16:51.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Alam I, Antunes A, Kamau AA, Alawi WB, Kalkatawi M, Stingl U, et al. INDIGO – Integrated data warehouse of microbial genomes with examples from the red sea extremophiles. PLoS ONE. 2013;8:e82210.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Llorens-Marès T, Yooseph S, Goll J, Hoffman J, Vila-Costa M, Borrego CM, et al. Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics. ISME J. 2015;9:1648–61.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Lüke C, Speth DR, Kox MAR, Villanueva L, Jetten MSM. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. PeerJ. 2016;4:e1924.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Wickham H. ggplot2: elegant graphics for data analysis. Springer New York; 2016.

    46.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. https://github.com/vegandevs/vegan, https://cran.r-project.org/package=vegan. 2017. Accessed 28 November 2020.

    47.
    Blanchet FG, Legendre P, Borcard D. Forward selection of explanatory variables. Ecology. 2008;89:2623–32.
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    50.
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  Article  Google Scholar 

    54.
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 2010;11:538.
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–27.
    CAS  Google Scholar 

    56.
    Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Rambaut A. FigTree. http://tree.bio.ed.ac.uk/software/figtree/. 2009. Accessed 04 Jan 2011.

    60.
    Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79:7696–701.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: various r programming tools for plotting data. 2019. https://cran.r-project.org/package=gplots. Accessed 28 Nov 2020.

    63.
    Long A, Heitman J, Tobias C, Philips R, Song B. Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl Environ Microbiol. 2013;79:168–76.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Shu D, He Y, Yue H, Wang Q. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems. Chem Eng J. 2016;290:21–30.
    CAS  Article  Google Scholar 

    65.
    Augustin N, Devey CW, van der Zwan FM. A Modern view on the Red Sea Rift: tectonics, volcanism and salt blankets. In: Rasul NMA, Stewart ICF, editors. Geological setting, palaeoenvironment and archaeology of the Red Sea. Springer International Publishing, 2019. p. 37–52.

    66.
    Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.
    CAS  PubMed  Article  Google Scholar 

    67.
    Ward BB, Kilpatrick KA. Relationship between substrate concentration and oxidation of ammonium and methane in a stratified water column. Cont Shelf Res. 1990;10:1193–208.
    Article  Google Scholar 

    68.
    Stedmon CA, Thomas DN, Papadimitriou S, Granskog MA, Dieckmann GS. Using fluorescence to characterize dissolved organic matter in Antarctic sea ice brines. J Geophys Res. 2011;116:G03027.
    Google Scholar 

    69.
    Taylor PG, Townsend AR. Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature. 2010;464:1178–81.
    CAS  PubMed  Article  Google Scholar 

    70.
    Granger J, Sigman DM, Lehmann MF, Tortell PD. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr. 2008;53:2533–45.
    CAS  Article  Google Scholar 

    71.
    Nigro LM, Hyde AS, MacGregor BJ. Teske A. Phylogeography, salinity adaptations and metabolic potential of the candidate division kb1 bacteria based on a partial single cell genome. Front Microbiol. 2016;7:1266.

    72.
    Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W, Anthony Kamau A, et al. Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea. Sci Rep. 2016;6:19181.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Pereira AD, Leal CD, Dias MF, Etchebehere C, Chernicharo CAL, de Araújo JC. Effect of phenol on the nitrogen removal performance and microbial community structure and composition of an anammox reactor. Bioresour Technol. 2014;166:103–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Yamada T, Sekiguchi Y. Anaerolineaceae. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA et al, editors. Bergey’s manual of systematics of archaea and bacteria. Wiley, 2018. p. 1–5.

