More stories

  • in

    Global irrigation contribution to wheat and maize yield

    1.
    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (FAO, ESA Working paper, Rome, 2012).

    3.
    Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).
    ADS  CAS  Article  Google Scholar 

    4.
    Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).
    ADS  CAS  Article  Google Scholar 

    5.
    Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 28, 315–358 (2003).
    Article  Google Scholar 

    6.
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).
    PubMed  Article  Google Scholar 

    7.
    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).
    ADS  CAS  Article  Google Scholar 

    8.
    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).
    ADS  Article  Google Scholar 

    9.
    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).
    ADS  CAS  Article  Google Scholar 

    10.
    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nat. Commun. 8, 15900 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Tack, J., Barkley, A. & Hendricks, N. Irrigation offsets wheat yield reductions from warming temperatures. Environ. Res. Lett. 12, 114027 (2017).
    ADS  Article  Google Scholar 

    14.
    Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).
    ADS  Article  Google Scholar 

    15.
    Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016).
    ADS  Article  Google Scholar 

    17.
    Rosegrant, M. W., Ringler, C. & Zhu, T. J. Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34, 205–222 (2009).
    Article  Google Scholar 

    18.
    Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).
    ADS  Article  Google Scholar 

    19.
    Li, X. & Troy, T. J. Changes in rainfed and irrigated crop yield response to climate in the western US. Environ. Res. Lett. 13, 064031 (2018).
    ADS  Article  Google Scholar 

    20.
    Neverre, N., Dumas, P., Nassopoulos, H. Large-scale water scarcity assessment under global changes: insights from a hydroeconomic framework. Hydrol. Earth Syst. Sci. Discuss. Preprint at https://doi.org/10.5194/hess-2015-502 (2016).

    21.
    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Lobell, D. B., Sibley, A. & Ortiz-Monasterio, J. I. Extreme heat effects on wheat senescence in India. Nat. Clim. Change 2, 186–189 (2012).
    ADS  Article  Google Scholar 

    23.
    Gourdji, S. M., Sibley, A. M. & Lobell, D. B. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ. Res. Lett. 8, 024041 (2013).
    ADS  Article  Google Scholar 

    24.
    Espe, M. B. et al. Point stresses during reproductive stage rather than warming seasonal temperature determine yield in temperate rice. Glob. Change Biol. 23, 4386–4395 (2017).
    ADS  Article  Google Scholar 

    25.
    Martre, P. et al. Multimodel ensembles of wheat growth: many models are better than one. Glob. Change Biol. 21, 911–925 (2015).
    ADS  Article  Google Scholar 

    26.
    Li, T. et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol. 21, 1328–1341 (2015).
    ADS  CAS  Article  Google Scholar 

    27.
    Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev. 10, 1403–1422 (2017).
    ADS  Article  Google Scholar 

    28.
    Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. https://doi.org/10.1038/s41893-020-0569-7 (2020).

    29.
    Folberth, C. et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 7 https://doi.org/10.1038/ncomms11872 (2016).

    30.
    Elliott, J. et al. The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0). Geosci. Model Dev. 8, 261–277 (2015).
    ADS  Article  Google Scholar 

    31.
    Roberts, M. J. et al. Comparing and combining process-based crop models and statistical models with some implications for climate change. Environ. Res. Lett. 12, 095010 (2017).
    ADS  Article  Google Scholar 

    32.
    Raftery, A. E., Gneiting, T., Balabdaoui, F. & Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 133, 1155–1174 (2005).
    ADS  Article  Google Scholar 

    33.
    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet:2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).
    ADS  Article  CAS  Google Scholar 

    34.
    Fekete, B. M., Vorosmarty, C. J., & Grabs, W. Global, composite runoff fields based on observed river discharge and simulated water balances. Report No. 22. (World Meteorological Organization–Global Runoff Data Center, Koblenz, Germany, 1999).

    35.
    Wang, X. X. et al. Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns. Ecol. Econ. 122, 12–24 (2016).
    Article  Google Scholar 

    36.
    Neumann, K. et al. Exploring global irrigation patterns: a multilevel modelling approach. Agric. Syst. 104, 703–713 (2011).
    Article  Google Scholar 

    37.
    Fekete, B. M. & Vörösmarty, C. J. The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements. IAHS Publ. 309, 129–136 (2007).
    Google Scholar 

    38.
    Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A global hydrological simulation to specify the sources of water used by humans. Hydrol. Earth Syst. Sci. 22, 789–817 (2018).
    ADS  Article  Google Scholar 

    39.
    Siebert, S., Henrich, V., Frenken, K., & Burke, J. Update of the digital global map of irrigation areas to version 5 (Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, Food and Agriculture Organization of the United Nations, Rome, Italy, 2013).

    40.
    Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    41.
    Rosa L., Chiarelli D. D., Rulli M. C., Dell’Angelo J. & D’Odorico P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).

    42.
    Rosegrant, M. W. & Cai, X. Global water demand and supply projections. Water Int. 27, 170–182 (2002).
    Article  Google Scholar 

    43.
    Berkoff, J. China: the South–North Water Transfer Project—is it justified? Water Policy 5, 1–28 (2003).
    Article  Google Scholar 

    44.
    Schmitz, C. et al. Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resour. Res. 49, 3601–3617 (2013).
    ADS  Article  Google Scholar 

    45.
    Biewald, A., Rolinski, S., Lotze-Campen, H., Schmitz, C. & Dietrich, J. P. Valuing the impact of trade on local blue water. Ecol. Econ. 101, 43–53 (2014).
    Article  Google Scholar 

    46.
    Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010).
    ADS  Article  CAS  Google Scholar 

    47.
    Muller, C. et al. The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Sci. Data 6, 50 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Kobayashi, K. & Salam, M. U. Comparing simulated and measured values using mean squared deviation and its components. Agron. J. 92, 345–352 (2000).
    Article  Google Scholar 

    49.
    Deutscher Wetterdienst Frankfurt M. Mitteilungen des Deutschen Wetterdienstes: Windschutzanlagen auf der hohen Rhön (Dt. Wetterdienst P.11, 1954).

    50.
    Gornott, C. & Wechsung, F. Statistical regression models for assessing climate impacts on crop yields: a validation study for winter wheat and silage maize in Germany. Agric. Meteorol. 217, 89–100 (2016).
    Article  Google Scholar 

    51.
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int J. Climatol. 34, 623–642 (2014).
    Article  Google Scholar 

    52.
    Jägermeyr, J. et al. Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 19, 3073–3091 (2015).
    ADS  Article  Google Scholar 

    53.
    Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H. & Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18, 5041–5059 (2014).
    ADS  Article  Google Scholar 

    54.
    Poff, N. L. et al. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47, 769–784 (1997).
    Article  Google Scholar  More

  • in

    Testing for phylogenetic signal in claws suggests great influence of ecology on Caribbean intertidal arthropods (Acari, Oribatida)

    1.
    Tinius, A. & Russell, A. P. Points on the curve: An analysis of methods for assessing the shape of vertebrate claws. J. Morphol. 278, 150–169 (2017).
    Article  Google Scholar 
    2.
    Ribas, S. C. et al. Structure of claws and toes of two tropidurid lizard species of Restinga from Southeastern Brazil: Adaptations to the vertical use of the habitat. Rev. Chilena Hist. Nat. 77, 599 (2004).
    Google Scholar 

    3.
    Burnham, D. A., Feduccia, A., Martin, L. D. & Falk, A. R. Tree climbing: A fundamental avian adaptation. J. Syst. Paleontol. 9, 103–107 (2011).
    Article  Google Scholar 

    4.
    Crandell, K. E., Herrel, A., Sasa, M., Losos, J. B. & Autumn, K. Stick or grip? Co-evolution of adhesive toepads and claws in Anolis lizards. Zoology 117, 363–369 (2014).
    Article  Google Scholar 

    5.
    Zani, P. A. The comparative evolution of lizard claw and toe morphology and clinging performance. J. Evol. Biol. 13, 316–325 (2000).
    Article  Google Scholar 

    6.
    Feduccia, A. Evidence from claw geometry indicating arboreal habits of Archaeopteryx. Science 259, 790–793 (1993).
    ADS  CAS  Article  Google Scholar 

    7.
    Manning, P. L., Payne, D., Pennicott, J., Barrett, P. M. & Ennos, R. A. Dinosaur killer claws or climbing crampons? Biol. Lett. 2, 110–112 (2006).
    Article  Google Scholar 

    8.
    Pattrick, J. G., Labonte, D. & Federle, W. Scaling of claw sharpness: mechanical constraints reduce attachment performance in larger insects. J. Exp. Biol. 221, jeb188391 (2018).
    Article  Google Scholar 

    9.
    Dai, Z., Gorb, S. N. & Schwarz, U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 205, 2479–2488 (2002).
    PubMed  Google Scholar 

    10.
    Heethoff, M. & Koerner, L. Small but powerful: The oribatid mite Archegozetes longisetosus Aoki (Acari, Oribatida) produces disproportionately high forces. J. Exp. Biol. 210, 3036–3042 (2007).
    Article  Google Scholar 

    11.
    Büscher, T. H. & Gorb, S. N. Complementary effect of attachment devices in stick insects (Phasmatodea). J. Exp. Biol. 222, 209833 (2019).
    Article  Google Scholar 

