Long-term dynamics of plant communities after biological remediation of oil-contaminated soils in far north
1.
Liste, H.-H. & Felgentreu, D. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil. Ecol. 31, 43–52 (2006).
Article Google Scholar
2.
Smith, M. J., Flowers, T. H., Duncan, H. J. & Alder, J. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ. Pollut. 141, 519–525 (2006).
CAS PubMed Article Google Scholar
3.
Meudec, A., Poupart, N., Dussauze, J. & Deslandes, E. Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis. Sci. Total Environ. 381, 146–156 (2007).
ADS CAS PubMed Article Google Scholar
4.
Euliss, K., Ho, C.-H., Schwab, A. P., Rock, S. & Banks, M. K. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresour. Technol. 99, 1961–1971 (2008).
CAS PubMed Article Google Scholar
5.
Hutchinson, T. C. & Freedman, W. Effects of experimental crude oil spills on subarctic boreal forest vegetation near Norman Wells, N.W.T., Canada. Can. J. Bot. 56, 2424–2433 (1978).
Article Google Scholar
6.
Lin, Q. & Mendelssohn, I. A. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol. Eng. 10, 263–274 (1998).
Article Google Scholar
7.
Racine, C. H. Long-term recovery of vegetation on two experimental crude oil spills in interior Alaska black spruce taiga. Can. J. Bot. 72, 1171–1177 (1994).
Article Google Scholar
8.
Fatima, K., Afzal, M., Imran, A. & Khan, Q. M. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull. Environ. Contam. Toxicol. 94, 314–320 (2015).
CAS PubMed Article Google Scholar
9.
Hashmat, A. J. et al. Characterization of hydrocarbon-degrading bacteria in constructed wetland microcosms used to treat crude oil polluted water. Bull. Environ. Contam. Toxicol. 102, 358–364 (2019).
CAS PubMed Article Google Scholar
10.
Khan, F. I., Husain, T. & Hejazi, R. An overview and analysis of site remediation technologies. J. Environ. Manag. 71, 95–122 (2004).
Article Google Scholar
11.
Sarkar, D., Ferguson, M., Datta, R. & Birnbaum, S. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136, 187–195 (2005).
CAS PubMed Article Google Scholar
12.
Gan, S., Lau, E. V. & Ng, H. K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 172, 532–549 (2009).
CAS PubMed Article Google Scholar
13.
Anchugova, E. M., Melekhina, E. N., Markarova, MYu. & Shchemelinina, T. N. Approaches to the assessment of the efficiency of remediation of oil-polluted soils. Eurasian Soil Sci. 49, 234–237 (2016).
ADS CAS Article Google Scholar
14.
Erkenova, M. I., Tolpeshta, I. I., Trofimov, S. Y., Aptikaev, R. S. & Lazarev, A. S. Changes of the content of oil products in the oil-polluted peat soil of a high-moor bog in a field experiment with application of lime and fertilizers. Eurasian Soil Sci. 49, 1310–1318 (2016).
ADS CAS Article Google Scholar
15.
Sorkhoh, N. A. et al. Bioremediation of volatile oil hydrocarbons by epiphytic bacteria associated with American grass (Cynodon sp.) and broad bean (Vicia faba) leaves. Int. Biodeterior. Biodegrad. 65, 797–802 (2011).
CAS Article Google Scholar
16.
Roy, A. S. et al. Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int. Biodeterior. Biodegrad. 94, 79–89 (2014).
CAS Article Google Scholar
17.
Cai, B. et al. Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude oil. Biochem. Eng. J. 112, 170–177 (2016).
CAS Article Google Scholar
18.
Murygina, V., Gaydamaka, S., Gladchenko, M. & Zubaydullin, A. Method of aerobic-anaerobic bioremediation of a raised bog in Western Siberia affected by old oil pollution. A pilot test. Int. Biodeterior. Biodegrad. 114, 150–156 (2016).
CAS Article Google Scholar
19.
Tahseen, R. et al. Rhamnolipids and nutrients boost remediation of crude oil-contaminated soil by enhancing bacterial colonization and metabolic activities. Int. Biodeterior. Biodegrad. 115, 192–198 (2016).
