More stories

  • in

    Gulf of Mexico blue hole harbors high levels of novel microbial lineages

    1.
    Saunders JK, Fuchsman CA, McKay C, Rocap G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc Natl Acad Sci USA. 2019;116:9925–30.
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat Commun. 2018;9:1729.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Garcia-Robledo E, Padilla CC, Aldunate M, Stewart FJ, Ulloa O, Paulmier A, et al. Cryptic oxygen cycling in anoxic marine zones. Proc Natl Acad Sci USA. 2017;114:8319–24.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Sun X, Kop LFM, Lau MCY, Frank J, Jayakumar A, Lücker S, et al. Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones. ISME J. 2019;13:2391–402.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536:179–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Thamdrup B, Steinsdóttir HGR, Bertagnolli AD, Padilla CC, Patin NV, Garcia-Robledo E, et al. Anaerobic methane oxidation is an important sink for methane in the ocean’s largest oxygen minimum zone. Limnol Oceanogr. 2019;64:2569–85.
    CAS  Article  Google Scholar 

    7.
    Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, et al. Declining oxygen in the global ocean and coastal waters. Science. 2018;359:eaam7240.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    8.
    Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523:208–U173.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol. 2015;25:690–701.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.

    11.
    Mylroie JE, Carew JL, Moore AI. Blue holes: definition and genesis. Carbonates Evaporates. 1995;10:225–33.
    CAS  Article  Google Scholar 

    12.
    Canganella F, Bianconi G, Kato C, Gonzalez J. Microbial ecology of submerged marine caves and holes characterized by high levels of hydrogen sulphide. Rev Environ Sci Biotechnol. 2007;6:61–70.

    13.
    Gischler E, Shinn EA, Oschmann W, Fiebig J, Buster NA. A 1500-year holocene caribbean climate archive from the blue hole, Lighthouse Reef, Belize. J Coast Res. 2008;246:1495–505.
    Article  CAS  Google Scholar 

    14.
    Pohlman JW. The biogeochemistry of anchialine caves: progress and possibilities. Hydrobiologia. 2011;677:33–51.
    CAS  Article  Google Scholar 

    15.
    Davis MC, Garey JR. Microbial function and hydrochemistry within a stratified anchialine sinkhole: A window into coastal aquifer interactions. Water. 2018;10:972–972.
    Article  CAS  Google Scholar 

    16.
    Garman KM, Rubelmann H, Karlen DJ, Wu T, Garey JR. Comparison of an inactive submarine spring with an active nearshore anchialine spring in Florida. Hydrobiologia. 2011;677:65–87.

    17.
    Gonzalez BC, Iliffe TM, Macalady JL, Schaperdoth I, Kakuk B. Microbial hotspots in anchialine blue holes: Initial discoveries from the Bahamas. Hydrobiologia. 2011;677:149–56.
    CAS  Article  Google Scholar 

    18.
    Seymour JR, Humphreys WF, Mitchell JG. Stratification of the microbial community inhabiting an anchialine sinkhole. Aquat Microb Ecol. 2007;50:11–24.

    19.
    Yao P, Wang XC, Bianchi TS, Yang ZS, Fu L, Zhang XH, et al. Carbon cycling in the world’s deepest blue hole. J Geophys Res. 2020;125:e2019JG005307.

    20.
    He H, Fu L, Liu Q, Fu L, Bi N, Yang Z, et al. Community Structure, abundance and potential functions of bacteria and archaea in the Sansha Yongle blue hole, Xisha, South China Sea. Front Microbiol. 2019;10:2404–2404.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    He P, Xie L, Zhang X, Li J, Lin X, Pu X, et al. Microbial diversity and metabolic potential in the stratified Sansha Yongle Blue Hole in the South China Sea. Sci Rep. 2020;10:5949–5949.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    DeWitt D. Submarine springs and other Karst features in offshore waters of the Gulf of Mexico and Tampa Bay, Southwest Florida Water Management District. 2003.

    23.
    Hu C, Muller-Karger FE, Swarzenski PW. Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys Res Lett. 2006;33:L11601.
    Google Scholar 

    24.
    Smith CG, Swarzenski PW. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms. Limnol Oceanogr. 2012;57:471–85.
    CAS  Article  Google Scholar 

    25.
    Vargo GA, Heil CA, Fanning KA, Dixon LK, Neely MB, Lester K, et al. Nutrient availability in support of Karenia brevis blooms on the central West Florida Shelf: What keeps Karenia blooming? Continental Shelf Res. 2008;28:73–98.
    Article  Google Scholar 

    26.
    Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science. 2009;326:578–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Weisberg RH, Liu YG, Lembke C, Hu CM, Hubbard K, Garrett M. The coastal ocean circulation influence on the 2018 West Florida Shelf K. brevis Red Tide Bloom. J Geophys Res Oceans. 2019;124:2501–12.
    Article  Google Scholar 

    28.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Rodriguez RLM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. Msystems. 2018;3: e00039-18.

    31.
    Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    32.
    Thiel V, Costas AMG, Fortney NW, Martinez JN, Tank M, Roden EE, et al. “Candidatus Thermonerobacter thiotrophicus,” a non-phototrophic member of the Bacteroidetes/Chlorobi with dissimilatory sulfur metabolism in hot spring mat communities. Front Microbiol. 2019;9:3159–3159.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Helly JJ, Levin LA. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res Part I. 2004;51:1159–68.
    CAS  Article  Google Scholar 

    34.
    Xie LP, Wang BD, Pu XM, Xin M, He PQ, Li CX, et al. Hydrochemical properties and chemocline of the Sansha Yongle blue hole in the South China Sea. Sci Total Environ. 2019;649:1281–92.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Thamdrup B, Dalsgaard T, Revsbech NP. Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific. Deep-Sea Res Part I. 2012;65:36–45.
    CAS  Article  Google Scholar 

    36.
    Wyrtki K. The oxygen minima in relation to ocean circulation. Deep-Sea Res Oceanographic Abstr. 1962;9:11–23.
    CAS  Article  Google Scholar 

    37.
    Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev. 2009;33:999–1043.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Luther GW, Findlay AJ, MacDonald DJ, Owings SM, Hanson TE, Beinart RA, et al. Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol. 2011;2:1–9.
    Article  CAS  Google Scholar 

    39.
    Houghton JL, Foustoukos DI, Flynn TM, Vetriani C, Bradley AS, Fike DA. Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry. Environ Microbiol. 2016;18:3057–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Kelly DP, Shergill JK, Lu WP, Wood AP. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol. 1997;71:95–107.
    CAS  Article  Google Scholar 

    41.
    Grimm F, Franz B, Dahl C. Thiosulfate and sulfur oxidation in purple sulfur bacteria. In: Dahl C, Friedrich C, editors. Microbial sulfur metabolism. Springer: Heidelberg, Germany; 2008. p. 101–16.

    42.
    Zopfi J, Ferdelman TG, Fossing H. Distribution and fate of sulfur intermediates – sulfite, tetrathionate, thiosulfate, and elemental sulfur – in marine sediments. In: Amend JP, Edwards KJ, Lyons TW, editors. Sulfur biogeochemistry: past and present. The Geological Society of America: Boulder, Colorado; 2004. p. 97–116.

    43.
    Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;16:723–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hawley AK, Brewer HM, Norbeck AD, Pasǎ-Tolić L, Hallam SJ. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc Natl Acad Sci USA. 2014;111:11395–400.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Murillo AA, Ramírez-Flandes S, DeLong EF, Ulloa O. Enhanced metabolic versatility of planktonic sulfur-oxidizing gamma-proteobacteria in an oxygen-deficient coastal ecosystem. Front Mar Sci. 2014;1:1–13.

    48.
    Shah V, Chang BX, Morris RM. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J. 2017;11:263–71.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, et al. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol. 2002;68:316–25.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Luther GW, Glazer BT, Hohmann L, Popp JI, Tailefert M, Rozan TF, et al. Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. J Environ Monit. 2001;3:61–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Rozan TF, Theberge SM, Luther G. Quantifying elemental sulfur (S0), bisulfide (HS-) and polysulfides (S(x)2-) using a voltammetric method. Analyt Chim Acta. 2000;415:175–84.
    CAS  Article  Google Scholar 

    52.
    Sievert SM, Wieringa EBA, Wirsen CO, Taylor CD. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ Microbiol. 2007;9:271–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Moussard H, Corre E, Cambon-Bonavita MA, Fouquet Y, Jeanthon C. Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13 degrees N hydrothermal vent field, East Pacific Rise. FEMS Microbiol Ecol. 2006;58:449–63.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De PV. Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol. 2006;72:2637–43.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Taillefert M, Bono AB, Luther GW. Reactivity of freshly formed Fe(III) in synthetic solutions and (pore)waters: voltammetric evidence of an aging process. Environ Sci Technol. 2000;34:2169–77.
    CAS  Article  Google Scholar 

    56.
    Barco RA, Emerson D, Sylvan JB, Orcutt BN, Jacobson Meyers ME, Ramírez GA, et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl Environ Microbiol. 2015;81:5927–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean Coast. Science. 2010;330:1375–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Ding J, Zhang Y, Wang H, Jian H, Leng H, Xiao X. Microbial community structure of deep-sea hydrothermal vents on the ultraslow spreading Southwest Indian Ridge. Front Microbiol. 2017;8:1012.

    60.
    Leon-Zayas R, Peoples L, Biddle JF, Podell S, Novotny M, Cameron J, et al. The metabolic potential of the single cell genomes obtained from the Challenger Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1). Environ Microbiol. 2017;19:2769–84.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Liu X, Li M, Castelle CJ, Probst AJ, Zhou Z, Pan J, et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome. 2018;6:102–102.
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Ortiz-Alvarez R, Casamayor EO. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ Microbiol Rep. 2016;8:210–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Suominen S, Dombrowski N, Damste JSS, Villanueva L. A diverse uncultivated microbial community is responsible for organic matter degradation in the Black Sea sulphidic zone. Environ Microbiol. 2021. https://doi.org/10.1111/1462-2920.14902.

    64.
    Castelle CJ, Banfield JF. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell. 2018;172:1181–97.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett. 2019;366:fnz008.

    66.
    Tian RM, Ning DL, He ZL, Zhang P, Spencer SJ, Gao SH, et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome. 2020;8:51.

