More stories

  • in

    Stable isotope turnover rates and fractionation in captive California yellowtail (Seriola dorsalis): insights for application to field studies

    Ethics statement
    All procedures used in these experiments were in accordance with protocol SW1401 of the SWFSC Animal Care and Use Committee. YOY California yellowtail were collected under California Department of Fish and Wildlife Scientific Collection Permit #SC-12372. Experimental protocols were approved by the National Oceanic & Atmospheric Administration Southwest Fisheries Science Center (NOAA SWFSC) Animal Care & Use Committee. Reporting of methods and results were in compliance with ARRIVE guidelines for animal research53.
    Collection and captive husbandry of yellowtail
    YOY California yellowtail (14–19 cm) were collected from offshore floating kelp mats near San Diego, CA, USA on September 12, 2012. Fish were caught using unbaited sabiki bait rigs, then immediately transferred to an onboard flow-through holding tank. On land, fish were transported in the holding tank on the trailered vessel to NOAA’s SWFSC Experimental Aquaria Facility in La Jolla, CA where they were transferred via dipnet to holding tanks. Fish were first held in 300 × 150 × 90 cm oval tanks (~ 3200 L) with flow-through, filtered local seawater at local ambient seawater temperature (~ 18 °C) and reared on a diet of Bio-Oregon BioTrout feed pellets. Pellets were presented immediately to newly transferred fish and fish began feeding 0–7 days after capture. Yellowtail were fed pellets 6 days/week to apparent satiation. After 525 days, the now larger yellowtail (42–50 cm) were transferred to a larger circular tank (diameter 3.7 m, capacity 9600 L) with the same filtered seawater at the same ambient temperatures (~ 18 °C) and tagged in the dorsal musculature with uniquely numbered and colored Floy plastic spaghetti tags. Yellowtail were switched to a diet of Pacific mackerel (Scomber japonicus) and market squid (Doryteuthis opalescens), both sourced off the coast of southern California (McRoberts Sales Co.). Yellowtail were fed mackerel and squid (by mass: 62% mackerel, 38% squid) 6 days/week to apparent satiation.
    Yellowtail muscle was sampled at t = 0 (the day of diet switch), followed by sampling intervals ranging from 27 to 119 days (mean interval 60 ± 27 days) depending on perceived condition of yellowtail and conditions for sampling. Samples were collected by lowering tank water levels, capturing yellowtail in a rubber knotless net, then transferring fish to vinyl cradles. Biopsy punches (Cook Quick-Core G07821) were used to remove 0.1–0.2 g of white muscle from the dorsal musculature. When possible, fork length (FL; cm) was measured at the time of sampling. Muscle tissue was also collected from the diet (dorsal musculature from mackerel and mantle tissue, with the outer membrane removed, from squid) throughout the study for SIA. Sampling continued until yellowtail were removed due to poor condition, suffered natural mortality, or became too large to remain in the holding tank (t = 753 days after diet switch, the endpoint of the study).
    YOY yellowtail (13.7–18.8 cm, 15.7 cm ± 1.7; 0.02–0.08 kg; 0.04 kg ± 0.02) fed well on pellet diet, increasing ~ threefold in length and ~ 40-fold in mass over 525 days. After 525 days, 21 similar-sized (42–50 cm FL, 46.0 cm ± 2.5; 1.0–2.2 kg, 1.7 kg ± 0.3) individual yellowtail were selected for the diet switch experiment to fish/squid (Fig. 1). During the course of the diet switch experiment, 11 individual fish were removed from captive conditions before reaching apparent isotopic steady-state due to poor physical condition, lack of feeding, or natural mortality. A total of 10 yellowtail fed consistently in captivity for a long enough period to reach apparent steady-state with new diet (595–753 days) allowing calculation of individual turnover rates in these fish. This allowed for estimates of Δ15Nlow and Δ13Clow and population-wide isotopic turnover estimates from 21 fish subjected to the diet switch, and Δ15Nhigh and Δ13Chigh and individual yellowtail turnover estimates from 10 individuals in captive conditions for 595–753 days that reached steady-state with new diet.
    SIA of yellowtail and diet
    Yellowtail dorsal muscle tissue and prey muscle tissue samples were immediately stored in cryovials at  − 20 °C. Feed pellets were analyzed whole. All samples were then frozen at  − 80 °C and subsequently lyophilized and ground to a homogenous powder for isotope analysis. The δ13C and δ15N values of all samples were determined at the University of Hawaii using an on-line C–N analyzer coupled with a Delta XP isotope ratio mass spectrometer. Replicate reference materials of atmospheric nitrogen and V-PDB were analyzed every 10 samples, and analytical precision was  More

  • in

    Contrasting multitaxon responses to climate change in Mediterranean mountains

    1.
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
    ADS  Article  Google Scholar 
    2.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. Acad. Sci. 115, 1004–1008 (2018).
    CAS  PubMed  Article  Google Scholar 

    5.
    Lenoir, J. & Svenning, J.-C. Climate-related range shifts: a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
    Article  Google Scholar 

    6.
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    PubMed  Article  CAS  Google Scholar 

    7.
    Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).
    ADS  Article  Google Scholar 

    8.
    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).
    ADS  Article  Google Scholar 

    9.
    Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).
    ADS  Article  Google Scholar 

    10.
    Forero-Medina, G., Joppa, L. & Pimm, S. L. Constraints to species’ elevational range shifts as climate changes: constraints to elevational range shifts. Conserv. Biol. 25, 163–171 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Pauli, H., Gottfried, M., Reiter, K., Klettner, C. & Grabherr, G. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob. Change Biol. 13, 147–156 (2007).
    ADS  Article  Google Scholar 

    12.
    Rehm, E. M., Olivas, P., Stroud, J. & Feeley, K. J. Losing your edge: climate change and the conservation value of range-edge populations. Ecol. Evol. 5, 4315–4326 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences—Tansley review. New Phytol. 160, 21–42 (2003).
    Article  Google Scholar 

    14.
    McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of life sciences (ed. John Wiley & Sons, Ltd) a0022548 (Wiley, Chichester, 2010). https://doi.org/10.1002/9780470015902.a0022548.
    Google Scholar 

    15.
    Vetaas, O. R., Paudel, K. P. & Christensen, M. Principal factors controlling biodiversity along an elevation gradient: water, energy and their interaction. J. Biogeogr. 46, 1652–1663 (2019).
    Article  Google Scholar 

    16.
    Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology: niche conservatism, ecology, and conservation. Ecol. Lett. 13, 1310–1324 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I. & LeRoy Poff, N. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol. Lett. 13, 267–283 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Nascimbene, J. & Spitale, D. Patterns of beta-diversity along elevational gradients inform epiphyte conservation in alpine forests under a climate change scenario. Biol. Conserv. 216, 26–32 (2017).
    Article  Google Scholar 

    21.
    Roos, R. E. et al. Contrasting drivers of community-level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Funct. Ecol. 33, 2430–2446 (2019).
    Article  Google Scholar 

    22.
    Conti, F., Ciaschetti, G., Di Martino, L. & Bartolucci, F. An annotated checklist of the vascular flora of Majella National Park (Central Italy). Phytotaxa 412, 1–90 (2019).
    Article  Google Scholar 

    23.
    Stanisci, A., Carranza, M. L., Pelino, G. & Chiarucci, A. Assessing the diversity pattern of cryophilous plant species in high elevation habitats. Plant Ecol. 212, 595–600 (2011).
    Article  Google Scholar 

    24.
    Alpert, P. The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol. 151, 5–17 (2000).
    ADS  Article  Google Scholar 

    25.
    Beckett, R. P., Minibayeva, F. V. & Kranner, I. Stress tolerance of lichens. In Lichen biology 2nd edn (ed. Nash, T. H.) 134–151 (Cambridge University Press, Cambridge, 2008).
    Google Scholar 

    26.
    Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).
    Article  Google Scholar 

    27.
    Blasi, C., Pietro, R. D. & Pelino, G. The vegetation of alpine belt karst-tectonic basins in the central Apennines (Italy). Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 139, 357–385 (2005).
    Google Scholar 

    28.
    Palombo, C., Chirici, G., Marchetti, M. & Tognetti, R. Is land abandonment affecting forest dynamics at high elevation in Mediterranean mountains more than climate change?. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 147, 1–11 (2013).
    Google Scholar 

    29.
    Orange, A., James, P. W. & White, F. J. Microchemical methods for the identification of lichens (Twayne Publishers, Woodbridge, 2001).
    Google Scholar 

    30.
    Nimis, P. L. & Martellos, S. ITALIC-the information system on Italian Lichens. Version 5.0. University of Trieste, Department of Biology. http://dryades.units.it/italic (2017).

    31.
    Ros, R. M. et al. Mosses of the Mediterranean, an annotated checklist. Cryptogam. Bryol. 34, 99 (2013).
    Article  Google Scholar 

    32.
    Giordani, P. et al. Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. J. Veg. Sci. 25, 778–792 (2014).
    Article  Google Scholar 

    33.
    Spitale, D., Mair, P. & Nascimbene, J. Patterns of bryophyte life-forms are predictable across land cover types. Ecol. Indic. 109, 105799 (2020).
    Article  Google Scholar 

    34.
    Hill, M. O., Preston, C. D., Bosanquet, S. D. S. & Roy, D. B. BRYOATT: attributes of British and Irish mosses, liverworts and hornworts (Centre for Ecology and Hydrology, Bailrigg, 2007).
    Google Scholar 

    35.
    Glime, J. M. Physiological ecology. In Bryophyte ecology Volume 1. (Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://digitalcommons.mtu.edu/bryophyte-ecology1/ (25 March 2017), 2017).

    36.
    Pignatti, S. Flora d’Italia (Edagricole, Bologna, 1982).
    Google Scholar 

    37.
    Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
    Article  Google Scholar 

    38.
    Landolt, E. Flora indicativa: ecological indicator values and biological attributes of the flora of Switzerland and the Alps (Haupt Verlag, Bern, 2010).
    Google Scholar 

    39.
    Pignatti, S. Valori di bioindicazione delle piante vascolari della flora d’Italia. Braun-Blanquetia 39, 3–97 (2005).
    Google Scholar 

    40.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Davis, F. W., Borchert, M., Meentemeyer, R. K., Flint, A. & Rizzo, D. M. Pre-impact forest composition and ongoing tree mortality associated with sudden oak death in the Big Sur region, California. For. Ecol. Manag. 259, 2342–2354 (2010).
    Article  Google Scholar 

    42.
    Jaberalansar, Z., Tarkesh, M. & Bassiri, M. Spatial downscaling of climate variables using three statistical methods in Central Iran. J. Mt. Sci. 15, 606–617 (2018).
    Article  Google Scholar 

    43.
    R Core Team. R: a language and environment for statistical computing [Computer software, version 3.6. 2] (R Foundation for Statistical Computing, Vienna, 2019).
    Google Scholar 

    44.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, Berlin, 2009). https://doi.org/10.1007/978-0-387-87458-6.
    Google Scholar 

    45.
    Fournier, D. A. et al. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27, 233–249 (2012).
    MathSciNet  MATH  Article  Google Scholar 

    46.
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach (Springer, Berlin, 2002). https://doi.org/10.1007/b97636.
    Google Scholar 

    47.
    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
    Article  Google Scholar 

    49.
    Bartoń, K. MuMIn: multi-model inference. R package version 1.43. 17. (2020).

    50.
    Carvalho, J. C., Cardoso, P. & Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob. Ecol. Biogeogr. 21, 760–771 (2012).
    Article  Google Scholar 

    51.
    Cardoso, P., Rigal, F. & Carvalho, J. C. BAT: biodiversity assessment tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).
    Article  Google Scholar 

    52.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    53.
    Oksanen, J. et al. vegan: community ecology package. R package version 2.5-6 (2019).

