More stories

  • in

    Factors influencing scavenger guilds and scavenging efficiency in Southwestern Montana

    1.
    Leroux, S. J. & Loreau, M. Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecol. Lett. 11, 1147–1156 (2008).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).
    ADS  Article  Google Scholar 

    3.
    Nowlin, W. H., Vanni, M. J. & Yang, L. H. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89, 647–659 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Wilson, E. E. & Wolkovich, E. M. Scavenging: how carnivores and carrion structure communities. Trends Ecol. Evol. 26, 129–135 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Margalida, A., Donázar, J. A., Carrete, M. & Sánchez-Zapata, J. A. Sanitary versus environmental policies: fitting together two pieces of the puzzle of European vulture conservation. J. Appl. Ecol. 47, 931–935 (2010).
    Article  Google Scholar 

    6.
    Margalida, A., Colomer, M. À. & Oro, D. Man-induced activities modify demographic parameters in a long-lived species: effects of poisoning and health policies. Ecol. Appl. 24, 436–444 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Moreno-Opo, R. & Margalida, A. Carcasses provide resources not exclusively to scavengers: patterns of carrion exploitation by passerine birds. Ecosphere 4, art105 (2013).

    8.
    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Article  Google Scholar 

    9.
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Bump, J. K. et al. Ungulate carcasses perforate ecological filters and create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive advantage. Ecosystems 12, 996–1007 (2009).
    Article  Google Scholar 

    11.
    Danell, K., Berteaux, D. & Bråthen, K. A. Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Arctic 55, 389–392 (2002).
    Article  Google Scholar 

    12.
    Klink, R., Laar-Wiersma, J., Vorst, O. & Smit, C. Rewilding with large herbivores: positive direct and delayed effects of carrion on plant and arthropod communities. PLoS ONE 15, e0226946 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Turner, W. C. et al. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proc. R. Soc. Lond. B Biol. Sci. 281, e20141785 (2014).

    14.
    Mateo-Tomás, P. et al. From regional to global patterns in vertebrate scavenger communities subsidized by big game hunting. Divers. Distrib. 21, 913–924 (2015).
    Article  Google Scholar 

    15.
    Markandya, A. et al. Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67, 194–204 (2008).
    Article  Google Scholar 

    16.
    Selva, N., Jędrzejewska, B., Jędrzejewski, W. & Wajrak, A. Factors affecting carcass use by a guild of scavengers in European temperate woodland. Can. J. Zool. 83, 1590–1601 (2005).
    Article  Google Scholar 

    17.
    DeVault, T. L., Brisbin, J., Lehr, I., Rhodes, J. & Olin, E. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Article  Google Scholar 

    18.
    Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).
    Article  Google Scholar 

    19.
    Morales-Reyes, Z. et al. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures. Acta Oecologica 79, 81–88 (2017).
    ADS  Article  Google Scholar 

    20.
    Ruzicka, R. E. & Conover, M. R. Does weather or site characteristics influence the ability of scavengers to locate food? Ethology 118, 187–196 (2012).
    Article  Google Scholar 

    21.
    Moleón, M., Sánchez-Zapata, J., Sebastián-González, E. & Owen-Smith, N. Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124, 1391–1403 (2015).

    22.
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Sekercioglu, Ç. H., Wenny, D. G. & Whelan, C. J. Why Birds Matter: Avian Ecological Function and Ecosystem Services (University of Chicago Press, 2016).

    25.
    Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: seasonal, regional and intra-guild comparisons. Mammal Rev. 44, 44–55 (2014).
    Article  Google Scholar 

    26.
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. R. Soc. B Biol. Sci. 274, 1101–1108 (2007).
    Article  Google Scholar 

    27.
    Wolf, C. & Ripple, W. J. Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4, 170052 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Grimm, N. B. et al. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 11, 474–482 (2013).
    Article  Google Scholar 

    29.
    Lauenroth, W. et al. Potential effects of climate change on the temperate zones of North and South America. Rev. Chil. Hist. Nat. 77, 439–453 (2004).
    Article  Google Scholar 

    30.
    Shanley, C. S. et al. Climate change implications in the northern coastal temperate rainforest of North America. Clim. Change 130, 155–170 (2015).
    ADS  CAS  Article  Google Scholar 

    31.
    Wilmers, C. C. & Getz, W. M. Gray wolves as climate change buffers in yellowstone. PLOS Biol. 3, e92 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Sebastián-González, E. et al. Network structure of vertebrate scavenger assemblages at the global scale: drivers and ecosystem functioning implications. Ecography 43, 1143–1155 (2020).
    Article  Google Scholar 

    33.
    Pardo-Barquín, E., Mateo-Tomás, P. & Olea, P. P. Habitat characteristics from local to landscape scales combine to shape vertebrate scavenging communities. Basic Appl. Ecol. 34, 126–139 (2019).
    Article  Google Scholar 

    34.
    Sebastián-González, E. et al. Scavenging in the Anthropocene: human impact drives vertebrate scavenger species richness at a global scale. Glob. Change Biol. 25, 3005–3017 (2019).
    ADS  Article  Google Scholar 

    35.
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Janßen, F., Treude, T. & Witte, U. Scavenger assemblages under differing trophic conditions: a case study in the deep Arabian Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 47, 2999–3026 (2000).
    ADS  Article  Google Scholar 

    37.
    Houston, D. C. To the vultures belong the spoils. Nat. Hist. 103, 34–41 (1994).
    Google Scholar 

    38.
    Houston, D. C. Scavenging efficiency of turkey vultures in tropical forest. The Condor 88, 318–323 (1986).
    Article  Google Scholar 

    39.
    Sauer, J. et al. The North American breeding bird survey, results and analysis 1966–2015. (2017).

    40.
    Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. & Belant, J. L. Effects of vulture exclusion on carrion consumption by facultative scavengers. Ecol. Evol. 8, 2518–2526 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Heinrich, B. Winter foraging at carcasses by three sympatric corvids, with emphasis on recruitment by the raven, Corvus corax. Behav. Ecol. Sociobiol. 23, 141–156 (1988).
    Article  Google Scholar 

    42.
    Bellan, S. E., Turnbull, P. C. B., Beyer, W. & Getz, W. M. Effects of experimental exclusion of scavengers from carcasses of anthrax-infected herbivores on bacillus anthracis sporulation, survival, and distribution. Appl. Environ. Microbiol. 79, 3756–3761 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species https://www.iucnredlist.org/en.

    44.
    Kiff, L. F. The current status of North American vultures. In Raptors at Risk 175–189 (World Working Group on Birds of Prey/Hancock House, 2000).

    45.
    Prasad, A. M., Iverson, L. R., Peters, M. P. & Matthews, S. N. Climate change tree atlas (Northern Research Station, US Forest Service, Delaware, OH, 2014).
    Google Scholar 

    46.
    Kiff, L. The current status of North American vultures. in 175–189 (2000).

    47.
    Houston, D. C. Competition for food between Neotropical vultures in forest. Ibis 130, 402–417 (1988).
    Article  Google Scholar 

    48.
    Gomez, L. G., Houston, D. C., Cotton, P. & Tye, A. The role of greater yellow-headed vultures Cathartes melambrotus as scavengers in neotropical forest. Ibis 136, 193–196 (1994).
    Article  Google Scholar 

    49.
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, e1241484 (2014).

    50.
    Tomberlin, J. K., Barton, B. T., Lashley, M. A. & Jordan, H. R. Mass mortality events and the role of necrophagous invertebrates. Curr. Opin. Insect Sci. 23, 7–12 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Fey, S. B. et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl. Acad. Sci. 112, 1083–1088 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Wikenros, C., Sand, H., Ahlqvist, P. & Liberg, O. Biomass flow and scavengers use of carcasses after re-colonization of an apex predator. PLoS ONE 8, e77373 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Kočárek, P. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur. J. Soil Biol. 39, 31–45 (2003).
    Article  Google Scholar 

    54.
    Matuszewski, S., Bajerlein, D., Konwerski, S. & Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 1: pattern and rate of decomposition. Forensic Sci. Int. 194, 85–93 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Reed, H. B. A study of dog carcass communities in tennessee, with special reference to the insects. Am. Midl. Nat. 59, 213–245 (1958).
    Article  Google Scholar 

    56.
    Bauer, J. W., Logan, K. A., Sweanor, L. L. & Boyce, W. M. Scavenging behavior in Puma. Southwest. Nat. 50, 466–471 (2005).
    Article  Google Scholar 

    57.
    Burkepile, D. E. et al. Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87, 2821–2831 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).
    CAS  Article  Google Scholar 

    59.
    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz.) 47, 185–192 (2002).
    Article  Google Scholar 

    60.
    Parker, K. L., Robbins, C. T. & Hanley, T. A. Energy expenditures for locomotion by Mule Deer and Elk. J. Wildl. Manag. 48, 474–488 (1984).
    Article  Google Scholar 

    61.
    Crête, M. & Larivière, S. Estimating the costs of locomotion in snow for coyotes. Can. J. Zool. 81, 1808–1814 (2003).
    Article  Google Scholar 

    62.
    Droghini, A. & Boutin, S. The calm during the storm: snowfall events decrease the movement rates of grey wolves (Canis lupus). PLoS ONE 13, e0205742 (2018).

    63.
    Green, G. I., Mattson, D. J. & Peek, J. M. Spring feeding on ungulate carcasses by grizzly bears in Yellowstone National Park. J. Wildl. Manag. 61, 1040–1055 (1997).
    Article  Google Scholar 

    64.
    De Jong, G. D. & Chadwick, J. W. Decomposition and arthropod succession on exposed rabbit carrion during summer at high altitudes in colorado, USA. J. Med. Entomol. 36, 833–845 (1999).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Sun, S.-J. et al. Climate-mediated cooperation promotes niche expansion in burying beetles. Elife 3, e02440 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Krofel, M. Monitoring of facultative avian scavengers on large mammal carcasses in Dinaric forest of Slovenia. Acrocephalus 32, 45–51 (2011).
    Article  Google Scholar 

    67.
    DeVault, T. L., Seamans, T. W., Linnell, K. E., Sparks, D. W. & Beasley, J. C. Scavenger removal of bird carcasses at simulated wind turbines: Does carcass type matter?. Ecosphere 8, e01994 (2017).
    Article  Google Scholar 

    68.
    Turner, K. L., Conner, L. M. & Beasley, J. C. Effect of mammalian mesopredator exclusion on vertebrate scavenging communities. Sci. Rep. 10, 2644 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Abernethy, E. F., Turner, K. L., Beasley, J. C. & Rhodes, O. E. Scavenging along an ecological interface: utilization of amphibian and reptile carcasses around isolated wetlands. Ecosphere 8, e01989 (2017).
    Article  Google Scholar 

    70.
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, (2016).

    71.
    Ragg, J., Mackintosh, C. & Moller, H. The scavenging behaviour of ferrets (Mustela furo), feral cats (Felis domesticus), possums (Trichosurus vulpecula), hedgehogs (Erinaceus europaeus) and harrier hawks (Circus approximans) on pastoral farmland in New Zealand: Implications for bovine tuberculosis transmission. N. Z. Vet. J. 48, 166–175 (2001).
    Article  Google Scholar 

    72.
    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the” landscape of fear” in Yellowstone National Park, USA. Can. J. Zool. 79, 1401–1409 (2001).
    Article  Google Scholar 

    73.
    Ripple, W. J. & Beschta, R. L. Linking wolves to willows via risk-sensitive foraging by ungulates in the northern Yellowstone ecosystem. For. Ecol. Manag. 230, 96–106 (2006).
    Article  Google Scholar 

    74.
    Ripple, W. J. & Beschta, R. L. Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biol. Conserv. 145, 205–213 (2012).
    Article  Google Scholar 

    75.
    Smith, D. W., Peterson, R. O. & Houston, D. B. Yellowstone after wolves. Bioscience 53, 330–340 (2003).
    Article  Google Scholar 

    76.
    White, P. J. & Garrott, R. A. Northern Yellowstone elk after wolf restoration. Wildl. Soc. Bull. 33, 942–955 (2005).
    Article  Google Scholar 

    77.
    Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).
    Article  Google Scholar 

    78.
    Cook, R. C., Cook, J. G. & Irwin, L. L. Estimating elk body mass using chest-girth circumference. Wildl. Soc. Bull. 1973-2006 31, 536–543 (2003).
    Google Scholar 

    79.
    Craine, J. M., Towne, E. G. & Elmore, A. Intra-annual bison body mass trajectories in a tallgrass prairie. Mammal Res. 60, 263–270 (2015).
    Article  Google Scholar 

    80.
    Lott, D. F. & Galland, J. C. Body mass as a factor influencing dominance status in American Bison Cows. J. Mammal. 68, 683–685 (1987).
    Article  Google Scholar 

    81.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Sage Publications, 2018).

