More stories

  • in

    In situ recordings of large gelatinous spheres from NE Atlantic, and the first genetic confirmation of egg mass of Illex coindetii (Vérany, 1839) (Cephalopoda, Mollusca)

    Confirmation of species, using DNA analysisBecause the DNA of our sphere samples matches that of adult squid identified as I. coindetii from Norwegian waters we infer that the spheres are from I. coindetii. Much has been written about taxonomic difficulties in Illex. The COI tree comprises four clades of Illex, one of which clearly pertains to Illex argentinus (Castellanos, 1960). There are three other described species: Illex coindetii, Illex illecebrosus (Lesueur, 1821), and I. oxygonius Roper, Lu & Mangold, 1969. We labelled our clades A, B, and C, to indicate their correspondence with the findings of Carlini et al.32, and assume that each pertains to one of the described species of Illex. Carlini was unable to match species to clades, but Clade A not only contains the adults identified in this project as I. coindetii, but also contains specimens from the Mediterranean (DQ373941). Since I. coindetii is the only species of Illex known from the Mediterranean, this is further confirmation of the identity of Clade A, and thus our spheres, as Illex coindetii.Using citizen science from roughly 200 divers secured observations of 90 spheres, including rare tissue samples of four of them, thus enabling a molecular approach towards the first confirmation of egg masses in situ as those of the broadtail shortfin squid, Illex coindetii. Illex coindetii was named in honour of Dr. Coindet from Geneva in 185137. It took 180 years from the description of the adult to identification of its egg mass in the wild. To our knowledge no whole egg mass of Illex spp. has previously been reported from the wild, except by Adolf Naef, who reported on live ommastrephid embryos and paralarvae from Naples, Italy2. The embryos were pulled out of a floating spawn or floating egg mass, or as he describes «Fig. 1 und 2 sind aus einem flottierenden Laich gezogene Larven von Ommatostrephiden». These illustrations were later identified as Illex coindetii by Boletzky et al.26, studying egg development of I. coindetii in the laboratory, claiming «The general characteristics of the embryonic developement observed by us match the figures given by Naef (1923 : plts 9–12) of an unidentified egg mass of a member of the Ommastrephidae (Naef 1921)». However, no drawing of the «laich» was provided.Challenges collecting in situ materialHuge gelatinous spheres from squid are difficult to study in situ. They are rarely reported, and hard to sample. We have collected 90 sphere observations from ~ 35 years back (~ 1985 to 2019), from an area stretching from the Mediterranean Sea north to the Norwegian Sea, which gives a good illustration on sphere findings of ~ 2.6 sphere observations per year. In addition, the spheres most likely have a short-life span. Life span of spheres spawned and reared in aquaria (between 40 and 120 cm in diameter) of Todarodes pacificus (Steenstrup, 1880) is 5–7 days, with the smallest disintegrating first38.Sphere shape and sizeGelatinous egg masses of cephalopods vary in size and form among species. Some egg masses are spherical, but there are also examples of oblong structures39,40,41. Sphere size may be up to 4 m in diameter1,5,42. Ringvold and Taite (op. cit.) collected information on a total of 27 spheres recorded in European waters varying from 0.3 to 2 m in diameter, as also for the additional spheres from this study. The four spheres in our study, confirmed to belong to I. coindetii, measured between 0.5 and 1 m in diameter.Egg mass of another ommastrephid squid, Todarodes sagittatus, has yet to be found in situ. The species is known to be larger than Illex species, and egg mass is also most probably larger. The largest spheres recorded in our study measured up to 2 m in diameter, but none of these were sampled for molecular analysis, nor were pictures taken. It is uncertain whether they could belong to other species e.g., Todaropsis eblanae (Ball, 1841), Todarodes sagittatus or Ommastrephes sp..Dark streak through coreAlmost 60% of the spheres had a dark streak through the center. This feature might be ink, one important characteristic of cephalopods, produced by most cephalopod orders. The ink sac with its ink glands produces black ink containing melanin43. During fertilization, sperm are released—as well as possibly some ink. Spheres with or without ink may be a result of spheres beeing at different maturity stages1, where spheres with ink are freshly spawned. After a while, when embryos starts developing, the whole sphere, including the streak, will start to disintegrate.Some of us speculate that one function of the streak through the center might serve as visual mimics e.g. of a large fish in order to scare off predators. Other possible functions discussed are also if the streak/structure can be caused by a sphere strengthening structure which is denser or having a higher optical density than the sourrounding structure. A disadvantage with the streak is that it might reveal the whole transparent sphere in the water, visible to e.g. scuba divers.Function of the gelatinous matrixObservations in captivity3,44 showed that species within the genus Illex produce gelatinous egg masses while swimming in open water. Gel functions as a buoyancy mechanism that prevents eggs from sinking, and complete density equilibration requires many days under most conditions44. Such a buoyancy mechanism keeps pelagically spawned eggs of Illex in areas where temperatures are most optimal for embryonic development. Optimal environmental conditions will likely have a positive effect on survival of both hatchlings and paralarvae. Despite consistency in where spawning areas are found, interannual variability has been recorded in the main recruitment areas, which could be related to e.g. mesoscale eddies and/or affecting post-hatching dispersal45.Huge spheres are formed of mucus produced by the nidamental glands, situated inside the mantle cavity of the female46,47. When fully developed, hatchlings emit an enzyme which starts to dissolve the mucus. Eggs and embryos from our four spheres were covered in sticky gelatinous mass, except for a few specimens (from Arendal, collected 7 August, and Søgne) laying in the petri dish outside the sticky gel, in the surrounding sea water following the tissue sample, and might have been old enough to start producing such enzymes.When at hatching, Illex coindetii eggs are about 2 mm long26,48, in line with other ommastrephids12. The longest of our embryos (from Arendal, collected 7 August) measured ~ 2 mm, a developed embryo with long proboscis, mantle about ½ of total body length, as well as chromatophores, large eyes and funnel visible (Fig. 3). It could possibly be a hatchling.Abiotic factors and locationsThe success and duration of embryonic development is related to water temperature. All observations available to date indicate that successful embryonic development for I. coindetii takes ca. 10–14 days at 15 °C; this temperature corresponds to the median temperature value reported for Mediterranean Sea midwater48. Boletzky et al.26 reports on a temperature minimum above 10 °C. Spheres in the Mediterranean were observed in temperatures ranging between 14 and 24 °C. Watermass temperature for one sphere with recently fertilized eggs (Ålesund sample, embryos stage ~ 3) from Norway was 8 °C. It was also observed north of the existing known distribution range for I. coindetii, in the Norwegian Sea, at 43 m depth. Most spheres from Norway were observed from July and August, in water mass 10–14 °C, with maximum temperature at 18 °C.It is unknown whether some of the observed spheres had drifted to water layers unsuitable for the development of the eggs, and, eventually, would have died due to unfavourable abiotic conditions (e.g. transport outside the optimal temperature- or depth range for that particular species), but most likely they were in an area where they would survive. Higher occurrence of sphere sightings from 2017 to 2019, could be a combination of higher abundance of these squid in the area as well as increased knowledge regarding our Citizen Science Sphere Project, and thereby increased reports of observations.Illex coindetii may be considered as an intermittent spawner with a spawning season extending throughout the year, reaching a peak in July–August18.Our sphere observations from all areas were made from March to October: The earliest sphere which can be documented (to month) in the North Sea to date was observed 27 May (2001), and the last sphere was reported on 20 October (2019), coinciding with a study on adult Illex condetii from the North Sea where the spawning season has been suggested to be between spring and autumn49. However, our data show a peak of sphere observations from July to September (all areas combined), from July to August in Norway and from August to September in the Mediterranean Sea. The two recordings from Galicia in Spain, and Seiano in Italy, were the earliest recordings of the year, observed 24 March (in 2017 and 2019, respectively). For all areas combined, no observations during wintertime (November to February) have been recorded.Embryonic development and consistencies of spheresWe collected tissue mass of four different spheres of I. coindetii, and embryos in each sphere were at different developmental stages, ~ 3 to 30, according to Sakai et al.36 based on I. argentinus. The sphere walls of the four spheres were also of different consistencies (Table 2); from Ålesund sphere with recently fertilized eggs and firm, transparent sphere wall to Søgne and Arendal spheres (the latter collected 7 August) with developed embryos and disintegrating sphere walls. The remains of the Arendal sphere was hanging as a long «scarf» in the water. Experienced divers, who previously had seen a few spherical spheres, recognized this disintegrating sphere.Function of spheresOmmastrephidae fecundity is extremely high, and a single sphere may contain thousands to several hundred thousands of eggs41,50,51,52. The function of the spheres is protection and transport of the offspring by sea currents for paralarval dispersal. Inside these gelatinous structures, the eggs and newly hatched paralarvae are protected from predation by e.g. fish, parasite infection and infestation by crustaceans and protozoans during a first relative short period of their lives5,51. Bottom trawlers operate in spawning areas of squids, exposing them to a risk of egg loss, as also for our fisherman at Askøy, Norway, who caught a sphere in his trawl1,5.Scientific cruises and fisheryThe Institute for Marine Research in Norway started identification of cephalopods on their regular scientific cruises in 2013, but no Illex coindetii was recorded that year. However, data show increasing catches from 2014 to 2019 (unpublished). No spheres are reported from Norway in 2013, but between 1995 to 2010, and from 2015 to 2019, observations were made. Most observations are between 2017 and 2019, indicating more frequent squid visits/spawnings. This coincides with more frequent sphere observations from 2017 to 2019.The broadtail shortfin squid, Illex coindetii, is probably the most widespread species found on both sides of the Atlantic and throughout the Mediterranean Sea12. In the NE Atlantic, it has been reported from Oslofjorden, Norway (59°N);53 and the Firth of Forth, east Scotland54, southwards along the European and African coasts to Namibia, including Hollam’s Bird Island (24°S) and Cape Frio (18°S)55. For example, I. coindetii is periodically very abundant in coastal waters of the eastern North Atlantic off Scotland, Ireland and Spain, where it supports opportunistic fisheries. However, the oceanographic and biological factors that drive this phenomenon, are still unknown12.Illex coindetii is widely distributed throughout the Mediterranean Sea11, where it is caught commercially mostly by Italian trawlers, usually as a by-catch, but also by recreational fishing, by means of squid jigging. Annual Italian landings during the last five years have varied between two and three thousand tonnes, but with historical landings reaching numbers of more than eight thousand tonnes during the 1980s and 1990s (FAO 2019)15.In the North Sea, studies show that inshore squids (Alloteuthis subulata (Lamarck, 1798) and Loligo forbesii Steenstrup, 1856) are more abundant than short-finned squid (Illex coindetii, Todaropsis eblanae and Todarodes sagittatus), and I. coindetii is among the rarest ommastrephid species caught49,56. However, two recent studies (1) on summer spawning stock of Illex coindetii in the North Sea57 and (2) I. coindetii recorded from the brackish Baltic Sea58 suggest more frequent visits to this area. Reports on Illex coindetii from Norwegian waters are scarce, but it has been reported from Oslofjorden53, and recently as by-catch from Stavanger area, and by divers from Oslofjorden and Bergen. More

