More stories

  • in

    Geographical variability of bacterial communities of cryoconite holes of Andean glaciers

    In this study, we provide the first description of the bacterial communities of cryoconite holes from South American glaciers, in particular from both small high-elevation glaciers of the Central Andes in the Santiago Metropolitan Region (Chile), and from the tongues of two large glaciers in Patagonian Andes that reach low altitudes. These pieces of information fill a large geographical gap in our knowledge of glacier environments because this is the first description of the microbial communities of supraglacial environments in South America, a continent with about 30,000 km2 covered by ice29. Results showed that the large Patagonian glaciers (Exploradores and Perito Moreno) had the highest oxygen concentrations, while Iver and East Iver had the lowest ones and Morado an intermediate value. This pattern could be related to the different altitudes of the glaciers. Indeed, since water temperature in cryoconite holes is always quite low and stable at all altitudes, oxygen solubility in these environments is related to the atmospheric partial pressure of oxygen that decreases at increasing altitude30. This result is consistent with [O2] values we found in our samples. Indeed, Exploradores and Perito Moreno are located in Patagonia at low altitudes ( 40%), whereas mining is also an additional important black carbon source50. Their similarity can therefore derive also from being exposed to the same general ecological conditions, including high UV radiation, oxidative stress, anthropic pressures, and probably, also from similar sources of bacteria. These results therefore highlight that correlative studies like the present ones can hardly disentangle the effects of geographical positions and ecological conditions on the structure of cryoconite hole bacterial communities, and further studies should be designed to add insight into this still open question.Analyses of alpha diversity indices indicated that cryoconite holes on Exploradores glacier showed the highest richness and evenness. Samples on the Exploradores were collected close to the glacier terminus, surrounded by a rich evergreen broadleaf vegetation, and in an area with abundant supraglacial debris and frequented by tourists. The higher biodiversity of this large, low-altitude glacier, compared to that of the small, high-altitude Iver and East Iver glaciers is not surprising, as the rich evergreen broadleaf forest that surrounds the tongue of the first glacier can be the source of a richer and more diverse bacterial community than the bare ground surrounding the other ones. However, it is more surprising that the alpha biodiversity of the large, low-altitude Perito Moreno was intermediate and similar to that of the Morado glacier. Interestingly, Perito Moreno was the southernmost glacier among those we collected, and was surrounded by a less diverse forest, dominated by southern beeches, Nothofagus ssp. than that of Exploradores, while Morado was the glacier where samples were collected at the lowest altitude among the three glaciers near Santiago. We may therefore speculate that a broad gradient related to altitude and general climate conditions of the area surrounding the glacier may somehow affect its biodiversity. For instance, among the most abundant orders, Cytophagales were more abundant on high than on low-elevation glaciers (Fig. 5b). A similar pattern was observed for the Micrococcales and Chitinophagales (Fig. 5c–k) with the only exception of Iver.In summary, we provide the first-ever description of the bacterial communities of cryoconite holes of glaciers in South America, specifically in the Southern Andes. This study thus fills an important gap of knowledge as almost no information was previously available on the cryoconite holes of this continent, and opens the possibility of future biogeography analyses including samples from almost every important glacial area of the world. The five glaciers we investigated are still a too small sample for thoroughly assessing the ecological processes that control cryoconite hole bacterial communities, and a larger set of environmental variables should also be considered, but we hope this study can be the basis for further investigations aiming at a deeper understanding of these extreme environments. More

  • in

    Adaptive photoperiod interpretation modulates phenological timing in Atlantic salmon

    Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. System. 2007, 1–25 (2007).Article 

    Google Scholar 
    Way, M., Hopkins, B. & Smith, P. Photoperiodism and diapause in insects. Nature 164, 615–615 (1949).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bromage, N., Porter, M. & Randall, C. Reproductive Biotechnology in Finfish Aquaculture 63–98 (Elsevier, 2001).Book 

    Google Scholar 
    Weil, Z. M. & Crews, D. Photoperiodism in Amphibians and Reptiles (ed. Nelson, R. J. et al.) 399–419 (Oxford University Press, 2010).Vera, L., Davie, A., Taylor, J. & Migaud, H. Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Gen. Comp. Endocrinol. 165, 25–33 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, K. A., Schoen, M. W. & Czeisler, C. A. Adaptation of human pineal melatonin suppression by recent photic history. J. Clin. Endocrinol. Metabol. 89, 3610–3614 (2004).Article 
    CAS 

    Google Scholar 
    Refinetti, R. Enhanced circadian photoresponsiveness after prolonged dark adaptation in seven species of diurnal and nocturnal rodents. Physiol. Behav. 90, 431–437 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chang, A.-M., Scheer, F. A. & Czeisler, C. A. The human circadian system adapts to prior photic history. J. Physiol. 589, 1095–1102 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aschoff, J. & Daan, S. Human time perception in temporal isolation: Effects of illumination intensity. Chronobiol. Int. 14, 585–596 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tast, A. et al. The photophase light intensity does not affect the scotophase melatonin response in the domestic pig. Anim. Reprod. Sci. 65, 283–290 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Migaud, H. et al. A comparative ex vivo and in vivo study of day and night perception in teleosts species using the melatonin rhythm. J. Pineal Res. 41, 42–52 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nisembaum, L. G., Martin, P., Lecomte, F. & Falcón, J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J. Neuroendocrinol. 33, e12955 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iigo, M. et al. Lack of circadian regulation of in vitro melatonin release from the pineal organ of salmonid teleosts. Gen. Comp. Endocrinol. 154, 91–97 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iigo, M., Azuma, T. & Iwata, M. Lack of circadian regulation of melatonin rhythms in the sockeye salmon (Oncorhynchus nerka) in vivo and in vitro. Zool. Sci. 24, 67–70 (2007).Article 
    CAS 

    Google Scholar 
    Huang, T., Ruoff, P. & Fjelldal, P. G. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts. Chronobiol. Int. 27, 1697–1714 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fjelldal, P. G., Hansen, T. & Huang, T. Continuous light and elevated temperature can trigger maturation both during and immediately after smoltification in male Atlantic salmon (Salmo salar). Aquaculture 321, 93–100 (2011).Article 

    Google Scholar 
    Leclercq, E., Taylor, J., Sprague, M. & Migaud, H. The potential of alternative lighting-systems to suppress pre-harvest sexual maturation of 1+ Atlantic salmon (Salmo salar) post-smolts reared in commercial sea-cages. Aquacult. Eng. 44, 35–47 (2011).Article 

    Google Scholar 
    Fjelldal, P. G. et al. Development of supermale and all-male Atlantic salmon to research the vgll3 allele-puberty link. BMC Genet. 21, 1–13 (2020).Article 

    Google Scholar 
    Ricker, W. E. Computation and interpretation of biological statistics of fish populations. Bull. Fisher. Res. 191, 1–382 (1975).
    Google Scholar 
    Fjelldal, P. G. et al. Sexual maturation and smoltification in domesticated Atlantic salmon (Salmo salar L.)-is there a developmental conflict?. Physiol. Rep. 6, e13809 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1. 4. 3. 01 (2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Huang, T., Ruoff, P. & Fjelldal, P. G. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in Atlantic salmon postsmolts. Chronobiol. Int. 27, 1715–1734 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Davie, A., Minghetti, M. & Migaud, H. Seasonal variations in clock-gene expression in Atlantic salmon (Salmo salar). Chronobiol. Int. 26, 379–395 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Max, M. & Menaker, M. Regulation of melatonin production by light, darkness, and temperature in the trout pineal. J. Comp. Physiol. Part A 170, 479–489 (1992).CAS 

    Google Scholar 
    Randall, C. & Bromage, N. Photoperiodic history determines the reproductive response of rainbow trout to changes in daylength. J. Comp. Physiol. Part A 183, 651–660 (1998).Article 

    Google Scholar 
    Randall, C., Bromage, N., Duston, J. & Symes, J. Photoperiod-induced phase-shifts of the endogenous clock controlling reproduction in the rainbow trout: A circannual phase-response curve. Reproduction 112, 399–405 (1998).Article 
    CAS 

    Google Scholar 
    Duston, J. & Bromage, N. Photoperiodic mechanisms and rhythms of reproduction in the female rainbow trout. Fish Physiol. Biochem. 2, 35–51 (1986).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duston, J. & Bromage, N. Circannual rhythms of gonadal maturation in female rainbow trout (Oncorhynchus mykiss). J. Biol. Rhythms 6, 49–53 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Taranger, G. L. et al. Abrupt changes in photoperiod affect age at maturity, timing of ovulation and plasma testosterone and oestradiol-17β profiles in Atlantic salmon, Salmo salar. Aquaculture 162, 85–98 (1998).Article 

    Google Scholar 
    Melo, M. C. et al. Salinity and photoperiod modulate pubertal development in Atlantic salmon (Salmo salar). J. Endocrinol. 220, 319–332 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, T. J., Fjelldal, P. G., Folkedal, O., Vågseth, T. & Oppedal, F. Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages. Aquac. Environ. Interact. 9, 193–204 (2017).Article 

    Google Scholar 
    Oppedal, F., Taranger, G. L., Juell, J.-E., Fosseidengen, J. E. & Hansen, T. Light intensity affects growth and sexual maturation of Atlantic salmon (Salmo salar) postsmolts in sea cages. Aquat. Living Resour. 10, 351–357 (1997).Article 

    Google Scholar 
    Harvey, A. C. et al. Inferring Atlantic salmon post-smolt migration patterns using genetic assignment. R. Soc. Open Sci. 6, 190426 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J. & Laidre, K. L. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Model. 264, 83–97 (2013).Article 

    Google Scholar 
    Ljungstrӧm, G., Langbehn, T. J. & Jørgensen, C. Light and energetics at seasonal extremes limit poleward range shifts. Nat. Clim. Chang. 11, 530–536 (2021).Article 
    ADS 

    Google Scholar 
    Naish, K. A. & Hard, J. J. Bridging the gap between the genotype and the phenotype: Linking genetic variation, selection and adaptation in fishes. Fish Fish. 9, 396–422 (2008).Article 