    54.
    Brown, A. M. et al. The fourth-corner solution: using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).
    Article  Google Scholar 

    55.
    Wang, Y. et al. mvabund: statistical methods for analysing multivariate abundance data. R package version 4.1.3. (2020).

    56.
    Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008).
    ADS  Article  Google Scholar 

    57.
    Appiotti, F. et al. A multidisciplinary study on the effects of climate change in the northern Adriatic Sea and the Marche region (central Italy). Reg. Environ. Change 14, 2007–2024 (2014).
    Article  Google Scholar 

    58.
    Barredo, J. I., Mauri, A., Caudullo, G. & Dosio, A. Assessing Shifts of mediterranean and arid climates under RCP4.5 and RCP8.5 climate projections in europe. Pure Appl. Geophys. 175, 3955–3971 (2018).
    ADS  Article  Google Scholar 

    59.
    Nascimbene, J. & Marini, L. Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J. Biogeogr. 42, 1222–1232 (2015).
    Article  Google Scholar 

    60.
    Vanneste, T. et al. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32, 579–593 (2017).
    Article  Google Scholar 

    61.
    Vittoz, P. et al. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120, 139–149 (2010).
    Article  Google Scholar 

    62.
    Ellis, C. J. & Yahr, R. An interdisciplinary review of climate change trends and uncertainties: lichen biodiversity, arctic-alpine ecosystems and habitat loss. In Climate change, ecology and systematics (eds Hodkinson, T. R. et al.) 457–489 (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    63.
    Seymour, F. A., Crittenden, P. D. & Dyer, P. S. Sex in the extremes: lichen-forming fungi. Mycologist 19, 51–58 (2005).
    Article  Google Scholar 

    64.
    Giordani, P., Malaspina, P., Benesperi, R., Incerti, G. & Nascimbene, J. Functional over-redundancy and vulnerability of lichen communities decouple across spatial scales and environmental severity. Sci. Total Environ. 666, 22–30 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Manish, K., Telwala, Y., Nautiyal, D. C. & Pandit, M. K. Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya, India. Model. Earth Syst. Environ. 2, 92 (2016).
    Article  Google Scholar 

    66.
    Rosbakh, S. et al. Contrasting effects of extreme drought and snowmelt patterns on mountain plants along an elevation gradient. Front. Plant Sci. 8, 1478 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Choler, P., Michalet, R. & Callaway, R. M. Facilitation and competition on gradients in alpine plant communities. Ecology 82, 3295–3308 (2001).
    Article  Google Scholar 

    68.
    Elsen, P. R. & Tingley, M. W. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5, 772–776 (2015).
    ADS  Article  Google Scholar 

    69.
    Di Musciano, M. et al. Distribution of plant species and dispersal traits along environmental gradients in central mediterranean summits. Diversity 10, 58 (2018).
    Article  Google Scholar  More

  • in

    The environmental and ecological determinants of elevated Ross River Virus exposure in koalas residing in urban coastal landscapes

    1.
    Gonzalez-Astudillo, V., Allavena, R., McKinnon, A., Larkin, R. & Henning, J. Decline causes of Koalas in South East Queensland, Australia: a 17-year retrospective study of mortality and morbidity. Sci. Rep. 7, 42587 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Ward, M. S. et al. Lots of loss with little scrutiny: The attrition of habitat critical for threatened species in Australia. Conserv. Sci. Pract. 1, e117 (2019).
    Google Scholar 

    3.
    Martin, R. & Handasyde, K. The Koala: Natural History, Conservation and Management (University of New South Wales Press Ltd (Hong Kong, Australian Natural History Series, 1999).
    Google Scholar 

    4.
    McAlpine, C. et al. Conserving koalas: A review of the contrasting regional trends, outlooks and policy challenges. Biol. Conserv. 192, 226–236 (2015).
    Article  Google Scholar 

    5.
    Shumway, N., Lunney, D., Seabrook, L. & McAlpine, C. Saving our national icon: An ecological analysis of the 2011 Australian Senate inquiry into status of the koala. Environ. Sci. Policy 54, 297–303 (2015).
    Article  Google Scholar 

    6.
    Adams-Hosking, C., Grantham, H. S., Rhodes, J. R., McAlpine, C. & Moss, P. T. Modelling climate-change-induced shifts in the distribution of the koala. Wildlife Res. 38, 122–130 (2011).
    Article  Google Scholar 

    7.
    Rhodes, J. R., Beyer, H., Preece, H. & McAlpine, C. South East Queensland koala population modelling study. UniQuest (2015).

    8.
    Dique, D. S., Preece, H. J., Thompson, J. & de Villiers, D. L. Determining the distribution and abundance of a regional koala population in south-east Queensland for conservation management. Wildlife Res. 31, 109–117 (2004).
    Article  Google Scholar 

    9.
    Thompson, J. The comparative ecology and population dynamics of koalas in the Koala Coast region of south-east Queensland. PhD Thesis, School of Integrative Biology, University of Queensland (2006).

    10.
    Rhodes, J. R. et al. Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biol. Conserv. 144, 1081–1088 (2011).
    Article  Google Scholar 

    11.
    Denner, J. & Young, P. R. Koala retroviruses: Characterization and impact on the life of koalas. Retrovirology 10, 108 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Nyari, S. et al. Epidemiology of chlamydial infection and disease in a free-ranging koala (Phascolarctos cinereus) population. PloS One 12 (2017).

    13.
    Waugh, C. A. et al. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus). Sci. Rep. 7, 1–11 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    McCallum, H., Kerlin, D. H., Ellis, W. & Carrick, F. Assessing the significance of endemic disease in conservation—koalas, chlamydia, and koala retrovirus as a case study. Conserv. Lett. 11, e12425 (2018).
    Article  Google Scholar 

    15.
    Aldred, J., Campbell, J., Mitchell, G., Davis, G. & Elliott, J. Involvement of wildlife in the natural cycle of Ross River and Barmah Forest viruses (Wildlife Disease Association Meeting, Melbourne, Australia, 1991).
    Google Scholar 

    16.
    Russell, R. C. Arboviruses and their vectors in Australia: An update on the ecology and epidemiology of some mosquito-borne arboviruses. Rev. Med. Vet. Entomol. 83, 141–158 (1995).
    Google Scholar 

    17.
    Harley, D., Sleigh, A. & Ritchie, S. Ross River virus transmission, infection, and disease: A cross-disciplinary review. Clin. Microbiol. Rev. 14, 909–932 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Seay, A. R. & Wolinsky, J. S. Ross river virus-induced demyelination: I Pathogenesis and histopathology. Ann. Neurol. 12, 380–389 (1982).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Azuolas, J., Wishart, E., Bibby, S. & Ainsworth, C. Isolation of Ross River virus from mosquitoes and from horses with signs of musculoskeletal disease. Aust. Vet. J. 81, 344–347 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Stephenson, E. B., Peel, A. J., Reid, S. A., Jansen, C. C. & McCallum, H. The non-human reservoirs of Ross River virus: A systematic review of the evidence. Parasite. Vector. 11, 188 (2018).
    Article  Google Scholar 

    21.
    Skinner, E. B. et al. Associations between Ross River Virus infection in humans and vector-vertebrate community ecology in Brisbane Australia. Vector-borne Zoonot. https://doi.org/10.1089/vbz.2019.2585 (2020).
    Article  Google Scholar 

    22.
    Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. T. R. Soc. B. 363, 321–339 (2008).
    Article  Google Scholar 

    23.
    Nelson, R. J. & Demas, G. E. Seasonal changes in immune function. Quart. Rev. Biol. 71, 511–548 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Old, J. M. & Deane, E. M. Antibodies to the Ross River virus in captive marsupials in urban areas of eastern New South Wales Australia. J. Wildlife Dis. 41, 611–614 (2005).
    Article  Google Scholar 

    25.
    Muhar, A., Dale, P. E., Thalib, L. & Arito, E. The spatial distribution of Ross River virus infections in Brisbane: Significance of residential location and relationships with vegetation types. Environ. Health Prev. 4, 184–189 (2000).
    CAS  Article  Google Scholar 

    26.
    Ryan, P., Alsemgeest, D., Gatton, M. & Kay, B. Ross River virus disease clusters and spatial relationship with mosquito biting exposure in Redland Shire, southern Queensland Australia. J. Med. Entomol. 43, 1042–1059 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Davies, N. et al. Movement patterns of an arboreal marsupial at the edge of its range: A case study of the koala. Movement Ecol. 1, 8 (2013).
    Article  Google Scholar 

    28.
    Murphy, A. K. et al. Spatial and temporal patterns of Ross River virus in South East Queensland, Australia: Identification of hot spots at the rural-urban interface. Preprint available at Research Square. https://doi.org/10.21203/rs.3.rs-16140/v1 (2020).

    29.
    Potter, A., Johansen, C. A., Fenwick, S., Reid, S. A. & Lindsay, M. D. The seroprevalence and factors associated with Ross River virus infection in western grey kangaroos (Macropus fuliginosus) in Western Australia. Vector-borne Zoonot. 14, 740–745 (2014).
    Article  Google Scholar 

    30.
    Kay, B. H., Boyd, A. M., Ryan, P. A. & Hall, R. A. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane Australia. Am. J. Trop. Med. Hyg. 76, 417–423 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Doak, D. F., Marino, P. C. & Kareiva, P. M. Spatial scale mediates the influence of habitat fragmentation on dispersal success: Implications for conservation. Theor. Popul. Biol. 41, 315–336 (1992).
    Article  Google Scholar 

    32.
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. S. 34, 487–515 (2003).
    Article  Google Scholar 

    33.
    Di Giulio, M., Holderegger, R. & Tobias, S. Effects of habitat and landscape fragmentation on humans and biodiversity in densely populated landscapes. J. Environ. Manag. 90, 2959–2968 (2009).
    Article  Google Scholar 

    34.
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Article  Google Scholar 

    35.
    Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17, 267–272 (2003).
    Article  Google Scholar 

    36.
    Ostfeld, R. S. Biodiversity loss and the rise of zoonotic pathogens. Clin. Microbiol. Infect. 15, 40–43 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Johnson, B. J. et al. The roles of mosquito and bird communities on the prevalence of West Nile virus in urban wetland and residential habitats. Urban Ecosyst. 15, 513–531 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Quigley, B. L., Ong, V. A., Hanger, J. & Timms, P. Molecular dynamics and mode of transmission of koala retrovirus as it invades and spreads through a wild Queensland koala population. J. Virology 92 (2018).