    67.
    Vigneron A, Cruaud P, Langlois V, Lovejoy C, Culley AI, Vincent WF. Ultra-small and abundant: Candidate phyla radiation bacteria are potential catalysts of carbon transformation in a thermokarst lake ecosystem. Limnol Oceanogr Lett. 2020;5:212–20.
    Article  Google Scholar 

    68.
    Beam JP, Becraft ED, Brown JM, Schulz F, Jarett JK, Bezuidt O, et al. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Front Microbiol. 2020;11:1848.

    69.
    Luef B, Frischkorn KR, Wrighton KC, Holman HYN, Birarda G, Thomas BC, et al. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun. 2015;6:6372.

    70.
    Wrighton KC, Castelle CJ, Wilkins MJ, Hug LA, Sharon I, Thomas BC, et al. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 2014;8:1452–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Konstantinidis KT, Tiedje JM. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA. 2004;101:3160–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Moya A, Pereto J, Gil R, Latorre A. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet. 2008;9:218–29.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Moran NA, Plague GR. Genomic changes following host restriction in bacteria. Curr Opin Genet Dev. 2004;14:627–33.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Chaudhury P, Quax TEF, Albers SV. Versatile cell surface structures of archaea. Mol Microbiol. 2018;107:298–311.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Pohlschroder M, Esquivel RN. Archaeal type IV pili and their involvement in biofilm formation. Front Microbiol. 2015;6:190.

    76.
    Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems. 2020;5:e00415–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 2020;14:2105–15.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Santoro AE, Richter RA, Dupont CL. Planktonic marine Archaea. Annu Rev Mar Sci. 2019;11:131–58.
    Article  Google Scholar 

    79.
    Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 2019;13:663–75.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. Microbiol Open. 2019;8:e00852.
    Google Scholar 

    81.
    Martin-Cuadrado AB, Garcia-Heredia I, Moltó AG, López-Úbeda R, Kimes N, López-García P, et al. A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum. ISME J. 2015;9:1619–34.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Martin-Cuadrado AB, Rodriguez-Valera F, Moreira D, Alba JC, Ivars-Martínez E, Henn MR, et al. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME J. 2008;2:865–86.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Moreira D, Rodríguez-Valera F, López-García P. Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environ Microbiol. 2004;6:959–69.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Sforna MC, Philippot P, Somogyi A, Van Zuilen MA, Medjoubi K, Schoepp-Cothenet B, et al. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nat Geosci. 2014;7:811–5.
    CAS  Article  Google Scholar 

    85.
    Meheust R, Burstein D, Castelle CJ, Banfield JF. The distinction of CPR bacteria from other bacteria based on protein family content. Nat Commun. 2019;10:4173.

    86.
    Luther GW, Glazer BT, Ma S, Trouwborst RE, Moore TS, Metzger E, et al. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Mar Chem. 2008;108:221–35.
    CAS  Article  Google Scholar 

    87.
    Brendel PJ, Luther GW. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments. Environ Sci Technol. 1995;29:751–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Arar EJ, Collins GB. Method 445.0 in vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. Washington, DC: U.S. Environmental Protection Agency; 1997.

    89.
    Bran+Luebbe/Seal. Ammonia in water and seawater, in Method No G-171-96. 2005. Norderstedt, Germany.

    90.
    Bran+Luebbe/Seal. Nitrate and nitrite in water and seawater; total nitrogen in persulfate digests, in Metho No G-172-96. 2010. Norderstedt, Germany.

    91.
    Solórzano L, Sharp JH. Determination of total dissolved nitrogen in natural waters. Limnol Oceanogr. 1980;25:751–4.
    Article  Google Scholar 

    92.
    Solórzano L, Sharp JH. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr. 1980;25:754–8.
    Article  Google Scholar 

    93.
    Dickson AG, Sabine CL, Christian JR. Guide to best practices for ocean CO2 measurements. PICES Special Publication 3. 2007.

    94.
    Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Analy Chim Acta. 1962;27:31–6.
    CAS  Article  Google Scholar 

    95.
    Stookey LL. Ferrozine—a new spectrophotometric reagent for iron. Anal Chem. 1970;42:779–81.
    CAS  Article  Google Scholar 

    96.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Padilla CC, Bertagnolli AD, Bristow LA, Sarode N, Glass JB, Thamdrup B, et al. Metagenomic binning recovers a transcriptionally active gammaproteobacterium linking methanotrophy to partial denitrification in an anoxic oxygen minimum zone. Front Mar Sci. 2017;4:23–23.
    Article  Google Scholar 

    98.
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    100.
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550–550.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    102.
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217–e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.

    104.
    Willis AD, Martin BD. DivNet: estimating diversity in networked communities. bioRxiv. 2018. Available from https://www.biorxiv.org/content/10.1101/305045v1.

    105.
    Wickham H. Elegant graphics for data analysis. New York: Springer-Verlag; 2016.
    Google Scholar 

    106.
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. vegan: Community Ecology package, in R package version 2.5-5. 2019. https://cran.r-project.org/package=vegan.

    107.
    Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16:51–51.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    108.
    Nayfach S, Bradley PH, Wyman SK, Laurent TJ, Williams A, Eisen JA, et al. Automated and accurate estimation of gene family abundance from shotgun metagenomes. PLoS Comput Biol. 2015;11:e1004573.

    109.
    Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell. 2016;166:1103–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    110.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    111.
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    112.
    Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016;32:1088–90.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    113.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    114.
    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119–119.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    115.
    James BT, Luczak BB, Girgis HZ. MeShClust: an intelligent tool for clustering DNA sequences. Nucleic Acids Res. 2018;46:e83.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    116.
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2019;36:2251–2.
    PubMed Central  Article  CAS  Google Scholar 

    117.
    Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics. 2019;20:405–405.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    118.
    Dunivin TK, Yeh SY, Shade A. A global survey of arsenic-related genes in soil microbiomes. BMC Biol. 2019;17:45–45.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    119.
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.

    120.
    Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;3:e104.

    121.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    122.
    Olm MR, Brown CT, Brooks B, Banfield JF. DRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    123.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.
    PubMed Central  Google Scholar 

    124.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    125.
    Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019;47:p. W256–9.
    Article  CAS  Google Scholar  More

  • in

    Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions

    Distribution, frequency, and functional implications of mutations during laboratory evolution of obligate syntrophy
    We evaluated whether the selection of mutations in the same genes (i.e., “parallel evolution” [17]) had contributed to improvements in syntrophic growth of Dv and Mm across independent evolution lines, all of which started with the same ancestral clone of each organism. The goal of this analysis was to focus on generalized strategies for adaptation to syntrophy, irrespective of the culturing condition so we investigated parallelism across both U and H lines. Based on the number of mutations (normalized to gene length and genome size) in Dv and Mm across 13 evolved lines (six lines designated U for “uniform” conditions with continuous shaking and seven H lines for “heterogenous” conditions without shaking), we calculated a G-score [18] (“goodness-of-fit”, see “Methods” section [18]) to assess if the observed parallel evolution rate was higher than expected by chance. The “observed G-score” was calculated as the sum of G-scores for all genes in the genome of each organism; mean and standard deviation of “expected G-scores” were calculated through 1000 simulations of randomizing locations of observed numbers of mutations across the genome of each organism. The observed total G-score for Dv (1092.617) and Mm (805.02) was significantly larger than the expected mean G-score (Dv: 798.19 ± 14.99, Z = 19.63 and Mm: 564.83 ± 15.95, Z = 15.06), demonstrating significant parallel evolution across lines.
    With the exception of five high G-score genes (DVU0597, DVU1862, DVU0436, DVU0013, and DVU2394), which were mutated during long term salt adaptation of Dv [19], mutations in other high G-score genes appeared to be putatively specific to syntrophic interactions. Altogether, 24 genes in Dv and 16 genes in Mm associated with core processes had accumulated function modulating mutations across at least 2 or more evolution lines (Fig. 2 and Supplementary Table S1). Signal transduction and regulatory gene mutations (seven in Dv and six in Mm) represented 19.9% and 27.2% of all mutations in Dv and Mm, respectively, similar to long term laboratory evolution of E. coli [18], potentially because their influence on the functions of many genes [20, 21]. We also observed missense and nonsense mutations in outer membrane and transport functions (four genes in Dv and three genes in Mm). For example, the highest G-score gene in Dv, DVU0799—an abundant outer membrane porin for the uptake of sulfate and other solutes in low-sulfate conditions [22], was mutated early across all lines, with at least two missense mutations in UE3 (S223Y) and UA3 (T242P). Notably, the regulator of the archaellum operon (MMP1718) had the highest G-score with frameshift (11 lines) and nonsynonymous coding (2 lines) mutations [23]. Similarly, two motility-associated genes of Dv (DVU1862 and DVU3227) also accumulated frameshift, nonsense and nonsynonymous mutations across 4 H and 3 U lines. Together, these observations were consistent with other laboratory evolution experiments performed in liquid media [24], suggesting that retaining motility has a fitness cost during syntrophy [25, 26].
    Fig. 2: Frequency and location of high G-score mutations in Dv (A) and Mm (B) across 13 independent evolution lines.

    SnpEff predicted impact of mutations* are indicated as moderate (orange circles) or high (red circles) with the frequency of mutations indicated by node size. Expected number of mutations for each gene was calculated based on the gene length and the total number of mutations in a given evolution line. Genes with parallel changes were ranked by calculating a G (goodness of fit) score between observed and expected values and indicated inside each panel. Mutations for each gene are plotted along their genomic coordinates (vertical axes) across 13 evolution lines (horizontal axes). Total number of mutations for a given gene is shown as horizontal bar plots. [*HIGH impact mutations: gain or loss of start and stop codons and frameshift mutations; MODERATE impact mutations: codon deletion, nonsynonymous in coding sequence, change or insertion of codon; low impact mutations: synonymous coding and nonsynonymous start codon].