  • in

    Highest risk abandoned, lost and discarded fishing gear

    Most problematic fishing methods based on ALDFG relative risksThis study presents the first quantitative assessment of gear-specific relative risks from ALDFG. Findings accounted for the: (a) derelict gear leakage rate; (b) fishing gear quantity indicators of catch and area of fishing grounds; and (c) adverse consequences from ALDFG. Maximum global conservation gains can be achieved through focusing ALDFG mitigation efforts on the fishing gears with the highest overall relative risk. Set and fixed gillnets and trammel nets, drift gillnets, gears using drifting and anchored FADs (tuna purse seines and pole-and-lines), and bottom trawls were the five most problematic gears on a global scale. This was followed by traps (fyke nets, pots, barriers, fences, weirs, corrals and pound nets).The overall RR score indicates a fishing gear’s relative degree of total adverse effects from ALDFG, accounting for the quantity of ALDFG produced by that gear (estimated from the ALDFG leakage rate and indices of fishing gear quantity of catch and area of fishing grounds), and the adverse consequences that result from ALDFG from that gear type relative to other gears. Globally, gillnets have the highest risks from ALDFG, while hand dredges and harpoons were least problematic.The focus of local management interventions to address problematic derelict fishing gear will be dictated by the specific context. Locally, adopting ALDFG controls following a sequential mitigation hierarchy and implementing effective monitoring, surveillance and enforcement systems are needed to curb derelict gear from these most problematic fisheries. This includes accounting for which fishing gears are predominant and the existing fisheries management framework. For example, a site may have pot and tuna purse seine anchored FAD fisheries. The purse seine fishery has a higher relative risk globally. However, a fisheries management system may have effective ALDFG preventive methods in place for this fishery, such as a high rate of detection and recovery of anchored FADs when they break from moorings, and minimization methods, such as prescribing the use of only non-entangling and biodegradable FAD designs to minimize adverse effects from derelict FADs35, 36. But there may be minimal measures in place to monitor and manage ALDFG from pots. In this hypothetical example, it would be a higher priority locally to improve ALDFG management for the pot fishery.Priority data quality improvementsThere are several priorities for data quality improvement to increase the certainty of future assessments. Given substantial deficits both in estimates of gear-specific quantity/effort and ALDFG rates, it is not yet possible to produce a robust contemporary estimate to replace the ca. five decades-old crude estimate of the magnitude of the annual quantity of leaked ALDFG4, 30. More robust estimates of ALDFG rates are needed for all gear types. Gear-specific estimates have low certainty due to small numbers of studies and sample sizes. Many compiled records estimate only one ALDFG component, typically only loss rates, and therefore may substantially underestimate total ALDFG rates. Most records are dated and may not accurately characterize contemporary rates. There is geographical sampling bias with estimates being primarily derived from the northern hemisphere. Furthermore, many estimates were derived from expert surveys (Supplementary Material Table S1), which have a higher risk of error and bias than approaches higher on the evidence hierarchy37. Substantially more primary studies with robust designs are needed.An expanded meta-analysis on gear-specific ALDFG rates is an additional priority, once sufficient sample sizes of robust studies accumulate. The statistical modeling approach used by Richardson et al.34 could be readily improved by using (1) a random-effects instead of a fixed effects structure to account for study-specific heterogeneity, and (2) a more appropriate model likelihood, such as zero-inflated Beta likelihood, to account for the zero values in the dataset38. Due to larger sample sizes and the number of independent studies, meta-analyses can produce estimates with increased accuracy, with increased statistical power to detect real effects. By synthesizing estimates from an assortment of independent, small and context-specific studies, pooled estimates from random-effects meta-analyses are generalizable and therefore relevant over diverse settings39. The strength of conclusions of hypotheses based on a single study can vary. This is because a single study can be context-specific, where true results may be affected by conditions specific to that single study, such as the species involved and environmental conditions, that cause the results from the single study to not be applicable under different conditions. A single study may also fail to find a meaningful result due to small sample sizes and low power. However, robust synthesis research, including meta-analysis, is more precise and powerful once a sufficient number of similar studies have accumulated, and therefore investing in more primary ALDFG studies is a high priority.For some gear types and fisheries, estimated ALDFG rates may overestimate adverse effects when gear that is abandoned, lost or even discarded does not become derelict because another fishing vessel continues to use the gear. For example, gear that is lost by theft remains in use. Macfadyen et al.4 explained that theft was likely a minor contribution to ALDFG, occurring, for instance, in inshore fishing grounds where static commercial fishing gear and recreational marine activities conflict. However, fishing gear theft may be prevalent in some developing country fisheries (e.g., Cambodian crab traps40). And, there is one gear type where theft has become a globally prevalent, routine and largely accepted practice: Tuna purse seine vessels routinely exchange satellite buoys attached to drifting FADs that they encounter at sea. The stolen FAD, lost by the previous vessel that had been tracking its position, remains in-use and not derelict, although it may eventually become derelict41, 42. Furthermore, because ALDFG leakage rates may be highest in illegal and unregulated fisheries4, if only legal fisheries are sampled, then this may produce underestimates. Thus, accounting for theft and illegal and unregulated fishing would increase the certainty of estimates of ALDFG leakage rates for some fishing gear types.The 20% ALDFG global production rate value used for anchored FADs by pole-and-line fisheries was likely an underestimate. We relied on a single value from the contemporary Maldives pole-and-line fishery’s government-owned and -managed network of anchored FADs. This fishery underwent a substantial reduction in anchored FAD loss rate, from 82 to 20%, by improving designs and a government incentive program that pays fishers to retrieve FADs when they break from their moorings35, 43. For comparison, describing Indonesia’s pole-and-line fishery’s anchored FADs, Widodo et al.44 stated: “Inaccuracy of number and position of FADs in the fishing ground are the outstanding issue facing by fisheries manager…This was largely the result of the current lack of effective systems of FAD registration and monitoring, and also because of the desire of fishing companies and vessel skippers to keep FADs position information confidential. [sic]”.Proctor et al.45, who estimated that between 5000 and 10,000 anchored FADs are used in Indonesian tuna fisheries, also reported a lack of accurate estimates of the numbers and locations of anchored FADs due to ineffective implementation of the government registration system and to high loss rates, including from storms, strong currents, vandalism, vessel collisions and wear and degradation of the FADs. Using the estimated rates of (1) Shainee and Leira43 that 82% of anchored FADs were lost per year prior to the Maldivian government’s incentives program, which might accurately characterize the Indonesian and other anchored FAD networks used by pole-and-line fisheries, and (2) the 20% loss rate value from Adam et al.35, the posterior mean = 0.506 (95% HDI: 0.15–0.84). Thus, 51% might have been a more appropriate estimate for a global ALDFG production rate for pole-and-line anchored FADs. The Maldivian and Indonesian pole-and-line fisheries, which combined supply over half of global pole-and-line catch, rely heavily on anchored FADs, as do several other smaller pole-and-line fisheries (e.g., Solomon Islands, segments of the Japanese pole-and-line fleet)35, 45,46,47,48.Units for ALDFG rates are highly variable. Records using different rates cannot be pooled for synthesis research29, 34. For example, some records reported rates of the percent of number of panels (sheets) or fleets (strings) of gillnets that were lost, while others reported the percent of the length or area of gillnets that were lost29. Similarly, for longline gear, some studies reported the percent of the length of the mainline, while others reported the percent of the number of branchlines/snoods that were lost34. Employment of agreed harmonized units for ALDFG rates are needed.Future assessments could use a ratio of ALDFG risk-to-seafood production to assess gear-specific relative risks locally and globally, similar to assessments of vulnerable fisheries bycatch by using bycatch-to-target catch ratios49. This would enable the assessment of risk from ALDFG to be balanced against meeting objectives of food security and nutritional health.Relationship between alternative indices with the quantity of fishing gearWe used gear-specific annual catch and area of fishing grounds as indicators of the relative global amount of each gear that is used annually as two terms in the model to assess gear-specific relative risks from ALDFG. However, the assumption of a linear relationship between these indices and gear quantity is questionable for similar reasons that have been raised with the relationship between various indices of effort (number of fishing hours, number of vessels, engine power, vessel length, gross tonnage, gear size, hold capacity, as well as kWh) and catch. For example, the ratio of catch from one set by an anchoveta purse seiner to the volume or weight of the gear is likely substantially different than for pots or driftnets. Not only is the relationship between catch and amount of gear variable by gear type and target species, there is also high variability within gear types—by fishery and within fisheries—due to the broad range of factors that significantly explain fishing efficiency per unit of nominal effort50, 51. Similarly, the relationship between catch weight and number of fishing operations varies substantially across gear types. For example, an industrial tropical tuna purse seine vessel might have a total catch of about 37 t per set on a drifting FAD27 while a tuna pole-and-line vessel catches about 1 t per fishing day52.Similarly, the relationship between the area of fishing grounds and amount of gear may vary substantially between gear types. A small number of vessels using a relatively small magnitude of active, mobile gear may have a much larger area of fishing grounds than a large number of vessels and shore-based fishers using a large amount of passive and static gears. For example, about 686 large-scale tuna purse seine vessels fish across the tropics53, while gillnets, which may be the most globally prevalent gear type, are used predominantly within 20 nm (37 km) of shore, most intensively in southeast Asia and the northwest Pacific54.Fishing effort has also been estimated using engine power as well as by using energy expended, such as in kilowatt-hours (kWh), the product of the fishing time and engine power of a fishing vessel, including non-motorized vessels55,56,57. We did not use these metrics for effort because the correlation between rate of production of ALDFG and vessel engine power or kWh, including of non-motorized vessels (1.70 million of the estimated global 4.56 million fishing vessels21), has not been explored. In general, vessel power and power per unit of fishing period largely distinguishes between mobile and passive gears, where the former (e.g., trawls, dredges), use substantially more vessel power per weight of catch than passive gears (traps, gillnets). Also, estimates using these fishing effort metrics used a small number of aggregated gear categories and extrapolated estimates primarily from sampled developed world fisheries (however, see56). These effort indices would also prevent inclusion of shore-based fishing methods.There have been recent gear specific estimates of effort, in units of time spent fishing and the estimated energy expended (fishing power * fishing time), using Automated Identification Systems (AIS) data, which are available for industrial fishing vessels, primarily using longlines, trawls and pelagic purse seines6, 58. AIS data provide coverage of the majority of large fishing vessels ≥ 24 m in overall length58. However, this accounts for only about 2% of the number of global fishing vessels (of an estimated 4.56 million global fishing vessels, about 67,800 are ≥ 24 m in length21).ALDFG monitoring, management and performance assessmentsA sequential mitigation hierarchy of avoidance, minimization, remediation and offsets can be applied to manage ALDFG29, 59. Referring to the three components of relative risk assessed by this study, avoidance and minimization of risks from ALDFG is achieved by reducing the ALDFG leakage rate, fishing effort, and/or adverse consequences from derelict gear. Remedial methods reduce adverse effects, such as reducing ghost fishing by reducing the duration that ALDFG remains in the marine environment1, 29, 60. In general, preventative methods are more cost effective than remedial methods—it is less expensive to prevent gear abandonment, loss and discarding than it is, for example, to detect and then disable or remove derelict gear61. Methods to prevent ALDFG include, for instance, spatially and temporally separating passive and mobile fishing gears, having bottom trawlers avoid features that could snag the net such as by using high-resolution seabed maps, tracking the real-time position of unattended fishing gears using various electronic technologies, and using gear marking to identify the owner and increase the visibility of passive gears. Furthermore, because some remedial methods, such as using less durable materials for fishing gear components, can reduce economic viability and practicality, preventative methods and remediation through quick recovery of ALDFG may be more effective as well as elicit broader stakeholder support29, 62.To assess the performance of global ALDFG management interventions against this study’s quantitative benchmark, substantial deficits in monitoring and surveillance of fisheries’ waste management practices must first be addressed1. Of 68 fisheries that catch marine resources managed by regional fisheries management organizations, 47 lack any observer coverage, half do not collect monitoring data on ALDFG, and surveillance and enforcement systems are rudimentary or nonexistent in many fisheries1, 63.Findings from this quantitative, global assessment of ALDFG risks guide the allocation of resources to achieve the largest improvements from preventing and remediating derelict gear from the world’s 4.6 million fishing vessels. With improved data quality and governance frameworks for fishing vessel waste management, including ALDFG, we can expect reductions in ecological and socioeconomic risks from derelict gear. More

  • in

    The dynamics of cable bacteria colonization in surface sediments: a 2D view

    pH distributions within sediment microcosms showed distinct spatial and temporal patterns. For the January 2019 experiment series, the strong pH maximum bands developed in the oxic surface sediment after 20 ~ 22 days of incubation. Development was not spatially uniform. Sediment surface pH maxima started to develop from isolated points covering horizontal lengths of 0.6–1 cm at the times of imaging (Fig. 1). Within a week, the pH maximum bands expanded laterally, covering the entire 6 cm long monitoring panel, and were sustained until the end of the experiment (106 days, data not shown). The pH maximum bands were about 2 mm in vertical extent with average pH ~ 8.5. Even after the electrogenic colonization was laterally complete (day 27), the activity intensities of cable bacteria, or the impacts of their activity as reflected by the magnitudes of pH elevations and associated reactions, were still spatially heterogeneous (Fig. 1C). pH values in the underlying anoxic sediment decreased from 7.0 to 6.5 gradually as surface pH maxima formed. However, in the experiment with the sediment collected in August 2019, sediment surface pH maxima started appearing on day 39 and expanded much more slowly, with only a 2.4 cm-long lateral coverage after a week of growth in one of the duplicate microcosms and no development at all in the other (Fig. 2A,B). At the same time, where pH maxima were present, a pH minimum band developed in the anodic zone ( > 2 mm depth) just below sediment surface pH maxima and expanded over time (Fig. 2A).Figure 12D pH distribution dynamics of duplicate microcosms starting from day 20 (January 2019 sediment). (A,B) For duplicate microcosms, sediment surface pH maximum bands started from isolated hotspots and quickly spread across the whole surface area with spreading speed ~ 1.2 cm/day. Anoxic sediment pH decreased from day 20–26. (C) The horizontal pH variations within the surficial pH maximum band on day 27 (microcosm B; vertical width ~ 1 mm). The pH ± standard deviations within the band are indicated by the blue dots.Full size imageFigure 22D pH and H2S distribution dynamics within microcosms during colonization. (A) 2D pH distribution dynamics starting from day 39 (August 2019 sediment) and corresponding 1D pH profiles. The sediment surface pH maximum band started from isolated hotspots and spread across sediment surface with an average rate of 0.3 cm/day, which is much slower compared with January 2019 sediment (1.2 cm/day). The pH in the cable bacteria anodic zone is lower (blue line, A2) compared with un-colonized sediment side (black line, A1) in the pH profile panel insert. (B) The duplicate microcosm (August 2019 sediment) did not show sediment surface pH maxima during the same time window. (C) 2D pH distribution dynamics starting from day 46 (October 2020 sediment). Both surface pH maxima and deep minima expand during electrogenic colonization. The pH minima (white arrows) are evident first on day 46 and 64. (D) Sediment 2D H2S distribution on day 71 (October 2020 sediment) with upper boundary showing the sediment water interface. The H2S distributions are consistent with pH patterns, but the sediment H2S concentrations are generally lower compared with other experiment series (Fig. 4).Full size imageThe October 2020 results (Fig. 2C) further resolved the cathodic and anodic zone development patterns. During colonization, the anoxic zone pH minima were evident earlier (day 46 and 64) and were distinctly wider than the sediment surface pH maxima (day 46–71). These differences in cathode and anode detection sensitivity might be caused by more rapid diffusion at the sediment–water boundary (free solution) and rapid neutralization by seawater CO2. They may also be related to the mode of colonization as discussed below. In addition to pH heterogeneity, the electrogenic activity also resulted in complex topographies of H2S distributions (Fig. 2D). In the locations where pH hotspots were found, the depths of detectable H2S are deeper compared with anywhere else, consistent with ongoing electrogenic sulfide oxidation metabolic activity. These data suggest that cable bacteria dynamics can be distinctly different in otherwise similar sediment (e.g. similar concentrations of dissolved H2S at depth), with variable development controlled by unknown factors.High resolution cable bacteria abundance data are not available in this study because of the design of the experiment. However, the vertical cable bacteria abundance dynamics, which were retrieved from random locations in the January 2019 microcosms during incubation from day 20 to 43, show that cable bacteria cell abundance in the oxic zone of the sediment did not vary significantly during the primary colonization period. In contrast, one of the microcosm series (Fig. 3B) showed a distinct trend of subsurface, anodic region (0.5–1.5 cm depth) enrichment of filament cells, and importantly, both microcosm series had similar terminal distributions when electrogenic activity had expanded across the entire surface (day 43) (Fig. 3). The first time sample in series A (day 20) (Fig. 3A) is similar in abundance distribution as at day 43. It is possible that the first sample taken in series A was located in an electrogenic colonization patch, that is, locally comparable to what would become the pattern across the entire surface at day 43. These abundance data together with the high resolution pH patterns allow inference of the colonization strategy of cable bacteria, as outlined subsequently.Figure 3Cable bacteria cell abundance dynamics in the duplicate January 2019 sediment microcosms. (A) and (B) represent duplication microcosms. From day 20 to 43, cable bacteria can be detected throughout the top 5 cm sediment with heterogeneous abundance patterns. There were depth intervals (e.g. B 2.5–3 cm) with cable bacteria cell abundance below the detection limit of the enumeration method. The sediment surface ( More