CAS Article Google Scholar
20.
Baoune, H. et al. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Ecotoxicol. Environ. Saf. 184, 109591 (2019).
CAS PubMed Article Google Scholar
21.
Ra, T., Zhao, Y. & Zheng, M. Comparative study on the petroleum crude oil degradation potential of microbes from petroleum-contaminated soil and non-contaminated soil. Int. J. Environ. Sci. Technol. 16, 7127–7136 (2019).
CAS Article Google Scholar
22.
Rajkumari, J., Bhuyan, B., Das, N. & Pandey, P. Environmental applications of microbial extremophiles in the degradation of petroleum hydrocarbons in extreme environments. Environ. Sustain. 2, 311–328 (2019).
CAS Article Google Scholar
23.
Newman, L. A. & Reynolds, C. M. Phytodegradation of organic compounds. Curr. Opin. Biotechnol. 15, 225–230 (2004).
CAS PubMed Article Google Scholar
24.
Unterbrunner, R. et al. Plant and fertiliser effects on rhizodegradation of crude oil in two soils with different nutrient status. Plant Soil 300, 117–126 (2007).
CAS Article Google Scholar
25.
Muratova, A. Y., Dmitrieva, T. V., Panchenko, L. V. & Turkovskaya, O. V. Phytoremediation of oil-sludge-contaminated soil. Int. J. Phytorem. 10, 486–502 (2008).
CAS Article Google Scholar
26.
Shirdam, R., Zand, A., Bidhendi, G. & Mehrdadi, N. Phytoremediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phyto 89, 21–29 (2008).
CAS Article Google Scholar
27.
Farias, V. et al. Phytodegradation Potential of Erythrina crista-galli L., Fabaceae petroleum-contaminated soil. Appl. Biochem. Biotechnol. 157, 10–22 (2009).
PubMed Article CAS Google Scholar
28.
Peng, S., Zhou, Q., Cai, Z. & Zhang, Z. Phytoremediation of petroleum contaminated soils by Mirabilis jalapa L. in a greenhouse plot experiment. J. Hazard. Mater. 168, 1490–1496 (2009).
CAS PubMed Article Google Scholar
29.
Basumatary, B., Saikia, R., Bordoloi, S., Das, H. C. & Sarma, H. P. Assessment of potential plant species for phytoremediation of hydrocarbon-contaminated areas of upper Assam, India. J. Chem. Technol. Biotechnol. 87, 1329–1334 (2012).
CAS Article Google Scholar
30.
Moubasher, H. A. et al. Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. Int. Biodeterior. Biodegrad. 98, 113–120 (2015).
CAS Article Google Scholar
31.
Fatima, K., Imran, A., Amin, I., Khan, Q. M. & Afzal, M. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ. Sci. Pollut. Res. Int. 23, 6188–6196 (2016).
CAS PubMed Article Google Scholar
32.
Khan, S., Afzal, M., Iqbal, S. & Khan, Q. M. Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90, 1317–1332 (2013).
ADS CAS PubMed Article Google Scholar
33.
Yavari, S., Malakahmad, A. & Sapari, N. B. A review on phytoremediation of crude oil spills. Water Air Soil Pollut. 226, 279 (2015).
ADS Article CAS Google Scholar
34.
Okoh, E., Yelebe, Z. R., Oruabena, B., Nelson, E. S. & Indiamaowei, O. P. Clean-up of crude oil-contaminated soils: bioremediation option. Int. J. Environ. Sci. Technol. 17, 1185–1198 (2020).
CAS Article Google Scholar
35.
Naeem, U. & Qazi, M. A. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environ. Sci. Pollut. Res. 27, 27370–27382 (2019).
36.
Tyagi, M., da Fonseca, M. M. R. & de Carvalho, C. C. C. R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22, 231–241 (2011).
CAS PubMed Article Google Scholar
37.
Fatima, K., Imran, A., Amin, I., Khan, Q. M. & Afzal, M. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int. J. Phytoremediat. 20, 675–681 (2018).