    12.
    Pfingstl, T., Kerschbaumer, M. & Shimano, S. Get a grip-evolution of claw shape in relation to microhabitat use in intertidal arthropods (Acari, Oribatida). PeerJ 8, e8488 (2020).
    Article  Google Scholar 

    13.
    Herrel, A. Correlations between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): A population-level analysis. Biol. J. Lin. Soc. 74, 305–314 (2001).
    Article  Google Scholar 

    14.
    Tulli, M. J., Cruz, F. B., Herrel, A., Vanhooydonck, B. & Abdala, V. The interplay between claw morphology and microhabitat use in neotropical iguanian lizards. Zoology 112, 379–392 (2009).
    CAS  Article  Google Scholar 

    15.
    Klingenberg, C. P. & Gidaszewski, N. A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 59, 245–261 (2010).
    CAS  Article  Google Scholar 

    16.
    Muñoz-Muñoz, F., Talavera, S. & Pagès, N. Geometric morphometrics of the wing in the subgenus Culicoides (Diptera: Ceratopogonidae): From practical implications to evolutionary interpretations. J. Med. Entomol. 48, 129–139 (2011).
    Article  Google Scholar 

    17.
    Khang, T. F., Soo, O. Y. M., Tan, W. B. & Lim, L. H. S. Monogenean anchor morphometry: Systematic value, phylogenetic signal, and evolution. PeerJ 4, e1668 (2016).
    Article  Google Scholar 

    18.
    Blomberg, S. P. & Garland, T. Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910 (2002).
    Article  Google Scholar 

    19.
    Pfingstl, T., Baumann, J. & Lienhard, A. The Caribbean enigma: the presence of unusual cryptic diversity in intertidal mites (Arachnida, Acari, Oribatida). Organ. Divers. Evol. 19, 609–623 (2019).
    Article  Google Scholar 

    20.
    Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).
    Article  Google Scholar 

    21.
    Caumul, R. & Polly, P. D. Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 59, 2460–2472 (2005).
    Article  Google Scholar 

    22.
    Klingenberg, C. P. There’s something afoot in the evolution of ontogenies. BMC Evol. Biol. 10, 221 (2010).
    Article  Google Scholar 

    23.
    Edwards, E. J. & Donoghue, M. J. Pereskia and the origin of the cactus life-form. Am. Nat. 167, 777–793 (2006).
    Article  Google Scholar 

    24.
    Ge, D., Yao, L., Xia, L., Zhang, Z. & Yang, Q. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contrib. Zool. 84, 267–284 (2015).
    Article  Google Scholar 

    25.
    Pfingstl, T. Habitat use, feeding and reproductive traits of rocky-shore intertidal mites from Bermuda (Oribatida: Fortuyniidae and Selenoribatidae). Acarologia 53, 369–382 (2013).
    Article  Google Scholar 

    26.
    Pfingstl, T., Lienhard, A. & Baumann, J. New and cryptic species of intertidal mites (Acari, Oribatida) from the Western Caribbean: An integrative approach. Int. J. Acarology 45, 10–25 (2019).
    Article  Google Scholar 

    27.
    Rohlf, F. J. TpsDig2. Version 2.31 (2017).

    28.
    Klingenberg, C. P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).
    Article  Google Scholar 

    29.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1 (2001).
    Google Scholar 

    30.
    Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, Cambridge, 1991).
    Google Scholar 

    31.
    Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: Ten years of progress following the ‘revolution’. Italian J. Zool. 71, 5–16 (2004).
    Article  Google Scholar 

    32.
    Cavalcanti, M. J. Geometric morphometric analysis of head shape variation in four species of hammerhead sharks (Carcharhiniformes: Sphyrnidae). Morphometrics 14, 97 (2004).
    Article  Google Scholar 

    33.
    Schäffer, S., Stabentheiner, E., Shimano, S. & Pfingstl, T. Leaving the tropics: The successful colonization of cold temperate regions by Dolicheremaeus dorni (Acari, Oribatida). J. Zool. Syst. Evol. Res. 56, 505–518 (2018).
    Article  Google Scholar 

    34.
    Otto, J. C. & Wilson, K. Assessment of the usefulness of ribosomal 18S and mitochondrial COI sequences in Prostigmata phylogeny. Acarology: Proceedings of the 10th International Congress (2001).

    35.
    Schäffer, S., Krisper, G., Pfingstl, T. & Sturmbauer, C. Description of Scutovertex pileatus sp. nov. (Acari, Oribatida, Scutoverticidae) and molecular phylogenetic investigation of congeneric species in Austria. Zoologischer Anzeiger 247, 249–258 (2008).
    Article  Google Scholar 

    36.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  Article  Google Scholar 

    37.
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).
    CAS  Article  Google Scholar 

    38.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  Article  Google Scholar 

    39.
    Rambaut, A. FigTree: tree figure drawing tool. version 1.3.1. Software available at http://tree.bio.ed.ac.uk/software/figtree/ (2009).

    40.
    Rambaut, A. & Drummond, A. Tracer: MCMC trace analysis tool. version 1.6. 0. http://tree.bio.ed.ac.uk/software/tracer/ (2007).

    41.
    Adams, D. C. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 63, 685–697 (2014).
    Article  Google Scholar 

    42.
    Adams, D. C. & Collyer, M. L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73, 2352–2367 (2019).
    Article  Google Scholar 

    43.
    Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. & Balken E. geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph (2021).

    44.
    Collyer, M. L. & Adams, D. C. RRPP: Linear model evaluation with randomized residuals in a permutation procedure. https://cran.r-project.org/web/packages/RRPP (2021).

    45.
    Collyer, M. L. & Adams, D. C. RRPP: An R package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9(2), 1772–1779 (2018).
    Article  Google Scholar 

    46.
    Pennell, M. W. et al. geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).
    CAS  Article  Google Scholar  More

  • in

    Conceptual frameworks facilitate integration for transdisciplinary urban science

    1.
    Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).
    Article  Google Scholar 
    2.
    Anderies, J. M., Folke, C., Walker, B. & Ostrom, E. Aligning key concepts for global change policy: robustness, resilience, and sustainability. Ecol. Soc. 18, 8 (2013).
    Article  Google Scholar 

    3.
    Brenner, N. & Schmid, C. Planetary urbanization. In Implosions/explosions: Towards A Study of Planetary Urbanization (ed. Brenner, N.) 142–463 (Jovis Verlag, 2014).

    4.
    Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267 (2019).
    Article  Google Scholar 

    5.
    McPhearson, T. Scientists must have a say in the future of cities. Nature 538, 165–166 (2016).
    CAS  Article  Google Scholar 

    6.
    Groffman, P. M. et al. Moving towards a new Urban Systems Science. Ecosystems https://doi.org/10.1007/s10021-016-0053-4 (2016).

    7.
    Pataki, D. E. Grand challenges in urban ecology. Front. Ecol. Evol. 3, 57 (2015).
    Article  Google Scholar 

    8.
    National Science Foundation. What is Convergence?|NSF-National Science Foundation. https://www.nsf.gov/od/oia/convergence/index.jsp (Accessed April 23, 2019).

    9.
    Ramaswami, A. et al. Sustainable Urban Systems: Articulating a Long-Term Convergence Research Agenda. Vol. 31 (National Science Foundation, 2018).

    10.
    Grimm, N. B., Pickett, S. T. A., Hale, R. L. & Cadenasso, M. L. Does the ecological concept of disturbance have utility in urban social-ecological-technological systems? Ecosyst. Health Sustain 3, e01255 (2017).
    Article  Google Scholar 

    11.
    McPhearson, T. et al. Advancing urban ecology towards a science of cities. BioScience 66, 198–212 (2016).
    Article  Google Scholar 

    12.
    United Nations. Transforming Our World: the 2030 Agenda for Sustainable Development. https://sustainabledevelopment.un.org/post2015/transformingourworld (Accessed March 6, 2020).

    13.
    Seto, K. C. et al. Urban land teleconnections and sustainability. Proc. Natl Acad. Sci. USA 109, 7687–7692 (2012).
    CAS  Article  Google Scholar 

    14.
    Folke, C., Biggs, R., Norstrom, A. V., Reyers, B. & Rockstrom, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21, 41 (2016).
    Article  Google Scholar 

    15.
    Grimm, N. B., Cook, E. M., Hale, R. L. & Iwaniec, D. M. A broader framing of ecosystem services in cities: benefits and challenges of built, natural, or hybrid system function. In The Routledge Handbook of Urbanization and Global Environmental Change (eds. Seto, K. C., Solecki, W. D. & Griffith, C. A.) 203–212 (Routledge, 2016).

    16.
    Pelling, M. & Manuel-Navarrete, D. From resilience to transformation: the adaptive cycle in two Mexican urban centers. Ecol. Soc. 16, 11 (2011).
    Article  Google Scholar 

    17.
    Meerow, S., Newell, J. P. & Stults, M. Defining urban resilience: a review. Landsc. Urban Plan. 147, 38–49 (2016).
    Article  Google Scholar 

    18.
    Shane, D. G. Recombinant Urbanism: Conceptual Modeling in Architecture. (John Wiley & Sons, 2005).

    19.
    McHale, M. R. et al. The new global urban realm: complex, connected, diffuse, and diverse social-ecological systems. Sustainability 7, 5211–5240 (2015).
    Article  Google Scholar 

    20.
    Ellin, N. Integral urbanism: a context for urban design. In Resilience in ecology and urban design: linking theory and practice for sustainable cities (eds. Pickett, S. T. A., Cadenasso, M. L. & McGrath, B.) 63–78 (Springer, 2013).