  • in

    Global phylogeography of a pantropical mangrove genus Rhizophora

    1.Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves. (Earthscan, 2010).2.Duke, N. et al. A world without mangroves?. Science 317, 41–42 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Friess, D. et al. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Env. Resour. 44, 89–115 (2019).Article 

    Google Scholar 
    4.Wee, et al. The integration and application of genomic information in mangrove conservation. Conserv. Biol. 33, 206–209 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Duke, N., Lo, E. & Sun, M. Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees-Struct. Funct. 16, 65–79 (2002).Article 

    Google Scholar 
    6.Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecol. Biogeogr. 8, 95–115 (1999).
    Google Scholar 
    7.Plaziat, J.-C., Cavagnetto, C., Koeniguer, J.-C. & Baltzer, F. History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl. Ecol. Manag. 9, 161–180 (2001).Article 

    Google Scholar 
    8.Duke, N., Ball, M. & Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol. Biogeogr. Lett. 7, 27–47 (1998).Article 

    Google Scholar 
    9.Duke, N. Genetic diversity, distributional barriers and rafting continents—more thoughts on the evolution of mangroves. Hydrobiologia 295, 167–181 (1995).Article 

    Google Scholar 
    10.Tomlinson, P. B. The botany of mangroves. (Cambridge University press, 1986).11.Schwarzbach, A. E. & Ricklefs, R. E. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. Am. J. Bot. 87, 547–564 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Lo, E. Y. Y. Testing hybridization hypotheses and evaluating the evolutionary potential of hybrids in mangrove plant species. J. Evol. Biol. 23, 2249–2261 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Lo, E., Duke, N. & Sun, M. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol. Biol. 14, 83 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Chen, Y. et al. Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. PLoS ONE 10, e0145058 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Xu, S. H. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Tyagi, A. P. Cytogenetics and reproductive biology of mangroves in Rhizophoraceae. Aust. J. Bot. 50, 601–605 (2002).Article 

    Google Scholar 
    18.Tyagi, A. P. Chromosomal Pairing and Pollen Viability in Rhizophora mangle and Rhizophora stylosa Hybrids. S. Pac. J. Nat. Sci. 20, 1–3 (2002).Article 

    Google Scholar 
    19.Tyagi, A. P. & Singh, E. V. V. Pollen fertility and intraspecific and interspecific compatibility in mangroves of Fiji. Sex. Plant Reprod. 11, 60–63 (1998).Article 

    Google Scholar 
    20.Steininger, F. F. & Rögl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. Geol. Soc. Spec. Publ. 17, 659–668 (1984).ADS 
    Article 

    Google Scholar 
    21.Harzhauser, M. et al. Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoo. Anz. 246, 241–256 (2007).Article 

    Google Scholar 
    22.Vrielynck, B., Odin, G. & Dercourt, J. Miocene palaeogeography of the Tethys Ocean; potential global correlations in the Mediterranean. Miocene stratigraphy: an integrated approach. Elsevier Science, (1997).23.Harzhauser, M., Piller, W. E. & Steininger, F. F. Circum-Mediterranean Oligo-Miocene biogeographic evolution—the gastropods’ point of view. Palaeogeogr. Palaeoclimatol. Palaeoecol. 183, 103–133 (2002).Article 

    Google Scholar 
    24.Dercourt, J. et al. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics 123, 241–315 (1986).ADS 
    Article 

    Google Scholar 
    25.Marko, P. B. Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol. Biol. Evol. 19, 2005–2021 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Saenger, P. Mangrove vegetation: an evolutionary perspective. Mar. Freshw. Res. 49, 277–286 (1998).CAS 
    Article 

    Google Scholar 
    27.Muller, J. & Caratini, C. Pollen of Rhizophora (Rhizophoraceae) as a guide fossil. Pollen Spores 19, 361–390 (1977).
    Google Scholar 
    28.Muller, J. Fossil pollen records of extant angiosperms. Bot. Rev. 47, 1–142 (1981).Article 

    Google Scholar 
    29.Germeraad, J. H., Hopping, C. A. & Muller, J. Palynology of tertiary sediments from tropical areas. Rev. Palaeobot. Palyno. 6, 189–348 (1968).Article 

    Google Scholar 
    30.Zachos, J., Pagani, H., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Pole, M. S. & Macphail, M. K. Eocene Nypa from Regatta Point, Tasmania. Rev. Palaeobot. Palyno. 92, 55–67 (1996).Article 

    Google Scholar 
    32.Hornibrook, N. D. B. New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota. Pacific Neogene: environment, evolution, and events, 83–106 University of Tokyo Press, (1992).33.Hou, Z. & Li, S. Tethyan changes shaped aquatic diversification. Biol. Rev. 93, 874–896 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Wee, A. K. S. et al. Genetic differentiation and phylogeography of partially sympatric species complex Rhizophora mucronata Lam. and R. stylosa Griff. using SSR markers. BMC Evol. Biol. 15, 57 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Ng, W. L. et al. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conserv. Genet. 16, 137–150 (2015).Article 

    Google Scholar 
    36.Doyle, J. & Doyle, J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 9, 11–15 (1987).
    Google Scholar 
    37.Strand, A. E., Leebens-Mack, J. & Milligan, B. G. Nuclear DNA-based markers for plant evolutionary biology. Mol. Ecol. 6, 113–118 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Cronn, R. C., Small, R. L. & Wendel, J. F. Duplicated genes evolve independently after polyploid formation in cotton. Proc. Natl. Acad. Sci. USA 96, 14406–14411 (1999).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Hayashi, K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. Genome Res. 1, 34–38 (1991).CAS 
    Article 

    Google Scholar 
    40.Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003).CAS 
    Article 

    Google Scholar 
    41.Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts, (2002).42.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    44.Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, I37-48 (1999).Article 

    Google Scholar 
    45.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Graham, A. Paleobotanical evidence and molecular data in reconstructing the historical phytogeography of Rhizophoraceae. Ann. Mo. Bot. Gard. 93, 325–334 (2006).Article 

    Google Scholar 
    48.Rambaut, A. Fig Tree v1.4. (2012). Available at http://tree.bio.ed.ac.uk/software/figtree/49.Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).Article 

    Google Scholar 
    50.Blair, C. & He, X. J. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in a mangrove species, Rhizophora stylosa (Rhizophoraceae). Conserv. Genet. Resour. 1, 175–178 (2009).Article 

    Google Scholar 
    52.Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv. Genet. 9, 1323–1325 (2008).CAS 
    Article 

    Google Scholar 
    53.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes. 7, 574–578 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    Article 

    Google Scholar  More

  • in

    Insights into the role of deep-sea squids of the genus Histioteuthis (Histioteuthidae) in the life cycle of ascaridoid parasites in the Central Mediterranean Sea waters

    1.Voss, N. A., Nesis, K. N. & Rodhouse, P. G. The cephalopod family Histioteuthidae (Oegopsida): systematics, biology, and biogeography in Systematics and Biogeography of Cephalopods (eds. Voss, N. A., Vecchione, M., Toll, R. B. & Sweeney M. J.) 277–291 (Smithsonian Contributions to Zoology, 1998).2.Crocetta, F. et al. Biogeographical homogeneity in the eastern Mediterranean Sea – III: new records and a state of the art of Polyplacophora, Scaphopoda and Cephalopoda (Mollusca) from Lebanon. Spixiana 37(2), 183–206 (2014).
    Google Scholar 
    3.Guerra, A. Mollusca, cephalopoda in Fauna Iberica (eds. Ramos, M. A. et al.) 327 (Museo Nacional de Ciencias Naturales, 1992).4.Cuccu, D., Mereu, M., Loi, B., Sanna, I. & Cau, A. The squid family Histioteuthidae in the Sardinian waters. Biol. Mar. Mediterr. 13, 262–263 (2007).
    Google Scholar 
    5.Jereb, P. & Roper, C. F. E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Myopsid and Oegopsid Squids in FAO species catalogue for fishery purposes (ed. FAO) 649 (FAO, 2010).6.Quetglas, A., de Mesa, A., Ordines, F. & Grau, A. Life history of the deep-sea cephalopod family Histioteuthidae in the western Mediterranean. Deep Sea Res. Part I 57, 999–1008. https://doi.org/10.1016/j.dsr.2010.04.008 (2010).Article 

    Google Scholar 
    7.Oshima, T., Shimazu, T., Koyama, H. & Akahane, H. J. J. On the larvae of the genus Anisakis (Nematoda: Anisakidaae) from euphausiids. Jpn. J. Parasitol. 18, 241–248 (1969).
    Google Scholar 
    8.Hochberg, F. G. The parasites of cephalopods: a review. Mem. Nat. Mus. Vict. 44, 109–145. https://doi.org/10.24199/j.mmv.1983.44.10 (1983).Article 

    Google Scholar 
    9.Bello, G. Role of cephalopods in the diet of the swordfish, Xiphias gladius, from the eastern Mediterranean Sea. Bull. Mar. Sci. 49, 312–324 (1991).
    Google Scholar 
    10.Bello, G. Teuthophagous predators as collectors of oceanic cephalopods: the case of the Adriatic Sea. Boll. Malacol. 32, 71–78 (1996).
    Google Scholar 
    11.Santos, M. et al. Stomach contents of sperm whales Physeter macrocephalus stranded in the North Sea 1990–1996. Mar. Ecol. Prog. Ser. 183, 281–294 (1999).ADS 
    Article 

    Google Scholar 
    12.Xavier, J. et al. Current status of using beaks to identify cephalopods: III International Workshop and training course on Cephalopod beaks, Faial island, Azores, April 2007. Arquipélago-Life Mar. Sci. 24, 41–48 (2007).
    Google Scholar 
    13.Marcogliese, D. J. & Cone, D. K. Food webs: a plea for parasites. Trends Ecol. Evol. 12, 320–325. https://doi.org/10.1016/S0169-5347(97)01080-X (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Abollo, E. et al. Squid as trophic bridges for parasite flow within marine ecosystems: the case of Anisakis simplex (Nematoda: Anisakidae), or when the wrong way can be right. Afr. J. Mar. Sci. 20, 223–232. https://doi.org/10.2989/025776198784126575 (1998).Article 

    Google Scholar 
    15.Klimpel, S., Seehagen, A., Palm, H. W. & Rosenthal, H. Deep-water metazoan fish parasites of the world. (eds. Klimpel, S., Seehagen, A., Palm, H. W. & Rosenthal, H.) (Logos Verlag, 2001).16.Parker, G. A., Chubb, J. C., Ball, M. A. & Roberts, G. N. Evolution of complex life cycles in helminth parasites. Nature 425, 480–484 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Santoro, M., Iaccarino, D. & Bellisario, B. Host biological factors and geographic locality influence predictors of parasite communities in sympatric sparid fishes off the southern Italian coast. Sci. Rep. 10(1), 13283. https://doi.org/10.1038/s41598-020-69628-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Pascual, S., González, A., Arias, C. & Guerra, A. Helminth infection in the short-finned squid Illex coindetii (Cephalopoda, Ommastrephidae) off NW Spain. Dis. Aquat. Org. 23, 71–75. https://doi.org/10.3354/dao023071 (1995).Article 

    Google Scholar 
    19.Petrić, M., Mladineo, I. & Šifner, S. Insight into the short-finned squid Illex coindetii (Cephalopoda: Ommastrephidae) feeding ecology: is there a link between helminth parasites and food composition? J. Parasitol. 97, 55–62. https://doi.org/10.1645/GE-2562.1 (2011).Article 
    PubMed 

    Google Scholar 
    20.Klimpel, S. & Rückert, S. Life cycle strategy of Hysterothylacium aduncum to become the most abundant anisakid fish nematode in the North Sea. Parasitol. Res. 97, 141–149. https://doi.org/10.1007/s00436-005-1407-6 (2005).Article 
    PubMed 

    Google Scholar 
    21.Tursi, A., D’Onghia, A., Matarrese, A., Panetta, P. & Maiorano, P. Finding of uncommon cephalopods (Ancistroteuthis lichtensteinii, Histioteuthis bonnellii, Histioteuthis reversa) and first record of Chiroteuthis veranyi in the Ionian Sea. Cah. Biol. Mar. 35, 339–346 (1994).
    Google Scholar 
    22.Koutsoubas, D. & Boyle, P. Histioteuthis bonnelli (Férussac, 1835) (Cephalopoda) in the Eastern Mediterranean: new record and biological considerations. J. Mollus. Stud. 65, 380–383. https://doi.org/10.1093/mollus/65.3.380 (1999).Article 

    Google Scholar 
    23.Bello, G. How rare is Histioeuthis bonnellii (Cephalopoda: Histioteuthidae) in the eastern Mediterranean Sea? J. Mollus. Stud. 66, 575–576. https://doi.org/10.1093/mollus/66.4.575 (2000).Article 

