Stress hormone-mediated antipredator morphology improves escape performance in amphibian tadpoles
1.
Tollrian, R. & Harvell, C. D. The Ecology and Evolution of Inducible Defenses (Princeton University Press, Princeton, 1998).
Google Scholar
2.
Ohgushi, T., Schmitz, O. J. & Holt, R. D. Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives (Cambridge University Press, Cambridge, 2013).
Google Scholar
3.
Ellers, J. & Stuefer, J. F. Frontiers in phenotypic plasticity research: new questions about mechanisms, induced responses, and ecological impacts. Evol. Ecol. 24, 523–526 (2010).
Article Google Scholar
4.
Mitchell, M. D., Bairos-Novak, K. R. & Ferrari, M. C. Mechanisms underlying the control of responses to predator odours in aquatic prey. J. Exp. Biol. 220, 1937–1946 (2017).
PubMed Article Google Scholar
5.
Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. Roy. Soc. B Biol. Sci. 272, 2627–2634 (2005).
Google Scholar
6.
Brönmark, C. & Hansson, L.-A. Chemical Ecology in Aquatic Systems (Oxford University Press, Oxford, 2012).
Google Scholar
7.
Middlemis Maher, J., Werner, E. E. & Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc. R. Soc. B Biol. Sci. 280, 20123075 (2013).
Article CAS Google Scholar
8.
Dennis, S. R., LeBlanc, G. A. & Beckerman, A. P. Endocrine regulation of predator-induced phenotypic plasticity. Oecologia 176, 625–635 (2014).
ADS PubMed PubMed Central Article Google Scholar
9.
Matsunami, M. et al. Transcriptome analysis of predator- and prey-induced phenotypic plasticity in the Hokkaido salamander (Hynobius retardatus). Mol. Ecol. 24, 3064–3076 (2015).
CAS PubMed Article Google Scholar
10.
Weiss, L. C. Sensory ecology of predator-induced phenotypic plasticity. Front. Behav. Neurosci. 12, 330 (2019).
PubMed PubMed Central Article CAS Google Scholar
11.
Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).
PubMed Article Google Scholar
12.
Auld, J. R. & Relyea, R. A. Adaptive plasticity in predator-induced defenses in a common freshwater snail: altered selection and mode of predation due to prey phenotype. Evol. Ecol. 25, 189–202 (2011).
Article Google Scholar
13.
Meuthen, D., Baldauf, S. A., Bakker, T. C. & Thünken, T. Neglected patterns of variation in phenotypic plasticity: age-and sex-specific antipredator plasticity in a cichlid fish. Am. Nat. 191, 475–490 (2018).
PubMed Article Google Scholar
14.
Schoeppner, N. M. & Relyea, R. A. Interpreting the smells of predation: how alarm cues and kairomones induce different prey defenses. Func. Ecol. 23, 1114–1121 (2009).
Article Google Scholar
15.
Hettyey, A. et al. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia 179, 699–710 (2015).
ADS PubMed Article Google Scholar
16.
Fraker, M. E. et al. Characterization of an alarm pheromone secreted by amphibian tadpoles that induces behavioral inhibition and suppression of the neuroendocrine stress axis. Horm. Behav. 55, 520–529 (2009).
CAS PubMed Article Google Scholar
17.
Hossie, T. J., Ferland-Raymond, B., Burness, G. & Murray, D. L. Morphological and behavioural responses of frog tadpoles to perceived predation risk: a possible role for corticosterone mediation?. Écoscience 17, 100–108 (2010).
Article Google Scholar
18.
McDiarmid, R. W. & Altig, R. Tadpoles: the Biology of Anuran Larvae (University of Chicago Press, Chicago, 1999).
Google Scholar
19.
Relyea, R. A. Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85, 172–179 (2004).
Article Google Scholar
20.
Wilson, R. S., Kraft, P. G. & Van Damme, R. Predator-specific changes in the morphology and swimming performance of larval Rana lessonae. Func. Ecol. 19, 238–244 (2005).
Article Google Scholar
21.
Van Buskirk, J. & McCollum, S. A. Influence of tail shape on tadpole swimming performance. J. Exp. Biol. 203, 2149–2158 (2000).
PubMed Google Scholar
22.
Eidietis, L. Size-related performance variation in the wood frog (Rana sylvatica) tadpole tactile-stimulated startle response. Can. J. Zool. 83, 1117–1127 (2005).
Article Google Scholar
23.
Perotti, M. G., Pueta, M., Jara, F. G., Úbeda, C. A. & Moreno Azocar, D. L. Lack of functional link in the tadpole morphology induced by predators. Curr. Zool. 62, 227–235 (2016).
PubMed PubMed Central Article Google Scholar
24.
Mori, T. et al. The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in Xenopus tadpoles. Biol. Open 6, 1726–1733 (2017).