    21.
    Marcotullio, P. J. & Solecki, W. What is a city? an essential definition for sustainability. In Urbanization and Sustainability: Linking Urban Ecology, Environmental Justice, and Environmental Change (eds. Boone, C. G. & Fragkias, M.) 11–25 (Springer, 2013).

    22.
    Burch, W. R., Jr., Machlis, G. E. & Force, J. E. The Structure and Dynamics of Human Ecosystems: toward A Model for Understanding and Action. (Yale University Press, 2017).

    23.
    Redman, C., Grove, J. M. & Kuby, L. Toward a Unified Understanding of Human Ecosystems: Integrating Social Sciences Into Long-term Ecological Research. Vol. 13 (LTER Network, 2000).

    24.
    Barnett, R. & Margetts, J. Disturbanism in the South Pacific: disturbance ecology as a basis for urban resilience in small island states. In Resilience in Ecology and Urban Design: Linking Theory and Practice for Sustainable Cities (eds. Pickett, S. T. A., Cadenasso, M. L. & McGrath, B.) 443–459 (Springer, 2013).

    25.
    Folke, C. et al. Resileince and Sustainable Development: Building Adaptive Capacity in A World of Transformations. (Ministry of the Environment, 2002).

    26.
    Scheffer, M., Westley, F., Brock, W. A. & Holmgren, M. Dynamic interaction of societies and ecosystems–linking theories from ecology, economy, and sociology. In Panarchy: Understanding Transformations in Human and Natural Systems (eds. Gunderson, L. H. & Holling, C. S.) 195–239 (Island Press, 2002).

    27.
    Pickett, S. T. A. et al. Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosyst. 20, 1–14 (2017).
    Article  Google Scholar 

    28.
    Wu, J. G. & Loucks, O. L. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q. Rev. Biol. 70, 439–466 (1995).
    Article  Google Scholar 

    29.
    Boone, C. G. et al. Reconceptualizing land for sustainable urbanity. In Rethinking Urban Land Use in A Global Era (eds. Seto, K. C. & Reenberg, A.) 313–330 (MIT Press, 2014).

    30.
    Machlis, G. E., Force, J. E. & Burch, W. R. The human ecosystem 1. The human ecosystem as an organizing concept in ecosystem management. Soc. Nat. Resour. 10, 347–367 (1997).
    Article  Google Scholar 

    31.
    Cadenasso, M. L. & Pickett, S. T. A. Three tides: the development and state of the art of urban ecological science. In Resilience in Ecology and Urban Design: Linking Theory and Practice for Sustainable Cities (eds. Pickett, S. T. A., Cadenasso, M. L. & McGrath, B.) 29–46 (Springer, 2013).

    32.
    Collins, S. L. et al. An integrated conceptual framework for long-term social-ecological research. Front. Ecol. Environ. 9, 351–357 (2011).
    Article  Google Scholar 

    33.
    Naveh, Z. The total human ecosystem: integrating ecology and economics. BioScience 50, 357–361 (2000).
    Article  Google Scholar 

    34.
    Pickett, S. T. A. & Cadenasso, M. L. Ecosystem as a multidimensional concept: meaning, model and metaphor. Ecosystems 5, 1–10 (2002).
    Article  Google Scholar 

    35.
    Alberti, M. Advances in Urban Ecology: Integrating Humans and Ecological Processes in Urban Ecosystems. (Springer, 2008).

    36.
    Pickett, S. T. A. & Grove, J. M. Urban ecosystems: what would Tansley do? Urban Ecosyst. 12, 1–8 (2009).
    Article  Google Scholar 

    37.
    Lachmund, J. Greening Berlin. (MIT Press, 2013).

    38.
    Rademacher, A., Cadenasso, M. L. & Pickett, S. T. A. From feedbacks to coproduction: toward an integrated conceptual framework for urban ecosystems. Urban Ecosyst. https://doi.org/10.1007/s11252-018-0751-0 (2018).

    39.
    Johnson, E. A. & Miyanishi, K. (eds.) Plant Disturbance Ecology: the Process and the Response. (Academic Press, Burlington, 2007).

    40.
    Pickett, S. T. A. & White, P. S. (eds.) The Ecology of Natural Disturbance and Patch Dynamics. (Academic Press, Orlando, 1985).

    41.
    Schumpeter, J. A. The Theory of Economic Development: an Inquiry Into Profits, Capital, Credit, Interest, and the Business Cycle. (Transaction Books, 1983).

    42.
    Peters, D. P. C. et al. Cross-system comparisons elucidate distrubance complexities and generalities. Ecosphere 2, art 81 (2011).
    Article  Google Scholar 

    43.
    Holling, C. S. Engineering resilience versus ecological resilience. In Engineering within Ecological Constraints (ed. Schulze, P. C.) 31–44 (National Academies of Engineering, 1996).

    44.
    Gunderson, L. H. & Holling, C. S. (eds.) Panarchy: understanding transformations in human and natural systems. (Island Press, Washington DC, 2002).

    45.
    Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9, Article 5 (2004).
    Article  Google Scholar 

    46.
    McPhearson, T., Andersson, E., Elmqvist, T. & Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Services 12, 152–156 (2015).
    Article  Google Scholar 

    47.
    Tidball, K., Frantzeskaki, N. & Elmqvist, T. Traps! An introduction to expanding thinking on persistent maladaptive states in pursuit of resilience. Sustain. Sci. 11, 861–866 (2016).
    Article  Google Scholar 

    48.
    Biggs, R., Westley, F. R. & Carpenter, S. R. Navigating the back loop: fostering social innovation and transformation in ecosystem management. Ecol. Soc. 15, 9 (2010).
    Article  Google Scholar 

    49.
    Changnon, S. A., Kunkel, K. E. & Reinke, B. C. Impacts and responses to the 1995 heat wave: a call to action. Bullet. Am. Meteorol. Soc. 77, 1497–1506 (1996).
    Article  Google Scholar 

    50.
    Borden, K. A. & Cutter, S. L. Spatial patterns of natural hazards mortality in the United States. Int. J. Health Geogr. 7, 64 (2008).
    Article  Google Scholar 

    51.
    Park, R. E. & Burgess, E. W. The City (University of Chicago Press, 1925).

    52.
    Jacobs, J. The Death and Life of Great American Cities (Random House, 1961).

    53.
    Lynch, K. Good City Form (MIT Press, 1981).

    54.
    Shane, D. G. Urban Design Since 1945–A Global Perspective (John Wiley & Sons, Ltd, 2011).

    55.
    Hamstead, Z., Farmer, C. & McPhearson, T. Landscape-based extreme heat vulnerability assessment. J. Extreme Event. 5, 1–23 (2018).
    Google Scholar 

    56.
    Uejio, C. K. et al. Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics and neighborhood stability. Health Place 17, 498–507 (2011).
    Article  Google Scholar 

    57.
    Rosenthal, J. K., Kinney, P. L. & Metzger, K. B. Intra-urban vulnerability to heat-related mortality in New York City. 1997–2006. Health Place 30, 45–60 (2014).
    Google Scholar 

    58.
    Madrigano, J., Ito, K., Johnson, S., Kinney, P. L. & Matte, T. A case-only study of vulnerability to heat wave–related mortality in New York City (2000–2011). Environ. Health Perspect. 123, 672–678 (2015).
    Article  Google Scholar 

    59.
    Allen, T. F. H. & Starr, T. B. Hierarchy: Perspectives for Ecological Complexity (2nd edn.) (University of Chicago Press, Chicago, 2017).

    60.
    McGrath, B. & Shane, G. Introduction: metropolis, megalopolis, and metacity. In The SAGE Handbook of Architectural Theory (eds. Crysler, C. G., Cairns, S. & Heynen, H.) (SAGE, 2012).

    61.
    Mihaljevic, J. R. (2012). Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27, 323–329 (2012).
    Article  Google Scholar 

    62.
    McGrath, B., Sangawongse, S., Thaikatoo, D. & Corte, M. B. The architecture of the metacity: land use change, patch dynamics and urban form in Chiang Mai, Thailand. Urban Plan. 2, 53–71 (2017).
    Article  Google Scholar 

    63.
    Leibold, M. A. The metacommunity concept and its theoretical underpinnings. In The Theory of Ecology (eds. Scheiner, S. M. & Willig, M. R.) 163–183 (University of Chicago Press, 2011).

    64.
    McGrath, B. & Pickett, S. T. A. The metacity: a conceptual framework for integrating ecology and urban design. Challenges 2011, 55–72 (2011).
    Article  Google Scholar 

    65.
    Batty, M. The New Science of Cities. (MIT Press, 2013).

    66.
    Gandy, M. Where does the city end? In Implosions/explosions: Towards A Study of Planetary Urbanization (ed. Brenner, N.) 86–89 (jovis Verlag, 2014).

    67.
    McPhearson, T., Kremer, P. & Hamstead, Z. Mapping ecosystem services in new york city: applying a social-ecological approach in urban vacant land. Ecosyst. Service 11–26, https://doi.org/10.1016/j.ecoser.2013.06.005 (2013).

    68.
    Kremer, P., Hamstead, Z. & McPhearson, T. A social-ecological assessment of vacant lots in New York City. Landsc. Urban Plann. 218–233, https://doi.org/10.1016/j.landurbplan.2013.05.003 (2013).