    82.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

    83.
    Pan, Y. & Jackson, R. T. Ethnic difference in the relationship between acute inflammation and serum ferritin in US adult males. Epidemiol. Infect. 136, 421–431 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Brewer, M. J., Butler, A. & Cooksley, S. L. The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods Ecol. Evol. 679, 692. https://doi.org/10.1111/2041-210X.12541 (2016).
    Article  Google Scholar 

    85.
    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
    MathSciNet  Article  Google Scholar 

    86.
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    87.
    Kleiber, C. & Zeileis, A. Applied Econometrics with R (Springer, Berlin, 2008).
    Google Scholar 

    88.
    Cameron, A. C. & Trivedi, P. K. Regression-based tests for overdispersion in the Poisson model. J. Econom. 46, 347–364 (1990).
    MathSciNet  Article  Google Scholar  More

  • in

    Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting

    1.
    Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11, 474–485 (2018).
    ADS  CAS  Article  Google Scholar 
    2.
    Diffenbaugh, N. S., Singh, D. & Mankin, J. S. Unprecedented climate events: historical changes, aspirational targets, and national commitments. Sci. Adv. 4, eaao3354 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).
    ADS  CAS  Article  Google Scholar 

    4.
    United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement (2015).

    5.
    Intergovernmental Panel on Climate Change (IPCC). Fifth Assessment Report: Climate Change (AR5) (2014).

    6.
    Nabuurs, G. J. et al. Forestry. In Climate Change 2007: Mitigation (Cambridge University Press, 2007).

    7.
    Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).
    ADS  Article  Google Scholar 

    8.
    Xu, Z., Smyth, C. E., Lemprière, T. C., Rampley, G. J. & Kurz, W. A. Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia. Can. Mitig. Adapt. Strateg. Glob. Change 23, 257–290 (2018).
    Article  Google Scholar 

    9.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Peterson St-Laurent, G., Hagerman, S., Kozak, R. & Hoberg, G. Public perceptions about climate change mitigation in British Columbia’s forest sector. PLoS ONE 13, e0195999 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).
    PubMed  Article  Google Scholar 

    13.
    Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).
    CAS  PubMed  Article  Google Scholar 

    14.
    Marchand, W. et al. Untangling methodological and scale considerations in growth and productivity trend estimates of Canada’s forests. Environ. Res. Lett. 13, 093001 (2018).
    ADS  Article  Google Scholar 

    15.
    Browne, L., Wright, J. W., Fitz-Gibbon, S., Gugger, P. F. & Sork, V. L. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proc. Natl Acad. Sci. USA. 116, 25179–25185 (2019).
    CAS  PubMed  Article  Google Scholar 

    16.
    Sally, N. A. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu Rev. Ecol. Evol. Syst. 44, 367–388 (2013).
    Article  Google Scholar 

    17.
    Lemprière, T. C. et al. Canadian boreal forests and climate change mitigation. Environ. Rev. 21, 293–321 (2013).
    Article  Google Scholar 

    18.
    Winder, R., Nelson, E. & Beardmore, T. Ecological implications for assisted migration in Canadian forests. For. Chron. 87, 731–744 (2011).
    Article  Google Scholar 

    19.
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).
    PubMed  Article  Google Scholar 

    20.
    Isaac-Renton, M. et al. Northern forest tree populations are physiologically maladapted to drought. Nat. Commun. 9, 5254 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Field, E., Schönrogge, K., Barsoum, N., Hector, A. & Gibbs, M. Individual tree traits shape insect and disease damage on oak in a climate‐matching tree diversity experiment. Ecol. Evol. 9, 8524–8540 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Depardieu, C. et al. Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate. N. Phytol. 227, 427–439 (2020).
    CAS  Article  Google Scholar 

    23.
    Montwé, D., Isaac-Renton, M., Hamann, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Commun. 9, 1574 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Girardin, M. P. et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Change Biol. 22, 627–643 (2016).
    ADS  Article  Google Scholar 

    25.
    Hember, R. A., Kurz, W. A. & Coops, N. C. Increasing net ecosystem biomass production of Canada’s boreal and temperate forests despite decline in dry climates. Glob. Biogeochem. Cycles 31, 134–158 (2017).
    CAS  Article  Google Scholar 

    26.
    Boucher, D. et al. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Ecol. Appl. 28, 1245–1259 (2018).
    PubMed  Article  Google Scholar 

    27.
    Klein, R. J. T., Schipper, E. L. F. & Dessai, S. Integrating mitigation and adaptation into climate and development policy: three research questions. Environ. Sci. Policy 8, 579–588 (2005).
    Article  Google Scholar 

    28.
    Zamudio, K. R., Bell, R. C. & Mason, N. A. Phenotypes in phylogeography: species’ traits, environmental variation, and vertebrate diversification. Proc. Natl Acad. Sci. USA 113, 8041–8048 (2016).
    CAS  PubMed  Article  Google Scholar 

    29.
    Massatti, R. et al. Population history provides foundational knowledge for utilizing and developing native plant restoration materials. Evol. Appl. 11, 2025–2039 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Sork, V. L. et al. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet. Genomes 9, 901–911 (2013).
    Article  Google Scholar 

    31.
    Morgenstern, E. K. & Mullin, T. J. Growth and survival of black spruce in the range-wide provenance study. Can. J. Res. 20, 130–143 (1990).
    Article  Google Scholar 

    32.
    Rehfeldt, G. E., Wykoff, W. R. & Ying, C. C. Physiologic plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim. Change 50, 355–376 (2001).
    Article  Google Scholar 

    33.
    Morgenstern, E. K. Range-wide genetic variation of black spruce. Can. J. Res. 8, 463–473 (1978).
    Article  Google Scholar 

    34.
    Thomson, A. M., Riddell, C. L. & Parker, W. H. Boreal forest provenance tests used to predict optimal growth and response to climate change: 2. Black spruce. Can. J. Res. 39, 143–153 (2009).
    Article  Google Scholar 

    35.
    Pedlar, J. H. & McKenney, D. W. Assessing the anticipated growth response of northern conifer populations to a warming climate. Sci. Rep. 7, 43881 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Mahony, C. R. et al. Evaluating genomic data for management of local adaptation in a changing climate: a lodgepole pine case study. Evol. Appl. 13, 116–131 (2020).
    PubMed  Article  Google Scholar 

    37.
    Housset, J. M. et al. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. N. Phytol. 218, 630–645 (2018).
    Article  Google Scholar 

    38.
    Heer, K. et al. Linking dendroecology and association genetics in natural populations: stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol. Ecol. 27, 1428–1438 (2018).
    CAS  PubMed  Article  Google Scholar 

    39.
    Bouriaud, O., Teodosiu, M., Kirdyanov, A. V. & Wirth, C. Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce. Biogeosciences 12, 6205–6217 (2015).
    ADS  CAS  Article  Google Scholar 

    40.
    Babst, F. et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018).
    ADS  Article  Google Scholar 

    41.
    Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Picea mariana), a transcontinental North American conifer. Mol. Ecol. 13, 2735–2747 (2004).
    CAS  PubMed  Article  Google Scholar 

    42.
    Gérardi, S., Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. From glacial refugia to modern populations: new assemblages of organelle genomes generated by differential cytoplasmic gene flow in transcontinental black spruce: assemblages of organelle genomes. Mol. Ecol. 19, 5265–5280 (2010).
    PubMed  Article  CAS  Google Scholar 

    43.
    Rehfeldt, G. E., Leites, L. P., Joyce, D. G. & Weiskittel, A. R. Role of population genetics in guiding ecological responses to climate. Glob. Change Biol. 24, 858–868 (2018).
    ADS  Article  Google Scholar 

    44.
    Beaulieu, J., Corriveau, A. & Daoust, G. Phenotypic Stability and Delineation of Black Spruce Breeding Zones in Quebec. Vol. LAU-X-85E (Forestry Canada, Quebec Region, Sainte-Foy, Quebec, 1989).

    45.
    Perrin, M., Rossi, S. & Isabel, N. Synchronisms between bud and cambium phenology in black spruce: early-flushing provenances exhibit early xylem formation. Tree Physiol. 37, 593–603 (2017).
    PubMed  Article  Google Scholar 

    46.
    Sniderhan, A. E., McNickle, G. G. & Baltzer, J. L. Assessing local adaptation vs. plasticity under different resource conditions in seedlings of a dominant boreal tree species. AoB Plants 10, ply004 (2018).

    47.
    Newton, P. F. Systematic review of yield responses of four North American conifers to forest tree improvement practices. Ecol. Manag. 172, 29–51 (2003).
    Article  Google Scholar 

    48.
    Marchand, W. et al. Strong overestimation of water‐use efficiency responses to rising CO2 in tree‐ring studies. Glob. Change Biol. https://doi.org/10.1111/gcb.15166 (2020).

    49.
    Metsaranta, J. M. Long-term tree-ring derived carbon dynamics of an experimental plantation in relation to species and density in Northwestern Ontario. Can. Ecol. Manag. 441, 229–241 (2019).
    Article  Google Scholar 

    50.
    Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    DOrangeville, L. et al. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science 352, 1452–1455 (2016).
    ADS  CAS  Article  Google Scholar 

    52.
    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Rossi, S. Bud break responds more strongly to daytime than night‐time temperature under asymmetric experimental warming. Glob. Change Biol. 9 (2016).

    54.
    Frechette, E., Ensminger, I., Bergeron, Y., Gessler, A. & Berninger, F. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate? Tree Physiol. 31, 1204–1216 (2011).
    CAS  PubMed  Article  Google Scholar 

    55.
    Verbyla, D. Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environ. Res. Lett. 10, 125016 (2015).
    ADS  Article  Google Scholar 

    56.
    Trujillo, E. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 5, 5 (2012).
    Article  CAS  Google Scholar 

    57.
    Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schweingruber, F. H. & Silkin, P. P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400, 149–151 (1999).
    ADS  CAS  Article  Google Scholar 

    58.
    Ols, C., Girardin, M. P., Hofgaard, A., Bergeron, Y. & Drobyshev, I. Monitoring climate sensitivity shifts in tree-rings of eastern boreal North America using model-data comparison: shifts in tree growth sensivity to climate. Ecosystems 21, 1042–1057 (2018).
    CAS  Article  Google Scholar 

    59.
    Prunier, J., Gérardi, S., Laroche, J., Beaulieu, J. & Bousquet, J. Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Mol. Ecol. 21, 4270–4286 (2012).
    CAS  PubMed  Article  Google Scholar 

    60.
    Capblancq, T. et al. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J. Evol. Biol. https://doi.org/10.1111/jeb.13610 (2020).

    61.
    Liepe, K. J., Hamann, A., Smets, P., Fitzpatrick, C. R. & Aitken, S. N. Adaptation of lodgepole pine and interior spruce to climate: implications for reforestation in a warming world. Evol. Appl. 9, 409–419 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).
    PubMed  Article  Google Scholar 

    63.
    Wegrzyn, J. L. et al. Cyberinfrastructure and resources to enable an integrative approach to studying forest trees. Evol. Appl. 13, 228–241 (2020).
    PubMed  Article  Google Scholar 

    64.
    Kurz, W. A. et al. Carbon in Canada’s boreal forest —a synthesis. Environ. Rev. 21, 260–292 (2013).
    CAS  Article  Google Scholar 

    65.
    Alberto, F. J. et al. Potential for evolutionary responses to climate change—evidence from tree populations. Glob. Change Biol. 19, 1645–1661 (2013).
    ADS  Article  Google Scholar 

    66.
    Splawinski, T. B., Cyr, D., Gauthier, S., Jetté, J.-P. & Bergeron, Y. Analyzing risk of regeneration failure in the managed boreal forest of northwestern Quebec. Can. J. Res. 49, 680–691 (2019).
    Article  Google Scholar 

    67.
    Chaste, E., Girardin, M. P., Kaplan, J. O., Bergeron, Y. & Hély, C. Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada’s managed boreal forest. Landsc. Ecol. https://doi.org/10.1007/s10980-019-00780-4 (2019).

    68.
    McLane, S. C., Daniels, L. D. & Aitken, S. N. Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment. Ecol. Manag. 262, 115–123 (2011).
    Article  Google Scholar 

    69.
    Larsson, L. CooRecorder and Cdendro Programs of the CooRecorder/Cdendro Package (Version 7.6) (Cybis Elektronik, 2013).

    70.
    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 43, 69–78 (1983).

    71.
    de Lafontaine, G., Prunier, J., Gérardi, S. & Bousquet, J. Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana × P. rubens). Mol. Ecol. 24, 5229–5247 (2015).
    PubMed  Article  Google Scholar 

    72.
    Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl Acad. Sci. USA. 102, 15785–15790 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    73.
    Ung, C.-H., Jing Guo, X. & Fortin, M. Canadian national taper models. For. Chron. 89, 211–224 (2013).
    Article  Google Scholar 

    74.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Wang, J. The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Mol. Ecol. Resour. 17, 981–990 (2017).
    CAS  PubMed  Article  Google Scholar 

    76.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    77.
    Excoffier, L. Evolution of human mitochondrial DNA: evidence for departure from a pure neutral model of populations at equilibrium. J. Mol. Evol. 30, 125–139 (1990).
    ADS  CAS  PubMed  Article  Google Scholar 

    78.
    Meirmans, P. G. genodive version 3.0: easy‐to‐use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Regniere, J. & Bolstad, P. Statistical simulation of daily air temperature patterns Eastern North America to forecast seasonal events in insect pest management. Environ. Entomol. 23, 1368–1380 (1994).
    Article  Google Scholar 

    80.
    Hogg, E. H., Barr, A. G. & Black, T. A. A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. Agric. Meteorol. 178–179, 173–182 (2013).
    Article  Google Scholar 

    81.
    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 95–114 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    82.
    Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).
    CAS  PubMed  Article  Google Scholar 

    83.
    Wood, S. Generalized Additive Models: An Introduction with R. 2nd edn Vol. 66 (Chapman and Hall/CRC, 2006).

    84.
    R Development Core Team. R: A Language and Environment for Statistical Computing (2013).

    85.
    Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, https://doi.org/10.18637/jss.v022.i04 (2007).