    39.
    Woodward, W. et al. Koalas on North Stradbroke Island: diet, tree use and reconstructed landscapes. Wildlife Res. 35, 606–611 (2008).
    Article  Google Scholar 

    40.
    De Oliveira, S., Murray, P., De Villiers, D. & Baxter, G. Ecology and movement of urban koalas adjacent to linear infrastructure in coastal south-east Queensland. Aust. Mammal. 36, 45–54 (2014).
    Article  Google Scholar 

    41.
    Callaghan, J. et al. Ranking and mapping koala habitat quality for conservation planning on the basis of indirect evidence of tree-species use: A case study of Noosa Shire, south-eastern Queensland. Wildlife Res. 38, 89–102 (2011).
    Article  Google Scholar 

    42.
    MBRC. Koala Management Plan: The Mill at Moreton Bay Redevelopment, Moreton Bay Regional Council. www.moretonbay.qld.gov.au/files/assets/public/services/projects/the-mill/the-mill-koala-management-plan.pdf (2016).

    43.
    Hanger, J. et al. Final Technical Report: Moreton Bay Rail Koala Management Program (Department of Transport and Main Roads, Queensland, 2017).
    Google Scholar 

    44.
    Fabijan, J. et al. Prevalence and clinical significance of koala retrovirus in two South Australian koala (Phascolarctos cinereus) populations. J. Med. Microbiol. 68, 1072–1080 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Whisson, D. A., Zylinski, S., Ferrari, A., Yokochi, K. & Ashman, K. R. Patchy resources and multiple threats: How do koalas navigate an urban landscape?. Landsc. Urban Plan. 201, 103854 (2020).
    Article  Google Scholar 

    46.
    Mitchell, P. in Biology of the Koala (eds AK Lee, KA Handasyde, & GD Sanson) 171–187 (1990).

    47.
    Jansen, C. C., Zborowski, P., Ritchie, S. A. & Van Den Hurk, A. F. Efficacy of bird-baited traps placed at different heights for collecting ornithophilic mosquitoes in eastern Queensland Australia. Aust. J. Med. Entomol. 48, 53–59 (2009).
    Article  Google Scholar 

    48.
    Johnston, E. et al. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: Implications for disease vector surveillance. J. Vect. Ecol. 39, 48–55 (2014).
    Article  Google Scholar 

    49.
    Kay, B., Boreham, P. & Fanning, I. Host-feeding patterns of Culex annulirostris and other mosquitoes (Diptera: Culicidae) at Charleville, southwestern Queensland Australia. J. Med. Entomol. 22, 529–535 (1985).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Johansen, C., Power, S. & Broom, A. Determination of mosquito (Diptera: Culicidae) bloodmeal sources in Western Australia: Implications for arbovirus transmission. J. Med. Entomol. 46, 1167–1175 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Kay, B., Fanning, I. & Carley, J. The vector competence of Australian Culex annulirostris with Murray Valley encephalitis and Kunjin viruses. A J. Exp. Biol. Med. 62, 641–650 (1984).
    Article  Google Scholar 

    52.
    Jacups, S. P., Whelan, P. I. & Currie, B. J. Ross River virus and Barmah Forest virus infections: A review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector-Borne Zoonot. 8, 283–298 (2008).
    Article  Google Scholar 

    53.
    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Kelly, T. R. et al. One Health proof of concept: Bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. Prev. Vet. Med. 137, 112–118 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jansen, C. C. et al. Epidemiologic, entomologic, and virologic factors of the 2014–15 Ross River Virus outbreak, Queensland Australia. Emerg. Infect. Dis. 25, 2243 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Woodruff, R. E. et al. Predicting Ross River virus epidemics from regional weather data. Epidemiology 1, 384–393 (2002).
    Article  Google Scholar 

    57.
    Kelly-Hope, L. A., Purdie, D. M. & Kay, B. H. Ross River virus disease in Australia, 1886–1998, with analysis of risk factors associated with outbreaks. J. Med. Entomol. 41, 133–150 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Flies, E. J., Flies, A. S., Fricker, S. R., Weinstein, P. & Williams, C. R. Regional comparison of mosquito bloodmeals in South Australia: Implications for Ross River virus ecology. J. Med. Entomol. 53, 902–910 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Stephenson, E. B., Murphy, A. K., Jansen, C. C., Peel, A. J. & McCallum, H. Interpreting mosquito feeding patterns in Australia through an ecological lens: An analysis of blood meal studies. Parasite. Vector. 12, 156 (2019).
    Article  Google Scholar 

    60.
    Gordon, G. Estimation of the age of the Koala, Phascolarctos cinereus (Marsupialia: Phascolarctidae), from tooth wear and growth. Aust. Mammal. 14, 5–12 (1991).
    Google Scholar 

    61.
    Robbins, A., Loader, J., Timms, P. & Hanger, J. Optimising the short and long-term clinical outcomes for koalas (Phascolarctos cinereus) during treatment for chlamydial infection and disease. PLoS ONE 13(12), e0209673. https://doi.org/10.1371/journal.pone.0209679 (2018).
    Article  Google Scholar 

    62.
    Calenge, C. Home range estimation in R: the adehabitatHR package (Saint Benoist, Auffargis, France, Office national de la classe et de la faune sauvage, 2011).
    Google Scholar 

    63.
    Quantum, G. QGIS geographic information system. Open source geospatial foundation project. https://qgis.osgeo.org (2015).

    64.
    Doherty, R., Whitehead, R. & Gorman, B. The isolation of a third group A arbovirus in Australia, with preliminary observations on its relationship to epidemic polyarthritis. Aust. J. Sci. 26, 183–184 (1963).
    Google Scholar 

    65.
    Gyawali, N., Taylor-Robinson, A. W., Bradbury, R. S., Potter, A. & Aaskov, J. G. Infection of Western Gray Kangaroos (Macropus fuliginosus) with Australian arboviruses associated with human infection. Vector-Born Zoonotic Dis. 20, 33–39 (2020).
    Article  Google Scholar 

    66.
    Togami, E. et al. First evidence of concurrent enzootic and endemic transmission of Ross River virus in the absence of marsupial reservoirs in Fiji. Int. J. Infect. Dis. 96, 94–96 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gyawali, N., Murphy, A. K., Hugo, L. E. & Devine, G. J. A micro-PRNT for the detection of Ross River virus antibodies in mosquito blood meals: A useful tool for inferring transmission pathways. PLoS ONE 15, e0229314. https://doi.org/10.1371/journal.pone.0229314 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    68.
    Gatton, M. L., Kay, B. H. & Ryan, P. A. Environmental predictors of Ross River virus disease outbreaks in Queensland Australia. Am. J. Trop. Med. Hyg. 72, 792–799 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    McGrath, J. C., Drummond, G. B., McLachlan, E. M., Kilkenny, C. & Wainwright, C. L. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br. J. Pharmacol. 160(7), 1573–1576 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    QDES. Queensland Department of Environment and Science, Wetland data – version 5 – Queensland series. https://www.des.qld.gov.au (2015).

    71.
    QDES. Queensland Department of Environment and Science, Matters of state environmental significance—wildlife habitat—koala habitat areas—core. https://www.des.qld.gov.au (2020).

    72.
    ESRI. Environmental Systems Research Institute. ArcGIS Desktop. Release 10.4 ed. Redlands, CA, USA. https://esri.com (2020). More

  • in

    Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes

    1.
    Fletcher, D. & Ross, K. Regulation of reproduction in eusocial Hymenoptera. Annu. Rev. Entomol. 30, 319–343. https://doi.org/10.1146/annurev.en.30.010185.001535 (1985).
    Article  Google Scholar 
    2.
    Bonabeau, E. Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443. https://doi.org/10.1007/s100219900038 (1998).
    Article  Google Scholar 

    3.
    Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University, Cambridge, 1990).
    Google Scholar 

    4.
    Beekman, M. & Oldroyd, B. P. Conflict and major transitions—why we need true queens. Curr. Opin. Insect Sci. 34, 73–79. https://doi.org/10.1016/j.cois.2019.03.009 (2019).
    Article  PubMed  Google Scholar 

    5.
    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16. https://doi.org/10.1016/0022-5193(64)90038-4 (1964).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fletcher, D. J. C. & Blum, M. S. Regulation of queen number by workers in colonies of social insects. Science 219, 312–314. https://doi.org/10.1126/science.219.4582.312 (1983).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    Liebig, J., Peeters, C. & Holldobler, B. Worker policing limits the number of reproductives in a ponerine ant. Proc. Biol. Sci. 266, 1865–1870 (1999).
    Article  Google Scholar 

    8.
    West, M. J. Foundress associations in polistine wasps: dominance hierarchies and the evolution of social behavior. Science 157, 1584–1585. https://doi.org/10.1126/science.157.3796.1584 (1967).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 218–222. https://doi.org/10.1038/nature02949 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Fukumoto, Y. A novel form of colony organization in the “queenless” ant Diacamma rugosum. Physiol. Ecol. Jpn. 26, 55–61 (1989).
    Google Scholar 

    11.
    Grüter, C. & Czaczkes, T. J. Communication in social insects and how it is shaped by individual experience. Anim. Behav. 151, 207–215. https://doi.org/10.1016/j.anbehav.2019.01.027 (2019).
    Article  Google Scholar 

    12.
    Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol. News 30, 1–26 (2020).
    Google Scholar 

    13.
    Blomquist, G. J. & Bagneres, A. G. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    14.
    Kather, R. & Martin, S. J. Evolution of cuticular hydrocarbons in the hymenoptera: a meta-analysis. J. Chem. Ecol. 41, 871–883. https://doi.org/10.1007/s10886-015-0631-5 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Van Oystaeyen, A. et al. Conserved class of queen pheromones stops social insect workers from reproducing. Science 343, 287–290. https://doi.org/10.1126/science.1244899 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    16.
    Keller, L. & Nonacs, P. The role of queen pheromones in social insects: queen control or queen signal?. Anim. Behav. 45, 787–794. https://doi.org/10.1006/anbe.1993.1092 (1993).
    Article  Google Scholar 