    69.
    Burkholder, S. The new ecology of vacancy: rethinking land use in shrinking cities. Sustainability 4, 1154–1172 (2012).
    Article  Google Scholar 

    70.
    Bowman, A. O. M. & Pagano, M. A. Transforming America’s cities: policies and conditions of vacant land. Urban Affairs Rev. 35, 559–581 (2000).
    Article  Google Scholar 

    71.
    Kabisch N., et al. Nature-Based Solutions to Climate Change Adaptation in Urban Areas—Linkages Between Science, Policy and Practice. 91–109 (Springer, 2017).

    72.
    Schwarz, K., Berland, A. & Herrmann, D. L. Green, but not just? Rethinking environmental justice indicators in shrinking cities. Sustain. Cities Soc. 41, 816–821 (2018).
    Article  Google Scholar 

    73.
    McDonnell, M. J. & Hahs, A. K. The future of urban biodiversity research: moving beyond the ‘low-hanging fruit’. Urban Ecosyst. 16, 397–409 (2013).
    Article  Google Scholar 

    74.
    Pickett, S. T. A., Kolasa, J. & Jones, C. G. Ecological Understanding: The Nature of Theory and the Theory of Nature (Academic Press, 2007).

    75.
    Depietri Y. & McPhearson T. Integrating the grey, green, and blue in cities: Nature-based solutions for climate change adaptation and risk reduction. In Nature-based solutions to climate change adaptation in urban areas. Theory and practice of urban sustainability transitions (eds. Kabisch N., Korn H., Stadler J. & Bonn A.) (Springer, Cham, 2017). More

  • in

    Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt

    1.
    Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.
    CAS  PubMed  Article  Google Scholar 
    2.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
    CAS  PubMed  Article  Google Scholar 

    3.
    De Vries FT, Shade A. Controls on soil microbial community stability under climate change. Front Microbiol. 2013;4:1–16.
    Article  Google Scholar 

    4.
    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci. 2008;105:11512–9.
    CAS  PubMed  Article  Google Scholar 

    5.
    Leifeld J, Zimmermann M, Fuhrer J, Conen F. Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Glob Chang Biol. 2009;15:668–79.
    Article  Google Scholar 

    6.
    Schirpke U, Leitinger G, Tasser E, Schermer M, Steinbacher M, Tappeiner U. Multiple ecosystem services of a changing Alpine landscape: past, present and future. Int J Biodivers Sci Ecosyst Serv Manag. 2013;9:123–35.
    PubMed  Article  Google Scholar 

    7.
    Beniston M. Is snow in the Alps receding or disappearing? Wiley Interdiscip Rev Clim Chang. 2012;3:349–58.
    Article  Google Scholar 

    8.
    Beniston M, Keller F, Koffi B, Goyette S. Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor Appl Climatol. 2003;76:125–40.
    Article  Google Scholar 

    9.
    Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DA. The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Glob Biogeochem Cycles. 2006;20:1–13.
    Article  CAS  Google Scholar 

    10.
    Zhang Y, Wang S, Barr AG, Black TA. Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Reg Sci Technol. 2008;52:355–70.
    Article  Google Scholar 

    11.
    Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrol Process. 2010;24:2465–80.
    Google Scholar 

    12.
    Pederson GT, Gray ST, Woodhouse CA, Betancourt JL, Fagre DB, Littell JS, et al. The unusual nature of recent snowpack declines in the North American Cordillera. Science. 2011;333:332–5.
    CAS  PubMed  Article  Google Scholar 

    13.
    Gavazov K, Ingrisch J, Hasibeder R, Mills RTE, Buttler A, Gleixner G, et al. Winter ecology of a subalpine grassland: effects of snow removal on soil respiration, microbial structure and function. Sci Total Environ. 2017;590–591:316–324.
    PubMed  Article  CAS  Google Scholar 

    14.
    Buckeridge KM, Banerjee S, Siciliano SD, Grogan P. The seasonal pattern of soil microbial community structure in mesic low arctic tundra. Soil Biol Biochem. 2013;65:338–47.
    CAS  Article  Google Scholar 

    15.
    Puissant J, Cécillon L, Mills RTE, Robroek BJM, Gavazov K, De Danieli S, et al. Seasonal influence of climate manipulation on microbial community structure and function in mountain soils. Soil Biol Biochem. 2015;80:296–305.
    CAS  Article  Google Scholar 

    16.
    Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol. 2005;20:634–41.
    PubMed  Article  Google Scholar 

    17.
    Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, et al. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology. 2007;88:1379–85.
    CAS  PubMed  Article  Google Scholar 

    18.
    Schadt CW, Martin AP, Lipson DA, Schmidt SK. Seasonal dynamics of previously unknown fungal lineages in Tundra soils. Science. 2003;301:1359–61.
    CAS  PubMed  Article  Google Scholar 

    19.
    Jefferies RL, Walker NA, Edwards KA, Dainty J. Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils? Soil Biol Biochem. 2010;42:129–35.
    CAS  Article  Google Scholar 

    20.
    Buckeridge KM, Grogan P. Deepened snow increases late thaw biogeochemical pulses in mesic low arctic tundra. Biogeochemistry. 2010;101:105–21.
    Article  Google Scholar 

    21.
    Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88:1386–94.
    PubMed  Article  Google Scholar 

    22.
    Buckeridge KM, Grogan P. Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Appl Soil Ecol. 2008;39:210–22.
    Article  Google Scholar 

    23.
    Väisänen M, Gavazov K, Krab EJ, Dorrepaal E. The legacy effects of winter climate on microbial functioning after snowmelt in a subarctic Tundra. Micro Ecol. 2019;77:186–90.
    Article  Google Scholar 

    24.
    Darrouzet-Nardi A, Steltzer H, Sullivan PF, Segal A, Koltz AM, Livensperger C, et al. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic Tundra soils. Ecol Evol. 2019;9:1820–44.
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Ernakovich JG, Hopping KA, Berdanier AB, Simpson RT, Kachergis EJ, Steltzer H, et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob Chang Biol. 2014;20:3256–69.
    PubMed  Article  Google Scholar 

    26.
    Li W, Wu J, Bai E, Jin C, Wang A, Yuan F, et al. Response of terrestrial carbon dynamics to snow cover change: a meta-analysis of experimental manipulation (II). Soil Biol Biochem. 2016;103:388–93.
    CAS  Article  Google Scholar 

    27.
    Neuwinger I Bodenökologische. Untersuchungen im Gebiet Obergurgler Zirbenwald—Hohe Mut. In: Patzelt G (Hrsg.. (ed). MaB-Projekt Obergurgl. 1987. Universitätsverlag Wagner, Innsbruck, Austria, pp 173-90.

    28.
    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.
    CAS  Article  Google Scholar 

    29.
    Bardgett RD, Hobbs PJ, Frostegard A. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils. 1996;22:261–4.
    Article  Google Scholar 

    30.
    Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE. 2008;3:e2836.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Arenz BE, Schlatter DC, Bradeen JM, Kinkel LL. Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities. J Microbiol Methods. 2015;117:1–3.
    CAS  PubMed  Article  Google Scholar 

    32.
    Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.
    CAS  PubMed  Article  Google Scholar 

    33.
    White TJ, Bruns T, Lee S, Taylor J. PCR protocols. 1990. Academic Press.

    34.
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    R Core Team. R: a language and environment for statistical computing. 2019. R Foundation for Statistical Computing.

    37.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 2005;166:1063–8.
    Article  CAS  Google Scholar 

    39.
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Illumina. bcl2fastq and bcl2fastq2 Conversion software. 2020. https://support.illumina.com/sequencing/sequencing

    41.
    Sáenz JS, Marques TV, Barone RSC, Cyrino JEP, Kublik S, Nesme J, et al. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome. 2019;7:1–14.
    Article  Google Scholar 

    42.
    Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016;9:1–7.
    Article  Google Scholar 

    43.
    Schmieder R, Edwards R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE. 2011;6:e17288.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Tu Q, Lin L, Cheng L, Deng Y, He Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics. 2019;35:1040–8.
    CAS  PubMed  Article  Google Scholar 

    46.
    First Y, Job P. GNU parallel: the command-line power tool | USENIX. 3: 42–47.

    47.
    Jackson CR, Tyler HL, Millar JJ. Determination of microbial extracellular enzyme activity in waters, soils, and sediments using high throughput microplate assays. J Vis Exp. 2013;80:e50399.
    Google Scholar 

    48.
    De Long JR, Semchenko M, Pritchard WJ, Cordero I, Fry EL, Jackson BG, et al. Drought soil legacy overrides maternal effects on plant growth. Funct Ecol. 2019;33:1400–10.
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium article in biology and fertility of soils. Biol Fertil Soils. 1988;6:68–72.
    CAS  Article  Google Scholar 

    50.
    Jones DL, Willett VB. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem. 2006;38:991–9.
    CAS  Article  Google Scholar 

    51.
    Ross DJ. Influence of sieve mesh size on estimates of microbial carbon and nitrogen by fumigation-extraction procedures in soils under pasture. Soil Biol Biochem. 1992;24:343–50.
    Article  Google Scholar 

    52.
    De Boer W, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811.
    PubMed  Article  CAS  Google Scholar 

    53.
    Moorhead DDL, Sinsabaugh RRL. A theoretical model of litter decay and microbial interaction. Ecol Monogr. 2006;76:151–74.
    Article  Google Scholar 