    86.
    Fisher R. A. Statistical Methods for Research Workers 4th edn (Oliver and Boyd, London, 1932).

    87.
    Legendre, P. & Legendre, L. Numerical Ecology Vol. 24, 3rd edn (Elsevier Science BV, Amsterdam, 2012).

    88.
    Reiss, P. T. & Ogden, R. T. Smoothing parameter selection for a class of semiparametric linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 505–523 (2009).
    MathSciNet  MATH  Article  Google Scholar 

    89.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    90.
    Beaudoin, A. et al. Mapping attributes of Canada’s forests at moderate resolution through k NN and MODIS imagery. Can. J. Res. 44, 521–532 (2014).
    Article  Google Scholar  More

  • in

    Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo)

    1.
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229. https://doi.org/10.1038/nature20588 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. U.S.A. 113, 146–151. https://doi.org/10.1073/pnas.1517092112 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575. https://doi.org/10.1016/j.cub.2008.08.066 (2008).
    CAS  Article  PubMed  Google Scholar 

    5.
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than the agricultural demand for pollination. Curr. Biol. 19, 915–918. https://doi.org/10.1016/j.cub.2009.03.071 (2009).
    CAS  Article  PubMed  Google Scholar 

    6.
    Vanbergen, A. J. & Initiative, I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259. https://doi.org/10.1890/120126 (2013).
    Article  Google Scholar 

    7.
    Whitaker, T. & Davis, G. Cucurbits: Botany, Cultivation & Utilization (Biotech Books, Delhi, 2012).
    Google Scholar 

    8.
    Hurd, P. D. Jr., Linsley, E. G. & Whitaker, T. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25, 218–234. https://doi.org/10.2307/2406514 (1971).
    Article  PubMed  Google Scholar 

    9.
    Artz, D. R. & Nault, B. A. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. J. Econ. Entomol. 104, 1153–1161. https://doi.org/10.1603/EC10431 (2011).
    Article  PubMed  Google Scholar 

    10.
    Cane, J. H., Sampson, B. J. & Miller, S. Pollination value of male bees: the specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo). Environ. Entomol. 40, 614–620. https://doi.org/10.1603/EN10084 (2011).
    Article  PubMed  Google Scholar 

    11.
    Hurd, P. D. Jr. & Linsley, E. G. The squash and gourd bees-genera Peponapis Robertson and Xenoglossa Smith-inhabiting America north of Mexico (Hymenoptera: Apoidea). Hilgardia 35, 375–453. https://doi.org/10.3733/hilg.v35n15p375 (1964).
    Article  Google Scholar 

    12.
    López-Uribe, M. M., Cane, J. H., Minckley, R. L. & Danforth, B. N. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa. Proc. R. Soc. B-Biol. Sci. 283, 20160443. https://doi.org/10.1098/rspb.2016.0443 (2016).
    Article  Google Scholar 

    13.
    Tepedino, V. J. The pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J. Kansas Entomol. Soc. 54, 359–377. Retrieved from https://www.jstor.org/stable/25084168 (1981).

    14.
    Patton, W. Generic arrangement of the bees allied to Melissodes and Anthophora. Bull. U. S. Geolog. Surv. 5, 471–479. Retrieved from https://books.google.ca/books?hl=en&lr=&id=R38uAAAAYAAJ&oi=fnd&pg=PA469&ots=LVcsvi2gE5&sig=xlz2XhDKuN5qMenv47JIRhYfy_8&redir_esc=y#v=onepage&q&f=false (1879).

    15.
    Willis, D. S. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).
    Article  Google Scholar 

    16.
    Hurd, P. D. Jr., Linsley, E. G. & Michelbacher, A. E. Ecology of the squash and gourd bee, Peponapis pruinosa, on cultivated cucurbits in California (Hymenoptera: Apoidea). Smiths. Contrib. Zool. 168, 1–17. Smithsonian Institution Press. Retrieved from https://repository.si.edu/bitstream/handle/10088/5347/SCtZ-0168-Lo_res.pdf?sequence=2 (1974).

    17.
    Mathewson, J. A. Nest construction and life history of the eastern cucurbit bee, Peponapis pruinosa (Hymenoptera: Apoidea). J. Kansas Entomol. Soc. 41, 255–261. Retrieved from https://www.jstor.org/stable/25083703 (1968).

    18.
    Julier, H. E. & Roulston, T. H. Wild bee abundance and pollination service in cultivated pumpkins: Farm management, nesting landscape effects. J. Econ. Entomol. 102, 563–573. https://doi.org/10.1603/029.102.0214 (2009).
    Article  PubMed  Google Scholar 

    19.
    Willis Chan, D. S., Prosser, R. S., Rodríguez-Gil, J. L. & Raine, N. E. Risks of exposure to systemic insecticides in agricultural soil in Ontario, Canada for the hoary squash bee (Peponapis pruinosa) and other ground-nesting bee species. Sci. Rep. 9, 11870. https://doi.org/10.1038/s41598-019-47805-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Sgolastra, F. et al. Pesticide exposure assessment paradign for solitary bees. Environ. Entomol. 48, 22–35. https://doi.org/10.1093/ee/nvy105 (2019).
    Article  PubMed  Google Scholar 

    21.
    Franklin, E. L. & Raine, N. E. Moving beyond honey bee-centric pesticide risk assessments to protect all pollinators. Nat. Ecol. Evol. 3, 1373–1375. https://doi.org/10.1038/s41559-019-0987-y (2019).
    Article  PubMed  Google Scholar 

    22.
    Blacquière, T., Smagghe, G., van Gestel, C. A. M. & Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 24, 73–92. https://doi.org/10.1007/s10646-012-0863-x (2012).
    CAS  Article  Google Scholar 

    23.
    Godfray, H. C. J. et al. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 281, 20140558. https://doi.org/10.1098/rspb.2014.0558 (2014).
    Article  Google Scholar 

    24.
    Godfray, H. C. J. et al. A restatement of recent advances the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 281, 20151821. https://doi.org/10.1098/rspb.2015.1821 (2015).
    CAS  Article  Google Scholar 

    25.
    Samuelson, E. E. W., Chen-Wishart, Z. P., Gill, R. J. & Leadbeater, E. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Sci. Rep. 6, 38957. https://doi.org/10.1038/srep38957 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Stanley, D. A., Smith, K. E. & Raine, N. E. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci. Rep. 5, 16508. https://doi.org/10.1038/srep16508 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Gill, R. J., Ramos-Rodríguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 https://doi.org/10.1038/nature11585 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Gill, R. J. & Raine, N. E. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28, 1459–1471. https://doi.org/10.1111/1365-2435.12292 (2014).
    Article  Google Scholar 

    29.
    Feltham, H., Park, K. & Goulson, D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23, 317–323. https://doi.org/10.1007/s10646-014-1189-7 (2014).
    CAS  Article  PubMed  Google Scholar 

    30.
    Stanley, D. A. & Raine, N. E. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Funct. Ecol. 30, 1132–1139. https://doi.org/10.1111/1365-2435.12644 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53, 1440–1449. https://doi.org/10.1111/1365-2664.12689 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Muth, F. & Leonard, A. S. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Sci. Rep. 9, 4764. https://doi.org/10.1038/s41598-019-39701-5 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Baron, G. L., Jansen, V. A. A., Brown, M. J. F. & Raine, N. E. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nat. Ecol. Evol. 1, 1308–1316. https://doi.org/10.1038/s41559-017-0260-1 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Wu-Smart, J. & Spivak, M. Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation. Environ. Entomol. 47, 55–62. https://doi.org/10.1093/ee/nvx175 (2018).
    CAS  Article  PubMed  Google Scholar 

    35.
    Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352. https://doi.org/10.1126/science.1215025 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    36.
    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    37.
    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 571, 77–80. https://doi.org/10.1038/nature14420 (2015).
    ADS  CAS  Article  Google Scholar 

    38.
    Ellis, C., Park, K. J., Whitehorn, P., David, A. & Goulson, D. The neonicotinoid insecticide thiacloprid impacts upon bumblebee colony development under field conditions. Environ. Sci. Technol. 51, 1727–1732. https://doi.org/10.1021/acs.est.6b04791 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    39.
    Switzer, C. M. & Combes, S. A. The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50. Ecotoxicology 25, 1150–1159. https://doi.org/10.1007/s10646-016-1669-z (2016).
    CAS  Article  PubMed  Google Scholar 

    40.
    Stanley, D. A. et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548–550. https://doi.org/10.1038/nature16167 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Jin, N., Klein, S., Leimig, F., Bischoff, G. & Menzel, R. The neonicotinoid clothianidin interferes with navigation of the solitary bee Osmia cornuta in a laboratory test. J. Exp. Biol. 218, 2821–2825. https://doi.org/10.1242/jeb.123612 (2015).
    Article  PubMed  Google Scholar 

    42.
    Sandrock, C. et al. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric. For. Entomol. 16, 119–128. https://doi.org/10.1111/afe.12041 (2014).
    Article  Google Scholar 

    43.
    Anderson, N. L. & Harmon-Threatt, A. N. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci. Rep. 9, 3724. https://doi.org/10.1038/s41598-019-40031-9 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees: Biology, Evolution, Conservation (Princeton University Press, Princeton, 2019).

    45.
    Wheelock, M. J., Rey, K. P. & O’Neal, M. E. Defining the insect pollinator community found in Iowa corn and soybean fields: Implications for pollinator conservation. Environ. Entomol. 4, 1099–1106. https://doi.org/10.1093/ee/nvw1087 (2016).
    Article  Google Scholar 

    46.
    USDA. Attractiveness of agricultural crops to pollinating bees for the collection of nectar and/or pollen. Retrieved from https://www.ars.usda.gov/ARSUserFiles/OPMP/Attractiveness%20of%20Agriculture%20Crops%20to%20Pollinating%20Bees%20Report-FINAL_Web%20Version_Jan%203_2018.pdf (2017).

    47.
    OMAFRA. Vegetable Crop Protection Guide, 82–83. Government of Ontario (2014).

    48.
    Leza, M., Watrous, K. M., Bratu, J. & Woodard, S. H. Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proc. R. Soc. B Biol. Sci. 285, 20180761. https://doi.org/10.1098/rspb.2018.0761 (2018).
    CAS  Article  Google Scholar 

    49.
    Baron, G. L., Raine, N. E. & Brown, M. J. F. General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proc. R. Soc. B Biol. Sci. 284, 20170123. https://doi.org/10.1098/rspb.2017.0123 (2017).
    CAS  Article  Google Scholar 

    50.
    Roulston, T. H. & Cane, J. H. The effect of diet breadth and nesting ecology on body size variation in bees (Apiformes). J. Kansas Entomol. Soc. 73, 129–142. Retrieved from https://www.jstor.org/stable/25085957 (2000).

    51.
    Klostermeyer, E., Mech, S. J. & Rasmussen, W. Sex and weight of Megachile rotundata (Hymenoptera: Megachilidae) progeny associated with provision weights. J. Kansas Entomol. Soc. 46, 536–548. Retrieved from https://www.jstor.org/stable/25082604 (1973).

    52.
    Bosch, J. & Vicens, N. Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav. Ecol. Sociobiol. 60, 26–33. https://doi.org/10.1007/s00265-005-0134-4 (2006).
    Article  Google Scholar 

    53.
    Bonmatin, J. M. et al. Environmental fate and exposure: Neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22, 35–67. https://doi.org/10.1007/s11356-014-3332-7 (2015).
    CAS  Article  Google Scholar 

    54.
    Hilton, M., Jarvis, T. & Ricketts, D. The degradation rate of thiamethoxam in European field studies. Pest Manag. Sci. 72, 388–397. https://doi.org/10.1002/ps.4024 (2016).
    CAS  Article  PubMed  Google Scholar 

    55.
    Scott-Dupree, C. D., Conroy, L. & Harris, C. R. Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymenoptera: Megachildidae), and Osmia lignaria (Hymenoptera: Megachilidae). J. Econ. Entomol. 102, 177–182. https://doi.org/10.1603/029.102.0125 (2009).
    CAS  Article  PubMed  Google Scholar 

    56.
    Stephen, W. P., Bohart, G. E. & Torchio, P. F. The biology and external morphology of bees with a synopsis of the genera of northwestern America. Corvallis: Oregon State University. Retrieved from https://www.jstor.org/stable/25082339 (1969).