    17.
    Heinze, J. & d’Ettorre, P. Honest and dishonest communication in social Hymenoptera. J. Exp. Biol. 212, 1775–1779. https://doi.org/10.1242/jeb.015008 (2009).
    CAS  Article  PubMed  Google Scholar 

    18.
    Gobin, B., Billen, J. & Peeters, C. Policing behaviour towards virgin egg layers in a polygynous ponerine ant. Anim. Behav. 58, 1117–1122. https://doi.org/10.1006/anbe.1999.1245 (1999).
    CAS  Article  PubMed  Google Scholar 

    19.
    Holman, L., Dreier, S. & d’Ettorre, P. Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc. R. Soc. B Biol. Sci. 277, 2007–2015. https://doi.org/10.1098/rspb.2009.2311 (2010).
    CAS  Article  Google Scholar 

    20.
    Oi, C. A. et al. The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37, 808–821. https://doi.org/10.1002/bies.201400180 (2015).
    CAS  Article  PubMed  Google Scholar 

    21.
    Holman, L., Helanterä, H., Trontti, K. & Mikheyev, A. S. Comparative transcriptomics of social insect queen pheromones. Nat. Commun. 10, 1593. https://doi.org/10.1038/s41467-019-09567-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Kocher, S. D. & Grozinger, C. M. Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263–1275. https://doi.org/10.1007/s10886-011-0036-z (2011).
    CAS  Article  PubMed  Google Scholar 

    23.
    Butler, C. G., Callow, R. K. & Johnston, N. C. Extraction and purification of ‘queen substance’ from queen bees. Nature 184, 1871–1871. https://doi.org/10.1038/1841871a0 (1959).
    ADS  CAS  Article  Google Scholar 

    24.
    van Zweden, J. S., Bonckaert, W., Wenseleers, T. & d’Ettorre, P. Queen signaling in social wasps. Evolution 68, 976–986. https://doi.org/10.1111/evo.12314 (2014).
    Article  PubMed  Google Scholar 

    25.
    Mitra, A. & Gadagkar, R. Queen signal should be honest to be involved in maintenance of eusociality: chemical correlates of fertility in Ropalidia marginata. Insectes Soc. 59, 251–255. https://doi.org/10.1007/s00040-011-0214-6 (2012).
    Article  Google Scholar 

    26.
    Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. R. Soc. B Biol. Sci. 277, 3793–3800. https://doi.org/10.1098/rspb.2010.0984 (2010).
    CAS  Article  Google Scholar 

    27.
    Hanus, R., Vrkoslav, V., Hrdý, I., Cvačka, J. & Šobotník, J. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc. R. Soc. B Biol. Sci. 277, 995–1002. https://doi.org/10.1098/rspb.2009.1857 (2010).
    CAS  Article  Google Scholar 

    28.
    Myles, T. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–91 (1999).
    Google Scholar 

    29.
    Vargo, E. L. & Husseneder, C. Biology of subterranean termites: Insights from molecular studies of Reticulitermes and Coptotermes. Annu. Rev. Entomol. 54, 379–403. https://doi.org/10.1146/annurev.ento.54.110807.090443 (2009).
    CAS  Article  PubMed  Google Scholar 

    30.
    Lainé, L. V. & Wright, D. J. The life cycle of Reticulitermes spp. (Isoptera: Rhinotermitidae): what do we know?. Bull. Entomol. Res. 93, 267–278. https://doi.org/10.1079/ber2003238 (2003).
    Article  PubMed  Google Scholar 

    31.
    Thorne, B. L., Traniello, J. F. A., Adams, E. S. & Bulmer, M. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol. Ecol. Evol. 11, 149–169. https://doi.org/10.1080/08927014.1999.9522833 (1999).
    Article  Google Scholar 

    32.
    Hu, X. Recent Advances in Entomological Research: From Molecular Biology to Pest Management (eds Liu, T. & Kang, L.) 213–226 (Springer, Berlin, 2011).

    33.
    Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968. https://doi.org/10.1073/pnas.1004675107 (2010).
    ADS  Article  PubMed  Google Scholar 

    34.
    Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79. https://doi.org/10.1007/s00114-017-1501-5 (2017).
    CAS  Article  Google Scholar 

    35.
    Havlíčková, J. et al. (3R,6E)-nerolidol, a fertility-related volatile secreted by the queens of higher termites (Termitidae: Syntermitinae). Zeitschrift für Naturforschung C 74, 251–264. https://doi.org/10.1515/znc-2018-0197 (2019).
    CAS  Article  Google Scholar 

    36.
    Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1721419115 (2018).
    Article  PubMed  Google Scholar 

    37.
    Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, e0209810. https://doi.org/10.1371/journal.pone.0209810 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898. https://doi.org/10.1002/ece3.6325 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Yamamoto, Y. & Matsuura, K. Queen pheromone regulates egg production in a termite. Biol. Let. 7, 727–729. https://doi.org/10.1098/rsbl.2011.0353 (2011).
    Article  Google Scholar 

    40.
    Sun, Q., Haynes, K. F. & Zhou, X. Temporal changes in cuticular hydrocarbons during worker-reproductive transition in the eastern subterranean termite (Blattodea: Rhinotermitidae). Ann. Entomol. Soc. Am. https://doi.org/10.1093/aesa/saaa027 (2020).
    Article  Google Scholar 

    41.
    Perdereau, E., Dedeine, F., Christidès, J.-P. & Bagnères, A.-G. Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J. Chem. Ecol. 36, 1189–1198. https://doi.org/10.1007/s10886-010-9860-9 (2010).
    CAS  Article  PubMed  Google Scholar 

    42.
    Tarver, M. R., Schmelz, E. A., Rocca, J. R. & Scharf, M. E. Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes. J. Chem. Ecol. 35, 256–264. https://doi.org/10.1007/s10886-009-9594-8 (2009).
    CAS  Article  PubMed  Google Scholar 

    43.
    Tarver, M. R., Zhou, X. & Scharf, M. E. Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Mol. Biol. 11, 28. https://doi.org/10.1186/1471-2199-11-28 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780. https://doi.org/10.1098/rspb.2020.0780 (2020).
    Article  Google Scholar 

    45.
    Chen, Y. P. & Vinson, S. B. Effects of queen attractiveness to workers on the queen nutritional status and egg production in the polygynous Solenopsis invicta (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 93, 295–302. https://doi.org/10.1603/0013-8746(2000)093[0295:eoqatw]2.0.co;2 (2000).
    Article  Google Scholar 

    46.
    Ortius, D. & Heinze, J. Fertility signaling in queens of a North American ant. Behav. Ecol. Sociobiol. 45, 151–159 (1999).
    Article  Google Scholar 

    47.
    Hannonen, M. & Sundström, L. Proximate determinants of reproductive skew in polygyne colonies of the ant Formica fusca. Ethology 108, 961–973. https://doi.org/10.1046/j.1439-0310.2002.00829.x (2002).
    Article  Google Scholar 

    48.
    Keller, L. Evolutionary implications of polygyny in the Argentine ant, Iridomyrmex humilis (Mayr) (Hymenoptera: Formicinae): an experimental study. Anim. Behav. 36, 159–165 (1988).
    Article  Google Scholar 

    49.
    Vargo, E. L. Mutual pheromonal inhibition among queens in polygyne colonies of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 31, 205–210. https://doi.org/10.1007/bf00168648 (1992).
    Article  Google Scholar 

    50.
    Vander Meer, R. K., Morel, L. & Lofgren, C. S. A comparison of queen oviposition rates from monogyne and polygyne fire ant, Solenopsis invicta, colonies. Physiol. Entomol. 17, 384–390. https://doi.org/10.1111/j.1365-3032.1992.tb01036.x (1992).
    Article  Google Scholar 

    51.
    Lenoir, A., D’Ettorre, P., Errard, C. & Hefetz, A. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599. https://doi.org/10.1146/annurev.ento.46.1.573 (2001).
    CAS  Article  PubMed  Google Scholar 

    52.
    Martin, S. J., Carruthers, J. M., Williams, P. H. & Drijfhout, F. P. Host specific social parasites (Psithyrus) indicate chemical recognition system in bumblebees. J. Chem. Ecol. 36, 855–863. https://doi.org/10.1007/s10886-010-9805-3 (2010).
    CAS  Article  PubMed  Google Scholar 

    53.
    Kreuter, K. et al. How the social parasitic bumblebee Bombus bohemicus sneaks into power of reproduction. Behav. Ecol. Sociobiol. 66, 475–486 (2012).
    Article  Google Scholar 

    54.
    Mori, A. et al. Behavioural assays testing the appeasement allomone of Polyergus rufescens queens during host-colony usurpation. Ethol. Ecol. Evol. 12, 315–322. https://doi.org/10.1080/08927014.2000.9522804 (2000).
    Article  Google Scholar 

    55.
    Ruano, F., Hefetz, A., Lenoir, A., Francke, W. & Tinaut, A. Dufour’s gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. J. Insect Physiol. 51, 1158–1164. https://doi.org/10.1016/j.jinsphys.2005.06.005 (2005).
    CAS  Article  PubMed  Google Scholar 

    56.
    Martin, S. J., Jenner, E. A. & Drijfhout, F. P. Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proc. Biol. Sci. 274, 2717–2721. https://doi.org/10.1098/rspb.2007.0795 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Lhomme, P., Ayasse, M., Valterová, I., Lecocq, T. & Rasmont, P. Born in an alien nest: how do social parasite male offspring escape from host aggression?. PLoS ONE 7, e43053. https://doi.org/10.1371/journal.pone.0043053 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Hanus, R., Piskorski, R., Šobotník, J., Urbanová, K. & Valterová, I. Congress of Entomology 2008 (Durban, South Africa, 2008).

