More stories

  • in

    Aerial transport of bacteria by dust plumes in the Eastern Mediterranean revealed by complementary rRNA/rRNA-gene sequencing

    Katra, I. et al. Richness and diversity in dust stormborne biomes at the Southeast Mediterranean. Sci. Rep. 4, 5265 (2014).CAS 

    Google Scholar 
    Kellogg, C. A. & Griffin, D. W. Aerobiology and the global transport of desert dust. Trends Ecol. Evolution 21, 638–644 (2006).
    Google Scholar 
    Mazar, Y., Cytryn, E., Erel, Y. & Rudich, Y. Effect of dust storms on the atmospheric microbiome in the eastern Mediterranean. Environ. Sci. Technol. 50, 4194–4202 (2016).CAS 

    Google Scholar 
    Gat, D., Mazar, Y., Cytryn, E. & Rudich, Y. Origin-dependent variations in the atmospheric microbiome community in Eastern Mediterranean Dust Storms. Environ. Sci. Technol. 51, 6709–6718 (2017).CAS 

    Google Scholar 
    Lang-Yona, N. et al. Links between airborne microbiome, meteorology, and chemical composition in northwestern Turkey. Sci. Total Environ. 725, 138227 (2020).CAS 

    Google Scholar 
    Gat, D. et al. Size-resolved community structure of bacteria and fungi transported by dust in the Middle East. Front. Microbiol. 12 (2021) https://doi.org/10.3389/fmicb.2021.744117.Hill, T. C. J. et al. Sources of organic ice nucleating particles in soils. Atmos. Chem. Phys. 16, 7195–7211 (2016).CAS 

    Google Scholar 
    Pandey, R. et al. Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv. 2, e1501630 (2016).
    Google Scholar 
    Fröhlich-Nowoisky, J. et al. Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences 12, 1057–1071 (2015).
    Google Scholar 
    Estillore, A. D., Trueblood, J. V. & Grassian, V. H. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci. 7, 6604–6616 (2016).CAS 

    Google Scholar 
    Brodie, E. L. et al. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. 104, 299–304 (2007).CAS 

    Google Scholar 
    Šantl-Temkiv, T. et al. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments. Atmos. Environ. 109, 105–117 (2015).
    Google Scholar 
    Rahav, E., Ovadia, G., Paytan, A. & Herut, B. Contribution of airborne microbes to bacterial production and N2 fixation in seawater upon aerosol deposition. Geophys. Res. Lett. 43, 719–727 (2016).CAS 

    Google Scholar 
    Failor, K. C., Schmale, D. G., Vinatzer, B. A. & Monteil, C. L. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms. ISME J. 11, 2740–2753 (2017).CAS 

    Google Scholar 
    de Araujo, G. G., Rodrigues, F., Gonçalves, F. L. T. & Galante, D. Survival and ice nucleation activity of Pseudomonas syringae strains exposed to simulated high-altitude atmospheric conditions. Sci. Rep. 9, 7768 (2019).
    Google Scholar 
    Lazaridis, M. Bacteria as Cloud Condensation Nuclei (CCN) in the Atmosphere. Atmosphere 10, 786 (2019).CAS 

    Google Scholar 
    Amato, P. et al. Active microorganisms thrive among extremely diverse communities in cloud water. PLOS ONE 12, e0182869 (2017).
    Google Scholar 
    Amato, P. et al. Metatranscriptomic exploration of microbial functioning in clouds. Sci. Rep. 9, 4383 (2019).
    Google Scholar 
    Vaïtilingom, M. et al. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc. Natl. Acad. Sci. 110, 559–564 (2013).
    Google Scholar 
    Triadó-Margarit, X., Cáliz, J. & Casamayor, E. O. A long-term atmospheric baseline for intercontinental exchange of airborne pathogens. Environ. Int. 158, 106916 (2022).
    Google Scholar 
    Brodie, E. L. et al. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. 104, 299 (2007).CAS 

    Google Scholar 
    Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol 4, 925–932 (2019).CAS 

    Google Scholar 
    Mayol, E. et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat. Commun. 8, 201 (2017).
    Google Scholar 
    Favet, J. et al. Microbial hitchhikers on intercontinental dust: catching a lift in Chad. ISME J. 7, 850–867 (2013).CAS 

    Google Scholar 
    Cáliz, J., Triadó-Margarit, X., Camarero, L. & Casamayor, E. O. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc. Natl. Acad. Sci. 115, 12229–12234 (2018).
    Google Scholar 
    Du, P., Du, R., Ren, W., Lu, Z. & Fu, P. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 610-611, 308–315 (2018).CAS 

    Google Scholar 
    Lang-Yona, N. et al. Links between airborne microbiome, meteorology, and chemical composition in northwestern Turkey. Sci. Total Environ. 725, 138227 (2020).CAS 

    Google Scholar 
    Gong, J., Qi, J., E, B., Yin, Y. & Gao, D. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environ. Pollut. 257, 113485 (2020).CAS 

    Google Scholar 
    Zhang, T., Li, X., Wang, M., Chen, H. & Yao, M. Time- and size-resolved bacterial aerosol dynamics in highly polluted air: new clues for haze formation mechanism. bioRxiv, 513093 (2019) https://doi.org/10.1101/513093.Wei, M. et al. Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM1.0) and fine (PM2.5) particles. Ecotoxicol. Environ. Saf. 171, 37–46 (2019).CAS 

    Google Scholar 
    Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. Isme J. 7, 2061–2068 (2013).CAS 

    Google Scholar 
    Barnard, R. L., Osborne, C. A. & Firestone, M. K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 7, 2229–2241 (2013).CAS 

    Google Scholar 
    Schostag, M. et al. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Front. Microbiol. 6 (2015) https://doi.org/10.3389/fmicb.2015.00399.Campbell, B. J., Yu, L., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl Acad. Sci. 108, 12776–12781 (2011).CAS 

    Google Scholar 
    Denef, V. J., Fujimoto, M., Berry, M. A. & Schmidt, M. L. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA Ratios among freshwater lake bacteria. Front. Microbiol.7 (2016) https://doi.org/10.3389/fmicb.2016.00606.Zhang, Y., Zhao, Z., Dai, M., Jiao, N. & Herndl, G. J. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol. Ecol. 23, 2260–2274 (2014).CAS 

    Google Scholar 
    Hospodsky, D., Yamamoto, N. & Peccia, J. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Appl Environ. Microbiol 76, 7004–7012 (2010).CAS 

    Google Scholar 
    Nieto-Caballero, M., Savage, N., Keady, P. & Hernandez, M. High fidelity recovery of airborne microbial genetic materials by direct condensation capture into genomic preservatives. J. Microbiological Methods 157, 1–3 (2019).CAS 

    Google Scholar 
    Behzad, H., Gojobori, T. & Mineta, K. Challenges and opportunities of airborne metagenomics. Genome Biol. Evol. 7, 1216–1226 (2015).CAS 

    Google Scholar 
    Šantl-Temkiv, T., Gosewinkel, U., Starnawski, P., Lever, M. & Finster, K. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol. Ecol. 94 (2018) https://doi.org/10.1093/femsec/fiy031.Klein, A. M., Bohannan, B. J. M., Jaffe, D. A., Levin, D. A. & Green, J. L. Molecular evidence for metabolically active bacteria in the atmosphere. Front. Microbiol. 7, 772–772 (2016).
    Google Scholar 
    Amato, P. et al. Active microorganisms thrive among extremely diverse communities in cloud water. PLoS One 12, e0182869 (2017).
    Google Scholar 
    Vellend, B. M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).
    Google Scholar 
    Bodenheimer, S., Lensky, I. M. & Dayan, U. Characterization of Eastern Mediterranean dust storms by area of origin; North Africa vs. Arabian Peninsula. Atmos. Environ. 198, 158–165 (2019).CAS 

    Google Scholar 
    Kishcha, P., Volpov, E., Starobinets, B., Alpert, P. & Nickovic, S. Dust dry deposition over Israel. Atmosphere 11, 197 (2020).
    Google Scholar 
    Krasnov, H., Katra, I. & Friger, M. Increase in dust storm related PM10 concentrations: A time series analysis of 2001-2015. Environ. Pollut. 213, 36–42 (2016).CAS 

    Google Scholar 
    Zittis, G. et al. Climate change and weather extremes in the eastern Mediterranean and Middle East. Rev. Geophysics 60, e2021RG000762 (2022).
    Google Scholar 
    Griffin, D. W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol Rev. 20, 459–477 (2007).
    Google Scholar 
    Prospero, J. M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. 96, 3396–3403 (1999).CAS 

    Google Scholar 
    Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L. & Lelieveld, J. Aerosol optical depth trend over the Middle East. Atmos. Chem. Phys. 16, 5063–5073 (2016).
    Google Scholar 
    Notaro, M., Alkolibi, F., Fadda, E. & Bakhrjy, F. Trajectory analysis of Saudi Arabian dust storms. J. Geophys. Res. Atmospheres 118, 6028–6043 (2013).
    Google Scholar 
    Tegen, I. & Schepanski, K. The global distribution of mineral dust. IOP Conf. Ser. Earth Environ. Sci. 7, 012001 (2009).
    Google Scholar 
    Klappenbach, J. A., Saxman, P. R., Cole, J. R. & Schmidt, T. M. rrndb: the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res. 29, 181–184 (2001).CAS 

    Google Scholar 
    Bremer, H. & Dennis, P. P. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus 3 (2008) https://doi.org/10.1128/ecosal.5.2.3.Schneider, D. A., Ross, W. & Gourse, R. L. Control of rRNA expression in Escherichia coli. Curr. Opin. Microbiol 6, 151–156 (2003).CAS 

    Google Scholar 
    Gralla, J. D. Escherichia coli ribosomal RNA transcription: regulatory roles for ppGpp, NTPs, architectural proteins and a polymerase-binding protein. Mol. Microbiol 55, 973–977 (2005).CAS 

    Google Scholar 
    Oliveira, A. et al. Insight of genus corynebacterium: ascertaining the role of pathogenic and non-pathogenic species. Front. Microbiol. 8, 1937–1937 (2017).
    Google Scholar 
    Wexler, H. M. Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol Rev. 20, 593–621 (2007).CAS 

    Google Scholar 
    Duar, R. M. et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).
    Google Scholar 
    Magzal, F. et al. Increased physical activity improves gut microbiota composition and reduces short-chain fatty acid concentrations in older adults with insomnia. Sci. Rep. 12, 2265 (2022).CAS 

    Google Scholar 
    Wang, L. et al. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism 4, 42 (2013).CAS 

    Google Scholar 
    Tavella, T. et al. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut microbes 13, 1–19 (2021).
    Google Scholar 
    Bennur, T., Kumar, A. R., Zinjarde, S. & Javdekar, V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiological Res. 174, 33–47 (2015).
    Google Scholar 
    Jones, S. E. & Elliot, M. A. Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol. 25, 522–531 (2017).CAS 

    Google Scholar 
    Gtari, M. et al. Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol. Ecol. 80, 566–577 (2012).CAS 

    Google Scholar 
    Weon, H.-Y. et al. Adhaeribacter aerophilus sp. nov., Adhaeribacter aerolatus sp. nov. and Segetibacter aerophilus sp. nov., isolated from air samples. Int. J. Syst. Evolut. Microbiol. 60, 2424–2429 (2010).CAS 

    Google Scholar 
    Marín, I. et al.) 115-133 (Springer Berlin Heidelberg, 2014).Yoon, J.-H. et al.) 1099-1113 (Springer New York, 2006).Steinberg, J. P. & Burd, E. M. in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (Eighth Edition) (eds John E. Bennett, R. Dolin, & M. J. Blaser) 2667-2683.e2664 (W.B. Saunders, 2015).Kelly, D. P., et al.) 232-249 (Springer New York, 2006).Silby, M. W., Winstanley, C., Godfrey, S. A. C., Levy, S. B. & Jackson, R. W. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 35, 652–680 (2011).CAS 

    Google Scholar 
    Hyeon, J. W. & Jeon, C. O. Roseomonas aerofrigidensis sp. nov., isolated from an air conditioner. Int. J. Syst. Evolut. Microbiol. 67, 4039–4044 (2017).CAS 

    Google Scholar 
    Battista, J. R. & Rainey, F. A. in Bergey’s Manual of Systematics of Archaea and Bacteria 1-13.Angly, F. E. et al. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events. PeerJ 4, e1511 (2016).
    Google Scholar 
    Cárdenas, A., Rodriguez-R, L. M., Pizarro, V., Cadavid, L. F. & Arévalo-Ferro, C. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease. ISME J. 6, 502–512 (2012).
    Google Scholar 
    Kämpfer, P., Lodders, N., Huber, B., Falsen, E. & Busse, H. J. Deinococcus aquatilis sp. nov., isolated from water. Int J. Syst. Evol. Microbiol 58, 2803–2806 (2008).
    Google Scholar 
    Gallego, V., Sánchez-Porro, C., García, M. T. & Ventosa, A. Roseomonas aquatica sp. nov., isolated from drinking water. Int J. Syst. Evol. Microbiol 56, 2291–2295 (2006).CAS 

    Google Scholar 
    Roskin, J., Katra, I. & Blumberg, D. G. Particle-size fractionation of eolian sand along the Sinai–Negev erg of Egypt and Israel. GSA Bull. 126, 47–65 (2014).
    Google Scholar 
    Ganor, E. & Foner, H. A. Mineral dust concentrations, deposition fluxes and deposition velocities in dust episodes over Israel. J. Geophys. Res.: Atmospheres 106, 18431–18437 (2001).CAS 