    Google Scholar 
    24.Belcari, P. & Sartor, P. Bottom trawling teuthofauna of the northern Tyrrhenian Sea. Sci. Mar. 57, 145–152 (1993).
    Google Scholar 
    25.Quetglas, A., Carbonell, A. & Sánchez, P. Demersal continental shelf and upper slope cephalopod assemblages from the Balearic Sea (North-Western Mediterranean). Biological aspects of some deep-sea species. Estuar. Coast. Shelf Sci. 50, 739–749. https://doi.org/10.1006/ecss.1999.0603 (2000).ADS 
    Article 

    Google Scholar 
    26.Culurgioni, J., Cuccu, D., Mereu, M. & Figus, V. Larval anisakid nematodes of Histioteuthis reversa (Verril, 1880) and H. bonnellii (Férussac, 1835) (Cephalopoda: Teuthoidea) from Sardinian Channel (western Mediterranean). Bull. Eur. Ass. Fish Pathol. 30, 217 (2010).
    Google Scholar 
    27.Capua, D. I cefalopodi delle coste e dell’Arcipelago Toscano: sistematica, anatomia, fisiologia e sfruttamento delle specie presenti nel Mediterraneo. 446 (Evolver, 2004).28.Crocetta, F. et al. Bottom-trawl catch composition in a highly polluted coastal area reveals multifaceted native biodiversity and complex communities of fouling organisms on litter discharge. Mar. Environ. Res. 155, 104875. https://doi.org/10.1016/j.marenvres.2020.104875 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    30.Meyer, C. P. Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biol. J. Linn. Soc. 79, 401–459. https://doi.org/10.1046/j.1095-8312.2003.00197.x (2003).Article 

    Google Scholar 
    31.Morgulis, A. et al. Database indexing for production MegaBLAST searches. Bioinformatics 24, 1757–1764. https://doi.org/10.1093/bioinformatics/btn322 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Berland, B. Nematodes from some Norwegian marine fishes. Sarsia 2, 1–50. https://doi.org/10.1080/00364827.1961.10410245 (1961).Article 

    Google Scholar 
    33.Nagasawa, K. & Moravec, F. Larval anisakid nematodes of Japanese common squid (Todarodes pacificus) from the Sea of Japan. J. Parasitol. 81, 69–75. https://doi.org/10.2307/3284008 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Nagasawa, K. & Moravec, F. Larval anisakid nematodes from four species of squid (Cephalopoda: Teuthoidea) from the central and western North Pacific Ocean. J. Nat. Hist. 36, 8. https://doi.org/10.1080/00222930110051752 (2002).Article 

    Google Scholar 
    35.Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83(4), 575–583 (1997).CAS 
    Article 

    Google Scholar 
    36.Zhu, X., Gasser, R. B., Podolska, M. & Chilton, N. Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. Int. J. Parasitol. 28, 1911–1921. https://doi.org/10.1016/S0020-7519(98)00150-7 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Nadler, S. A. & Hudspeth, D. S. Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J. Parasitol. 86, 380–393. https://doi.org/10.1645/0022-3395(2000)086[0380:POTANA]2.0.CO;2 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Valentini, A. et al. Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J. Parasitol. 92, 156–166. https://doi.org/10.1645/GE-3504.1 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x (2011).Article 

    Google Scholar 
    40.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9(8), 772. https://doi.org/10.1038/nmeth.2109 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Guindon, S. & Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 52, 696–704. https://doi.org/10.1080/10635150390235520 (2003).Article 
    PubMed 

    Google Scholar 
    42.Akaike, H. Information theory and an extension of the maximum likelihood principle in Proceeding of the second international symposium on information theory (eds. Petrov, T. & Caski, F.) 267–281 (Akademiai Kiado, 1973).43.Posada, D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. https://doi.org/10.1093/molbev/msn083 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Posada, D. & Buckley, T. R. Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808. https://doi.org/10.1080/10635150490522304 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Ronquist, F. & Huelsenbeck, J. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 (2003).CAS 
    Article 

    Google Scholar 
    46.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Kumar, S. et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Lindgren, A. R. Molecular inference of phylogenetic relationships among Decapodiformes (Mollusca: Cephalopoda) with special focus on the squid Order Oegopsida. Mol. Phylogenet. 56(1), 77–90. https://doi.org/10.1016/j.ympev.2010.03.025 (2010).Article 

    Google Scholar 
    49.Taite, M., Vecchione, M., Fennell, S. & Allcock, L. A. Paralarval and juvenile cephalopods within warm-core eddies in the North Atlantic. Bul. Mar. Sci. 96(2), 235–262. https://doi.org/10.5343/bms.2019.0042 (2020).Article 

    Google Scholar 
    50.Guardone, L. et al. Larval ascaridoid nematodes in horned and musky octopus (Eledone cirrhosa and E. moschata) and longfin inshore squid (Doryteuthis pealeii): safety and quality implications for cephalopod products sold as fresh on the Italian market. Int. J. Food Microbiol. 333, 108812 (2020).CAS 
    Article 

    Google Scholar 
    51.Pascual, S., Abollo, E., Mladineo, I. & Gestal, C. Metazoa and Related Diseases in Handbook of Pathogens and Diseases in Cephalopods (eds. Gestal, C., Pascual S., Guerra A., Fiorito G. & Vieites, J. M.) 169–179 (2019).52.Mattiucci, S. & Nascetti, G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host—parasite co-evolutionary processes. Adv. Parasitol. 66, 47–148. https://doi.org/10.1016/S0065-308X(08)00202-9 (2008).Article 
    PubMed 

    Google Scholar 
    53.Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and Anisakiasis: an ecological and evolutionary road map. Adv. Parasitol. 99, 93–263. https://doi.org/10.1016/bs.apar.2017.12.001 (2018).Article 
    PubMed 

    Google Scholar 
    54.Kie, M. Aspects of the life cycle and morphology of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda, Ascaridoidea, Anisakidae). Can. J. Zool. 71, 1289–1296. https://doi.org/10.1139/z93-178 (1993).Article 

    Google Scholar 
    55.Santoro, M. et al. Helminth parasites of the dwarf sperm whale Kogia sima (Cetacea: Kogiidae) from the Mediterranean Sea, with implications on host ecology. Dis. Aquat. Organ. 14, 175–182. https://doi.org/10.3354/dao03251 (2018).CAS 
    Article 

    Google Scholar 
    56.Kawakami, T. A review of sperm whale food. Sci. Rep. Whales Res. Inst. 32, 199–218 (1980).
    Google Scholar 
    57.Garibaldi, F. & Podestà, M. Stomach contents of a sperm whale (Physeter macrocephalus) stranded in Italy (Ligurian Sea, northwestern Mediterranean). JMBA 94(6), 1087–1091. https://doi.org/10.1017/S0025315413000428 (2014).Article 

    Google Scholar 
    58.Mattiucci, S., Nascetti, G., Bullini, L., Orecchia, P. & Paggi, L. Genetic structure of Anisakis physeteris and its differentiation from the Anisakis simplex complex (Ascaridida: Anisakidae). Parasitology 93, 383–387. https://doi.org/10.1017/S0031182000051544 (1986).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Mattiucci, S. et al. Genetic divergence and reproductive isolation between Anisakis brevispiculata and Anisakis physeteris (Nematoda: Anisakidae). Int. J. Parasitol. 31, 9–14. https://doi.org/10.1016/S0020-7519(00)00125-9 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Gupta, P. C. & Masoodi, B. A. Three new and one known nematode (Family: Anisakidae) from marine fishes of India. Indian J. Parasitol. 14(2), 157–164 (1990).
    Google Scholar 
    61.Vicente, J. J., Mincarone, M. M. & Pint, R. M. First report of Lappetascaris lutjani Rasheed, 1965 (Nematoda, Ascaridoidea, Anisakidae) parasitizing Trachipterus arawatae (Pisces, Lampridiformes) on the Atlantic coast of Brazil. Mem. Inst. Oswaldo Cruz. 97, 93–94. https://doi.org/10.1590/s0074-02762002000100015(2002) (2002).Article 
    PubMed 

    Google Scholar 
    62.Bruce, N. L. & Cannon, L. R. G. Hysterothylacium, Iheringascaris and Maricostula new genus, nematodes (Ascaridoidea) from Australian pelagic marine fishes. J. Nat. Hist. 23(6), 1397–1441. https://doi.org/10.1080/00222938900770771 (1989).Article 

    Google Scholar 
    63.Shamsi, S. Morphometric and molecular descriptions of three new species of Hysterothylacium (Nematoda: Raphidascarididae) from Australian marine fish. J. Helminthol. 91, 1–12. https://doi.org/10.1017/S0022149X16000596 (2016).CAS 
    Article 

    Google Scholar 
    64.Li, L. et al. Molecular phylogeny and dating reveal a terrestrial origin in the early carboniferous for ascaridoid nematodes. Syst. Biol. 67(5), 888–900. https://doi.org/10.1093/sysbio/syy018 (2018).Article 
    PubMed 

    Google Scholar 
    65.Garcia, A., Mattiucci, S., Santos, M. N., Damiano, S. & Nascetti, G. Metazoan parasites of Xiphias gladius (L. 1758) (Pisces: Xiphiidae) from the Atlantic Ocean: implications for host stock identification. ICES J. Mar. Sci. 68, 175–182 (2010).Article 

    Google Scholar 
    66.Klimpel, S. & Palm, H. W. Anisakid Nematode (Ascaridoidea) Life Cycles and Distribution: Increasing Zoonotic Potential in the Time of Climate Change? in Progress in Parasitology. Parasitology Research Monographs (ed. Mehlhorn, H.) https://doi.org/10.1007/978-3-642-21396-0_11 (Springer, 2011).67.Kuhn, T., Cunze, S., Kochmann, J. & Klimpel, S. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm. Sci. Rep. 6, 30246. https://doi.org/10.1038/srep30246 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Cipriani, P. et al. Occurrence of larval ascaridoid nematodes in the Argentinean short-finned squid Illex argentinus from the Southwest Atlantic Ocean (off Falkland Islands). Int. J. Food Microbiol. 297, 27–31. https://doi.org/10.1016/j.ijfoodmicro.2019.02.019 (2019).Article 
    PubMed 

    Google Scholar 
    69.Cipriani, P. et al. Anisakis simplex (s.s.) larvae (Nematoda: Anisakidae) hidden in the mantle of European flying squid Todarodes sagittatus (Cephalopoda: Ommastrephidae) in NE Atlantic Ocean: food safety implications. Int. J. Food Microbiol. 339, 109021 (2021).CAS 
    Article 

    Google Scholar 
    70.Klimpel, S., Kellermanns, E. & Palm, H. W. The role of pelagic swarm fish (Myctophidae: Teleostei) in the oceanic life cycle of Anisakis sibling species at the Mid-Atlantic Ridge, Central Atlantic. Parasitol. Res. 104, 43–53. https://doi.org/10.1007/s00436-008-1157-3 (2008).Article 
    PubMed 

    Google Scholar 
    71.Mattiucci, S., Paoletti, M. & Webb, S. C. Anisakis nascettii n. sp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: morphological description, genetic relationships between congeners and ecological data. Syst. Parasitol. 74, 199–217. https://doi.org/10.1007/s11230-009-9212-8 (2009).Article 
    PubMed 

    Google Scholar 
    72.Pico-Duran, G., Pulleiro-Potel, L., Abollo, E., Pascual, S. & Munoz, P. Molecular identification of Anisakis and Hysterothylacium larvae in commercial cephalopods from the Spanish Mediterranean coast. Vet. Parasitol. 220, 47–53. https://doi.org/10.1016/j.vetpar.2016.02.020 (2016).Article 
    PubMed 

    Google Scholar 
    73.Menconi, V. et al. Occurrence of ascaridoid nematodes in Illex coindetii, a commercially relevant cephalopod species from the Ligurian Sea (Northwest Mediterranean Sea). Food Control https://doi.org/10.1016/j.foodcont.2020.107311 (2020).Article 

    Google Scholar 
    74.Blazekovic, K. et al. Three Anisakis spp. isolated from toothed whales stranded along the eastern Adriatic Sea coast. Int. J. Parasitol. 45(1), 17–31. https://doi.org/10.1016/j.ijpara.2014.07.012 (2015).Article 
    PubMed 

    Google Scholar 
    75.Santoro, M. et al. Epidemiology of Sulcascaris sulcata (Nematoda: Anisakidae) ulcerous gastritis in the Mediterranean loggerhead sea turtle (Caretta caretta). Parasitol. Res. 118, 1457–1463. https://doi.org/10.1007/s00436-019-06283-0 (2019).Article 
    PubMed 

    Google Scholar 
    76.Bao, M., Cipriani, P., Giulietti, L., Drivenes, N. & Levsen, A. Quality issues related to the presence of the fish parasitic nematode Hysterothylacium aduncum in export shipments of fresh Northeast Arctic cod (Gadus morhua). Food Control 121, 107724. https://doi.org/10.1016/j.foodcont.2020.107724 (2020).CAS 
    Article 

    Google Scholar 
    77.Zhang, K., Xu, Z., Chen, H. X., Guo, N. & Li, L. Anisakid and raphidascaridid nematodes (Ascaridoidea) infection in the important marine food-fish Lophius litulon (Jordan) (Lophiiformes: Lophiidae). Int. J. Food Microbiol. 284, 105–111. https://doi.org/10.1016/j.ijfoodmicro.2018.08.002 (2018).Article 
    PubMed 

    Google Scholar 
    78.Szostakowska, B., Myjak, P., Kur, J. & Sywula, T. Molecular evaluation of Hysterothylacium auctum (Nematoda, Ascaridida, Raphidascarididae) taxonomy from fish of the southern Baltic. Acta Parasitol. 46(3), 194–201 (2001).CAS 

