1.
Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).
CAS PubMed Article PubMed Central Google Scholar
2.
Franklin, T. B., Linder, N., Russig, H., Thöny, B. & Mansuy, I. M. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS ONE 6, e21842. https://doi.org/10.1371/journal.pone.0021842 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
3.
Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).
CAS PubMed PubMed Central Article Google Scholar
4.
McCarthy, D. M. et al. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol. 16, e2006497. https://doi.org/10.1371/journal.pbio.2006497 (2018).
CAS Article PubMed PubMed Central Google Scholar
5.
Alfonso, S. et al. Examining multi- and transgenerational behavioral and molecular alterations resulting from parental exposure to an environmental PCB and PBDE mixture. Aquat. Toxicol. 208, 29–38 (2019).
CAS PubMed Article PubMed Central Google Scholar
6.
Anway, M. D., Memon, M. A., Uzumcu, M. & Skinner, M. K. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J. Androl. 27, 868–879 (2006).
CAS PubMed Article PubMed Central Google Scholar
7.
Crews, D. et al. Transgenerational epigenetic imprints on mate preference. PNAS 104, 5942–5946 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
8.
Crews, D. et al. Epigenetic transgenerational inheritance of altered stress responses. PNAS 109, 9143–9148 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
9.
Gillette, R. et al. Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology 155, 3853–3866 (2014).
PubMed PubMed Central Article CAS Google Scholar
10.
Gillette, R., Son, M. J., Ton, L., Gore, A. C. & Crews, D. Passing experiences on to future generations: endocrine disruptors and transgenerational inheritance of epimutations in brain and sperm. Epigenetics 13, 1106–1126 (2018).
PubMed PubMed Central Article Google Scholar
11.
Bhandari, R., Saal, F. & vom Tillitt, D. Transgenerational effects from early developmental exposures to bisphenol A or 17α-ethinylestradiol in medaka Oryzias latipes. Sci. Rep. 5, 9303. https://doi.org/10.1038/srep09303 (2015).
CAS Article PubMed PubMed Central Google Scholar
12.
Kidd, K. A. et al. Collapse of a fish population after exposure to a synthetic estrogen. PNAS 104, 8897–8901 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
13.
Skinner, M. K. et al. Gene bionetworks involved in the epigenetic transgenerational inheritance of altered mate preference: environmental epigenetics and evolutionary biology. BMC Genom. 15, 377. https://doi.org/10.1186/1471-2164-15-377 (2014).
Article Google Scholar
14.
Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006).
PubMed Article PubMed Central Google Scholar
15.
Moisiadis, V. G. & Matthews, S. G. Glucocorticoids and fetal programming part 1: outcomes. Nature 10, 391–402 (2014).
CAS Google Scholar
16.
Crean, A. J. & Bondurianksy, R. What is a paternal effect?. Trends Ecol. Evol. 29, 554–559 (2014).
PubMed Article PubMed Central Google Scholar
17.
Champagne, F. A. Interplay between paternal germline and maternal effects in shaping development: the overlooked importance of behavioural ecology. Funct. Ecol. 34, 401–413 (2019).
Article Google Scholar
18.
Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).
CAS PubMed Article PubMed Central Google Scholar
19.
Reznik, S. Y., Vaghina, N. P. & Voinovich, N. D. Multigenerational maternal effect on diapause induction in Trichogramma species (Hymenoptera: Trichogrammatidae). Biocontrol Sci. Technol. 22, 429–445 (2012).
Article Google Scholar
20.
Rechavi, O. et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277–287 (2014).
CAS PubMed PubMed Central Article Google Scholar
21.
Shama, L. N. S. et al. Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean. Evol. Appl. 9, 1096–1111 (2016).
CAS PubMed PubMed Central Article Google Scholar
22.
Dunn, G. A. & Bale, T. L. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152, 2228–2236 (2011).
CAS PubMed PubMed Central Article Google Scholar
23.
Skinner, M. K. et al. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 11, 228. https://doi.org/10.1186/1741-7015-11-228 (2013).
CAS Article PubMed PubMed Central Google Scholar
24.
Zhu, J., Lee, K. P., Spencer, T. J., Biederman, J. & Bhide, P. G. Transgenerational transmission of hyperactivity in a mouse model of ADHD. J. Neurosci. 34, 2768–2773 (2014).