    Google Scholar 
    Amir, A., Ozel, E., Haberman, Y. & Shental, N. Achieving pan-microbiome biological insights via the dbBact knowledge base. bioRxiv, 2022.2002.2027.482174 (2022) https://doi.org/10.1101/2022.02.27.482174.Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).CAS 

    Google Scholar 
    Labeda, D. P. & Goodfellow, M. in Bergey’s Manual of Systematics of Archaea and Bacteria 1-7.Rickard, A. H. et al. Adhaeribacter aquaticus gen. nov., sp. nov., a Gram-negative isolate from a potable water biofilm. Int J. Syst. Evol. Microbiol 55, 821–829 (2005).CAS 

    Google Scholar 
    Guo, L. et al. Oligotrophic bacterium Hymenobacter latericoloratus CGMCC 16346 degrades the neonicotinoid imidacloprid in surface water. AMB Express 10, 7 (2020).CAS 

    Google Scholar 
    Philippon, T. et al. Denitrifying bio-cathodes developed from constructed wetland sediments exhibit electroactive nitrate reducing biofilms dominated by the genera Azoarcus and Pontibacter. Bioelectrochemistry 140, 107819 (2021).CAS 

    Google Scholar 
    Jurado, V., Miller, A. Z., Alias-Villegas, C., Laiz, L. & Saiz-Jimenez, C. Rubrobacter bracarensis sp. nov., a novel member of the genus Rubrobacter isolated from a biodeteriorated monument. Syst. Appl Microbiol 35, 306–309 (2012).CAS 

    Google Scholar 
    de Vries, H. J. et al. Isolation and characterization of Sphingomonadaceae from fouled membranes. npj Biofilms Microbiomes 5, 6 (2019).
    Google Scholar 
    Vacca, M. et al. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 8, 573 (2020).CAS 

    Google Scholar 
    Baldani, J. I. et al. in The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Eugene Rosenberg et al.) 919-974 (Springer Berlin Heidelberg, 2014).Dastager, S. G., et al.) 455-498 (Springer Berlin Heidelberg, 2014).Ivanova, N. et al. Complete genome sequence of Geodermatophilus obscurus type strain (G-20). Stand Genom. Sci. 2, 158–167 (2010).
    Google Scholar 
    Alonso-Reyes, D. et al. Genomic Insights of an Andean Multi-resistant Soil Actinobacterium of Biotechnological Interest. bioRxiv, 2020.2012.2021.423370 (2020) https://doi.org/10.1101/2020.12.21.423370.Kumar, C. G. & Sujitha, P. Kocuran, an exopolysaccharide isolated from Kocuria rosea strain BS-1 and evaluation of its in vitro immunosuppression activities. Enzym. Micro. Technol. 55, 113–120 (2014).CAS 

    Google Scholar 
    Raguénès, G. et al. A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, isolated from a “kopara” mat located in Rangiroa, an atoll of French Polynesia. Curr. Microbiol 49, 145–151 (2004).
    Google Scholar 
    Bailey, A. C. et al. Draft Genome Sequence of Massilia sp. Strain BSC265, Isolated from Biological Soil Crust of Moab, Utah. Genome Announc 2, e01199–01114 (2014).
    Google Scholar 
    Denef, V. J., Fujimoto, M., Berry, M. A. & Schmidt, M. L. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA Ratios among freshwater lake bacteria. Front Microbiol 7, 606 (2016).
    Google Scholar 
    Salazar, G. et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol. Ecol. 24, 5692–5706 (2015).
    Google Scholar 
    Schmidt, M. L., White, J. D. & Denef, V. J. Phylogenetic conservation of freshwater lake habitat preference varies between abundant bacterioplankton phyla. Environ. Microbiol. 18, 1212–1226 (2016).
    Google Scholar 
    Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017).
    Google Scholar 
    Doughari, H. J., Ndakidemi, P. A., Human, I. S. & Benade, S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 26, 101–112 (2011).
    Google Scholar 
    Bläckberg, A., Falk, L., Oldberg, K., Olaison, L. & Rasmussen, M. infective endocarditis due to corynebacterium species: clinical features and antibiotic resistance. Open Forum Infect. Dis. 8 (2021) https://doi.org/10.1093/ofid/ofab055.Zhang, Q. et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J. Syst. Evol. Microbiol 57, 1752–1756 (2007).CAS 

    Google Scholar 
    Lee, J.-J. et al. Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. Int. J. Syst. Evolut. Microbiol. 67, 1206–1211 (2017).CAS 

    Google Scholar 
    Alessa, O. et al. Comprehensive comparative genomics and phenotyping of methylobacterium species. Front. Microbiol. 12 (2021) https://doi.org/10.3389/fmicb.2021.740610.Titécat, M., Wallet, F., Vieillard, M. H., Courcol, R. J. & Loïez, C. Ruminococcus gnavus: an unusual pathogen in septic arthritis. Anaerobe 30, 159–160 (2014).
    Google Scholar 
    Weber, B. S., Harding, C. M. & Feldman, M. F. Pathogenic acinetobacter: from the cell surface to infinity and beyond. J. Bacteriol. 198, 880–887 (2015).
    Google Scholar 
    Hacker, E., Antunes, C. A., Mattos-Guaraldi, A. L., Burkovski, A. & Tauch, A. Corynebacterium ulcerans, an emerging human pathogen. Future Microbiol. 11, 1191–1208 (2016).CAS 

    Google Scholar 
    Smith, K. F. & Oram, D. M. in Encyclopedia of Microbiology (Third Edition) (ed Moselio Schaechter) 94-106 (Academic Press, 2009).Kovaleva, J., Degener, J. E. & van der Mei, H. C. Methylobacterium and its role in health care-associated infection. J. Clin. Microbiol 52, 1317–1321 (2014).
    Google Scholar 
    Dyer, J. & Harris, P. Paracoccus yeei—An emerging pathogen or incidental finding? Pathology 52, S123 (2020).
    Google Scholar 
    Moradali, M. F., Ghods, S. & Rehm, B. H. A. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cellular Infect. Microbiol. 7 (2017) https://doi.org/10.3389/fcimb.2017.00039.Ryan, M. P. & Adley, C. C. Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J. Hosp. Infect. 75, 153–157 (2010).CAS 

    Google Scholar 
    Souto, A., Guinda, M., Mera, A. & Pardo, F. Septic arthritis caused by Sphingomonas paucimobilis in an immunocompetent patient. Reumatol. Clin. 8, 378–379 (2012).
    Google Scholar 
    Lanoix, J. P. et al. Sphingomonas paucimobilis bacteremia related to intravenous human immunoglobulin injections. Med Mal. Infect. 42, 37–39 (2012).
    Google Scholar 
    van Bruggen, A. H., Brown, P. R. & Jochimsen, K. N. Corky root of lettuce caused by strains of a gram-negative bacterium from muck soils of Florida, new york, and wisconsin. Appl Environ. Microbiol 55, 2635–2640 (1989).
    Google Scholar 
    VAN BRUGGEN, A. H. C., JOCHIMSEN, K. N. & BROWN, P. R. Rhizomonas suberifaciens gen. nov., sp. nov., the Causal Agent of Corky Root of Lettuce. Int. J. Syst. Evolut. Microbiol. 40, 175–188 (1990).
    Google Scholar 
    Davis, J. H. & Williamson, J. R. Structure and dynamics of bacterial ribosome biogenesis. Philos. Trans. R Soc. Lond. B Biol. Sci. 372 (2017) https://doi.org/10.1098/rstb.2016.0181.Maitra, A. & Dill, K. A. Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proc. Natl Acad. Sci. 112, 406–411 (2015).CAS 

    Google Scholar 
    Klumpp, S. & Hwa, T. Traffic patrol in the transcription of ribosomal RNA. RNA Biol. 6, 392–394 (2009).CAS 

    Google Scholar 
    Jia, Y. et al. Rare taxa exhibit disproportionate cell-level metabolic activity in enriched anaerobic digestion microbial communities. mSystems 4, e00208–e00218 (2019).CAS 

    Google Scholar 
    Zhou, Y. et al. Profiling airborne microbiota in mechanically ventilated buildings across seasons in hong kong reveals higher metabolic activity in low-abundance bacteria. Environ. Sci. Technol. 55, 249–259 (2021).CAS 

    Google Scholar 
    Fessler, M., Gummesson, B., Charbon, G., Svenningsen, S. L. & Sørensen, M. A. Short-term kinetics of rRNA degradation in Escherichia coli upon starvation for carbon, amino acid or phosphate. Mol. Microbiol. 113, 951–963 (2020).CAS 

    Google Scholar 
    Lahtinen, S. J. et al. Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Lett. Appl Microbiol 46, 693–698 (2008).CAS 

    Google Scholar 
    Li, R. et al. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci. Rep. 7, 5752 (2017).
    Google Scholar 
    McKillip, J. L., Jaykus, L. A. & Drake, M. rRNA stability in heat-killed and UV-irradiated enterotoxigenic Staphylococcus aureus and Escherichia coli O157:H7. Appl Environ. Microbiol 64, 4264–4268 (1998).CAS 

    Google Scholar 
    Sheridan, G. E., Masters, C. I., Shallcross, J. A. & MacKey, B. M. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl. Environ. Microbiol. 64, 1313–1318 (1998).CAS 

    Google Scholar 
    Villarino, A., Bouvet, O. M., Regnault, B., Martin-Delautre, S. & Grimont, P. A. D. Exploring the frontier between life and death in Escherichia coli: evaluation of different viability markers in live and heat- or UV-killed cells. Res Microbiol 151, 755–768 (2000).CAS 

    Google Scholar 
    Schostag, M. D., Albers, C. N., Jacobsen, C. S. & Priemé, A. Low turnover of soil bacterial rRNA at low temperatures. Front. Microbiol. 11 (2020) https://doi.org/10.3389/fmicb.2020.00962.Emerson, J. B. et al. Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5, 86 (2017).
    Google Scholar 
    Wang, Y. et al. Characterizing microbial community viability with RNA-based high-throughput sequencing. Microbiome Version 1, posted 22 Jul, 2022 (2022) https://doi.org/10.21203/rs.3.rs-1870950/v1.Mbareche, H., Veillette, M., Bilodeau, G. J., Duchaine, C. & Schaffner, D. W. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 84, e01589–01518 (2018).CAS 

    Google Scholar 
    Pan, M., Lednicky, J. A. & Wu, C.-Y. Collection, particle sizing and detection of airborne viruses. J. Appl. Microbiol. 127, 1596–1611 (2019).CAS 

    Google Scholar 
    Nieto-Caballero, M., Savage, N., Keady, P. & Hernandez, M. High fidelity recovery of airborne microbial genetic materials by direct condensation capture into genomic preservatives. J. Microbiol Methods 157, 1–3 (2019).CAS 

    Google Scholar 
    Šantl-Temkiv, T., Gosewinkel, U., Starnawski, P., Lever, M. & Finster, K. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol Ecol 94 (2018) https://doi.org/10.1093/femsec/fiy031.Maki, T. et al. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J. Geophys. Res.: Atmospheres 124, 5579–5588 (2019).
    Google Scholar 
    Gonzalez-Martin, C., Teigell-Perez, N., Valladares, B. & Griffin, D. W. in Advances in Agronomy Vol. 127 (ed Donald Sparks) 1-41 (Academic Press, 2014).Tisch Environmental, I. (2004).Krasnov, H., Katra, I. & Friger, M. Increase in dust storm related PM10 concentrations: A time series analysis of 2001–2015. Environ. Pollut. 213, 36–42 (2016).CAS 

    Google Scholar 
    Varga, G., Újvári, G. & Kovács, J. Spatiotemporal patterns of Saharan dust outbreaks in the Mediterranean Basin. Aeolian Res. 15, 151–160 (2014).
    Google Scholar 
    Dayan, U. & Levy, I. Relationship between synoptic-scale atmospheric circulation and ozone concentrations over Israel. J. Geophys. Res.: Atmospheres 107, ACL 31-31–ACL 31-12 (2002).
    Google Scholar 
    Klein, A. M., Bohannan, B. J. M., Jaffe, D. A., Levin, D. A. & Green, J. L. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere. Front. Microbiol. 7 (2016) https://doi.org/10.3389/fmicb.2016.00772.Luhung, I. et al. Experimental parameters defining ultra-low biomass bioaerosol analysis. npj Biofilms Microbiomes 7, 37 (2021).CAS 

    Google Scholar 
    Stein, A. F. et al. Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorological Soc. 96, 2059–2077 (2015).
    Google Scholar 
    Rolph, G., Stein, A. & Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 95, 210–228 (2017).
    Google Scholar 
    Acker, J. G. & Leptoukh, G. Online analysis enhances use of NASA Earth science data. Eos, Trans. Am. Geophys. Union 88, 14–17 (2007).
    Google Scholar 
    Brauer, S. L. et al. Culturable Rhodobacter and Shewanella species are abundant in estuarine turbidity maxima of the Columbia River. Environ. Microbiol. 13, 589–603 (2011).CAS 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. Isme J. 6, 1621–1624 (2012).CAS 

    Google Scholar 
    Soergel, D. A. W., Dey, N., Knight, R. & Brenner, S. E. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 6, 1440–1444 (2012).CAS 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
    Google Scholar 
    Martin-Fernandez, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Model. 15 (2015) https://doi.org/10.1177/1471082×14535524.Palarea-Albaladejo, J. & Martin-Fernandez, J. A. zCompositions—R Package for multivariate imputation of left-censored data under a compositional approach. Chemometrics Intell. Lab. Syst. 143, 85–96 (2015).CAS 

    Google Scholar 
    van den Boogaart, K. G. & Tolosana-Delgado, R. “compositions”: A unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).
    Google Scholar 
    Amato, P. et al. In Microbiology of Aerosols 1–21 (2017).Rao, A. K. & Whitby, K. T. Nonideal collection characteristics of single stage and cascade impactors. Am. Ind. Hyg. Assoc. J. 38, 174–179 (1977).CAS 

