1.
Fletcher, D. & Ross, K. Regulation of reproduction in eusocial Hymenoptera. Annu. Rev. Entomol. 30, 319–343. https://doi.org/10.1146/annurev.en.30.010185.001535 (1985).
Article Google Scholar
2.
Bonabeau, E. Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443. https://doi.org/10.1007/s100219900038 (1998).
Article Google Scholar
3.
Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University, Cambridge, 1990).
Google Scholar
4.
Beekman, M. & Oldroyd, B. P. Conflict and major transitions—why we need true queens. Curr. Opin. Insect Sci. 34, 73–79. https://doi.org/10.1016/j.cois.2019.03.009 (2019).
Article PubMed Google Scholar
5.
Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16. https://doi.org/10.1016/0022-5193(64)90038-4 (1964).
CAS Article PubMed Google Scholar
6.
Fletcher, D. J. C. & Blum, M. S. Regulation of queen number by workers in colonies of social insects. Science 219, 312–314. https://doi.org/10.1126/science.219.4582.312 (1983).
ADS CAS Article PubMed Google Scholar
7.
Liebig, J., Peeters, C. & Holldobler, B. Worker policing limits the number of reproductives in a ponerine ant. Proc. Biol. Sci. 266, 1865–1870 (1999).
Article Google Scholar
8.
West, M. J. Foundress associations in polistine wasps: dominance hierarchies and the evolution of social behavior. Science 157, 1584–1585. https://doi.org/10.1126/science.157.3796.1584 (1967).
ADS CAS Article PubMed Google Scholar
9.
Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 218–222. https://doi.org/10.1038/nature02949 (2004).
ADS CAS Article PubMed Google Scholar
10.
Fukumoto, Y. A novel form of colony organization in the “queenless” ant Diacamma rugosum. Physiol. Ecol. Jpn. 26, 55–61 (1989).
Google Scholar
11.
Grüter, C. & Czaczkes, T. J. Communication in social insects and how it is shaped by individual experience. Anim. Behav. 151, 207–215. https://doi.org/10.1016/j.anbehav.2019.01.027 (2019).
Article Google Scholar
12.
Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol. News 30, 1–26 (2020).
Google Scholar
13.
Blomquist, G. J. & Bagneres, A. G. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (Cambridge University Press, Cambridge, 2010).
Google Scholar
14.
Kather, R. & Martin, S. J. Evolution of cuticular hydrocarbons in the hymenoptera: a meta-analysis. J. Chem. Ecol. 41, 871–883. https://doi.org/10.1007/s10886-015-0631-5 (2015).
CAS Article PubMed PubMed Central Google Scholar
15.
Van Oystaeyen, A. et al. Conserved class of queen pheromones stops social insect workers from reproducing. Science 343, 287–290. https://doi.org/10.1126/science.1244899 (2014).
ADS CAS Article PubMed Google Scholar
16.
Keller, L. & Nonacs, P. The role of queen pheromones in social insects: queen control or queen signal?. Anim. Behav. 45, 787–794. https://doi.org/10.1006/anbe.1993.1092 (1993).
Article Google Scholar
17.
Heinze, J. & d’Ettorre, P. Honest and dishonest communication in social Hymenoptera. J. Exp. Biol. 212, 1775–1779. https://doi.org/10.1242/jeb.015008 (2009).
CAS Article PubMed Google Scholar
18.
Gobin, B., Billen, J. & Peeters, C. Policing behaviour towards virgin egg layers in a polygynous ponerine ant. Anim. Behav. 58, 1117–1122. https://doi.org/10.1006/anbe.1999.1245 (1999).
CAS Article PubMed Google Scholar
19.
Holman, L., Dreier, S. & d’Ettorre, P. Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc. R. Soc. B Biol. Sci. 277, 2007–2015. https://doi.org/10.1098/rspb.2009.2311 (2010).
CAS Article Google Scholar
20.
Oi, C. A. et al. The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37, 808–821. https://doi.org/10.1002/bies.201400180 (2015).