CAS PubMed PubMed Central Article Google Scholar
25.
Leroux, S. et al. Embryonic environment and transgenerational effects in quail. Genet. Sel. Evol. 49, 14. https://doi.org/10.1186/s12711-017-0292-7 (2017).
CAS Article PubMed PubMed Central Google Scholar
26.
Vera-Chang, M. N. et al. Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. PNAS 115, E12435–E12442 (2018).
CAS PubMed Article PubMed Central Google Scholar
27.
Sheriff, M. J., McMahon, E. K., Krebs, C. J. & Boonstra, R. Risk severity predicts generational impact. J. Zool. 296, 305–310 (2015).
Article Google Scholar
28.
Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).
CAS PubMed Article PubMed Central Google Scholar
29.
He, N. et al. Parental life events cause behavioral difference among offspring: adult pre-gestational restraint stress reduces anxiety across generations. Sci. Rep. 6, 39497. https://doi.org/10.1038/srep39497 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
30.
Pentinat, T., Ramon-Krauel, M., Cebria, J., Diaz, R. & Jimenez-Chillaron, J. C. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 151, 5617–5623 (2010).
CAS PubMed Article PubMed Central Google Scholar
31.
Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. PNAS 111, 1873–1878 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
32.
Cropley, J. E. et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol. Metab. 5, 699–708 (2016).
CAS PubMed PubMed Central Article Google Scholar
33.
Dunn, G. A., Morgan, C. P. & Bale, T. L. Sex-specificity in transgenerational epigenetic programming. Horm. Behav. 59, 290–295 (2011).
PubMed Article PubMed Central Google Scholar
34.
Glover, V. & Hill, J. Sex differences in the programming effects of prenatal stress on psychopathology and stress responses: an evolutionary perspective. Physiol. Behav. 106, 736–740 (2012).
CAS PubMed Article PubMed Central Google Scholar
35.
Saavedra-Rodríguez, L. & Feig, L. A. Chronic social instability induces anxiety and defective social interactions across generations. Biol. Psychiatry 73, 44–53 (2013).
PubMed Article PubMed Central Google Scholar
36.
Moisiadis, V. G., Constantinof, A., Kostaki, A., Szyf, M. & Matthews, S. G. Prenatal glucocorticoid exposure modifies endocrine function and behaviour for 3 generations following maternal and paternal transmission. Sci. Rep. 7, 11814. https://doi.org/10.1038/s41598-017-11635-w (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
37.
Hellmann, J. K., Carlson, E. R. & Bell, A. M. Sex-specific plasticity across generations II: grandpaternal effects are lineage specific and sex specific. J. Anim. Ecol. 89, 2800–2812 (2020).
Article Google Scholar
38.
gene duplications and functional diversification in Craniates. Le Crom, S., Kapsimali, M., Barome, P-O. & Vernier, P. Dopamine receptors for every species. J. Struct. Funct. Genomics 3, 161–176 (2003).
Article Google Scholar
39.
Melis, M. R. & Argiolas, A. Dopamine and sexual behavior. Neurosci. Biobehav. R. 19, 19–38 (1995).
CAS Article Google Scholar
40.
Pfaus, J. G., Ismail, N. & Coria-Avila, G. A. Sexual motivation. In Encyclopedia of Behavioral Neuroscience (eds. Koob, G. F., Le Moal, M. & Thompson, R. F.) 201–-209 (Oxford, Oxford Academic Press, 2010).
41.
Bardo, M. T., Donohew, R. L. & Harrington, N. G. Psychobiology of novelty seeking and drug seeking behavior. Behav. Brain Res. 77, 23–43 (1996).
CAS PubMed Article PubMed Central Google Scholar
42.
Mällo, T. et al. Rats with persistently low or high exploratory activity: behaviour in tests of anxiety and depression and extracellular levels of dopamine. Behav. Brain Res. 177, 269–281 (2006).
ADS PubMed Article CAS PubMed Central Google Scholar
43.
Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: a meta-analysis. Behav. Ecol. 19, 448–455 (2007).
Article Google Scholar
44.
Csoka, A. B. & Szyf, M. Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med. Hypotheses 73, 770–780 (2009).
CAS PubMed Article PubMed Central Google Scholar
45.
Kuczenski, R. & Segal, D. S. Effects of methylphenidate on extracellular dopamine serotonin, and norepinephrine: comparison with amphetamine. J. Neurochem. 68, 2032–2037 (1997).