    76.
    Browne P, Tamaki H, Kyrpides N, Woyke T, Goodwin L, Imachi H, et al. Genomic composition and dynamics among Methanomicrobiales predict adaptation to contrasting environments. ISME J. 2017;11:87–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Youssef NH, Ashlock-Savage KN, Elshahed MS. Phylogenetic diversities and community structure of members of the extremely halophilic archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol. 2012;78:1332–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Sorokin DY, Merkel AY, Abbas B, Makarova KS, Rijpstra WIC, Koenen M, et al. Methanonatronarchaeum thermophilum gen. nov., sp. nov. and ‘Candidatus Methanohalarchaeum thermophilum’, extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov. Int J Syst Evol Microbiol. 2018;68:2199–208.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    van Niftrik L, Geerts WJC, van Donselaar EG, Humbel BM, Webb RI, Fuerst JA, et al. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome c proteins. J Bacteriol. 2008;190:708–17.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    80.
    Muck S, De Corte D, Clifford EL, Bayer B, Herndl GJ, Sintes E. Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front Microbiol. 2019;10:2141.
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Jensen MM, Lam P, Revsbech NP, Nagel B, Gaye B, Jetten MS, et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J. 2011;5:1660–70.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Tian R, Ning D, He Z, Zhang P, Spencer SJ, Gao S, et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome. 2020;8:51.
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    Yakimov MM, La Cono V, Slepak VZ, La Spada G, Arcadi E, Messina E, et al. Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation. Sci Rep. 2013;3:3554.
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Jayakumar A, Chang BX, Widner B, Bernhardt P, Mulholland MR, Ward BB. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean. ISME J. 2017;11:2356–67.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, et al. A microdiversity study of anammox bacteria reveals a novel Candidatus scalindua phylotype in marine oxygen minimum zones. Environ Microbiol. 2008;10:3106–19.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Speth DR, Lagkouvardos I, Wang Y, Qian P-Y, Dutilh BE, Jetten MSM. Draft genome of Scalindua rubra, obtained from the interface above the discovery deep brine in the red sea, sheds light on potential salt adaptation strategies in anammox bacteria. Micro Ecol. 2017;74:1–5.
    CAS  Article  Google Scholar 

    87.
    Ali M, Shaw DR, Saikaly PE. Application of an enrichment culture of the marine anammox bacterium “Ca. Scalindua” for nitrogen removal under moderate salinity and in the presence of organic carbon. Water Res. 2020;170:115345.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J. 2019;13:2150–61.
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Awata T, Goto Y, Kindaichi T, Ozaki N, Ohashi A. Nitrogen removal using an anammox membrane bioreactor at low temperature. Water Sci Technol. 2015;72:2148–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Pappalardo RT. Seeking Europa’s ocean. Proc Int Astron Union. 2010;6:101–14.
    Article  Google Scholar 

    91.
    Martínez GM, Renno NO. Water and brines on mars: current evidence and implications for MSL. Space Sci Rev. 2013;175:29–51.
    Article  CAS  Google Scholar 

    92.
    Jokinen SA, Virtasalo JJ, Jilbert T, Kaiser J, Dellwig O, Arz HW, et al. A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century. Biogeosciences. 2018;15:3975–4001.
    CAS  Article  Google Scholar  More

  • in

    The potential risk of exposure to Borrelia garinii, Anaplasma phagocytophilum and Babesia microti in the Wolinski National Park (north-western Poland)

    1.
    Nowak-Chmura, M. Fauna of ticks (Ixodida) of Central Europe (Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, Kraków, 2013).
    Google Scholar 
    2.
    Balmelli, T. & Piffaretti, J. C. Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res. Microbiol. 146, 329–340 (1995).
    CAS  Article  Google Scholar 

    3.
    Strzelczyk, J. K. et al. Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from southern Poland. Acta Parasitol. 60, 666–674 (2015).
    CAS  Article  Google Scholar 

    4.
    Blanco, J. R. & Oteo, J. A. Human granulocytic ehrlichiosis in Europe. Clin. Microbiol. Infect. 8, 763–772 (2002).
    CAS  Article  Google Scholar 

    5.
    Boustani, M. R. & Gelfand, J. A. Babesiosis. Clin. Infect. Dis. 22, 611–614 (1996).
    CAS  Article  Google Scholar 