    Google Scholar 
    Lehnert, S. J. et al. Genomic signatures and correlates of widespread population declines in salmon. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Above-ground tree carbon storage in response to nitrogen deposition in the U.S. is heterogeneous and may have weakened

    Forest Inventory dataTree growth, tree survival, and plot-level basal area data were compiled from the Forest Inventory and Analysis (FIA) program database (accessed on January 24, 2017, FIA phase 2 manual version 6.1; http://www.fia.fs.fed.us/). Aboveground tree biomass was estimated from tree diameter measurements44 and then multiplied by 0.5 to estimate aboveground C. Tree growth rates were calculated from the difference in estimated aboveground C between the latest and first live measurement of every tree and divided by the elapsed time between measurements to the day. Tree species that had at least 2000 individual trees after the data filters were applied were retained for further growth and survival evaluation. The probability of tree survival was calculated using the first measurement to the last measurement of a plot. Trees that were alive at both measurements were assigned a value of 1 (survived) and trees alive at the first and dead at the last measurement were assigned a value of 0 (dead). The duration between the first and last measurement was used to determine the annual probability of tree survival. Trees that were recorded as dead at both measurement inventories and trees that were harvested were excluded from the survival analysis.Predictor data: Climate, deposition, size, and competitionThere were six predictors that were related to the response rate of growth or survival for each individual tree: mean annual temperature, mean annual precipitation, mean annual total nitrogen deposition, mean annual total S deposition, tree size, and plot-level competition.To obtain total N and S deposition rates for each tree, we used spatially modeled N and S deposition data from the National Atmospheric Deposition Program’s Total Deposition Science Committee32. Annual N and S deposition rates were then averaged from the first year of measurement to the last year of measurement for every tree so that each tree had an individualized average N deposition based on the remeasurement years, and each species had an individualized range of average N deposition exposure based on its distribution. Monthly mean temperature and precipitation values were obtained in a gridded (4 x 4 km) format from the PRISM Climate Group at Oregon State45 for the contiguous US and averaged between measurement periods for each tree in a similar manner. Tree size was represented by estimated aboveground tree C (previously described). Because the climate and deposition predictors were tailored to each plot, the years assessed varied by plot, but spanned 2000–2016. Thus, the results from the earlier study6 used conditions from the 1980–1990s, whereas the results from this study used more recent environmental and stand conditions. Tree competition was represented by a combination two factors: (1) plot basal area and (2) the basal area of trees larger than the focal tree being modeled. How all six variables were statistically modeled is discussed below.Modeling tree growth and survivalWe developed in ref. 20 multiple models to predict tree growth (G; kg C year−1) and survival (P(s); annual probability of survival). Our growth model (Eq. 1 and 2) assumes that there is a potential maximum growth rate (a) that is modified by up to six predictors in our study (which are multipliers from 0 to 1): temperature (T), precipitation (P), N deposition (N), S deposition (S), tree size (m), and competition. The potential full growth model included all six terms (Eq. 1 for the general form and Eq. 2 for the specific form). The size effect was modeled as a power function (z) based on the aboveground biomass (m). N deposition may affect the allometric relationships between tree diameter and aboveground tree biomass46, but these relationships are not yet accounted for in U.S. inventories44. Competition between trees was modeled as a function of plot basal area (BA) and the basal area of trees larger than that of the tree of interest (BAL) similar to the methods of47. The environmental factors (N deposition, S deposition, temperature, precipitation) were modeled as two-term lognormal functions (e.g., t1 and t2 for temperature effects, n1 and n2 for nitrogen deposition effects). The two-term lognormal functions allowed for flexibility in both the location of the peak (determined by t1 for temperature, for example), and the steepness of the curve (determined by t2 for temperature, for example). Thus, the full growth model is presented in Eq. 2.$$G=potentialgrowthratetimes competitiontimes temperaturetimes precipitationtimes {S}_{dep}times {N}_{dep}$$
    (1)
    $$G=a* {m}^{z}* {e}^{({c}_{1}* BAL+{c}_{2}* {{{{mathrm{ln}}}}}(BA))}* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}$$
    (2)
    We examined a total of five different growth models: (1) a full model with the size, competition, climate, S deposition, and N deposition terms (Eq. 2); (2) a model with all terms except the N deposition term; (3) a model with all terms except the S deposition term; (4) a model with all terms but without S and N deposition terms; and (5) a null model that estimated a single parameter for the mean growth parameter (a in Eq. 2).The annual probability of survival (P(s)) was estimated similarly as for growth, except that the probability was a function of time and we explored two different representations for competition. The general form of the model is shown in Eq. 3, and the full survival model in Eqs. 4, 5 for the two competition forms.$$P(s)={[acdot {{{{{rm{size}}}}}}times competitiontimes temperaturetimes precipitationtimes {N}_{dep}times {S}_{dep}]}^{time}$$
    (3)
    $$P(s)= {left[a* [((1-z{c}_{1}{e}^{-z{c}_{2}* m})* {e}^{-z{c}_{3}* {m}^{z{c}_{4}}})({e}^{-b{r}_{1}* B{A}_{ratio}{,}^{br2}* B{A}^{b{r}_{3}}})]vphantom{{left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}}^{time}right.}\ {left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}$$
    (4)
    $$P(s)= {left[a* left({e}^{-0.5* {left(frac{ln(m/{m}_{1})}{{m}_{2}}right)}^{2}* -0.5* {left(frac{ln(BA/b{a}_{1})}{b{a}_{2}}right)}^{2}* -0.5* {left(frac{ln(BAL+1/b{l}_{1}+1)}{b{l}_{2}}right)}^{2}}right)vphantom{{left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}}right.}\ {left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}$$
    (5)
    A total of nine survival models were examined: four using the formulation for size and competition in Eq. 4 (with the same combinations of predictors as above for growth), four using formulation for size and competition in Eq. 5, and a null survival model in which a mean annual estimate of survival (a) was raised to the exponent of the elapsed time.Parameters for each of the growth and survival models above were fit for a given species using maximum likelihood estimates through simulated annealing with 100,000 iterations via the likelihood package (v2.1.1) in Program R. Akaike’s Information Criteria (AIC) was estimated for all models. The best model was the model with the lowest AIC, and statistically indistinguishable models are those with a delta AIC  More

  • in

    Macroecological processes drive spiritual ecosystem services obtained from giant trees

    Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. Camb. Phil. Soc. 92, 1434–1458 (2017).Article 

    Google Scholar 
    Voigt, C. C., Borissov, I. & Kelm, D. H. Bats fertilize roost trees. Biotropica 47, 403–406 (2015).Article 

    Google Scholar 
    Blicharska, M. & Mikusiński, G. Incorporating social and cultural significance of large old trees in conservation policy. Conserv. Biol. 28, 1558–1567 (2014).Article 

    Google Scholar 
    Sponsel, L. E. Spiritual Ecology: A Quiet Revolution (ABC-CLIO, 2012).Omura, H. Trees, forests and religion in Japan. Mt. Res. Dev. 24, 179–182 (2004).Article 

    Google Scholar 
    Heintzman, P. Nature-based recreation and spirituality: a complex relationship. Leis. Sci. 32, 72–89 (2009).Article 

    Google Scholar 
    Irvine, K. N., Hoesly, D., Bell-Williams, R. & Warber, S. L. in Biodiversity and Health in the Face of Climate Change (eds Marselle, M. R. et al.) 213–247 (Springer, 2019).Millennium Ecosystem Assessment Ecosystems and Human Well-Being: Synthesis (Island Press, 2005).Vihervaara, P., Rönkä, M. & Walls, M. Trends in ecosystem service research: early steps and current drivers. Ambio 39, 314–324 (2010).Article 

    Google Scholar 
    Brown, J. H. Macroecology (Univ. Chicago Press, 1995).Piovesan, G. & Biondi, F. On tree longevity. New Phytol. 231, 1318–1337 (2021).Article 

    Google Scholar 
    Matsui, K. Geography of Religion in Japan: Religious Space, Landscape, and Behavior (Springer, 2013).Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Giant Trees Follow-Up Survey Report, the Sixth Census of the National Survey of the Natural Environment (in Japanese) (Biodiversity Center of Japan & Ministry of the Environment, 2001); https://www.biodic.go.jp/reports2/6th/kyojuflup/6_kyojuflup.pdfMakino, K. Folkloristics of Giant Trees (in Japanese) (Kobunsha, 1986).Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).Article 
    CAS 

    Google Scholar 
    Muthukrishna, M. et al. Beyond Western, Educated, Industrial, Rich, and Democratic (WEIRD) psychology: measuring and mapping scales of cultural and psychological distance. Psychol. Sci. 31, 678–701 (2020).Article 

    Google Scholar 
    Twigger-Ross, C. L. & Uzzell, D. L. Place and identity processes. J. Environ. Psychol. 16, 205–220 (1996).Article 

    Google Scholar 
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, 2011).Watanabe, T., Matsunaga, K., Kanazawa, Y., Suzuki, K. & Rotherham, I. D. Landforms and distribution patterns of giant Castanopsis sieboldii trees in urban areas and western suburbs of Tokyo, Japan. Urban For. Urban Green. 60, 126997 (2021).Article 

    Google Scholar 
    Uryu, S. jpmesh: Utilities for Japanese Mesh Code. R package version 2.1.0 https://CRAN.R-project.org/package=jpmesh (2022).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Yamanouchi, T. et al. A Checklist of Japanese Plant Names (Japan Node of Global Biodiversity Information Facility, 2019); https://www.gbif.jp/v2/activities/wamei_checklist.html More

  • in

    Global conservation prioritization areas in three dimensions of crocodilian diversity

    Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: Testing the order of trait divergence. Ecology 87, 50–61 (2006).Article 

    Google Scholar 
    Somaweera, R. et al. The ecological importance of crocodylians: Towards evidence-based justification for their conservation. Biol. Rev. Camb. Philos. Soc. 95, 936–959. https://doi.org/10.1111/brv.12594 (2020).Article 

    Google Scholar 
    Swain, S. et al. Anthropogenic influence on the physico-chemical parameters of Dhamra estuary and adjoining coastal water of the Bay of Bengal. Mar. Pollut. Bull. 162, 111826. https://doi.org/10.1016/j.marpolbul.2020.111826 (2021).Article 
    CAS 