    Google Scholar 
    Jari Oksanen, F. G. B. et al. vegan: Community Ecology Package. (2020).Gilmour, S. G. In Wiley StatsRef: Statistics Reference Online.Margolin, B. H. In Wiley StatsRef: Statistics Reference Online.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).
    Google Scholar 
    Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLOS Comput. Biol. 17, e1009442 (2021).CAS 

    Google Scholar  More

  • in

    Colombian biodiversity is governed by a rich and diverse policy mix

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    CAS 

    Google Scholar 
    Gadgil, M., Berkes, F. & Folke, C. Indigenous knowledge for biodiversity conservation. Ambio 22, 151–156 (1993).
    Google Scholar 
    Gadgil, M., Berkes, F. & Folke, C. Indigenous knowledge: from local to global. Ambio 50, 967–969 (2021).Article 

    Google Scholar 
    The IPBES regional assessment report on biodiversity and ecosystem services for the Americas. IPBES https://doi.org/10.5281/zenodo.3236252 (2018).Claes, J. et al. Valuing nature conservation: a methodology for quantifying the benefits of protecting the planet’s natural capital (McKinsey & Company, 2020).Retsa, A., Schelske, O., Wilke, B., Rutherford, G. & de Jong, R. Biodiversity and ecosystem services: a business case for re/insurance (Swiss Re, 2020).Petersson, M. & Stoett, P. Lessons learnt in global biodiversity governance. Int. Environ. Agreem. Polit. Law Econ. 22, 333–352 (2022).
    Google Scholar 
    Dasgupta, P. The economics of biodiversity: the Dasgupta review. GOV.UK www.gov.uk/official-documents. (2021).Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Glob. Environ. Change 62, 1–13 (2020).Article 

    Google Scholar 
    Hale, T. & Roger, C. Orchestration and transnational climate governance. Rev. Int. Organ. 9, 59–82 (2014).Article 

    Google Scholar 
    Ring, I. & Barton, D. N. Economic instruments in policy mixes for biodiversity conservation and ecosystem governance. in Handbook of Ecological Economics (eds Martinez-Alier, J. & Muradian, R.) Ch, 17 (Edward Elgar, 2015).Von Essen, M. & Lambin, E. Jurisdictional approaches to sustainable resource use. Front. Ecol. Environ. 19, 159–167 (2021).Article 

    Google Scholar 
    Taylor, C., Pollard, S., Rocks, S. & Angus, A. Selecting policy instruments for better environmental regulation: a critique and future research agenda. Environ. Policy Gov. 22, 268–292 (2012).Article 

    Google Scholar 
    Ring, I. & Schröter-Schlaack, C. Instrument mixes for biodiversity policies. POLICYMIX Report https://policymix.nina.no (2011).Howlett, M. & Rayner, J. Design principles for policy mixes: cohesion and coherence in ‘new governance arrangements’. Policy Soc. 26, 1–18 (2007).
    Google Scholar 
    Soulé, M. The “new conservation”. Conserv. Biol. 27, 895–897 (2013).Article 

    Google Scholar 
    Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).Article 
    CAS 

    Google Scholar 
    Runhaar, H., Driessen, P. & Uittenbroek, C. Towards a systematic framework for the analysis of environmental policy integration. Environ. Policy Gov. 24, 233–246 (2014).Article 

    Google Scholar 
    Visseren-Hamakers, I. J. Integrative governance: the relationships between governance instruments taking center stage. Environ. Plan. C. Polit. Space 36, 1341–1354 (2018).Article 

    Google Scholar 
    Lafferty, W. & Hovden, E. Environmental policy integration: towards an analytical framework. Environ. Polit. 12, 1–22 (2003).Article 

    Google Scholar 
    Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2021).Article 

    Google Scholar 
    Decision adopted by the conference of the parties to the Convention on Biological Diversity. 14/3 Mainstreaming biodiversity in the energy and mining, infrastructure, manufacturing and processing sectors. Convention on Biological Diversity https://www.cbd.int/doc/decisions/cop-14/cop-14-dec-03-en.pdf (2018).Update of the zero draft of the post-2020 global biodiversity framework. Convention on Biological Diversity https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdf (2020).Whitehorn, P. R. et al. Mainstreaming biodiversity: a review of national strategies. Biol. Conserv. 235, 157–163 (2019).Article 

    Google Scholar 
    Alpízar, F. et al. Mainstreaming of natural capital and biodiversity into planning and decision-making: cases from Latin America and the Caribbean (IDB, 2020).Daily, G. Nature’s Services (Island Press, 1997).Hill, R. et al. Working with indigenous, local and scientific knowledge in assessments of nature and nature’s linkages with people. Curr. Opin. Environ. Sustain. 43, 8–20 (2020).Article 

    Google Scholar 
    Baptiste, B. et al. Greening peace in Colombia. Nat. Ecol. Evol. 1, 1–3 (2017).Article 

    Google Scholar 
    Biodiversidad en cifras. Instituto Alexander von Humboldt https://cifras.biodiversidad.co/ (2022).Censo nacional de población y vivienda. Estadísticas para grupos étnicos. DANE https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/grupos-etnicos/informacion-tecnica (2018).Boyd, E., Corbera, E. & Estrada, M. UNFCCC negotiations (pre-Kyoto to COP-9): what the process says about the politics of CDM-sinks. Int. Environ. Agreem. Polit. Law Econ. 8, 95–112 (2008).
    Google Scholar 
    Alvarez, C. F. et al. Evaluación nacional de biodiversidad y servicios ecosistémicos: resumen para tomadores de decisión. Instituto Alexander von Humboldt. http://www.humboldt.org.co/images/pdf/10721/RTDFinalv290621.pdf (2021).Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).Article 

    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).Article 

    Google Scholar 
    Laikre, L. Genetic diversity is overlooked in international conservation policy implementation. Conserv. Genet. 11, 349–354 (2010).Article 

    Google Scholar 
    Ministerio de Ambiente y Desarrollo Sostenible. Resolución 1912 del 15 de Septiembre de 2017, listado de especies silvestres amenazadas de la diversidad biológica colombiana continental y marino costera en el territorio nacional. (2017). https://www.minambiente.gov.co/wp-content/uploads/2021/10/resolucion-1912-de-2017.pdfNewton, A. C. Biodiversity risks of adopting resilience as a policy goal. Conserv. Lett. 9, 369–376 (2016).Article 

    Google Scholar 
    Jeanrenaud, S. Changing people/nature representations in international conservation discourses. IDS Bull. 33, 111–122 (2002).Article 

    Google Scholar 
    Louder, E. & Wyborn, C. Biodiversity narratives: stories of the evolving conservation landscape. Environ. Conserv. 47, 251–259 (2020).Article 

    Google Scholar 
    Bonilla-Mejía, L. & Higuera-Mendieta, I. Protected areas under weak institutions: evidence from Colombia. World Dev. 122, 585–596 (2019).Article 

    Google Scholar 
    African Development Bank Group et al. Joint statement by the Multilateral Development Banks at Paris, COP21. European Investment Bank https://www.eib.org/attachments/press/joint-mdb-statement-climate_nov-28_final.pdf (2021).Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).Article 

    Google Scholar 
    Friedman, K., Garcia, S. M. & Rice, J. Mainstreaming biodiversity in fisheries. Mar. Policy 95, 209–220 (2018).Article 

    Google Scholar 
    Turismo de naturaleza, oportunidad para conocer y proteger la biodiversidad de Colombia. MADS https://www.minambiente.gov.co/negocios-verdes/turismo-de-naturaleza-oportunidad-para-conocer-y-proteger-la-biodiversidad-de-colombia/ (2022).Pacheco, P., Schoneveld, G., Dermawan, A., Komarudin, H. & Djama, M. Governing sustainable palm oil supply: disconnects, complementarities, and antagonisms between state regulations and private standards. Regul. Gov. 14, 568–598 (2020).Article 

    Google Scholar 
    Peters, B. G. & Pierre, J. Developments in intergovernmental relations: towards multi-level governance. Policy Polit. 29, 131–135 (2001).Article 

    Google Scholar 
    Lustig, N. Fiscal redistribution in middle income countries. OECD Social, Employment and Migration Working Papers. 171 (2015).Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl Acad. Sci. USA 98, 5446–5451 (2001).Article 
    CAS 

    Google Scholar 
    Rule of law index 2020. World Justice Project https://worldjusticeproject.org/sites/default/files/documents/WJP-ROLI-2020-Online_0.pdf (2020).Recommendation of the council on policy coherence for sustainable development OECD/LEGAL/0381. OECD https://www.oecd.org/gov/pcsd/recommendation-on-policy-coherence-for-sustainable-development-eng.pdf (2019).Arellana, J., Oviedo, D., Guzman, L. A. & Alvarez, V. Urban transport planning and access inequalities: a tale of two Colombian cities. Res. Transp. Bus. Manag. https://doi.org/10.1016/j.rtbm.2020.100554 (2020).Leyes | Ministerio de Ambiente y Desarrollo Sostenible. MADS https://www.minambiente.gov.co/index.php/normativa/leyes (2021).Cavelier Adarve, I. & Rodríguez Becerra, M. in Nuevos Enfoques para el Estudio de las Relaciones Internacionales de Colombia (eds Tickner A.B. & Bitar, S.) Ch. 4 (Ediciones Uniandes-Universidad de los Andes, 2017).Política Nacional para la Gestión Integral de la biodiversidad y los Servicios Ecosistémicos (PNGIBSE) MADS (2012). https://www.minambiente.gov.co/wp-content/uploads/2021/10/Poli%CC%81tica-Nacional-de-Gestio%CC%81n-Integral-de-la-Biodiver.pdfPotts, J., Wenban-Smith, M. & Turley, L. State of sustainability initiatives review: standards and the extractive economy (IISD, 2018).Junguito Bonnet, R. El papel de los gremios en la economía colombiana. Rev. Desarro. Soc. 82, 103–131 (2019).Article 

    Google Scholar 
    Savvidou, G., Dzebo, A. & Atteridge, A. Aid Atlas: new tool to visualize development finance flows. JSTOR https://www.jstor.org/stable/resrep22982 (2019).BIOFIN- Movilizando recursos para la biodiversidad en Colombia, plan financiero. UNDP https://www.biofin.org/sites/default/files/content/knowledge_products/Plan%20Financiero%20Movilizando%20recursos%20para%20la%20biodiversidad%20en%20Colombia.pdf (2018).Echeverri, A. et al. Data for: a policy mix approach to biodiversity governance in Colombia (Dryad, 2022).Gibbs, G. Analyzing Qualitative Data (SAGE Publications, 2007).Maxwell, J. A. Qualitative Research Design: An Interactive Approach (SAGE Publications, 2012).Gould, R. K. et al. A protocol for eliciting nonmaterial values through a cultural ecosystem services frame. Conserv. Biol. 29, 575–586 (2015).Article 

    Google Scholar 
    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).Article 

    Google Scholar 
    Robinson, J. G. Ethical pluralism, pragmatism, and sustainability in conservation practice. Biol. Conserv. 144, 958–965 (2011).Article 

    Google Scholar 
    Sandbrook, C. What is conservation? Oryx 49, 565–566 (2015).Article 

    Google Scholar 
    Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).Article 

    Google Scholar 
    Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar  More

  • in

    Prioritizing India’s landscapes for biodiversity, ecosystem services and human well-being

    Levett, R. Sustainability indicators—integrating quality of life and environmental protection. J. R. Stat. Soc. A 161, 291–302 (1998).Article 

    Google Scholar 
    Harrison, P. A. Ecosystem services and biodiversity conservation: an introduction to the RUBICODE project. Biodivers. Conserv. 19, 2767–2772 (2010).Article 

    Google Scholar 
    Otero, I. et al. Biodiversity policy beyond economic growth. Conserv. Lett. 13, e12713 (2020).Article 

    Google Scholar 
    Seppelt, R., Lautenbach, S. & Volk, M. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 5, 458–463 (2013).Article 

    Google Scholar 
    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019); accessed from https://ipbes.net/document-library-categoriesDinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 325, 419–422 (2009).Article 
    CAS 

    Google Scholar 
    Bennett, E. M. et al. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 14, 76–85 (2015).Article 

    Google Scholar 
    Haines-Young, R & Potschin, M. in Ecosystem Ecology: A New Synthesis (eds Raffaelli, D. & Frid, C.) 110–139 (Cambridge Univ. Press, 2010).
    Google Scholar 
    Tallis, H. M. & Kareiva, P. Shaping global environmental decisions using socio-ecological models. Trends Ecol. Evol. 21, 562–568 (2006).Article 

    Google Scholar 
    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).Article 
    CAS 

    Google Scholar 
    Wilson, K. A. et al. Conserving biodiversity efficiently: what to do, where, and when. PLoS Biol. 5, e223 (2007).Article 

    Google Scholar 
    Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc. R. Soc. B 272, 1885–1891 (2005).Article 

    Google Scholar 
    Moilanen, A. et al. Balancing alternative land uses in conservation prioritization. Ecol. Appl. 21, 1419–1426 (2011).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 

    Google Scholar 
    Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583–592 (2007).Article 

    Google Scholar 
    Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).Article 
    CAS 

    Google Scholar 
    Watts, M. E. et al. Marxan with Zones: software for optimal conservation based land- and sea-use zoning. Environ. Model. Softw. 24, 1513–1521 (2009).Article 

    Google Scholar 
    Arkema, K. K. et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl Acad. Sci. USA` 112, 7390–7395 (2015).Article 
    CAS 

