Social signals mediate oviposition site selection in Drosophila suzukii
1.
Prokopy, R. J. & Roitberg, B. D. Joining and avoidance behavior in nonsocial insects. Annu. Rev. Entomol. 46, 631–665 (2001).
CAS PubMed Article Google Scholar
2.
Rudolf, V. H. & Rödel, M. O. Oviposition site selection in a complex and variable environment: the role of habitat quality and conspecific cues. Oecologia 142, 316–325 (2005).
ADS PubMed Article PubMed Central Google Scholar
3.
Carrasco, D., Larsson, M. C. & Anderson, P. Insect host plant selection in complex environments. Curr. Opin. Insect Sci. 8, 1–7 (2015).
PubMed Article PubMed Central Google Scholar
4.
Dall, S. R., Giraldeau, L. A., Olsson, O., McNamara, J. M. & Stephens, D. W. Information and its use by animals in evolutionary ecology. Trends Ecol. Evol. 20, 187–193 (2005).
PubMed Article PubMed Central Google Scholar
5.
Kennedy, G. G. & Storer, N. P. Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annu. Rev. Entomol. 45, 467–493 (2000).
CAS PubMed Article PubMed Central Google Scholar
6.
Prokopy, R. J. Marking pheromones. In: Capinera J. L. (eds) Encyclopedia of Entomology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6359-6_1730 (2008).
7.
Edmunds, A. J., Aluja, M., Diaz-Fleischer, F., Patrian, B. & Hagmann, L. Host marking pheromone (HMP) in the Mexican fruit fly Anastrepha ludens. CHIMIA Int. J. Chem. 64, 37–42 (2010).
CAS Article Google Scholar
8.
Hauser, M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag. Sci. 67, 1352–1357 (2011).
CAS PubMed Article PubMed Central Google Scholar
9.
Calabria, G., Máca, J., Bächli, G., Serra, L. & Pascual, M. First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Entomol. 136, 139–147 (2012).
Article Google Scholar
10.
Deprá, M., Poppe, J. L., Schmitz, H. J., De Toni, D. C. & Valente, V. L. The first records of the invasive pest Drosophila suzukii in the South American continent. J. Pest Sci. 87, 379–383 (2014).
Article Google Scholar
11.
Hassani, I. M. et al. First occurrence of the pest Drosophila suzukii (Diptera: Drosophilidae) in the Comoros Archipelago (Western Indian Ocean). Afr. Entomol. 28, 78–83 (2020).
Article Google Scholar
12.
Bellamy, D. E., Sisterson, M. S. & Walse, S. S. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukii. PLoS One, 8, e61227. https://doi.org/10.1371/journal.pone.0061227 (2013).
13.
Lee, J. C. et al. Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 108, 117–129 (2015).
Article Google Scholar
14.
Kenis, M. et al. Non-crop plants used as hosts by Drosophila suzukii in Europe. J. Pest Sci. 89, 735–748 (2016).
Article Google Scholar
15.
Elsensohn, J. E. & Loeb, G. M. Non-crop host sampling yields insights into small-scale population dynamics of Drosophila suzukii (Matsumura). Insects 9, 5. https://doi.org/10.3390/insects9010005 (2018).
Article PubMed PubMed Central Google Scholar
16.
Mitsui, H., Takahashi, K. H. & Kimura, M. T. Spatial distributions and clutch sizes of Drosophila species ovipositing on cherry fruits of different stages. Pop. Ecol. 48, 233–237 (2006).
Article Google Scholar
17.
Atallah, J., Teixeira, L., Salazar, R., Zaragoza, G. & Kopp, A. The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 281, 20132840. https://doi.org/10.1098/rspb.2013.2840 (2014).
Article Google Scholar
18.
Crava, C. M. et al. Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. J. Insect Physiol. 125, 104088 (2020).
CAS PubMed Article Google Scholar
19.
Burrack, H. J., Fernandez, G. E., Spivey, T. & Kraus, D. A. Variation in selection and utilization of host crops in the field and laboratory by Drosophila suzukii Matsumara (Diptera: Drosophilidae), an invasive frugivore. Pest Manag. Sci. 69, 1173–1180 (2013).
CAS PubMed Article Google Scholar
20.
Karageorgi, M. et al. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr. Biol. 27, 847–853 (2017).
CAS PubMed PubMed Central Article Google Scholar
21.
Silva-Soares, N. F., Nogueira-Alves, A., Beldade, P. & Mirth, C. K. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii. BMC Ecol. 17, 21 (2017).
PubMed PubMed Central Article CAS Google Scholar
22.
Olazcuaga, L. et al. Oviposition preference and larval performance of Drosophila suzukii (Diptera: Drosophilidae), spotted-wing Drosophila: Effects of fruit identity and composition. Environ. Entomol. 48, 867–881 (2019).
PubMed Article Google Scholar
23.
Rendon, D. et al. Interactions among morphotype, nutrition, and temperature impact fitness of an invasive fly. Ecol. Evol. 9, 2615–2628 (2019).
PubMed PubMed Central Article Google Scholar
24.
Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G. & Syed, Z. Volatile codes: correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 5, 14059. https://doi.org/10.1038/srep14059 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
25.
Keesey, I. W. et al. Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J. Chem. Ecol. 42, 739–747 (2016).
CAS PubMed PubMed Central Article Google Scholar
26.