    57.
    Seidelmann, K. & Ulbrich, K. M. Conditional sex allocation in the Red Mason bee Osmia rufa. Behav. Ecol. Sociobiol. 64, 337–347. https://doi.org/10.1007/s00265-009-0850-2 (2010).
    Article  Google Scholar 

    58.
    Dively, G. P. & Kamel, A. Insecticide residues in pollen and nectar of a cucurbit crop and their potential exposure to pollinators. J. Agric. Food Chem. 60, 4449–4456. https://doi.org/10.1021/jf205393x (2012).
    CAS  Article  PubMed  Google Scholar 

    59.
    Stoner, K. A. & Eitzer, B. D. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS ONE 7, e39114. https://doi.org/10.1371/journal.pone.0039114 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987. https://doi.org/10.1111/1365-2664.12111 (2013).
    Article  Google Scholar 

    61.
    Wang, T. T. et al. Suppression of chlorantraniliprole sorption on biochar in soil–biochar systems. Bull. Environ. Contam. Toxicol. 95, 401–406. https://doi.org/10.1007/s00128-015-1541-5 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    62.
    Winsor, J. A., Davis, L. E. & Stephenson, A. G. The relationship between pollen load and fruit maturation and the effect of pollen load on offspring vigor in Cucurbita pepo. Am. Nat. 129, 643–656. https://doi.org/10.1086/284664 (1987).
    Article  Google Scholar 

    63.
    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103, 1579–1588. https://doi.org/10.1093/aob/mcp076 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    McGrady, C. M., Troyer, R. & Fleischer, S. J. Wild bee visitation rates exceed pollination thresholds in commercial Cucurbita agroecosystems. J. Econ. Entomol. 113, 562–574. https://doi.org/10.1093/jee/toz295 (2020).
    CAS  Article  PubMed  Google Scholar 

    65.
    Pes, M. et al. Translocation of chlorantraniliprole and cyantraniliprole applied to corn as seed treatment and foliar spraying to control Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS ONE 15, e0229151–e0229151. https://doi.org/10.1371/journal.pone.0229151 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Dinter, A., Brugger, K. E., Frost, N.-M. & Woodward, M. D. Chlorantraniliprole (Rynaxypyr): A novel DuPont insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terrestris) providing excellent tools for uses in integrated pest management. Julius-Kühn-Arch. 423, 84–96 (2009).
    Google Scholar 

    67.
    Gradish, A. E., Scott-Dupree, C. D., Shipp, L., Harris, C. R. & Ferguson, G. Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera: Apidae). Pest Manag. Sci. 66, 142–146. https://doi.org/10.1002/ps.1846 (2010).
    CAS  Article  PubMed  Google Scholar 

    68.
    Tomé, H. V. V. et al. Reduced-risk insecticides in neotropical stingless bee species: impact on survival and activity. Ann. Appl. Biol. 167, 186–196. https://doi.org/10.1111/aab.12217 (2015).
    CAS  Article  Google Scholar 

    69.
    Williams, J. R., Swale, D. R. & Anderson, T. D. Comparative effects of technical-grade and formulated chlorantraniliprole to the survivorship and locomotor activity of the honey bee, Apis mellifera (L.). Pest Manag. Sci. 76, 2582–2588. https://doi.org/10.1002/ps.5832 (2020).
    CAS  Article  PubMed  Google Scholar 

    70.
    Larson, J. L., Redmond, C. T. & Potter, D. A. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. PLoS ONE 8, e66375. https://doi.org/10.1371/journal.pone.0066375 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    Brugger, K. E. et al. Selectivity of chlorantraniliprole to parasitoid wasps. Pest Manag. Sci. 66, 1075–1081. https://doi.org/10.1002/ps.1977 (2010).
    CAS  Article  PubMed  Google Scholar 

    72.
    Wang, J. et al. Molecular characterization of a ryanodine receptor gene in the rice leaf folder, Cnaphalocrocis medinalis (Guenée). PLoS ONE 7, e36623. https://doi.org/10.1371/journal.pone.0036623 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    73.
    Willis, D. S. The pollination system of Cucurbita pepo and Peponapis pruinosa in southern Ontario. MSc Thesis. University of Guelph, Guelph, Ontario, Canada (1991).

    74.
    Kiernan, K. Insights into using the GLIMMIX procedure to model categorical outcomes with random effects. SAS Institute Inc. Retrieved from https://blogs.sas.com/con60tent/iml/2019/04/03/g-matrix-is-not-positive-definite.html (2018). More

  • in

    Female fertile phase synchrony, and male mating and reproductive skew, in the crested macaque

    1.
    Darwin, C. The Descent of Man and the Selection in Relation to Sex (John Murray, London, 1871).
    Google Scholar 
    2.
    Miller, E. J., Eldridge, M. D. B., Cooper, D. W. & Herbert, C. A. Dominance, body size and internal relatedness influence male reproductive success in eastern grey kangaroos (Macropus giganteus). Reprod. Fertil. Dev. 22, 539–549 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Hirsch, B. T. & Maldonado, J. E. Familiarity breeds progeny: Sociality increases reproductive success in adult male ring-tailed coatis (Nasua nasua). Mol. Ecol. 20, 409–419 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Natoli, E., Schmid, M., Say, L. & Pontier, D. Male reproductive success in a social group of urban feral cats (Felis catus L.). Ethology 113, 283–289 (2007).
    Article  Google Scholar 

    5.
    Clutton-Brock, T. & Isvaran, K. Paternity loss in contrasting mammalian societies. Biol. Lett. 2, 513–516 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Altmann, S. A. A field study of the sociobiology of rhesus monkeys, Macaca mulatta. Ann. N. Y. Acad. Sci. 102, 338–435 (1962).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Kutsukake, N. & Nunn, C. L. Comparative tests of reproductive skew in male primates: The roles of demographic factors and incomplete control. Behav. Ecol. Sociobiol. 60, 695–706 (2006).
    Article  Google Scholar 

    8.
    Ostner, J., Nunn, C. L. & Schülke, O. Female reproductive synchrony predicts skewed paternity across primates. Behav Ecol 19, 1150–1158 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Janson, C. & Verdolin, J. Seasonality of primate births in relation to climate. In Seasonality in Primates—Studies of Living and Extinct Human and Non-human Primates (eds Brockmann, D. K. & Van Schaik, C.) 308–351 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    10.
    Gogarten, J. F. & Koenig, A. Reproductive seasonality is a poor predictor of receptive synchrony and male reproductive skew among nonhuman primates. Behav. Ecol. Sociobiol. 67, 123–134 (2012).
    Article  Google Scholar 

    11.
    Brockmann, D. K. & Van Schaik, C. P. Seasonality and reproductive function. In Seasonality in Primates: Studies of Living and Extinct Human and Non-human Primates (eds Brockmann, D. K. & Van Schaik, C. P.) 269–306 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    12.
    Sterck, E. H. M., Watts, D. P. & van Schaik, C. P. The evolution of female social relationships in nonhuman primates. Behav. Ecol. Sociobiol. 41, 291–309 (1997).
    Article  Google Scholar 

    13.
    Nunn, C. L. The number of males in primate social groups: A comparative test of the socioecological model. Behav. Ecol. Sociobiol. 46, 1–13 (1999).
    Article  Google Scholar 

    14.
    Carnes, L. M., Nunn, C. L. & Lewis, R. J. Effects of the distribution of female primates on the number of males. PLoS One 6, 20 (2011).
    Google Scholar 

    15.
    Manson, J. H. Primate consortships: A critical review. Curr. Anthropol. 38(3), 353–374 (1997).
    Article  Google Scholar 

    16.
    Andersson, M. B. Sexual Selection (Princeton University Press, Princeton, 1994).
    Google Scholar 

    17.
    Fürtbauer, I., Heistermann, M., Schülke, O. & Ostner, J. Concealed fertility and extended female sexuality in a non-human primate (Macaca assamensis). PLoS One 6, e23105 (2011).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Plavcan, J. M. Understanding dimorphism as a function of changes in male and female traits. Evol. Anthropol. Issues News Rev. 20, 143–155 (2011).
    Article  Google Scholar 

    19.
    Setchell, J. M., Charpentier, M. & Wickings, E. J. Mate guarding and paternity in mandrills: Factors influencing alpha male monopoly. Anim. Behav. 70, 1105–1120 (2005).
    Article  Google Scholar 

    20.
    Bradley, B. J. et al. Mountain gorilla tug-of-war: Silverbacks have limited control over reproduction in multimale groups. Proc. Natl. Acad. Sci. USA 102, 9418–9423 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Nunn, C. L. The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Anim. Behav. 58(2), 229–246 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Rodriguez-Llanes, J. M., Verbeke, G. & Finlayson, C. Reproductive benefits of high social status in male macaques (Macaca). Anim. Behav. 78, 643–649 (2009).
    Article  Google Scholar 

    23.
    Paul, A., Kuester, J., Timme, A. & Arnemann, J. The association between rank, mating effort and reproductive success in male Barbary macaques (Macaca sylvanus). Primates 34, 491–502 (1993).
    Article  Google Scholar 

    24.
    Kümmerli, R. & Martin, R. D. Male and female reproductive success in Macaca sylvanus in Gibraltar: No evidence for rank dependence. Int. J. Primatol. 26, 1229–1249 (2005).
    ADS  Article  Google Scholar 

    25.
    Brauch, K. et al. Sex-specific reproductive behaviours and paternity in free-ranging Barbary macaques (Macaca sylvanus). Behav. Ecol. Sociobiol. 62, 1453–1466 (2008).
    Article  Google Scholar 

    26.
    Berard, J. D., Nurnberg, P., Epplen, J. T. & Schmidtke, J. Alternative reproductive tactics and reproductive success in male rhesus macaques. Behaviour 129, 177–201 (1994).
    Article  Google Scholar 

    27.
    Widdig, A. et al. A longitudinal analysis of reproductive skew in male rhesus macaques. Proc. Biol. Sci. 271, 819–826 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Dubuc, C., Muniz, L., Heistermann, M., Engelhardt, A. & Widdig, A. Testing the priority-of-access model in a seasonally breeding primate species. Behav. Ecol. Sociobiol. 65, 1615–1627 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    de Ruiter, J. R., van Hooff, J. A. R. A. M. & Scheffrahn, W. Social and genetic aspects of paternity in wild long-tailed macaques (Macaca fascicularis). Behaviour 129, 204–224 (1994).
    Article  Google Scholar 

    30.
    Engelhardt, A., Heistermann, M., Hodges, J. K., Nuernberg, P. & Niemitz, C. Determinants of male reproductive success in wild long-tailed macaques (Macaca fascicularis)—male monopolisation, female mate choice or post-copulatory mechanisms?. Behav. Ecol. Sociobiol. 59, 740–752 (2006).
    Article  Google Scholar 

    31.
    Plavcan, J. M. & van Schaik, C. P. Intrasexual competition and body weight dimorphism in anthropoid primates. Am. J. Phys. Anthropol. 103, 37–68 (1997).
    CAS  PubMed  Article  Google Scholar 

    32.
    Plavcan, J. M., van Schaik, C. P. & Kappeler, P. M. Competition, coalitions and canine size in primates. J. Hum. Evol. 28, 245–276 (1995).
    Article  Google Scholar 

    33.
    Groves, C. Primate Taxonomy (Smithsonian Books, Washington, 2001).
    Google Scholar 

    34.
    Thierry, B., Iwaniuk, A. N. & Pellis, S. M. The influence of phylogeny on the social behaviour of macaques (Primates: Cercopithecidae, genus Macaca). Ethology 106, 713–728 (2000).
    Article  Google Scholar 

    35.
    Duboscq, J. et al. Social tolerance in wild female crested macaques (Macaca nigra) in Tangkoko-Batuangus Nature Reserve, Sulawesi, Indonesia. Am. J. Primatol. 75, 361–375 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Plavcan, J. M., van Schaik, C. P. & McGraw, W. S. Seasonality, social organization, and sexual dimorphism in primates. In Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates (eds van Schaik, C. P. & Brockman, D. K.) 401–442 (Cambridge University Press, Cambridge, 2005). https://doi.org/10.1017/CBO9780511542343.015.
    Google Scholar 

    37.
    Marty, P. R., Hodges, K., Agil, M. & Engelhardt, A. Alpha male replacements and delayed dispersal in crested macaques (Macaca nigra). Am. J. Primatol. 79, e22448 (2017).
    Article  Google Scholar 

    38.
    Kerhoas, D., Perwitasari-Farajallah, D., Agil, M., Widdig, A. & Engelhardt, A. Social and ecological factors influencing offspring survival in wild macaques. Behav. Ecol. 25, 1164–1172 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Neumann, C., Assahad, G., Hammerschmidt, K., Perwitasari-Farajallah, D. & Engelhardt, A. Loud calls in male crested macaques, Macaca nigra: A signal of dominance in a tolerant species. Anim. Behav. 79, 187–193 (2010).
    Article  Google Scholar 