    Google Scholar 
    Wyborn, C. & Evans, M. C. Conservation needs to break free from global priority mapping. Nat. Ecol. Evol. 5, 1322–1324 (2021).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, e2602–e2610 (2013).Article 
    CAS 

    Google Scholar 
    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).Article 
    CAS 

    Google Scholar 
    Silveira, F. A. et al. Biome Awareness Disparity is BAD for tropical ecosystem conservation and restoration. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.14060 (2021).Article 

    Google Scholar 
    Bond, W. J. & Parr, C. L. Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol. Conserv. 143, 2395–2404 (2010).Article 

    Google Scholar 
    Veach, V., Di Minin, E., Pouzols, F. M. & Moilanen, A. Species richness as criterion for global conservation area placement leads to large losses in coverage of biodiversity. Divers. Distrib. 23, 715–726 (2017).Article 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).Article 

    Google Scholar 
    Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).Article 

    Google Scholar 
    First Draft of the Post-2020 Global Biodiversity Framework (CBD, 2021); accessed from www.cbd.int/conferences/post2020Westgate, M. J., Barton, P. S., Lane, P. W. & Lindenmayer, D. B. Global meta-analysis reveals low consistency of biodiversity congruence relationships. Nat. Commun. 5, 3899 (2014).Article 
    CAS 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Difficult decisions: strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).Article 

    Google Scholar 
    Madhusudhan, M. D. & Vanak, A. T. (2022). Mapping the distribution and extent of India’s semi-arid open natural ecosystems. Journal of Biogeography 00, 1–11; https://doi.org/10.1111/jbi.14471Wastelands Atlas of India 2019 (Department of Land Resources, Ministry of Rural Development and the National Remote Sensing Centre, Indian Space Research Organisation, Department of Space, Government of India, 2019); www.dolr.gov.in/documents/wasteland-atlas-of-indiaKrishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2014).Article 

    Google Scholar 
    Parida, B. R., Pandey, A. C. & Patel, N. R. Greening and browning trends of vegetation in India and their responses to climatic and non-climatic drivers. Climate 8, 92 (2020).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Martin, D. A. et al. Land-use trajectories for sustainable land system transformations: identifying leverage points in a global biodiversity hotspot. Proc. Natl Acad. Sci. USA 119, e2107747119 (2022).Article 
    CAS 

    Google Scholar 
    Pandit, M. K. & Grumbine, R. E. Potential effects of ongoing and proposed hydropower development on terrestrial biological diversity in the Indian Himalaya. Conserv. Biol. 26, 1061–1071 (2012).Article 

    Google Scholar 
    Nayak, R. et al. Bits and pieces: forest fragmentation by linear intrusions in India. Land Use Policy 99, 104619 (2020).Article 

    Google Scholar 
    Srinivasan, U. et al. Oil palm cultivation can be expanded while sparing biodiversity in India. Nat. Food 2, 442–447 (2021).Article 

    Google Scholar 
    Vasudev, D., Goswami, V. R., Srinivas, N., Syiem, B. L. N. & Sarma, A. Identifying important connectivity areas for the wide‐ranging Asian elephant across conservation landscapes of Northeast India. Divers. Distrib. 27, 2510–2526 (2021).Article 

    Google Scholar 
    Goswami, V. R., Vasudev, D., Joshi, B., Hait, P. & Sharma, P. Coupled effects of climatic forcing and the human footprint on wildlife movement and space use in a dynamic floodplain landscape. Sci. Total Environ. 758, 144000 (2021).Article 
    CAS 

    Google Scholar 
    Rodrigues, R. G., Srivathsa, A. & Vasudev, D. Dog in the matrix: envisioning countrywide connectivity conservation for an endangered carnivore. J. Appl. Ecol. 59, 223–237 (2022).Article 

    Google Scholar 
    Ghosh-Harihar, M. et al. Protected areas and biodiversity conservation in India. Biol. Conserv. 237, 114–124 (2019).Article 

    Google Scholar 
    Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open‐source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).Article 
    CAS 

    Google Scholar 
    Alves-Pinto, H. et al. Opportunities and challenges of other effective area-based conservation measures (OECMs) for biodiversity conservation. Perspect. Ecol. Conserv. 19, 115–120 (2021).
    Google Scholar 
    Joshi, A. A., Sankaran, M. & Ratnam, J. ‘Foresting’ the grassland: historical management legacies in forest-grassland mosaics in southern India, and lessons for the conservation of tropical grassy biomes. Biol. Conserv. 224, 144–152 (2018).Article 

    Google Scholar 
    Chisholm, R. A. Trade-offs between ecosystem services: water and carbon in a biodiversity hotspot. Ecol. Econ. 69, 1973–1987 (2010).Article 

    Google Scholar 
    Clark, B., DeFries, R. & Krishnaswamy, J. India’s commitments to increase tree and forest cover: consequences for water supply and agriculture production within the Central Indian Highlands. Water 13, 959 (2021).Article 

    Google Scholar 
    Paul, S., Ghosh, S., Rajendran, K. & Murtugudde, R. Moisture supply from the Western Ghats forests to water deficit east coast of India. Geophys. Res. Lett. 45, 4337–4344 (2018).Article 

    Google Scholar 
    Almond, R. E. A, Grooten, M., Juffe Bignoli, D. & Petersen, T. (eds) Living Planet Report 2022—Building a Nature-Positive Society (WWF, 2022).Srivathsa, A. et al. Opportunities for prioritizing and expanding conservation enterprise in India using a guild of carnivores as flagships. Environ. Res. Lett. 15, 064009 (2020).Article 

    Google Scholar 
    Vira, B. et al., Negotiating trade-offs: choices about ecosystem services for poverty alleviation. Econ. Polit. Wkly 67–75 (2012).Ravindranath, N. H. & Murthy, I. K. Greening India mission. Curr. Sci. 99, 444–449 (2010).
    Google Scholar 
    Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).Article 

    Google Scholar 
    Strassburg, B. B. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).Article 
    CAS 

    Google Scholar 
    Belote, R. T. et al. Beyond priority pixels: delineating and evaluating landscapes for conservation in the contiguous United States. Landsc. Urban Plan. 209, 104059 (2021).Article 

    Google Scholar 
    Bawa, K. S. et al. Securing biodiversity, securing our future: a national mission on biodiversity and human well-being for India. Biol. Conserv. 253, 108867 (2021).Article 

    Google Scholar 
    Rodgers, W. A. & Panwar, H. S. Planning a Wildlife Protected Area Network in India. Vol. 1. A Report (Wildlife Institute of India, 1988).Watts, M., Klein, C. J., Tulloch, V. J., Carvalho, S. B. & Possingham, H. P. Software for prioritizing conservation actions based on probabilistic information. Conserv. Biol. 35, 1299–1308 (2021).Article 

    Google Scholar 
    Moilanen, A. et al. Zonation: spatial conservation planning methods and software. Version 4. User Manual. C-BIG; https://core.ac.uk/download/pdf/33733621.pdf (2014).Sierra-Altamiranda, A. et al. Spatial conservation planning under uncertainty using modern portfolio theory and Nash bargaining solution. Ecol. Model. 423, 109016 (2020).Article 

    Google Scholar 
    Silvestro, D., Goria, S., Sterner, T. & Antonelli, A. Improving biodiversity protection through artificial intelligence. Nat. Sustain. 5, 415–424 (2022).Article 

    Google Scholar 
    Delavenne, J. et al. Systematic conservation planning in the eastern English Channel: comparing the Marxan and Zonation decision-support tools. ICES J. Mar. Sci. 69, 75–83 (2012).Article 

    Google Scholar 
    Roy, P. S. et al. Development of decadal (1985–1995–2005) land use and land cover database for India. Remote Sens. 7, 2401–2430 (2015).Article 

    Google Scholar 
    Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Government of India, 1968).BirdLife International World Database of Key Biodiversity Areas (KBA Partnership, version March 2021); accessed from www.keybiodiversityareas.org/kba-data/requestKoschke, L., Fürst, C., Frank, S. & Makeschin, F. A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecol. Indic. 21, 54–66 (2012).Article 

    Google Scholar 
    Sarkar, T., Mishra, M. & Singh, R. B. in Regional Development Planning and Practice (eds Mishra, M. et al.) 205–232 (Springer, 2022). More

  • in

    Reconciling oil palm and ecosystems

    Oil palm plantations can supplant once biodiverse tropical forests. As planted areas expand, it is vital to plan landscapes to better balance biodiversity and oil palm production. Strategic ‘set-asides’ offer a key approach.In recent decades, oil palm has expanded spectacularly in some of the most biodiverse areas of the tropics, especially in Indonesia and Malaysia. This expansion has caused extensive deforestation (including loss of more than 2.1 million ha of primary forests in Borneo2, as well as other forests and agroforests), and management of plantations often relies heavily on clearing, herbicides and pesticides. This has generated many direct and indirect impacts on wildlife, ecosystems, climate and human communities3. Further expansion is ongoing, and global demand continues to rise4. More

  • in

    Laboratory protocol is important to improve the correlation between target copies and metabarcoding read numbers of seed DNA in ground beetle regurgitates

    de Sousa, L. L., Silva, S. M. & Xavier, R. DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystems. Environ. DNA 1, 199–214. https://doi.org/10.1002/edn3.27 (2019).Article 

    Google Scholar 
    Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950. https://doi.org/10.1111/j.1365-294X.2011.05403.x (2012).Article 
    CAS 

    Google Scholar 
    Liu, M. X., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385. https://doi.org/10.1111/een.12831 (2020).Article 

    Google Scholar 
    Traugott, M., Thalinger, B., Wallinger, C. & Sint, D. Fish as predators and prey: DNA-based assessment of their role in food webs. J. Fish Biol. 98, 367–382. https://doi.org/10.1111/jfb.14400 (2021).Article 

    Google Scholar 
    Clare, E. L. Molecular detection of trophic interactions: Emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157. https://doi.org/10.1111/eva.12225 (2014).Article 

    Google Scholar 
    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406. https://doi.org/10.1111/mec.14734 (2019).Article 

    Google Scholar 
    Ando, H. et al. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environ. DNA 2, 391–406. https://doi.org/10.1002/edn3.117 (2020).Article 

    Google Scholar 
    Masonick, P., Hernandez, M. & Weirauch, C. No guts, no glory: Gut content metabarcoding unveils the diet of a flower-associated coastal sage scrub predator. Ecosphere. https://doi.org/10.1002/ecs2.2712 (2019).Article 

    Google Scholar 
    Eitzinger, B. et al. Assessing changes in arthropod predator–prey interactions through DNA-based gut content analysis-variable environment, stable diet. Mol. Ecol. 28, 266–280. https://doi.org/10.1111/mec.14872 (2019).Article 
    CAS 

    Google Scholar 
    Kim, T. N. et al. Using high-throughput amplicon sequencing to determine diet of generalist lady beetles in agricultural landscapes. Biol. Control. https://doi.org/10.1016/j.biocontrol.2022.104920 (2022).Article 

    Google Scholar 
    Wallinger, C. et al. The effect of plant identity and the level of plant decay on molecular gut content analysis in a herbivorous soil insect. Mol. Ecol. Resour. 13, 75–83. https://doi.org/10.1111/1755-0998.12032 (2013).Article 
    CAS 

    Google Scholar 
    Seabra, S. G. et al. PCR-based detection of prey DNA in the gut contents of the tiger-fly, Coenosia attenuata (Diptera: Muscidae), a biological control agent in Mediterranean greenhouses. Eur. J. Entomol. 118, 335–343. https://doi.org/10.14411/eje.2021.035 (2021).Article 

    Google Scholar 
    Panni, S. & Pizzolotto, R. Fast molecular assay to detect the rate of decay of Bactrocera oleae (Diptera: Tephritidae) DNA in Pterostichus melas (Coleoptera: Carabidae) gut contents. Appl. Entomol. Zool. 53, 425–431. https://doi.org/10.1007/s13355-018-0564-x (2018).Article 
    CAS 

    Google Scholar 
    Greenstone, M. H., Payton, M. E., Weber, D. C. & Simmons, A. M. The detectability half-life in arthropod predator–prey research: What it is, why we need it, how to measure it, and how to use it. Mol. Ecol. 23, 3799–3813. https://doi.org/10.1111/mec.12552 (2014).Article 

    Google Scholar 
    Fülöp, D., Szita, E., Gerstenbrand, R., Tholt, G. & Samu, F. Consuming alternative prey does not influence the DNA detectability half-life of pest prey in spider gut contents. PeerJ https://doi.org/10.7717/peerj.7680 (2019).Article 

    Google Scholar 
    Zhang, G. F., Lu, Z. C., Wan, F. H. & Lovei, G. L. Real-time PCR quantification of Bemisia tabaci (Homoptera: Aleyrodidae) B-biotype remains in predator guts. Mol. Ecol. Notes 7, 947–954. https://doi.org/10.1111/j.1471-8286.2007.01819.x (2007).Article 
    CAS 

    Google Scholar 
    Weber, D. C. & Lundgren, J. G. Detection of predation using qPCR: Effect of prey quantity, elapsed time, chaser diet, and sample preservation on detectable quantity of prey DNA. J. Insect Sci. https://doi.org/10.1673/031.009.4101 (2009).Article 

    Google Scholar 
    Paula, D. P. et al. Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics. Mol. Ecol. Resour. 15, 880–892. https://doi.org/10.1111/1755-0998.12364 (2015).Article 
    CAS 

    Google Scholar 
    Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610. https://doi.org/10.1021/ac202028g (2011).Article 
    CAS 

    Google Scholar 
    Wood, S. A. et al. A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for species-specific detection in environmental DNA. Mol. Ecol. Resour. 19, 1407–1419. https://doi.org/10.1111/1755-0998.13055 (2019).Article 
    CAS 