CAS Article PubMed Google Scholar
21.
Holman, L., Helanterä, H., Trontti, K. & Mikheyev, A. S. Comparative transcriptomics of social insect queen pheromones. Nat. Commun. 10, 1593. https://doi.org/10.1038/s41467-019-09567-2 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
22.
Kocher, S. D. & Grozinger, C. M. Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263–1275. https://doi.org/10.1007/s10886-011-0036-z (2011).
CAS Article PubMed Google Scholar
23.
Butler, C. G., Callow, R. K. & Johnston, N. C. Extraction and purification of ‘queen substance’ from queen bees. Nature 184, 1871–1871. https://doi.org/10.1038/1841871a0 (1959).
ADS CAS Article Google Scholar
24.
van Zweden, J. S., Bonckaert, W., Wenseleers, T. & d’Ettorre, P. Queen signaling in social wasps. Evolution 68, 976–986. https://doi.org/10.1111/evo.12314 (2014).
Article PubMed Google Scholar
25.
Mitra, A. & Gadagkar, R. Queen signal should be honest to be involved in maintenance of eusociality: chemical correlates of fertility in Ropalidia marginata. Insectes Soc. 59, 251–255. https://doi.org/10.1007/s00040-011-0214-6 (2012).
Article Google Scholar
26.
Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. R. Soc. B Biol. Sci. 277, 3793–3800. https://doi.org/10.1098/rspb.2010.0984 (2010).
CAS Article Google Scholar
27.
Hanus, R., Vrkoslav, V., Hrdý, I., Cvačka, J. & Šobotník, J. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc. R. Soc. B Biol. Sci. 277, 995–1002. https://doi.org/10.1098/rspb.2009.1857 (2010).
CAS Article Google Scholar
28.
Myles, T. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–91 (1999).
Google Scholar
29.
Vargo, E. L. & Husseneder, C. Biology of subterranean termites: Insights from molecular studies of Reticulitermes and Coptotermes. Annu. Rev. Entomol. 54, 379–403. https://doi.org/10.1146/annurev.ento.54.110807.090443 (2009).
CAS Article PubMed Google Scholar
30.
Lainé, L. V. & Wright, D. J. The life cycle of Reticulitermes spp. (Isoptera: Rhinotermitidae): what do we know?. Bull. Entomol. Res. 93, 267–278. https://doi.org/10.1079/ber2003238 (2003).
Article PubMed Google Scholar
31.
Thorne, B. L., Traniello, J. F. A., Adams, E. S. & Bulmer, M. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol. Ecol. Evol. 11, 149–169. https://doi.org/10.1080/08927014.1999.9522833 (1999).
Article Google Scholar
32.
Hu, X. Recent Advances in Entomological Research: From Molecular Biology to Pest Management (eds Liu, T. & Kang, L.) 213–226 (Springer, Berlin, 2011).
33.
Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968. https://doi.org/10.1073/pnas.1004675107 (2010).
ADS Article PubMed Google Scholar
34.
Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79. https://doi.org/10.1007/s00114-017-1501-5 (2017).
CAS Article Google Scholar
35.
Havlíčková, J. et al. (3R,6E)-nerolidol, a fertility-related volatile secreted by the queens of higher termites (Termitidae: Syntermitinae). Zeitschrift für Naturforschung C 74, 251–264. https://doi.org/10.1515/znc-2018-0197 (2019).
CAS Article Google Scholar
36.
Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1721419115 (2018).
Article PubMed Google Scholar
37.
Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, e0209810. https://doi.org/10.1371/journal.pone.0209810 (2019).
CAS Article PubMed PubMed Central Google Scholar
38.
Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898. https://doi.org/10.1002/ece3.6325 (2020).
Article PubMed PubMed Central Google Scholar
39.
Yamamoto, Y. & Matsuura, K. Queen pheromone regulates egg production in a termite. Biol. Let. 7, 727–729. https://doi.org/10.1098/rsbl.2011.0353 (2011).
Article Google Scholar
40.