    Google Scholar 
    79.Andres, M. J., Peterson, M. S. & Overstreet, R. M. Endohelminth parasites of some midwater and benthopelagic stomiiform fishes from the northern Gulf of Mexico. Gulf Caribb. Res. 27, 11–19. https://doi.org/10.18785/gcr.2701.02 (2016).Article 

    Google Scholar 
    80.Li, L., Liu, Y. Y. & Zhang, L. P. Morphological and molecular identification of Hysterothylacium longilabrum sp. Nov. (Nematoda: Anisakidae) and larvae of different stages from marine fishes in the South China Sea. Parasitol. Res. 111(2), 767–777 (2012).Article 

    Google Scholar 
    81.Shamsi, S. et al. Occurrence of ascaridoid nematodes in selected edible fish from the Persian Gulf and description of Hysterothylacium larval type XV and Hysterothylacium persicum n. sp. (Nematoda: Raphidascarididae). Int. J. Food Microbiol. 236, 65–67. https://doi.org/10.1016/j.ijfoodmicro.2016.07.006 (2016).Article 
    PubMed 

    Google Scholar 
    82.Chen, H. X. et al. Detection of ascaridoid nematode parasites in the important marine food-fish Conger myriaster (Brevoort) (Anguilliformes: Congridae) from the Zhoushan fishery, China. Parasit. Vectors 11, 274. https://doi.org/10.1186/s13071-018-2850-4 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Liu, Y. Y., Xu, Z., Zhang, L. P. & Li, L. Redescription and genetic characterization of Hysterothylacium thalassini Bruce, 1990 (Nematoda: Anisakidae) from marine fishes in the South China Sea. J. Parasitol. 99, 655–661. https://doi.org/10.1645/12-136.1 (2013).Article 
    PubMed 

    Google Scholar 
    84.Shamsi, S., Gasser, R. & Beveridge, I. Description and genetic characterisation of Hysterothylacium (Nematoda: Raphidascarididae) larvae parasitic in Australian marine fishes. Parasitol. Int. 62, 320–328. https://doi.org/10.1016/j.parint.2012.10.001 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    85.Li, L., Zhao, W. T., Guo, Y. N. & Zhang, L. P. Nematode parasites infecting the starry batfish Halieutaea stellata (Vahl) (Lophiiformes: Ogcocephalidae) from the East and South China Sea. J. Fish. Dis. 39(5), 515–529. https://doi.org/10.1111/jfd.12374 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    86.Zhao, W. T. et al. Ascaridoid parasites infecting in the frequently consumed marine fishes in the coastal area of China: a preliminary investigation. Parasitol. Int. 65(2), 87–98. https://doi.org/10.1016/j.parint.2015.11.002 (2016).Article 
    PubMed 

    Google Scholar 
    87.Hossen, M. S. & Shamsi, S. Zoonotic nematode parasites infecting selected edible fish in New South Wales, Australia. Int. J. Food Microbiol. 308, 108306. https://doi.org/10.1016/j.ijfoodmicro.2019.108306 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Jabbar, A. et al. Mutation scanning-based analysis of anisakid larvae from Sillago flindersi from Bass Strait, Australia. Electrophoresis 33, 499–505. https://doi.org/10.1002/elps.201100438 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    89.Jabbar, A. et al. Molecular characterization of anisakid nematode larvae from 13 species of fish from Western Australia. Int. J. Food Microbiol. 161(3), 247–253. https://doi.org/10.1016/j.ijfoodmicro.2012.12.012 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    90.Shamsi, S., Stellar, E. & Chen, Y. New and known zoonotic nematode larvae within selected fish species from Queensland waters in Australia. Int. J. Food Microbiol. 272, 73–82. https://doi.org/10.1016/j.ijfoodmicro.2018.03.007 (2018).Article 
    PubMed 

    Google Scholar 
    91.Arizono, N. et al. Ascariasis in Japan: is pig-derived ascaris infecting humans? Jpn. J. Infect. Dis. 63(6), 447–448 (2010).PubMed 

    Google Scholar 
    92.Mattiucci, S. et al. Metazoan parasitic infections of swordfish (Xiphias gladius) from the Mediterranean Sea and Atlantic Gibraltar waters: implications for stock assessment. Col. Vol. Sci. Pap. ICCAT 58(4), 1470–1482 (2005).
    Google Scholar 
    93.Di Azevedo, M. I. N. & Iñiguez, A. M. Nematode parasites of commercially important fish from the southeast coast of Brazil: morphological and genetic insight. Int. J. Food Microbiol. 267, 29–41. https://doi.org/10.1016/j.ijfoodmicro.2017.12.014 (2018).Article 
    PubMed 

    Google Scholar 
    94.Pekmezci, G. Z., Yardimci, B., Onuk, E. E. & Umur, S. Molecular characterization of Hysterothylacium fabri (Nematoda: Anisakidae) from Zeus faber (Pisces: Zeidae) caught off the Mediterranean coasts of Turkey based on nuclear ribosomal and mitochondrial DNA sequences. Parasitol. Int. 63(1), 127–131. https://doi.org/10.1016/j.parint.2013.10.006 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    95.Zhao, J. Y., Zhao, W. T., Ali, A. H., Chen, H. X. & Li, L. Morphological variability, ultrastructure and molecular characterisation of Hysterothylacium reliquens (Norris & Overstreet, 1975) (Nematoda: Raphidascarididae) from the oriental sole Brachirus orientalis (Bloch & Schneider) (Pleuronectiformes: Soleidae). Parasitol. Int. 66(1), 831–838. https://doi.org/10.1016/j.parint.2016.09.012 (2016).Article 
    PubMed 