    Google Scholar 
    Nathan, L. M., Simmons, M., Wegleitner, B. J., Jerde, C. L. & Mahon, A. R. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environ. Sci. Technol. 48, 12800–12806. https://doi.org/10.1021/es5034052 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Kim, T. G., Jeong, S. Y. & Cho, K. S. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil. Appl. Microbiol. Biotechnol. 98, 6105–6113. https://doi.org/10.1007/s00253-014-5794-4 (2014).Article 
    CAS 

    Google Scholar 
    Thalinger, B., Pütz, Y. & Traugott, M. Endpoint PCR coupled with capillary electrophoresis (celPCR) provides sensitive and quantitative measures of environmental DNA in singleplex and multiplex reactions. PLoS ONE https://doi.org/10.1371/journal.pone.0254356 (2021).Article 

    Google Scholar 
    Mata, V. A. et al. How much is enough? Effects of technical and biological replication on metabarcoding dietary analysis. Mol. Ecol. 28, 165–175. https://doi.org/10.1111/mec.14779 (2019).Article 
    CAS 

    Google Scholar 
    Sint, D., Guenay, Y., Mayer, R., Traugott, M. & Wallinger, C. The effect of plant identity and mixed feeding on the detection of seed DNA in regurgitates of carabid beetles. Ecol. Evol. 8, 10834–10846. https://doi.org/10.1002/ece3.4536 (2018).Article 

    Google Scholar 
    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291. https://doi.org/10.1111/2041-210x.12869 (2018).Article 

    Google Scholar 
    Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x (2012).Article 
    CAS 

    Google Scholar 
    Juen, A. & Traugott, M. Amplification facilitators and multiplex PCR: Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates. Soil Biol. Biochem. 38, 1872–1879. https://doi.org/10.1016/j.soilbio.2005.11.034 (2006).Article 
    CAS 

    Google Scholar 
    Wallinger, C. et al. Evaluation of an automated protocol for efficient and reliable DNA extraction of dietary samples. Ecol. Evol. 7, 6382–6389. https://doi.org/10.1002/ece3.3197 (2017).Article 

    Google Scholar 
    Marotz, C. et al. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 62, 290–293. https://doi.org/10.2144/000114559 (2017).Article 
    CAS 

    Google Scholar 
    Dingle, T. C., Sedlak, R. H., Cook, L. & Jerome, K. R. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin. Chem. 59, 1670–1672. https://doi.org/10.1373/clinchem.2013.211045 (2013).Article 
    CAS 

    Google Scholar 
    Racki, N., Dreo, T., Gutierrez-Aguirre, I., Blejec, A. & Ravnikar, M. Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods https://doi.org/10.1186/s13007-014-0042-6 (2014).Article 

    Google Scholar 
    Juen, A. & Traugott, M. Detecting predation and scavenging by DNA gut-content analysis: A case study using a soil insect predator-prey system. Oecologia 142, 344–352. https://doi.org/10.1007/s00442-004-1736-7 (2005).Article 
    ADS 

    Google Scholar 
    Lundgren, J. G. & Lehman, M. Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS ONE https://doi.org/10.1371/journal.pone.0010831 (2010).Article 

    Google Scholar 
    Waldner, T. & Traugott, M. DNA-based analysis of regurgitates: A noninvasive approach to examine the diet of invertebrate consumers. Mol. Ecol. Resour. 12, 669–675. https://doi.org/10.1111/j.1755-0998.2012.03135.x (2012).Article 

    Google Scholar 
    Kamenova, S. et al. Comparing three types of dietary samples for prey DNA decay in an insect generalist predator. Mol. Ecol. Resour. 18, 966–973. https://doi.org/10.1111/1755-0998.12775 (2018).Article 
    CAS 

    Google Scholar 
    Cheeseman, M. T. & Pritchard, G. Spatial organization of digestive processes in an adult carabid beetle, Scaphinotus marginatus (Coleoptera: Carabidae). Can. J. Zool. 62, 1200–1203. https://doi.org/10.1139/z84-173 (1984).Article 

    Google Scholar 
    Sunderland, K. D. Diet of some predatory arthropods in cereal crops. J. Appl. Ecol. 12, 507–515. https://doi.org/10.2307/2402171 (1975).Article 

    Google Scholar 
    Sunderland, K. D., Lovei, G. L. & Fenlon, J. Diets and reproductive phenologies of the introduced ground beetles Harpalus affinis and Clivina australasiae (Coleoptera: Carabidae) in New Zealand. Aust. J. Zool. 43, 39–50. https://doi.org/10.1071/zo9950039 (1995).Article 

    Google Scholar 
    Deagle, B. E. & Tollit, D. J. Quantitative analysis of prey DNA in pinniped faeces: Potential to estimate diet composition?. Conserv. Genet. 8, 743–747. https://doi.org/10.1007/s10592-006-9197-7 (2007).Article 
    CAS 

    Google Scholar 
    Snider, A. M., Bonisoli-Alquati, A., Perez-Umphrey, A. A., Stouffer, P. C. & Taylor, S. S. Metabarcoding of stomach contents and fecal samples provide similar insights about Seaside Sparrow diet. Ornithol. Appl. https://doi.org/10.1093/ornithapp/duab060 (2022).Article 

    Google Scholar 
    Paula, D. P., Timbo, R. V., Togawa, R. C., Vogler, A. P. & Andow, D. A. Quantitative prey species detection in predator guts across multiple trophic levels by mapping unassembled shotgun reads. Mol Ecol Resour 23, 64–80. https://doi.org/10.1111/1755-0998.13690 (2023).Article 
    CAS 

    Google Scholar 
    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE https://doi.org/10.1371/journal.pone.0130324 (2015).Article 

    Google Scholar 
    Krehenwinkel, H. et al. Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci. Rep. 7, 17668. https://doi.org/10.1038/s41598-017-17333-x (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Piñol, J., San Andrés, V., Clare, E. L., Mir, G. & Symondson, W. O. C. A pragmatic approach to the analysis of diets of generalist predators: The use of next-generation sequencing with no blocking probes. Mol. Ecol. Resour. 14, 18–26. https://doi.org/10.1111/1755-0998.12156 (2014).Article 
    CAS 

    Google Scholar 
    Baksay, S. et al. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. https://doi.org/10.1038/s41598-020-61198-6 (2020).Article 

    Google Scholar 
    Valentini, A. et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach. Mol. Ecol. Resour. 9, 51–60. https://doi.org/10.1111/j.1755-0998.2008.02352.x (2009).Article 
    CAS 

    Google Scholar 
    Murray, D. C. et al. DNA-based faecal dietary analysis: A comparison of qPCR and high throughput sequencing approaches. PLoS ONE https://doi.org/10.1371/journal.pone.0025776 (2011).Article 

    Google Scholar 
    Hansen, B. K. et al. From DNA to biomass: Opportunities and challenges in species quantification of bulk fisheries products. ICES J. Mar. Sci. 77, 2557–2566. https://doi.org/10.1093/icesjms/fsaa115 (2020).Article 

    Google Scholar 
    Pawluczyk, M. et al. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal. Bioanal. Chem. 407, 1841–1848. https://doi.org/10.1007/s00216-014-8435-y (2015).Article 
    CAS 

    Google Scholar 
    Piñol, J., Mir, G., Gomez-Polo, P. & Agusti, N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Resour. 15, 819–830. https://doi.org/10.1111/1755-0998.12355 (2015).Article 
    CAS 

    Google Scholar 
    Czernik, M. et al. Fast and efficient DNA-based method for winter diet analysis from stools of three cervids: Moose, red deer, and roe deer. Acta Theriol. 58, 379–386. https://doi.org/10.1007/s13364-013-0146-9 (2013).Article 

    Google Scholar 
    Richardson, R. T. et al. Quantitative multi-locus metabarcoding and waggle dance interpretation reveal honey bee spring foraging patterns in Midwest agroecosystems. Mol. Ecol. 28, 686–697. https://doi.org/10.1111/mec.14975 (2019).Article 
    CAS 

    Google Scholar 
    Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. https://doi.org/10.1093/nar/gkl938 (2007).Article 

    Google Scholar 
    Briem, F. et al. Identifying plant DNA in the sponging-feeding insect pest Drosophila suzukii. J. Pest. Sci. 91, 985–994. https://doi.org/10.1007/s10340-018-0963-3 (2018).Article 

    Google Scholar 
    Frei, B., Guenay, Y., Bohan, D. A., Traugott, M. & Wallinger, C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. J. Pest. Sci. https://doi.org/10.1007/s10340-019-01109-5 (2019).Article 

    Google Scholar 
    Luff, M. L. The biology of the ground beetle Harpalus rufipes in a strawberry field in Northumberland. Ann. Appl. Biol. 94, 153–164. https://doi.org/10.1111/j.1744-7348.1980.tb03907.x (1980).Article 

    Google Scholar 
    Illumina. Effects of index Misassignment on multiplexing and downstream analysis. https://www.illumina.com/content/dam/illumina-marketing/documents/products/whitepapers/index-hopping-white-paper-770-2017-004.pdf?linkId=36607862 accessed 2022-11-10 (2018).Guenay-Greunke, Y., Bohan, D. A., Traugott, M. & Wallinger, C. Handling of targeted amplicon sequencing data focusing on index hopping and demultiplexing using a nested metabarcoding approach in ecology. Sci. Rep. https://doi.org/10.1038/s41598-021-98018-4 (2021).Article 

    Google Scholar 
    Staudacher, K., Wallinger, C., Schallhart, N. & Traugott, M. Detecting ingested plant DNA in soil-living insect larvae. Soil Biol. Biochem. 43, 346–350. https://doi.org/10.1016/j.soilbio.2010.10.022 (2011).Article 
    CAS 

    Google Scholar 
    Espunyes, J. et al. Comparing the accuracy of PCR-capillary electrophoresis and cuticle microhistological analysis for assessing diet composition in ungulates: A case study with Pyrenean chamois. PLoS ONE https://doi.org/10.1371/journal.pone.0216345 (2019).Article 

    Google Scholar 
    Wallinger, C. et al. Detection of seed DNA in regurgitates of granivorous carabid beetles. Bull. Entomol. Res. 105, 728–735. https://doi.org/10.1017/s000748531500067x (2015).Article 
    CAS 

    Google Scholar 
    Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol. Biol. 17, 1105–1109. https://doi.org/10.1007/bf00037152 (1991).Article 
    CAS 

    Google Scholar 
    FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. (2010).Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience https://doi.org/10.1093/gigascience/giab008 (2021).Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. Next Gener. Seq. Data Anal. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).Article 
    CAS 

    Google Scholar 
    Camacho, C. et al. BLAST plus: Architecture and applications. BMC Bioinform. https://doi.org/10.1186/1471-2105-10-421 (2009).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).Arnold, J. B. ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 4.2.0 https://CRAN.R-project.org/package=ggthemes (2019).Hebbali, A. olsrr: Tools for Building OLS Regression Models. R package version 0.5.3. https://CRAN.R-project.org/package=olsrr (2020).Fox, J. & Weisberg, S. An {R} Companion to Applied Regression. 2nd ed. (Sage, 2011).Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Zeileis, A. Econometric computing with HC and HAC covariance matrix estimators. J. Stat. Softw. 11, 1–17. https://doi.org/10.18637/jss.v011.i10 (2004).Article 

    Google Scholar 
    Zeileis, A., Köll, S. & Graham, N. Various versatile variances: An object-oriented implementation of clustered covariances in {R}. J. Stat. Softw. 95, 1–36. https://doi.org/10.18637/jss.v095.i01 (2020).Article 

    Google Scholar 
    boot: Bootstrap R (S-Plus) Functions v. R package version 1.3-28 (2021).Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Applications. (Cambridge University Press, 1997). More

  • in

    Development of a treatment for water contaminated with Cr (VI) using cellulose xanthogenate from E. crassipes on a pilot scale