    59.
    Penick, C., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).
    Article  Google Scholar 

    60.
    Monnin, T. Chemical recognition of reproductive status in social insects. Ann. Zoolgici Fenn. 43, 515–530 (2006).
    Google Scholar 

    61.
    Endler, A., Liebig, J. & Hölldobler, B. Queen fertility, egg marking and colony size in the ant Camponotus floridanus. Behav. Ecol. Sociobiol. 59, 490–499 (2006).
    Article  Google Scholar 

    62.
    Foster, K. R. & Ratnieks, F. L. W. Facultative worker policing in a wasp. Nature 407, 692–693. https://doi.org/10.1038/35037665 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Bonckaert, W., Van Zweden, J. S., D’Ettorre, P., Billen, J. & Wenseleers, T. Colony stage and not facultative policing explains pattern of worker reproduction in the Saxon wasp. Mol. Ecol. 20, 3455–3468. https://doi.org/10.1111/j.1365-294X.2011.05200.x (2011).
    CAS  Article  PubMed  Google Scholar 

    64.
    Haverty, M. I., Grace, J. K., Nelson, L. J. & Yamamoto, R. T. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Copotermes formosanus shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22, 1813–1834. https://doi.org/10.1007/bf02028506 (1996).
    CAS  Article  PubMed  Google Scholar 

    65.
    Howard, R. & Haverty, M. I. Seasonal variation in caste proportions of field colonies of Reticulitermes flavipes (Kollar) 1. Environ. Entomol. 10, 546–549. https://doi.org/10.1093/ee/10.4.546 (1981).
    Article  Google Scholar 

    66.
    Gordon, J. M., Šobotník, J. & Chouvenc, T. Colony-age-dependent variation in cuticular hydrocarbon profiles in subterranean termite colonies. Ecol. Evol. 10, 10095–10104. https://doi.org/10.1002/ece3.6669 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).
    Article  Google Scholar 

    68.
    Eyer, P. A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Authorea 1, 1–20 (2020).

    69.
    Dronnet, S., Chapuisat, M., Vargo, E. L., Lohou, C. & Bagnères, A.-G. Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol. Ecol. 14, 1311–1320. https://doi.org/10.1111/j.1365-294X.2005.02508.x (2005).
    CAS  Article  PubMed  Google Scholar 

    70.
    Junker, R. R. et al. Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications. New Phytol. 220, 739–749. https://doi.org/10.1111/nph.14505 (2018).
    Article  PubMed  Google Scholar 

    71.
    Aguero, C., Eyer, P. A. & Vargo, E. L. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10, 4212 (2020).
    ADS  CAS  Article  Google Scholar 

    72.
    polymorphism and chemotaxonomy. Bagneres, A. G. et al. Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud). J. Chem. Ecol. 16, 3213–3244 (1990).
    Article  Google Scholar 

    73.
    Clément, J. L. et al. Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Soc. 408, 202–215 (2001).
    Article  Google Scholar 

    74.
    Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R package. https://CRAN.R-project.org/package=PMCMR (2014).

    75.
    Kassambara, A. & Mundt, F. Extract and visualize the results of multivariate data analyses. Package ‘factoextra’, vol. 76. http://www.sthda.com/english/rpkgs/factoextra (2017).

    76.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020). More

  • in

    Identification of microalgae cultured in Bold’s Basal medium from freshwater samples, from a high-rise city

    1.
    Mobin, S., Chowdhury, H. & Alam, F. Commercially important bioproducts from microalgae and their current applications—a review. Energy Procedia. 60, 752–760 (2002).
    Google Scholar 
    2.
    Tragin, M. & Vaulot, D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci. Rep. https://doi.org/10.1038/s41598-018-32338-w (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Phang, S. M. et al. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore Thailand and Vietnam. Raffles B Zool. 34, 13–59 (2016).
    Google Scholar 

    4.
    Pham, M. N., Tan, H. T. W., Mitrovic, S., & Yeo, H. H. T. A checklist of the algae of Singapore. In Raffles Museum of Biodiversity Research, 2nd edn (2011).

    5.
    Omar, W. M. W. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop. Life Sci. Res. 21, 51–67 (2010).
    PubMed  PubMed Central  Google Scholar 

    6.
    Emporis GMBH. https://www.emporis.com/city/100422/singapore-singapore (2020).

    7.
    Waterways and Waterbodies. https://www.mewr.gov.sg/ssb/our-targets/green-blue-spaces/waterways-and-waterbodies (2020).

    8.
    Darienko, T., Gustavs, L., Eggert, A., Wolf, W., Proschold, T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE. 10; e0127838. https://doi.org/10.1371/journal.pone.0127838 (2015).

    9.
    Radha, S., Fathima, A., Iyappan, S. & Mohandas, R. Direct colony PCR for rapid identification of varied microalgae from freshwater environment. J. Appl. Phycol. https://doi.org/10.1007/s10811-012-9895-0 (2013).
    Article  Google Scholar 

    10.
    Domozych, D. et al. The cell walls of green algae: a journey through evolution and diversity. Front. Plant. Sci. https://doi.org/10.3389/fpls.2012.00082 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Te, S. & Gin, K. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae. 10(3), 319–329. https://doi.org/10.1016/j.hal.2010.11.006 (2011).
    CAS  Article  Google Scholar 

    12.
    Hirano, K. et al. Detection of the oil-producing microalga Botryococcus braunii in natural freshwater environments by targeting the hydrocarbon biosynthesis gene SSL-3. Sci. Rep. https://doi.org/10.1038/s41598-019-53619-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Newman, S. M. et al. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126, 875–888 (1990).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Martin-Laurent, F. et al. DNA extraction from soils: Old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67, 2354–2359 (2001).
    CAS  Article  Google Scholar 

    15.
    Eland, L., Davenport, R. & Mota, C. R. Evaluation of DNA extraction methods for freshwater eukaryotic microalgae. Water Res. 46, 5355–5364 (2012).
    CAS  Article  Google Scholar 

    16.
    Simonelli, P. et al. Evaluation of DNA extraction and handling procedures for PCR-based copepod feeding studies. J. Plankton Res. 31, 1465–1474 (2009).
    CAS  Article  Google Scholar 

    17.
    Frazão, B. & Silva, A. Molecular tools for phytoplankton monitoring samples. BioRxiv https://doi.org/10.1101/339655 (2018).
    Article  Google Scholar 

    18.
    Fei, C. et al. A quick method for obtaining high-quality DNA barcodes without DNA extraction in microalgae. J. Appl. Phycol. https://doi.org/10.1007/s10811-019-01926-2 (2020).
    Article  Google Scholar 

    19.
    Sonnenberg, R., Nolte, A. W. & Tautz, D. An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Front. Zool. https://doi.org/10.1186/1742-9994-4-6 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Beals, L., Gross, M., & Harrell, S. Diversity indices. http://www.tiem.utk.edu/~gross/bioed/bealsmodules/shannonDI.html (2000).

    21.
    Khan, M. I., Jin, H. S. & Jong, D. K. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. https://doi.org/10.1186/s12934-018-0879-x (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Ji, M. K. et al. Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus. J. Environ. Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000726 (2020).
    Article  Google Scholar 

    23.
    Patnaik, R., Singh, N., Bagchi, S., Rao, P. S. & Mallick, N. Utilization of Scenedesmus obliquus protein as a replacement of the commercially available fish meal under an algal refinery approach. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02114 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Mata, T. et al. Potential of microalgae Scendesmus obliquus grown in brewery wastewater for biodiesel production. Chem. Eng. Trans. 32, 901–906 (2013).
    Google Scholar 

    25.
    Afify, A. E. M. M. R., ElBaroty, G. S., ElBaz, F. K., AbdElBaky, H. H. & Murad, S. A. Scenedesmus obliquus: antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. J. Gen. Eng. Biotech. 16, 399–408 (2018).
    Article  Google Scholar 

    26.
    Kent, M., Welladsen, H. M., Mangott, A. & Lee, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE https://doi.org/10.1371/journal.pone.0118985 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Unpaprom, Y., Tipnee, S. & Ramaraj, R. Biodiesel from green alga Scenedesmus acuminatus. Int. J. Sustain. Green Energy 4, 1–6 (2015).
    CAS  Article  Google Scholar 

    28.
    De Alva, S. M., Luna-Pabello, V., Cadena, E. & Ortíz, E. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresour. Technol. 146, 744–748 (2013).
    Article  Google Scholar 

    29.
    Patil, L. & Kaliwal, B. B. Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess. Biosyst. Eng. 42, 1–16 (2019).
    CAS  Article  Google Scholar 

    30.
    Henard, C., Guarnieri, M. & Knoshaug, E. The Chlorella vulgaris S-nitrosoproteome under nitrogen-replete and -deplete conditions. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2016.00100 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Chai, S. et al. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS ONE https://doi.org/10.1371/journal.pone.0199873 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    32.
    Ishiguro, S. et al. Cell wall membrane fraction of Chlorella sorokiniana enhances host antitumor immunity and inhibits colon carcinoma growth in mice. Integr. Cancer Ther. https://doi.org/10.1177/1534735419900555 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Barone, R. S. C., Sonoda, D. Y., Lorenz, E. K. & Cyrino, J. E. P. Digestibility and pricing of Chlorella sorokiniana meal for use in tilapia feeds. Sci. Agric. https://doi.org/10.1590/1678-992x-2016-0457 (2018).
    Article  Google Scholar 

    34.
    Guo, M. et al. Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague-Dawley rats, as revealed by high-throughput 16S rRNA sequencing. World J. Microbiol. Biotechnol. https://doi.org/10.1007/s11274-015-1994-z (2016).
    Article  PubMed  Google Scholar 

    35.
    El-Dalatony, M. et al. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol. Bioproc. E 19, 510–518 (2014).
    Article  Google Scholar 

    36.
    Scaife, M. et al. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 82, 532–546 (2015).
    CAS  Article  Google Scholar 

    37.
    Kamyab, H. et al. Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia. 75, 2400–2408 (2015).
    CAS  Article  Google Scholar 

    38.
    Ciorba, D. & Truta, A. A. C. Cytotoxic exposure of green algas Chlamydomonas peterfii Gerloff in radon aerosols. J. Phys. Rom. https://doi.org/10.1016/j.biortech.2013.07.061 (2013).
    Article  Google Scholar 

    39.
    Santhakumaran, P., Kookal, S., Mathew, L. & Ray, J. G. Bioprospecting of three rapid-growing freshwater green algae, promising biomass for biodiesel production. BioEnergy Res. 12, 680–693 (2019).
    CAS  Article  Google Scholar 

    40.
    Rauytanapanit, M. et al. Nutrient deprivation-associated changes in green microalga Coelastrum sp. TISTR 9501RE enhanced potent antioxidant carotenoids. Mar. Drugs https://doi.org/10.3390/md17060328 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Kumar, M. S. et al. Influence of CO2 and light spectra on the enhancement of microalgal growth and lipid content. J. Renew. Sustain. Energ. https://doi.org/10.1063/1.4901541 (2014).
    Article  Google Scholar 

    42.
    Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R. & Singh, R. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS ONE 14(e0221930), 2019. https://doi.org/10.1371/journal.pone.0221930 (2019).
    CAS  Article  Google Scholar 

    43.
    Mourelle, M., Gómez, C. & Legido, J. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics. https://doi.org/10.3390/cosmetics4040046 (2017).
    Article  Google Scholar 

    44.
    Singh, G. & Thomas, P. Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresour. Technol. 117, 80–85 (2012).
    CAS  Article  Google Scholar 

    45.
    Sathasivam, R., Radhakrishnan, R., Hashem, A. & AbdAllah, E. F. Microalgae metabolites: a rich source for food and medicine. Saudi J. Biol. Sci. 26, 709–722 (2019).
    CAS  Article  Google Scholar 