    6.
    Siuda, K. Kleszcze (Acari: Ixodida) Polski Część II Systematyka i Rozmieszczenie (Polskie Towarzystwo Parazytologiczne, Warsaw, 1993).
    Google Scholar 

    7.
    Guy, E. & Stanek, G. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J. Clin. Pathol. 29, 610–611 (1991).
    Article  Google Scholar 

    8.
    Wójcik-Fatla, A., Szymańska, J., Wdowiak, L., Buczek, A. & Dutkiewicz, J. Coincidence of three pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti) in Ixodes ricinus ticks in the Lublin macroregion. Ann. Agric. Environ. Med. 16, 151–158 (2009).
    PubMed  Google Scholar 

    9.
    Wodecka, B., Rymaszewska, A., Sawczuk, M. & Skotarczak, B. Detectability of tick-borne agents DNA in the blood of dogs, undergoing treatment for borreliosis. Ann. Agric. Environ. Med. 16, 9–14 (2009).
    CAS  PubMed  Google Scholar 

    10.
    Wodecka, B. FlaB gene as a molecular marker for distinct identification of Borrelia species in environmental samples by the PCR-restriction fragment length polymorphism method. Appl. Environ. Microbiol. 77, 7088–7092 (2011).
    CAS  Article  Google Scholar 

    11.
    Massung, R. F. et al. Nested PCR assay for detection of granulocytic ehrlichiae. J. Clin. Microbiol. 36, 1090–1095 (1998).
    CAS  Article  Google Scholar 

    12.
    Persing, D. H. et al. Detection of Babesia microti by polymerase chain reaction. J. Clin. Microbiol. 30, 2097–2103 (1992).
    CAS  Article  Google Scholar 

    13.
    Stańczak, J., Kubica-Biernat, B., Racewicz, M., Kruminis-Łozowska, W. & Kur, J. Detection of three genospecies of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in different regions of Poland. Int. J. Med. Microbiol. 290, 559–566 (2000).
    Article  Google Scholar 

    14.
    Wodecka, B. & Skotarczak, B. First isolation of Borrelia lusitaniae DNA from Ixodes ricinus ticks in Poland. Scand. J. Infect. Dis. 37, 27–34 (2005).
    CAS  Article  Google Scholar 

    15.
    Kiewra, D., Stańczak, J. & Richter, M. Ixodes ricinus ticks (Acari, Ixodidae) as a vector of Borrelia burgdorferi sensu lato and Borrelia miyamotoi in Lower Silesia. Tick Tick-borne Dis. 5, 892–897 (2014).
    Article  Google Scholar 

    16.
    Asman, M. et al. Occupational risk of infections with Borrelia burgdorferi sensu lato, B. burgdorferi sensu stricto, B. garinii and B. afzelii in agricultural workers on the territory of Beskid Żywiecki. in Arthropods: Medical and Economical Significance (ed. Buczek, A. & Błaszak, Cz.) 163–170 (Akapit, 2012).

    17.
    Asman, M., Witecka, J., Solarz, K., Zwonik, A. & Szilman, P. Occurrence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Ixodes ricinus ticks collected from selected areas of Opolskie Province in south-west Poland. Ann. Agric. Environ. Med. 26, 544–547 (2019).
    CAS  Article  Google Scholar 

    18.
    Wodecka, B. & Skotarczak, B. Genetic diversity of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in north-west Poland. Wiad Parazytol. 46, 475–485 (2000).
    CAS  PubMed  Google Scholar 

    19.
    Bartosik, K., Lachowska-Kotowska, P., Szymańska, J., Pabis, A. & Buczek, A. Lyme borreliosis in south-eastern Poland: Relationships with environmental factors and medical attention standards. Ann. Agric. Environ. Med. 18, 131–137 (2011).
    PubMed  Google Scholar 