    40.
    Martinez-Iñigoa, L., Agil, M., Engelhardt, A., Pilot, M. & Majolo, B. Resource and mate defence influence the outcome of intergroup encounters in wild crested macaques (Macaca nigra). Primate Eye 123, 48–49 (2017).
    Google Scholar 

    41.
    Higham, J. P. et al. Sexual signalling in female crested macaques and the evolution of primate fertility signals. BMC Evol. Biol. 12, 89–99 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Engelhardt, A. & Perwitasari-Farajallah, D. Reproductive biology of Sulawesi crested black macaques (Macaca nigra). Folia Primatol. (Basel) 79, 326 (2008).
    Google Scholar 

    43.
    Marty, P. R., Hodges, K., Agil, M. & Engelhardt, A. Determinants of immigration strategies in male crested macaques (Macaca nigra). Sci. Rep. 6, 32028 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Wigby, S. & Chapman, T. Sperm competition. Curr. Biol. 14, R100–R103 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Tregenza, T. & Wedell, N. Benefits of multiple mates in the cricket gryllus bimaculatus. Evolution 52, 1726–1730 (1998).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Clutton-Brock, T. H. Reproductive skew, concessions and limited control. Trends Ecol. Evol. 13, 288–292 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Alberts, S. C., Buchan, J. C. & Altmann, J. Sexual selection in wild baboons: From mating opportunities to paternity success. Anim. Behav. 72, 1177–1196 (2006).
    Article  Google Scholar 

    48.
    Boesch, C., Kohou, G., Néné, H. & Vigilant, L. Male competition and paternity in wild chimpanzees of the Taï forest. Am. J. Phys. Anthropol. 130, 103–115 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Higham, J. P., Heistermann, M. & Maestripieri, D. The energetics of male-male endurance rivalry in free-ranging rhesus macaques, Macaca mulatta. Anim. Behav. 81, 1001–1007 (2011).
    Article  Google Scholar 

    50.
    Muniz, L. et al. Male dominance and reproductive success in wild white-faced capuchins (Cebus capucinus) at Lomas Barbudal, Costa Rica. Am. J. Primatol. 72, 1118–1130 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Strier, K. B., Chaves, P. B., Mendes, S. L., Fagundes, V. & Di Fiore, A. Low paternity skew and the influence of maternal kin in an egalitarian, patrilocal primate. Proc. Natl. Acad. Sci. 108, 18915–18919 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Daspre, A., Heistermann, M., Hodges, J. K., Lee, P. C. & Rosetta, L. Signals of female reproductive quality and fertility in colony-living baboons (Papio hanubis) in relation to ensuring paternal investment. Am. J. Primatol. 71, 529–538 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Weingrill, T., Lycett, J. E., Barrett, L., Hill, R. A. & Henzi, S. P. Male consortship behaviour in chacma baboons: The role of demographic factors and female conceptive probabilities. Behaviour 140, 405–427 (2003).
    Article  Google Scholar 

    54.
    Engelhardt, A. et al. Assessment of female reproductive status by male longtailed macaques, Macaca fascicularis, under natural conditions. Anim. Behav. 67, 915–924 (2004).
    Article  Google Scholar 

    55.
    Higham, J. P., Semple, S., MacLarnon, A., Heistermann, M. & Ross, C. Female reproductive signaling, and male mating behavior, in the olive baboon. Horm. Behav. 55, 60–67 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Schülke, O. & Ostner, J. Male reproductive skew, paternal relatedness, and female social relationships. Am. J. Primatol. 70, 695–698 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Schülke, O. & Ostner, J. Ecological and social influences on sociality. In The evolution of Primate Societies (eds Mitani, J. C. et al.) 193–219 (University of Chicago Press, Chicago, 2012).
    Google Scholar 

    58.
    Higham, J. P. et al. Female fertile phase synchrony, and male mating and reproductive skew, in the crested macaque. Dryad, Dataset. https://doi.org/10.5061/dryad.rfj6q578x. (2021).

    59.
    Rosenbaum, B., O’Brien, T. G., Kinnaird, M. & Supriatna, J. Population densities of Sulawesi crested black macaques (Macaca nigra) on Bacan and Sulawesi, Indonesia: Effects of habitat disturbance and hunting. Am. J. Primatol. 44, 89–106 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Collins, N. M. The Conservation Atlas of Tropical Forests: Asia and the Pacifics (Springer, Berlin, 1991).
    Google Scholar 

    61.
    O’Brien, T. G. & Kinnaird, M. F. Behavior, diet, and movements of the Sulawesi crested black macaque (Macaca nigra). Int. J. Primatol. 18, 321–351 (1997).
    Article  Google Scholar 

    62.
    Kinnaird, M. F. & O’Brien, T. G. A contextual analysis of the loud call of the Sulawesi crested black macaque, Macaca nigra. Trop. Biodivers. 20, 37–42 (1999).
    Google Scholar 

    63.
    Neumann, C. et al. Assessing dominance hierarchies: Validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. 82, 911–921 (2011).
    Article  Google Scholar 

    64.
    Hadidian, J. & Bernstein, I. S. Female reproductive cycles and birth data from an Old World monkey colony. Primates 20, 429–442 (1979).
    Article  Google Scholar 

    65.
    Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49, 227–267 (1974).
    CAS  Article  Google Scholar 

    66.
    Danish, L. M. & Palombit, R. A. “Following”, an alternative mating strategy used by male olive baboons (Papio hamadryas anubis): Quantitative behavioral and functional description. Int. J. Primatol. 35, 394–410 (2014).
    Article  Google Scholar 

    67.
    Hodges, J. K. & Heistermann, M. Field Endocrinology: Monitoring Hormonal Changes in Free-Ranging Primates 353–370 (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    68.
    Heistermann, M. et al. Loss of oestrus, concealed ovulation and paternity confusion in free-ranging Hanuman langurs. Proc. Biol. Sci. 268, 2445–2451 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Engelhardt, A., Hodges, J. K., Niemitz, C. & Heistermann, M. Female sexual behavior, but not sex skin swelling, reliably indicates the timing of the fertile phase in wild long-tailed macaques (Macaca fascicularis). Horm. Behav. 47, 195–204 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Nsubuga, A. M. et al. Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Mol. Ecol. 13, 2089–2094 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Engelhardt, A., Muniz, L., Perwitasari-Farajallah, D. & Widdig, A. Highly polymorphic microsatellite markers for the assessment of male reproductive skew and genetic variation in Critically Endangered crested macaques (Macaca nigra). Int. J. Primatol. 38, 672–691 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    72.
    Taberlet, P. et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24, 3189–3194 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Taberlet, P. & Luikart, G. Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68, 41–55 (1999).
    Article  Google Scholar 

    74.
    Arandjelovic, M. et al. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol. Ecol. Resour. 9, 28–36 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
    PubMed  Article  Google Scholar 

    76.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm package. J. Stat. Softw. 33, 1–25 (2010).
    Article  Google Scholar 

    77.
    Nonacs, P. Measuring the reliability of skew indices: Is there one best index? Anim. Behav. 65, 615–627 (2003).
    Article  Google Scholar  More

  • in

    The evolution of critical thermal limits of life on Earth

    1.
    Webb, T. J. Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol. Evol. 27, 535–541 (2012).
    PubMed  Article  Google Scholar 
    2.
    Calosi, P., Bilton, D. T., Spicer, J. I., Votier, S. C. & Atfield, A. What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J. Anim. Ecol. 79, 194–204 (2010).
    PubMed  Article  Google Scholar 

    3.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).
    ADS  Article  Google Scholar 

    4.
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).
    PubMed  Article  Google Scholar 

    5.
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
    Article  Google Scholar 

    6.
    Wake, D. B., Roth, G. & Wake, M. H. On the problem of stasis in organismal evolution. J. Theor. Biol. 101, 211–224 (1983).
    Article  Google Scholar 

    7.
    Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).
    Article  Google Scholar 

    8.
    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Chang. Biol. 20, 3059–3067 (2014).
    ADS  PubMed  Article  Google Scholar 

    9.
    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B 267, 739–745 (2000).
    CAS  Article  Google Scholar 

    10.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Lond. B 278, 1823–1830 (2011).
    Google Scholar 

    11.
    van Berkum, F. H. Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. Am. Nat. 132, 327–343 (1988).

    12.
    Munoz, M. M. et al. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc. R. Soc. Lond. B 281, 20132433 (2014).
    Google Scholar 

    13.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Article  Google Scholar 

    14.
    Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Ruddiman, W. F. Earth’s Climate: Past and Future (Macmillan, 2001).

    17.
    Romdal, T. S., Araújo, M. B. & Rahbek, C. Life on a tropical planet: niche conservatism and the global diversity gradient. Glob. Ecol. Biogeogr. 22, 344–350 (2013).
    Article  Google Scholar 

    18.
    Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Herrando-Pérez, S. et al. Heat tolerance is more variable than cold tolerance across species of Iberian lizards after controlling for intraspecific variation. Funct. Ecol. 34, 631–645 (2020).
    Article  Google Scholar 

    20.
    Hamilton, W. J. Life’s Color Code (New York: McGraw-Hill, 1973).

    21.
    Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).
    Article  Google Scholar 

    22.
    Münkemüller, T., Boucher, F. C., Thuiller, W. & Lavergne, S. Phylogenetic niche conservatism—common pitfalls and ways forward. Funct. Ecol. 29, 627–639 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Chang. Biol. 22, 3829–3842 (2016).
    ADS  PubMed  Article  Google Scholar 

    24.
    Hoffmann, A. A. Physiological climatic limits in Drosophila: patterns and implications. J. Exp. Biol. 213, 870–880 (2010).
    CAS  PubMed  Article  Google Scholar 

    25.
    Bennett, J. M. et al. GlobTherm a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science (80-.) 361, eaar5452 (2018).
    Article  CAS  Google Scholar 

    27.
    Stephens, P. R. & Wiens, J. J. Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. Am. Nat. 161, 112–128 (2003).
    PubMed  Article  Google Scholar 

    28.
    Grosberg, R. K., Vermeij, G. J. & Wainwright, P. C. Biodiversity in water and on land. Curr. Biol. 22, R900–R903 (2012).
    CAS  PubMed  Article  Google Scholar 

    29.
    Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).
    Article  Google Scholar 

    30.
    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).
    ADS  PubMed  Article  Google Scholar 

    31.
    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science (80-.) 322, 258–261 (2008).
    ADS  CAS  Article  Google Scholar 

    32.
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science (80-.) 320, 1296–1297 (2008).
    CAS  Article  Google Scholar 

    33.
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science (80-.) 328, 894–899 (2010).
    ADS  CAS  Article  Google Scholar 

    34.
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Gavrilets, S. & Vose, A. Dynamic patterns of adaptive radiation. Proc. Natl Acad. Sci. USA 102, 18040–18045 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Porter, W. P. & Kearney, M. Size, shape, and the thermal niche of endotherms. Proc. Natl Acad. Sci. USA 106, 19666–19672 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Rubalcaba, J. G. & Olalla‐Tárraga, M. Á. The biogeography of thermal risk for terrestrial ectotherms: scaling of thermal tolerance with body size and latitude. J. Anim. Ecol. 89, 1277–1285 (2020).

    39.
    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).

    40.
    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

    41.
    IUCN. The IUCN Red List of Threatened Species http://www.iucnredlist.org (2015).

    42.
    Horton, T. et al. World Register of Marine Species (WoRMS) http://www.marinespecies.org (2017).

    43.
    Guiry, M. D. & Guiry, G. M. AlgaeBase. World-wide electronic publication http://www.algaebase.org (2016).

    44.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    45.
    Assis, J. et al. Bio‐ORACLE v2. 0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
    Article  Google Scholar 

    46.
    Tyberghein, L. et al. Bio‐ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
    Article  Google Scholar 

    47.
    Caspermeyer, J. New grand tree of life study shows a clock-like trend in the emergence of new species and diversity. Mol. Biol. Evol. 32, 1113 (2015).
    CAS  PubMed  Article  Google Scholar 

    48.
    Holt, B. G. & Jønsson, K. A. Reconciling hierarchical taxonomy with molecular phylogenies. Syst. Biol. 63, 1010–1017 (2014).
    PubMed  Article  Google Scholar 

    49.
    Ruggiero, M. A. et al. A higher level classification of all living organisms. PLoS ONE 10, e0119248 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Cooper, N. & Purvis, A. Body size evolution in mammals: complexity in tempo and mode. Am. Nat. 175, 727–738 (2010).
    PubMed  Article  Google Scholar 

    51.
    Felsenstein, J. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25, 471 (1973).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Alexander Pyron, R. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).
    PubMed  Article  Google Scholar 

    54.
    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    56.
    Faurby, S. & Svenning, J.-C. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84, 14–26 (2015).
    PubMed  Article  Google Scholar 

    57.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Article  Google Scholar 

    58.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Development Core Team, 2020).

    59.
    Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Zanne, A. E. et al. Data from: three keys to the radiation of angiosperms into freezing environments. Dryad Digit. Repos. 10, https://doi.org/10.5061/dryad.63q27 (2014).