    46.
    Neustupa, J. & Škaloud, P. Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant. Ecol. Evol. 143, 51–62 (2010).
    Article  Google Scholar 

    47.
    Prakash, J., Antonisamy, J. & Jeeva, S. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac. J. Trop. Biomed. 1, S170–S173. https://doi.org/10.1016/s2221-1691(11)60149-4 (2011).
    Article  Google Scholar 

    48.
    Gumbi, S., Majeke, B., Olaniran, A. & Mutanda, T. Isolation, identification and high-throughput screening of neutral lipid producing indigenous microalgae from South African aquatic habitats. Appl. Biochem. Biotech. 182, 382–399. https://doi.org/10.1007/s12010-016-2333-z (2016).
    CAS  Article  Google Scholar 

    49.
    Lee, K., Eisterhold, M. L., Rindi, F., Palanisami, S. & Nam, P. Isolation and screening of microalgae from natural habitats in the midwestern United States of America for biomass and biodiesel sources. J. Nat. Sci. Biol. Med. https://doi.org/10.4103/0976-9668.136178 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    Lewandowska, A., Śliwińska-Wilczewska, S. & Woźniczka, D. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Mar. Pollut. Bull. 125, 30–38. https://doi.org/10.1016/j.marpolbul.2017.07.064 (2017).
    CAS  Article  PubMed  Google Scholar  More

  • in

    Testing for phylogenetic signal in claws suggests great influence of ecology on Caribbean intertidal arthropods (Acari, Oribatida)

    1.
    Tinius, A. & Russell, A. P. Points on the curve: An analysis of methods for assessing the shape of vertebrate claws. J. Morphol. 278, 150–169 (2017).
    Article  Google Scholar 
    2.
    Ribas, S. C. et al. Structure of claws and toes of two tropidurid lizard species of Restinga from Southeastern Brazil: Adaptations to the vertical use of the habitat. Rev. Chilena Hist. Nat. 77, 599 (2004).
    Google Scholar 

    3.
    Burnham, D. A., Feduccia, A., Martin, L. D. & Falk, A. R. Tree climbing: A fundamental avian adaptation. J. Syst. Paleontol. 9, 103–107 (2011).
    Article  Google Scholar 

    4.
    Crandell, K. E., Herrel, A., Sasa, M., Losos, J. B. & Autumn, K. Stick or grip? Co-evolution of adhesive toepads and claws in Anolis lizards. Zoology 117, 363–369 (2014).
    Article  Google Scholar 

    5.
    Zani, P. A. The comparative evolution of lizard claw and toe morphology and clinging performance. J. Evol. Biol. 13, 316–325 (2000).
    Article  Google Scholar 

    6.
    Feduccia, A. Evidence from claw geometry indicating arboreal habits of Archaeopteryx. Science 259, 790–793 (1993).
    ADS  CAS  Article  Google Scholar 

    7.
    Manning, P. L., Payne, D., Pennicott, J., Barrett, P. M. & Ennos, R. A. Dinosaur killer claws or climbing crampons? Biol. Lett. 2, 110–112 (2006).
    Article  Google Scholar 

    8.
    Pattrick, J. G., Labonte, D. & Federle, W. Scaling of claw sharpness: mechanical constraints reduce attachment performance in larger insects. J. Exp. Biol. 221, jeb188391 (2018).
    Article  Google Scholar 

    9.
    Dai, Z., Gorb, S. N. & Schwarz, U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 205, 2479–2488 (2002).
    PubMed  Google Scholar 

    10.
    Heethoff, M. & Koerner, L. Small but powerful: The oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces. J. Exp. Biol. 210, 3036–3042 (2007).
    Article  Google Scholar 

    11.
    Büscher, T. H. & Gorb, S. N. Complementary effect of attachment devices in stick insects (Phasmatodea). J. Exp. Biol. 222, 209833 (2019).
    Article  Google Scholar 

    12.
    Pfingstl, T., Kerschbaumer, M. & Shimano, S. Get a grip-evolution of claw shape in relation to microhabitat use in intertidal arthropods (Acari, Oribatida). PeerJ 8, e8488 (2020).
    Article  Google Scholar 

    13.
    Herrel, A. Correlations between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): A population-level analysis. Biol. J. Lin. Soc. 74, 305–314 (2001).
    Article  Google Scholar 

    14.
    Tulli, M. J., Cruz, F. B., Herrel, A., Vanhooydonck, B. & Abdala, V. The interplay between claw morphology and microhabitat use in neotropical iguanian lizards. Zoology 112, 379–392 (2009).
    CAS  Article  Google Scholar 

    15.
    Klingenberg, C. P. & Gidaszewski, N. A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59, 245–261 (2010).
    CAS  Article  Google Scholar 

    16.
    Muñoz-Muñoz, F., Talavera, S. & Pagès, N. Geometric morphometrics of the wing in the subgenus Culicoides (Diptera: Ceratopogonidae): From practical implications to evolutionary interpretations. J. Med. Entomol. 48, 129–139 (2011).
    Article  Google Scholar 

    17.
    Khang, T. F., Soo, O. Y. M., Tan, W. B. & Lim, L. H. S. Monogenean anchor morphometry: Systematic value, phylogenetic signal, and evolution. PeerJ 4, e1668 (2016).
    Article  Google Scholar 

    18.
    Blomberg, S. P. & Garland, T. Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910 (2002).
    Article  Google Scholar 

    19.
    Pfingstl, T., Baumann, J. & Lienhard, A. The Caribbean enigma: the presence of unusual cryptic diversity in intertidal mites (Arachnida, Acari, Oribatida). Organ. Divers. Evol. 19, 609–623 (2019).
    Article  Google Scholar 

    20.
    Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).
    Article  Google Scholar 

    21.
    Caumul, R. & Polly, P. D. Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 59, 2460–2472 (2005).
    Article  Google Scholar 

    22.
    Klingenberg, C. P. There’s something afoot in the evolution of ontogenies. BMC Evol. Biol. 10, 221 (2010).
    Article  Google Scholar 

    23.
    Edwards, E. J. & Donoghue, M. J. Pereskia and the origin of the cactus life-form. Am. Nat. 167, 777–793 (2006).
    Article  Google Scholar 

    24.
    Ge, D., Yao, L., Xia, L., Zhang, Z. & Yang, Q. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contrib. Zool. 84, 267–284 (2015).
    Article  Google Scholar 

    25.
    Pfingstl, T. Habitat use, feeding and reproductive traits of rocky-shore intertidal mites from Bermuda (Oribatida: Fortuyniidae and Selenoribatidae). Acarologia 53, 369–382 (2013).
    Article  Google Scholar 

    26.
    Pfingstl, T., Lienhard, A. & Baumann, J. New and cryptic species of intertidal mites (Acari, Oribatida) from the Western Caribbean: An integrative approach. Int. J. Acarology 45, 10–25 (2019).
    Article  Google Scholar 

    27.
    Rohlf, F. J. TpsDig2. Version 2.31 (2017).

    28.
    Klingenberg, C. P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).
    Article  Google Scholar 

    29.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1 (2001).
    Google Scholar 

    30.
    Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, Cambridge, 1991).
    Google Scholar 

    31.
    Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: Ten years of progress following the ‘revolution’. Italian J. Zool. 71, 5–16 (2004).
    Article  Google Scholar 

    32.
    Cavalcanti, M. J. Geometric morphometric analysis of head shape variation in four species of hammerhead sharks (Carcharhiniformes: Sphyrnidae). Morphometrics 14, 97 (2004).
    Article  Google Scholar 

    33.
    Schäffer, S., Stabentheiner, E., Shimano, S. & Pfingstl, T. Leaving the tropics: The successful colonization of cold temperate regions by Dolicheremaeus dorni (Acari, Oribatida). J. Zool. Syst. Evol. Res. 56, 505–518 (2018).
    Article  Google Scholar 

    34.
    Otto, J. C. & Wilson, K. Assessment of the usefulness of ribosomal 18S and mitochondrial COI sequences in Prostigmata phylogeny. Acarology: Proceedings of the 10th International Congress (2001).

    35.
    Schäffer, S., Krisper, G., Pfingstl, T. & Sturmbauer, C. Description of Scutovertex pileatus sp. nov. (Acari, Oribatida, Scutoverticidae) and molecular phylogenetic investigation of congeneric species in Austria. Zoologischer Anzeiger 247, 249–258 (2008).
    Article  Google Scholar 

    36.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  Article  Google Scholar 

    37.
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).
    CAS  Article  Google Scholar 

    38.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  Article  Google Scholar 

    39.
    Rambaut, A. FigTree: tree figure drawing tool. version 1.3.1. Software available at http://tree.bio.ed.ac.uk/software/figtree/ (2009).

    40.
    Rambaut, A. & Drummond, A. Tracer: MCMC trace analysis tool. version 1.6. 0. http://tree.bio.ed.ac.uk/software/tracer/ (2007).

    41.
    Adams, D. C. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 63, 685–697 (2014).
    Article  Google Scholar 

    42.
    Adams, D. C. & Collyer, M. L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73, 2352–2367 (2019).
    Article  Google Scholar 

    43.
    Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. & Balken E. geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph (2021).

    44.
    Collyer, M. L. & Adams, D. C. RRPP: Linear model evaluation with randomized residuals in a permutation procedure. https://cran.r-project.org/web/packages/RRPP (2021).

    45.
    Collyer, M. L. & Adams, D. C. RRPP: An R package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9(2), 1772–1779 (2018).
    Article  Google Scholar 

    46.
    Pennell, M. W. et al. geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).
    CAS  Article  Google Scholar  More

  • in

    Conceptual frameworks facilitate integration for transdisciplinary urban science

    1.
    Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).
    Article  Google Scholar 
    2.
    Anderies, J. M., Folke, C., Walker, B. & Ostrom, E. Aligning key concepts for global change policy: robustness, resilience, and sustainability. Ecol. Soc. 18, 8 (2013).
    Article  Google Scholar 

    3.
    Brenner, N. & Schmid, C. Planetary urbanization. In Implosions/explosions: Towards A Study of Planetary Urbanization (ed. Brenner, N.) 142–463 (Jovis Verlag, 2014).

    4.
    Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267 (2019).
    Article  Google Scholar 

    5.
    McPhearson, T. Scientists must have a say in the future of cities. Nature 538, 165–166 (2016).
    CAS  Article  Google Scholar 

    6.
    Groffman, P. M. et al. Moving towards a new Urban Systems Science. Ecosystems https://doi.org/10.1007/s10021-016-0053-4 (2016).

    7.
    Pataki, D. E. Grand challenges in urban ecology. Front. Ecol. Evol. 3, 57 (2015).
    Article  Google Scholar 

    8.
    National Science Foundation. What is Convergence?|NSF-National Science Foundation. https://www.nsf.gov/od/oia/convergence/index.jsp (Accessed April 23, 2019).