    Google Scholar  More

  • in

    Multiple impacts of microplastics can threaten marine habitat-forming species

    Collection of marine organismsMarine invertebrates such as Corallium rubrum are ideal organisms to perform controlled experiments and to gather useful information on a variety of environmental conditions74. This species, whose diet is based on small zooplankton captured with the polyp tentacles, has been already used in long-term experiments74,75,76. Coral specimens were collected in March 2017 at ca. 35-m depth in the Marine Protected Area of Portofino (Punta del Faro, 44°17′41.02 N; 9°13′31.30 E) in the Ligurian Sea (North-Western Mediterranean Sea) by scuba divers (using TRIMIX blending).Experimental designAfter recovery, the coral specimens were brought to the laboratory and maintained in a tank (30 L) at in situ temperature (13 ± 0.8 °C) and subjected to the continuous flux of natural seawater filtered onto 0.7-µm pore-size membranes (micro-glass fibre paper, Munktell) by using two submersible pumps (Euronatale, 203 V, 50 Hz, 4 Watt).Sixty coral branches obtained from different colonies, with similar morphology, and a surface of ~2 cm2 each, were distributed among 12 experimental tanks, in order to have 5 coral branches per tank (12 L glass tanks, containing on average, 274 ± 26.4 coral polyps each). The corals were acclimatised for 20 days in a temperature-controlled room, and dim light conditions, before starting experiments. Each tank, filled with natural seawater, was equipped with a prefiltered (0.2 µm) channelled aeration system combined with motor-driven paddles in order to create convective currents, which allowed the resuspension of the microplastic mixture, thus ensuring as much as possible a homogeneous distribution of the polymers. This experimental system was designed and set up according to Sutherland et al.77. To assess the potential effects of increasing microplastic  microparticles L−1 (here defined as low, medium and high concentrations of microplastic particles). We also quantified the exact amount of particles actually interacting with the corals, by discounting the fractions loss due to experimental manipulations (see details in Supplementary Methods). According to the results reported in the Supplementary Results, the systems were responsible for the loss of ca. 40% of the microplastic particles, thus the corals in experimental systems were actually exposed to 60, 300 and 600 microplastic particles per litre (to which we referred the low, medium and high concentrations).The highest concentrations of microplastics (up to 600 microplastic particles per litre) can reflect future contamination on the basis of estimates obtained by numerical models9, whereas the low and medium concentrations have been selected to represent highly-contaminated marine habitats, including the areas where the corals were collected (Ligurian Sea)78,79. In particular, for the Ligurian Sea, we estimated an average value of 94 microplastic particles L−1, based on the concentrations of microplastic particles ( >200 µm) determined by Fossi et al.78,79, and the most cautionary correction factor (105) calculated by Brandon et al.10 for the unaccounted smaller fraction of microplastics (25–75% of the fragments falling approximately in the 20–100 µm dimensional class with median range: 59–116).Microplastic mixtures were also prepared considering the concentration and composition of dominant polymers in different coastal marine environments, especially in hot spots of microplastic contamination5,7,8.The microplastic mixture added to the tanks was composed of 76.6% polyethylene, 10.9% polypropylene, 7.3% polystyrene, 3.3% polyvinylchloride and 1.8% polyethylene terephthalate particles. These particles were obtained by milling plastic objects from everyday life (i.e., containers, bottles, cups, pipes) according to Paul-Pont et al.8 (Supplementary Table 5). Plastic milling was carried out under a laminar flow hood in chilled sterilized and 0.02 µm prefiltered milliQ water. All the tools used for handling plastics were pre-treated with 1% sodium hypochlorite in water and rinsed 10 times with sterilized and 0.02 µm prefiltered milliQ water, and then dried under laminar flow hood. Details on the preparation of microplastic mixtures are reported in the Supplementary Methods.The low, medium and high concentrations of microplastics were added in triplicate tanks (n = 3 for each concentration). Additional systems containing seawater and coral branches without microplastics (n = 3, here defined Controls), and seawater added with microplastics (at the highest concentration) without red corals (n = 3, here define CTRL MPs) were used as controls. Overall, the experimental setup comprised 15 tanks.The experiments for assessing the impact of microplastics on red corals started immediately after the microplastic mixture addition (time 0). During the experiment, seawater temperature (range: 13.10 ± 0.01–13.13 ± 0.05 °C), salinity (range: 38.35 ± 0.18–38.65 ± 0.18) and oxygen levels (7.10 ± 0.08–7.36 ± 0.2 mg L−1) were monitored daily in all tanks using a probe (YSI Professional Plus, USA) and corals were fed three times a week with 103 Artemia salina nauplii L−1.After ten days the condition of corals that were exposed to microplastics was deteriorating, so we collected one coral branch from each tank for molecular analyses (i.e., associated microbiome, gene expression and DNA damage). After 14 days, the experiment was stopped because the coral branches that were exposed to the medium and high microplastic particle concentrations were completely wrapped in mucus, with a large portion of damaged tissue and without polyp activity, therefore corals were defined dead (overall 12 branches, see ‘Results’ section for details). Coral branches in the controls showed no visible signs of necrosis or other macroscopic stress. The tissue remained intact, and the colour unchanged until the end of the experiment.Effects of microplastic ingestionCoral feeding activityTo assess the impact of microplastics on feeding activity of C. rubrum, analyses based on the use of Artemia salina were performed after 2 and 10 days from the start of the experiment (t0) in replicate systems (n = 3 for each treatment, n = 3 for the controls) according to standard international protocols80. The nauplii of Artemia salina were reared in the laboratory, incubating 0.5 g of cysts (Ocean Nutrition) in 1 L of seawater filtered onto 0.2-µm filter in a separatory funnel, 2 days before the analysis of feeding rate. At hatching, nauplii were counted and maintained in vials to obtain the concentration of 1000 nauplii L−1. To avoid stress, corals (one branch for each tank) were transferred underwater to beakers along with 1 L seawater of each tank. After addition of live A. salina nauplii (1000 nauplii L−1) to the 1 L beakers containing the coral branches and to the controls, three aliquots of 10 ml seawater were collected after ~30 s from the start of the experiment (t0) and after 2 and 4 h. The remaining nauplii present in each seawater aliquot were counted under a stereomicroscope at ×3.2 magnification (Zeiss Stami 2000). Mean ingestion rates (nauplii removed h−1) were determined by linear regression analysis.Accumulation of microplastics by C. rubrum
    To investigate the accumulation of plastic polymers by C. rubrum polyps, the number of microplastic particles ingested by coral polyps was evaluated after 14 days of exposure to microplastic mixture, by dissolving polyps and skeleton of the corals (one for each tank at the concentration of 1000 microplastic particles L−1) using an acid/base digestion protocol36 with some modifications.To exclude biases on the estimate of the number of microplastic particles actually accumulated within the polyps, coral branches were accurately rinsed with milliQ water and checked under stereomicroscope (at ×50 magnification) for the potential presence of microplastic particles adherent to the coral tissue. Coral branches were then soaked in 5 ml of 4.5% sodium hypochlorite (NaClO) for 24 h and dissolved in 5 ml of 37% HCl for 30 min. Particulate material was retained on a 0.2-μm filter in a vacuum filtration system, and microplastic particles were counted under a stereomicroscope at ×50 magnification. The chemical composition of the polymers ingested by corals was confirmed by FT-IR analyses (Perkin Elmer, software Packages Spectrum 5.3.1). To evaluate possible damage to plastic polymers due to the use of acid/base solutions, we exposed polypropylene, polyethylene, polystyrene, polyvinylchloride and polyethylene terephthalate at the same volume and concentration of NaClO and HCl during digestion of the coral.Potential transfer of microplastics by zooplanktonWhile testing the exposure of the red corals to microplastics, we also determined the rate of microplastic ingestion by A. salina nauplii used to feed the red corals, in order to assess their role as potential vectors of microplastics. To do this, additional tanks (n = 3) were added with 0.2 µm prefiltered 12 L natural seawater, 1000 nauplii L−1 of A. salina and the same microplastic mixture used for the experiment on the red corals (at the highest concentration). Three other tanks were used as controls containing 0.2 µm prefiltered 12 L natural seawater and 1000 nauplii L−1 of A. salina.Microplastic ingestion by A. salina was determined after 2 and 10 days of experiment following the enzymatic digestion protocol previously developed81 with some modifications. Such a procedure degrades biological tissues without affecting shape, colour and composition of plastic fragments. Gut contents of 100 individuals of A. salina (n = 5) were assessed under a stereomicroscope (Leica MZ125) and light microscope (Zeiss Axiovert 200) and photographed with a Zeiss Axiocam digital camera. Afterwards, nauplii were processed immediately according to the modified enzymatic digestion protocol. Nauplii were dried in an oven for 3 h at 60 °C, transferred to glass jars containing a buffer homogenizing solution (400 mM Tris-HCl pH 8, 60 mM EDTA pH 8, 5 M NaCl, SDS 1%) incubated at 50 °C for 15 min and exposed to Proteinase K (1 mg ml−1). Then, samples were dried for 2 h at 50 °C, homogenized and re-incubated at 60 °C for 20 min and sonicated on ice (1–2 min) three times. After digestion, the microplastic-containing suspensions were placed in Utermöhl chambers and the microplastics were examined at the inverted light microscope (Leica DMI3000-Bat ×200 magnification) and counted. Microplastics obtained from nauplii digested after 10 days of incubation were also measured and categorized by colours and shape to evaluate the numbers and the size spectra of microplastics ingested by A. salina during the experiment.Physical impact on coral coenenchymaScanning electron microscopy (SEM) analysesTo investigate the physical damage of the microplastic mixture on the coral tissues, samples (one branch from each tank including the control) were collected before the start of the experiment (t0), after 7 days and at the end of the experiment and prepared for SEM analyses according to standard protocols82 with some modifications. Coral branches were stored in 0.7 µm prefiltered seawater with 4% buffered formalin. After 24 h, samples were washed with 0.7 µm prefiltered seawater and dehydrated for 3 h in 20% ethanol. After 3 h they were washed in the same way and dehydrated in ethanol 50%. After 3 h, samples were stored in 70% ethanol. Samples were stored at +4 °C. We dehydrated samples using different gradients of ethanol solutions (70–80%, 80–90%, 90–95%, 95–99% in 2 days)82. Then, samples were dried using HMDS (Hexamethyldisilazane, Aldrich 440191)83. Dried samples were mounted on aluminium stubs using Leit-C glue (conductive carbon cement, Neubauer Chemikalien) and sputter-coated with gold. Samples were examined with a Scanning Electron Microscope (Zeiss SUPRA 40). In addition, the tissue damage percentage was assessed on SEM micrographs at ×200 of magnification by using PhotoQuad v1.4 software84. Such a software for advanced image processing of 2D photographic quadrat samples, dedicated to ecological applications, was used for the analysis of three randomly selected areas from the apex to the base of each coral rotating it on three sides (n = 9). Additional analyses through random SEM observations (n = 20) at 3.00KX to 17.00KX of magnification were carried out to determine prokaryotic cell abundances around lesions of corals (n = 3) exposed to high concentrations of microplastic particles. Data were standardised to the coral surface analysed.Mucus release and trapped microplastics and prokaryotic cellsTo evaluate the first symptoms of coral stress, a photographic report was conducted daily. The abundance of microplastic particles trapped in coral mucus was estimated using an enzymatic digestion protocol81 with some modifications. Mucus produced by corals exposed to higher microplastics concentrations was dried in oven at 60 °C for 12 h. After 12 h, five ml of homogenizing solution was added to the samples and incubated at 50 °C for 15 min. Proteinase K (1 mg mL−1) was added to the samples, which subsequently were incubated at 50 °C for 2 h. Then, samples were homogenized and incubated again at 60 °C for 20 min, after that samples were sonicated three times (three 1-min treatments using a Branson Sonifier 2200; 60 W). After digestion, microplastics-containing suspension was filtered on 0.2-μm filters in a vacuum filtration system (Whatman, Nuclepore). Filters were analysed at stereomicroscope at ×50 magnification (Zeiss Stemi 2000).Stress signals at the molecular levelRNA extraction, cDNA synthesis and gene expression level by qPCRTo assess potential changes in the gene expression pattern of C. rubrum due to microplastics, total RNA was extracted from ca. 20 mg of tissue (wet weight) from one coral branch randomly collected from each treatment (n = 3) and control (n = 3) after 10 days of experiment by using Quick-RNA™ MiniPrep (Zymo Research, Freiburg, Germany) according to the manufacturer’s instructions. Total RNA was also extracted from additional samples of coral branches collected randomly at the beginning of the experiment. Once scraped by surgical disposable scalpels (Braun), coral tissues were placed in new 2 ml sterile tubes and washed three times with phosphate-buffered saline (PBS 1×). Samples were centrifuged at 1800 rpm for 10 min in an Eppendorf® 5810r refrigerated centrifuge using a swing-out rotor at 4 °C and, after removing the supernatant, were homogenized for 5 min with a RNase-free sterile glass stick in RNA lysis buffer. Contaminating DNA was degraded by treating each sample with DNase dissolved in RNase-free water included in the kit. For each sample, 250 ng of total RNA extracted was retrotranscribed with an iScript™ cDNA Synthesis kit (Bio-Rad, Milan, Italy), following the manufacturer’s instructions. The reaction was performed on the Veriti™ 96-Well Thermal Cycler (Applied Biosystem, Monza, Italy). To evaluate the efficiency of cDNA synthesis, a PCR was performed with primers of the reference gene, cytochrome oxidase I (COI, Supplementary Table 6). The reaction was carried out using MyTaq™ HS DNA Polymerase (Bioline, Luckenwalde, Germany) on the Veriti™ 96-Well Thermal Cycler (Applied Biosystem, Monza, Italy). The PCR programme consisted of a denaturation step at 95 °C for 1 min, 35 cycles at 95 °C for 45 s, 60 °C for 45 s, and 72 °C for 45 s and a final extension step at 72 °C for 10 min.The expression levels of the six genes of hsp70, hsp60, MnSOD, mtMutS, EF1 and cytb, involved in a broad range of functional responses, such as stress, detoxification processes, and DNA repair, were followed by real-time qPCR to identify potential stress of corals exposed to microplastics61. For the cytb, target-specific primer pairs were designed with the Primer 3 software (http://primer3.ut.ee85) using nucleotide sequences retrieved from the GenBank database for C. rubrum as template (https://www.ncbi.nlm.nih.gov/genbank/; Supplementary Table 6). SensiFAST™ SYBR® & Fluorescein mix (Bioline, Luckenwalde, Germany) were used for measuring the levels of mRNAs on CFX Connect™ Real-Time PCR detection system (Biorad, Milan, Italy). Fluorescence was measured using CFX Manager™ software (Biorad, Milan, Italy). All genes tested by qPCR in this study were amplified with primers purchased from Life Technologies/Thermo Fisher Scientific (Milan, Italy). The fold change in target gene mRNA expression of corals exposed to microplastics compared with the control was calculated using the comparative CT method using the 2−ΔΔCt equation86. COI was used as reference gene for normalising the gene expression analyses.DNA oxidative damageFor evaluating oxidative DNA damage potentially due to microplastic exposure on C. rubrum, the content of 8-hydroxydeoxyguanosine (8-OHdG) was analysed. DNA was extracted from 20 mg (wet weight) of tissue randomly collected from one coral branch for each treatment (n = 3) and control (n = 3) after 10 days of experiment using DNeasy Blood & Tissue Kits (Qiagen, Valencia, CA) and following the manufacturer’s protocol. Finally, samples were kept at −20 °C before subsequent analyses. Nucleic acids extracted (2 μg) were transferred into new 2-ml tubes and incubated for 5 min at 95 °C, then rapidly chilled on ice. Samples were digested to nucleosides by incubating the denatured DNA in sodium acetate 20 mM, pH 5.2 with 2 μl of nuclease P1 (6 U/μl; Merck KGaA, Darmstadt, Germany) for 2 h at 37 °C. Each sample was then incubated with 5 μl alkaline phosphatase (1 U/μl; Roche, Mannheim, Germany) in Tris-HCl 100 mM, pH 7.5 for 1 h at 37 °C. The reaction mixtures were then centrifuged for 5 min at 6000 × g and the supernatants tested for DNA oxidation with an OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation; Cell Biolabs, CA, USA). As positive control, Escherichia coli genomic DNA (2 μg) was incubated in a final concentration of 50 and 100 mM H2O2 overnight at 37 °C, and subsequently tested.Prokaryotic abundance in coral mucus and surrounding seawaterTo highlight possible effects in terms of prokaryotic contamination associated with the exposure of the corals to microplastics, we determined prokaryotic abundances in the mucus released by C. rubrum and the surrounding seawater.Prokaryotic abundances in the coral mucus collected from each tank (except for the control where coral mucus was not released) after 14 days of the experiment, were analysed by epifluorescence microscopy. The extraction of prokaryotic cells from the mucus (ca. 1 mL for each tank) was performed using pyrophosphate (final concentration, 5 mM) and ultrasound treatment (three 1-min treatments using a Branson Sonifier 2200; 60 W)87. Then, samples were diluted from 50- to 100-fold with sterile water filtered onto 0.2-μm pore-size filters (Anodisc filters; black-stained polycarbonate). The filters were stained using SYBR Green I (10,000× in anhydrous dimethyl sulfoxide, Molecular Probes-Invitrogen) diluted 1:20 in prefiltered TE buffer (pH 7.5) and incubated in the dark for 20 min; a drop (20 µl) of antifade solution (composed of 50% 6.7 mmol L−1 phosphate buffer at pH 7.8 and 50% glycerol with the addition of 0.5% ascorbic acid) was laid both on a glass slide and on the filter mounted on it. Prokaryotic counts were performed under epifluorescence microscopy (magnification, ×1000; Zeiss filter set #09, 488009-9901-000, excitation BP 450–490 nm, beam splitter FT 515, emission LP 520), by examining at least 20 fields per slide and counting at least 400 cells per filter.For the determination of prokaryote abundance in seawater surrounding corals, three replicates of 10 ml of seawater were collected from each tank. Total prokaryotic abundance was determined according to Danovaro87. Samples were filtered onto 0.2-μm pore-size filters (Anodisc black-stained polycarbonate filters, Whatman) into a funnel with vacuum pressure no greater than 20 kPa (or 150 mmHg) to avoid cell damage. When the sample had passed through, filters were stained with 20 µl of SYBR Green I (10,000× in anhydrous dimethyl sulfoxide, Molecular Probes-Invitrogen) diluted 1:20 in prefiltered TE buffer (pH 7.5) and incubated in the dark for 20 min. Then, to remove the excess stain, filters were washed three times using 3 ml of Milli-Q water; a drop (20 µl) of antifading solution (composed of 50% 6.7 mmol L−1 phosphate buffer at pH 7.8 and 50% glycerol with the addition of 0.5% ascorbic acid) was laid both on a glass slide and on the filter mounted on it. Prokaryotic counts were carried out as described above.Microbiome of corals exposed to microplasticsThe coral microbiome was analysed immediately before the start of the experiment (before the addition of microplastics) and after 10 days of the experiment, both in replicated coral branches exposed to microplastics and in unexposed corals (Control t10). For the analysis of the microbiome, ca. 20 mg of tissue (wet weight) from one coral branch randomly collected from two tanks of each treatment and control was scraped from the skeleton by using surgical disposable scalpels (Braun) and DNA extraction was performed using the QIAGEN DNeasy Blood & Tissue Kit. Briefly, samples were digested with proteinase K at 56 °C overnight or until the tissue was completely lysed, then samples were processed following the manufacturer’s protocol. Finally, samples were held at −20 °C before PCR amplification and sequencing. The molecular size of the DNA extracts was analysed by agarose gel electrophoresis (1%) and the amount and purity of DNA were determined by Nanodrop spectrophotometer (ND-1000). For PCR amplification of the 16S V3 region, the Bacteria-specific primer pair 805R/341F was chosen with Illumina-specific adapters and barcodes. Sequencing was performed on an Illumina MiSeq platform by LGC Genomics GmbH (Berlin, Germany).Raw sequencing paired-end reads were first joined using the bbmerge tool from the BBMap suite88 in a two-step process: reads that did not merge in a first step were quality-trimmed to remove low-quality bases (Q  More

  • in

    Emerging strains of watermelon mosaic virus in Southeastern France: model-based estimation of the dates and places of introduction