    61.
    Pyron, R. A. & Wiens, J. J. Data from: a large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. https://doi.org/10.5061/dryad.vd0m7 (2011).

    62.
    Pyron, R. Alexander, Burbrink, Frank T., Wiens, J. J. Data from: a phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. Dryad Digit. Repos. https://doi.org/10.5061/dryad.82h0me (2013).

    63.
    Morales-Castilla, I. MoralesCastilla/ThermalEvolution: ThermalEvolution (Version v1.0). Zenodo https://doi.org/10.5281/zenodo.4311705 (2020). More

  • in

    Distinct late Pleistocene subtropical-tropical divergence revealed by fifteen low-copy nuclear genes in a dominant species in South-East China

    1.
    Qian, H. & Ricklefs, R. E. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407, 180–182 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Wu, Z. Y., Sun, H., Zhou, Z. K., Li, D. Z. & Peng, H. Floristics of Seed Plants From China (Science Press, Beijing, 2010).
    Google Scholar 

    3.
    Ying, T. S. & Chen, M. L. Plant Geography of China (Shanghai Scientific and Technical Publishers, Shanghai, 2011).
    Google Scholar 

    4.
    Ye, J. W., Zhang, Y. & Wang, X. J. Phylogeographic breaks and their forming mechanisms in Sino-Japanese Floristic Region. Chin. J. Plant Ecol. 41, 1003–1019 (2017).
    Article  Google Scholar 

    5.
    Guo, X. D. et al. Evolutionary history of a widespread tree species Acer mono in East Asia. Ecol. Evol. 4, 4332–4345 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Liu, C. P. et al. Genetic structure and hierarchical population divergence history of Acer mono var. mono in south and northeast china. PLoS ONE 9, e87187 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Bai, W. N., Wang, W. T. & Zhang, D. Y. Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. New Phytol. 209, 1757–1772 (2016).
    CAS  PubMed  Article  Google Scholar 

    8.
    Ye, J. W., Bai, W. N., Bao, L., Wang, H. F. & Ge, J. P. Sharp genetic discontinuity in the arid-sensitive species Lindera obtusiloba (Lauraceae): Solid evidence supporting the Tertiary floral subdivision in East Asia. J. Biogeogr. 44, 2082–2095 (2017).
    Article  Google Scholar 

    9.
    Cao, Y. N., Comes, H. P., Sakaguchi, S., Chen, L. Y. & Qiu, Y. X. Evolution of East Asia’s Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change. BMC Evol. Biol. 16, 1–17 (2016).
    Article  CAS  Google Scholar 

    10.
    Qi, X. S., Yuan, N., Comes, H. P., Sakaguchi, S. & Qiu, Y. X. A strong “filter” effect of the East China Sea land bridge for East Asia’s temperate plant species: Inferences from molecular phylogeography and ecological niche modelling of Platycrater arguta (Hydrangeaceae). BMC Evol. Biol. 14, 14–41 (2014).
    Article  Google Scholar 

    11.
    Ye, J. W., Zhang, Y. & Wang, X. J. Phylogeographic history of broad-leaved forest plants in subtropical China. Acta Ecol. Sin. 37, 5894–5904 (2017).
    Google Scholar 

    12.
    Wang, Y. H. et al. Molecular phylogeography and ecological niche modelling of a widespread herbaceous climber, Tetrastigma hemsleyanum (Vitaceae): Insights into Plio-Pleistocene range dynamics of evergreen forest in subtropical China. New Phytolt. 206, 852–867 (2015).
    Article  Google Scholar 

    13.
    Fan, D. M. et al. Idiosyncratic responses of evergreen broad-leaved forest constituents in China to the late Quaternary climate changes. Sci. Rep.-U.K. 6, 31044 (2016).
    ADS  CAS  Article  Google Scholar 

    14.
    Mu, H. P. et al. Genetic variation of Ardisia crenata in south China revealed by nuclear microsatellite. J. Syst. Evol. 48, 279–285 (2010).
    Article  Google Scholar 

    15.
    Shi, M. M., Michalski, S. G., Welk, E., Chen, X. Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: Genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720 (2014).
    Article  Google Scholar 

    16.
    Zheng, J. Y., Yin, Y. H. & Li, B. Y. A new scheme for climate regionalization in China. Acta Geogr. Sin. 65, 3–12 (2010).
    ADS  Google Scholar 

    17.
    Bai, W. N. & Zhang, D. Y. Current status and future direction in plant phylogeography. Chin. Bull. Life Sci. 26, 125–137 (2014).
    Google Scholar 

    18.
    Wang, X. H., Kent, M. & Fang, X. F. Evergreen broad-leaved forest in Eastern China: Its ecology and conservation and the importance of resprouting in forest restoration. For. Ecol. Manag. 245, 76–87 (2007).
    Article  Google Scholar 

    19.
    Hirayama, D., Itoh, A. & Yamakura, T. Implications from seed traps for reproductive success, allocation and cost in a tall tree species Lindera erythrocarpa. Plant Spec. Biol. 19, 185–196 (2004).
    Article  Google Scholar 

    20.
    Ye, J. W., Li, D. Z. & Hampe, A. Differential Quaternary dynamics of evergreen broadleaved forests in subtropical China revealed by phylogeography of Lindera aggregata (Lauraceae). J. Biogeogr. 46, 1112–1123 (2019).
    Article  Google Scholar 

    21.
    Wright, S. Isolation by distance. Genetics 28, 114 (1943).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).
    PubMed  Article  Google Scholar 

    23.
    McRae, B. H. & Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. U. S. A. 104, 19885–19890 (2007).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Drouin, G., Daoud, H. & Xia, J. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol. Phylogenet. Evol. 49, 827–831 (2008).
    CAS  PubMed  Article  Google Scholar 

    25.
    Meirmans, P. G. The trouble with isolation by distance. Mol. Ecol. 21, 2839–2846 (2012).
    PubMed  Article  Google Scholar 

    26.
    Meirmans, P. G. Seven common mistakes in population genetics and how to avoid them. Mol. Ecol. 24, 3223–3231 (2015).
    PubMed  Article  Google Scholar 

    27.
    Gong, W. et al. From glacial refugia to wide distribution range: Demographic expansion of Loropetalum chinense (Hamamelidaceae) in Chinese subtropical evergreen broadleaved forest. Org. Divers. Evol. 16, 23–38 (2016).
    Article  Google Scholar 

    28.
    Li, X. H., Shao, J. W., Lu, C., Zhang, X. P. & Qiu, Y. X. Chloroplast phylogeography of a temperate tree Pteroceltis tatarinowii (Ulmaceae) in China. J. Syst. Evol. 50, 325–333 (2012).
    Article  Google Scholar 

    29.
    Tian, S. et al. Phylogeography of Eomecon chionantha in subtropical China: The dual roles of the Nanling Mountains as a glacial refugium and a dispersal corridor. BMC Evol. Biol. 18, 20 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Waters, J. M., Fraser, C. I. & Hewitt, G. M. Founder takes all: Density-dependent processes structure biodiversity. Trends Ecol. Evol. 28, 78–85 (2013).
    PubMed  Article  Google Scholar 

    31.
    Smith, C. G. III., Hamel, P. B., Devall, M. S. & Schiff, N. M. Hermit thrush is the first observed dispersal agent for pondberry (Lindera melissifolia). Castanea 69, 1–8 (2004).
    Article  Google Scholar 

    32.
    Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. S 40, 481–501 (2009).
    Article  Google Scholar 

    33.
    Ge, X. J. et al. Inferring multiple refugia and phylogeographical patterns in Pinus massoniana based on nucleotide sequence variation and DNA fingerprinting. PLoS ONE 7, e43717 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Chen, Y. et al. Genetic diversity and variation of Chinese fir from Fujian province and Taiwan, China, based on ISSR markers. PLoS ONE 12, e0175571 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Jiang, X. L., Gardner, E. M., Meng, H. H., Deng, M. & Xu, G. B. Land bridges in the Pleistocene contributed to flora assembly on the continental islands of South China: Insights from the evolutionary history of Quercus championii. Mol. Phylogenet. Evol. 132, 36–45 (2019).
    PubMed  Article  Google Scholar 

    36.
    Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. B 359, 183–195 (2004).
    CAS  Article  Google Scholar 

    37.
    Miller, K. G., Mountain, G. S., Wright, J. D. & Browning, J. V. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 24, 40–53 (2011).
    Article  Google Scholar 

    38.
    Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations. J. Biogeogr. 27, 1153–1167 (2000).
    Article  Google Scholar 

    39.
    Yao, Y. T., Harff, J., Meyer, M. & Zhan, W. H. Reconstruction of paleocoastlines for the northwestern South China Sea since the Last Glacial Maximum. Sci. China Ser. D Earth Sci. 52, 1127–1136 (2009).
    ADS  CAS  Article  Google Scholar 

    40.
    He, J. K., Gao, Z. F., Su, Y. Y., Lin, S. L. & Jiang, H. S. Geographical and temporal origins of terrestrial vertebrates endemic to Taiwan. J. Biogeogr. 45, 2458–2470 (2018).
    Article  Google Scholar 

    41.
    Li, H. W. Parallel evolution in Litsea and Lindera of lauraceae. Acta Bot. Yunnanica 7, 129–135 (1985).
    Google Scholar 

    42.
    Tian, X. Y., Ye, J. W. & Song, Y. Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae. Peerj 7, e7662 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003).
    CAS  PubMed  Article  Google Scholar 

    44.
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Dellicour, S. & Mardulyn, P. spads 1.0: A toolbox to perform spatial analyses on DNA sequence data sets. Mol. Ecol. Resour. 14, 647–651 (2014).
    PubMed  Article  Google Scholar 

    46.
    Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2010).
    CAS  PubMed  Article  Google Scholar 

    47.
    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Cornuet, J. M. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA Sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Article  Google Scholar 

    49.
    Yu, Y., Harris, A. J., Blair, C. & He, X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49 (2015).
    PubMed  Article  Google Scholar 

    50.
    R Core Team R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.Rproject.org/. Accessed 24 May 2014. (2013).

    51.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    52.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model 190, 231–259 (2006).
    Article  Google Scholar 

    53.
    Wang, Y. H., Yang, K. C., Bridgman, C. L. & Lin, L. K. Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc. Ecol. 23, 989–1000 (2008).
    Google Scholar 

    54.
    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67, 3403–3411 (2013).
    PubMed  Article  Google Scholar  More

  • in

    An elongated COI fragment to discriminate botryllid species and as an improved ascidian DNA barcode

    1.
    Blanchoud, S., Rutherford, K., Zondag, L., Gemmell, N. J. & De Wilson, M. J. De novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution. Sci. Rep. 8, 5518 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 
    2.
    Lambert, G. Invasive sea squirts: A growing global problem. J. Exp. Mar. Biol. Ecol. 342, 3–4 (2007).
    Article  Google Scholar 

    3.
    Manni, L., Zaniolo, G., Cima, F., Burighel, P. & Ballarin, L. Botryllus schlosseri: A model ascidian for the study of asexual reproduction. Dev. Dyn. 236, 335–352 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    McKitrick, T. R., Muscat, C. C., Pierce, J. D., Bhattacharya, D. & De Tomaso, A. W. Allorecognition in a basal chordate consists of independent activating and inhibitory pathways. Immunity 34, 616–626 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Rosengarten, R. D. & Nicotra, M. L. Model systems of invertebrate allorecognition. Curr. Biol. 21, R82-92 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Voskoboynik, A. & Weissman, I. L. Botryllus schlosseri, an emerging model for the study of aging, stem cells, and mechanisms of regeneration. Invertebr. Reprod. Dev. 59, 33–38 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Gasparini, F. et al. Sexual and asexual reproduction in the colonial ascidian Botryllus schlosseri. Genes. N. Y. N 2000(53), 105–120 (2015).
    Google Scholar 

    8.
    Manni, L. et al. Sixty years of experimental studies on the blastogenesis of the colonial tunicate Botryllus schlosseri. Curr. Dir. Tunicate Dev. 448, 293–308 (2019).
    CAS  Google Scholar 

    9.
    Bock, D. G., MacIsaac, H. J. & Cristescu, M. E. Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian. Proc. R. Soc. B Biol. Sci. 279, 2377–2385 (2012).
    Article  Google Scholar 

    10.
    Brunetti, R. Botryllid species (Tunicata, Ascidiacea) from the Mediterranean coast of Israel, with some considerations on the systematics of Botryllinae. Zootaxa 2289, 18–32 (2009).
    Article  Google Scholar 

    11.
    Monniot, C. & Monniot, F. Les ascidies de Polynésie francaise. Mem Mus Nat Hist Nat Paris 136, 1–154 (1987).
    Google Scholar 

    12.
    Milne Edwards, H. Observation sur les Ascidies composées des côtes de la Manche. Mém. Académie Sci. Inst. Fr. 18, 217–326 (1841).
    Google Scholar 

    13.
    Saito, Y., Shirae, M., Okuyama, M. & Cohen, S. Phylogeny of botryllid ascidians. in The Biology of Ascidians (eds. Sawada, H., Yokosawa, H. & Lambert, C. C.) 315–320 (Springer-Verlag, 2001).