CAS PubMed Article PubMed Central Google Scholar
46.
Gamo, N. J., Wang, M. & Arnsten, A. F. T. Methylphenidate and atomoxetine enhance prefrontal function through α2-adrenergic and dopamine D1 receptors. J. Am. Acad. Child Adolesc. Psychiatry 49, 1011–1023 (2010).
PubMed PubMed Central Article Google Scholar
47.
Greenhill, L. L. et al. Guidelines and algorithms for the use of methylphenidate in children with attention-deficit/hyperactivity disorder. J. Atten. Disord. 6, S89–S100 (2002).
PubMed Article PubMed Central Google Scholar
48.
Kessler, R. C. et al. The prevalence and correlates of adult ADHD in the United States: results from the national comorbidity survey replication. Am. J. Psychiatry 163, 716–723 (2006).
PubMed PubMed Central Article Google Scholar
49.
Visser, S. N. et al. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003–2011. J. Am. Acad. Child. Psychiatry 53, 34–46 (2014).
Article Google Scholar
50.
Karlstad, Ø. et al. Use of drugs for ADHD among adults—a multinational study among 15.8 million adults in the Nordic countries. Eur. J. Clin. Pharmacol. 72, 1507–1514 (2016).
PubMed PubMed Central Article Google Scholar
51.
Biederman, J. Attention-deficit/hyperactivity disorder: a selective overview. Biol. Psychiatry 57, 1215–1220 (2005).
PubMed Article PubMed Central Google Scholar
52.
McFadyen-Leussis, M. P., Lewis, S. P., Bond, T. L. Y., Carrey, N. & Brown, R. E. Prenatal exposure to methylphenidate hydrochloride decreases anxiety and increases exploration in mice. Pharmacol. Biochem. Behav. 77, 491–500 (2004).
CAS PubMed Article PubMed Central Google Scholar
53.
Levin, E. D. et al. 2011. Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish. Neurotoxicol. Teratol. 33, 668–673 (2011).
54.
Lloyd, S. A. et al. Prenatal exposure to psychostimulants increases impulsivity, compulsivity, and motivation for rewards in adult mice. Physiol. Behav. 119, 43–51 (2013).
CAS PubMed Article PubMed Central Google Scholar
55.
Lepelletier, F. X. et al. Prenatal exposure to methylphenidate affects the dopamine system and the reactivity to natural reward in adulthood in rats. Int. J. Neuropsychoph. https://doi.org/10.1093/ijnp/pyu044 (2015).
Article Google Scholar
56.
Montagnini, B. G. et al. Effects of repeated administration of methylphenidate on reproductive parameters in male rats. Physiol. Behav. 133, 122–129 (2014).
CAS PubMed Article PubMed Central Google Scholar
57.
He, F., Lidow, I. A. & Lidow, M. S. Consequences of paternal cocaine exposure in mice. Neurotoxicol. Teratol. 28, 198–209 (2006).
CAS PubMed Article PubMed Central Google Scholar
58.
Killinger, C. E., Robinson, S. & Stanwood, G. D. Subtle biobehavioral effects produced by paternal cocaine exposure. Synapse 66, 902–908 (2012).
CAS PubMed PubMed Central Article Google Scholar
59.
Vassoler, F. M., White, S. L., Schmidt, H. D., Sadri-Vakili, G. & Pierce, R. C. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci. 16, 42–67 (2013).
CAS PubMed Article PubMed Central Google Scholar
60.
Fischer, D. K., Rice, R. C., Rivera, A. M., Donohoe, M. & Rajadhyaksha, A. M. Altered reward sensitivity in female offspring of cocaine-exposed fathers. Behav. Brain Res. 332, 23–31 (2017).
CAS PubMed PubMed Central Article Google Scholar
61.
Wimmer, M. E. et al. Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Mol. Psychiatry 22, 1641–1650 (2017).
CAS PubMed PubMed Central Article Google Scholar
62.
Yano, M. & Steiner, H. Methylphenidate and cocaine: the same effects on gene regulation?. Trends Pharmacol. Sci. 28, 588–596 (2007).
CAS PubMed Article PubMed Central Google Scholar
63.
