Global irrigation contribution to wheat and maize yield
1.
Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).
ADS CAS PubMed Article Google Scholar
2.
Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (FAO, ESA Working paper, Rome, 2012).
3.
Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).
ADS CAS Article Google Scholar
4.
Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).
ADS CAS Article Google Scholar
5.
Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28, 315–358 (2003).
Article Google Scholar
6.
Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).
PubMed Article Google Scholar
7.
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
ADS CAS Article Google Scholar
8.
Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
ADS Article Google Scholar
9.
Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).
ADS CAS Article Google Scholar
10.
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
ADS CAS PubMed Article Google Scholar
11.
Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nat. Commun. 8, 15900 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
12.
Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
13.
Tack, J., Barkley, A. & Hendricks, N. Irrigation offsets wheat yield reductions from warming temperatures. Environ. Res. Lett. 12, 114027 (2017).
ADS Article Google Scholar
14.
Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).
ADS Article Google Scholar
15.
Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
16.
Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).
ADS Article Google Scholar
17.
Rosegrant, M. W., Ringler, C. & Zhu, T. J. Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34, 205–222 (2009).
Article Google Scholar
18.
Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).
ADS Article Google Scholar
19.
Li, X. & Troy, T. J. Changes in rainfed and irrigated crop yield response to climate in the western US. Environ. Res. Lett. 13, 064031 (2018).
ADS Article Google Scholar
20.
Neverre, N., Dumas, P., Nassopoulos, H. Large-scale water scarcity assessment under global changes: insights from a hydroeconomic framework. Hydrol. Earth Syst. Sci. Discuss. Preprint at https://doi.org/10.5194/hess-2015-502 (2016).
21.
Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).
ADS CAS PubMed Article Google Scholar
22.
Lobell, D. B., Sibley, A. & Ortiz-Monasterio, J. I. Extreme heat effects on wheat senescence in India. Nat. Clim. Change 2, 186–189 (2012).
ADS Article Google Scholar
23.
Gourdji, S. M., Sibley, A. M. & Lobell, D. B. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ. Res. Lett. 8, 024041 (2013).
ADS Article Google Scholar
24.
Espe, M. B. et al. Point stresses during reproductive stage rather than warming seasonal temperature determine yield in temperate rice. Glob. Change Biol. 23, 4386–4395 (2017).
ADS Article Google Scholar
25.
Martre, P. et al. Multimodel ensembles of wheat growth: many models are better than one. Glob. Change Biol. 21, 911–925 (2015).
ADS Article Google Scholar
26.
Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol. 21, 1328–1341 (2015).
ADS CAS Article Google Scholar
27.
Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).
ADS Article Google Scholar
28.
Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. https://doi.org/10.1038/s41893-020-0569-7 (2020).
29.
Folberth, C. et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 7 https://doi.org/10.1038/ncomms11872 (2016).
30.
Elliott, J. et al. The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0). Geosci. Model Dev. 8, 261–277 (2015).
ADS Article Google Scholar
31.
Roberts, M. J. et al. Comparing and combining process-based crop models and statistical models with some implications for climate change. Environ. Res. Lett. 12, 095010 (2017).
ADS Article Google Scholar
32.
Raftery, A. E., Gneiting, T., Balabdaoui, F. & Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 133, 1155–1174 (2005).
ADS Article Google Scholar
33.
Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet:2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).
ADS Article CAS Google Scholar
34.
Fekete, B. M., Vorosmarty, C. J., & Grabs, W. Global, composite runoff fields based on observed river discharge and simulated water balances. Report No. 22. (World Meteorological Organization–Global Runoff Data Center, Koblenz, Germany, 1999).
35.
Wang, X. X. et al. Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns. Ecol. Econ. 122, 12–24 (2016).
Article Google Scholar
36.
Neumann, K. et al. Exploring global irrigation patterns: a multilevel modelling approach. Agric. Syst. 104, 703–713 (2011).
Article Google Scholar
37.
Fekete, B. M. & Vörösmarty, C. J. The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements. IAHS Publ. 309, 129–136 (2007).
Google Scholar
38.
Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A global hydrological simulation to specify the sources of water used by humans. Hydrol. Earth Syst. Sci. 22, 789–817 (2018).
ADS Article Google Scholar
39.
Siebert, S., Henrich, V., Frenken, K., & Burke, J. Update of the digital global map of irrigation areas to version 5 (Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, Food and Agriculture Organization of the United Nations, Rome, Italy, 2013).
40.
Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).
ADS CAS PubMed Article Google Scholar
41.
Rosa L., Chiarelli D. D., Rulli M. C., Dell’Angelo J. & D’Odorico P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).
42.
Rosegrant, M. W. & Cai, X. Global water demand and supply projections. Water Int. 27, 170–182 (2002).
Article Google Scholar
43.
Berkoff, J. China: the South–North Water Transfer Project—is it justified? Water Policy 5, 1–28 (2003).
Article Google Scholar
44.
Schmitz, C. et al. Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resour. Res. 49, 3601–3617 (2013).
ADS Article Google Scholar
45.
Biewald, A., Rolinski, S., Lotze-Campen, H., Schmitz, C. & Dietrich, J. P. Valuing the impact of trade on local blue water. Ecol. Econ. 101, 43–53 (2014).
Article Google Scholar
46.
Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010).
ADS Article CAS Google Scholar
47.
Muller, C. et al. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Sci. Data 6, 50 (2019).
PubMed PubMed Central Article Google Scholar
48.
Kobayashi, K. & Salam, M. U. Comparing simulated and measured values using mean squared deviation and its components. Agron. J. 92, 345–352 (2000).
Article Google Scholar
49.
Deutscher Wetterdienst Frankfurt M. Mitteilungen des Deutschen Wetterdienstes: Windschutzanlagen auf der hohen Rhön (Dt. Wetterdienst P.11, 1954).
50.
Gornott, C. & Wechsung, F. Statistical regression models for assessing climate impacts on crop yields: a validation study for winter wheat and silage maize in Germany. Agric. Meteorol. 217, 89–100 (2016).
Article Google Scholar
51.
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int J. Climatol. 34, 623–642 (2014).
Article Google Scholar
52.
Jägermeyr, J. et al. Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 19, 3073–3091 (2015).
ADS Article Google Scholar
53.
Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H. & Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18, 5041–5059 (2014).
ADS Article Google Scholar
54.
Poff, N. L. et al. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47, 769–784 (1997).
Article Google Scholar More