    Full size image

    Consistent with our previous observation that obligate mutual interdependence drove the erosion of metabolic independence of Dv [5, 27], mutations in SR genes were among the top contributors to the total G-score in Dv (DVU2776 (74.7), DVU1295 (46.5), DVU0846 (42.9), and DVU0847 (22.3)). However, it was intriguing that DVU2776 (DsrC), which catalyzes the conversion of sulfite to sulfide, the final step in SR, accumulated function modulating but not loss-of-function mutations across six lines. The functional impact of these mutations is not clear but it is possible that these changes might alter previously suggested alternative roles for this gene, including electron confurcation for the oxidation of lactate [28], sulfite reduction, 2-thiouridine biosynthesis and possibly gene regulation [29].
    Analysis of temporal appearance and combinations of mutations across evolution lines
    Growth characteristics of all evolution lines improved by the 300th generation [4], and in some lines even before the appearance of SR− mutations, indicating that mutations in other genes had also contributed to improvements in syntrophy. Each evolution line had at least 8 and up to 13 out of 24 high G-score mutations in Dv, while Mm had mutations in at least 5 and up to 10 out of 16 high G-score genes. We interrogated the temporal order in which high G-score mutations were selected and the combinations in which they co-existed in each evolution line to uncover evidence for epistatic interactions in improving obligate syntrophy. Indeed, missense mutations in DsrC (DVU2776) were fixed simultaneously with the appearance of loss of function mutations in one of two sigma 54 type regulators (DVU2894, DVU2394) in lines HA2, and UR1 (P = 5.40 × 10−5). In rare instances, we also observed that some high G-score mutations co-occurred across evolution lines, e.g., two U- and one H-line consistently showed for at least two time points a mutation in DVU1283 (GalU) coexisting with mutations in DVU2394 (P = 5.04 × 10−3). More commonly, the combinations of high G-score gene mutations varied across multiple lines. In fact, no two lines possessed identical combination of high G-score gene mutations (Fig. 3A, B), and many high-frequency mutations were uniquely present or absent in different lines (Fig. 3C, D).
    Fig. 3: Frequency and time of appearance of mutations through 1 K generations of laboratory evolution lines of Dv and Mm cocultures.

    The heat maps display frequency of mutations in genes (rows) in Dv (A) and Mm (B) in each evolution line, ordered from early to later generations (horizontal axis). High G-score genes are shown in red font and their G-score rank is shown to the left in gray shaded box, also in red font. Bar plots above heat maps indicate total number of mutations in each generation and the color indicates impact of mutation. Use “Frequency”, “Generations”, and “Mutation impact” key below the heat maps for interpretation. Mutations that were unique to each evolution line is shown in (C, D) for Dv and Mm, respectively. E The heatmap illustrates a selective sweep across both organisms in line HS3.

    Full size image

    Mutations in high G-score genes appeared consistently in all evolution lines (P 80% EPD-03 vs, More

  • in

    Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo)

    1.
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229. https://doi.org/10.1038/nature20588 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. U.S.A. 113, 146–151. https://doi.org/10.1073/pnas.1517092112 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575. https://doi.org/10.1016/j.cub.2008.08.066 (2008).
    CAS  Article  PubMed  Google Scholar 

    5.
    Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than the agricultural demand for pollination. Curr. Biol. 19, 915–918. https://doi.org/10.1016/j.cub.2009.03.071 (2009).
    CAS  Article  PubMed  Google Scholar 

    6.
    Vanbergen, A. J. & Initiative, I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259. https://doi.org/10.1890/120126 (2013).
    Article  Google Scholar 

    7.
    Whitaker, T. & Davis, G. Cucurbits: Botany, Cultivation & Utilization (Biotech Books, Delhi, 2012).
    Google Scholar 

    8.
    Hurd, P. D. Jr., Linsley, E. G. & Whitaker, T. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25, 218–234. https://doi.org/10.2307/2406514 (1971).
    Article  PubMed  Google Scholar 

    9.
    Artz, D. R. & Nault, B. A. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. J. Econ. Entomol. 104, 1153–1161. https://doi.org/10.1603/EC10431 (2011).
    Article  PubMed  Google Scholar 

    10.
    Cane, J. H., Sampson, B. J. & Miller, S. Pollination value of male bees: the specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo). Environ. Entomol. 40, 614–620. https://doi.org/10.1603/EN10084 (2011).
    Article  PubMed  Google Scholar 

    11.
    Hurd, P. D. Jr. & Linsley, E. G. The squash and gourd bees-genera Peponapis Robertson and Xenoglossa Smith-inhabiting America north of Mexico (Hymenoptera: Apoidea). Hilgardia 35, 375–453. https://doi.org/10.3733/hilg.v35n15p375 (1964).
    Article  Google Scholar 

    12.
    López-Uribe, M. M., Cane, J. H., Minckley, R. L. & Danforth, B. N. Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa. Proc. R. Soc. B-Biol. Sci. 283, 20160443. https://doi.org/10.1098/rspb.2016.0443 (2016).
    Article  Google Scholar 

    13.
    Tepedino, V. J. The pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). J. Kansas Entomol. Soc. 54, 359–377. Retrieved from https://www.jstor.org/stable/25084168 (1981).

    14.
    Patton, W. Generic arrangement of the bees allied to Melissodes and Anthophora. Bull. U. S. Geolog. Surv. 5, 471–479. Retrieved from https://books.google.ca/books?hl=en&lr=&id=R38uAAAAYAAJ&oi=fnd&pg=PA469&ots=LVcsvi2gE5&sig=xlz2XhDKuN5qMenv47JIRhYfy_8&redir_esc=y#v=onepage&q&f=false (1879).

    15.
    Willis, D. S. & Kevan, P. G. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in Southern Ontario. Can. Entomol. 127, 167–175 (1995).
    Article  Google Scholar 

    16.
    Hurd, P. D. Jr., Linsley, E. G. & Michelbacher, A. E. Ecology of the squash and gourd bee, Peponapis pruinosa, on cultivated cucurbits in California (Hymenoptera: Apoidea). Smiths. Contrib. Zool. 168, 1–17. Smithsonian Institution Press. Retrieved from https://repository.si.edu/bitstream/handle/10088/5347/SCtZ-0168-Lo_res.pdf?sequence=2 (1974).

    17.
    Mathewson, J. A. Nest construction and life history of the eastern cucurbit bee, Peponapis pruinosa (Hymenoptera: Apoidea). J. Kansas Entomol. Soc. 41, 255–261. Retrieved from https://www.jstor.org/stable/25083703 (1968).

    18.
    Julier, H. E. & Roulston, T. H. Wild bee abundance and pollination service in cultivated pumpkins: Farm management, nesting landscape effects. J. Econ. Entomol. 102, 563–573. https://doi.org/10.1603/029.102.0214 (2009).
    Article  PubMed  Google Scholar 

    19.
    Willis Chan, D. S., Prosser, R. S., Rodríguez-Gil, J. L. & Raine, N. E. Risks of exposure to systemic insecticides in agricultural soil in Ontario, Canada for the hoary squash bee (Peponapis pruinosa) and other ground-nesting bee species. Sci. Rep. 9, 11870. https://doi.org/10.1038/s41598-019-47805-1 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Sgolastra, F. et al. Pesticide exposure assessment paradign for solitary bees. Environ. Entomol. 48, 22–35. https://doi.org/10.1093/ee/nvy105 (2019).
    Article  PubMed  Google Scholar 

    21.
    Franklin, E. L. & Raine, N. E. Moving beyond honey bee-centric pesticide risk assessments to protect all pollinators. Nat. Ecol. Evol. 3, 1373–1375. https://doi.org/10.1038/s41559-019-0987-y (2019).
    Article  PubMed  Google Scholar 

    22.
    Blacquière, T., Smagghe, G., van Gestel, C. A. M. & Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 24, 73–92. https://doi.org/10.1007/s10646-012-0863-x (2012).
    CAS  Article  Google Scholar 

    23.
    Godfray, H. C. J. et al. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 281, 20140558. https://doi.org/10.1098/rspb.2014.0558 (2014).
    Article  Google Scholar 

    24.
    Godfray, H. C. J. et al. A restatement of recent advances the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 281, 20151821. https://doi.org/10.1098/rspb.2015.1821 (2015).
    CAS  Article  Google Scholar 

    25.
    Samuelson, E. E. W., Chen-Wishart, Z. P., Gill, R. J. & Leadbeater, E. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Sci. Rep. 6, 38957. https://doi.org/10.1038/srep38957 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Stanley, D. A., Smith, K. E. & Raine, N. E. Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci. Rep. 5, 16508. https://doi.org/10.1038/srep16508 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Gill, R. J., Ramos-Rodríguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 https://doi.org/10.1038/nature11585 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Gill, R. J. & Raine, N. E. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28, 1459–1471. https://doi.org/10.1111/1365-2435.12292 (2014).
    Article  Google Scholar 

    29.
    Feltham, H., Park, K. & Goulson, D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23, 317–323. https://doi.org/10.1007/s10646-014-1189-7 (2014).
    CAS  Article  PubMed  Google Scholar 

    30.
    Stanley, D. A. & Raine, N. E. Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Funct. Ecol. 30, 1132–1139. https://doi.org/10.1111/1365-2435.12644 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J. Appl. Ecol. 53, 1440–1449. https://doi.org/10.1111/1365-2664.12689 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Muth, F. & Leonard, A. S. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Sci. Rep. 9, 4764. https://doi.org/10.1038/s41598-019-39701-5 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Baron, G. L., Jansen, V. A. A., Brown, M. J. F. & Raine, N. E. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nat. Ecol. Evol. 1, 1308–1316. https://doi.org/10.1038/s41559-017-0260-1 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Wu-Smart, J. & Spivak, M. Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation. Environ. Entomol. 47, 55–62. https://doi.org/10.1093/ee/nvx175 (2018).
    CAS  Article  PubMed  Google Scholar 

    35.
    Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351–352. https://doi.org/10.1126/science.1215025 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    36.
    Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    37.
    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 571, 77–80. https://doi.org/10.1038/nature14420 (2015).
    ADS  CAS  Article  Google Scholar 

    38.
    Ellis, C., Park, K. J., Whitehorn, P., David, A. & Goulson, D. The neonicotinoid insecticide thiacloprid impacts upon bumblebee colony development under field conditions. Environ. Sci. Technol. 51, 1727–1732. https://doi.org/10.1021/acs.est.6b04791 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    39.
    Switzer, C. M. & Combes, S. A. The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50. Ecotoxicology 25, 1150–1159. https://doi.org/10.1007/s10646-016-1669-z (2016).
    CAS  Article  PubMed  Google Scholar 

    40.
    Stanley, D. A. et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548–550. https://doi.org/10.1038/nature16167 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Jin, N., Klein, S., Leimig, F., Bischoff, G. & Menzel, R. The neonicotinoid clothianidin interferes with navigation of the solitary bee Osmia cornuta in a laboratory test. J. Exp. Biol. 218, 2821–2825. https://doi.org/10.1242/jeb.123612 (2015).
    Article  PubMed  Google Scholar 

    42.
    Sandrock, C. et al. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric. For. Entomol. 16, 119–128. https://doi.org/10.1111/afe.12041 (2014).
    Article  Google Scholar 

    43.
    Anderson, N. L. & Harmon-Threatt, A. N. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci. Rep. 9, 3724. https://doi.org/10.1038/s41598-019-40031-9 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees: Biology, Evolution, Conservation (Princeton University Press, Princeton, 2019).