    DataPathosystemWMV is widespread in cucurbit crops, mostly in temperate and Mediterranean climatic regions of the world16. WMV has a wide host range including some legumes, orchids and many weeds that can be alternative hosts16. Like other potyviruses, it is non-persistently transmitted by at least 30 aphid species16. In temperate regions, WMV causes summer epidemics on cucurbit crops, and it can overwinter in several common non-cucurbit weeds when no crops are present16,34. WMV has been common in France for more than 40 years, causing mosaics on leaves and fruits in melon, but mostly mild symptoms on zucchini squash. Since 2000, new symptoms were observed in southeastern France on zucchini squash: leaf deformations and mosaics, as well as fruit discoloration and deformations that made them unmarketable. This new agronomic problem was correlated to the introduction of new molecular groups of WMV strains. At least four new groups have emerged since 2000 and they have rapidly replaced the native “classical” strains, causing important problems for the producers35. These new groups, hereafter “emerging strains” (ES) are significantly more related molecularly to worldwide strains than to any other isolates from the French populations36. As emphasised in35, this supports that the new group of emerging strains has arisen through introductions, mostly from Southeastern Asia, rather than through local differentiation.In this study, we focus on the pathosystem corresponding to a classical strain (CS) and four emerging strains (ESk, (k = 1, ldots ,4)) of WMV and their cucurbit hosts.Study area and samplingThe study area, located in Southeastern France, is included in a rectangle of about 25,000 km2 and is bounded on the South by the Mediterranean Sea. Between 2004 and 2008, the presence of WMV had been monitored in collaboration with farmers, farm advisers and seed companies. Each year, cultivated host plants were collected in different fields and at different dates between May 1st and September 30th. In total, more than two thousand plant samples were collected over the entire study area. All plant samples were analyzed in the INRAE Plant Pathology Unit to confirm the presence of WMV and determine the molecular type of the virus strain causing the infection (see35 for detail on field and laboratory protocols). All infected host plants were cucurbits, mostly melon and different squashes (e.g., zucchini, pumpkins).Observations In the absence of individual geographic coordinates, all infected host plants were attributed to the centroid of the municipality (French administrative unit, median size about 10 km2) where they have been collected. Then for one date, one observation corresponded to a municipality in which at least one infected host plant was sampled. Table 1 summarizes for each year, the number of observations (i.e. number of municipalities), the number of infected plants sampled and the proportion of each WMV strain (CS, and ES1 to ES4) found in the infected host plants. Errors in assignment of virus samples to the CS or ES strains was negligible because of the large genetic distance separating them: 5 to 10% nucleotide divergence both in the fragment used in the study and in complete genomes35, also precluding the possibility of local jumps between groups by accumulation of mutations.Table 1 Number of observations and corresponding proportions of classical and emerging strains.Full size tableLandscapeTo approximate the density of WMV host plants over the study area, we used 2006 land use data (i.e. BD Ocsol 2006 PACA and LR) produced by the CRIGE PACA (http://www.crige-paca.org/) and the Association SIG-LR (http://www.siglr.org/lassociation/la-structure.html). Based on satellite images, land use is determined at a spatial resolution of 1/50,000 using an improved three-level hierarchical typology derived from the European Corine Land Cover nomenclature. Here we used the third hierarchical level of the BD Ocsol typology (i.e. 42 land use classes) to classify the entire study area in three habitats: (1) WMV-susceptible crops, (2) habitats unfavorable to WMV host plants (e.g. forests, industrial and commercial units…) and, (3) non-terrestrial habitat (i.e. water). The proportion of WMV-susceptible crops was then computed within all cells of a raster covering the entire study area, with a spatial resolution of (1.4 times 1.4) km2. These proportions were used to approximate host plant density (zleft( {varvec{x}} right)), which was normalized, so that (zleft( {varvec{x}} right) = 0) corresponds to an absence of host plants and (zleft( {varvec{x}} right) = 1) to the maximum density of host plants (Fig. 1).Figure 1Approximated density (zleft( x right)) of the host plants in the study area. The density was normalized, so that (zleft( x right) = zleft( {x_{1} ,x_{2} } right) = 0) corresponds to an absence of cucurbit plants and (zleft( x right) = 1) to the maximum density. The axes (x_{1}) and (x_{2}) correspond to Lambert93 coordinates (in km). The white regions are non-terrestrial habitats (water). Land use data were not available in the gray regions; the host plant density was then computed by interpolation.Full size imageMechanistic-statistical modelThe general modeling strategy is based on a mechanistic-statistical approach12,22,33. This type of approach combines a mechanistic model describing the dynamics under investigation with a probabilistic model conditional on the dynamics, describing how the measurements have been collected. This method that has already proved its theoretical effectiveness in determining dispersal parameters using simulated genetic data12 aims at bridging the gap between the data and the model for the determination of virus dynamics.Here, the mechanistic part of the model describes the spatio-temporal dynamics of the virus strains, given the model parameters (demographic parameters, introduction dates/sites). This allows us to compute the expected proportions of the five types of virus strains (CS and ES1 to ES4) at each date and site of observation. The probabilistic part of the mechanistic-statistical model describes the conditional distribution of the observed proportions of the virus strains, given the expected proportions. Using this approach, it is then possible to derive a numerically tractable formula for the likelihood function associated with the model parameters.Population dynamicsThe model is segmented into two stages: (1) the intra-annual stage describes the dispersal and growth of the five virus strains during the summer epidemics on cucurbit crops, and the competition between them, during a period ranging from May 1st (noted (t = 0)) to September 30 (noted (t = t_{f}), (t_{f} = 153) days); (2) the inter-annual stage describes the winter decay of the different strains when no crops are present and the virus overwinters in weeds. We denote by (c^{n} left( {t,{varvec{x}}} right)) and (e_{k}^{n} left( {t,{varvec{x}}} right)) the densities of classical strain (CS) and emerging strains (ESk, (k = 1, ldots ,4)), at position ({varvec{x}}) and at time (t) of year (n.)Dynamics of the classical strain before the first introduction eventsBefore the introduction of the first emerging strain, the intra-annual dynamics of the population CS is described by a standard diffusion model with logistic growth: (partial_{t} c^{n} = D{Delta }c^{n} + rc^{n} left( {zleft( {varvec{x}} right) – c^{n} } right)). Here, ({Delta }) is the Laplace 2D diffusion operator (sum of the second derivatives with respect to coordinate). This operator describes uncorrelated random walk movements of the viruses, with the coefficient (D) measuring the mobility of the viruses (e.g.,26,37). The term (r zleft( {varvec{x}} right)) is the intrinsic growth rate (i.e., growth rate in the absence of competition) of the population, which depends on the density of host plants (zleft( {varvec{x}} right)) and on a coefficient (r) (intrinsic growth rate at maximum host density). Under these assumptions, the carrying capacity at a position ({varvec{x}}) is equal to (zleft( {varvec{x}} right)), which means that the population densities are expressed in units of the maximum host population density. The model is initialized by setting (c^{1980} left( {0,{varvec{x}}} right) = (1 – m_{c} ) zleft( {varvec{x}} right)), where (m_{c}) is the winter decay rate of the CS (see the description of the inter-annual stage below). In other terms, we assume that the CS density is at the carrying capacity in 1979, i.e., 5 years after its first detection and 20 years before the first detections of ESs38.Introduction eventsThe ESs are introduced during years noted (n_{k} ge 1981), at the beginning of the intra-annual stage (other dates of introduction within the intra-annual stage would lead—at most—to a one-year lag in the dynamics). Their densities are (0) before introduction: (e_{k}^{n} = 0) for (n < n_{k}). Once introduced, the initial density of any ES is assumed to be 1/10th of the carrying capacity at the introduction point (other values have been tested without much effect, see Supplementary Fig. S1), with a decreasing density as the distance from this point increases:$$e_{k}^{{n_{k} }} left( {0,x} right) = frac{{zleft( {varvec{x}} right)}}{10}exp left( { - frac{|{{varvec{x}} - {varvec{X}}_{{varvec{k}}}|^{2} }}{{2sigma^{2} }}} right),$$where ({varvec{X}}_{{varvec{k}}}) is the location of introduction of the strain (k.) In our computations, we took (sigma = 5) km for the standard deviation.Intra-annual dynamics after the first introduction eventIntra-annual dynamics were described by a neutral competition model with diffusion (properties of this model have been analyzed in [54]):$$left{ {begin{array}{*{20}c} {partial_{t} c^{n} left( {t,x} right) = DDelta c^{n} + rc^{n} left( {zleft( {varvec{x}} right) - c^{n} - mathop sum limits_{i = 1}^{4} e_{i}^{n} left( {t,{varvec{x}}} right)} right)} \ {partial_{t} e_{k}^{n} left( {t,x} right) = DDelta e_{k}^{n} + re_{k}^{n} left( {zleft( {varvec{x}} right) - c^{n} - mathop sum limits_{i = 1}^{4} e_{i}^{n} left( {t,{varvec{x}}} right)} right)} \ end{array} } right.,$$for (t = 0 ldots t_{f}) and for all introduced emerging strains, i.e. all (k) such that (n ge n_{k} .) We assume reflecting boundary conditions, meaning that the population flows vanish at the boundary of the study area, due to truly reflecting boundaries (e.g., sea coast in the southern part of the site) or symmetric inward and outward fluxes26. In addition, in order to limit the number of unknown parameters, and in the absence of precise knowledge on the differences between the strains, we assume here that the diffusion, competition and growth coefficients are common to all the strains during the intra-annual stage (see the discussion for more details on this assumption).Inter-annual dynamicsThe population densities at time (t = 0) of year (n) are connected with those of year (n - 1,) at time (t = t_{f} ,) through the following formulas:$$left{ {begin{array}{*{20}c} {c^{n} left( {0,{varvec{x}}} right) = left( {1 - m_{c} } right)c^{n - 1} left( {t_{f} ,{varvec{x}}} right) hbox{ for } n ge 1981} \ {e_{k}^{n} left( {0,{varvec{x}}} right) = left( {1 - m_{e} } right)e_{k}^{n - 1} left( {t_{f} ,{varvec{x}}} right) hbox{ for }n ge n_{k} + 1} \ end{array} } right.$$with (m_{c}) and (m_{e}) the winter decay rates of the CS and ESs strains (note that (m_{e}) is common to all of the ESs). Estimation of CS and ES decay rates provides an assessment of the competitive advantage of one type of strain vs the other.Numerical computationsThe intra-annual dynamics were solved using Comsol Multiphysics time-dependent solver, which is based on a finite element method (FEM). The triangular mesh which was used for our computations is available as Supplementary Fig. S2.Probabilistic model for the observation processDuring the years (n = 2004, ldots ,2008), (I_{n}) observations were made (see Section Observations above and Table 1). They consist in counting data, that we denote by (C_{i}) and (E_{k,i}) for (k = 1, ldots ,4) and (i = 1, ldots ,I_{n}), corresponding to the number of samples infected by the CS and ESs strains, respectively, at each date of observation and location (left( {t_{i} ,{varvec{x}}_{i} } right)). Note that these dates and locations depend on the year of observation (n). More generally, the above quantities should be noted (C_{i}^{n} , E_{k,i}^{n} , t_{i}^{n} , {varvec{x}}_{i}^{n} ;) for simplicity, the index (n) is omitted in the sequel, unless necessary.We denote by (V_{i} = C_{i} + mathop sum nolimits_{k = 1}^{4} E_{k,i}) the total number of infected samples observed at (left( {t_{i} ,{varvec{x}}_{i} } right)). The conditional distribution of the vector (left( {C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i} } right)), given (V_{i}) can be described by a multinomial distribution ({mathcal{M}}left( {V_{i} ,{varvec{p}}_{i} } right)) with ({varvec{p}}_{i} = left( {p_{i}^{c} ,p_{i}^{{e_{1} }} ,p_{i}^{{e_{2} }} ,p_{i}^{{e_{3} }} ,p_{i}^{{e_{4} }} } right)) the vector of the respective proportions of each strain in the population at (left( {t_{i} ,{varvec{x}}_{i} } right)). We chose to work conditionally to (V_{i}) because the sample sizes are not related to the density of WMV.Statistical inferenceUnknown parametersWe denote by ({{varvec{Theta}}}) the vector of unknown parameters: the diffusion coefficient (D,) the intrinsic growth rate at maximum host density (r), the winter decay rates ((m_{c} , m_{e} )) and the locations ((x_{k} in {mathbb{R}}^{2})) and years ((n_{k})) of introduction, for (k = 1, ldots ,4.) Thus ({{varvec{Theta}}} in {mathbb{R}}^{16} .)Computation of a likelihoodGiven the set of parameters ({{varvec{Theta}}}), the densities (c^{n} left( {t,{varvec{x}}|{{varvec{Theta}}}} right)) and (e_{k}^{n} left( {t,{varvec{x}}|{{varvec{Theta}}}} right)) can be computed explicitly with the mechanistic model for population dynamics. Thus, at a given year (n), at (left( {t_{i} ,x_{i} } right)), the parameter ({varvec{p}}_{i}) of the multinomial distribution ({mathcal{M}}left( {V_{i} ,{varvec{p}}_{i} } right)) writes:$$p_{i}^{c} left( {{varvec{Theta}}} right) = frac{{c^{n} left( {t_{i} ,{varvec{x}}_{i} |{{varvec{Theta}}}} right)}}{{c^{n} left( {t_{i} ,{varvec{x}}_{i} |{{varvec{Theta}}}} right) + mathop sum nolimits_{i = 1}^{4} e_{i}^{n} left( {t_{i} ,{varvec{x}}_{i} {|}{{varvec{Theta}}}} right)}}, p_{i}^{{e_{k} }} left( {{varvec{Theta}}} right) = frac{{e_{k}^{n} left( {t_{i} ,{varvec{x}}_{i} |{{varvec{Theta}}}} right)}}{{c^{n} left( {t_{i} ,{varvec{x}}_{i} |{{varvec{Theta}}}} right) + mathop sum nolimits_{i = 1}^{4} e_{i}^{n} (t_{i} ,{varvec{x}}_{i} |{{varvec{Theta}}})}}.$$The probability (P(C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i} |{{varvec{Theta}}},{text{V}}_{{text{i}}} )) of the observed outcome (C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i}) is then$$Pleft( {C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i} {|}{{varvec{Theta}}},{text{V}}_{{text{i}}} } right) = frac{{left( {V_{i} } right)!}}{{C_{i} ! mathop prod nolimits_{k = 1}^{4} E_{k,i} !}}left( {p_{i}^{c} left( {{varvec{Theta}}} right)} right)^{{C_{i} }} mathop prod limits_{k = 1}^{4} (p_{i}^{{e_{k} }} left( {{varvec{Theta}}} right))^{{E_{k,i} }} .$$Assuming that the observations during each year and at each date/location are independent from each other conditionally on the virus strain proportions, we get the following formula for the likelihood:$${mathcal{L}}left( {{varvec{Theta}}} right) = mathop prod limits_{n = 2004}^{2008} mathop prod limits_{{i = 1, ldots , I_{n} }} Pleft( {C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i} {|}{{varvec{Theta}}},{text{V}}_{{text{i}}} } right).$$A priori constraints on the parameters By definition and for biological reasons, the parameter vector ({{varvec{Theta}}}) satisfies some constraints. First, (D in left( {10^{ - 4} ,10} right){text{ km}}^{2} /{text{day}}), (r in left( {0.1,1} right) {text{day}}^{ - 1} ,) and (m_{c} , m_{e} in left{ {0,0.1,0.2, ldots ,0.9} right},) (see Supplementary Note S7 for a biological interpretation of these values). Second, we assumed that the locations of introductions ({varvec{X}}_{{varvec{k}}}) belong to the study area. To facilitate the estimation procedure, the points ({varvec{X}}_{{varvec{k}}}) were searched in a regular grid with 20 points (see Supplementary Fig. S3), and the dates of introduction (n_{k}) were searched in (left{ {1985,1990,1995,2000} right}.)Inference procedureDue to the important computation time (4 min in average for one simulation of the model on an Intel(R) Core(R) CPU i7-4790 @ 3.60 GHz), we were not able to compute an a posteriori distribution of the parameters in a Bayesian framework. Rather, we used a simulated annealing algorithm to compute the maximum likelihood estimate (MLE), i.e., the parameter ({{varvec{Theta}}}^{*}) which leads to the highest log-likelihood. This is an iterative algorithm, which constructs a sequence (({{varvec{Theta}}}_{j} )_{j ge 1}) converging in probability towards a MLE. It is based on an acceptance-rejection procedure, where the acceptance rate depends on the current iteration (j) through a "cooling rate" ((alpha )). Empirically, a good trade-off between quality of optimization and time required for computation (number of iterations) is obtained with exponential cooling rates of the type (T_{0} alpha^{j}) with (0 < alpha < 1) and some constant (T_{0} gg 1) (this cooling schedule was first proposed in= 39 = 39). Too rapid cooling ((alpha ll 1)) results in a system frozen into a state far from the optimal one, whereas too slow cooling ((alpha approx 1)) leads to important computation times due to very slow convergence. Here, we ran (6) parallel sequences with cooling rates (alpha in left{ {0.995,0.999,0.9995} right}). For this type of algorithm, there are no general rules for the choice of the stopping criterion [HenJac03], which should be heuristically adapted to the considered optimization problem. Here, our stopping criterion was that ({{varvec{Theta}}}_{j}) remained unchanged during 500 iterations. The computations took about 100 days (CPU time).Confidence intervals and goodness-of-fitTo assess the model’s goodness-of-fit, 95% confidence regions were computed for the observations (left( {C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i} } right)) at each date/location (left( {t_{i} ,{varvec{x}}_{i} } right),) and for each year of observation. The confidence regions were computed by assessing the probability of each possible outcome of the observation process, at each date/location, based on the computed proportions ({varvec{p}}_{i} = left( {p_{i}^{c} ,p_{i}^{{e_{1} }} ,p_{i}^{{e_{2} }} ,p_{i}^{{e_{3} }} ,p_{i}^{{e_{4} }} } right)), corresponding to the output of the mechanistic model using the MLE ({{varvec{Theta}}}^{user2{*}}) and given the total number of infected samples (V_{i}). Then, we checked if the observations belonged to the 95% most probable outcomes. More