    20.
    Hubálek, Z., Halouzka, J., Juricová, Z., Sikutová, S. & Rudolf, I. Effect of forest clearing on the abundance of Ixodes ricinus ticks and the prevalence of Borrelia burgdorferi s.l. Med. Vet. Entomol. 20, 166–172 (2006).
    Article  Google Scholar 

    21.
    Hanincova, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20 (2003).
    CAS  Article  Google Scholar 

    22.
    Hanincova, K. et al. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl. Environ. Microbiol. 69, 2825–2830 (2003).
    CAS  Article  Google Scholar 

    23.
    Kurtenbach, K. et al. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl. Environ. Microbiol. 64, 1169–1174 (1998).
    CAS  Article  Google Scholar 

    24.
    Rauter, C. & Hartung, T. Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: A metaanalysis. Appl. Environ. Microbiol. 71, 7203–7216 (2005).
    CAS  Article  Google Scholar 

    25.
    Wodecka, B. Significance of red deer (Cervus elaphus) in the ecology of Borrelia burgdorferi sensu lato. Wiad Parazytol. 53, 231–237 (2007).
    PubMed  Google Scholar 

    26.
    Chen, S.-M., Dumler, J. S., Bakken, J. S. & Walker, D. H. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J. Clin. Microbiol. 32, 589–595 (1994).
    CAS  Article  Google Scholar 

    27.
    Zhang, Y., Cui, Y., Sun, Y., Jing, H. & Ning, Ch. Novel Anaplasma variants in small ruminants from central China. Front. Vet. Sci. 7, 1–7 (2020).
    ADS  Article  Google Scholar 

    28.
    Petrovec, M. et al. Human disease in Europe caused by a granulocytic Ehrlichia species. J. Clin. Microbiol. 35, 1556–1559 (1997).
    CAS  Article  Google Scholar 

    29.
    Siński, E. Enzoonotic reservoir for new Ixodes ricinus—Transmitted infections. Wiad Parazytol. 45, 135–142 (1999).
    PubMed  Google Scholar 

    30.
    Kiewra, D., Zaleśny, G. & Czułowska, A. The risk of infection with Anaplasma phagocytophilum and Babesia microti in Lower Silesia, SW Poland. in Arthropods: Threat to Human and Animals Health (ed. Buczek, A. & Błaszak, Cz.) 103–110 (Koliber, 2014).

    31.
    Asman, M. et al. The risk of exposure to Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Babesia sp. and coinfections in Ixodes ricinus ticks on the territory of Niepołomice Forest (southern Poland). Ann. Parasitol. 59, 13–19 (2013).
    PubMed  Google Scholar 

    32.
    Asman, M. et al. Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi sensu lato, and Toxoplasma gondii in Ixodes ricinus (Acari, Ixodida) ticks collected from Slowinski National Park (Northern Poland). J. Vector Ecol. 42, 200–202 (2017).
    Article  Google Scholar 

    33.
    Stańczak, J., Gabre, M. R., Kruminis-Łozowska, W., Racewicz, M. & Kubica-Biernat, B. Ixodes riciuns as a vector of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in urban and suburban forests. Ann. Agric. Environ. Med. 11, 109–114 (2004).
    PubMed  Google Scholar 

    34.
    Asman, M. et al. Detection of protozoans Babesia microti and Toxoplasma gondii and their co-existence in ticks (Acari: Ixodida) collected in Tarnogórski district (Upper Silesia, Poland). Ann. Agric. Environ. Med. 22, 80–83 (2015).
    Article  Google Scholar 

    35.
    Yabsley, M. J. & Shock, B. C. Natural history of Zoonotic Babesia: Role of wildlife reservoirs. Int. J. Parasitol. Parasites Wildl. 2, 18–31 (2013).
    Article  Google Scholar 

    36.
    Sytykiewicz, H. et al. Molecular evidence of Anaplasma phagocytophilum and Babesia microti co-infections in Ixodes ricinus ticks in central-eastern region of Poland. Ann. Agric. Environ. Med. 19, 45–49 (2012).
    CAS  PubMed  Google Scholar 