    14.
    Saito, Y. & Okuyama, M. Studies on Japanese botryllid ascidians. IV. A new species of the genus Botryllus with a unique colony shape, from the vicinity of Shimoda. Zoolog. Sci. 20, 1153–61 (2003).

    15.
    Saito, Y., Mukai, H. & Watanabe, H. Studies of Japanese compound styelid ascidians I. Two new species of Botryllus from the vicinity of Shimoda. Publ. Seto Mar. Biol. Lab. 26, 347–355 (1981).

    16.
    Saito, Y., Mukai, H. & Watanabe, H. Studies on Japanese compound styelid ascidians. II. A new species of the genus Botrylloides and redescription of B. violaceus Oka. Publ. Seto Mar. Biol. Lab. 26, 357–368 (1981).

    17.
    Saito, Y. & Watanabe, H. Studies on Japanese compound styelid ascidians IV. Three new species of the genus Botrylloides from the vicinity of Shimoda. Publ. Seto Mar. Biol. Lab. 30, 227–240 (1985).

    18.
    Lopez-Legentil, S., Turon, X. & Planes, S. Genetic structure of the star sea squirt, Botryllus schlosseri, introduced in southern European harbours. Mol. Ecol. 15, 3957–3967 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Pérez-Portela, R., Bishop, J. D., Davis, A. R. & Turon, X. Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Mol. Phylogenet. Evol. 50, 560–570 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    20.
    Yund, P. O., Collins, C. & Johnson, S. L. Evidence of a native Northwest Atlantic COI haplotype clade in the cryptogenic colonial ascidian Botryllus schlosseri. Biol. Bull. 228, 201–216 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Hebert, P. D., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–21 (2003).

    22.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Haydar, D., Hoarau, G., Olsen, J. L., Stam, W. T. & Wolff, W. J. Introduced or glacial relict? Phylogeography of the cryptogenic tunicate Molgula manhattensis (Ascidiacea, Pleurogona). Divers. Distrib. 17, 68–80 (2011).
    Article  Google Scholar 

    24.
    Monniot, F., Dettaï, A., Eléaume, M., Cruaud, C. & Améziane, N. Antarctic Ascidians (Tunicata) of the French-Australian survey CEAMARC in Terre Adélie. Zootaxa 2817, 1–54 (2011).
    Article  Google Scholar 

    25.
    Nydam, M. L. & Harrison, R. G. Genealogical relationships within and among shallow-water Ciona species (Ascidiacea). Mar. Biol. 151, 1839–1847 (2007).
    Article  Google Scholar 

    26.
    Pérez-Portela, R., Duran, S., Palacín, C. & Turon, X. The genus Pycnoclavella (Ascidiacea) in the Atlanto-Mediterranean region: a combined molecular and morphological approach. Invertertebrate Syst. 21, 187–205 (2007).
    Article  Google Scholar 

    27.
    Rubinstein, N. D. et al. Deep sequencing of mixed total DNA without barcodes allows efficient assembly of highly plastic ascidian mitochondrial genomes. Genome Biol. Evol. 5, 1185–1199 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Stefaniak, L. et al. Genetic conspecificity of the worldwide populations of Didemnum vexillum Kott, 2002. Aquat. Invasions 4, 29–44 (2009).
    Article  Google Scholar 

    29.
    Cohen, C. S., Saito, Y. & Weissman, I. L. Evolution of allorecognition in Botryllid ascidians inferred from a molecular phylogeny. Evolution 52, 746–756 (1998).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Atsumi, M. O. & Saito, Y. Studies on Japanese botryllid ascidians. V. A New species of the genus Botrylloides very similar to Botrylloides simodensis in morphology. Zoolog. Sci. 28, 532–542 (2011).

    31.
    Griggio, F. et al. Ascidian mitogenomics: comparison of evolutionary rates in closely related taxa provides evidence of ongoing speciation events. Genome Biol. Evol. 6, 591–605 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Nydam, M. L., Giesbrecht, K. B. & Stephenson, E. E. Origin and dispersal history of two colonial ascidian clades in the Botryllus schlosseri species complex. PLoS ONE 12, e0169944 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Reem, E., Douek, J., Paz, G., Katzir, G. & Rinkevich, B. Phylogenetics, biogeography and population genetics of the ascidian Botryllus schlosseri in the Mediterranean Sea and beyond. Mol. Phylogenetic Evol. 107, 221–231 (2017).
    Article  Google Scholar 

    34.
    Berrill, N. J. The Tunicata with an account of the British species. vol. 133 (1950).

    35.
    Ben-Shlomo, R., Reem, E., Douek, J. & Rinkevich, B. Population genetics of the invasive ascidian Botryllus schlosseri from South American coasts. Mar. Ecol. Prog. Ser. 412, 85–92 (2010).
    ADS  Article  Google Scholar 

    36.
    Lord, J. Temperature, space availability, and species assemblages impact competition in global fouling communities. Biol. Invasions 19, 43–55 (2017).
    Article  Google Scholar 

    37.
    Rocha, R. M. et al. The power of combined molecular and morphological analyses for the genus Botrylloides: identification of a potentially global invasive ascidian and description of a new species. Syst. Biodivers. 17, 509–526 (2019).
    Article  Google Scholar 

    38.
    Brunetti, R., Griggio, F., Mastrototaro, F., Gasparini, F. & Gissi, C. Toward a resolution of the cosmopolitan Botryllus schlosseri species complex (Ascidiacea, Styelidae): mitogenomics and morphology of clade E (Botryllus gaiae). Zool. J. Linn. Soc. 190, 1175–1192 (2020).
    Google Scholar 

    39.
    Brunetti, R., Manni, L., Mastrototaro, F., Gissi, C. & Gasparini, F. Fixation, description and DNA barcode of a neotype for Botryllus schlosseri (Pallas, 1766) (Tunicata, Ascidiacea). Zootaxa 4353, 29–50 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Bay-Nouailhat, A., Bay-Nouailhat, W., Gasparini, F. & Brunetti, R. Botrylloides crystallinus n. sp., a new Botryllinae Adams & Adams, 1858 (Ascidiacea) from Mediterranean Sea. Zoosystema 42, 131–138 (2020).

    41.
    Shenkar, N. & Monniot, F. A new species of the genus Botryllus (Ascidiacea) from the Red Sea. Zootaxa 1256, 11–19 (2006).
    Google Scholar 

    42.
    Brunetti, R. Fixation and redescription of a neotype for Polyclinus renierii Lamarck, 1815 (Tunicata, Ascidiacea, Styelidae, Botryllinae). Bolletino Mus. Storia Nat. Venezia 62, 105–113 (2011).
    Google Scholar 

    43.
    Sigovini, M., Keppel, E. & Tagliapietra, D. Open Nomenclature in the biodiversity era. Methods Ecol. Evol. 7, 1217–1225 (2016).
    Article  Google Scholar 

    44.
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Durrheim, G. A., Corfield, V. A., Harley, E. H. & Ricketts, M. H. Nucleotide sequence of cytochrome oxidase (subunit III) from the mitochondrion of the tunicate Pyura stolonifera: evidence that AGR encodes glycine. Nucleic Acids Res. 21, 3587–3588 (1993).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Yokobori, S., Ueda, T. & Watanabe, K. Codons AGA and AGG are read as glycine in ascidian mitochondria. J. Mol. Evol. 36, 1–8 (1993).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Iannelli, F., Griggio, F., Pesole, G. & Gissi, C. The mitochondrial genome of Phallusia mammillata and Phallusia fumigata (Tunicata, Ascidiacea): high genome plasticity at intra-genus level. BMC Evol. Biol. 7, 155 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Hirose, M. & Hirose, E. DNA barcoding in photosymbiotic species of Diplosoma (Ascidiacea: Didemnidae), with the description of a new species from the southern Ryukyus Japan. Zool. Sci. 26, 564–568 (2009).
    CAS  Article  Google Scholar 

    51.
    Fulton, T. M., Chunwongse, J. & Tanksley, S. D. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Report. 13, 207–209 (1995).
    CAS  Article  Google Scholar 

    52.
    Viard, F., Roby, C., Turon, X., Bouchemousse, S. & Bishop, J. Cryptic diversity and database errors challenge non-indigenous species surveys: an illustration with Botrylloides spp. in the English channel and Mediterranean Sea. Front. Mar. Sci. 6, (2019).

    53.
    Brunetti, R. & Mastrototaro, F. Ascidiacea of the European waters. (Edagricole – Edizioni Agricole di New Business Media Srl, 2017).

    54.
    Zeng, L., Jacobs, M. W. & Swalla, B. J. Coloniality has evolved once in Stolidobranch ascidians. Integr. Comp. Biol. 46, 255–268 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Lacoursiere-Roussel, A. et al. Disentangling invasion processes in a dynamic shipping-boating network. Mol. Ecol. 21, 4227–4241 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Lejeusne, C., Bock, D. G., Therriault, T. W., MacIsaac, H. J. & Cristescu, M. E. Comparative phylogeography of two colonial ascidians reveals contrasting invasion histories in North America. Biol. Invasions 13, 635–650 (2011).
    Article  Google Scholar 

    58.
    Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Lefort, V., Longueville, J. E. & Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 34, 2422–2424 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    61.
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Jukes, T. H. & Cantor, C. R. Evolution of protein molecules. (Academic Press, 1969).

    64.
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Tang, C. Q., Humphreys, A. M., Fontaneto, D. & Barraclough, T. G. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data. Methods Ecol. Evol. 5, 1086–1094 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Voskoboynik, A. et al. The genome sequence of the colonial chordate Botryllus schlosseri. eLife 2, e00569 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    Stach, T. & Turbeville, J. M. Phylogeny of Tunicata inferred from molecular and morphological characters. Mol. Phylogenet. Evol. 25, 408–428 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Webb, K. E., Barnes, D. K. A., Clark, M. S. & Bowden, D. A. DNA barcoding: A molecular tool to identify Antarctic marine larvae. Deep Sea Res. Part II Top. Stud. Oceanogr. 53, 1053–1060 (2006).

    69.
    Bock, D. G., Zhan, A., Lejeusne, C., MacIsaac, H. J. & Cristescu, M. E. Looking at both sides of the invasion: Patterns of colonization in the violet tunicate Botrylloides violaceus. Mol. Ecol. 20, 503–516 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Bishop, J. D. D. et al. The Southern Hemisphere ascidian Asterocarpa humilis is unrecognised but widely established in NW France and Great Britain. Biol. Invasions 15, 253–260 (2013).
    Article  Google Scholar 

    71.
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Erpenbeck, D., Hooper, J. N. A. & Wörheide, G. CO1 phylogenies in diploblasts and the ‘Barcoding of Life’— are we sequencing a suboptimal partition?. Mol. Ecol. Notes 6, 550–553 (2006).
    CAS  Article  Google Scholar 

    73.
    Herdman, W. A. Descriptive catalogue of the Tunicata in the Australian Museum Sydney N.S.W. Aust. Mus. Syd. Cat. 17, 1–139 (1899).

    74.
    Herdman, W. A. A revised classification of the Tunicata, with definitions of the orders, suborders, families, subfamilies, and genera, and analytical keys to the species. J. Linn. Soc. Lond. Zool. 23, 558–652 (1891).
    Article  Google Scholar 

    75.
    Kott, P. Catalogue of Tunicata in Australian waters. Australian Biological Resources Study. (2005).

    76.
    Kott, P. The Australian Ascidiacea. Part I, Phlebobranchia and Stolidobranchia. Mem. Qld. Mus. 23, 1–440 (1985).

    77.
    Tsagkogeorga, G. et al. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol. Biol. 9, 187 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Turon, X. & Lopez-Legentil, S. Ascidian molecular phylogeny inferred from mtDNA data with emphasis on the Aplousobranchiata. Mol. Phylogenet. Evol. 33, 309–320 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Swalla, B. J., Cameron, C. B., Corley, L. S. & Garey, J. R. Urochordates are monophyletic within the deuterostomes. Syst. Biol. 49, 52–64 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965–968 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    81.
    Tsagkogeorga, G., Turon, X., Galtier, N., Douzery, E. J. P. & Delsuc, F. Accelerated evolutionary rate of housekeeping genes in tunicates. J. Mol. Evol. 71, 153–167 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Yokobori, S. i et al. Complete DNA sequence of the mitochondrial genome of the ascidian Halocynthia roretzi (Chordata, Urochordata). Genetics 153, 1851–1862 (1999).