  • in

    Biogeography of ammonia oxidizers in New England and Gulf of Mexico salt marshes and the potential importance of comammox

    1.Prosser, J. I. & Nicol, G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10, 2931–2941 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Bernhard, A. E. & Bollmann, A. Estuarine nitrifiers: new players, patterns and processes. Estuar. Coast. Shelf Sci. 88, 1–11 (2010).CAS 
    Article 

    Google Scholar 
    3.Martiny, J. B. H., Eisen, J., Penn, K., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial beta-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).4.Nelson, M. B., Martiny, A. C. & Martiny, J. B. H. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Marton, J. M., Roberts, B. J., Bernhard, A. E. & Giblin, A. E. Spatial and temporal variability of nitrification potential and ammonia-oxidizer abundances in Louisiana salt marshes. Estuaries Coast. 38, 1824–1837 (2015).CAS 
    Article 

    Google Scholar 
    7.Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461, 976–981 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Dimitri Kits, K. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Hink, L., Nicol, G. W. & Prosser, J. I. Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environ. Microbiol. 19, 4829–4837 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Bernhard, A. E., Donn, T., Giblin, A. E. & Stahl, D. A. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ. Microbiol. 7, 1289–1297 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Moin, N. S., Nelson, K. A., Bush, A. & Bernhard, A. E. Distribution and diversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments. Appl. Environ. Microbiol. 75, 7461–7468 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Bernhard, A. E. et al. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl. Environ. Microbiol. 76, 1285–1289 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Francis, C. A., O’Mullan, G. D. & Ward, B. B. Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1, 129–140 (2003).CAS 
    Article 

    Google Scholar 
    14.Ward, B. B. et al. Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray. Environ. Microbiol. 9, 2522–2538 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Mills, H. J. et al. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Appl. Environ. Microbiol. 74, 4440–4453 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Newell, S. E. et al. A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico. Environ. Microbiol. Rep. 6, 106–112 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Bernhard, A. E., Sheffer, R., Giblin, A. E., Marton, J. M. & Roberts, B. J. Population dynamics and community composition of ammonia oxidizers in salt marshes after the Deepwater Horizon oil spill. Front. Microbiol. 7, 854 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    18.Bernhard, A. E., Chelsky, A., Giblin, A. E. & Roberts, B. J. Influence of local and regional drivers on spatial and temporal variation of ammonia-oxidizing communities in Gulf of Mexico salt marshes. Environ. Microbiol. Rep. 11, 825–834 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Nelson, K. A., Moin, N. S. & Bernhard, A. E. Archaeal diversity and the prevalence of Crenarchaeota in salt marsh sediments. Appl. Environ. Microbiol. 75, 4211–4215 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Peng, X. et al. Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh. Front. Microbiol. 3, 445 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    21.Bernhard, A. E., Marshall, D. & Yiannos, L. Increased variability of microbial communities in restored salt marshes nearly 30 years after tidal flow restoration. Estuaries Coast. 35, 1049–1059 (2012).CAS 
    Article 

    Google Scholar 
    22.Marton, J. M. & Roberts, B. J. Spatial variability of phosphorus sorption dynamics in Louisiana salt marshes. J. Geophys. Res. Biogeosci. 119, 451–465 (2014).CAS 
    Article 

    Google Scholar 
    23.Hill, T. D. & Roberts, B. J. Effects of seasonality and environmental gradients on Spartina alterniflora allometry and primary production. Ecol. Evol. 7, 9676–9688 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Bernhard, A. E., Tucker, J., Giblin, A. E. & Stahl, D. A. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ. Microbiol. 9, 1439–1447 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Schutte, C. A., Marton, J. M., Bernhard, A. E., Giblin, A. E. & Roberts, B. J. No evidence for long-term impacts of oil spill contamination on salt marsh soil nitrogen cycling processes. Estuaries Coast. 43, 865–879 (2020).Article 

    Google Scholar 
    26.Bernhard, A. E., Dwyer, C., Idrizi, A., Bender, G. & Zwick, R. Long-term impacts of disturbance on nitrogen-cycling bacteria in a New England salt marsh. Front. Microbiol. 6 https://doi.org/10.3389/fmicb.2015.00046 (2015).27.Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8 https://doi.org/10.3389/fmicb.2017.01508 (2017).28.Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl Acad. Sci. USA 102, 14683–14688 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Park, S.-J., Park, B.-J. & Rhee, S.-K. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12, 605–615 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).34.Turner, R. E., Rabalais, N. N. & Justic, D. Predicting summer hypoxia in the northern Gulf of Mexico: riverine N, P, and Si loading. Mar. Pollut. Bull. 52, 139–148 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Tian, H. et al. Long-term trajectory of nitrogen loading and delivery from Mississippi river basin to the Gulf of Mexico. Glob. Biogeochem. Cycles 34, 6475 (2020).Article 
    CAS 

    Google Scholar 
    36.Dang, H. et al. Diversity, abundance, and spatial distribution of sedimet ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl. Environ. Microbiol. 76, 4691–4702 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Sims, A., Zhang, Y., Gajaraj, S., Brown, P. B. & Hu, Z. Toward the development of microbial indicators for wetland assessment. Water Res. 47, 1711–1725 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Zhang, Q. -F. et al. Impacts of Spartina alterniflora invasion on abundance and composition of ammonia oxidizers in estuarine sediment. J. Soils Sediment. 11, 1020–1031 (2011).Article 

    Google Scholar 
    39.Jin, T. et al. Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River Estuary, China. Appl. Microbiol. Biotechnol. 90, 1137–1145 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Meinhardt, K. A. et al. Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia-oxidizing archaea and bacteria. Environ. Microbiol. Rep. 7, 354–363 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Marshall, A. et al. Primer selection influences abundance estimates of ammonia oxidizing archaea in coastal marine sediments. Mar. Environ. Res. 140, 90–95 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Koops, H. P. & Pommerening-Roser, A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1–9 (2001).CAS 
    Article 

    Google Scholar 
    43.Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Pommier, T. et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. 103, 626–631 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98, 1757–1763 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Hitchcock, J. N., Mitrovic, S. M., Kobayashi, T. & Westhorpe, D. P. Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions. Estuaries Coast. 33, 78–91 (2010).CAS 
    Article 

    Google Scholar 
    48.Guo, X. -P. et al. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China. Mar. Pollut. Bull. 126, 141–149 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Howarth, R. W. Nutrient limitation of net primary production in marine ecosystems. Annu. Rev. Ecol. 19, 89–110 (1988).Article 

    Google Scholar 
    50.Murrell, M. C. et al. Evidence that phosphorus limits phytoplankton growth in a Gulf of Mexico estuary: Pensacola Bay, Florida, USA. Bull. Mar. Sci. 70, 155–167 (2002).
    Google Scholar 
    51.Johnson, M. W., Heck, K. L. Jr & Fourqurean, J. W. Nutrient content of seagrasses and epiphytes in the northern Gulf of Mexico: evidence of phosphorus and nitrogen limitation. Aquat. Bot. 85, 103–111 (2006).CAS 
    Article 

    Google Scholar 
    52.Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, P. B. & Sloth, N. P. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22, 21–30 (1999).CAS 
    Article 

    Google Scholar 
    53.Peng, X. et al. Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments. J. Geophys. Res. Biogeosci. 121, 2082–2095 (2016).CAS 
    Article 

    Google Scholar 
    54.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    55.Taylor, A. E., Giguere, A. T., Zoebelein, C. M., Myrold, D. D. & Bottomley, P. J. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. ISME J. 11, 896–908 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Ouyang, Y., Norton, J. M. & Stark, J. M. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biol. Biochem. 113, 161–172 (2017).CAS 
    Article 

    Google Scholar 
    57.Mukhtar, H., Lin, Y. -P., Lin, C. -M. & Lin, Y. -R. Relative abundance of ammonia oxidizing archaea and bacteria influences soil nitrification responses to temperature. Microorganisms 7, 526 (2019).
    Google Scholar 
    58.Fierer, N., Carney, K. M., Horner-Devine, M. C. & Megonigal, J. P. The biogeography of ammonia-oxidizing bacterial communities in soil. Microb. Ecol. 58, 435–445 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Park, H.-D., Lee, S.-Y. & Hwang, S. Redundancy analysis demonstration of the relevance of temperature to ammonia-oxidizing bacterial community compositions in a full-scale nitrifying bioreactor treating saline wastewater. J. Microbiol. Biotechnol. 19, 346–350 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    60.Avrahami, S., Liesack, W. & Conrad, R. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5, 691–705 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Avrahami, S. & Conrad, R. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl. Environ. Microbiol. 69, 6152–6164 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Seitzinger, S. P., Gardner, W. S. & Spratt, A. K. The effect of salinity on ammonium sorption in aquatic sediments—implications for benthic nutrient recycling. Estuaries 14, 167–174 (1991).CAS 
    Article 

    Google Scholar 
    63.Dollhopf, S. L. et al. Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments. Appl. Environ. Microbiol. 71, 240–246 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Beman, J. M., Bertics, V. J., Braunschweiler, T. & Wilson, J. M. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing archaea and bacteria in marine sediment depth profiles from Catalina Island, California. Front. Microbiol. 3, 263 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Nicol, G. W., Leininger, S., Schleper, C. & Prosser, J. I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10, 2966–2978 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Lehtovirta, L. E., Prosser, J. I. & Nicol, G. W. Soil pH regulates the abundance and diversity of group 1.1c Crenarchaeota. FEMS Microbiol. Ecol. 70, 367–376 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Bello, M. O., Thion, C., Gubry-Rangin, C. & Prosser, J. I. Differential sensitivity of ammonia oxidising archaea and bacteria to matric and osmotic potential. Soil Biol. Biochem. 129, 184–190 (2019).CAS 
    Article 

    Google Scholar 
    68.Fuchslueger, L. et al. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosciences. 11, 6003–6015 (2014).Article 

    Google Scholar 
    69.Thion, C. & Prosser, J. I. Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiol. Ecol. 90, 380–389 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.How, S. W., Chua, A. S. M., Ngoh, G. C., Nittami, T. & Curtis, T. P. Enhanced nitrogen removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater: low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for denitrification. Sci. Total Environ. 693, 133526 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Gonzalez-Martinez, A., Rodriguez-Sanchez, A., van Loosdrecht, M. C. M., Gonzalez-Lopez, J. & Vahala, R. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. Environ. Sci. Pollut. Res. 23, 25501–25511 (2016).CAS 
    Article 

    Google Scholar 
    73.Wang, D. -Q., Zhou, C. -H., Nie, M., Gu, J. -D. & Quan, Z. -X. Abundance and niche specificity of different types of complete ammonia oxidizers (comammox) in salt marshes covered by different plants. Sci. Total Environ. 768, 144933 (2021).
    Google Scholar 
    74.Xia, F. et al. Ubiquity and diversity of complete ammonia oxidizers (comammox). Appl. Environ. Microbiol. 84, e01390 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Yu, C. et al. Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments. Appl. Microbiol. Biotechnol. 102, 9363–9377 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Zhao, Z. et al. Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set. Sci. Total Environ. 691, 146–155 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More