    Google Scholar 
    IUCN. IUCN Red List of Threatened Species. Version 2022.1. www.iucnredlist.org (2022).Markich, S. J. & Jeffree, R. A. (eds) The Finnis River. A Natural Laboratory of Mining Impact—Past, Present and Future (Australian Nuclear Science and Technology Organisation, 2002).
    Google Scholar 
    Vieira, L. M. et al. Mercury and methyl mercury ratios in caimans (Caiman crocodilus yacare) from the Pantanal area, Brazil. J. Environ. Monitor. 13, 280–287. https://doi.org/10.1039/c0em00561d (2011).Article 
    CAS 

    Google Scholar 
    Quintela, F. M. et al. Arsenic, lead and cadmium concentrations in caudal crests of the yacare caiman (Caiman yacare) from Brazilian Pantanal. Sci. Total Environ. 707, 135479. https://doi.org/10.1016/j.scitotenv.2019.135479 (2020).Article 
    CAS 

    Google Scholar 
    Briggs-Gonzalez, V. S., Basille, M., Cherkiss, M. S. & Mazzotti, F. J. American crocodiles (Crocodylus acutus) as restoration bioindicators in the Florida Everglades. PLoS ONE 16, e0250510. https://doi.org/10.1371/journal.pone.0250510 (2021).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Grigg, G. & Kirshner, D. Biology and Evolution of Crocodylians (CSIRO Publishing, 2015).Book 

    Google Scholar 
    Subalusky, A. L., Fitzgerald, L. A. & Smith, L. L. Ontogenetic niche shifts in the American alligator establish functional connectivity between aquatic systems. Biol. Conserv. 142, 1507–1514 (2009).Article 

    Google Scholar 
    Villamarín, F., Escobedo-Galván, A. H., Siroski, P. & Magnusson, W. E. Geographic distribution, habitat, reproduction, and conservation status of crocodilians in the Americas. In Conservation Genetics of New World Crocodilians (eds Zucoloto, R. B. et al.) (Springer, 2021).
    Google Scholar 
    Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149. https://doi.org/10.1371/journal.pone.0199149 (2018).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flag ships. Conserv. Lett. 4, 1–8. https://doi.org/10.1111/j.1755-263X.2010.00151.x (2011).Article 

    Google Scholar 
    Fleishman, E., Murphy, D. D. & Brussard, P. F. A new method for selection of umbrella species for conservation planning. Ecol. Appl. 10, 569–579 (2000).Article 

    Google Scholar 
    Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trents Ecol. Evol. 2211, 583–592 (2007).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x (2006).Article 

    Google Scholar 
    Magurran, A. E. Measuring Biological Diversity 2nd edn. (Blackwell Publishing, 2004).
    Google Scholar 
    Campos, F. S., Lourenço-de-Moraes, R., Llorente, G. A. & Solé, M. Cost-effective conservation of amphibian ecology and evolution. Sci. Adv. 36, e1602929 (2017).Article 

    Google Scholar 
    Dietz, M. S., Belote, R. T., Aplet, G. H. & Aycrigg, J. L. The world’s largest wilderness protection network after 50 years: An assessment of ecological system representation in the US National Wilderness Preservation System. Biol. Conserv. 184, 431–438 (2015).Article 

    Google Scholar 
    UNEP-WCMC, IUCN. Protected Planet Report 2016 (UNEP-WCMC and IUCN, 2016).
    Google Scholar 
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791. https://doi.org/10.1126/science.aap9565 (2018).Article 
    CAS 

    Google Scholar 
    Rodrigues, A. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643. https://doi.org/10.1038/nature02422 (2004).Article 
    CAS 

    Google Scholar 
    Ladle, R. J. & Whittaker, R. J. Conservation Biogeography 301 (Wiley-Blackwell, 2011).Book 

    Google Scholar 
    Dinerstein, E. et al. A “global safety net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, 2824 (2020).Article 

    Google Scholar 
    Lourenço-de-Moraes, R. et al. No more trouble: An economic strategy to protect taxonomic, functional and phylogenetic diversity of continental turtles. Biol. Conserv. 261, 109241. https://doi.org/10.1016/j.biocon.2021.109241 (2021).Article 

    Google Scholar 
    Brochu, C. A. Phylogenetic relationships of Necrosuchus ionensis Simpson, 1937 and the early history of caimanines. Zool. J. Linn. Soc. 163, 228–256. https://doi.org/10.1111/j.1096-3642.2011.00716.x (2011).Article 

    Google Scholar 
    Buffetaut, E. Systématique, origine et evolution des Gavialidae sud-américains. In Phylógenie et Paléobiogeography: Livre Jubilaire en l´honneur de Robert Hoffstetter (ed. Buffetaut, E.) 127–140 (Géobios, 1982).
    Google Scholar 
    Griffith, P., Lang, J. W., Turvey, S. T. & Gumbs, R. Data from: Using functional traits to identify conservation priorities for the world’s crocodylians. Zenodo. https://doi.org/10.5281/zenodo.6645415 (2022).Griffith, P., Lang, J. W., Turvey, S. T. & Gumbs, R. Using functional traits to identify conservation priorities for the world’s crocodylians. Funct. Ecol. 37, 112. https://doi.org/10.1111/1365-2435.14140 (2022).Article 
    CAS 

    Google Scholar 
    Milian-Garcia, Y. et al. Evolutionary history of Cuban crocodiles Crocodylus rhombifer and Crocodylus acutus inferred from multilocus markers. J. Exp. Zool. A 315, 358–375. https://doi.org/10.1002/jez.683 (2011).Article 

    Google Scholar 
    Rodrıguez-Soberon, R., Ross, P. & Seal, U. IUCN/SSC Conservation Breeding Specialist Group (2000).Milián-García, Y., Ramos-Targarona, R., Pérez-Fleitas, E., Espinosa-López, G. & Russello, M. A. Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: Implications for population history and in situ/ex situ conservation. Heridity 114, 272–280 (2015).Article 

    Google Scholar 
    Pacheco-Sierra, G., Gompert, Z., Dominguez-Laso, J. & Vazquez-Dominguez, E. Genetic and morphological evidence of a geographically widespread hybrid zone between two crocodile species, Crocodylus acutus and Crocodylus moreletii. Mol. Ecol. 25, 3484–3498. https://doi.org/10.1111/mec.13694 (2016).Article 

    Google Scholar 
    Borges, V. S. et al. Evolutionary significant units within populations of Neotropical broad-snouted caimans (Caiman latirostris, Daudin, 1802). J. Herpetol. 52, 282–288 (2018).Article 

    Google Scholar 
    Palmer, M. L. & Mazzoti, F. J. Structure of everglades alligator holes. Wetlands 24, 115–122 (2004).Article 

    Google Scholar 
    Marques, T. S. et al. Intraspecific isotopic niche variation in broad-snouted caiman (Caiman latirostris). Isot. Environ. Health Stud. 49, 325–335 (2013).Article 
    CAS 

    Google Scholar 
    Mascarenhas-Junior, P. B. et al. Conflicts between humans and crocodilians in urban areas across Brazil: A new approach to support management and conservation. Ethnobiol. Conserv. 10, 19. https://doi.org/10.15451/ec2021-12-10.37-1-19 (2021).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    CAS 

    Google Scholar 
    Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).Article 

    Google Scholar 
    Filogonio, R., Assis, V. B., Passos, L. F. & Coutinho, M. E. Distribution of populations of broad-snouted caiman (Caiman latirostris, Daudin 1802, Alligatoridae) in the São Francisco River basin, Brazil. Braz. J. Biol. https://doi.org/10.1590/S1519-69842010000500007 (2010).Article 

    Google Scholar 
    Marques, J. F. et al. Fires dynamics in the Pantanal: Impacts of anthropogenic activities and climate change. J. Environ. Manag. 299, 113586. https://doi.org/10.1016/j.jenvman.2021.113586 (2021).Article 

    Google Scholar 
    Mataveli, G. A. V. et al. 2020 Pantanal’s widespread fire: Short- and long-term implications for biodiversity and conservation. Biodivers. Conserv. https://doi.org/10.1007/s10531-021-02243-2 (2021).Article 
    PubMed Central 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 124–148 (2014).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).Article 
    CAS 

    Google Scholar 
    Canning, A. & Death, R. Trophic cascade direction and flow determine network flow stability. Ecol. Model. 355, 18–23 (2017).Article 

    Google Scholar 
    Wang, Y. Q., Zhu, W. Q., Huang, L., Zhou, K. Y. & Wang, R. P. Genetic diversity of Chinese alligator (Alligator sinensis) revealed by AFLP analysis: An implication on the management of captive conservation. Biodivers. Conserv. 15, 2945–2955 (2006).Article 

    Google Scholar 
    Zhai, T. et al. Effects of population bottleneck and balancing selection on the chinese alligator are revealed by locus-specific characterization of MHC genes. Sci. Rep. 7, 5549. https://doi.org/10.1038/s41598-017-05640-2 (2017).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Sharma, S. P. et al. Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India. Sci. Rep. https://doi.org/10.1038/s41598-021-85201-w (2021).Article 
    PubMed Central 

    Google Scholar 
    Nair, T. & Krishna, Y. C. Vertebrate fauna of the Chambal River basin, with emphasis on the National Chambal Sanctuary, India. J. Threat. Taxa 5, 3620–3641 (2013).Article 

    Google Scholar 
    Sharma, R. & Singh, L. Status of mugger crocodile (Crocodylus palustris) in National Chambal Sanctuary after thirty years and its implications on conservation of Gharial (Gavialis gangeticus). Zoo’s Print 30, 9–16 (2015).
    Google Scholar 
    Sinhg, H. & Rao, R. Status, threats and conservation challenges to key aquatic fauna (crocodile and dolphin) in National Chambal Sanctuary, India. Aquat. Ecosyst. Health Manag. 20, 59–70 (2017).Article 

    Google Scholar 
    UNEP-WCMC, IUCN. Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC, IUCN, 2021).
    Google Scholar 
    Smolensky, N. L., Hurtado, L. A. & Fitzgerald, L. A. DNA barcoding of Cameroon samples enhances our knowledge on the distributional limits of putative species of Osteolaemus (African dwarf crocodiles). Conserv. Genet. 16, 235–240. https://doi.org/10.1007/s10592-014-0639-3 (2014).Article 
    CAS 