    45.
    Wheelock, M. J., Rey, K. P. & O’Neal, M. E. Defining the insect pollinator community found in Iowa corn and soybean fields: Implications for pollinator conservation. Environ. Entomol. 4, 1099–1106. https://doi.org/10.1093/ee/nvw1087 (2016).
    Article  Google Scholar 

    46.
    USDA. Attractiveness of agricultural crops to pollinating bees for the collection of nectar and/or pollen. Retrieved from https://www.ars.usda.gov/ARSUserFiles/OPMP/Attractiveness%20of%20Agriculture%20Crops%20to%20Pollinating%20Bees%20Report-FINAL_Web%20Version_Jan%203_2018.pdf (2017).

    47.
    OMAFRA. Vegetable Crop Protection Guide, 82–83. Government of Ontario (2014).

    48.
    Leza, M., Watrous, K. M., Bratu, J. & Woodard, S. H. Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proc. R. Soc. B Biol. Sci. 285, 20180761. https://doi.org/10.1098/rspb.2018.0761 (2018).
    CAS  Article  Google Scholar 

    49.
    Baron, G. L., Raine, N. E. & Brown, M. J. F. General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proc. R. Soc. B Biol. Sci. 284, 20170123. https://doi.org/10.1098/rspb.2017.0123 (2017).
    CAS  Article  Google Scholar 

    50.
    Roulston, T. H. & Cane, J. H. The effect of diet breadth and nesting ecology on body size variation in bees (Apiformes). J. Kansas Entomol. Soc. 73, 129–142. Retrieved from https://www.jstor.org/stable/25085957 (2000).

    51.
    Klostermeyer, E., Mech, S. J. & Rasmussen, W. Sex and weight of Megachile rotundata (Hymenoptera: Megachilidae) progeny associated with provision weights. J. Kansas Entomol. Soc. 46, 536–548. Retrieved from https://www.jstor.org/stable/25082604 (1973).

    52.
    Bosch, J. & Vicens, N. Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav. Ecol. Sociobiol. 60, 26–33. https://doi.org/10.1007/s00265-005-0134-4 (2006).
    Article  Google Scholar 

    53.
    Bonmatin, J. M. et al. Environmental fate and exposure: Neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22, 35–67. https://doi.org/10.1007/s11356-014-3332-7 (2015).
    CAS  Article  Google Scholar 

    54.
    Hilton, M., Jarvis, T. & Ricketts, D. The degradation rate of thiamethoxam in European field studies. Pest Manag. Sci. 72, 388–397. https://doi.org/10.1002/ps.4024 (2016).
    CAS  Article  PubMed  Google Scholar 

    55.
    Scott-Dupree, C. D., Conroy, L. & Harris, C. R. Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymenoptera: Megachildidae), and Osmia lignaria (Hymenoptera: Megachilidae). J. Econ. Entomol. 102, 177–182. https://doi.org/10.1603/029.102.0125 (2009).
    CAS  Article  PubMed  Google Scholar 

    56.
    Stephen, W. P., Bohart, G. E. & Torchio, P. F. The biology and external morphology of bees with a synopsis of the genera of northwestern America. Corvallis: Oregon State University. Retrieved from https://www.jstor.org/stable/25082339 (1969).

    57.
    Seidelmann, K. & Ulbrich, K. M. Conditional sex allocation in the Red Mason bee Osmia rufa. Behav. Ecol. Sociobiol. 64, 337–347. https://doi.org/10.1007/s00265-009-0850-2 (2010).
    Article  Google Scholar 

    58.
    Dively, G. P. & Kamel, A. Insecticide residues in pollen and nectar of a cucurbit crop and their potential exposure to pollinators. J. Agric. Food Chem. 60, 4449–4456. https://doi.org/10.1021/jf205393x (2012).
    CAS  Article  PubMed  Google Scholar 

    59.
    Stoner, K. A. & Eitzer, B. D. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS ONE 7, e39114. https://doi.org/10.1371/journal.pone.0039114 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987. https://doi.org/10.1111/1365-2664.12111 (2013).
    Article  Google Scholar 

    61.
    Wang, T. T. et al. Suppression of chlorantraniliprole sorption on biochar in soil–biochar systems. Bull. Environ. Contam. Toxicol. 95, 401–406. https://doi.org/10.1007/s00128-015-1541-5 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    62.
    Winsor, J. A., Davis, L. E. & Stephenson, A. G. The relationship between pollen load and fruit maturation and the effect of pollen load on offspring vigor in Cucurbita pepo. Am. Nat. 129, 643–656. https://doi.org/10.1086/284664 (1987).
    Article  Google Scholar 

    63.
    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103, 1579–1588. https://doi.org/10.1093/aob/mcp076 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    McGrady, C. M., Troyer, R. & Fleischer, S. J. Wild bee visitation rates exceed pollination thresholds in commercial Cucurbita agroecosystems. J. Econ. Entomol. 113, 562–574. https://doi.org/10.1093/jee/toz295 (2020).
    CAS  Article  PubMed  Google Scholar 

    65.
    Pes, M. et al. Translocation of chlorantraniliprole and cyantraniliprole applied to corn as seed treatment and foliar spraying to control Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS ONE 15, e0229151–e0229151. https://doi.org/10.1371/journal.pone.0229151 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Dinter, A., Brugger, K. E., Frost, N.-M. & Woodward, M. D. Chlorantraniliprole (Rynaxypyr): A novel DuPont insecticide with low toxicity and low risk for honey bees (Apis mellifera) and bumble bees (Bombus terrestris) providing excellent tools for uses in integrated pest management. Julius-Kühn-Arch. 423, 84–96 (2009).
    Google Scholar 

    67.
    Gradish, A. E., Scott-Dupree, C. D., Shipp, L., Harris, C. R. & Ferguson, G. Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera: Apidae). Pest Manag. Sci. 66, 142–146. https://doi.org/10.1002/ps.1846 (2010).
    CAS  Article  PubMed  Google Scholar 

    68.
    Tomé, H. V. V. et al. Reduced-risk insecticides in neotropical stingless bee species: impact on survival and activity. Ann. Appl. Biol. 167, 186–196. https://doi.org/10.1111/aab.12217 (2015).
    CAS  Article  Google Scholar 

    69.
    Williams, J. R., Swale, D. R. & Anderson, T. D. Comparative effects of technical-grade and formulated chlorantraniliprole to the survivorship and locomotor activity of the honey bee, Apis mellifera (L.). Pest Manag. Sci. 76, 2582–2588. https://doi.org/10.1002/ps.5832 (2020).
    CAS  Article  PubMed  Google Scholar 

    70.
    Larson, J. L., Redmond, C. T. & Potter, D. A. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns. PLoS ONE 8, e66375. https://doi.org/10.1371/journal.pone.0066375 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    Brugger, K. E. et al. Selectivity of chlorantraniliprole to parasitoid wasps. Pest Manag. Sci. 66, 1075–1081. https://doi.org/10.1002/ps.1977 (2010).
    CAS  Article  PubMed  Google Scholar 

    72.
    Wang, J. et al. Molecular characterization of a ryanodine receptor gene in the rice leaf folder, Cnaphalocrocis medinalis (Guenée). PLoS ONE 7, e36623. https://doi.org/10.1371/journal.pone.0036623 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    73.
    Willis, D. S. The pollination system of Cucurbita pepo and Peponapis pruinosa in southern Ontario. MSc Thesis. University of Guelph, Guelph, Ontario, Canada (1991).

    74.
    Kiernan, K. Insights into using the GLIMMIX procedure to model categorical outcomes with random effects. SAS Institute Inc. Retrieved from https://blogs.sas.com/con60tent/iml/2019/04/03/g-matrix-is-not-positive-definite.html (2018). More

  • in

    Female fertile phase synchrony, and male mating and reproductive skew, in the crested macaque

    1.
    Darwin, C. The Descent of Man and the Selection in Relation to Sex (John Murray, London, 1871).
    Google Scholar 
    2.
    Miller, E. J., Eldridge, M. D. B., Cooper, D. W. & Herbert, C. A. Dominance, body size and internal relatedness influence male reproductive success in eastern grey kangaroos (Macropus giganteus). Reprod. Fertil. Dev. 22, 539–549 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Hirsch, B. T. & Maldonado, J. E. Familiarity breeds progeny: Sociality increases reproductive success in adult male ring-tailed coatis (Nasua nasua). Mol. Ecol. 20, 409–419 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Natoli, E., Schmid, M., Say, L. & Pontier, D. Male reproductive success in a social group of urban feral cats (Felis catus L.). Ethology 113, 283–289 (2007).
    Article  Google Scholar 

    5.
    Clutton-Brock, T. & Isvaran, K. Paternity loss in contrasting mammalian societies. Biol. Lett. 2, 513–516 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Altmann, S. A. A field study of the sociobiology of rhesus monkeys, Macaca mulatta. Ann. N. Y. Acad. Sci. 102, 338–435 (1962).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Kutsukake, N. & Nunn, C. L. Comparative tests of reproductive skew in male primates: The roles of demographic factors and incomplete control. Behav. Ecol. Sociobiol. 60, 695–706 (2006).
    Article  Google Scholar 

    8.
    Ostner, J., Nunn, C. L. & Schülke, O. Female reproductive synchrony predicts skewed paternity across primates. Behav Ecol 19, 1150–1158 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Janson, C. & Verdolin, J. Seasonality of primate births in relation to climate. In Seasonality in Primates—Studies of Living and Extinct Human and Non-human Primates (eds Brockmann, D. K. & Van Schaik, C.) 308–351 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    10.
    Gogarten, J. F. & Koenig, A. Reproductive seasonality is a poor predictor of receptive synchrony and male reproductive skew among nonhuman primates. Behav. Ecol. Sociobiol. 67, 123–134 (2012).
    Article  Google Scholar 