Hall, Z. J., De Serrano, A. R., Rodd, F. H. & Tropepe, V. Casting a wider fish net on animal models in neuropsychiatric research. Prog. Neuropsychopharmacol. Biol. Psychiatry 55, 7–15 (2014).
PubMed Article PubMed Central Google Scholar
64.
Fontana, B. D., Mezzomo, N. J., Kalueff, A. V. & Rosemberg, D. B. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: a critical review. Exp. Neurol. 299, 157–171 (2018).
PubMed Article PubMed Central Google Scholar
65.
Reznick, D. N. The impact of predation on life history evolution in Trinidadian guppies: genetic basis of observed life history patterns. Evolution 36, 1236–1250 (1982).
PubMed Article PubMed Central Google Scholar
66.
DeMarais, A. & Oldis, D. Matrotrophic transfer of fluorescent microspheres in Poeciliid fishes. Copeia 3, 632–636 (2005).
Article Google Scholar
67.
Hughes, K. A., Du, L., Rodd, F. H. & Reznick, D. N. Familiarity leads to female mate preference for novel males in the guppy Poecilia reticulata. Anim. Behav. 58(907), 916 (1999).
Google Scholar
68.
Rodd, F. H., Hughes, K. A., Grether, G. F. & Baril, C. T. A possible non-sexual origin of mate preference: are male guppies mimicking fruit?. Proc. R. Soc. B Biol. Sci. 269, 475–481 (2002).
Article Google Scholar
69.
Valvo, J., Rodd, F. H. & Hughes, K. A. Consistent female preference for rare and unfamiliar male color patterns in wild guppy populations. Behav. Ecol. 30, 1672–1681 (2019).
Article Google Scholar
70.
Daniel, M. J., Koffinas, L. & Hughes, K. A. Mating preference for novel phenotypes can be explained by general neophilia in female guppies. Am. Nat. 196, 414–428 (2020).
PubMed Article PubMed Central Google Scholar
71.
Deacon, A. E., Ramnarine, I. W. & Magurran, A. E. How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 6, e24416. https://doi.org/10.1371/journal.pone.0024416 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
72.
Hughes, K. A., Houde, A. E., Price, A. C. & Rodd, F. H. Mating advantage for rare males in wild guppy populations. Nature 503, 108–110 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
73.
De Serrano, A. R., Fong, C. & Rodd, F. H. Effects of methylphenidate on responses to novelty in a teleost fish (Poecilia reticulata). Behav. Brain Res. 302, 53–59 (2016).
PubMed Article CAS PubMed Central Google Scholar
74.
Schmitz, F. et al. Methylphenidate causes behavioral impairments and neuron and astrocyte loss in the hippocampus of juvenile rats. Mol. Neurobiol. 54, 4201–4216 (2016).
PubMed Article CAS PubMed Central Google Scholar
75.
Bolaños, C. A., Barrot, M., Berton, O., Wallace-Black, D. & Nestler, E. J. Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol. Psychiatry 54, 1317–1329 (2003).
PubMed Article CAS PubMed Central Google Scholar
76.
Bell, A. M. & Hellman, J. K. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annu. Rev. Ecol. Evol. S. 50, 97–118 (2019).
Article Google Scholar
77.
Walsh, R. N. & Cummins, R. A. Open-field test—critical review. Psychol. Bull. 83, 482–504 (1976).
CAS PubMed Article PubMed Central Google Scholar
78.
Hill, M. O. Correspondence analysis: a neglected multivariate method. J. R. Stat. Soc. C Appl. 23, 340–354 (1974).
MathSciNet Google Scholar
79.
Godin, J. G. J. Evading predators. In Behavioural Ecology of Teleost Fishes (ed. Godin, J. G. J.) 191–236 (Oxford, Oxford University Press, 1997).
80.
Sih, A. Foraging strategies and the avoidance of predation by an aquatic insect Notonecta Hoffmanni. Ecology 63(786), 796 (1982).
Google Scholar
81.
McPeek, M. A., Grace, M. & Richardson, J. M. L. Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselflies. Ecology 82, 1535–1545 (2001).
Article Google Scholar
82.
Burns, J. G. The validity of three tests of temperament in guppies (Poecilia reticulata). J. Comp. Psychol. 122, 344–356 (2008).
PubMed Article PubMed Central Google Scholar
83.
Morris, S. M. et al. The genetic toxicity of methylphenidate: a review of the current literature. J. Appl. Toxicol. 32, 756–764 (2012).