    Google Scholar 
    Shirley, M. H., Villanova, V. L., Vliet, K. A. & Austin, J. D. Genetic barcoding facilitates captive and wild management of three cryptic African crocodile species complexes. Anim. Conserv. 18, 322–330 (2015).Article 

    Google Scholar 
    Shirley, M. H., Carr, A. N., Nestler, J. H., Vliet, K. A. & Brochu, C. A. Systematic revision of the living African Slender-snouted Crocodiles (Mecistops Gray, 1844). Zootaxa 4504, 151–193. https://doi.org/10.11646/zootaxa.4504.2.1 (2018).Article 

    Google Scholar 
    Murray, C. M., Russo, P., Zorrilla, A. & McMahan, C. D. Divergent morphology among populations of the New Guinea crocodile, Crocodylus novaeguineae (Schmidt, 1928): Diagnosis of an independent lineage and description of a new species. Copeia 107, 517–523. https://doi.org/10.1643/CG-19-240 (2019).Article 

    Google Scholar 
    Hekkala, E. H. et al. An ancient icon reveals new mysteries: Mummy DNA resurrects a cryptic species within the Nile crocodile. Mol. Ecol. 20, 4199–4215 (2011).Article 
    CAS 

    Google Scholar 
    Mobaraki, A. et al. Conservation status of the mugger crocodile Crocodylus palustris: Establishing a task force for a poster species of climate change. Crocodile Specialist Group Newslett. 40(3), 12–20 (2021).
    Google Scholar 
    Cunningham, S. W., Shirley, M. H. & Hekkala, E. R. Fine scale patterns of genetic partitioning in the rediscovered African crocodile, Crocodylus suchus (Saint-Hilaire 1807). PeerJ 12, e1901 (2016).Article 

    Google Scholar 
    Platt, S. G. et al. Siamese Crocodile Crocodylus siamensis. In Crocodiles. Status Survey and Conservation Action Plan 4th edn (eds Manolis, S. C. & Stevenson, C.) (Crocodile Specialist Group, 2019).
    Google Scholar 
    Arcgis Software v. Version 10.1 (2011).Lourenço-de-Moraes, R. et al. Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. J. Biogeogr. 47, 275–287 (2020).Article 

    Google Scholar 
    Pavoine, S., Vallet, J., Dufour, A. B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402. https://doi.org/10.1111/j.1600-0706.2008.16668.x (2009).Article 

    Google Scholar 
    Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20(1), 1–16 (2020).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    Pio, D. V. et al. Spatial predictions of phylogenetic diversity in conservation decision making. Conserv. Biol. 256, 1229–1239 (2011).Article 

    Google Scholar 
    Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).Article 

    Google Scholar 
    Safi, K. et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. Trans. R. Soc. B 366, 2536–2544 (2011).Article 

    Google Scholar 
    Trindade-Filho, J., Carvalho, R. A., Brito, D. & Loyola, R. D. How does the inclusion of data deficient species change conservation priorities for amphibians in the Atlantic Forest?. Biodivers. Conserv. 21, 2709–2718 (2012).Article 

    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).
    Google Scholar 
    Swenson, N. G. Functional and Phylogenetic Ecology in R (Springer, 2014).Book 
    MATH 

    Google Scholar 
    Mouchet, M., Villéger, S., Mason, N. W. H. & Mouillo, D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).Article 

    Google Scholar 
    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).Article 
    CAS 

    Google Scholar 
    Sharp, R. et al. InVEST 3.10.2.post28+ug.ga4e401c.d20220324 User’s Guide (The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2020).
    Google Scholar 
    Lourenço-de-Moraes, R. et al. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Sci. Rep. 9, 8523. https://doi.org/10.1038/s41598-019-44732-z (2019).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Sánchez-Fernandez, D. & Abellán, P. Using null models to identify underrepresented species in protected areas: A case study using European amphibians and reptiles. Biol. Conserv. 184, 290–299 (2015).Article 

    Google Scholar  More

  • in

    Effects of thinning on soil nutrient availability and fungal community composition in a plantation medium-aged pure forest of Picea koraiensis

    Yang, B., Pang, X. Y., Hu, B., Bao, W. K. & Tian, G. L. Does thinning-induced gap size result in altered soil microbial community in pine plantation in eastern Tibetan Plateau? Ecol. Evol. 7(9), 2986–2993 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrés, B. O., Ricardo, R. P., Raquel, O. & Mirendel, R. Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands. For. Ecol. Manag. 391, 309–320 (2017).Article 

    Google Scholar 
    Hart, B. T. N., Smith, J. E., Luoma, D. L. & Hatten, J. A. Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon. For. Ecol. Manag. 422, 11–22 (2018).Article 

    Google Scholar 
    Ge, Z. M. et al. Effects of varying thinning regimes on carbon uptake, total stem wood growth, and timber production in Norway spruce (Picea abies) stands in southern Finland under the changing climate. Ann. For. Sci. 68(2), 371–383 (2011).Article 

    Google Scholar 
    Panayotov, M. et al. Climate extremes during high competition contribute to mortality in unmanaged self-thinning Norway spruce stands in Bulgaria. For. Ecol. Manag. 369, 74–88 (2016).Article 

    Google Scholar 
    Depauw, L. et al. Interactive effects of past land use and recent forest management on the understorey community in temperate oak forests in South Sweden. J. Veg. Sci. 30(5), 917–928 (2019).Article 

    Google Scholar 
    Soalleiro, R. R., Murias, M. B. & Gonzalez, J. G. A. Evaluation through a simulation model of nutrient exports in fast-growing southern European pine stands in relation to thinning intensity and harvesting operations. Ann. For. Sci. 64(4), 375–384 (2007).Article 

    Google Scholar 
    Trentini, C. P. et al. Thinning of loblolly pine plantations in subtropical Argentina: Impact on microclimate and understory vegetation. For. Ecol. Manag. 384, 236–247 (2017).Article 

    Google Scholar 
    Baena, C. W. et al. Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain). For. Ecol. Manag. 308, 223–230 (2013).Article 

    Google Scholar 
    He, Z. B. et al. Responses of soil organic carbon, soil respiration, and associated soil properties to long-term thinning in a semi-arid spruce plantation in northwestern China. Land Degrad. Dev. 29(12), 4387–4396 (2018).Article 

    Google Scholar 
    Rambo, T. R. & North, M. P. Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. For. Ecol. Manag. 257(2), 435–442 (2009).Article 

    Google Scholar 
    Zhou, L. L. et al. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China. Environ. Sci. Pollut. Res. 23(23), 24135–24150 (2016).Article 
    CAS 

    Google Scholar 
    Collins, C. G., Carey, C. J., Aronson, E. L., Kopp, C. W. & Diez, J. M. Direct and indirect effects of native range expansion on soil microbial community structure and function. J. Ecol. 104(5), 1271–1283 (2016).Article 

    Google Scholar 
    Çömez, A., Tolunay, D. & Güner, ŞT. Litterfall and the effects of thinning and seed cutting on carbon input into the soil in Scots pine stands in Turkey. Eur. J. Forest Res. 138(1), 1–14 (2019).Article 

    Google Scholar 
    Ulvcrona, K. A., Karlsson, K. & Ulvcrona, T. Identifying the biological effects of pre-commercial thinning on diameter growth in young Scots pine stands. Scand. J. For. Res. 29(5), 427–435 (2014).Article 

    Google Scholar 
    Chen, X. L. et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation. Appl. Soil. Ecol. 92, 35–44 (2015).Article 

    Google Scholar 
    Veselá, P., Vašutová, M., Edwards- Jonášová, M. & Cudlin, P. Soil fungal community in norway spruce forests under bark beetle attack. Forests 10(2), 109 (2019).Article 

    Google Scholar 
    Ardestani, M. M., Jílková, V., Bonkowski, M. & Frouz, J. The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil. Plant Ecol. 220(9), 789–800 (2019).Article 

    Google Scholar 
    Sapsford, S. J., Paap, T., Hardy, G. E. S. J. & Burgess, T. I. The “chicken or the egg”: Which comes first, forest tree decline or loss of mycorrhizae? Plant Ecol. 218(9), 1093–1106 (2017).Article 

    Google Scholar 
    Jirout, J., Šimek, M. & Elhottová, D. Inputs of nitrogen and organic matter govern the composition of fungal communities in soil disturbed by overwintering cattle. Soil Biol. Biochem. 43(3), 647–656 (2011).Article 
    CAS 

    Google Scholar 
    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505(7484), 543–545 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iwaoka, C. et al. The impacts of soil fertility and salinity on soil nitrogen dynamics mediated by the soil microbial community beneath the halophytic Shrub Tamarisk. Microb. Ecol. 75(4), 985–996 (2017).Article 
    PubMed 

    Google Scholar 
    Bahnmann, B. et al. Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biol. Biochem. 119, 162–173 (2018).Article 
    CAS 

    Google Scholar 
    Ling, J. J. et al. Genotype by environment interaction analysis of growth of Picea koraiensis families at different sites using BLUP-GGE. New For. 52(1), 113–127 (2021).Article 

    Google Scholar 
    Zhang, J. B., Wang, L. F., Na, X., Zhang, T. T. & San-Ping, A. N. Primary report on introduction of Picea balfouriana and Picea koraiensis in Gansu. J. Gansu For. Sci. Technol. 44(02), 16–19+29 (2019).
    Google Scholar 
    Yin, L. M. et al. Arbuscular mycorrhizal trees cause a higher carbon to nitrogen ratio of soil organic matter decomposition via rhizosphere priming than ectomycorrhizal trees. Soil Biol. Biochem. 157, 108246 (2021).Article 
    CAS 

    Google Scholar 
    Zhou, L. & Wang, S. L. Effects of mixed tree species on soil nutrients in Picea koraiensis plantations. J. Northeast For. Univ. 47(2), 37–41 (2019).MathSciNet 
    CAS 

    Google Scholar 
    Cabon, A. et al. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. For. Ecol. Manag. 409, 333–342 (2018).Article 