    9.
    Ramaswami, A. et al. Sustainable Urban Systems: Articulating a Long-Term Convergence Research Agenda. Vol. 31 (National Science Foundation, 2018).

    10.
    Grimm, N. B., Pickett, S. T. A., Hale, R. L. & Cadenasso, M. L. Does the ecological concept of disturbance have utility in urban social-ecological-technological systems? Ecosyst. Health Sustain 3, e01255 (2017).
    Article  Google Scholar 

    11.
    McPhearson, T. et al. Advancing urban ecology towards a science of cities. BioScience 66, 198–212 (2016).
    Article  Google Scholar 

    12.
    United Nations. Transforming Our World: the 2030 Agenda for Sustainable Development. https://sustainabledevelopment.un.org/post2015/transformingourworld (Accessed March 6, 2020).

    13.
    Seto, K. C. et al. Urban land teleconnections and sustainability. Proc. Natl Acad. Sci. USA 109, 7687–7692 (2012).
    CAS  Article  Google Scholar 

    14.
    Folke, C., Biggs, R., Norstrom, A. V., Reyers, B. & Rockstrom, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21, 41 (2016).
    Article  Google Scholar 

    15.
    Grimm, N. B., Cook, E. M., Hale, R. L. & Iwaniec, D. M. A broader framing of ecosystem services in cities: benefits and challenges of built, natural, or hybrid system function. In The Routledge Handbook of Urbanization and Global Environmental Change (eds. Seto, K. C., Solecki, W. D. & Griffith, C. A.) 203–212 (Routledge, 2016).

    16.
    Pelling, M. & Manuel-Navarrete, D. From resilience to transformation: the adaptive cycle in two Mexican urban centers. Ecol. Soc. 16, 11 (2011).
    Article  Google Scholar 

    17.
    Meerow, S., Newell, J. P. & Stults, M. Defining urban resilience: a review. Landsc. Urban Plan. 147, 38–49 (2016).
    Article  Google Scholar 

    18.
    Shane, D. G. Recombinant Urbanism: Conceptual Modeling in Architecture. (John Wiley & Sons, 2005).

    19.
    McHale, M. R. et al. The new global urban realm: complex, connected, diffuse, and diverse social-ecological systems. Sustainability 7, 5211–5240 (2015).
    Article  Google Scholar 

    20.
    Ellin, N. Integral urbanism: a context for urban design. In Resilience in ecology and urban design: linking theory and practice for sustainable cities (eds. Pickett, S. T. A., Cadenasso, M. L. & McGrath, B.) 63–78 (Springer, 2013).

    21.
    Marcotullio, P. J. & Solecki, W. What is a city? an essential definition for sustainability. In Urbanization and Sustainability: Linking Urban Ecology, Environmental Justice, and Environmental Change (eds. Boone, C. G. & Fragkias, M.) 11–25 (Springer, 2013).

    22.
    Burch, W. R., Jr., Machlis, G. E. & Force, J. E. The Structure and Dynamics of Human Ecosystems: toward A Model for Understanding and Action. (Yale University Press, 2017).

    23.
    Redman, C., Grove, J. M. & Kuby, L. Toward a Unified Understanding of Human Ecosystems: Integrating Social Sciences Into Long-term Ecological Research. Vol. 13 (LTER Network, 2000).

    24.
    Barnett, R. & Margetts, J. Disturbanism in the South Pacific: disturbance ecology as a basis for urban resilience in small island states. In Resilience in Ecology and Urban Design: Linking Theory and Practice for Sustainable Cities (eds. Pickett, S. T. A., Cadenasso, M. L. & McGrath, B.) 443–459 (Springer, 2013).

    25.
    Folke, C. et al. Resileince and Sustainable Development: Building Adaptive Capacity in A World of Transformations. (Ministry of the Environment, 2002).

    26.
    Scheffer, M., Westley, F., Brock, W. A. & Holmgren, M. Dynamic interaction of societies and ecosystems–linking theories from ecology, economy, and sociology. In Panarchy: Understanding Transformations in Human and Natural Systems (eds. Gunderson, L. H. & Holling, C. S.) 195–239 (Island Press, 2002).

    27.
    Pickett, S. T. A. et al. Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosyst. 20, 1–14 (2017).
    Article  Google Scholar 

    28.
    Wu, J. G. & Loucks, O. L. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q. Rev. Biol. 70, 439–466 (1995).
    Article  Google Scholar 

    29.
    Boone, C. G. et al. Reconceptualizing land for sustainable urbanity. In Rethinking Urban Land Use in A Global Era (eds. Seto, K. C. & Reenberg, A.) 313–330 (MIT Press, 2014).

    30.
    Machlis, G. E., Force, J. E. & Burch, W. R. The human ecosystem 1. The human ecosystem as an organizing concept in ecosystem management. Soc. Nat. Resour. 10, 347–367 (1997).
    Article  Google Scholar 

    31.
    Cadenasso, M. L. & Pickett, S. T. A. Three tides: the development and state of the art of urban ecological science. In Resilience in Ecology and Urban Design: Linking Theory and Practice for Sustainable Cities (eds. Pickett, S. T. A., Cadenasso, M. L. & McGrath, B.) 29–46 (Springer, 2013).

    32.
    Collins, S. L. et al. An integrated conceptual framework for long-term social-ecological research. Front. Ecol. Environ. 9, 351–357 (2011).
    Article  Google Scholar 

    33.
    Naveh, Z. The total human ecosystem: integrating ecology and economics. BioScience 50, 357–361 (2000).
    Article  Google Scholar 

    34.
    Pickett, S. T. A. & Cadenasso, M. L. Ecosystem as a multidimensional concept: meaning, model and metaphor. Ecosystems 5, 1–10 (2002).
    Article  Google Scholar 

    35.
    Alberti, M. Advances in Urban Ecology: Integrating Humans and Ecological Processes in Urban Ecosystems. (Springer, 2008).

    36.
    Pickett, S. T. A. & Grove, J. M. Urban ecosystems: what would Tansley do? Urban Ecosyst. 12, 1–8 (2009).
    Article  Google Scholar 

    37.
    Lachmund, J. Greening Berlin. (MIT Press, 2013).

    38.
    Rademacher, A., Cadenasso, M. L. & Pickett, S. T. A. From feedbacks to coproduction: toward an integrated conceptual framework for urban ecosystems. Urban Ecosyst. https://doi.org/10.1007/s11252-018-0751-0 (2018).

    39.
    Johnson, E. A. & Miyanishi, K. (eds.) Plant Disturbance Ecology: the Process and the Response. (Academic Press, Burlington, 2007).

    40.
    Pickett, S. T. A. & White, P. S. (eds.) The Ecology of Natural Disturbance and Patch Dynamics. (Academic Press, Orlando, 1985).

    41.
    Schumpeter, J. A. The Theory of Economic Development: an Inquiry Into Profits, Capital, Credit, Interest, and the Business Cycle. (Transaction Books, 1983).

    42.
    Peters, D. P. C. et al. Cross-system comparisons elucidate distrubance complexities and generalities. Ecosphere 2, art 81 (2011).
    Article  Google Scholar 

    43.
    Holling, C. S. Engineering resilience versus ecological resilience. In Engineering within Ecological Constraints (ed. Schulze, P. C.) 31–44 (National Academies of Engineering, 1996).

    44.
    Gunderson, L. H. & Holling, C. S. (eds.) Panarchy: understanding transformations in human and natural systems. (Island Press, Washington DC, 2002).

    45.
    Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9, Article 5 (2004).
    Article  Google Scholar 

    46.
    McPhearson, T., Andersson, E., Elmqvist, T. & Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Services 12, 152–156 (2015).
    Article  Google Scholar 

    47.
    Tidball, K., Frantzeskaki, N. & Elmqvist, T. Traps! An introduction to expanding thinking on persistent maladaptive states in pursuit of resilience. Sustain. Sci. 11, 861–866 (2016).
    Article  Google Scholar 

    48.
    Biggs, R., Westley, F. R. & Carpenter, S. R. Navigating the back loop: fostering social innovation and transformation in ecosystem management. Ecol. Soc. 15, 9 (2010).
    Article  Google Scholar 

    49.
    Changnon, S. A., Kunkel, K. E. & Reinke, B. C. Impacts and responses to the 1995 heat wave: a call to action. Bullet. Am. Meteorol. Soc. 77, 1497–1506 (1996).
    Article  Google Scholar 

    50.
    Borden, K. A. & Cutter, S. L. Spatial patterns of natural hazards mortality in the United States. Int. J. Health Geogr. 7, 64 (2008).
    Article  Google Scholar 

    51.
    Park, R. E. & Burgess, E. W. The City (University of Chicago Press, 1925).

    52.
    Jacobs, J. The Death and Life of Great American Cities (Random House, 1961).

    53.
    Lynch, K. Good City Form (MIT Press, 1981).

    54.
    Shane, D. G. Urban Design Since 1945–A Global Perspective (John Wiley & Sons, Ltd, 2011).

    55.
    Hamstead, Z., Farmer, C. & McPhearson, T. Landscape-based extreme heat vulnerability assessment. J. Extreme Event. 5, 1–23 (2018).
    Google Scholar 

    56.
    Uejio, C. K. et al. Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics and neighborhood stability. Health Place 17, 498–507 (2011).
    Article  Google Scholar 

    57.
    Rosenthal, J. K., Kinney, P. L. & Metzger, K. B. Intra-urban vulnerability to heat-related mortality in New York City. 1997–2006. Health Place 30, 45–60 (2014).
    Google Scholar 

    58.
    Madrigano, J., Ito, K., Johnson, S., Kinney, P. L. & Matte, T. A case-only study of vulnerability to heat wave–related mortality in New York City (2000–2011). Environ. Health Perspect. 123, 672–678 (2015).
    Article  Google Scholar 

    59.
    Allen, T. F. H. & Starr, T. B. Hierarchy: Perspectives for Ecological Complexity (2nd edn.) (University of Chicago Press, Chicago, 2017).

    60.
    McGrath, B. & Shane, G. Introduction: metropolis, megalopolis, and metacity. In The SAGE Handbook of Architectural Theory (eds. Crysler, C. G., Cairns, S. & Heynen, H.) (SAGE, 2012).

    61.
    Mihaljevic, J. R. (2012). Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27, 323–329 (2012).
    Article  Google Scholar 

    62.
    McGrath, B., Sangawongse, S., Thaikatoo, D. & Corte, M. B. The architecture of the metacity: land use change, patch dynamics and urban form in Chiang Mai, Thailand. Urban Plan. 2, 53–71 (2017).
    Article  Google Scholar 

    63.
    Leibold, M. A. The metacommunity concept and its theoretical underpinnings. In The Theory of Ecology (eds. Scheiner, S. M. & Willig, M. R.) 163–183 (University of Chicago Press, 2011).