    54.
    Zhou Y, Pope PB, Li S, Wen B, Tan F, Cheng S, et al. Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Sci Rep. 2014;4:1–6.
    Google Scholar 

    55.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66:506–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Bhatnagar JM, Peay KG, Treseder KK. Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecol Monogr. 2018;88:429–44.
    Article  Google Scholar 

    57.
    Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, et al. Stoichiometry of soil enzyme activity at global scale. Ecol Lett. 2008;11:1252–64.
    PubMed  Article  Google Scholar 

    58.
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.
    CAS  PubMed  Article  Google Scholar 

    59.
    Broadbent AAD, Orwin KH, Peltzer DA, Dickie IA, Mason NWH, Ostle NJ, et al. Invasive N-fixer impacts on litter decomposition driven by changes to soil properties not litter quality. Ecosystems. 2017;20:1–13.
    Article  CAS  Google Scholar 

    60.
    Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 2012;20:523–31.
    CAS  PubMed  Article  Google Scholar 

    61.
    Verhamme DT, Prosser JI, Nicol GW. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 2011;5:1067–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Brooks PD, Williams MW, Schmidt SK. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry. 1998;43:1–15.
    Article  Google Scholar 

    63.
    Jaeger CH, Monson RK, Fisk MC, Schmidt SK. Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem. Ecology. 1999;80:1883–91.
    Article  Google Scholar 

    64.
    Ashton IW, Miller AE, Bowman WD, Suding KN. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology. 2010;91:3252–60.
    PubMed  Article  Google Scholar 

    65.
    Bilbrough CJ, Welker JM, Bowman WD. Early spring nitrogen uptake by snow-covered plants: a comparison of Arctic and alpine plant function under the snowpack. Arct, Antarct Alp Res. 2000;32:404–11.
    Article  Google Scholar 

    66.
    Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia. 1996;105:53–63.
    PubMed  Article  Google Scholar 

    67.
    Wookey PA, Aerts R, Bardgett RD, Baptist F, Bråthen K, Cornelissen JHC, et al. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Chang Biol. 2009;15:1153–72.
    Article  Google Scholar  More

  • in

    Contribution of Vouacapoua americana fruit-fall to the release of biomass in a lowland Amazon forest

    1.
    Diaz-Martin, Z., Swamy, V., Terborgh, J., Alvarez-Loayza, P. & Cornejo, F. Identifying keystone plant resources in an Amazonian forest using a long-term fruit-fall record. J. Trop. Ecol. 30, 291–301. https://doi.org/10.1017/S0266467414000248 (2014).
    Article  Google Scholar 
    2.
    Terborgh, J. & Andresen, E. The composition of Amazonian forests: Patterns at local and regional scales. J. Trop. Ecol. 14, 645–664 (1998).
    Article  Google Scholar 

    3.
    Wright, J. S. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130, 1–14. https://doi.org/10.1007/s004420100809 (2002).
    ADS  Article  Google Scholar 

    4.
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818 (2007).
    Article  MATH  Google Scholar 

    5.
    Chapman, C. A., Wrangham, R. & Chapman, L. J. Indexes of habitat-wide fruit abundance in tropical forests. Biotropica 26, 160–171. https://doi.org/10.2307/2388805 (1994).
    Article  Google Scholar 

    6.
    White, L. J. T. Patterns of fruit-fall phenology in the Lopé Reserve, Gabon. J. Trop. Ecol. 10, 289–312. https://doi.org/10.1017/S0266467400007975 (1994).
    Article  Google Scholar 

    7.
    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. https://doi.org/10.1126/sciadv.1501105 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113, 892–897 (2016).
    ADS  CAS  Article  Google Scholar 

    9.
    Dee, L. E. et al. When do ecosystem services depend on rare species?. Trends Ecol. Evol. 34, 746–758. https://doi.org/10.1016/j.tree.2019.03.010 (2019).
    Article  PubMed  Google Scholar 

    10.
    Pinho, B. X., Peres, C. A., Leal, I. R. & Tabarelli, M. In Tropical Ecosystems in the 21st Century (eds Alex, J. D., Edgar, C. T., & Tom, M. F.) Ch. 7, 253–294 (Academic Press, Cambridge, 2020).

    11.
    Bastin, J.-F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).
    Article  Google Scholar 

    12.
    Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864. https://doi.org/10.1111/geb.12747 (2018).
    Article  Google Scholar 

    13.
    Sist, P., Mazzei, L., Blanc, L. & Rutishauser, E. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For. Ecol. Manag. 318, 103–109. https://doi.org/10.1016/j.foreco.2014.01.005 (2014).
    Article  Google Scholar 

    14.
    Schulze, M., Grogan, J., Landis, R. M. & Vidal, E. How rare is too rare to harvest? Management challenges posed by timber species occurring at low densities in the Brazilian Amazon. For. Ecol. Manag. 256, 1443–1457. https://doi.org/10.1016/j.foreco.2008.02.051 (2008).
    Article  Google Scholar 

    15.
    SFB. Florestas do Brasil em resumo 2013: dados de 2007–2012. (2013).

    16.
    Azevedo-Ramos, C., Silva, J. N. M. & Merry, F. The evolution of Brazilian forest concessions. Elem. Sci. Anth. https://doi.org/10.12952/journal.elementa.000048 (2015).
    Article  Google Scholar 

    17.
    Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881. https://doi.org/10.1126/science.aau5525 (2019).
    ADS  CAS  Article  Google Scholar 

    18.
    Degen, B. et al. Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol. Cons. 131, 386–401. https://doi.org/10.1016/j.biocon.2006.02.014 (2006).
    Article  Google Scholar 

    19.
    Richardson, V. A. & Peres, C. A. Temporal decay in timber species composition and value in Amazonian logging concessions. PLoS ONE 11, e0159035. https://doi.org/10.1371/journal.pone.0159035 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388. https://doi.org/10.1038/s41558-019-0458-0 (2019).
    ADS  Article  Google Scholar 

    21.
    Nepstad, D. et al. Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis. Glob. Change Biol. 10, 704–717 (2004).
    ADS  Article  Google Scholar 

    22.
    Vidal, E., West, T. A. & Putz, F. E. Recovery of biomass and merchantable timber volumes twenty years after conventional and reduced-impact logging in Amazonian Brazil. For. Ecol. Manag. 376, 1–8. https://doi.org/10.1016/j.foreco.2016.06.003 (2016).
    Article  Google Scholar 

    23.
    Varty, N. & Guadagnin, D. L. Vouacapoua americana. The IUCN Red List of Threatened Species: e.T33918A9820054, https://doi.org/10.2305/IUCN.UK.1998.RLTS.T33918A9820054.en (1998).

    24.
    Dutech, C., Maggia, L., Tardy, C., Joly, H. I. & Jarne, P. Tracking a genetic signal of extinction-recolonization events in a neotropical tree species: Vouacapoua americana aublet in french guiana. Evolution 57, 2753–2764 (2003).
    Article  Google Scholar 

    25.
    Guimarães, P. R. Jr., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS ONE 3, e1745. https://doi.org/10.1371/journal.pone.0001745 (2008).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Traissac, S. & Pascal, J. P. Birth and life of tree aggregates in tropical forest: Hypotheses on population dynamics of an aggregated shade-tolerant species. J. Veg. Sci. 25, 491–502. https://doi.org/10.1111/jvs.12080 (2014).
    Article  Google Scholar 

    27.
    Forget, P.-M. Seed-dispersal of Vouacapoua americana (Caesalpiniaceae) by caviomorph rodents in French Guiana. J. Trop. Ecol. 6, 459–468. https://doi.org/10.1017/S0266467400004867 (1990).
    Article  Google Scholar 

    28.
    Jansen, P. A., Bongers, F. & van der Meer, P. J. Is farther seed dispersal better? Spatial patterns of offspring mortality in three rainforest tree species with different dispersal abilities. Ecography 31, 43–52. https://doi.org/10.1111/j.2007.0906-7590.05156.x (2008).
    Article  Google Scholar 

    29.
    MMA. Vol. 18/12/2014 (ed Ministério do Meio Ambiente—MMA) 110–121 (Diário Oficial da União, Brasilia, 2014).

    30.
    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420. https://doi.org/10.1111/gcb.13139 (2016).
    ADS  Article  Google Scholar 

    31.
    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185. https://doi.org/10.1038/nclimate1354 (2012).
    ADS  CAS  Article  Google Scholar 

    32.
    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. U.S.A. 108, 9899–9904. https://doi.org/10.1073/pnas.1019576108 (2011).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Saatchi, S. S., Houghton, R. A., Dos Santos AlvalÁ, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Change Biol. 13, 816–837. https://doi.org/10.1111/j.1365-2486.2007.01323.x (2007).
    ADS  Article  Google Scholar 

    34.
    Muller-Landau, H. C., Wright, S. J., Calderon, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 96, 653–667. https://doi.org/10.1111/j.1365-2745.2008.01399.x (2008).
    Article  Google Scholar 

    35.
    Mendoza, I. et al. Does masting result in frugivore satiation? A test with Manilkara trees in French Guiana. J. Trop. Ecol. 31, 553–556. https://doi.org/10.1017/S0266467415000425 (2015).
    Article  Google Scholar 