    37.
    Asman, M. et al. The occurrence of three tick-borne pathogens in Ixodes ricinus ticks collected from the area of the Kraków—Czestochowa Upland (Southern Poland). Acarologia 58, 967–975 (2018).
    Google Scholar  More

  • in

    Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom

    1.
    Behrenfeld MJ, Randerson JT, McClain CR, Feldman GC, Los SO, Tucker CJ, et al. Biospheric primary production during an ENSO transition. Science. 2001;291:2594–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife. 2016;5:e11888.
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Francis TB, Krüger K, Fuchs BM, Teeling H, Amann RI. CandidatusProsiliicoccus vernus, a spring phytoplankton bloom associated member of the Flavobacteriaceae. Syst Appl Microbiol. 2019;42:41–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Krüger K, Chafee M, Francis TB, Glavina del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Fernández-Gomez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H. Polysaccharide utilization loci: fueling microbial communities. J Bacteriol. 2017;199:e00860–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.
    CAS  PubMed  Article  Google Scholar 

    16.
    Kirchman DL. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 2002;39:91–100.
    CAS  PubMed  Google Scholar 

    17.
    Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and gut Bacteroidetes: the food connection. Front Microbiol. 2011;2:93–93.
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Glenwright AJ, Pothula KR, Bhamidimarri SP, Chorev DS, Baslé A, Firbank SJ, et al. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature. 2017;541:407–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Joglekar P, Sonnenburg ED, Higginbottom SK, Earle KA, Morland C, Shapiro-Ward S, et al. Genetic variation of the SusC/SusD homologs from a polysaccharide utilization locus underlies divergent fructan specificities and functional adaptation in Bacteroides thetaiotaomicron strains. mSphere. 2018;3:e00185–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron EA, Pudlo NA, et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature. 2015;517:165–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Reintjes G, Arnosti C, Fuchs BM, Amann R. An alternative polysaccharide uptake mechanism of marine bacteria. ISME J. 2017;11:1640–50.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Hehemann J-H, Truong LV, Unfried F, Welsch N, Kabisch J, Heiden SE, et al. Aquatic adaptation of a laterally acquired pectin degradation pathway in marine Gammaproteobacteria. Environ Microbiol. 2017;19:2320–33.
    CAS  PubMed  Article  Google Scholar 

    23.
    Neumann AM, Balmonte JP, Berger M, Giebel H-A, Arnosti C, Voget S, et al. Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. Environ Microbiol. 2015;17:3857–68.
    CAS  PubMed  Article  Google Scholar 

    24.
    Mirus O, Strauss S, Nicolaisen K, von Haeseler A, Schleiff E. TonB-dependent transporters and their occurrence in Cyanobacteria. BMC Biol. 2009;7:68.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Gudmundsdottir A, Bell PE, Lundrigan MD, Bradbeer C, Kadner RJ. Point mutations in a conserved region (TonB box) of Escherichia coli outer membrane protein BtuB affect vitamin B12 transport. J Bacteriol. 1989;171:6526–33.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Köster W, Braun V. Iron (III) hydroxamate transport into Escherichia coli. Substrate binding to the periplasmic FhuD protein. J Biol Chem. 1990;265:21407–10.
    PubMed  Article  Google Scholar 

    27.
    Schauer K, Gouget B, Carrière M, Labigne A, Reuse HD. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol. 2007;63:1054–68.
    CAS  PubMed  Article  Google Scholar 