    11.
    Brockmann, D. K. & Van Schaik, C. P. Seasonality and reproductive function. In Seasonality in Primates: Studies of Living and Extinct Human and Non-human Primates (eds Brockmann, D. K. & Van Schaik, C. P.) 269–306 (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    12.
    Sterck, E. H. M., Watts, D. P. & van Schaik, C. P. The evolution of female social relationships in nonhuman primates. Behav. Ecol. Sociobiol. 41, 291–309 (1997).
    Article  Google Scholar 

    13.
    Nunn, C. L. The number of males in primate social groups: A comparative test of the socioecological model. Behav. Ecol. Sociobiol. 46, 1–13 (1999).
    Article  Google Scholar 

    14.
    Carnes, L. M., Nunn, C. L. & Lewis, R. J. Effects of the distribution of female primates on the number of males. PLoS One 6, 20 (2011).
    Google Scholar 

    15.
    Manson, J. H. Primate consortships: A critical review. Curr. Anthropol. 38(3), 353–374 (1997).
    Article  Google Scholar 

    16.
    Andersson, M. B. Sexual Selection (Princeton University Press, Princeton, 1994).
    Google Scholar 

    17.
    Fürtbauer, I., Heistermann, M., Schülke, O. & Ostner, J. Concealed fertility and extended female sexuality in a non-human primate (Macaca assamensis). PLoS One 6, e23105 (2011).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Plavcan, J. M. Understanding dimorphism as a function of changes in male and female traits. Evol. Anthropol. Issues News Rev. 20, 143–155 (2011).
    Article  Google Scholar 

    19.
    Setchell, J. M., Charpentier, M. & Wickings, E. J. Mate guarding and paternity in mandrills: Factors influencing alpha male monopoly. Anim. Behav. 70, 1105–1120 (2005).
    Article  Google Scholar 

    20.
    Bradley, B. J. et al. Mountain gorilla tug-of-war: Silverbacks have limited control over reproduction in multimale groups. Proc. Natl. Acad. Sci. USA 102, 9418–9423 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Nunn, C. L. The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Anim. Behav. 58(2), 229–246 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Rodriguez-Llanes, J. M., Verbeke, G. & Finlayson, C. Reproductive benefits of high social status in male macaques (Macaca). Anim. Behav. 78, 643–649 (2009).
    Article  Google Scholar 

    23.
    Paul, A., Kuester, J., Timme, A. & Arnemann, J. The association between rank, mating effort and reproductive success in male Barbary macaques (Macaca sylvanus). Primates 34, 491–502 (1993).
    Article  Google Scholar 

    24.
    Kümmerli, R. & Martin, R. D. Male and female reproductive success in Macaca sylvanus in Gibraltar: No evidence for rank dependence. Int. J. Primatol. 26, 1229–1249 (2005).
    ADS  Article  Google Scholar 

    25.
    Brauch, K. et al. Sex-specific reproductive behaviours and paternity in free-ranging Barbary macaques (Macaca sylvanus). Behav. Ecol. Sociobiol. 62, 1453–1466 (2008).
    Article  Google Scholar 

    26.
    Berard, J. D., Nurnberg, P., Epplen, J. T. & Schmidtke, J. Alternative reproductive tactics and reproductive success in male rhesus macaques. Behaviour 129, 177–201 (1994).
    Article  Google Scholar 

    27.
    Widdig, A. et al. A longitudinal analysis of reproductive skew in male rhesus macaques. Proc. Biol. Sci. 271, 819–826 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Dubuc, C., Muniz, L., Heistermann, M., Engelhardt, A. & Widdig, A. Testing the priority-of-access model in a seasonally breeding primate species. Behav. Ecol. Sociobiol. 65, 1615–1627 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    de Ruiter, J. R., van Hooff, J. A. R. A. M. & Scheffrahn, W. Social and genetic aspects of paternity in wild long-tailed macaques (Macaca fascicularis). Behaviour 129, 204–224 (1994).
    Article  Google Scholar 

    30.
    Engelhardt, A., Heistermann, M., Hodges, J. K., Nuernberg, P. & Niemitz, C. Determinants of male reproductive success in wild long-tailed macaques (Macaca fascicularis)—male monopolisation, female mate choice or post-copulatory mechanisms?. Behav. Ecol. Sociobiol. 59, 740–752 (2006).
    Article  Google Scholar 

    31.
    Plavcan, J. M. & van Schaik, C. P. Intrasexual competition and body weight dimorphism in anthropoid primates. Am. J. Phys. Anthropol. 103, 37–68 (1997).
    CAS  PubMed  Article  Google Scholar 

    32.
    Plavcan, J. M., van Schaik, C. P. & Kappeler, P. M. Competition, coalitions and canine size in primates. J. Hum. Evol. 28, 245–276 (1995).
    Article  Google Scholar 

    33.
    Groves, C. Primate Taxonomy (Smithsonian Books, Washington, 2001).
    Google Scholar 

    34.
    Thierry, B., Iwaniuk, A. N. & Pellis, S. M. The influence of phylogeny on the social behaviour of macaques (Primates: Cercopithecidae, genus Macaca). Ethology 106, 713–728 (2000).
    Article  Google Scholar 

    35.
    Duboscq, J. et al. Social tolerance in wild female crested macaques (Macaca nigra) in Tangkoko-Batuangus Nature Reserve, Sulawesi, Indonesia. Am. J. Primatol. 75, 361–375 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Plavcan, J. M., van Schaik, C. P. & McGraw, W. S. Seasonality, social organization, and sexual dimorphism in primates. In Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates (eds van Schaik, C. P. & Brockman, D. K.) 401–442 (Cambridge University Press, Cambridge, 2005). https://doi.org/10.1017/CBO9780511542343.015.
    Google Scholar 

    37.
    Marty, P. R., Hodges, K., Agil, M. & Engelhardt, A. Alpha male replacements and delayed dispersal in crested macaques (Macaca nigra). Am. J. Primatol. 79, e22448 (2017).
    Article  Google Scholar 

    38.
    Kerhoas, D., Perwitasari-Farajallah, D., Agil, M., Widdig, A. & Engelhardt, A. Social and ecological factors influencing offspring survival in wild macaques. Behav. Ecol. 25, 1164–1172 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Neumann, C., Assahad, G., Hammerschmidt, K., Perwitasari-Farajallah, D. & Engelhardt, A. Loud calls in male crested macaques, Macaca nigra: A signal of dominance in a tolerant species. Anim. Behav. 79, 187–193 (2010).
    Article  Google Scholar 

    40.
    Martinez-Iñigoa, L., Agil, M., Engelhardt, A., Pilot, M. & Majolo, B. Resource and mate defence influence the outcome of intergroup encounters in wild crested macaques (Macaca nigra). Primate Eye 123, 48–49 (2017).
    Google Scholar 

    41.
    Higham, J. P. et al. Sexual signalling in female crested macaques and the evolution of primate fertility signals. BMC Evol. Biol. 12, 89–99 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Engelhardt, A. & Perwitasari-Farajallah, D. Reproductive biology of Sulawesi crested black macaques (Macaca nigra). Folia Primatol. (Basel) 79, 326 (2008).
    Google Scholar 

    43.
    Marty, P. R., Hodges, K., Agil, M. & Engelhardt, A. Determinants of immigration strategies in male crested macaques (Macaca nigra). Sci. Rep. 6, 32028 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Wigby, S. & Chapman, T. Sperm competition. Curr. Biol. 14, R100–R103 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Tregenza, T. & Wedell, N. Benefits of multiple mates in the cricket gryllus bimaculatus. Evolution 52, 1726–1730 (1998).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Clutton-Brock, T. H. Reproductive skew, concessions and limited control. Trends Ecol. Evol. 13, 288–292 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Alberts, S. C., Buchan, J. C. & Altmann, J. Sexual selection in wild baboons: From mating opportunities to paternity success. Anim. Behav. 72, 1177–1196 (2006).
    Article  Google Scholar 

    48.
    Boesch, C., Kohou, G., Néné, H. & Vigilant, L. Male competition and paternity in wild chimpanzees of the Taï forest. Am. J. Phys. Anthropol. 130, 103–115 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Higham, J. P., Heistermann, M. & Maestripieri, D. The energetics of male-male endurance rivalry in free-ranging rhesus macaques, Macaca mulatta. Anim. Behav. 81, 1001–1007 (2011).
    Article  Google Scholar 

    50.
    Muniz, L. et al. Male dominance and reproductive success in wild white-faced capuchins (Cebus capucinus) at Lomas Barbudal, Costa Rica. Am. J. Primatol. 72, 1118–1130 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Strier, K. B., Chaves, P. B., Mendes, S. L., Fagundes, V. & Di Fiore, A. Low paternity skew and the influence of maternal kin in an egalitarian, patrilocal primate. Proc. Natl. Acad. Sci. 108, 18915–18919 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Daspre, A., Heistermann, M., Hodges, J. K., Lee, P. C. & Rosetta, L. Signals of female reproductive quality and fertility in colony-living baboons (Papio hanubis) in relation to ensuring paternal investment. Am. J. Primatol. 71, 529–538 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Weingrill, T., Lycett, J. E., Barrett, L., Hill, R. A. & Henzi, S. P. Male consortship behaviour in chacma baboons: The role of demographic factors and female conceptive probabilities. Behaviour 140, 405–427 (2003).
    Article  Google Scholar 

    54.
    Engelhardt, A. et al. Assessment of female reproductive status by male longtailed macaques, Macaca fascicularis, under natural conditions. Anim. Behav. 67, 915–924 (2004).
    Article  Google Scholar 

    55.
    Higham, J. P., Semple, S., MacLarnon, A., Heistermann, M. & Ross, C. Female reproductive signaling, and male mating behavior, in the olive baboon. Horm. Behav. 55, 60–67 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Schülke, O. & Ostner, J. Male reproductive skew, paternal relatedness, and female social relationships. Am. J. Primatol. 70, 695–698 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Schülke, O. & Ostner, J. Ecological and social influences on sociality. In The evolution of Primate Societies (eds Mitani, J. C. et al.) 193–219 (University of Chicago Press, Chicago, 2012).
    Google Scholar 

    58.
    Higham, J. P. et al. Female fertile phase synchrony, and male mating and reproductive skew, in the crested macaque. Dryad, Dataset. https://doi.org/10.5061/dryad.rfj6q578x. (2021).