    36.
    Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470. https://doi.org/10.1016/0169-5347(94)90310-7 (1994).
    CAS  Article  PubMed  Google Scholar 

    37.
    Kelly, D. & Sork, V. L. Mast seeding in perennial plants: Why, how, where?. Annu. Rev. Ecol. Syst. 33, 427–447. https://doi.org/10.1146/annurev.ecolsys.33.020602.095433 (2002).
    Article  Google Scholar 

    38.
    Johnson, M. O. et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: Implications for dynamic global vegetation models. Glob. Change Biol. 22, 3996–4013 (2016).
    ADS  Article  Google Scholar 

    39.
    Batista, A. P. B. et al. Caracterização estrutural em uma floresta de terra firme no estado do Amapá, Brasil. Pesq. flor. bras 35, 21–33 (2015).
    Article  Google Scholar 

    40.
    Charles-Dominique, P. et al. Les mammiferes frugivores arboricoles nocturnes d’une foret guyanaise: Inter-relations plantes-animaux. La Terre et la Vie: Revue d’Ecologie Appliquée 35, 341–435 (1981).
    Google Scholar 

    41.
    de Oliveira, A. N. & do Amaral, I. L. ,. Florística e fitossociologia de uma floresta de vertente na Amazônia Central, Amazonas, Brasil. Acta Amazonica 34, 21–34 (2004).
    Article  Google Scholar 

    42.
    Pereira, L. A., Pinto Sobrinho, F. D. A. & Costa Neto, S. V. D. Florística e estrutura de uma mata de terra firme na reserva de desenvolvimento sustentável rio Iratapuru, Amapá, Amazônia Oriental, Brasil. (2011).

    43.
    Pereira, L. A., Sena, K. S., dos Santos, M. R. & Neto, S. V. C. Aspectos florísticos da FLONA do Amapá e sua importância na conservação da biodiversidade. Revista Brasileira de Biociências 5, 693–695 (2007).
    Google Scholar 

    44.
    Sabatier, D. Saisonnalité et déterminisme du pic de fructification en forêt guyanaise. Revue d’Ecologie (Terrre et Vie) 40, 89–320 (1985).
    Google Scholar 

    45.
    ter Steege, H. et al. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J. Trop. Ecol. 16, 801–828 (2000).
    Article  Google Scholar 

    46.
    Hanya, G. et al. Seasonality in fruit availability affects frugivorous primate biomass and species richness. Ecography 34, 1009–1017. https://doi.org/10.1111/j.1600-0587.2010.06775.x (2011).
    Article  Google Scholar 

    47.
    Situmorang, J. P. & Sugianto, S. Estimation of carbon stock stands using EVI and NDVI vegetation index in production forest of Lembah Seulawah Sub-District, Aceh Indonesia. Aceh Int. J. Sci. Technol. 5 (2016).

    48.
    Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389. https://doi.org/10.1126/science.aaj1987 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    49.
    Bhardwaj, D., Banday, M., Pala, N. A. & Rajput, B. S. Variation of biomass and carbon pool with NDVI and altitude in sub-tropical forests of northwestern Himalaya. Environ. Monit. Assess. 188, 635 (2016).
    CAS  Article  Google Scholar 

    50.
    Dubayah, R. O. et al. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG000933 (2010).
    Article  Google Scholar 

    51.
    Holly, K. G., Sandra, B., John, O. N. & Jonathan, A. F. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).
    Article  Google Scholar 

    52.
    Asner, G. P. et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. 107, 16738–16742 (2010).
    ADS  CAS  Article  Google Scholar 

    53.
    Magnusson, W. et al. Biodiversidade e monitoramento ambiental integrado (Biodiversity and Integrated Environmental Monitoring). 335 (PPBio INPA, 2013).

    54.
    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).
    Article  Google Scholar 

    55.
    ANA. Sistema de Monitoramento Hidrológico (Hydrological Monitoring System). Agência Nacional de Águas[[nl]]National Water Agency. http://www.hidroweb.ana.gov.br, 2016).

    56.
    ICMBio. Vol. I (ed MINISTÉRIO DO MEIO AMBIENTE) 222 (Instituto Chico Mendes de Conservação da Biodiversidade, Macapá, Amapá, 2014).

    57.
    Eswaran, H., Ahrens, R., Rice, T. J. & Stewart, B. A. Soil Classification: A Global Desk Reference. (CRC Press, Boca Raton, 2002).

    58.
    Dutech, C., Maggia, L. & Joly, H. I. Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest tree. Mol. Ecol. 9, 1427–1432. https://doi.org/10.1046/j.1365-294x.2000.01027.x (2000).
    CAS  Article  PubMed  Google Scholar 

    59.
    ter Steege, H. et al. Hyperdominance in the Amazonian Tree Flora. Science https://doi.org/10.1126/science.1243092 (2013).
    Article  PubMed  Google Scholar 

    60.
    Kido, T., Taniguchi, M. & Baba, K. Diterpenoids from Amazonian crude drug of Fabaceae. Chem. Pharm. Bull. 51, 207–208. https://doi.org/10.1248/cpb.51.207 (2003).
    CAS  Article  Google Scholar 

    61.
    Maurya, R., Ravi, M., Singh, S. & Yadav, P. P. A review on cassane and norcassane diterpenes and their pharmacological studies. Fitoterapia 83, 272–280. https://doi.org/10.1016/j.fitote.2011.12.007 (2012).
    CAS  Article  PubMed  Google Scholar 

    62.
    Alves, J. C. Z. O. & Miranda, I. D. S. Análise da estrutura de comunidades arbóreas de uma floresta amazônica de Terra Firme aplicada ao manejo florestal. Acta Amazonica 38, 657–666 (2008).
    Article  Google Scholar 

    63.
    Forget, P. M., Mercier, F. & Collinet, F. Spatial patterns of two rodent-dispersed rain forest trees Carapa procera (Meliaceae) and Vouacapoua americana (Caesalpiniaceae) at Paracou, French Guiana. J. Trop. Ecol. 15, 301–313. https://doi.org/10.1017/s0266467499000838 (1999).
    Article  Google Scholar 

    64.
    Forget, P.-M. Ten-year seedling dynamics in Vouacapoua americana in French Guiana: A hypothesis. Biotropica 29, 124–126 (1997).
    Article  Google Scholar 

    65.
    Forget, P. M. Recruitment pattern of Vouacapoua-Americana (Caesalpiniaceae), a rodent-dispersed tree specie in French-Guiana. Biotropica 26, 408–419. https://doi.org/10.2307/2389235 (1994).
    Article  Google Scholar 

    66.
    Forget, P. M. Effect of microhabitat on seed fate and seedling performance in two rodent-dispersed tree species in rain forest in French Guiana. J. Ecol. 85, 693–703. https://doi.org/10.2307/2960539 (1997).
    Article  Google Scholar 

    67.
    Zhang, S. Y. & Wang, L. X. Comparison of 3 fruit census methods in French-Guiana. J. Trop. Ecol. 11, 281–294 (1995).
    Article  Google Scholar 

    68.
    Stevenson, P. R. The relationship between fruit production and primate abundance in Neotropical communities. Biol. J. Lin. Soc. 72, 161–178. https://doi.org/10.1006/bijl.2000.049 (2001).
    Article  Google Scholar 

    69.
    Norris, D., Rodriguez Chuma, V. J. U., Arevalo-Sandi, A. R., Landazuri Paredes, O. S. & Peres, C. A. Too rare for non-timber resource harvest? Meso-scale composition and distribution of arborescent palms in an Amazonian sustainable-use forest. For. Ecol. Manag. 377, 182–191. https://doi.org/10.1016/j.foreco.2016.07.008 (2016).
    Article  Google Scholar 

    70.
    Paredes, O. S. L., Norris, D., Oliveira, T. G. D. & Michalski, F. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest. PLoS ONE 12, e0174049. https://doi.org/10.1371/journal.pone.0174049 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    Magnusson, W. E. et al. RAPELD: A modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota. Neotrop. 5, 19–24. https://doi.org/10.1590/s1676-06032005000300002 (2005).
    Article  Google Scholar 

    72.
    Norris, D., Fortin, M.-J. & Magnusson, W. E. Towards monitoring biodiversity in Amazonian forests: How regular samples capture meso-scale altitudinal variation in 25 km(2) plots. PLoS ONE https://doi.org/10.1371/journal.pone.0106150 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    73.
    The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121. https://doi.org/10.1111/j.1095-8339.2009.00996.x (2009).
    Article  Google Scholar 

    74.
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 (2000).
    Article  Google Scholar 

    75.
    Platts, P. J., McClean, C. J., Lovett, J. C. & Marchant, R. Predicting tree distributions in an East African biodiversity hotspot: Model selection, data bias and envelope uncertainty. Ecol. Model. 218, 121–134. https://doi.org/10.1016/j.ecolmodel.2008.06.028 (2008).
    Article  Google Scholar 

    76.
    Camarero, J. J., Albuixech, J., López-Lozano, R., Casterad, M. A. & Montserrat-Martí, G. An increase in canopy cover leads to masting in Quercus ilex. Trees 24, 909–918. https://doi.org/10.1007/s00468-010-0462-5 (2010).
    Article  Google Scholar 

    77.
    Fernández-Martínez, M., Garbulsky, M., Peñuelas, J., Peguero, G. & Espelta, J. M. Temporal trends in the enhanced vegetation index and spring weather predict seed production in Mediterranean oaks. Plant Ecol. 216, 1061. https://doi.org/10.1007/s11258-015-0489-1 (2015).
    Article  Google Scholar 

    78.
    Fortin, M.-J. & Dale, M. R. T. Spatial Analysis: A Guide for Ecologists. 365 (Cambridge University Press, Cambridge, 2005).