    Google Scholar 
    Splawinski, T. B. et al. Precommercial thinning of Picea mariana and Pinus banksiana: Impact of treatment timing and competitors on growth response. For. Sci. 63(1), 62–70 (2017).Article 

    Google Scholar 
    Bai, S. H. et al. Effects of forest thinning on soil-plant carbon and nitrogen dynamics. Plant Soil 411(1–2), 437–449 (2016).
    Google Scholar 
    D’Amato, A. W., Troumbly, S. J., Saunders, M. R., Puettmann, K. J. & Albers, M. A. Growth and survival of Picea glauca following thinning of plantations affected by eastern spruce budworm. North. J. Appl. For. 28(2), 72–78 (2011).Article 

    Google Scholar 
    Olivar, J., Bogino, S., Rathgeber, C., Bonnesoeur, V. & Bravo, F. Thinning has a positive effect on growth dynamics and growth–climate relationships in Aleppo pine (Pinus halepensis) trees of different crown classes. Ann. For. Sci. 71(3), 395–404 (2014).Article 

    Google Scholar 
    Weiskittel, A. R., Kenefic, L. S., Seymour, R. S. & Phillips, L. M. Long-term effects of precommercial thinning on the stem dimensions, form and branch characteristics of red spruce and balsam fir crop trees in Maine, USA. Silva Fennica 43(3), 397–409 (2009).Article 

    Google Scholar 
    Repola, J., Hökkä, H. & Penttilä, T. Thinning intensity and growth of mixed spruce-birch stands on drained peatlands in Finland. Silva Fennica 40(1), 83–99 (2006).Article 

    Google Scholar 
    Misson, L., Vincke, C. & Devillez, F. Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) Karst.) stands. For. Ecol. Manag. 177(1–3), 51–63 (2003).Article 

    Google Scholar 
    Kim, S., Kim, C., Han, S. H., Lee, S. T. & Son, Y. A multi-site approach toward assessing the effect of thinning on soil carbon contents across temperate pine, oak, and larch forests. For. Ecol. Manag. 424, 62–70 (2018).Article 

    Google Scholar 
    Gliksman, D. et al. Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant Soil 422(1–2), 317–329 (2018).Article 
    CAS 

    Google Scholar 
    Achat, D. L., Fortin, M., Landmann, G., Ringeval, B. & Augusto, L. Forest soil carbon is threatened by intensive biomass harvesting. Sci. Rep. 5, 15991 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jurgensen, M. F. et al. Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. For. Sci. 43(2), 234–251 (1997).
    Google Scholar 
    Blanco, J. A., Imbert, J. B. & Castillo, F. J. Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the pyrenees. Ecol. Appl. 19(3), 682–698 (2009).Article 
    PubMed 

    Google Scholar 
    Steer, J. & Harris, J. A. Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol. Biochem. 32(6), 869–878 (2000).Article 
    CAS 

    Google Scholar 
    Coulombe, D., Sirois, L. & Paré, D. Effect of harvest gap formation and thinning on soil nitrogen cycling at the boreal–temperate interface. Can. J. For. Res. 47(3), 308–318 (2017).Article 
    CAS 

    Google Scholar 
    Hagerman, S. M., Jones, M. D., Bradfield, G. E. & SMSakakibara, S. M. Ectomycorrhizal colonization of Picea engelmannii × Picea glauca seedlings planted across cut blocks of different sizes. Can. J. For. Res. 29(12), 1856–1870 (1999).Article 

    Google Scholar 
    Ogo, S., Yamanaka, T., Akama, K., Nagakura, J. & Yamaji, K. Influence of ectomycorrhizal colonization on cesium uptake by Pinus densiflora seedlings. Mycobiology 46(4), 388–395 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sebastiana, M. et al. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak. Mycorrhiza 28(3), 247–258 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jurgensen, M., Tarpey, R., Pickens, J., Kolka, R. & Palik, B. Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Sci. Soc. Am. J. 76(4), 1418–1425 (2012).Article 
    CAS 

    Google Scholar 
    Mosca, E., Montecchio, L., Barion, G., Dal Cortivo, C. & Vamerali, T. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps. Ann. Bot. 119(7), 1235–1246 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, X. & Christie, P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42(2), 201–207 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hawkes, C. V. et al. Fungal community responses to precipitation. Glob. Change Biol. 17(4), 1637–1645 (2011).Article 

    Google Scholar 
    McGuire, K. L., Fierer, N., Bateman, C., Treseder, K. K. & Turner, B. L. Fungal community composition in Neotropical rain forests: The influence of tree diversity and precipitation. Microb. Ecol. 63(4), 804–812 (2012).Article 
    PubMed 

    Google Scholar 
    Allison, S. D., Hanson, C. A. & Treseder, K. K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. 39(8), 1878–1887 (2007).Article 
    CAS 

    Google Scholar 
    Van Wyk, D. A. B., Adeleke, R., Rhode, O. H. J., Bezuidenhout, C. C. & Mienie, C. Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Bt-maize cultivation under field conditions in North West Province of South Africa. J. Basic Microbiol. 57(9), 781–792 (2017).Article 
    PubMed 

    Google Scholar 
    Zhao, C. C. et al. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Sci. Rep. https://doi.org/10.1038/srep24317 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowalchuk, G. A., Buma, D. S. & Boer, W. D. Peter GLK & van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81(1–4), 509 (2002).Article 
    PubMed 

    Google Scholar  More

  • in

    Adélie penguins north and east of the ‘Adélie gap’ continue to thrive in the face of dramatic declines elsewhere in the Antarctic Peninsula region

    Fraser, W., Trivelpiece, W., Ainley, D. & Trivelpiece, S. Increases in Antarctic penguin populations: Reduced competition with whales or a loss of sea ice due to environmental warming?. Polar Biol. 11, 525–531 (1992).Article 

    Google Scholar 
    Trivelpiece, W. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. PNAS 108, 7625–7628 (2011).Article 
    CAS 

    Google Scholar 
    Fraser, W. & Hofmann, E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).Article 

    Google Scholar 
    Hinke, J., Salwicka, K., Trivelpiece, S., Watters, G. & Trivelpiece, W. Divergent responses of Pygoscelis penguins reveal common environmental driver. Oecologia 153, 845–855 (2007).Article 

    Google Scholar 
    Poncet, S. & Poncet, J. Censuses of penguin populations of the Antarctic Peninsula, 1983–87. Br. Antarct. Surv. Bull. 77, 109–129 (1987).
    Google Scholar 
    Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: Winter-summer heterogeneity in the distribution of Adélie penguin populations. Found. For. Ecol. Res. West Antarct. Penins. 70, 257–272 (1996).Article 

    Google Scholar 
    Humphries, G. R. W. et al. Mapping application for penguin populations and projected dynamics (MAPPPD): Data and tools for dynamic management and decision support. Polar Rec. 53, 160–166 (2017).Article 

    Google Scholar 
    Lynch, H., Naveen, R., Trathan, P. N. & Fagan, W. F. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 1367–1377 (2012).Article 

    Google Scholar 
    Elliot, D. H., Watts, D. R., Alley, R. B. & Gracanin, T. M. Bird and seal observations at Joinville Island and offshore islands. Antarct. J. USA 13, 154–155 (1978).
    Google Scholar 
    Bender, N. A., Crosbie, K. & Lynch, H. Patterns of tourism in the Antarctic Peninsula region: A twenty-year re-analysis. Antarct. Sci. 28, 194–203 (2016).Article 

    Google Scholar 
    Lynch, H. J. & Schwaller, M. R. Mapping the abundance and distribution of Adélie penguins using Landsat-7: First steps towards an integrated multi-sensor pipeline for tracking populations at the continental scale. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie penguin. Auk 131, 457–466 (2014).Article 

    Google Scholar 
    Parkinson, C. L. & Cavalieri, D. J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6, 871–880 (2012).Article 

    Google Scholar 
    Parkinson, C. L. Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann. Glaciol. 34, 435–440 (2002).Article 

    Google Scholar 
    Jena, B. et al. Record low sea ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar cyclones. NPJ Clim. Atmos. Sci. 5, 1–15 (2022).Article 

    Google Scholar 
    Kumar, A., Yadav, J. & Mohan, R. Seasonal sea-ice variability and its trend in the Weddell Sea sector of West Antarctica. Environ. Res. Lett. 16, 024046 (2021).
    Google Scholar 
    Strass, V. H., Rohardt, G., Kanzow, T., Hoppema, M. & Boebel, O. Multidecadal warming and density loss in the deep Weddell Sea. Antarct. J. Clim. 33, 9863–9881 (2020).Article 

    Google Scholar 
    Morioka, Y. & Behera, S. K. Remote and local processes controlling decadal sea ice variability in the Weddell Sea. J. Geophys. Res. Ocean 126, e2020JC017036 (2021).Article 

    Google Scholar 
    Veytia, D. et al. Circumpolar projections of Antarctic krill growth potential. Nat. Clim. Chang. 10, 568–575 (2020).Article 

    Google Scholar 
    Humphries, G. R. et al. Predicting the future is hard and other lessons from a population time series data science competition. Ecol. Inf. 48, 1–11 (2018).Article 

    Google Scholar 
    Borowicz, A. et al. A multi-modal survey of Adèlie penguin megacolonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).Article 

    Google Scholar 
    Cimino, M., Lynch, H., Saba, V. & Oliver, M. Projected asymmetric response of Adèlie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).Article 
    CAS 

    Google Scholar 
    McClintock, J., Silva-Rodriguez, P. & Fraser, W. Southerly breeding in gentoo penguins for the eastern Antarctic Peninsula: Further evidence for unprecedented climate change. Antarct. Sci. 22, 285–286 (2010).Article 

    Google Scholar 
    Lynch, H. J., Naveen, R. & Fagan, W. F. Censuses of penguin, blue-eyed shag Phalacrocorax atriceps and southern giant petrel Macronectes giganteus populations on the Antarctic Peninsula, 2001–2007. Mar. Ornithol. 36, 83–97 (2008).
    Google Scholar 
    Dunn, M. J. et al. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLoS ONE 11, e0164025 (2016).Article 