CAS Article Google Scholar
38.
Walker, D. A. et al. Cumulative impacts of oil fields on Northern Alaskan Landscapes. Science 238, 757–761 (1987).
ADS CAS PubMed Article Google Scholar
39.
Maganov, R. U., Markarova, M. Y., Mulyak, V. V., Zagvozdkin, V. E. & Zaikin, I. A. Nature conservation management at the oil and gas companies. Part 1. Reclamation of oil-polluted lands in the Usinsky district of the Komi Republic (Komi Science Center Ural Branch of RAS, Syktyvkar, 2006) ((in Russian)).
Google Scholar
40.
Vervaeke, P. et al. Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ. Pollut. 126, 275–282 (2003).
CAS PubMed Article Google Scholar
41.
Huang, X.-D., El-Alawi, Y., Gurska, J., Glick, B. R. & Greenberg, B. M. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 81, 139–147 (2005).
CAS Article Google Scholar
42.
Robson, D. B., Knight, J. D., Farrell, R. E. & Germida, J. J. Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands. Can. J. Bot. 82, 22–30 (2004).
Article Google Scholar
43.
Grime, J. P. & Pierce, S. The evolutionary strategies that shape ecosystems (Wiley-Blackwell, Chichester, 2012).
Google Scholar
44.
Ramenskiy, L. G. On principal rules, basic concepts, and terms of land typology, geobotany, and ecology. Sov. Bot. 4, 25–42 (1935).
Google Scholar
45.
Grime, J. P., Hodgson, J. G. & Hunt, R. Comparative plant ecology: a functional approach to common British species (Unwin Hyman, London, 1988).
Google Scholar
46.
Thompson, K. Predicting the fate of temperate species in response to human disturbance and global change. In Biodiversity, temperate ecosystems, and global change (eds Boyle, T. J. B. & Boyle, C. E. B.) 61–76 (springer, Berlin, 1994).
Google Scholar
47.
Massant, W., Godefroid, S. & Koedam, N. Clustering of plant life strategies on meso-scale. Plant Ecol. 205, 47–56 (2009).
Article Google Scholar
48.
Novakovsky, A. B. & Panyukov, A. N. Analysis of successional dynamics of a sown meadow using Ramenskii–Grime’s System of ecological strategies. Russ. J. Ecol. 49, 119–127 (2018).
Article Google Scholar
49.
Novakovskiy, A. B. & Elsakov, V. V. Hydrometeorological database (HMDB) for practical research in ecology. Data Sci. J. 13, 57–63 (2014).
Article Google Scholar
50.
PND F 16.1: 2.21-98. Quantitative chemical analysis of soils. The method of measuring the mass fraction of oil products in soil and soil samples by the fluorimetric method on the Fluorat-02 fluid analyzer. https://www.russiangost.com/p-275219-fr131201213170.aspx
51.
Archegova, I. B., Markarova, M. Y. & Gromova, O. V. Method for reclaiming posttechnogenic lands and lands in remote districts of extreme North. US Patent RU2093974C1 (1997).
52.
Archegova, I. B., Markarova, M. Y. & Gromova, O. V. Method for producing granular fertilizing-seeding material. US Patent RU2099917C1 (1997).
53.
Murygina, V. P., Vojshvillo, N. E. & Kaljuzhnyj, S. V. Biological preparation ‘Roder’ for cleaning soils, soil grounds, sweet and mineralized waters to remove crude oil and petroleum products. US Patent RU2174496C2 (2001).
54.
Murygina, V. P., Markarova, M. Y. & Kalyuzhnyi, S. V. Application of biopreparation “Rhoder” for remediation of oil polluted polar marshy wetlands in Komi Republic. Environ. Int. 31, 163–166 (2005).
CAS PubMed Article Google Scholar
55.
Lavorel, S. et al. Assessing functional diversity in the field—methodology matters!. Funct. Ecol. 22, 134–147 (2008).
Google Scholar
56.
Kindt, R. & Coe, R. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies (World Agroforestry Centre, Nairobi, 2006).
57.