    Analysis of FTIRUnderstanding the functional groups involved in the biosorption of toxic metals is essential to elucidate the mechanism of this process. Groups such as carboxylic, hydroxyl and amine are among the main responsible for the absorption of metals by cellulose34 In the Fig. 1, show the FTIR of ECx.Figure 1FTIR of ECx before and after of adsorptions of Cr (VI).Full size imageAccording to13 the bandwidth at 3000–3600 cm−1 corresponds to bonds related to the -OH group. These hydrogen bonds are useful tools for cation exchange with heavy metals. This evidenced in the color spectrum (dark green) that represents an ECx sample with attached Cr (VI) after the adsorption process, where the stretching of the (OH) group lost part of its extension. The change observed in the peak from 3420 cm−1 of ECx to 3440 cm−1 in ECx-Cr indicates that these groups have a participation in the bond with the Cr (VI) ions. The variation of bands in the peak of the amines after adsorption confirms the participation of these groups in the adsorption process. This result confirmed by the ion exchange evaluation experiment discussed later in section SEM–EDX.The change in peak 3280, after Cr (VI) adsorption, indicates that EC removed Cr (VI) based on interaction with (OH), part of (OH) lost due to formation of vibrations of ascension O–Cr. Also, after Cr (VI) biosorption on ECx, the peak of the EC-S group is shifted to 590. This can be explained by surface complexation or ion exchange35.In general, comparable results reported in the literature for cellulose in the absorption of other toxic metals, as for other cellulose-derived biosorbentes in the removal of Cr (VI) ions36.One way to corroborate the information presented in the FTIR measurements is through SEM images since with these images it is possible to observe the distribution of the reagents in the ECx biomass treatment and subsequently the Cr (VI) adsorption process.SEM–EDXFigure 2 shows the micrographs obtained for the biomass before (a) the adsorption of Cr (VI), in addition to showing the distribution of the different biomass chemical modifications in (b) and in (c) it shows the distribution of chromium around all biomasses.Figure 2Biomass before (a) Cr (VI) adsorption, biomass chemical modifications in (b) and shows the distribution of chromium around the whole biomass (c).Full size imageFrom Fig. 2a, it can see that the biomass has a very irregular rough surface, with macropores and cracks. Many of these irregularities may associated with damage caused by the delignification process of E. crassipes cellulose with NaOH14. In Fig. 2b it is possible to visualize the components of the cellulose xanthogenate, coming from sodium, distributed throughout the biomass, a result like that reported in other studies35 The colored dots represent the elements in the samples, green dots represent carbon, red dots represent oxygen, and yellow dots represent the places where sodium lodged.Table 2 shows that, in addition to carbon and oxygen, the element with the greatest presence in the composition of pure waste is sodium and sulfur from the xanthogenate cellulose transformation process. Table 2 shows the physicochemical characterization of the ECx sample, through EDS.Table 2 Features of sample of ECx.Full size tableCellulose xanthogenate, is one of the cellulose transformations to improve the adsorption performance of heavy metals, this compound produced from dry and ground biomass, mixing with sodium hydroxide (NaOH) to remove lignin, creating alkaline biomass, then disulfide (CS2) added13,14. (CS2) reacts with hydratable hydroxycellulose, forming C-SNa complexes; these are responsible for the cation exchange with heavy metals. Metal ions enter the interior of E. crassipes with (CS2), exchanging with Na36,37.The SEM morphology of ECx and coupled with the high content of sulfides (7.3%) determined by the spectrum in Table 2, it further confirms that xanthate groups are successfully grafted onto the biomass of E. crassipes, and Fig. 3 represents this information based on13,36,37,38.Figure 3Prototype.Full size imageExchange biochemistry is usually identified as the main mechanism for the adsorption of metals in cellulose and its derivatives35 and through the evaluation of EDS this process could verify. Similar observations were made by36 where the adhesion of Cr (VI) in this biomass was observed. Also, in xanthogenate cellulose processes, the adhesion of Pb (II) to this type of biomass verified, concluding that this cellulose is important in the removal of heavy metals from water13.The SEM morphology of ECx with Cr (VI) coupled with the high content of sulfides determined by the spectrum in Table 3, was the determinate for the chemisorption’s of Cr (VI). The mechanism of Cr (VI) sorption by cellulose xanthate is:$$left[ {{4}left( {{text{C}}_{{6}} {text{H}}_{{{12}}} {text{O}}_{{6}} } right)} right]*{text{2CS}}_{{2}} {text{Na }} + {text{ Cr}}_{{2}} {text{O}}_{7}^{ – 2} to left{ {left[ {{4}left( {{text{C}}_{{6}} {text{H}}_{{5}} {text{O}}_{{6}} } right)} right] , *{text{2CS}}_{{2}} } right}*{mathbf{Cr}}_{{mathbf{2}}} + {text{Na}} + {text{7H}}_{{2}} {text{O}}$$where [4(C6H12O6)] *2CS2Na represents the xanthogenate biomass, and Cr2O7–2 represents the Cr (VI), that 4 parts of glucose xanthate react with the dichromate. In the Tables 3 and 4, the relationship between cellulose xanthogenate and Cr (VI), with related weights of 10.4 for Cr (VI).Table 3 Features of sample of ECx with Cr (VI).Full size tableTable 4 Researcher of process of the desorption.Full size tableMass balance in treatmentAdsorption is the phenomenon through which the removal of Cr (VI) achieved in the treatment systems; this quantified by means of the general balance equation of the treatment system as shown in Fig. 3.Adsorption is the phenomenon through which the removal of Cr (VI) achieved in treatment systems, this quantified by mass balance. Equation (1) shows the general balance of matter in the treatment system, together with the accumulation, inputs, and outputs of the system and the chemical process of adsorption.$${text{Acumulation }}upvarepsilon *frac{{partial {text{Cr}}left( {{text{VI}}} right)}}{{partial {text{t}}}} = {text{In}} frac{{partial {text{Cr}}left( {{text{VI}}} right)_{0} }}{{partial {text{t}}}} – {text{Out}}frac{{partial {text{Cr}}left( {{text{VI}}} right)}}{{partial {text{t}}}} – {text{Adsortion}},{rho b}frac{{partial {text{q}}}}{{partial {text{t}}}}$$
    (1)
    Accumulation represents by Eq. (1), where ∂C(VI) is the contaminant input to the treatment system, (ε) is the porosity of the bed, which calculated as the ratio between the density of the bed of treatment and the density of the microparticle of this biomass. This parameter must be above 0.548 achieved using particle diameters less than 0.212 mm, which favors contact between the contaminant and the particle49. The contaminant input to the treatment system represents by the design speed and the amount of contaminant that the system could treat. The output in the treatment system represents by the same input speed and the amount of contaminant that comes out. With these equations, the general material balance will be complete, summarized in Eq. (2), where it can see that the accumulation is equal to the input to the system, minus the output, and minus the adsorption.$$upvarepsilon *frac{{partial {text{Cr}}left( {{text{VI}}} right)}}{{partial {text{t}}}} = frac{{partial {text{Cr}} left( {{text{VI}}} right)}}{{partial {text{t}}}} – frac{{partial {text{Cr}} left( {{text{VI}}} right)}}{{partial {text{t}}}} – frac{{text{M}}}{{text{V}}}*frac{{partial {text{q}}}}{{partial {text{t}}}}$$
    (2)
    where V = System volume (ml), ε = Porosity, Co = Initial concentration of Cr (VI) (mg/ml), C = Final concentration Cr (VI) in the treated solution (mg/ml), Q = design flow (ml/min), Tb = Breaking time (Min), M = amount of biomass used (g), q = Adsorption capacity of the biomass used (mg/g).$${text{V}}*upvarepsilon *{text{Co}} = {text{Q}}*{text{Tb}}*{text{Co}} – {text{Q}}*{text{Tb}}*{text{C}} – {text{M}}*{text{q}}$$
    (3)
    Depending on the most important parameters when building a treatment system, Eq. (3) could use to model and validate the best form of treatment, for example, the necessary amount of biomass to use to treat a certain amount of contaminant, in the present investigation it used to establish the adsorption capacity in these initial treatment conditions. The remaining Eq. (4) determines the adsorption capacity.$${text{q}} = frac{{{text{QTbCo}}}}{{text{M}}} – frac{{{text{QTbCf}}}}{{text{M}}} – frac{{upvarepsilon {text{VCo}}}}{{text{M}}}$$
    (4)
    Adsorption capacity is generally taken through Eq. (5) for both batch and continuous experiments20,21But unlike Eqs. (5), (4) takes into account design variables such as flow rate (Q), rupture time (Tb), particle bed porosity ε, and vessel design volume (v).$${text{q}} = frac{{{text{v}}left( {{text{Co}} – {text{C}}} right)}}{{text{m }}}$$
    (5)
    where m: Mass used in the treatment, V: Volume, Co: Initial concentration, C: Final Concentration, Q: adsorption capacity.However, unlike Eqs. (5),  (4) considers the design variables such as flow rate (Q), rupture time (Tb), particle bed porosity ε and vessel design volume (v).When a desorption-elution process is involved for the reuse of biomass, Eq. (4) would be:$${text{q}}_{{text{T}}} = mathop sum limits_{j = 1}^{n} left[ {frac{{{text{QTbjCo}}}}{{text{M}}} – frac{{{text{QTbjCj}}}}{{text{M}}} – frac{{upvarepsilon {text{VCo}}}}{{text{M}}}} right]$$
    (6)
    where Q = design flow (ml/min), Tbj = Break time of use number j (Min), Co = Initial concentration of Cr (VI) (mg/ml), C = Final concentration Cr (VI) in the treated solution (mg/ml), V = System volume (ml), ε = Porosity, M = amount of biomass used (g), q_T = Total adsorption capacity of the biomass used (mg/g).This model (6) is design to determine the adsorption capacity when different elution processes have conducted, it will used to determine the new adsorption capacity and is one of the contributions of the present investigation.Result process of adsorptionsIn Fig. 4 shows the Cr (VI) adsorption process of the system.Figure 4Percentages of Cr (VI) removal the system for ECx.Full size imageVarious researchers have extensively studied the influence of factors such as bed height, flow rate and metal inlet concentration on rupture (Tb) curves. For example, the influence and similarity of the initial contaminant concentrations should be reflected as in the case of a tannery, with initial concentrations of 600 mg/l. Figure 4 shows the progress curves obtained for the study of Cr (VI) removal by the studied biomasses, reflecting the percentage of Cr (VI) removal in contrast to the treated volume, which is a very important parameter to time to scale the process.Regarding the effect of the input concentration, it can see in Fig. 5 that the breakpoint had a better performance in all the initial concentrations in the ECx biomass. comparing it with the EC-Na biomass (see Fig. 5), always obtaining breakpoints with more treated volume.Figure 5Percentages of Cr (VI) removal the system for EC-Na.Full size imageThe difference between the rupture curves between ECx and EC-Na indicates that the cellulose xanthate modification scheme should completed, although it can also elucidate that the EC-Na biomass has high yields compared to other biomass studied. for example, in Ref.34 investigate the biomass of E. crassipes without modifying, having removals below this alkaline cellulose.Adsorption capacitiesThrough Eq. (3), the adsorption capacity of ECx, using the initial concentration of 600 mg/l, since it was the maximum concentration used.The break point was around 1200 ml according to Fig. 6 and together with the flow rate of 15 ml/min; the break time obtained in 80 min.$${text{q}} = frac{{80{*}15{*}0.6}}{40} – frac{{80{*}15{*}0.04}}{40} – frac{{0.66{*}78{*}0.6}}{40}$$q: Adsorption capacity, Co: 0.6 mg/ml, C: 0.06 mg/ml, M: 40 g, Tb: rupture time 80 min, Q: 15 Flow rate ml/min, ε: 0.6649, V: Occupied volume: 70 ml.Figure 6Adsorption capacities in the different adsorption processes in the biomass ECx.Full size imageA result of 16 mg/g obtained in this continuous study for the biomass ECx. With this same equation it gives the capacity of the biomass EC-Na, with 11 mg/g.Desorption-Elution and reuseThrough Eq. (6), the sum of the Cr (VI) adsorption capacities established, after different biomass reuses due to EDTA elution. In the second treatment process, it yielded the following results under concentrations of 6 g/l of EDTA.$${text{q}}left( {text{T}} right) = frac{{60{*}15{*}0.6}}{40} – frac{{50{*}15{*}0.06}}{40} – frac{{0.66{*}68{*}0.6}}{40}$$Co: 0.6 mg/ml, C: 0.06 mg/ml, M: 45 g Biomass eluted with EDTA, Tb: rupture time: 60 min, Q: 15 Flow ml/min, ε: 0.6649, V: Occupied volume: 68 ml, q: 10 mg/g.Five Cr (VI) adsorption cycles performed using ECx and EC-Na cellulose in a continuous system to evaluate the regeneration and reuse potential. Between each biosorption cycle, a desorption cycle performed using three different concentrations of EDTA eluent.According to Figs. 6 and 7, although the adsorption capacity gradually decreases from the first adsorption process, it could consider that it is a satisfactory biomass recycling process and a design parameter for later stages of this treatment system.Figure 7Adsorption capacities in the different adsorption processes in the biomass EC-Na.Full size imageIn the experiments with concentrations of 6 g/l, five reuse processes obtained, obtaining a final sum of 52 mg/g. In concentrations of 3 g/l of EDTA, final capacities of 51 mg/g obtained lower than concentrations of 6 g/l but with half of this reagent. With concentrations of 1 g/l, final capacities of 33 mg/g obtained.The desorption processes of the EC-Na biomass with initial capacities of 11 mg/g were also evaluated and through desorption processes with EDTA of 3 g/l this biomass recycled on 5 occasions, reaching 32 mg/l in capacities of adsorption and like the EC-Na biomass, the ideal concentration in the process for desorption processes is 3 g/l, due to the considerable increase in reuse processes and low concentration compared to 6 g/l, which, although higher, does not this value is significant in the absorption capacity.Through Eq. (6) and with different bibliographic references, representative data obtained to feed this equation, determining the capacities of each of these biomasses together with the new capacities determining the desorption power of the different eluents shown and summarized in Table 4.For the EDTA eluent and with Eq. (6), satisfactory results evidenced by removing Al (II), reaching almost 150% of its adsorption capacity, corroborating what presented in the present investigation, also the EDTA reagent obtained interesting yields to recycle the cassava biomass increasing up to 40 mg/g. In Ref.39 used the biomass of Phanera vahlii to remove Cr (VI) obtaining results of 30 mg/g and with NaOH they reached capacities in the reuse process of this biomass up to 62 mg/g, reaching almost double of its total capacity41, also used NaOH for desorption processes with green synthesized nanocrystalline chlorapatite biomass, achieving results of 75% more. The eluent HCl is also a good chemical agent to use in desorption processes since it reached more than 100% in the reuse of biochar alginate for Cr (VI) but not so significant with biomass A. barbadensis Miller to remove Ni (II) and in40 significant results were also obtained to remove Pb (II) with pine cone Shell biomass. With the chemical agent HNO3, interesting contaminant recycling processes obtained, since more than 100% of the adsorption capacity of the biomasses used in this process used1,45.Mathematical models of adsorptionIn general, the models presented R2 greater than 0.95 for the adjustment of all the advance curves, which indicates a good adherence to the data, the model that best describes the behavior of the ECx system was the phenomenological model Thomas, which presented all the R2 values above 0.99.This model could use for the extension of the Cr (VI) ion biosorption system using cellulose xanthogenate, in the literature it is possible to observe that this model often tends to better adapt to the experimental data of the adsorption systems that use cellulose for the absorption of toxic metals28,30,31.With qt values remarkably close to the experimental values of Eq. (4) designed and presented in this investigation, indicating the validity of this equation where it reflects the maximum capacity obtained. Table 5 shows the adsorption constant of the Thomas model (Kt), which corresponds to the adsorption rate of Cr (VI) in the biomass49 This value was 0.048 (ml/mg*min) reflecting the speed with which Cr (VI) is chemisorbed in the biomass of ECx, in the EC-Na cellulose there was a Thomas model speed of 0.039 (ml/ mg*min) evidencing a lower adsorption rate than ECx. In the adsorption of Cr (VI) by rice biomass, the Thomas constant is 0.1 (ml/mg*min)47,50 also in the adsorption of Cr (VI) by biomass. Nanocrystalline chlorapatite biomass obtained at the Thomas constant 0.013 (ml/mg*min)49.Table 5 Summary of the experiments obtained with material ECx.Full size tableIn the Table 6, it presents summary of the experiments obtained with material EC-Na.Table 6 Summary of the experiments obtained with material EC-Na.Full size tableThe Cr (VI) adsorption process in the EC-Na biomass represented through the Bohart equation, since the sorption rate is proportional to the biomass capacity, obtaining an adsorption rate of 0.85(ml/mg*min). Having an alkalized biomass represents this model due to the homogeneity of this adsorbent.Mathematical models in desorption processesThe continuous desorption process with its fit to the Thomas model for biomass ECx always shows the fit of this model with significance, because this type of model fits representatively to desorption processes with good performance32,51 It can also verify that with values of qt it is close to the experimental values of Eq. (6) designed and presented in this research, indicating the validity of this equation again, where it reflects the maximum capacity obtained.In the Table 7. Show Summary of the experiments obtained with material ECx in process of desorption’s.Table 7 Summary of the experiments obtained with material ECx in process of desorption’s.Full size tableIn the Table 8 the EC-Na biomass had a different behavior and in its second and third cycle it adjusted to the Yoon model and later to the Bohart model.Table 8 Summary of the experiments obtained with material EC-Na in process of desorption’s.Full size tableThis behavior is due to the alkalinization of the biomass and this process makes the biomass a little more unstable. The values of qt, although a resemblance evidenced, were not so representative due to the little adjustment that there was with respect to the Thomas model. More