    64.
    McGrath, B. & Pickett, S. T. A. The metacity: a conceptual framework for integrating ecology and urban design. Challenges 2011, 55–72 (2011).
    Article  Google Scholar 

    65.
    Batty, M. The New Science of Cities. (MIT Press, 2013).

    66.
    Gandy, M. Where does the city end? In Implosions/explosions: Towards A Study of Planetary Urbanization (ed. Brenner, N.) 86–89 (jovis Verlag, 2014).

    67.
    McPhearson, T., Kremer, P. & Hamstead, Z. Mapping ecosystem services in new york city: applying a social-ecological approach in urban vacant land. Ecosyst. Service 11–26, https://doi.org/10.1016/j.ecoser.2013.06.005 (2013).

    68.
    Kremer, P., Hamstead, Z. & McPhearson, T. A social-ecological assessment of vacant lots in New York City. Landsc. Urban Plann. 218–233, https://doi.org/10.1016/j.landurbplan.2013.05.003 (2013).

    69.
    Burkholder, S. The new ecology of vacancy: rethinking land use in shrinking cities. Sustainability 4, 1154–1172 (2012).
    Article  Google Scholar 

    70.
    Bowman, A. O. M. & Pagano, M. A. Transforming America’s cities: policies and conditions of vacant land. Urban Affairs Rev. 35, 559–581 (2000).
    Article  Google Scholar 

    71.
    Kabisch N., et al. Nature-Based Solutions to Climate Change Adaptation in Urban Areas—Linkages Between Science, Policy and Practice. 91–109 (Springer, 2017).

    72.
    Schwarz, K., Berland, A. & Herrmann, D. L. Green, but not just? Rethinking environmental justice indicators in shrinking cities. Sustain. Cities Soc. 41, 816–821 (2018).
    Article  Google Scholar 

    73.
    McDonnell, M. J. & Hahs, A. K. The future of urban biodiversity research: moving beyond the ‘low-hanging fruit’. Urban Ecosyst. 16, 397–409 (2013).
    Article  Google Scholar 

    74.
    Pickett, S. T. A., Kolasa, J. & Jones, C. G. Ecological Understanding: The Nature of Theory and the Theory of Nature (Academic Press, 2007).

    75.
    Depietri Y. & McPhearson T. Integrating the grey, green, and blue in cities: Nature-based solutions for climate change adaptation and risk reduction. In Nature-based solutions to climate change adaptation in urban areas. Theory and practice of urban sustainability transitions (eds. Kabisch N., Korn H., Stadler J. & Bonn A.) (Springer, Cham, 2017). More

  • in

    Simultaneous absolute quantification and sequencing of fish environmental DNA in a mesocosm by quantitative sequencing technique

    Aquarium experiment and sampling
    To examine the effect of changes in species composition on the behaviour of eDNA, we conducted aquarium experiments using two mock fish communities comprising H. neglectus, C. temminckii, O. latipes, R. flumineus, and M. anguillicaudatus. Mock community 1 (MC1) consisted of one individual of each of the five fish species, whereas mock community 2 (MC2) consisted of three H. neglectus individuals and one individual of each of the other four fish species (Fig. 2). We used two aquaria (A and B). Each aquarium was used four times, twice for each mock community, giving two replicates (R1 and R2). This resulted in eight experimental units (2 mock fish communities × 2 aquaria × 2 replicates). Figure 2 shows the experimental setup used in this study.
    Figure 2

    Experimental setup of the aquarium experiments.

    Full size image

    To set up the aquaria, 20 L of tap water was added into each aquarium (GEX Co. Ltd., Osaka, Japan) and heated with a heater (Spectrum Brands, Wisconsin, US) until the water temperature reached 25 °C. Water in the two aquaria was maintained at 25 °C and constantly circulated with an aeration device. Before adding fish to the aquaria, the water was sampled for the negative control. The first experimental samples (day 0) were taken 1 h after adding the fish and subsequent samples were taken each day until day 4. At each sampling, two 1-L samples of surface water were collected from each aquarium and then 2 L of tap water was added to each aquarium to maintain the volume of water. The weight of individual fish species was measured using an electronic balance immediately after the final sampling. After each experiment, the two aquaria were bleached before being reused.
    In Japan, experiments on fish do not require any legal procedures or permission. However, in order to avoid causing pain to the specimens, the experiments in this study were conducted in accordance with the ARRIVE guidelines, Japanese laws and guidelines for mammals, birds, and reptiles as below; Act on Welfare and Management of Animals (Notice of the Ministry of the Environment No. 105 of October 1, 1973), Standards relating to the Care and Keeping and Reducing Pain of Laboratory Animals (Notice of the Ministry of the Environment No. 88 of 2006), Fundamental Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of Education (Notice of Ministry of Education No. 71, 2006), and Guidelines for Proper Conduct of Animal Experiments (established by the Science Council of Japan on June 1, 2006).
    DNA extraction
    Each 1-L water sample was filtered immediately through a GF/F glass fibre filter (nominal pore size = 0.7 μm, diameter = 47 mm; GE Healthcare Japan Corporation, Tokyo, Japan). Filter funnels and measuring cups were bleached after filtration to prevent cross-contamination among the water samples. All filters were stored separately at − 20 °C until DNA extraction. Total eDNA was extracted from each filter using a DNeasy Blood and Tissue Kit (QIAGEN, Hilden, Germany) and Salivette tubes (Sarstedt AG & Co. KG, Nümbrecht, Germany). Extraction methods were as previously described18 with modifications. A filter sample was placed in the upper part of the Salivette tube and 220 μL of solution containing Buffer AL (200 μL) and Proteinase K (20 μL) was added. The tube containing the filter was incubated at 56 °C for 30 min, then centrifuged at 5000 × g for 3 min, and the solution was collected in the base of the tube. To increase eDNA yield, 220 μL Tris-EDTA (TE) buffer was added to the filter sample and centrifuged at 5000 × g for 1 min. Then, ethanol (200 μL) was added to the collected solution, and the mixture was transferred to a spin column. Total eDNA was eluted in buffer AE (100 μL), following the manufacturer’s instructions. All eDNA samples were stored at − 20 °C prior to qSeq and dPCR.
    Quantitative sequencing
    Simultaneous quantification and sequencing of the extracted eDNA were performed by qSeq as previously described15,16. First, SPE was performed. The SPE reaction mixture (20 µL) consisted of 1 × PrimeSTAR Max premix (Takara Bio Inc., Kusatsu, Japan), 300 nM of the primer qSeq-MiFish-U-F (Table 1), and extracted DNA (2 µL). The SPE primer qSeq-MiFish-U-F contains an eight-base length random sequence tag, which creates 65,536 different variations, enabling the quantification of up to approximately 1.0 × 105 copies of DNA15. This amount of variation was sufficient to quantify the abundance of eDNA in this study. SPE was initiated by denaturation at 94 °C for 1 min, followed by cooling to 60 °C at 0.3 °C/s, incubation at 60 °C for 1 min, and final extension at 70 °C for 10 min. Subsequently, the excess primer was completely digested by adding exonuclease I (4 µL, 5 U/µL; Takara Bio Inc.) to the SPE mixture. The digestion was performed at 37 °C for 120 min, followed by inactivation of the exonuclease I at 80 °C for 30 min. The first-round PCR mixture (25 µL) contained PrimeSTAR Max premix (12.5 µL), primers qSeq-MiFish-U-R and F2 (300 nM each; Table 1), and the SPE product (2 µL). Following 40 cycles of amplification at 98 °C for 10 s, 55 °C for 5 s, and 72 °C for 5 s, the amplification product was subjected to agarose gel electrophoresis, and the band of the expected size was removed and purified using Nucleospin Gel and PCR Clean-up column (Takara Bio Inc.). The qSeq-MiFish-U-R primer also contains eight N bases to increase the complexity, which improves the sequencing quality, and thus PhiX was not added in this study. Finally, a 2nd-round PCR was performed to add an index for Illumina sequencing as described elsewhere15. The indexed PCR amplicon was purified using AMPure XP beads (Beckman Coulter, Indianapolis, IN) followed by sequencing using a MiSeq platform with MiSeq Reagent Kit v3 for 600 cycles (Illumina). The sequence data obtained in this study were deposited in the DDBJ database under accession numbers SAMD00219124–SAMD00219214.
    Table 1 Oligonucleotide sequences used in this study.
    Full size table

    Data analysis
    First, all sequences were assembled and screened by length and quality of reads using the mothur software package (v1.39.5)22. The processed sequence reads were classified using the MiFish pipeline (http://mitofish.aori.u-tokyo.ac.jp/mifish/), with the parameters as previously described23. Subsequently, the representative sequences of individual operational taxonomic units (OTUs) were extracted using the Usearch program (http://www.drive5.com/usearch/). The random sequence tags (RST) at the end of sequences in the OTUs were counted to quantify the environmental DNA from each fish species as described elsewhere16. For comparison, the relative proportion of eDNA from individual species in each sample was calculated from the composition of the sequences of the fish species obtained by qSeq.
    Microfluidic digital PCR
    Quantification of eDNA was also performed by microfluidic dPCR using the BioMark Real-time System and 12.765 Digital Array (Fluidigm Corporation, South San Francisco, CA, United States) as previously described13. For each sample, the PCR mixture (6 µL) contained 2 × Probe qPCR mix (3.0 µL; Takara Bio Inc.), 20 × binding dye sample loading reagent (0.6 µL; Fluidigm Corporation), forward and reverse primers (900 nM), TaqMan probe (125 nM), ROX solution (0.015 µL), and sample DNA (1.0 µL). We used three sets of primers and probes to quantify the eDNA of H. neglectus, O. latipes, and M. anguillicaudatus (Table 1). PCR was initiated at 98 °C for 2 min, followed by 50 cycles of 98 °C for 10 s and 60 °C for 1 min. The amplification curves obtained from individual reaction chambers of the microfluidic chip were analysed using Fluidigm Digital PCR analysis software (Fluidigm Corporation) to obtain abundance of DNA molecules.
    Statistical analysis
    We employed Gaussian Type II regression models with the standardised major axis method to determine the relationship between the log10 eDNA abundances obtained from qSeq and dPCR analyses with the “sma” function of the “smatr” ver. 3.4.8 package in R ver. 3.6.024. Zero values were disregarded for the modelling. We employed the Gaussian Type II model because our preliminary evaluation showed higher R2 values for Type II regression models with a Gaussian distribution than for those with a logarithmic distribution in all cases. We compared the differences in the coefficient values by overlapping the 95% confidence interval (CI) ranges. More