    Google Scholar 
    Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-1, Priority Areas for Conservation. SC-CAMLR- XXXVI/17. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-2, Priority Areas for Conservation. SC-CAMLR- XXXVI/18. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Teschke, K. et al. Planning marine protected areas under the CCAMLR regime—the case of the Weddell Sea (Antarctica). Mar. Policy 124, 104370 (2021).Article 

    Google Scholar 
    Herman, R. et al. Update on the global abundance and distribution of breeding Gentoo Penguins (Pygoscelis papua). Polar Biol. 43, 1947–1956 (2020).Article 

    Google Scholar 
    Korczak-Abshire, M., Hinke, J. T., Milinevsky, G., Juáres, M. A. & Watters, G. M. Coastal regions of the northern Antarctic Peninsula are key for gentoo populations. Biol. Lett. 17, 20200708 (2021).Article 

    Google Scholar 
    Miller, A. K., Karnovsky, N. J. & Trivelpiece, W. Z. Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands. Antarct. Mar. Biol. 156, 2527–2537 (2009).Article 

    Google Scholar 
    Herman, R. W. et al. Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar. Biol. 164, 1–13 (2017).Article 
    CAS 

    Google Scholar 
    Cimino, M. A., Fraser, W. R., Irwin, A. J. & Oliver, M. J. Satellite data identify decadal trends in the quality of Pygoscelis penguin chick-rearing habitat. Glob. Chang. Biol. 19, 136–148 (2013).Article 

    Google Scholar 
    Black, C. E. A comprehensive review of the phenology of Pygoscelis penguins. Polar Biol. 39, 405–432 (2016).Article 

    Google Scholar 
    Croxall, J. P. & Kirkwood, E. The Distribution of Penguins on the Antarctic Peninsula and Islands of the Scotia Sea (British Antarctic Survey, Cambridge, UK, 1979).
    Google Scholar 
    Naveen, R. et al. Censuses of penguin, blue-eyed shag, and southern giant petrel populations in the Antarctic Peninsula region, 1994–2000. Polar Rec. 36, 323–334 (2000).Article 

    Google Scholar 
    Woehler,E. J. The Distribution and Abundance of Antarctic and Subantarctic Penguins. In SCAR Comm. on Antarctic Res. Bird Biol. Subcomm. (Cambridge University Press, 1993).Naveen, R., Lynch, H. J., Forrest, S., Mueller, T. & Polito, M. First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins. Polar Biol. 35, 1879–1888 (2012).
    Google Scholar 
    Hallermann, N., Morgenthal, G. & Rodehorst, V. Unmanned aerial systems (UAS)–case studies of vision based monitoring of ageing structures. In Int. Symp. Non-Destructive Test. Civ. Eng. (NDT-CE) 15–17 (2015).Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. & Carbonneau, P. E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 38, 421–430 (2013).Article 

    Google Scholar 
    Cavalieri, D. J., Germain, K. M. S. & Swift, C. T. Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I. J. Glaciol. 41, 455–464 (1995).Article 

    Google Scholar 
    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. Updated daily Sea Ice Index, Version 3. In Boulder, Colo.USA. NSIDC: Natl. Snow Ice Data Cent (2017).Iles, D. T. et al. Sea ice predicts long-term trends in Adélie penguin population growth, but not annual fluctuations: Results from a range-wide multiscale analysis. Glob. Change Biol. 26, 3788–3798 (2020).Article 

    Google Scholar 
    Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian graphical models using mcmc. R package version 4. https://rdrr.io/cran/rjags/ (2016).Plummer, M. et al. Jags: A program for analysis of bayesian graphical models using gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, vol. 124, 1–10 (Vienna, Austria., 2003).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Youngflesh, C. MCMCvis: Tools to visualize, manipulate, and summarize MCMC output. J. Open Sourc. Softw. 3, 640 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2. Wiley Interdiscipl. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    Kellner,K. jagsUI: A wrapper around rjags to streamline JAGS analyses. R package version 1, 2015 (2015).Herman, R. & Lynch, H. Age-structured model reveals prolonged immigration is key for colony establishment in Gentoo Penguins. Ornithol. Appl. 124, duac04 (2022).
    Google Scholar 
    Polito, M. J., Lynch, H. J., Naveen, R. & Emslie, S. D. Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar. Ecol. Prog. Ser. 421, 265–277 (2011).Article 

    Google Scholar 
    Ballerini, T., Tavecchia, G., Olmastroni, S., Pezzo, F. & Focardi, S. Nonlinear effects of winter sea ice on the survival probabilities of Adélie penguins. Oecologia 161, 253–265 (2009).Article 

    Google Scholar 
    Wilson, P. et al. Adélie penguin population change in the pacific sector of Antarctica: Relation to sea-ice extent and the Antarctic Circumpolar Current. Mar. Ecol. Prog. Ser. 213, 301–309 (2001).Article 

    Google Scholar 
    Wienecke, B. et al. Adélie penguin foraging behaviour and krill abundance along the Wilkes and Adélie land coasts, Antarctica. Deep. Sea Res. Part II Top. Stud. Oceanogr. 47, 2573–2587 (2000).Article 

    Google Scholar 
    Ainley, D. G. The Adélie Penguin: Bellwether of Climate Change (Columbia University Press, 2002).Book 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land. Antarct. Mar. Biol. 154, 813–821 (2008).Article 

    Google Scholar 
    Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: Chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).Article 

    Google Scholar 
    Ashford, J., Zane, L., Torres, J. J., La Mesa, M. & Simms, A. R. Population structure and life history connectivity of Antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean ecosystem. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem 193–234 (Springer, 2017).Pakhomov, E. & Perissinotto, R. Antarctic neritic krill Euphausia crystallorophias: Spatio-temporal distribution, growth and grazing rates. Deep. Sea Res. Part I Oceanogr. Res. Pap. 43, 59–87 (1996).Article 

    Google Scholar 
    La Mesa, M. & Eastman, J. T. Antarctic silverfish: Life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13, 241–266 (2012).Article 

    Google Scholar 
    Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea. Antarct. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).Article 
    CAS 

    Google Scholar 
    Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).Article 

    Google Scholar 
    La Mesa, M., Piñones, A., Catalano, B. & Ashford, J. Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula. Fish. Oceanogr. 24, 150–161 (2015).Article 

    Google Scholar 
    La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).Article 

    Google Scholar 
    Handley, J. et al. Marine important bird and biodiversity areas for penguins in Antarctica, targets for conservation action. Front. Mar. Sci. 7, 256 (2021).Article 

    Google Scholar 
    Brooks, C. et al. Workshop on identifying key biodiversity areas for the Southern Ocean using tracking data. In Tech.Rep. SC-CAMLR-41/BG/22, CCAMLR (2022).Lynch, H. J., Naveen, R. & Casanovas, P. Antarctic site inventory breeding bird survey data, 1994–2013: Ecological Archives E094–243. Ecology 94, 2653–2653 (2013).Article 

    Google Scholar 
    Myrcha, A., Tatur, A. & Valle, R. D. V. Numbers of Adélie penguins breeding at Hope Bay and Seymour Island rookeries (West Antarctica) in 1985. Pol. Polar Res. 8, 411–422 (1987).
    Google Scholar 
    Montalti, D. & Soave, G. E. The birds of Seymour Island, Antarctica. Ornitol. Neotrop. 13, 267–271 (2002).
    Google Scholar 
    Perchivale, P. J. et al. Updated estimate of the Breeding Population of Adélie penguins (Pygoscelis adeliae) at Penguin Point, Marambio/Seymour Island within the proposed Weddell Sea Marine Protected Area (2022). https://www.researchsquare.com/article/rs-2117503/v1.Che-Castaldo, C. et al. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise. Nat. Commun. 8, 832 (2017).Article 

    Google Scholar 
    Hinke, J. T., Trivelpiece, S. G. & Trivelpiece, W. Z. Variable vital rates and the risk of population declines in Adélie penguins from the Antarctic Peninsula region. Ecosphere 8, e01666 (2017).Article 

    Google Scholar  More

  • in

    Evaluating red tide effects on the West Florida Shelf using a spatiotemporal ecosystem modeling framework

    Brown, A. R. et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev. Aquac. 12, 1663–1688 (2020).
    Google Scholar 
    Bechard, A. Red tide at morning, tourists take warning? County-level economic effects of HABS on tourism dependent sectors. Harmful Algae 85, 101689–101689 (2019).Article 

    Google Scholar 
    Landsberg, J. H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 10, 113–390 (2002).Article 

    Google Scholar 
    Flewelling, L. J. et al. Brevetoxicosis: Red tides and marine mammal mortalities. Nature 435, 755–756 (2005).Article 
    CAS 

    Google Scholar 
    Gannon, D. P. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).Article 
    CAS 

    Google Scholar 
    Driggers, W. B. et al. Environmental conditions and catch rates of predatory fishes associated with a mass mortality on the West Florida Shelf. Estuar. Coast. Shelf Sci. 168, 40–49 (2016).Article 
    CAS 

    Google Scholar 
    Hallett, C. S., Valesini, F. J., Clarke, K. R. & Hoeksema, S. D. Effects of a harmful algal bloom on the community ecology, movements and spatial distributions of fishes in a microtidal estuary. Hydrobiologia 763, 267–284 (2016).Article 

    Google Scholar 
    Anderson, D. M. et al. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae 102, 101975–101975 (2021).Article 
    CAS 

    Google Scholar 
    Steidinger, K. A. & Haddad, K. Biologic and hydrographic aspects of red tides. Bioscience 31, 814–819 (1981).Article 

    Google Scholar 
    Soto, I. M. et al. Advection of Karenia brevis blooms from the Florida Panhandle towards Mississippi coastal waters. Harmful Algae 72, 46–64 (2018).Article 

    Google Scholar 
    Steidinger, K. A. & Ingle, R. M. Observations on the 1971 summer red tide in tampa bay, Florida1. Environ. Lett. 3, 271–278 (1972).Article 
    CAS 

    Google Scholar 
    Liu, Y. et al. Offshore forcing on the “pressure point” of the West Florida Shelf: Anomalous upwelling and its influence on harmful algal blooms. J. Geophys. Res. 121, 5501–5515 (2016).Article 

    Google Scholar 
    Liu, Y., Weisberg, R. H., Zheng, L., Heil, C. A. & Hubbard, K. A. Termination of the 2018 Florida red tide event: A tracer model perspective. Estuar. Coast. Shelf Sci. 272, 107901 (2022).Article 