    59.
    Rosenbaum, B., O’Brien, T. G., Kinnaird, M. & Supriatna, J. Population densities of Sulawesi crested black macaques (Macaca nigra) on Bacan and Sulawesi, Indonesia: Effects of habitat disturbance and hunting. Am. J. Primatol. 44, 89–106 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Collins, N. M. The Conservation Atlas of Tropical Forests: Asia and the Pacifics (Springer, Berlin, 1991).
    Google Scholar 

    61.
    O’Brien, T. G. & Kinnaird, M. F. Behavior, diet, and movements of the Sulawesi crested black macaque (Macaca nigra). Int. J. Primatol. 18, 321–351 (1997).
    Article  Google Scholar 

    62.
    Kinnaird, M. F. & O’Brien, T. G. A contextual analysis of the loud call of the Sulawesi crested black macaque, Macaca nigra. Trop. Biodivers. 20, 37–42 (1999).
    Google Scholar 

    63.
    Neumann, C. et al. Assessing dominance hierarchies: Validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. 82, 911–921 (2011).
    Article  Google Scholar 

    64.
    Hadidian, J. & Bernstein, I. S. Female reproductive cycles and birth data from an Old World monkey colony. Primates 20, 429–442 (1979).
    Article  Google Scholar 

    65.
    Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49, 227–267 (1974).
    CAS  Article  Google Scholar 

    66.
    Danish, L. M. & Palombit, R. A. “Following”, an alternative mating strategy used by male olive baboons (Papio hamadryas anubis): Quantitative behavioral and functional description. Int. J. Primatol. 35, 394–410 (2014).
    Article  Google Scholar 

    67.
    Hodges, J. K. & Heistermann, M. Field Endocrinology: Monitoring Hormonal Changes in Free-Ranging Primates 353–370 (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    68.
    Heistermann, M. et al. Loss of oestrus, concealed ovulation and paternity confusion in free-ranging Hanuman langurs. Proc. Biol. Sci. 268, 2445–2451 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Engelhardt, A., Hodges, J. K., Niemitz, C. & Heistermann, M. Female sexual behavior, but not sex skin swelling, reliably indicates the timing of the fertile phase in wild long-tailed macaques (Macaca fascicularis). Horm. Behav. 47, 195–204 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Nsubuga, A. M. et al. Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Mol. Ecol. 13, 2089–2094 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Engelhardt, A., Muniz, L., Perwitasari-Farajallah, D. & Widdig, A. Highly polymorphic microsatellite markers for the assessment of male reproductive skew and genetic variation in Critically Endangered crested macaques (Macaca nigra). Int. J. Primatol. 38, 672–691 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    72.
    Taberlet, P. et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 24, 3189–3194 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Taberlet, P. & Luikart, G. Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68, 41–55 (1999).
    Article  Google Scholar 

    74.
    Arandjelovic, M. et al. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol. Ecol. Resour. 9, 28–36 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
    PubMed  Article  Google Scholar 

    76.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm package. J. Stat. Softw. 33, 1–25 (2010).
    Article  Google Scholar 

    77.
    Nonacs, P. Measuring the reliability of skew indices: Is there one best index? Anim. Behav. 65, 615–627 (2003).
    Article  Google Scholar  More

  • in

    The evolution of critical thermal limits of life on Earth

    1.
    Webb, T. J. Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol. Evol. 27, 535–541 (2012).
    PubMed  Article  Google Scholar 
    2.
    Calosi, P., Bilton, D. T., Spicer, J. I., Votier, S. C. & Atfield, A. What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J. Anim. Ecol. 79, 194–204 (2010).
    PubMed  Article  Google Scholar 

    3.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).
    ADS  Article  Google Scholar 

    4.
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).
    PubMed  Article  Google Scholar 

    5.
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
    Article  Google Scholar 

    6.
    Wake, D. B., Roth, G. & Wake, M. H. On the problem of stasis in organismal evolution. J. Theor. Biol. 101, 211–224 (1983).
    Article  Google Scholar 

    7.
    Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).
    Article  Google Scholar 

    8.
    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Chang. Biol. 20, 3059–3067 (2014).
    ADS  PubMed  Article  Google Scholar 

    9.
    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B 267, 739–745 (2000).
    CAS  Article  Google Scholar 

    10.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Lond. B 278, 1823–1830 (2011).
    Google Scholar 

    11.
    van Berkum, F. H. Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. Am. Nat. 132, 327–343 (1988).

    12.
    Munoz, M. M. et al. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc. R. Soc. Lond. B 281, 20132433 (2014).
    Google Scholar 

    13.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Article  Google Scholar 

    14.
    Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Ruddiman, W. F. Earth’s Climate: Past and Future (Macmillan, 2001).

    17.
    Romdal, T. S., Araújo, M. B. & Rahbek, C. Life on a tropical planet: niche conservatism and the global diversity gradient. Glob. Ecol. Biogeogr. 22, 344–350 (2013).
    Article  Google Scholar 

    18.
    Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Herrando-Pérez, S. et al. Heat tolerance is more variable than cold tolerance across species of Iberian lizards after controlling for intraspecific variation. Funct. Ecol. 34, 631–645 (2020).
    Article  Google Scholar 

    20.
    Hamilton, W. J. Life’s Color Code (New York: McGraw-Hill, 1973).

    21.
    Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).
    Article  Google Scholar 

    22.
    Münkemüller, T., Boucher, F. C., Thuiller, W. & Lavergne, S. Phylogenetic niche conservatism—common pitfalls and ways forward. Funct. Ecol. 29, 627–639 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Chang. Biol. 22, 3829–3842 (2016).
    ADS  PubMed  Article  Google Scholar 

    24.
    Hoffmann, A. A. Physiological climatic limits in Drosophila: patterns and implications. J. Exp. Biol. 213, 870–880 (2010).
    CAS  PubMed  Article  Google Scholar 

    25.
    Bennett, J. M. et al. GlobTherm a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science (80-.) 361, eaar5452 (2018).
    Article  CAS  Google Scholar 

    27.
    Stephens, P. R. & Wiens, J. J. Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. Am. Nat. 161, 112–128 (2003).
    PubMed  Article  Google Scholar 

    28.
    Grosberg, R. K., Vermeij, G. J. & Wainwright, P. C. Biodiversity in water and on land. Curr. Biol. 22, R900–R903 (2012).
    CAS  PubMed  Article  Google Scholar 

    29.
    Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).
    Article  Google Scholar 

    30.
    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).
    ADS  PubMed  Article  Google Scholar 

    31.
    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science (80-.) 322, 258–261 (2008).
    ADS  CAS  Article  Google Scholar 

    32.
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science (80-.) 320, 1296–1297 (2008).
    CAS  Article  Google Scholar 

    33.
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science (80-.) 328, 894–899 (2010).
    ADS  CAS  Article  Google Scholar 

    34.
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Gavrilets, S. & Vose, A. Dynamic patterns of adaptive radiation. Proc. Natl Acad. Sci. USA 102, 18040–18045 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Porter, W. P. & Kearney, M. Size, shape, and the thermal niche of endotherms. Proc. Natl Acad. Sci. USA 106, 19666–19672 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Rubalcaba, J. G. & Olalla‐Tárraga, M. Á. The biogeography of thermal risk for terrestrial ectotherms: scaling of thermal tolerance with body size and latitude. J. Anim. Ecol. 89, 1277–1285 (2020).

    39.
    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).

    40.
    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

    41.
    IUCN. The IUCN Red List of Threatened Species http://www.iucnredlist.org (2015).

    42.
    Horton, T. et al. World Register of Marine Species (WoRMS) http://www.marinespecies.org (2017).

    43.
    Guiry, M. D. & Guiry, G. M. AlgaeBase. World-wide electronic publication http://www.algaebase.org (2016).

    44.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    45.
    Assis, J. et al. Bio‐ORACLE v2. 0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
    Article  Google Scholar 

    46.
    Tyberghein, L. et al. Bio‐ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).
    Article  Google Scholar 

    47.
    Caspermeyer, J. New grand tree of life study shows a clock-like trend in the emergence of new species and diversity. Mol. Biol. Evol. 32, 1113 (2015).
    CAS  PubMed  Article  Google Scholar 

    48.
    Holt, B. G. & Jønsson, K. A. Reconciling hierarchical taxonomy with molecular phylogenies. Syst. Biol. 63, 1010–1017 (2014).
    PubMed  Article  Google Scholar 

    49.
    Ruggiero, M. A. et al. A higher level classification of all living organisms. PLoS ONE 10, e0119248 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Cooper, N. & Purvis, A. Body size evolution in mammals: complexity in tempo and mode. Am. Nat. 175, 727–738 (2010).
    PubMed  Article  Google Scholar 

    51.
    Felsenstein, J. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25, 471 (1973).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Alexander Pyron, R. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).
    PubMed  Article  Google Scholar 

    54.
    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    56.
    Faurby, S. & Svenning, J.-C. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84, 14–26 (2015).
    PubMed  Article  Google Scholar 

    57.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    MATH  Article  Google Scholar 

    58.
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Development Core Team, 2020).

    59.
    Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Zanne, A. E. et al. Data from: three keys to the radiation of angiosperms into freezing environments. Dryad Digit. Repos. 10, https://doi.org/10.5061/dryad.63q27 (2014).

    61.
    Pyron, R. A. & Wiens, J. J. Data from: a large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. https://doi.org/10.5061/dryad.vd0m7 (2011).

    62.
    Pyron, R. Alexander, Burbrink, Frank T., Wiens, J. J. Data from: a phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. Dryad Digit. Repos. https://doi.org/10.5061/dryad.82h0me (2013).

    63.
    Morales-Castilla, I. MoralesCastilla/ThermalEvolution: ThermalEvolution (Version v1.0). Zenodo https://doi.org/10.5281/zenodo.4311705 (2020). More

  • in

    Biogeography of the cosmopolitan terrestrial diatom Hantzschia amphioxys sensu lato based on molecular and morphological data

    In most of the forest soil samples used in this survey, specimens belonging to the genus Hantzschia are quite common. Based molecular as well as on light microscopy (LM) and scanning electron microscopy (SEM) observations of 25 strains, seven different taxa were recognized. Figure 1 contains the locations of the strain’s habitats. In anticipation of the nomenclatural consequences, we are using the new names already here but will describe them formally later.
    Figure 1

    Map with the habitat locations of the studied strains.