Sun, Q., Haynes, K. F. & Zhou, X. Temporal changes in cuticular hydrocarbons during worker-reproductive transition in the eastern subterranean termite (Blattodea: Rhinotermitidae). Ann. Entomol. Soc. Am. https://doi.org/10.1093/aesa/saaa027 (2020).
Article Google Scholar
41.
Perdereau, E., Dedeine, F., Christidès, J.-P. & Bagnères, A.-G. Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J. Chem. Ecol. 36, 1189–1198. https://doi.org/10.1007/s10886-010-9860-9 (2010).
CAS Article PubMed Google Scholar
42.
Tarver, M. R., Schmelz, E. A., Rocca, J. R. & Scharf, M. E. Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes. J. Chem. Ecol. 35, 256–264. https://doi.org/10.1007/s10886-009-9594-8 (2009).
CAS Article PubMed Google Scholar
43.
Tarver, M. R., Zhou, X. & Scharf, M. E. Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Mol. Biol. 11, 28. https://doi.org/10.1186/1471-2199-11-28 (2010).
CAS Article PubMed PubMed Central Google Scholar
44.
Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780. https://doi.org/10.1098/rspb.2020.0780 (2020).
Article Google Scholar
45.
Chen, Y. P. & Vinson, S. B. Effects of queen attractiveness to workers on the queen nutritional status and egg production in the polygynous Solenopsis invicta (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 93, 295–302. https://doi.org/10.1603/0013-8746(2000)093[0295:eoqatw]2.0.co;2 (2000).
Article Google Scholar
46.
Ortius, D. & Heinze, J. Fertility signaling in queens of a North American ant. Behav. Ecol. Sociobiol. 45, 151–159 (1999).
Article Google Scholar
47.
Hannonen, M. & Sundström, L. Proximate determinants of reproductive skew in polygyne colonies of the ant Formica fusca. Ethology 108, 961–973. https://doi.org/10.1046/j.1439-0310.2002.00829.x (2002).
Article Google Scholar
48.
Keller, L. Evolutionary implications of polygyny in the Argentine ant, Iridomyrmex humilis (Mayr) (Hymenoptera: Formicinae): an experimental study. Anim. Behav. 36, 159–165 (1988).
Article Google Scholar
49.
Vargo, E. L. Mutual pheromonal inhibition among queens in polygyne colonies of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 31, 205–210. https://doi.org/10.1007/bf00168648 (1992).
Article Google Scholar
50.
Vander Meer, R. K., Morel, L. & Lofgren, C. S. A comparison of queen oviposition rates from monogyne and polygyne fire ant, Solenopsis invicta, colonies. Physiol. Entomol. 17, 384–390. https://doi.org/10.1111/j.1365-3032.1992.tb01036.x (1992).
Article Google Scholar
51.
Lenoir, A., D’Ettorre, P., Errard, C. & Hefetz, A. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599. https://doi.org/10.1146/annurev.ento.46.1.573 (2001).
CAS Article PubMed Google Scholar
52.
Martin, S. J., Carruthers, J. M., Williams, P. H. & Drijfhout, F. P. Host specific social parasites (Psithyrus) indicate chemical recognition system in bumblebees. J. Chem. Ecol. 36, 855–863. https://doi.org/10.1007/s10886-010-9805-3 (2010).
CAS Article PubMed Google Scholar
53.
Kreuter, K. et al. How the social parasitic bumblebee Bombus bohemicus sneaks into power of reproduction. Behav. Ecol. Sociobiol. 66, 475–486 (2012).
Article Google Scholar
54.
Mori, A. et al. Behavioural assays testing the appeasement allomone of Polyergus rufescens queens during host-colony usurpation. Ethol. Ecol. Evol. 12, 315–322. https://doi.org/10.1080/08927014.2000.9522804 (2000).
Article Google Scholar
55.
Ruano, F., Hefetz, A., Lenoir, A., Francke, W. & Tinaut, A. Dufour’s gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. J. Insect Physiol. 51, 1158–1164. https://doi.org/10.1016/j.jinsphys.2005.06.005 (2005).