CAS PubMed Article PubMed Central Google Scholar
84.
SAS Institute. SAS/STAT 9.4 User’s Guide (SAS Institute, Cary, 2013).
85.
Seghers, B. H. Feeding behavior and terrestrial locomotion in the cyprinodontid fish, Rivulus harti (Boulenger). Verh. Internat. Verein. Limnol. 20, 2055–2059 (1978).
Google Scholar
86.
Mattingly, H. T. & Butler, M. J. Laboratory predation on the Trinidadian guppy: implications for the size-selective predation hypothesis and guppy life history evolution. OIKOS 69, 54–64 (1994).
Article Google Scholar
87.
Reznick, D. N., Butler, M. J., Rodd, F. H. & Ross, P. N. Life history evolution in guppies (Poecilia reticulata): 6—differential mortality as a mechanism for natural selection. Evolution 50, 1651–1660 (1996).
PubMed PubMed Central Google Scholar
88.
Bijlsma, L., Emke, E., Hernandez, F. & de Voogt, P. Investigation of drugs of abuse and relevant metabolites in Dutch sewage water by liquid chromatography coupled to high resolution mass spectrometry. Chemosphere 89, 1399–1406 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
89.
Racamonde, I., Rodil, R., Quintana, J. B., Villaverde-de-Saa, E. & Cela, R. Determination of benzodiazepines, related pharmaceuticals and metabolites in water by solid-phase extraction and liquid-chromatography-tandem mass spectrometry. J. Chromatogr. A 1352, 69–79 (2014).
CAS PubMed Article PubMed Central Google Scholar
90.
Laland, K. et al. Does evolutionary theory need a rethink?. Nature 514, 161–164 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
91.
Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 9, 2973. https://doi.org/10.1038/s41467-018-05445-5 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
92.
Soubry, A., Hoyo, C., Jirtle, R. L. & Murphy, S. K. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays 36, 359–371 (2014).
CAS PubMed PubMed Central Article Google Scholar
93.
Hughes, L. C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. PNAS 115, 6249–6254 (2018).
CAS PubMed Article PubMed Central Google Scholar
94.
Wang, X. & Bhandari, R. K. DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Epigenetics 14, 611–622 (2019).
PubMed PubMed Central Article Google Scholar
95.
Wang, X. & Bhandari, R. K. The dynamics of DNA methylation during epigenetic reprogramming of primordial germ cells in medaka (Oryzias latipes). Epigenetics 15, 483–498 (2020).
PubMed Article PubMed Central Google Scholar
96.
Furchtgott, E., Dees, J. W. & Wechkin, S. Open-field exploration as a function of age. J. Comp. Physiol. Psychol. 54, 386–388 (1961).
CAS PubMed Article PubMed Central Google Scholar
97.
Werboff, J. & Havlena, J. The effects of aging on open-field behavior. Psychol. Rep. 10, 395–398 (1962).
Article Google Scholar
98.
Valle, F. P. Rats performance on repeated tests in open field as a function of age. Psychon. Sci. 23, 333–335 (1971).
Article Google Scholar
99.
Franklin, T. B. et al. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415 (2010).
PubMed Article PubMed Central Google Scholar
100.
McBirney, M. et al. Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers. PLoS One 12, e0184306. https://doi.org/10.1371/journal.pone.0184306 (2017).
CAS Article PubMed PubMed Central Google Scholar
101.
Becker, J. B. & Chartoff, E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology 44, 166–183 (2019).
CAS PubMed Article PubMed Central Google Scholar
102.
Rubinow, D. R. & Schmidt, P. J. Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 44, 111–128 (2019).
PubMed Article PubMed Central Google Scholar
103.
Eriksson, K., Halkka, O., Lokki, J. & Saura, A. Enzyme polymorphism in feral, outbred and inbred rats (Rattus norvegicus). Heredity 37, 341–349 (1976).
CAS PubMed Article PubMed Central Google Scholar
104.
Connor, J. L. & Belucci, M. J. Natural selection resisting inbreeding depression in captive wild housemice (Mus musculus). Evolution 33, 929–940 (1979).
PubMed Article PubMed Central Google Scholar
105.
Mina, N. S., Sheldon, B. L., Yoo, B. H. & Frankham, R. Heterozygosity at protein loci in inbred and outbred lines of chickens. Poult. Sci. 70, 1864–1872 (1991).