    28.
    Reeves AR, D’Elia JN, Frias J, Salyers AA. A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J Bacteriol. 1996;178:823–30.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Cheng Q, Yu MC, Reeves AR, Salyers AA. Identification and characterization of a Bacteroides gene, csuF, which encodes an outer membrane protein that is essential for growth on chondroitin sulfate. J Bacteriol. 1995;177:3721–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A, Braun V. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J Bacteriol. 2005;187:8300–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Noinaj N, Guillier M, Barnard TJ, Buchanan SK. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol. 2010;64:43–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schauer K, Rodionov DA, de Reuse H. New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’? Trends Biochem Sci. 2008;33:330–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun. 2019;10:2043.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Foley MH, Cockburn DW, Koropatkin NM. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci. 2016;73:2603–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Terrapon N, Lombard V, Gilbert HJ, Henrissat B. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics. 2015;31:647–55.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Terrapon N, Lombard V, Drula E, Lapébie P, Al-Masaudi S, Gilbert HJ, et al. PULDB: the expanded database of polysaccharide utilization loci. Nucleic Acids Res. 2017;46:D677–83.
    PubMed Central  Article  CAS  Google Scholar 

    38.
    Bergauer K, Fernandez-Guerra A, Garcia JA, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Dong H-P, Hong Y-G, Lu S, Xie L-Y. Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea. Environ Microbiol Rep. 2014;6:683–95.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA. 2010;107:16420–7.
    CAS  PubMed  Article  Google Scholar 

    41.
    Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J. 2010;4:673–85.
    CAS  PubMed  Article  Google Scholar 

    42.
    Williams TJ, Long E, Evans F, DeMaere MZ, Lauro FM, Raftery MJ, et al. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 2012;6:1883–900.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Article  CAS  Google Scholar 

    45.
    Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Orellana LH, Francis TB, Krüger K, Teeling H, Müller M-C, Fuchs BM, et al. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota. ISME J. 2019;13:3024–36.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Deusch S, Seifert J. Catching the tip of the iceberg—evaluation of sample preparation protocols for metaproteomic studies of the rumen microbiota. Proteomics. 2015;15:3590–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
    CAS  PubMed  Article  Google Scholar 

    51.
    Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–58.
    CAS  PubMed  Article  Google Scholar 

    52.
    Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL, et al. Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods. 2006;40:303–11.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–50.
    CAS  PubMed  Article  Google Scholar 

    54.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Article  Google Scholar 

    57.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:538.
    Article  Google Scholar 

    59.
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32.
    CAS  Article  Google Scholar 

    60.
    Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 2016;44:D372–9.
    CAS  PubMed  Article  Google Scholar 

    61.
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
    CAS  PubMed  Article  Google Scholar 

    64.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013;42:D490–5.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Tang K, Jiao N, Liu K, Zhang Y, Li S. Distribution and functions of TonB-dependent transporters in marine bacteria and environments: implications for dissolved organic matter utilization. PLoS ONE. 2012;7:e41204.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Gómez-Santos N, Glatter T, Koebnik R, Świątek-Połatyńska MA, Søgaard-Andersen L. A TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane. Nat Commun. 2019;10:1360.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Engel A, Händel N. A novel protocol for determining the concentration and composition of sugars in particulate and in high molecular weight dissolved organic matter (HMW-DOM) in seawater. Mar Chem. 2011;127:180–91.
    CAS  Article  Google Scholar 

    71.
    Reintjes G, Fuchs BM, Scharfe M, Wiltshire KH, Amann R, Arnosti C. Short-term changes in polysaccharide utilization mechanisms of marine bacterioplankton during a spring phytoplankton bloom. Environ Microbiol. 2020;22:1884–900.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Avcı B, Krüger K, Fuchs BM, Teeling H, Amann RI. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 2020;14:1369–83.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Sperling M, Piontek J, Engel A, Wiltshire KH, Niggemann J, Gerdts G, et al. Combined carbohydrates support rich communities of particle-associated marine bacterioplankton. Front Microbiol. 2017;8:65.
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann J-H, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92–103.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6:613–24.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    76.
    Becker S, Scheffel A, Polz MF, Hehemann J-H. Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appl Environ Microbiol. 2017;83:e03389–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Becker S, Tebben J, Coffinet S, Wiltshire K, Iversen MH, Harder T, et al. Laminarin is a major molecule in the marine carbon cycle. Proc Natl Acad Sci USA. 2020;117:6599–607.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More