  • in

    Different effects of pesticides on transcripts of the endocrine regulation and energy metabolism in honeybee foragers from different colonies

    Eilers, E. J., Kremen, C., Smith Greenleaf, S., Garber, A. K. & Klein, A. M. Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS ONE 6, 21363 (2011).ADS 

    Google Scholar 
    Williams, P. H. The dependence of crop pollination within the European Union on pollination by honey bees. Agric. Zool. Rev. 6, 229–257 (1994).
    Google Scholar 
    Burd, M. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot. Rev. 60, 83–139 (1994).MathSciNet 

    Google Scholar 
    Aguilar, R., Ashworth, L., Galetto, L. & Aizen, M. A. Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecol. Lett. 9, 968–980 (2006).
    Google Scholar 
    Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010).
    Google Scholar 
    van Engelsdorp, D., Hayes, J., Underwood, R. M. & Pettis, J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 3, e4071 (2008).ADS 

    Google Scholar 
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).CAS 

    Google Scholar 
    Van Engelsdorp, D. et al. Colony collapse disorder: A descriptive study. PLoS ONE 4, e6481 (2009).ADS 

    Google Scholar 
    Genersch, E. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 103(suppl 1), 10–19 (2010).
    Google Scholar 
    Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).
    Google Scholar 
    Insolia, L. et al. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Sci. Rep. 12(1), 20787. https://doi.org/10.1038/s41598-022-24946-4 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: A risk assessment. PLoS ONE 9(4), e94482 (2014).ADS 

    Google Scholar 
    Bolognesi, C. & Merlo, F. D. Pesticides: Human health effects. Encyclop. Environ. Health 1, 438–453 (2011).
    Google Scholar 
    Mullin, C. A. et al. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 1, e9754 (2015).
    Google Scholar 
    Calatayud-Vernich, P., Calatayud, F., Simó, E. & Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut. 241, 106–114. https://doi.org/10.1016/j.envpol.2018.05.062 (2018).Article 
    CAS 

    Google Scholar 
    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 2016(7), 12459 (2016).ADS 

    Google Scholar 
    Zhao, H. et al. Review on effects of some insecticides on honey bee health. Pestic. Biochem. Physiol. 188, 105219. https://doi.org/10.1016/j.pestbp.2022.105219 (2022).Article 
    CAS 

    Google Scholar 
    Ludicke, J. C. & Nieh, J. C. Thiamethoxam impairs honey bee visual learning, alters decision times, and increases abnormal behaviors. Ecotoxicol. Environ. Saf. 193, 110367 (2020).CAS 

    Google Scholar 
    Tison, L., Duer, A., Púčiková, V., Greggers, U. & Menzel, R. Detrimental effects of clothianidin on foraging and dance communication in honey bees. PLoS ONE 15(10), e0241134 (2020).CAS 

    Google Scholar 
    Fent, K., Schmid, M. & Christen, V. Global transcriptome analysis reveals relevant effects at environmental concentrations of cypermethrin in honey bees (Apis mellifera). Environ. Pollut. 259, 113715 (2020).CAS 

    Google Scholar 
    Christen, V., Krebs, J., Bünter, I. & Fent, K. Biopesticide spinosad induces transcriptional alterations in genes associated with energy production in honey bees (Apis mellifera) at sublethal concentrations. J. Hazard. Mater. 378, 120736 (2019).CAS 

    Google Scholar 
    Christen, V., Krebs, J. & Fent, K. Fungicides chlorothanolin, azoxystrobin and folpet induce transcriptional alterations in genes encoding enzymes involved in oxidative phosphorylation and metabolism in honey bees (Apis mellifera) at sublethal concentrations. J. Hazard. Mater. 377, 215–226 (2019).CAS 

    Google Scholar 
    Fent, K., Haltiner, T., Kunz, P. & Christen, V. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. Chemosphere 260, 127542 (2020).ADS 
    CAS 

    Google Scholar 
    Christen, V., Grossar, D., Charrière, J. D., Eyer, M. & Jeker, L. Correlation between increased homing flight duration and altered gene expression in the brain of honey bee foragers after acute oral exposure to thiacloprid and thiamethoxam. Insect Sci. 1, 1–15 (2021).
    Google Scholar 
    Mao, W., Schuler, M. A. & Berenbaum, M. R. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. USA 114(10), 2538–2543 (2017).ADS 
    CAS 

    Google Scholar 
    Christen, V., Kunz, P. Y. & Fent, K. Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators?. Environ. Pollut. 243(Pt B), 1588–1601 (2018).CAS 

    Google Scholar 
    Testai, E., Buratti, F. & Di Consiglio, E. Chlorpyrifos Hayes’ Handbook of Pesticide Toxicology 1505–1526 (Academic Press, 2010).
    Google Scholar 
    Eastmond, D. & Balakrishnan, S. Genotoxicity of Pesticides Hayes’ Handbook of Pesticide Toxicology 357–380 (Academic Press, 2010).
    Google Scholar 
    Urlacher, E. et al. Measurements of chlorpyrifos levels in forager bees and comparison with levels that disrupt honey bee odor-mediated learning under laboratory conditions. J. Chem. Ecol. 42(2), 127–138 (2016).CAS 

    Google Scholar 
    Li, Z. et al. Effects of sublethal concentrations of chlorpyrifos on olfactory learning and memory performances in two bee species, Apis mellifera and Apis cerana. Sociobiology 64, 174 (2017).
    Google Scholar 
    DeGrandi-Hoffman, G., Chen, Y. & Simonds, R. The effects of pesticides on queen rearing and virus titers in honey bees (Apis mellifera L.). Insects 4, 71–89 (2013).
    Google Scholar 
    Cutler, G. C., Purdy, J., Giesy, J. P. & Solomon, K. R. Risk to pollinators from the use of chlorpyrifos in the United States. In Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States Reviews of Environmental Contamination and Toxicology (eds Giesy, J. & Solomon, K.) (Springer, 2014).
    Google Scholar 
    Christen, V. & Fent, K. Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination. Environ. Pollut. 226, 48–59 (2017).CAS 

    Google Scholar 
    Stevenson, J. H. The acute toxicity of unformulated pesticides to worker honey bees (Apis mellifera L.). Plant Pathol. 27, 38–40 (1978).CAS 

    Google Scholar 
    Bartlett, D. W. et al. The strobilurin fungicides. Pest. Manag. Sci. 58, 649–662 (2002).CAS 

    Google Scholar 
    Ostiguy, N. et al. Honey bee exposure to pesticides: A four-year nationwide study. Insects. 10, 13 (2019).
    Google Scholar 
    Inoue, L. V. B., Domingues, C. E. C., Gregorc, A., Silva-Zacarin, E. C. M. & Malaspina, O. Harmful effects of pyraclostrobin on the fat body and pericardial cells of foragers of africanized honey bee. Toxics 10, 530. https://doi.org/10.3390/toxics10090530 (2022).Article 
    CAS 

    Google Scholar 
    Nicodemo, D. et al. Mitochondrial respiratory inhibition promoted by pyraclostrobin in fungi is also observed in honey bees. Environ. Toxicol. Chem. 39, 1267–1272 (2020).CAS 

    Google Scholar 
    Domingues, C. E. C., Inoue, L. V. B., Silva-Zacarin, E. C. M. & Malaspina, O. Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees. Environ. Pollut. 266, 115267 (2020).
    Google Scholar 
    Tadei, R. et al. Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Sci. Rep 9, 3277 (2019).ADS 

    Google Scholar 
    Zioga, E., Kelly, R., White, B. & Stout, J. C. Plant protection product residues in plant pollen and nectar: A review of current knowledge. Environ. Res. 189, 109873 (2020).CAS 

    Google Scholar 
    Corona, M. et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. USA 104, 7128–7133 (2007).ADS 
    CAS 

    Google Scholar 
    Winston, M. L. The Biology of the Honey Bee (Harvard University Press, 1987).
    Google Scholar 
    Ueno, T., Nakaoka, T., Takeuchi, H. & Kubo, T. Differential gene expression in the hypopharyngeal glands of worker honeybees (Apis mellifera L.) associated with an age-dependent role change. Zool. Sci. 8, 557–563 (2009).
    Google Scholar 
    Kubo, T. et al. Change in the expression of hypopharyngealgland proteins of the worker honeybees (Apis mellifera L.) with age and/or role. J. Biochem. 119, 291–295 (1996).CAS 

    Google Scholar 
    Ohashi, K., Sawata, M., Takeuchi, H., Natori, S. & Kubo, T. Molecular cloning of cDNA and analysis of expression of the gene for alpha-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Biochem. Biophys. Res. Commun. 221, 380–385 (1996).CAS 

    Google Scholar 
    Ohashi, K., Natori, S. & Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem. 265, 127–133 (1999).CAS 

    Google Scholar 
    Chanchao, C., Padoongsupalai, R. & Sangvanich, P. Expression and characterization of α-glucosidase III in the dwarf honeybee, Apis florea (Hymenoptera: Apoidea: Apidae). Insect Sci. 14(4), 283–293 (2007).CAS 

    Google Scholar 
    Corby-Harris, V. & Snyder, L. A. Measuring hypopharyngeal gland acinus size in honey bee (Apis mellifera) Workers. J. Vis. Exp. 139, 58261 (2018).
    Google Scholar 
    Yamada, T. & Yamada, K. Comparison of long-term changes in size and longevity of bee colonies in mid-west Japan and Maui with and without exposure to pesticide, cold winters, and mites. PeerJ 8, e9505 (2020).
    Google Scholar 
    Rinkevich, F. D. et al. Genetics, synergists, and age affect insecticide sensitivity of the honey bee, Apis mellifera. PLoS ONE 10(10), e0139841 (2015).
    Google Scholar 
    Weidenmüller, A. The control of nest climate in bumblebee (Bombus terrestris) colonies: Interindividual variability and self reinforcement in fanning response. Behav. Ecol. 15(1), 120–128 (2004).MathSciNet 

    Google Scholar 
    Flatt, T., Tu, M. P. & Tatar, M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays 27, 999–1010 (2005).CAS 

    Google Scholar 
    Wu, M. C., Chang, Y. W., Lu, K. H. & Yang, E. C. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect. Biochem. Mol. Biol. 88, 12–20 (2017).CAS 

    Google Scholar 
    Ament, S. A., Corona, M., Pollock, H. S. & Robinson, G. E. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. USA 105, 4226–4231 (2008).ADS 
    CAS 

    Google Scholar 
    Nicodemo, D. et al. Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environ. Toxicol. Chem. 33(9), 2070–2075 (2014).CAS 

    Google Scholar 
    Syromyatnikov, M. Y., Lopatin, A. V., Starkov, A. A. & Popov, V. N. Isolation and properties of flight muscle mitochondria of the bumblebee Bombus terrestris (L.). Biochemistry 78(8), 909–914 (2013).CAS 

    Google Scholar 
    Dayer, F. C. Coadaptation of colony design and worker performance in honeybees. In Diversity in the Genus Apis (ed. Smith, D. R.) 2133–2245 (Westview Press, 1991).
    Google Scholar 
    Simon-Delso, N., Amaral-Rogers, V. & Belzunces, L. P. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34 (2015).CAS 

    Google Scholar 
    Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect. Mol. Biol. 5, 645–656 (2006).
    Google Scholar 
    Pankiw, T. & Page, R. E. Response thresholds to sucrose predict foraging division of labor in honeybees. Behav. Ecol. Sociobiol. 47, 265–267 (2000).
    Google Scholar  More