    Google Scholar 
    Weisberg, R. H. & Liu, Y. Local and deep-ocean forcing effects on the West Florida continental shelf circulation and ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.863227 (2022).Article 

    Google Scholar 
    Walsh, J. J. et al. Red tides in the Gulf of Mexico: Where, when, and why? Journal of Geophysical Research: Oceans 111, (2006).Lapointe, B. E., Herren, L. W., Debortoli, D. D. & Vogel, M. A. Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae 43, 82–102 (2015).Article 
    CAS 

    Google Scholar 
    Medina, M. et al. Nitrogen-enriched discharges from a highly managed watershed intensify red tide (Karenia brevis) blooms in southwest Florida. Sci. Total Environ. 827, 154149–154149 (2022).Article 
    CAS 

    Google Scholar 
    Perkins, S. Ramping up the fight against Florida’s red tides. Proc. Natl. Acad. Sci. U.S.A. 116, 6510–6512 (2019).Article 
    CAS 

    Google Scholar 
    Skripnikov, A. et al. Using localized Twitter activity to assess harmful algal bloom impacts of Karenia brevis in Florida, USA. Harmful Algae 110, 102118–102118 (2021).Article 
    CAS 

    Google Scholar 
    SEDAR. SEDAR 33 Update – Gulf of Mexico gag grouper stock assessment report, 123. https://sedarweb.org/docs/suar/GagUpdateAssessReport_Final_0.pdf (2016).SEDAR. SEDAR 61 – Gulf of Mexico red grouper stock assessment report, 285. https://sedarweb.org/docs/sar/S61_Final_SAR.pdf (2019).SEDAR. SEDAR 10 Stock Assessment Report 2: Gulf of Mexico Gag Grouper, 250. www.sedarweb.org (2004).SEDAR. SEDAR 10 Update – Gulf of Mexico gag grouper stock assessment report. http://www.sedarweb.org (2009).SEDAR. SEDAR 72—Gulf of Mexico gag grouper stock assessment report, 318–318. https://sedarweb.org/docs/sar/S72_SAR_FINAL.pdf%0A (2021).Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).Article 

    Google Scholar 
    Steenbeek, J. et al. Making spatial-temporal marine ecosystem modelling better—A perspective. Environ. Model. Softw. 145, 105209–105209 (2021).Article 

    Google Scholar 
    Gray DiLeone, A. M. & Ainsworth, C. H. Effects of Karenia brevis harmful algal blooms on fish community structure on the West Florida Shelf. Ecol. Model. 392, 250–267 (2019).Article 

    Google Scholar 
    Perryman, H. A. et al. A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts. Ecol. Model. 416, 108890–108890 (2020).Article 

    Google Scholar 
    Mayer-Pinto, M., Ledet, J., Crowe, T. P. & Johnston, E. L. Sublethal effects of contaminants on marine habitat-forming species: A review and meta-analysis. Biol. Rev. 95, 1554–1573 (2020).Article 

    Google Scholar 
    Reis Costa, P. Impact and effects of paralytic shellfish poisoning toxins derived from harmful algal blooms to marine fish. Fish Fish. 17, 226–248 (2016).Article 

    Google Scholar 
    Dahood, A., de Mutsert, K. & Watters, G. M. Evaluating Antarctic marine protected area scenarios using a dynamic food web model. Biol. Cons. 251, 108766–108766 (2020).Article 

    Google Scholar 
    de Mutsert, K. et al. Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model. Ecol. Model. 331, 142–150 (2016).Article 

    Google Scholar 
    de Mutsert, K., Lewis, K. A., White, E. D. & Buszowski, J. End-to-end modeling reveals species-specific effects of large-scale coastal restoration on living resources facing climate change. Front. Mar. Sci. 8, 104–104 (2021).Article 

    Google Scholar 
    Bauer, B. et al. Erratum: Reducing eutrophication increases spatial extent of communities supporting commercial fisheries: A model case study (ICES Journal of Marine Science (2018) DOI: https://doi.org/10.1093/icesjms/fsy003). ICES Journal of Marine Science, 75, 1155–1155 (2018).Sadchatheeswaran, S., Branch, G. M., Shannon, L. J., Coll, M. & Steenbeek, J. A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment. Ecol. Model. 459, 109731–109731 (2021).Article 

    Google Scholar 
    Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 7, 741–741 (2020).Article 

    Google Scholar 
    Hernvann, P. Y. et al. The celtic sea through time and space: Ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front. Mar. Sci. 7, 1018–1018 (2020).Article 

    Google Scholar 
    Walters, C. Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539–554 (1999).Article 

    Google Scholar 
    Christensen, V., Walters, C. J., Pauly, D. & Forrest, R. Ecopath with Ecosim version 6 user guide. Fish. Cent. Univ. Br. Columbia Vanc. Can. 281, 1–235 (2008).
    Google Scholar 
    Okey, T. A., Mahmoudi, B., Mackinson, S., Vasconcellos, M. & Vidal-Hernandez, L. An ecosystem model of the West Florida Shelf for use in fisheries management and ecological research: Volume II. Model construction. Fish. Manag. II, 163–163 (2002).
    Google Scholar 
    Liu, Y. & Weisberg, R. H. Seasonal variability on the West Florida Shelf. Prog. Oceanogr. 104, 80–98 (2012).Article 

    Google Scholar 
    Moretzsohn, F., Chávez-Sánchez, J. A. & J.W. Tunnell, Jr. GulfBase: Resource Database for Gulf of Mexico Research. World Wide Web electronic publication (2016).Murawski, S. A., Peebles, E. B., Gracia, A., Tunnell, J. W. & Armenteros, M. Comparative abundance, species composition, and demographics of continental shelf fish assemblages throughout the Gulf of Mexico. Mar. Coast. Fish. 10, 325–346 (2018).Article 

    Google Scholar 
    Darnell, R. M. The American sea: A natural history of the gulf of Mexico. The American Sea: A Natural History of the Gulf of Mexico, 557, https://doi.org/10.5860/choice.193769 (2015).Brochure, I. Marine recreational information program: Implementation plan (2008).Florida Fish and Wildlife Conservation Commission. Commercial fisheries landings summaries (2021).Murawski, S. A. et al. How did the deepwater horizon oil spill affect coastal and continental shelf ecosystems of the Gulf of Mexico?. Oceanography 29, 160–173 (2016).Article 

    Google Scholar 
    Chagaris, D. D., Patterson, W. F. & Allen, M. S. Relative effects of multiple stressors on reef food webs in the Northern Gulf of Mexico revealed via ecosystem modeling. Front. Mar. Sci. 7, 513–513 (2020).Article 

    Google Scholar 
    South, A. rnaturalearth: world map data from Natural Earth. R package version 0.1.0. The R Foundation. https://CRAN.R-project.org/package=rnaturalearth (2017).Colleter, M. et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53 (2015).Article 

    Google Scholar 
    Ahrens, R. N., Walters, C. J. & Christensen, V. Foraging arena theory. Fish fish. 13, 41–59 (2012).Article 

    Google Scholar 
    Christensen, V. et al. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397–1412 (2014).Article 
    CAS 

    Google Scholar 
    Steenbeek, J. et al. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial–temporal data. Ecol. Model. 263, 139–151 (2013).Article 

    Google Scholar 
    Walters, C., Christensen, V., Walters, W. & Rose, K. Representation of multistanza life histories in Ecospace models for spatial organization of ecosystem trophic interaction patterns. Bull. Mar. Sci. 86, 439–459 (2010).
    Google Scholar 
    Heymans, J. J. et al. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol. Model. 331, 173–184 (2016).Article 

    Google Scholar 
    Okey, T. Simulating community effects of sea floor shading by plankton blooms over the West Florida Shelf. Ecol. Model. 172, 339–359 (2004).Article 

    Google Scholar 
    Chagaris, D. D. Ecosystem-based Evaluation of Fishery Policies and Tradeoffs on the West Florida Shelf Vol. 53, 1699 (University of Florida, 2013).
    Google Scholar 
    Chagaris, D. D., Mahmoudi, B., Walters, C. J. & Allen, M. S. Simulating the trophic impacts of fishery policy options on the west florida shelf using ecopath with ecosim. Mar. Coast. Fish. 7, 44–58 (2015).Article 

    Google Scholar 
    Chagaris, D. et al. An ecosystem-based approach to evaluating impacts and management of invasive lionfish. Fisheries 42, 421–431 (2017).Article 

    Google Scholar 
    Chagaris, D. West Florida Shelf Ecosystem Model. University of Florida. https://ufdc.ufl.edu/IR00011604/00001%0A West Florida Shelf Ecosystem Model (2021).Vilas, D. Spatiotemporal Ecosystem Dynamics on the West Florida Shelf: Prediction, Validation, and Application to Red Tides and Stock Assessment (University of Florida, 2022).
    Google Scholar 
    Chassignet, E. P. et al. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 65, 60–83 (2007).Article 

    Google Scholar 
    NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 3—Florida and East Gulf of Mexico. https://doi.org/10.7289/V5W66HP (2001).NASA. Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Earth Data (2018).Casey, L. Nutrient and pesticide data collected from the USGS National Water Quality Network and previous networks, 1950–2020: U.S. Geological Survey, https://doi.org/10.5066/P9P2PF1N (2021).Chagaris, D. & Vilas, D. NOAA RESTORE Science Program: Ecosystem modeling to improve fisheries management in the Gulf of Mexico: model inputs and outputs for the West Florida Shelf, 1985–01–01 to 2018–12–31 (NCEI Accession 0242339), https://doi.org/10.25921/t26e-wj91. (2022).Püts, M. et al. Insights on integrating habitat preferences in process-oriented ecological models—A case study of the southern North Sea. Ecol. Model. 431, 109189–109189 (2020).Article 

    Google Scholar 
    Vilas, D., Fletcher, R. J. Jr., Siders, Z. A. & Chagaris, D. Understanding the temporal dynamics of estimated environmental niche hypervolumes for marine fishes. Ecol. Evol. 12, e9604 (2022).Article 