CAS PubMed PubMed Central Article Google Scholar
25.
Lindgren, B., Orizaola, G. & Laurila, A. Interacting effects of predation risk and resource level on escape speed of amphibian larvae along a latitudinal gradient. J. Evol. Biol. 31, 1216–1226 (2018).
PubMed Article Google Scholar
26.
Van Buskirk, J., Anderwald, P., Lüpold, S., Reinhardt, L. & Schuler, H. The lure effect, tadpole tail shape, and the target of dragonfly strikes. J. Herp. 37, 420–424 (2003).
Article Google Scholar
27.
Dijk, B., Laurila, A., Orizaola, G. & Johansson, F. Is one defence enough? Disentangling the relative importance of morphological and behavioural predator-induced defences. Behav. Ecol. Sociobiol. 70, 237–246 (2016).
Article Google Scholar
28.
Glennemeier, K. A. & Denver, R. J. Moderate elevation of corticosterone content affects fitness components in northern leopard frog (Rana pipiens) tadpoles. Gen. Comp. Endocrinol. 127, 16–25 (2002).
CAS PubMed Article Google Scholar
29.
Glennemeier, K. A. & Denver, R. J. Role for corticoids in mediating the response of Rana pipiens tadpoles to intraspecific competition. J. Exp. Zool. 292, 32–40 (2002).
CAS PubMed Article Google Scholar
30.
Muir, A. M., Vecsei, P. & Krueger, C. C. A perspective on perspectives: methods to reduce variation in shape analysis of digital images. Trans. Am. Fish. Soc. 141, 1161–1170 (2012).
Article Google Scholar
31.
Fraker, M. E. & Luttbeg, B. Predator-prey space use and the spatial distribution of predation events. Behaviour 149, 555–574 (2012).
Article Google Scholar
32.
Denver, R. J. Hormonal correlates of environmentally induced metamorphosis in the western spadefoot toad, Scaphiopus hammondii. Gen. Comp. Endocrinol. 110, 326–336 (1998).
CAS PubMed Article Google Scholar
33.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).
Article Google Scholar
34.
R Core Team. R: A language and environment for statistical computing, version 3.6.1. (R Foundation for Statistical Computing, 2019).
35.
Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Soft. 69, 1–33 (2016).
Article Google Scholar
36.
Therneau, T. M. & Lumley, T. R Package ‘survival’ version 3.1-8 (2019).
37.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
CAS PubMed PubMed Central Article Google Scholar
38.
Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 541–554 (2001).
Article Google Scholar
39.
Berner, D. Size correction in biology: how reliable are approaches based on (common) principal component analysis?. Oecologia 166, 961–971 (2011).
ADS PubMed Article Google Scholar
40.
Humphreys, R. K. & Ruxton, G. D. What is known and what is not yet known about deflection of the point of a predator’s attack. Biol. J. Linn. Soc. 123, 483–495 (2018).
Article Google Scholar
41.
Blair, J. & Wassersug, R. J. Variation in the pattern of predator-induced damage to tadpole tails. Copeia 2000, 390–401 (2000).
Article Google Scholar
42.
Van Buskirk, J., Ferrari, M., Kueng, D., Näpflin, K. & Ritter, N. Prey risk assessment depends on conspecific density. Oikos 120, 1235–1239 (2011).
Article Google Scholar
43.
McCoy, M. W. Conspecific density determines the magnitude and character of predator-induced phenotype. Oecologia 153, 871–878 (2007).
ADS PubMed Article Google Scholar
44.
Van Buskirk, J. & McCollum, S. A. Functional mechanisms of an inducible defence in tadpoles: morphology and behaviour influence mortality risk from predation. J. Evol. Biol 13, 336–347 (2000).
Article Google Scholar
45.
Van Buskirk, J. Phenotypic lability and the evolution of predator-induced plasticity in tadpoles. Evolution 56, 361–370 (2002).
PubMed Article Google Scholar
46.
Hossie, T., Landolt, K. & Murray, D. L. Determinants and co-expression of anti-predator responses in amphibian tadpoles: a meta-analysis. Oikos 126, 173–184 (2017).
Article Google Scholar
47.
Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).
PubMed Article Google Scholar
48.
Steiner, U. K. & Van Buskirk, J. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff. PLoS ONE 4, e6160 (2009).
ADS PubMed PubMed Central Article CAS Google Scholar
49.
Ferrari, M. C., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88, 698–724 (2010).
Article Google Scholar
50.
Luttbeg, B., Ferrari, M. C., Blumstein, D. T. & Chivers, D. P. Safety cues can give prey more valuable information than danger cues. Am. Nat. 195, 636–648 (2020).
PubMed Article Google Scholar
51.
Schmitz, O. J. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions. F1000Research 6, 1767 (2017).
PubMed PubMed Central Article Google Scholar More