CAS Article PubMed Google Scholar
56.
Martin, S. J., Jenner, E. A. & Drijfhout, F. P. Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proc. Biol. Sci. 274, 2717–2721. https://doi.org/10.1098/rspb.2007.0795 (2007).
CAS Article PubMed PubMed Central Google Scholar
57.
Lhomme, P., Ayasse, M., Valterová, I., Lecocq, T. & Rasmont, P. Born in an alien nest: how do social parasite male offspring escape from host aggression?. PLoS ONE 7, e43053. https://doi.org/10.1371/journal.pone.0043053 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
58.
Hanus, R., Piskorski, R., Šobotník, J., Urbanová, K. & Valterová, I. Congress of Entomology 2008 (Durban, South Africa, 2008).
59.
Penick, C., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).
Article Google Scholar
60.
Monnin, T. Chemical recognition of reproductive status in social insects. Ann. Zoolgici Fenn. 43, 515–530 (2006).
Google Scholar
61.
Endler, A., Liebig, J. & Hölldobler, B. Queen fertility, egg marking and colony size in the ant Camponotus floridanus. Behav. Ecol. Sociobiol. 59, 490–499 (2006).
Article Google Scholar
62.
Foster, K. R. & Ratnieks, F. L. W. Facultative worker policing in a wasp. Nature 407, 692–693. https://doi.org/10.1038/35037665 (2000).
ADS CAS Article PubMed Google Scholar
63.
Bonckaert, W., Van Zweden, J. S., D’Ettorre, P., Billen, J. & Wenseleers, T. Colony stage and not facultative policing explains pattern of worker reproduction in the Saxon wasp. Mol. Ecol. 20, 3455–3468. https://doi.org/10.1111/j.1365-294X.2011.05200.x (2011).
CAS Article PubMed Google Scholar
64.
Haverty, M. I., Grace, J. K., Nelson, L. J. & Yamamoto, R. T. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Copotermes formosanus shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22, 1813–1834. https://doi.org/10.1007/bf02028506 (1996).
CAS Article PubMed Google Scholar
65.
Howard, R. & Haverty, M. I. Seasonal variation in caste proportions of field colonies of Reticulitermes flavipes (Kollar) 1. Environ. Entomol. 10, 546–549. https://doi.org/10.1093/ee/10.4.546 (1981).
Article Google Scholar
66.
Gordon, J. M., Šobotník, J. & Chouvenc, T. Colony-age-dependent variation in cuticular hydrocarbon profiles in subterranean termite colonies. Ecol. Evol. 10, 10095–10104. https://doi.org/10.1002/ece3.6669 (2020).
Article PubMed PubMed Central Google Scholar
67.
Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).
Article Google Scholar
68.
Eyer, P. A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Authorea 1, 1–20 (2020).
69.
Dronnet, S., Chapuisat, M., Vargo, E. L., Lohou, C. & Bagnères, A.-G. Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol. Ecol. 14, 1311–1320. https://doi.org/10.1111/j.1365-294X.2005.02508.x (2005).
CAS Article PubMed Google Scholar
70.
Junker, R. R. et al. Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications. New Phytol. 220, 739–749. https://doi.org/10.1111/nph.14505 (2018).
Article PubMed Google Scholar
71.
Aguero, C., Eyer, P. A. & Vargo, E. L. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10, 4212 (2020).
ADS CAS Article Google Scholar
72.
polymorphism and chemotaxonomy. Bagneres, A. G. et al. Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud). J. Chem. Ecol. 16, 3213–3244 (1990).
Article Google Scholar
73.
Clément, J. L. et al. Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Soc. 408, 202–215 (2001).
Article Google Scholar
74.
Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R package. https://CRAN.R-project.org/package=PMCMR (2014).
75.
Kassambara, A. & Mundt, F. Extract and visualize the results of multivariate data analyses. Package ‘factoextra’, vol. 76. http://www.sthda.com/english/rpkgs/factoextra (2017).
76.
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020). More