    Google Scholar 
    Grubbs, R. D., Musick, J. A., Conrath, C. L. & Romine, J. G. Long-term movements, migration, and temporal delineation of a summer nursery for Juvenile Sandbar Sharks in the Chesapeake Bay region. In Shark Nursery Grounds of the Gulf of Mexico and the East Coast Waters of the United States. American Fisheries Society Symposium 50 Vol. 50 (eds Grubbs, R. D. et al.) 87–107 (American Fisheries Society, 2007).
    Google Scholar 
    Addis, D. T., Patterson, W. F., Dance, M. A. & Ingram, G. W. Implications of reef fish movement from unreported artificial reef sites in the northern Gulf of Mexico. Fish. Res. 147, 349–358 (2013).Article 

    Google Scholar 
    Akins, J. L., Morris, J. A. & Green, S. J. In situ tagging technique for fishes provides insight into growth and movement of invasive lionfish. Ecol. Evol. 4, 3768–3777 (2014).Article 

    Google Scholar 
    Chen, Z., Xu, S., Qiu, Y., Lin, Z. & Jia, X. Modeling the effects of fishery management and marine protected areas on the Beibu Gulf using spatial ecosystem simulation. Fish. Res. 100, 222–229 (2009).Article 

    Google Scholar 
    Steenbeek, J. et al. Ecopath with ecosim as a model-building toolbox: Source code capabilities, extensions, and variations. Ecol. Model. 319, 178–189 (2016).Article 

    Google Scholar 
    Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007).Article 

    Google Scholar 
    Hu, C. et al. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ. 97, 311–321 (2005).Article 

    Google Scholar 
    Chagaris, D., Vilas, D., Siders, Z. A. & Sinnickson, D. Monthly maps of red tide on the West Florida Shelf 2002–2021: A simple approach combining remote sensing and in situ measurements (in prep).Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute. Statewide harmful algal bloom karenia brevis current status map (2022).Wickham, H. et al. ggplot2: Create elegant data visualisations using the grammar of graphics (2016).Landsberg, J. H., Flewelling, L. J. & Naar, J. Karenia brevis red tides, brevetoxins in the food web, and impacts on natural resources: Decadal advancements. Harmful Algae 8, 598–607 (2009).Article 
    CAS 

    Google Scholar 
    Gianelli, I., Ortega, L. & Defeo, O. Modeling short-term fishing dynamics in a small-scale intertidal shellfishery. Fish. Res. 209, 242–250 (2019).Article 

    Google Scholar 
    Moore, S. K. et al. An index of fisheries closures due to harmful algal blooms and a framework for identifying vulnerable fishing communities on the U.S. West Coast. Mar. Policy 110, 103543–103543 (2019).Article 

    Google Scholar 
    GSMFC. SEAMAP: Environmental and Biological Atlas of the Gulf of Mexico. www.seamap.org (2020).Bechard, A. Harmful algal blooms and tourism: The economic impact to counties in Southwest Florida. Rev. Reg. Stud. 50, 170–188 (2020).
    Google Scholar 
    Foley, A. M. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).Article 

    Google Scholar 
    Karnauskas, M. et al. Timeline of severe red tide events on the West Florida Shelf: insights from oral histories. http://sedarweb.org/docs/wpapers/S61_WP_20_Karnauskasetal_red_tide.pdf (2019).Sagarese, S. R., Gruss, A., Karnauskas, M. & Walter, J. F. Ontogenetic spatial distributions of red grouper (Epinephelus morio) within the northeastern Gulf of Mexico and spatio‐ temporal overlap with red tide events, 35–35. http://sedarweb.org/docs/wpapers/S42_DW_04_Red_tide_distribution.pdf (2014).Sagarese, S. R., Vaughan, N. R., Walter, J. F. & Karnauskas, M. Enhancing single-species stock assessments with diverse ecosystem perspectives: A case study for gulf of mexico red grouper (epinephelus morio) and red tides. Can. J. Fish. Aquat. Sci. 78, 1168–1180 (2021).Article 

    Google Scholar 
    Sagarese, S. R. & Harford, W. J. Evaluating the risks of red tide mortality misspecification when modeling stock dynamics. Fish. Res. 250, 106271–106271 (2022).Article 

    Google Scholar 
    Whitehouse, G. A. & Aydin, K. Y. Assessing the sensitivity of three Alaska marine food webs to perturbations: An example of Ecosim simulations using Rpath. Ecol. Model. 429, 109074–109074 (2020).Article 

    Google Scholar 
    Walter, J. F. et al. Satellite derived indices of red tide severity for input for Gulf of Mexico Gag grouper stock assessment. SEDAR33-DW08 SEDAR. North Charlest. S. C. 43, 40–40 (2013).
    Google Scholar 
    Jackson, M. C., Pawar, S. & Woodward, G. The temporal dynamics of multiple stressor effects: From individuals to ecosystems. Trends Ecol. Evol. 36, 402–410 (2021).Article 

    Google Scholar 
    Walters, S., Lowerre-Barbieri, S., Bickford, J., Tustison, J. & Landsberg, J. H. Effects of Karenia brevis red tide on the spatial distribution of spawning aggregations of sand seatrout Cynoscion arenarius in Tampa Bay Florida. Mar. Ecol. Prog. Ser. 479, 191–202 (2013).Article 

    Google Scholar 
    Reynolds, D. A., Yoo, M. J., Dixson, D. L. & Ross, C. Exposure to the Florida red tide dinoflagellate, Karenia brevis, and its associated brevetoxins induces ecophysiological and proteomic alterations in Porites astreoides. PLoS One 15, e0228414–e0228414 (2020).Article 
    CAS 

    Google Scholar 
    Bornman, E., Cowley, P. D., Adams, J. B. & Strydom, N. A. Daytime intra-estuary movements and harmful algal bloom avoidance by Mugil cephalus (family Mugilidae). Estuar. Coast. Shelf Sci. 260, 107492–107492 (2021).Article 
    CAS 

    Google Scholar 
    Moreira-Santos, M., Ribeiro, R. & Araújo, C. V. M. What if aquatic animals move away from pesticide-contaminated habitats before suffering adverse physiological effects? A critical review. Crit. Rev. Environ. Sci. Technol. 49, 989–1025 (2019).Article 
    CAS 

    Google Scholar 
    Schreck, C. B. & Tort, L. The concept of stress in fish. In Fish Physiology Vol. 35 (eds Schreck, C. B. & Tort, L.) 1–34 (Elsevier, 2016).
    Google Scholar 
    Madin, E. M. P., Dill, L. M., Ridlon, A. D., Heithaus, M. R. & Warner, R. R. Human activities change marine ecosystems by altering predation risk. Glob. Change Biol. 22, 44–60 (2016).Article 

    Google Scholar 
    Walsh, J. R., Carpenter, S. R. & Van Der Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. U.S.A. 113, 4081–4085 (2016).Article 
    CAS 

    Google Scholar 
    Short, J. W. et al. Evidence for ecosystem-level trophic cascade effects involving gulf menhaden (Brevoortia patronus) triggered by the Deepwater horizon blowout. J. Mar. Sci. Eng. 9, 1–20 (2021).Article 

    Google Scholar 
    Zohdi, E. & Abbaspour, M. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction. Int. J. Environ. Sci. Technol. 16, 1789–1806 (2019).Article 

    Google Scholar 
    Weisberg, R. H., Barth, A., Alvera-Azcarate, A. & Zheng, L. A coordinated coastal ocean observing and modeling system for the West Florida Continental Shelf. Harmful Algae 8, 585–597 (2009).Article 

    Google Scholar 
    Turley, B. D., Karnauskas, M., Campbell, M. D., Hanisko, D. S. & Kelble, C. R. Relationships between blooms of Karenia brevis and hypoxia across the West Florida Shelf. Harmful Algae 114, 102223 (2022).Article 

    Google Scholar 
    Fulton, E. A., Smith, A. D., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: Insights from ecosystem-level management strategy evaluation. PLoS One 9, e84242 (2014).Article 

    Google Scholar 
    Flynn, K. J. & McGillicuddy, D. J. Modeling marine harmful algal blooms: Current status and future prospects. Harmful Algal Blooms https://doi.org/10.1002/9781118994672.ch3 (2018).Article 

    Google Scholar 
    Thorson, J. T. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish. Res. 210, 143–161 (2019).Article 

    Google Scholar 
    Fossum, T. O., Travelletti, C., Eidsvik, J., Ginsbourger, D. & Rajan, K. Learning excursion sets of vector-valued gaussian random fields for autonomous ocean sampling. Ann. Appl. Stat. 15, 597–618 (2021).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Fu, F. X., Place, A. R., Garcia, N. S. & Hutchins, D. A. CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum. Aquat. Microb. Ecol. 59, 55–65 (2010).Article 

    Google Scholar 
    Hardison, D. R., Sunda, W. G., Shea, D. & Litaker, R. W. Increased toxicity of Karenia brevis during phosphate limited growth: Ecological and evolutionary implications. PLoS One 8, e58545–e58545 (2013).Article 
    CAS 

    Google Scholar 
    Errera, R. M., Yvon-Lewis, S., Kessler, J. D. & Campbell, L. Reponses of the dinoflagellate Karenia brevis to climate change: PCO2 and sea surface temperatures. Harmful Algae 37, 110–116 (2014).Article 
    CAS 

    Google Scholar 
    Wells, M. L. et al. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 91, 101632–101632 (2020).Article 

    Google Scholar 
    Wolny, J. L. et al. Current and future remote sensing of harmful algal blooms in the chesapeake bay to support the shellfish industry. Front. Mar. Sci. 7, 337–337 (2020).Article 

    Google Scholar 
    Reum, J. C. P. et al. It’s not the destination, It’s the journey: Multispecies model ensembles for ecosystem approaches to fisheries management. Front. Mar. Sci. 8, 75–75 (2021).Article 

    Google Scholar 
    Howell, D. et al. Combining ecosystem and single-species modeling to provide ecosystem-based fisheries management advice within current management systems. Front. Mar. Sci. 7, 607831 (2021).Article 

    Google Scholar 
    McPherson, W. C. and J. C. and J. A. and Y. X. and J. shiny: Web application framework for R. R package version 1.4.0, 115–115 (2019). More