    Full size image

    Molecular data
    The obtained phylogenetic tree for representatives of the different strains Hantzschia contains several large clades, some of which are monophyletic, while others contain several different species names (Fig. 2). In the analyzed tree, the largest clade is represented by different strains of H. amphioxys, the structure of which is described in the corresponding molecular analysis section. At the same time, the most significant is that in the same clade there is strain H. amphioxys D27_008, which has been designated as epitype20. One of the largest is the clade with H. abundans, which, in addition to our strains, and some that have already been published, includes the group of strains referred to as “Hantzschia sp. 3” (Sterre6)e, (Sterre6)f from Souffreau et al.16. We propose to refer to all of these strains as H. abundans. The next clade consists of the new species of H. attractiva and three strains of Hantzschia sp. 2 (Mo1)a, (Mo1)e, (Mo1)m from Souffreau et al.16, the latter we propose to merge into the new species named H. pseudomongolica, which is sister to H. attractiva. Given the topology of the tree and the morphological features of the representatives, we can conclude that there is a close relation between H. abundans and H. attractiva plus H. pseudomongolica. A separate group consists of two clades with sufficient statistical support (likelihood bootstrap, LB 76; posterior probability, PP 100), one of which is represented by two strains of H. parva, and the other with strains of H. cf. amphioxys (Sterre1)f, (Sterre1)h. Another large clade represents a set of strains of Hantzschia sp. 1 and Hantzschia sp. 2 (Mo1)h, (Mo1)l from Souffreau et al.16, among which there are both large cells (86–89 µm length) and smaller ones (37–39 µm length); strains also differ by striation – from 18–20 striae in 10 μm (strain (Mo1)h) to 21–22 in 10 μm (strain (Ban1)h). It is possible that Hantzschia sp. 1 and Hantzschia sp. 2 (Mo1)h, (Mo1)l may be several closely related species. Besides the large clades, there are a number of separate branches in the tree, representing separate strains: Hantzschia sp. 1 (Ban1)d, and the new species H. belgica (H. cf. amphioxys (Sterre3)a from Souffreaua et al.16) and H. stepposa. Interesting is the position of the H. abundans (Tor3)c strain, which is very distant from other representatives of H. abundans and probably is a cryptic taxon, whose taxonomic status needs to be revised.
    Figure 2

    Bayesian tree for representatives of the different strains Hantzschia, from an alignment with 40 sequences and 1785 characters (partial rbcL gene and 28S rDNA fragments). Type strains indicated in bold. The epitype of Hantzschia amphioxys is underlined. Values above the horizontal lines (on the left of slash) are bootstrap support from RAxML analyses ( More

  • in

    Endocranial volume is variable and heritable, but not related to fitness, in a free-ranging primate

    1.
    Healy, S. D. & Rowe, C. A critique of comparative studies of brain size. Proc. R. Soc. B Biol. Sci. 274, 453–464 (2007).
    Article  Google Scholar 
    2.
    Roth, G. & Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257 (2005).
    PubMed  Article  Google Scholar 

    3.
    Logan, C. J., Kruuk, L. E. B., Stanley, R., Thompson, A. M. & Clutton-Brock, T. H. Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal. R. Soc. Open Sci. 3, 160622 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Dunbar, R. I. M. Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22, 469–493 (1992).
    Article  Google Scholar 

    5.
    Innocenti, G. M. & Kaas, J. H. The cortex. Trends Neurosci. 18, 371–372 (1995).
    CAS  Article  Google Scholar 

    6.
    Kaas, J. H. The evolution of isocortex. Brain. Behav. Evol. 46, 187–196 (1995).
    CAS  PubMed  Article  Google Scholar 

    7.
    Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl. Acad. Sci. 99, 4436–4441 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Sol, D., Székely, T., Liker, A. & Lefebvre, L. Big-brained birds survive better in nature. Proc. R. Soc. B Biol. Sci. 274, 763–769 (2007).
    Article  Google Scholar 

    10.
    Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl. Acad. Sci. USA 113, 2532–2537 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Cartmill, M. New views on primate origins. Evol. Anthropol. Issues News Rev. 1, 105–111 (2005).
    Article  Google Scholar 

    12.
    Allman, J., McLaughlin, T. & Hakeem, A. Brain weight and life-span in primate species. Proc. Natl. Acad. Sci. 90, 118–122 (1993).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).
    PubMed  Article  Google Scholar 

    14.
    Harvey, P. H. & Bennett, P. M. Evolutionary biology: Brain size, energetics, ecology and life history patterns. Nature 306, 314–315 (1983).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).
    Article  Google Scholar 

    16.
    Kudo, H. & Dunbar, R. I. M. Neocortex size and social network size in primates. Anim. Behav. 62, 711–722 (2001).
    Article  Google Scholar 

    17.
    Schillaci, M. A. Sexual selection and the evolution of brain size in primates. PLoS ONE 1, e62 (2006).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Shultz, S. & Dunbar, R. I. M. The evolution of the social brain: anthropoid primates contrast with other vertebrates. Proc. R. Soc. B Biol. Sci. 274, 2429–2436 (2007).
    Article  Google Scholar 

    19.
    King, B. J. Extractive foraging and the evolution of primate intelligence. Hum. Evol. 1, 361–372 (1986).
    Article  Google Scholar 

    20.
    Barton, R. A. Neocortex size and behavioural ecology in primates. Proc. R. Soc. Lond. B 263, 173–177 (1996).
    ADS  CAS  Article  Google Scholar 

    21.
    DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1, 0112 (2017).
    Article  Google Scholar 

    22.
    Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci. 284, 20171765 (2017).
    Article  Google Scholar 

    23.
    Dunbar, R. I. M. & Shultz, S. Why are there so many explanations for primate brain evolution?. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160244 (2017).
    Article  Google Scholar 

    24.
    Van Schaik, C. P. Why are diurnal primates living in groups?. Behaviour 87, 120–144 (1983).
    Article  Google Scholar 

    25.
    Van Schaik, C. P. & Van Hooff, J. A. R. A. M. On the ultimate causes of primate social systems. Behaviour 85, 91–117 (1983).
    Article  Google Scholar 

    26.
    Wrangham, R. W. An ecological model of female-bonded primate groups. Behaviour 75, 262–300 (1980).
    Article  Google Scholar 

    27.
    Atchley, W. R., Riska, B., Kohn, L. A. P., Plummer, A. A. & Rutledge, J. J. A quantitative genetic analysis of brain and body size associations, their origin and ontogeny: Data from mice. Evolution 38, 1165 (1984).
    PubMed  Article  Google Scholar 

    28.
    Riska, B. & Atchley, W. R. Genetics of growth predict patterns of brain-size evolution. Science 229, 668–671 (1985).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Rogers, J. et al. Heritability of brain volume, surface area and shape: An MRI study in an extended pedigree of baboons. Hum. Brain Mapp. 28, 576–583 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Gómez-Robles, A., Hopkins, W. D., Schapiro, S. J. & Sherwood, C. C. Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc. Natl. Acad. Sci. 112, 14799–14804 (2015).
    ADS  PubMed  Article  CAS  Google Scholar 

    31.
    DeCasien, A. R., Sherwood, C. C., Schapiro, S. J. & Higham, J. P. Greater variability in chimpanzee (Pan troglodytes) brain structure among males. Proc. R. Soc. B 287, 20192858 (2020).
    PubMed  Article  Google Scholar 

    32.
    Fears, S. C. et al. Identifying heritable brain phenotypes in an extended pedigree of vervet monkeys. J. Neurosci. 29, 2867–2875 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Noreikiene, K. et al. Quantitative genetic analysis of brain size variation in sticklebacks: Support for the mosaic model of brain evolution. Proc. R. Soc. B Biol. Sci. 282, 20151008 (2015).
    Article  Google Scholar 

    34.
    Kotrschal, A. et al. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Cheverud, J. M. et al. Heritability of brain size and surface features in rhesus macaques (Macaca mulatta). J. Hered. 81, 51–57 (1990).
    CAS  PubMed  Article  Google Scholar 

    36.
    de Villemereuil, P. Tutorial estimation of a biological trait heritability using the animal model How to use the MCMCglmm R package. (2012).

    37.
    Axelrod, C. J., Laberge, F. & Robinson, B. W. Intraspecific brain size variation between coexisting sunfish ecotypes. Proc. R. Soc. B Biol. Sci. 285, 20181971 (2018).
    Article  Google Scholar 

    38.
    Blomquist, G. E. Fitness-related patterns of genetic variation in rhesus macaques. Genetica 135, 209–219 (2009).
    PubMed  Article  Google Scholar 

    39.
    Brent, L. J. N. et al. Personality traits in rhesus macaques (Macaca mulatta) are heritable but do not predict reproductive output. Int. J. Primatol. 35, 188–209 (2014).
    PubMed  Article  Google Scholar 

    40.
    Dubuc, C. et al. Sexually selected skin colour is heritable and related to fecundity in a non-human primate. Proc. R. Soc. B Biol. Sci. 281, 20141602 (2014).
    Article  Google Scholar 

    41.
    Kimock, C. M., Dubuc, C., Brent, L. J. N. & Higham, J. P. Male morphological traits are heritable but do not predict reproductive success in a sexually-dimorphic primate. Sci. Rep. 9, 19794 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model’. Philos. Trans. R. Soc. B 359, 873–890 (2004).
    Article  Google Scholar 

    43.
    Falk, D., Froese, N., Sade, D. S. & Dudek, B. C. Sex differences in brain/body relationships of Rhesus monkeys and humans. J. Hum. Evol. 36, 233–238 (1999).
    CAS  PubMed  Article  Google Scholar 

    44.
    Herndon, J. G., Tigges, J., Anderson, D. C., Klumpp, S. A. & McClure, H. M. Brain weight throughout the life span of the chimpanzee. J. Comp. Neurol. 409, 567–572 (1999).
    CAS  PubMed  Article  Google Scholar 

    45.
    Iwaniuk, A. N. Interspecific variation in sexual dimorphism in brain size in Nearctic ground squirrels (Spermophilus spp.). Can. J. Zool. 79, 759–765 (2001).
    Article  Google Scholar 

    46.
    Towe, A. L. & Mann, M. D. Habitat-related variations in brain and body size of pocket gophers. J. Hirnforsch. 36, 195–201 (1995).
    CAS  PubMed  Google Scholar 