    79.
    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models. Vol. 43 (CRC Press, Boca Raton, 1990).

    80.
    Wood, S. Generalized Additive Models: An Introduction with R. (CRC Press, Boca Raton, 2006).

    81.
    Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 157, 157–177. https://doi.org/10.1016/S0304-3800(02)00193-X (2002).
    Article  Google Scholar 

    82.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2016).

    83.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach. (Springer, New York, 2002).

    84.
    Pebesma, E. J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 30, 683–691. https://doi.org/10.1016/j.cageo.2004.03.012 (2004).
    ADS  Article  Google Scholar 

    85.
    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 

    86.
    e1071: Misc Functions of the Department of Statistics, Probability Theory Group v. 1.6-8 (2017). More

  • in

    Temperature thresholds of ecosystem respiration at a global scale

    1.
    Cao, M. & Woodward, F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252 (1998).
    CAS  Article  Google Scholar 
    2.
    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).
    CAS  Article  Google Scholar 

    3.
    Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).
    Article  Google Scholar 

    4.
    Enquist, B. J. et al. Scaling metabolism from organisms to ecosystems. Nature 423, 639–642 (2003).
    CAS  Article  Google Scholar 

    5.
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    CAS  Article  Google Scholar 

    6.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    7.
    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).
    Article  Google Scholar 

    8.
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).
    CAS  Article  Google Scholar 

    9.
    Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol. 9, 1333–1352 (2003).
    Article  Google Scholar 

    10.
    Song, B. et al. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration. J. Plant Ecol. 7, 419–428 (2014).
    Article  Google Scholar 

    11.
    Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).

    12.
    Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).
    CAS  Article  Google Scholar 

    13.
    Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).
    CAS  Article  Google Scholar 

    14.
    Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).
    Article  Google Scholar 

    15.
    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).
    CAS  Article  Google Scholar 

    16.
    Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).
    Article  Google Scholar 

    17.
    Gill, A. L. & Finzi, A. C. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol. Lett. 19, 1419–1428 (2016).
    Article  Google Scholar 

    18.
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).
    CAS  Article  Google Scholar 

    19.
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).
    CAS  Article  Google Scholar 

    20.
    Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).
    CAS  Article  Google Scholar 

    21.
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).
    Article  Google Scholar 

    22.
    Monson, R. K. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature 439, 711–714 (2006).
    CAS  Article  Google Scholar 

    23.
    Mauder, M. et al. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. Meteorol. 169, 122–135 (2013).
    Article  Google Scholar 

    24.
    Kim, D.-G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9, 2459–2483 (2012).
    CAS  Article  Google Scholar 

    25.
    Du, E. et al. Winter soil respiration during soil-freezing process in a boreal forest in Northeast China. J. Plant Ecol. 6, 349–357 (2013).
    Article  Google Scholar 

    26.
    Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    CAS  Article  Google Scholar 

    27.
    Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).
    CAS  Article  Google Scholar 

    28.
    Bond-Lamberty, B. P. & Thomson, A. M. A Global Database of Soil Respiration Data Version 4.0 (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/1578

    29.
    Zhang, Z. et al. A temperature threshold to identify the driving climate forces of the respiratory process in terrestrial ecosystems. Eur. J. Soil Biol. 89, 1–8 (2018).
    Article  Google Scholar 

    30.
    Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L. & Beck, H. E. Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests. J. Geophys. Res. Biogeosci. 121, 2125–2140 (2016).
    Article  Google Scholar 

    31.
    Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).
    CAS  Article  Google Scholar 

    32.
    Padfield, D. et al. Metabolic compensation constrains the temperature dependence of gross primary production. Ecol. Lett. 20, 1250–1260 (2017).
    Article  Google Scholar 

    33.
    Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).
    CAS  Article  Google Scholar 

    34.
    Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun. 8, 1602 (2017).
    Article  Google Scholar 

    35.
    Niu, S. et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol. 194, 775–783 (2012).
    Article  Google Scholar 

    36.
    Rind, D. The consequences of not knowing low- and high-latitude climate sensitivity. Bull. Am. Meteorol. Soc. 89, 855–864 (2008).
    Article  Google Scholar 

    37.
    Liu, Z. et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Change Biol. 26, 682–696 (2020).
    Article  Google Scholar 

    38.
    Haverd, V. et al. Higher than expected CO2 fertilization inferred from leaf to global observations. Glob. Change Biol. 26, 2390–2402 (2020).
    Article  Google Scholar 

    39.
    Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).
    Article  Google Scholar 

    40.
    Climate Research Unit, University of East Anglia Average Annual Temperature. Atlas Biosphere (Center for Sustainability and the Global Environment, accessed 6 February 2020); https://nelson.wisc.edu/sage/data-and-models/atlas/maps.php More

  • in

    Passive eDNA collection enhances aquatic biodiversity analysis

    1.
    Taberlet, P., Bonin, A., Zinger, L, & Coissac, E. Environmental DNA, for Biodiversity Research and Monitoring (Oxford Univ. Press, 2018).
    2.
    Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Particle size distribution of environmental DNA from the nuclei of marine fish. Environ. Sci. Technol. 53, 9947–9956 (2019).
    CAS  PubMed  Article  Google Scholar 

    3.
    Wilcox, T. M., McKelvey, K. S., Young, M. K., Lowe, W. H. & Schwartz, M. K. Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis). Conserv. Genet. Resour. 7, 639–641 (2015).
    Article  Google Scholar 

    4.
    Thomsen, P. F. & Willerslev, E. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
    Article  Google Scholar 

    5.
    Seymour, M. et al. Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks. Sci. Total Environ. 729, 138801 (2020).
    CAS  PubMed  Article  Google Scholar 

    6.
    Jarman, S. N., Berry, O. & Bunce, M. The value of environmental DNA biobanking for long-term biomonitoring. Nat. Ecol. Evol. 2, 1192–1193 (2018).
    PubMed  Article  Google Scholar 

    7.
    Jeunen, G.-J. et al. Species-level biodiversity assessment using marine environmental DNA metabarcoding requires protocol optimization and standardization. Ecol. Evol. 9, 1323–1335 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Turner, C. R. et al. Particle size distribution and optimal capture of aqueous microbial eDNA. Methods Ecol. Evol. 5, 676–684 (2014).
    Article  Google Scholar 

    9.
    Koziol, A. et al. Environmental DNA metabarcoding studies are critically affected by substrate selection. Mol. Ecol. Resour. 19, 366–376 (2019).
    CAS  PubMed  Article  Google Scholar 

    10.
    Tsuji, S., Takahara, T., Doi, H., Shibata, N. & Yamanaka, H. The detection of aquatic macroorganisms using environmental DNA analysis – a review of methods for collection, extraction, and detection. Environ. DNA 1, 99–108 (2019).
    Article  Google Scholar 

    11.
    Shu, L., Ludwig, A. & Peng, Z. Standards for methods utilizing environmental DNA for detection of fish species. Genes 11, 296 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    12.
    Deiner, K., Walser, J.-C., Mächler, E. & Altermatt, F. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol. Conserv. 183, 53–63 (2015).
    Article  Google Scholar 

    13.
    Jeunen, G.-J. et al. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 19, 426–438 (2019).
    CAS  PubMed  Article  Google Scholar 

    14.
    Thomas, A. C., Howard, J., Nguyen, P. L., Seimon, T. A. & Goldberg, C. S. ANDeTM: a fully integrated environmental DNA sampling system. Methods Ecol. Evol. 9, 1379–1385 (2018).
    Article  Google Scholar 

    15.
    Schumer, G. et al. Utilizing environmental DNA for fish eradication effectiveness monitoring in streams. Biol. Invasions 21, 3415–3426 (2019).
    Article  Google Scholar 

    16.
    Zinger, L. et al. DNA metabarcoding – need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).
    PubMed  Article  Google Scholar 

    17.
    Bessey, C. et al. Maximizing fish detection with eDNA metabarcoding. Environ. DNA 2, 493–504, https://doi.org/10.1002/edn3.74 (2020).
    Article  Google Scholar 

    18.
    Harrison, J. B., Sunday, J. M. & Rogers, S. M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. Ser. B 286, 20191409 (2019).
    CAS  Article  Google Scholar 

    19.
    Seymour, M. et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun. Biol. 1, https://doi.org/10.1038/s42003-017-0005-3 (2018).

    20.
    Deiner, K. & Altermatt, F. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9, e88786 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Mächler, E., Deiner, K., Spahn, F. & Altermatt, F. Fishing in the water: effect of sampled water volume on environmental DNA-based detection of macroinvertebrates. Environ. Sci. Technol. 50, 305–312 (2016).
    PubMed  Article  CAS  Google Scholar 

    22.
    Hanfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).
    PubMed  Article  CAS  Google Scholar 

    23.
    Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9, 3085 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    McQuillan, J. S. & Robidart, J. C. Molecular-biological sensing in aquatic environments: recent developments and emerging capabilities. Curr. Opin. Biotechnol. 45, 43–50 (2017).
    CAS  PubMed  Article  Google Scholar 

    25.
    Schabacker, J. C. et al. Increased eDNA detection sensitivity using a novel high-volume water sampling method. Environ. DNA 2, 244–251 (2020).
    Article  Google Scholar 

    26.
    Mariani, S., Baillie, C., Colosimo, G. & Riesgo, A. Sponges as natural environmental DNA samples. Curr. Biol. 29, R395–R402 (2019).
    Article  CAS  Google Scholar 

    27.
    Keesing, J., Webber, B.L. & Hardiman, L. Ashmore Reef Marine Park Environmental Assessment. Final report to director of National Park (2020).