  • in

    Life on a beach leads to phenotypic divergence despite gene flow for an island lizard

    Bay, R. A. et al. Genetic coupling of female mate choice with polygenic ecological divergence facilitates stickleback speciation. Curr. Biol. 27, 3344–3349 (2017).CAS 

    Google Scholar 
    Johannesson, K., Butlin, R. K., Panova, M. & Westram, A. M. Population Genomics: Marine Organisms (eds. Oleksiak, M. F. & Rajora, O. P.) 277–301 (Springer, 2017).Riesch, R. et al. Transitions between phases of genomic differentiation during stick-insect speciation. Nat. Ecol. Evol. 1, 1–13 (2017).
    Google Scholar 
    Feder, J. L. & Nosil, P. The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evolution 64, 1729–1747 (2010).
    Google Scholar 
    Rosenblum, E. B., Hickerson, M. J. & Moritz, C. A multilocus perspective on colonization accompanied by selection and gene flow. Evolution 61, 2971–2985 (2007).CAS 

    Google Scholar 
    Nosil, P., Egan, S. P. & Funk, D. J. Heterogeneous genomic differentiation between walking‐stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution 62, 316–336 (2008).
    Google Scholar 
    Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & Meester, L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22, 5983–5999 (2013).
    Google Scholar 
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68, 1–15 (2014).CAS 

    Google Scholar 
    Roderick, G. K. & Gillespie, R. G. Speciation and phylogeography of Hawaiian terrestrial arthropods. Mol. Ecol. 7, 519–531 (1998).CAS 

    Google Scholar 
    Juan, C., Emerson, B. C., Oromı́, P. & Hewitt, G. M. Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol. Evol. 15, 104–109 (2000).CAS 

    Google Scholar 
    Brown, R. P., Hoskisson, P. A., Welton, J. H. & Báez, M. Geological history and within‐island diversity: a debris avalanche and the Tenerife lizard Gallotia galloti. Mol. Ecol. 15, 3631–3640 (2006).CAS 

    Google Scholar 
    O’Connell, K. A., Prates, I., Scheinberg, L. A., Mulder, K. P. & Bell, R. C. Speciation and secondary contact in a fossorial island endemic, the São Tomé caecilian. Mol. Ecol. 30, 2859–2871 (2021).
    Google Scholar 
    Malhotra, A. & Thorpe, R. S. The dynamics of natural selection and vicariance in the Dominican anole: patterns of within‐island molecular and morphological divergence. Evolution 54, 245–258 (2000).CAS 

    Google Scholar 
    Brown, R. P., Woods, M. & Thorpe, R. S. Historical volcanism and within-island genetic divergence in the Tenerife skink (Chalcides viridanus). Biol. J. Linnean Soc. 122, 166–175 (2017).
    Google Scholar 
    Losos, J. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (University of California Press, 2009).Mahler, D. L., Revell, L. J., Glor, R. E. & Losos, J. B. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution 64, 2731–2745 (2010).
    Google Scholar 
    Wang, I. J., Glor, R. E. & Losos, J. B. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol. Lett. 16, 175–182 (2013).
    Google Scholar 
    Beerli, P. & Felsenstein, J. Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152, 763–773 (1999).CAS 

    Google Scholar 
    Hey, J. & Nielsen, R. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167, 747–760 (2004).CAS 

    Google Scholar 
    Hey, J. Recent advances in assessing gene flow between diverging populations and species. Curr. Opin. Genet. Dev. 16, 592–596 (2006).CAS 

    Google Scholar 
    Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, 1003905 (2013).
    Google Scholar 
    Butlin, R. K. et al. Parallel evolution of local adaptation and reproductive isolation in the face of gene flow. Evolution 68, 935–949 (2014).
    Google Scholar 
    Rosenblum, E. B., Hoekstra, H. E. & Nachman, M. W. Adaptive reptile color variation and the evolution of the MCIR gene. Evolution 58, 1794–1808 (2004).CAS 

    Google Scholar 
    Rosenblum, E. B. Convergent evolution and divergent selection: lizards at the White Sands ecotone. Am. Nat. 167, 1–15 (2006).
    Google Scholar 
    Sumner, F. B. An analysis of geographic variation in mice of the Peromyscus polionotus group from Florida and Alabama. J. Mammal. 7, 149–184 (1926).
    Google Scholar 
    Davenport, J., & Dellinger, T. Melanism and foraging behaviour in an intertidal population of the Madeiran lizard Podarcis (= Lacerta) dugesii (Milne-Edwards, 1829). Herpetol. J. 5, 200–203 (1995).
    Google Scholar 
    Galán, P. Demography and population dynamics of the lacertid lizard Podarcis bocagei in north-west Spain. J. Zool. 249, 203–218 (1999).
    Google Scholar 
    Censky, E. J., Hodge, K. & Dudley, J. Over-water dispersal of lizards due to hurricanes. Nature 395, 556 (1998).CAS 

    Google Scholar 
    Rolán‐Alvarez, E., Erlandsson, J., Johannesson, K. & Cruz, R. Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations. J. Evol. Biol. 12, 879–890 (1999).
    Google Scholar 
    Ludt, W. B. & Rocha, L. A. Shifting seas: the impacts of Pleistocene sea‐level fluctuations on the evolution of tropical marine taxa. J. Biogeogr. 42, 25–38 (2015).
    Google Scholar 
    Lambeck, K. Late Pleistocene, Holocene and present sea-levels: constraints on future change. Glob. Planet Change 3, 205–217 (1990). & J.
    Google Scholar 
    Rosenblum, E. B. The role of phenotypic plasticity in color variation of Tularosa Basin lizards. Copeia 2005, 586–596 (2005).
    Google Scholar 
    Jin, Y. et al. Dorsal pigmentation and its association with functional variation in MC1R in a lizard from different elevations on the Qinghai–Tibetan plateau. Genome Biol. Evol. 12, 2303–2313 (2020).CAS 

    Google Scholar 
    Corl, A. et al. The genetic basis of adaptation following plastic changes in coloration in a novel environment. Curr. Biol. 28, 2970–2977 (2018).CAS 

    Google Scholar 
    Sacchi, R. et al. Genetic and phenotypic component in head shape of common wall lizard Podarcis muralis. Amphib.-Reptilia 37, 301–310 (2016).
    Google Scholar 
    Dice, L. R. Variation of the deer-mouse (Peromyscus maniculatus) on the Sand Hills of Nebraska and adjacent areas. Contrib. Lab Vertebrate Biol. Univ. Mich. 15, 1–19 (1941).
    Google Scholar 
    Vitt, L. J., Caldwell, J. P., Zani, P. A. & Titus, T. A. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus. Proc. Natl Acad. Sci. USA 94, 3828–3832 (1997).CAS 

    Google Scholar 
    Pfeifer, S. P. et al. The evolutionary history of Nebraska deer mice: local adaptation in the face of strong gene flow. Mol. Biol. Evol. 35, 792–806 (2018).CAS 

    Google Scholar 
    Scherrer, R., Donihue, C. M., Reynolds, R. G., Losos, J. B. & Geneva, A. J. Dewlap colour variation in Anolis sagrei is maintained among habitats within islands of the West Indies. J. Evol. Biol. 35, 680–692 (2022).
    Google Scholar 
    Janson, K. Selection and migration in two distinct phenotypes of Littorina saxatilis in Sweden. Oecologia 59, 58–61 (1983).CAS 

    Google Scholar 
    Richardson, J. L., Urban, M. C., Bolnick, D. I. & Skelly, D. K. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29, 165–176 (2014).
    Google Scholar 
    Engelstoft, C., Robinson, J., Fraser, D. & Hanke, G. Recent rapid expansion of common wall lizards (Podarcis muralis) in British Columbia, Canada. Northwest. Naturalist 101, 50–55 (2020).
    Google Scholar 
    Cascio, P. L. & Pasta, S. Preliminary data on the biometry and the diet of a microinsular population of Podarcis wagleriana (Reptilia: Lacertidae). Acta Herpetol. 1, 147–152 (2006).
    Google Scholar 
    Janssen, J., Towns, D. R., Duxbury, M. & Heitkönig, I. M. Surviving in a semi-marine habitat: dietary salt exposure and salt secretion of a New Zealand intertidal skink. Comp. Biochem Physiol. A Mol. Integr. Physiol. 189, 21–29 (2015).CAS 

    Google Scholar 
    Grismer, L. L. Three new species of intertidal side-blotched lizards (genus Uta) from the Gulf of California, Mexico. Herpetologica 50, 451–474 (1994).
    Google Scholar 
    Sepúlveda, M., Sabat, P., Porter, W. P. & Fariña, J. M. One solution for two challenges: the lizard Microlophus atacamensis avoids overheating by foraging in intertidal shores. PLoS One 9, 97735 (2014).
    Google Scholar 
    Hobson, E. S. Observations on diving in the Galapagos marine iguana, Amblyrhynchus cristatus (Bell). Copeia 1965, 249–250 (1965).Balakrishna, S., Amdekar, M. S. & Thaker, M. Morphological divergence, tail loss, and predation risk in urban lizards. Urban Ecosyst. 24, 1391–1398 (2021).
    Google Scholar 
    Falvey, C. H., Aviles-Rodriguez, K. J., Hagey, T. J. & Winchell, K. M. The finer points of urban adaptation: intraspecific variation in lizard claw morphology. Biol. J. Linn. Soc. 131, 304–318 (2020).
    Google Scholar 
    Marnocha, E., Pollinger, J. & Smith, T. B. Human‐induced morphological shifts in an island lizard. Evol. Appl 4, 388–396 (2011).
    Google Scholar 
    Rocha, R., Paixão, M. & Gouveia, R. Predation note: Anthus berthelotii madeirensis (Passeriformes: Motacillidae) catches Teira dugesii mauli (Squamata: Lacertidae) in Deserta Grande, Madeira Archipel. Herpetol. Notes 3, 77–78 (2010).
    Google Scholar 
    Völkl, W. & Brandl, R. Tail break rate in the Madeiran lizard (Podarcis dugesii). Amphibia-Reptilia 9, 213–218 (1988).Malhotra, A. & Thorpe, R. S. Microgeographic variation in Anolis oculatus, on the island of Dominica, West Indies. J. Evol. Biol. 4, 321–335 (1991).
    Google Scholar 
    Thorpe, R. S. & Brown, R. P. Microgeographic variation in the colour pattern of the lizard Gallotia galloti within the island of Tenerife: distribution, pattern and hypothesis testing. Biol. J. Linn. Soc. 38, 303–322 (1989).
    Google Scholar 
    Brown, R. P., Thorpe, R. S. & Báez, M. Parallel within-island microevolution of lizards on neighbouring islands. Nature 352, 60–62 (1991).
    Google Scholar 
    Báez, M. & Brown, R. P. Testing multivariate patterns of within‐island differentiation in Podarcis dugesii from Madeira. J. Evol. Biol. 10, 575–587 (1997).
    Google Scholar 
    Cook, L. M. Density of lizards in Madeira. Bocagiana (Funchal) 66, 1–3 (1983).
    Google Scholar 
    Sadek, R. A. The diet of the Madeiran lizard Lacerta dugesii. Zool. J. Linn. Soc. 73, 313–341 (1981).
    Google Scholar 
    Brehm, A. et al. Phylogeography of the Madeiran endemic lizard Lacerta dugesii inferred from mtDNA sequences. Mol. Phylogenetics Evol. 26, 222–230 (2003).CAS 

    Google Scholar 
    Suárez, N. M., Pestano, J. & Brown, R. P. Ecological divergence combined with ancient allopatry in lizard populations from a small volcanic island. Mol. Ecol. 23, 4799–4812 (2014).
    Google Scholar 
    Towns, D. R. Ecology of the black shore skink, Leiolopisma suteri (Lacertilia: Scincidae), in boulder beach habitats. N. Z. J. Zool. 2, 389–407 (1975).
    Google Scholar 
    Cook, L. M. Variation in the Madeiran lizard Lacerta dugesii. J. Zool. 187, 327–340 (1979).
    Google Scholar 
    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox–a free software suite for objectively measuring reflectance, colour, and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 

    Google Scholar 
    Rohlf, F. J. The tps series of software. Hystrix, Ital. J. Mammal. 26, 9–12 (2015).
    Google Scholar 
    Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, 1991).Klingenberg, C. P. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).
    Google Scholar 
    Rohlf, F. J. & Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39, 40–59 (1990).
    Google Scholar 
    Klingenberg, C. P., Barluenga, M. & Meyer, A. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56, 1909–1920 (2002).
    Google Scholar 
    Andrews, S. FastQC: a Quality Control Tool for High Throughput Sequence Data. Babraham Bioinformatics version 0.11.7. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Melo, A. T., Bartaula, R. & Hale, I. GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. BMC Bioinform. 17, 1–15 (2016).
    Google Scholar 
    Sabadin, F., Carvalho, H. F., Galli, G. & Fritsche-Neto, R. Population-tailored mock genome enables genomic studies in species without a reference genome. Mol. Genet. Genom. 297, 33–46 (2022).CAS 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 

    Google Scholar 
    Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936 (2014).CAS 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2022).Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 

    Google Scholar 
    Luu, K., Bazin, E. & Blum, M. G. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17, 67–77 (2017).CAS 

    Google Scholar 
    Günther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).
    Google Scholar 
    Dray, S. et al. Package ‘adespatial.’ Available from: https://cran.r-project.org/package=adespatial (2018).Montano, V. & Jombart, T. An eigenvalue test for spatial principal component analysis. BMC Bioinform. 18, 1–7 (2017).
    Google Scholar 
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).CAS 

    Google Scholar  More