CAS PubMed Article PubMed Central Google Scholar
106.
Turissini, D. A., Gamez, S. & White, B. J. Genome-wide patterns of polymorphism in an inbred line of the African malaria mosquito Anopheles gambiae. Genome Biol. Evol. 6, 3094–3104 (2014).
PubMed PubMed Central Article CAS Google Scholar
107.
Gray, J. D. et al. Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviors, appetite, and stress. J. Neurosci. 27, 7196–7207 (2007).
CAS PubMed PubMed Central Article Google Scholar
108.
Marco, E. M. et al. Neurobehavioral adaptations to methylphenidate: the issue of early adolescent exposure. Neurosci. Biobehav. Rev. 35, 1722–1739 (2011).
CAS PubMed Article PubMed Central Google Scholar
109.
American Psychiatric Association. Attention-deficit/hyperactivity disorder. In Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (American Psychiatric Association, Philadelphia, 2014).
110.
Novartis Pharmaceuticals Canada Inc. Product monograph for Ritalin and Ritalin SR (2017).
111.
Brenhouse, H. C. & Andersen, S. L. Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci. Biobehav. Rev. 35, 1687–1703 (2011).
PubMed PubMed Central Article Google Scholar
112.
Houde, A. E. Sex, Color, and Mate Choice in Guppies (Princeton, Princeton University Press, 1997).
Google Scholar
113.
Yoshida, M., Nagamine, M. & Uematsu, K. Comparison of behavioral responses to a novel environment between three teleosts, bluegill Lepomis macrochirus, crucian carp Carassius langsdorfii, and goldfish Carassius auratus. Fisheries Sci. 71, 314–319 (2005).
CAS Article Google Scholar
114.
Blumstein, D. T., Evans, C. S. & Daniels, J. C. JWatcher (v. 1.0, 2006).
115.
Ahmad, F. & Richardson, M. K. Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity. Behav. Process. 92, 88–98 (2013).
Article Google Scholar
116.
Burns, J. G., Price, A. C., Thomson, J. D., Hughes, K. A. & Rodd, F. H. Environmental and genetic effects on exploratory behavior of high- and low-predation guppies (Poecilia reticulata). Behav. Ecol. Sociobiol. 70, 1187–1196 (2016).
Article Google Scholar
117.
Marriott, A. S. The effects of amphetamine, caffeine and methylphenidate on the locomotor activity of rats in an unfamiliar environment. Int. J. Neuropharmacol. 7, 487–491 (1968).
CAS PubMed Article PubMed Central Google Scholar
118.
Dyne, L. J. & Hughes, R. N. Effects of methylphenidate on activity and reactions to novelty in rats. Psychon. Sci. 19, 267–268 (1970).
Article Google Scholar
119.
R Core Team. R: A Language and Environment for Statistical Computing (Vienna, R Foundation for Statistical Computing, 2018).
120.
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, Berlin, 2002).
Google Scholar
121.
Volkow, N. D. et al. Dopamine transporters decrease with age. J. Nucl. Med. 37, 554–559 (1996).
CAS PubMed PubMed Central Google Scholar
122.
Andersen, S. L. & Teicher, M. H. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 24, 137–141 (2000).
CAS PubMed Article PubMed Central Google Scholar
123.
Arvidsson, E., Viereckel, T., Mikulovic, S. & Wallén-Mackenzie, Å. Age- and sex-dependence of dopamine release and capacity for recovery identified in the dorsal striatum of C57/Bl6J mice. PLoS One 9, e99592. https://doi.org/10.1371/journal.pone.0099592 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
124.
Faraone, S. V., Biederman, J., Morley, C. P. & Spencer, T. J. Effect of stimulants on height and weight: a review of the literature. J. Am. Acad. Child Adolesc. Psychiatry 47, 994–1009 (2008).
PubMed PubMed Central Google Scholar
125.
Tempelman, R. J. & Rosa, G. J. M. Empirical Bayes approaches to mixed model inference in quantitative genetics. In Genetic Analysis of Complex Traits Using SAS (ed. Saxton, A.) (SAS Institute, Cary, 2004).
126.
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
Article Google Scholar
127.
Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D. & Schabenberger, O. SAS for Mixed Models (SAS Institute, Cary, 2006).
Google Scholar More