    83.
    Haye, P. A. & Muñoz-Herrera, N. C. Isolation with differentiation followed by expansion with admixture in the tunicate Pyura chilensis. BMC Evol. Biol. 13, 252 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Pérez-Portela, R. & Turon, X. Cryptic divergence and strong population structure in the colonial invertebrate Pycnoclavella communis (Ascidiacea) inferred from molecular data. Zool. Jena 111, 163–178 (2008).
    Article  Google Scholar 

    85.
    Sheets, E. A., Cohen, C. S., Ruiz, G. M. & Rocha, R. M. Investigating the widespread introduction of a tropical marine fouling species. Ecol. Evol. 6, 2453–2471 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Smith, K. F. et al. Increased inter-colony fusion rates are associated with reduced COI haplotype diversity in an invasive colonial ascidian Didemnum vexillum. PLoS ONE 7, e30473 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Tarjuelo, I., Posada, D., Crandall, K. A., Pascual, M. & Turon, X. Phylogeography and speciation of colour morphs in the colonial ascidian Pseudodistoma crucigaster. Mol. Ecol. 13, 3125–3136 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Tarjuelo, I., Posada, D., Crandall, K., Pascual, M. & Turon, X. Cryptic species of Clavelina (Ascidiacea) in two different habitats: Harbours and rocky littoral zones in the northwestern Mediterranean. Mar. Biol. 139, 455–462 (2001).
    Article  Google Scholar 

    89.
    de France, F. Harant, H. & Vernieres, P. Tuniciers. Fasc. 1. Ascidies. in. In. Paris 27, 1–101 (1933).
    Google Scholar 

    90.
    Lambert, G. Ecology and natural history of the protochordates. Can. J. Zool. 83, 34–50 (2005).
    Article  Google Scholar 

    91.
    Millar, R. H. The biology of ascidians. Adv. Mar. Biol. 9, 1–100 (1971).
    ADS  Article  Google Scholar 

    92.
    da Silva Oliveira, F. A., Michonneau, F. & da Cruz Lotufo, T. M. Molecular phylogeny of Didemnidae (Ascidiacea: Tunicata). Zool. J. Linn. Soc. 180, 603–612 (2017).

    93.
    Tabudravu, J. N. et al. LC-HRMS-Database screening metrics for rapid prioritization of samples to accelerate the discovery of structurally new natural products. J. Nat. Prod. 82, 211–220 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    Mastrototaro, F. et al. An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species Ciona intermedia. Zool. J. Linn. Soc. 190, 1193–1216 (2020).
    Google Scholar 

    95.
    Mastrototaro, F. et al. Hitch-hikers of the sea: concurrent morphological and molecular identification of Symplegma brakenhielmi (Tunicata: Ascidiacea) in the western Mediterranean Sea. Mediterr. Mar. Sci. 20, 197–207 (2019).
    Google Scholar  More

  • in

    Vivid biofluorescence discovered in the nocturnal Springhare (Pedetidae)

    1.
    Zhao, H. et al. The evolution of color vision in nocturnal mammals. PNAS 106, 8980–8985 (2009).
    ADS  CAS  Article  Google Scholar 
    2.
    Douglas, R. H. & Jeffery, G. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proc. R. Soc. B. 281, 1471–2954. https://doi.org/10.1098/rspb.2013.2995 (2014).
    Article  Google Scholar 

    3.
    Pearn, S. M., Bennett, A. T. & Cuthill, I. C. Ultraviolet vision, fluorescence and mate choice in a parrot, the budgerigar Melopsittacus undulates. Proc. R. Soc. B. 268, 2273–2279. https://doi.org/10.1098/rspb.2001.1813 (2001).
    CAS  Article  PubMed  Google Scholar 

    4.
    Olofsson, M., Vallin, A., Jakobsson, S. & Wiklund, C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS ONE 5, e10798. https://doi.org/10.1371/journal.pone.0010798 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Honkavaara, J., Koivula, M., Korpimaki, E., Siitari, H. & Viitala, J. Ultraviolet vision and foraging in terrestrial vertebrates. Oikos 98, 505–511. https://doi.org/10.1034/j.1600-0706.2002.980315.x (2008).
    Article  Google Scholar 

    6.
    McDonald, B., Geiger, B. & Vrla, S. Ultraviolet vision in Ord’s kangaroo rat (Dipodomys ordii). J. Mammal. https://doi.org/10.1093/jmammal/gyaa083 (2020).
    Article  Google Scholar 

    7.
    Hunt, D. M., Carvalho, L. S., Cowing, J. A. & Davies, W. L. Evolution and spectral tuning of visual pigments in birds and mammals. Phil. Trans. R. Soc. B. 364, 2941–2955. https://doi.org/10.1098/rstb.2009.0044 (2009).
    CAS  Article  PubMed  Google Scholar 

    8.
    Davies, W. L. et al. Visual pigments of the platypus: a novel route to mammalian colour vision. Curr. Biol. 17, R161–R163. https://doi.org/10.1016/j.cub.2007.01.037 (2007).
    CAS  Article  PubMed  Google Scholar 

    9.
    Jeng, M.-L. Biofluorescence in terrestrial animals, with emphasis on fireflies: A review and field observation. In Bioluminescence – analytical applications and basic biology (ed. Suzuki, H.) Ch. 6, https://doi.org/10.5772/intechopen.86029 (IntechOpen, 2019).

    10.
    Sparks, J. S. et al. The covert world of fish biofluorescence: A phylogenetically widespread and phenotypically variable phenomenon. PLoS ONE https://doi.org/10.1371/journal.pone.0083259 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Park, H. B. et al. Bright green biofluorescence in sharks derives from Bromo-kynurenine metabolism. iScience 19, 1277–1286. https://doi.org/10.1016/j.isci.2019.07.019 (2019).
    CAS  Article  Google Scholar 

    12.
    Gruber, D. F. & Sparks, J. S. First observation of fluorescence in marine turtles. Am. Mus. Novit. 3845, 1–8. https://doi.org/10.1206/3845.1 (2015).
    Article  Google Scholar 

    13.
    Taboada, C. et al. Naturally occurring fluorescence in frogs. PNAS 114, 3672–3677. https://doi.org/10.1073/pnas.1701053114 (2017).
    CAS  Article  PubMed  Google Scholar 

    14.
    Prötzel, D. et al. Widespread bone-based fluorescence in chameleons. Sci. Rep. 8, 698. https://doi.org/10.1038/s41598-017-19070-7 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Goutte, S. et al. Intense bone fluorescence reveals hidden patterns in pumpkin toadlets. Sci. Rep. 9, 5388. https://doi.org/10.1038/s41598-019-41959-8 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Lamb, J. Y. & Davis, M. P. Salamanders and other amphibians are aglow with biofluorescence. Sci. Rep. 10, 2821. https://doi.org/10.1038/s41598-020-58528-9 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Weidensaul, C. S., Colvin, B. A., Brinker, D. F. & Huy, J. S. Use of ultraviolet light as an aid in age classification of owls. Wilson J Ornithol. 123, 373–377. https://doi.org/10.1676/09-125.1 (2011).
    Article  Google Scholar 

    18.
    Camacho, C., Negro, J. J., Redondo, I., Palacios, S. & Sáez-Gómez, P. Correlates of individual variation in the porphyrin-based fluorescence of red-necked nightjars. Sci. Rep. 9, 19115. https://doi.org/10.1038/s41598-019-55522-y (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Kohler, A. M., Olson, E. R., Martin, J. G. & Anich, P. S. Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). J. Mammal. 100, 21–30. https://doi.org/10.1093/jmammal/gyy177 (2019).
    Article  Google Scholar 

    20.
    Meisner, D. H. Psychedelic opossums: fluorescence of the skin and fur of Didelphis virginiana Kerr. Ohio J. Sci. 83, 4 (1983).
    Google Scholar 

    21.
    Pine, R. H., Rice, J. E., Bucher, J. E., Tank, D. J. Jr. & Greenhall, A. M. Labile pigments and fluorescent pelage in Didelphid marsupials. Mammalia 49, 249–256 (1985).
    Article  Google Scholar 

    22.
    Anich, P. S. et al. Biofluorescence in the platypus (Orinthorhynchus anatinus). Mammalia https://doi.org/10.1515/mammalia-2020-0027 (2020).
    Article  Google Scholar 

    23.
    Matthee, C. A. & Robinson, T. J. Mitochondrial DNA phylogeography and comparative cytogenetics of the springhare, Pedetes capensis (Mammalia: Reodentia). J. Mammal. Evol. 4, 53–73. https://doi.org/10.1023/A:1027331727034 (1997).
    Article  Google Scholar 

    24.
    Augustine, D. J., Manzon, A., Klopp, C. & Elter, J. Habitat selection and group foraging of the springhare, Pedetes capensis larvalis Hollister, East Africa. Afr. J. Ecol. 33, 347–357 (1995).
    Article  Google Scholar 

    25.
    Peinke, D. M. & Brown, C. R. Habitat use by the southern springhare (Pedetes capensis) in the Eastern Cape Province, South Africa. S. Afr. J. Wildl. Res. 36(2), 103–111 (2006).
    Google Scholar 

    26.
    Kennedy, G. Y. & Vevers, H. G. The occurrence of porphyrins in certain marine invertebrates. J. Mar. Biol. Ass. UK 33, 663–576 (1954).
    CAS  Article  Google Scholar 

    27.
    Comfort, A. The pigmentation of molluscan shells. Biol. Rev. 26, 285–301. https://doi.org/10.1111/j.1469-185X.1951.tb01358.x (1951).
    CAS  Article  Google Scholar 

    28.
    Thomas, D. B., McGoverin, C. M., McGraw, K. J., James, H. F. & Madden, O. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins. J. R. Soc. Interface 10, 20121065. https://doi.org/10.1098/rsif.2012.1065 (2012).
    Article  Google Scholar 

    29.
    With, T. K. On porphyrins in feathers of owls and bustards. Int. J. Biochem. 9, 893–895 (1978).
    CAS  Article  Google Scholar 

    30.
    With, T. K. Pure unequivocal uroporphyrin III simplified method of preparation from turaco feathers. J. Clin. Lab Invest. 9, 398–401 (1957).
    CAS  Article  Google Scholar 

    31.
    Dooley, A. C. Jr. & Moncrief, N. D. Fluorescence provides evidence of congenital erythropoietic porphyria in 7000-year-old specimens of the eastern fox squirrel (Sciurus niger) from the Devil’s Den. J. Vert. Paleontol. 32, 495–497 (2012).
    Article  Google Scholar 

    32.
    Ajioka, R. S., Phillips, J. D. & Kushner, J. P. Biosynthesis of heme in mammals. Biochem. Biophys. Acta. 1763, 723–736. https://doi.org/10.1016/j.bbamcr.2006.05.005 (2006).
    CAS  Article  PubMed  Google Scholar 

    33.
    Seo, I., Tseng, S. H., Cula, G. O., Bargo, P. R. & Kollias, N. Fluorescence spectroscopy for endogenous porphyrins in human facial skin. Proc. SPIE. https://doi.org/10.1117/12.811913 (2009).
    Article  Google Scholar 

    34.
    Heckl, C. et al. Rapid spectrophotometric quantification of urinary porphyrins and porphobilinogen as screening tool for attacks of acute porphyria. Proc. SPIE. https://doi.org/10.1117/12.2527105 (2019).
    Article  Google Scholar 

    35.
    Levin, E. Y. & Flyger, V. Erythropoietic Porphyria of Fox Squirrel Sciurus niger. J. Clin. Invest. 52, 96–105 (1973).
    CAS  Article  Google Scholar 

    36.
    Turner, W. J. Studies on porphyria. I. Observations on the fox squirrel, Sciurus niger. J. Biol. Chem. 118, 519–530 (1937).
    CAS  Article  Google Scholar 

    37.
    Rivera, D. F. & Leung, L.K.-P. A rare autosomal recessive condition, congenital erythropoietic porphyria, found in canefield rat Rattus sordidus Gould 1858. Integative Zool. 216–218, 2008. https://doi.org/10.1111/j.1749-4877.2008.00088.x (2008).
    Article  Google Scholar 

    38.
    Bickers, D. R., Keogh, L., Rifkind, A. B., Harber, L. C. & Kappas, A. Studies in porphyria VI. Biosynthesis of porphyrins in mammalian skin and in the skin of porphyric patients. J. Invest. Dermatol. 68(1), 5–9. https://doi.org/10.1111/1523-1747.ep12485121 (1977).
    CAS  Article  PubMed  Google Scholar 

    39.
    Yolton, R. L., Yolton, D. P., Renz, J. & Jacobs, G. H. Preretinal absorbance in sciurid eyes. J. Mammal. 55, 14–20 (1974).
    CAS  Article  Google Scholar 

    40.
    Friedmann, H. C. & Baldwin, E. T. Reverse-phase purification and silica gel thin-layer chromatography of porphyrin carboxylic acids. Anal. Biochem 137, 473–480 (1984).
    CAS  Article  Google Scholar 

    41.
    Lim, C. K. & Peters, T. J. Urine and faecal porphyrin profiles by reversed-phase high performance liquid chromatography in the porphyrias. Clin. Chim. Acta. 139, 55–63 (1984).
    CAS  Article  Google Scholar 

    42.
    To-Figueras, J., Ozalla, D. & Mateu, C. H. Long-standing changes in the urinary profile of porphyrin isomers after clinical remission of porphyria cutanea tarda. Ann. Clin. Lab. Sci. 33, 251–256 (2003).
    CAS  PubMed  Google Scholar  More