    47.
    Kotrschal, A., Räsänen, K., Kristjánsson, B. K., Senn, M. & Kolm, N. Extreme sexual brain size dimorphism in sticklebacks: A consequence of the cognitive challenges of sex and parenting?. PLoS ONE 7, e30055 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Ritchie, S. J. et al. Sex differences in the adult human brain: Evidence from 5216 uk biobank participants. Cereb. Cortex 28, 2959–2975 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Whitten, P. L. Diet and dominance among female vervet monkeys (Cercopithecus aethiops). Am. J. Primatol. 5, 139–159 (1983).
    PubMed  Article  Google Scholar 

    50.
    Mori, A. Analysis of population changes by measurement of body weight in the Koshima troop of Japanese monkeys. Primates 20, 371–397 (1979).
    Article  Google Scholar 

    51.
    Small, M. F. Body fat, rank, and nutritional status in a captive group of Rhesus Macaques. Int. J. Primatol. 2, 91–95 (1981).
    Article  Google Scholar 

    52.
    Sade, D. S. Population dynamics in relation to social structure on Cayo Santiago. Ybk. Phys. Anthr. 20, 253–262 (1976).
    Google Scholar 

    53.
    Silk, J. B., Clark-Wheatley, C. B., Rodman, P. S. & Samuels, A. Differential reproductive success and facultative adjustment of sex ratios among captive female bonnet macaques (Macaca radiata). Anim. Behav. 29, 1106–1120 (1981).
    Article  Google Scholar 

    54.
    Rawlins, R. G. & Kessler, M. J. The Cayo Santiago macaques: History, behavior, and biology (SUNY Series Primatology, Suny, 1986).
    Google Scholar 

    55.
    Kessler, M. J. & Rawlins, R. G. A 75-year pictorial history of the Cayo Santiago rhesus monkey colony. Am. J. Primatol. 78, 6–43 (2016).
    PubMed  Article  Google Scholar 

    56.
    Widdig, A. et al. Genetic studies on the Cayo Santiago rhesus macaques: A review of 40 years of research. Am. J. Primatol. 78, 44–62 (2016).
    PubMed  Article  Google Scholar 

    57.
    Widdig, A. et al. Low incidence of inbreeding in a long-lived primate population isolated for 75 years. Behav. Ecol. Sociobiol. 71, 18 (2017).
    PubMed  Article  Google Scholar 

    58.
    Cheverud, J. M. Epiphyseal union and dental eruption in Macaca mulatta. Am. J. Phys. Anthropol. 56, 157–167 (1981).
    CAS  PubMed  Article  Google Scholar 

    59.
    Turnquist, J. E. & Kessler, M. J. Free-ranging Cayo Santiago rhesus monkeys (Macaca mulatta): I. Body size, proportion, and allometry. Am. J. Primatol. 19, 1–13 (1989).
    PubMed  Article  Google Scholar 

    60.
    Havill, L. M. Osteon remodeling dynamics in macaca mulatta: Normal variation with regard to age, sex, and skeletal maturity. Calcif. Tissue Int. 74, 95–102 (2004).
    CAS  PubMed  Article  Google Scholar 

    61.
    Konigsberg, L. et al. External brain morphology in rhesus macaques (Macaca mulatta). J. Hum. Evol. 19, 269–284 (1990).
    Article  Google Scholar 

    62.
    Logan, C. J. & Clutton-Brock, T. H. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behav. Process. 92, 143–146 (2013).
    Article  Google Scholar 

    63.
    Jolly, C. The classification and natural history of Theropithecus (Simopithecus) (Andrew, 1916) baboons of the African Plio-Pleistocene. (Bull. Brit. Mus. Nat. Hist., 1972).

    64.
    Delson, E. et al. Body mass in Cercopithecidae (Primates, mammalia): Estimation and scaling in extinct and extant taxa. (American Museum of Natural History, 2000).

    65.
    Hadfield, J. D., Richardson, D. S. & Burke, T. Towards unbiased parentage assignment: Combining genetic, behavioural and spatial data in a Bayesian framework. Mol. Ecol. 15, 3715–3730 (2006).
    CAS  PubMed  Article  Google Scholar 

    66.
    Hadfield, J. D. MCMCglmm Course Notes. (2016).

    67.
    Morrissey, M. B. & Wilson, A. J. pedantics: An r package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing: Computer program article. Mol. Ecol. Resour. 10, 711–719 (2009).
    PubMed  Article  Google Scholar 

    68.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Article  Google Scholar 

    69.
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).
    CAS  PubMed  Article  Google Scholar 

    70.
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).
    PubMed  Article  Google Scholar 

    71.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).
    Article  Google Scholar 

    72.
    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
    PubMed  Article  Google Scholar 

    73.
    Morrissey, M. B. & Sakrejda, K. Unification of regression-based methods for the analysis of natural selection. Evolution 67, 2094–2100 (2013).
    PubMed  Article  Google Scholar 

    74.
    Stinchcombe, J., Agrawal, A., Hohenlohe, P., Arnold, S. & Blows, M. Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing?. Evolution 62, 2435–2440 (2008).
    PubMed  Article  Google Scholar 

    75.
    Matsumura, S., Arlinghaus, R. & Dieckmann, U. Standardizing selection strengths to study selection in the wild: A critical comparison and suggestions for the future. Bioscience 62, 1039–1054 (2012).
    Article  Google Scholar  More

  • in

    Investigating an increase in Florida manatee mortalities using a proteomic approach

    This proteomic survey was conducted to identify proteins that were differentially expressed in the serum of manatees affected by two distinct mortality episodes: a red tide group and an unknown mortality episode group in the IRL. These groups were compared to a control group sampled at Crystal River. The red tide group’s exposure was evidenced by the presence of the PbTx antigen, with brevetoxin values in the 4.3 to 14.4 ng/ml range. The other group did not present with clinical symptoms except for mild cold stress in some animals. Two proteomics approaches were employed, 2D-DIGE and shot gun proteomics using LC–MS/MS, which provided similar results, suggesting that several serum proteins were specifically altered in each of the manatee mortality episode groups compared to the Crystal River control group. The differentially expressed serum proteins were cautiously identified based on annotation of the manatee genome6,7 and their amino acid sequence homologies with human serum proteins. While additional work still needs to be done to confirm that the identified manatee proteins function similarly to their human homologs, possible insight on the function of the proteins can be derived from human studies.
    The two proteomics methods used, 2D-DIGE and iTRAQ LC–MS/MS are complementary and both rely on LC–MS/MS for protein identification. 2D-DIGE is a top-down approach, quantifying the differentially expressed proteins at the protein level before identifying the protein by LC–MS/MS, while the iTRAQ method is a bottom-up approach, where the whole proteome is first digested with trypsin, the generated peptides are separated by chromatography and identified and measured by mass spectrometry. Mass spectrometry has become the primary method to analyze proteomes, benefitting from genomic sequences and bioinformatics tools that can translate the sequences into predicted proteins. There are excellent reviews of proteomics methods and how they may be used across species8,9.
    In total, 19 of the 26 proteins identified using the 2D-DIGE method were also identified by iTRAQ (Supplementary Table 1) which showed that these findings were replicated using two complementary experimental methods. In the 2D-DIGE method, most of the proteins were found in multiple spots, suggesting that they were differentially modified. 2D-DIGE can separate proteins based on a single charge difference. Some of the spots contained multiple proteins so it was difficult to determine the fold change of each of the proteins in these spots. For example, protein C4A was identified in 7 different spots, likely representing multiple isoforms. We were not able to corroborate the different post-translational modifications (PTMs) with iTRAQ, as the experiment was not designed to look for PTMs, only total protein quantitation. A drawback of 2D-DIGE is that keratin introduced into the sample from reagents at the time of electrophoresis or through the multiple steps required for protein extraction is also seen in the gels10,11,12. It is unlikely that the keratins were from the serum samples, as blood was collected directly into vacuum tubes. Because of the issue of keratin contamination, the 2D-DIGE method is considered more qualitative in its determination and thus in this study, iTRAQ data were the primary basis for quantitation.
    Pathway analysis detects groups of proteins that are linked in pathways that may be related to disease processes. We used Pathway Studio using subnetwork enrichment analysis to determine disease pathways potentially in place for the red tide and IRL manatees. The Pathway Studio database is constructed from relationships detected between proteins and diseases from articles present in Pubmed but is heavily directed towards human and rodent proteomes. To be able to use this tool, we assigned human homologs to the identified manatee proteins, assuming that based on their sequence homology the proteins would function in a similar way. There are many studies that suggest this assumption has merit, for example Nonaka and Kimura have examined the evolution of the complement system and found clear indications of homology among vertebrates13.
    The top 20 pathways for the red tide group (Table 3) and the IRL group (Table 4) show the diverse set of molecular pathways that may be affected by the exposures. Many of the same pathways appeared for both groups including thrombophilia, inflammation, wounds and injuries, acute phase reaction and amyloidosis. Thrombophilia was the most upregulated pathway for the IRL group (p-value 1.10E-19) and the second most upregulated pathway for the red tide group (p-value 4.1E-19). Thrombophilia, a condition in which blood clots occur in the absence of injury, happens when clotting factors become unbalanced. We obtained proteomics information on 12 of the proteins in this pathway, with some moving in opposing directions. The dysregulated proteins that were increased for both red tide and the IRL groups were SERPIN D1 (Serpin family member D 1), CRP (C-reactive protein), and PLAT (plasminogen activator) and the ones that were decreased in both groups, were SERPIN C1 (Serpin family member C 1), F5 (coagulation factor 5), and ALB (albumin). One protein, AGT (angiotensinogen), was upregulated in the red tide group but downregulated in the IRL. HRG (histidine rich glycoprotein), PROS1 (Protein S), C4BPA (complement component 4 binding protein alpha, and F2 (coagulation factor 2, also known as prothrombin) were downregulated in the red tide group but upregulated in the IRL group. The disparate regulation of proteins in this pathway suggests that clotting was among the pathways disrupted in the affected manatees. Red tide exposed manatees often present with hemorrhagic issues in their intestines, lungs and the brain (14), suggesting that downregulation of coagulation factors may be responsible for this clinical evaluation. Interestingly HRG was upregulated in the IRL by 1.34-fold and downregulated in the red tide group by 0.56-fold, making this protein a good biomarker to distinguish the two events.
    Table 3 Subnetwork enrichment pathways for serum proteins obtained from manatees exposed to red tide.
    Full size table

    Table 4 Subnetwork enrichment pathways for serum proteins obtained from manatees sampled in the IRL.
    Full size table

    Among the manatees in the red tide group, inflammation was ranked 3rd (p-value  More