    28.
    Kirtane, A., Atkinson, J. D. & Sassoubre, L. Design and validation of passive environmental DNA samplers using granular activated carbon and montmorillonite clay. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c01863 (2020).
    Article  PubMed  Google Scholar 

    29.
    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. Resour. 21, 1789–1793 (2012).
    CAS  Article  Google Scholar 

    30.
    Fonseca, V. G. Pitfalls in relative abundance estimation using eDNA metabarcoding. Mol. Ecol. Resour. 18, 923–926 (2018).
    CAS  Article  Google Scholar 

    31.
    Lamb, P. D. et al. How quantitative is metabarcoding: a meta-analytical approach. Mol. Ecol. 28, 420–430 (2019).
    PubMed  Article  Google Scholar 

    32.
    Derocles, S. A. P. et al. Biomonitoring for the 21st century: integrating next-generation sequencing into ecological network analysis. Adv. Ecol. Res. 58, 1–62 (2018).
    Article  Google Scholar 

    33.
    Prosser, J. I. Replicate or lie. Environ. Microbiol. 12, 1806–1810 (2010).
    CAS  PubMed  Article  Google Scholar 

    34.
    MacKenzie, D. I. What are the issues with presence-absence data for wildlife managers? J. Wildl. Manag. 69, 849–860 (2005).
    Article  Google Scholar 

    35.
    Liang, Z. & Keeley, A. Filtration recovery of extracellular DNA from environmental water samples. Environ. Sci. Technol. 47, 9324–9331 (2013).
    CAS  PubMed  Article  Google Scholar 

    36.
    Renshaw, M. A., Olds, B. P., Jerde, C. L., McVeigh, M. M. & Lodge, D. M. The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol. Ecol. Resour. 15, 168–176 (2015).
    CAS  PubMed  Article  Google Scholar 

    37.
    Eichmiller, J. J., Miller, L. M. & Sorensen, P. W. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Mol. Ecol. Resour. 16, 56–68 (2016).
    CAS  PubMed  Article  Google Scholar 

    38.
    Majaneva, M. et al. Environmental DNA filtration techniques affect recovered biodiversity. Sci. Rep. 8, 4682 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Stier, A. C., Bolker, B. M. & Osenberg, C. W. Using rarefaction to isolate the effects of patch size and sampling effort on beta diversity. Ecosphere 7, e01612 (2016).
    Article  Google Scholar 

    40.
    Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).
    Article  Google Scholar 

    41.
    Strickland, G. J. & Roberts, J. H. Utility of eDNA and occupancy models for monitoring an endangered fish across diverse riverine habitats. Hydrobiologia 826, 129–144 (2019).
    CAS  Article  Google Scholar 

    42.
    Deagle, B. E. et al. Counting with DNA metabarcoding studies: how should we convert sequence reads to dietary data? Mol. Ecol. 28, 391–406 (2019).

    43.
    Shogren, A. J. et al. Controls on eDNA movement in streams: transport, retention, and resuspension. Sci. Rep. 7, 5065 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: a case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Deagle, B. E. et al. Studying seabird diet through genetic analysis of faeces: a case study on Macaroni penguins (Eudyptes chrysolophus). PLoS ONE 2, e831 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Murray, D. C., Coghlan, M. L. & Bunce, M. From benchtop to desktop: important considerations when designing amplicon sequencing workflows. PLoS ONE 10, e0124671 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Benson, D. A. et al. GenBank. Nucleic Acids Res. 42, D32–D37 (2014).
    CAS  PubMed  Article  Google Scholar 

    48.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Paradis, E. APE 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
    CAS  Article  PubMed  Google Scholar 

    50.
    Baselga, A. & Orme, C. D. L. Betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
    Article  Google Scholar 

    51.
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
    Article  Google Scholar 

    52.
    Herve, M. RVAideMemoire, testing and plotting procedures for biostatistics. https://cran.r-project.org/web/packages/RVAideMemoire/index.html (2018). More

  • in

    Allelopathic effect of Artemisia argyi on the germination and growth of various weeds

    The chemical components analysis of different extracts of A. argyi
    In our preliminary study, we accidentally found that A. argyi powder significantly inhibited the germination and reduced the varieties and biomass of weeds in the field, when it was applied as a fertilizer originally. Therefore, we speculated that certain allelochemicals present in A. argyi might inhibit the growth of weeds. To investigated the possible allelochemicals in A. argyi, three solvents (water, 50% ethanol and pure ethanol) were used to extract the metabolites in A. argyi leaves. The three type of extracts were analysed by UPLC-Q-TOF-MS and the components were confirmed by comparison with synthetic standards and MS data in literatures9,10,11. As shown in Table 1 and supplement Fig. 1, we have identified a total of 29 components in A. argyi. Six main compound mass signals were identified in the water extract: caffeic acid, schaftoside, 4-caffeoylquinic acid, 5-caffeoylquinic acid, 3,5-dicaffeoylquinic acid and 3-caffeoylquinic acid. The main compounds of the 50% ethanol extract were 4,5-dicaffeoylquinic acid, 3-caffeoylquinic acid, schaftoside, rutin, kaempferol 3-rutinoside, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3-caffeoy,1-p-coumaroylquinic acid, 1,3,4-tri-caffeoylquinic acid and eupatilin. The metabolites with higher contents in the pure ethanol extract were eupatilin, jaceosidin and casticin. Among these compounds, caffeic acid is very unique in water extract. Higher contents of schaftoside, 4-caffeoylquinic acid and 3-caffeoylquinic acid were observed in water extract and 50% ethanol extract, but very low concentrations were detected in the pure ethanol extract. 3,4-dicaffeoylquinic acid, jaceosidin, eupatilin and casticin were present at higher concentrations in the 50% ethanol extract and pure ethanol extract, but were detected at very low concentrations or were absent in the water-soluble extract. In a word, we have preliminarily identified the chemical components of different extracts.
    Table 1 The chemical composition of different solvent extracts of A. argyi.
    Full size table

    Comparison of the allelopathic effects of different extracts of A. argyi
    To explore the allelopathic effects of three different extracts of A. argyi, seed germination and seedling growth of B. pekinensis, L. sativa and O. sativa were investigated after treatment of A. argyi powder extracts. The results showed that the allelopathic inhibition increased in a concentration dependent manner. When seeds were incubated with extracts in a range of concentrations, the water-soluble extract of A. argyi powder exerted an extremely significant inhibitory effect on the germination index of all the three plants (Fig. 1a,b). While the 50% ethanol extract also showed striking allelopathic inhibitory effects on the germination index of B. pekinensis and L. sativa, but moderately inhibitory effects on O. sativa (Fig. 1c,d). Similarly, the pure ethanol extract only showed powerful inhibitory effects on the germination index of B. pekinensis and L. sativa, but no effects on O. sativa (Fig. 1e,f). Additionally, the water-soluble extract of A. argyi powder displayed extremely inhibition of the biomass of the three plants (Fig. 2a), while the 50% ethanol extract also exerted extremely significant allelopathic inhibitory effects on the biomass of B. pekinensis and L. sativa but inhibited O. sativa moderately (Fig. 2b). However, the pure ethanol extract exerted inhibitory effects on the biomass of these three plants only in high concentrations (Fig. 2c). Based on these results, the allelopathic intensity of the three different extracts of A. argyi was in the order of water-soluble extract  > 50% ethanol extract  > pure ethanol extract.
    Figure 1

    The different solvent exracts of A. argyi: (a,b) the water-soluble extract, (c,d) the 50% ethanol extract,and (e,f) the pure ethanol extract exert allelopathic effects on germination index of different plants. (n = 3,*P  germination index  > biomass  > germination rate  > root length  > stem length. All allelopathy response indexes reached -1.00 when plants were treated with 150 mg/ml extract. For O. sativa, the six physiological indexes also could be inhibited by a low concentration of extract (50 mg/ml), but the changes were not as obvious as the changes in B. pekinensis and L. sativa. The intensity of inhibition on the six indexes was root length  > stem length  > biomass  > germination index  > germination speed index  > germination rate. When O. sativa seeds treated with 100 mg/ml of extract, the allelopathic response index of root length and stem length were -1.00. The germination rate, germination speed index, germination index and biomass were -0.79, -0.91, -0.91 and -0.84, respectively, under the treatment with 150 mg/ml of extract. In brief, according to the comprehensive allelopathy index of the 6 indicators , the order in which they were sensitive to water-soluble extract of A. argyi were B. pekinensis (Cruciferae)  > L. sativa (Compositae)  > O. sativa (Gramineae).
    Figure 3

    The water-soluble extract of A. argyi inhibits the germination and growth of Brassica pekinensis, Lactuca sativa and Oryza sativa. Specific performance is in a series of indicators: (a) the germination rate, (b) the germination speed index, (c) the root length, (d) the stem length. (n = 3,*P  More