Hodgson, J. G., Wilson, P. J., Hunt, R., Grime, J. P. & Thompson, K. Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85, 282–294 (1999).
Article Google Scholar
58.
Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).
Article Google Scholar
59.
Magguran, A. E. Measuring biological diversity (Blackwell Publishing, Oxford, 2004).
Google Scholar
60.
Peet, R. K. The measurement of species diversity. Annu. Rev. Ecol. Syst. 5, 285–307 (1974).
Article Google Scholar
61.
Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129 (1964).
MathSciNet Article MATH Google Scholar
62.
McCune, B. & Grace, J. B. Analysis of ecological communities (MjM Software Design, Gleneden Beach, 2002).
Google Scholar
63.
Melekhina, E. N., Markarova, MYu., Shchemelinina, T. N., Anchugova, E. M. & Kanev, V. A. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods. Eurasian Soil Sci. 48, 643–653 (2015).
ADS Article Google Scholar
64.
Borowik, A., Wyszkowska, J., Gałązka, A. & Kucharski, J. Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil. Environ. Sci. Pollut. Res. Int. 26, 27738–27751 (2019).
CAS PubMed PubMed Central Article Google Scholar
65.
Wyszkowska, J., Borowik, A. & Kucharski, J. The resistance of Lolium perenne L. × hybridum, Poa pratensis, Festuca rubra, F. arundinacea, Phleum pratense and Dactylis glomerata to soil pollution by diesel oil and petroleum. Plant Soil Environ. 65, 307–312 (2019).
CAS Article Google Scholar
66.
Freedman, W. & Hutchinson, T. Physical and biological effects of experimental crude-oil spills on Low Arctic Tundra in Vicinity of Tuktoyaktuk, Nwt, Canada. Can. J. Bot.-Rev. Can. Bot. 54, 2219–2230 (1976).
Article Google Scholar
67.
Kazantseva, M. N. The effect of oil extraction on ground cover of West Siberian taiga forests. Contemp. Probl. Ecol. 4, 582–587 (2011).
Article Google Scholar
68.
Lapshina, E. D. & Bleuten, W. Types of deterioration and self-restoration of vegetation of olygotrophic bogs in oil-production areas of Tomsk province, Krylovia. Siberian Bot. J. 1, 129–140 (1999).
Google Scholar
69.
Cook, R. L., Landmeyer, J. E., Atkinson, B., Messier, J.-P. & Nichols, E. G. Field note: successful establishment of a phytoremediation system at a petroleum hydrocarbon contaminated shallow aquifer: trends, trials, and tribulations. Int. J. Phytorem. 12, 716–732 (2010).
Article Google Scholar
70.
Nichols, E. G. et al. Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA. Remediat. J. 24, 29–46 (2014).
Article Google Scholar
71.
Seburn, D. C., Kershaw, G. P. & Kershaw, L. J. Vegetation response to a subsurface crude oil spill on a subarctic right-of-way, Tulita (Fort Norman), Northwest Territories, Canada. Arctic 49, 321–327 (1996).
Article Google Scholar
72.
Melekhina, E. N., Markarova, M. Y. U., Anchugova, E. M., Shchemelinina, T. N. & Kanev, V. A. The efficiency assessment of oil polluted soil recultivation methods. Bull. Komi Sci. Center Ural Branch of RAS 27, 61–70 (2016) ((in Russian)).
Google Scholar
73.
Ma, X. & Burken, J. G. VOCs fate and partitioning in vegetation: use of tree cores in groundwater analysis. Environ. Sci. Technol. 36, 4663–4668 (2002).
ADS PubMed Article Google Scholar
74.
Haroni, N. N., Badehian, Z., Zarafshar, M. & Bazot, S. The effect of oil sludge contamination on morphological and physiological characteristics of some tree species. Ecotoxicology 28, 507–519 (2019).
CAS PubMed Article Google Scholar
75.
Banks, M. K., Kulakow, P., Schwab, A. P., Chen, Z. & Rathbone, K. Degradation of crude oil in the rhizosphere of sorghum bicolor. Int. J. Phytorem. 5, 225–234 (2003).
CAS Article Google Scholar More