Lasa, R., Navarro-de-la-Fuente, L., Gschaedler-Mathis, A. C., Kirchmayr, M. R. & Williams, T. Yeast species, strains, and growth media mediate attraction of Drosophila suzukii (Diptera: Drosophilidae). Insects 10, 228. https://doi.org/10.3390/insects10080228 (2019).
Article PubMed Central PubMed Google Scholar
27.
Bellutti, N. et al. Dietary yeast affects preference and performance in Drosophila suzukii. J. Pest Sci. 91, 651–660 (2018).
Article Google Scholar
28.
Wallingford, A. K., Hesler, S. P., Cha, D. H. & Loeb, G. M. Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Manag. Sci. 72, 701–706 (2016).
CAS PubMed Article Google Scholar
29.
Tait, G. et al. Reproductive site selection: evidence of an oviposition cue in a highly adaptive dipteran, Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 49, 355–363 (2020).
CAS PubMed Article Google Scholar
30.
Lin, C. C., Prokop-Prigge, K. A., Preti, G. & Potter, C. J. Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. Elife 4, e08688. https://doi.org/10.7554/eLife.08688 (2015).
Article PubMed PubMed Central Google Scholar
31.
Duménil, C. et al. Pheromonal cues deposited by mated females convey social information about egg-laying sites in Drosophila melanogaster. J. Chem. Ecol. 42, 259–269 (2016).
PubMed PubMed Central Article CAS Google Scholar
32.
Barker, J. S. F. & Podger, R. N. Interspecific competition between Drosophila melanogaster and Drosophila simulans: effects of larval density on viability, developmental period and adult body weight. Ecol. 51, 170–189 (1970).
Article Google Scholar
33.
Rohlfs, M., Obmann, B. & Petersen, R. Competition with filamentous fungi and its implication for a gregarious lifestyle in insects living on ephemeral resources. Ecol. Entomol. 30, 556–563 (2005).
Article Google Scholar
34.
Durisko, Z., Anderson, B. & Dukas, R. Adult fruit fly attraction to larvae biases experience and mediates social learning. J. Exp. Biol. 217, 1193–1197 (2014).
PubMed Article Google Scholar
35.
Prokopy, R. J. & Duan, J. J. Socially facilitated egglaying behavior in Mediterranean fruit flies. Behav. Ecol. Sociobiol. 42, 117–122 (1998).
Article Google Scholar
36.
Elsensohn, J. Factors affecting oviposition behavior. In Drosophila suzukii (North Carolina State University, Raleigh, 2020).
37.
Hardin, J. A., Kraus, D. A. & Burrack, H. J. Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol. Exp. Appl. 156, 59–65 (2015).
CAS Article Google Scholar
38.
Averill, A. L. & Prokopy, R. J. Intraspecific competition in the tephritid fruit fly Rhagoletis pomonella. Ecol. 68, 878–886 (1987).
Article Google Scholar
39.
Arredondo, J. & Diaz-Fleischer, F. Oviposition deterrents for the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) from fly faeces extracts. Bull. Entomol. Res. 96, 35–42 (2006).
CAS PubMed Article Google Scholar
40.
Nufio, C. R. & Papaj, D. R. Host marking behavior in phytophagous insects and parasitoids. Entomol. Exp. Appl. 99, 273–293 (2001).
Article Google Scholar
41.
Papaj, D. R. Use and avoidance of occupied hosts as a dynamic process in tephritid flies. In Insect-Plant Interactions (ed. Bernays, E.A.) 25–46 (CRC Press, Boca Raton, 2017).
42.
Bernays, E.A. & Chapman, R.F. Behavior: the process of host-plant selection. In Host-Plant Selection by Phytophagous Insects Vol. 2. (eds. Bernays, E.A. & Chapman, R.F) 95–165 (Springer Science & Business Media, Berlin, 2007).
43.
Schoonhoven, L. M. Host-marking pheromones in Lepidoptera, with special reference to two Pieris spp. J. Chem. Ecol. 16, 3043–3052 (1990).
CAS PubMed Article PubMed Central Google Scholar
44.
Dancau, T., Stemberger, T. L., Clarke, P. & Gillespie, D. R. Can competition be superior to parasitism for biological control? The case of spotted wing Drosophila (Drosophila suzukii), Drosophila melanogaster and Pachycrepoideus vindemmiae. Biocontrol Sci. Tech. 27, 3–16 (2017).
Article Google Scholar
45.
Rosenheim, J. A. The relative contributions of time and eggs to the cost of reproduction. Evol. 53, 376–385 (1999).
Article Google Scholar
46.
Jiménez-Padilla, Y., Ferguson, L. V. & Sinclair, B. J. Comparing apples and oranges (and blueberries and grapes): fruit type affects development and cold susceptibility of immature Drosophila suzukii (Diptera: Drosophilidae). Can. Entomol. 152, 532–545 (2020).
Article Google Scholar
47.
Papaj, D. R. & Messing, R. H. Functional shifts in the use of parasitized hosts by a tephritid fly: the role of host quality. Behav. Ecol. 7, 235–242 (1996).
Article Google Scholar
48.
Ingleby, F. C. Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6, 732–742. https://doi.org/10.3390/insects6030732 (2015).
Article PubMed PubMed Central Google Scholar
49.
Snellings, Y. et al. The role of cuticular hydrocarbons in mate recognition in Drosophila suzukii. Sci. Rep. 8, 1–11 (2018).
CAS Article Google Scholar
50.
Li, G. & Ishikawa, Y. Oviposition deterrents in larval frass of four Ostrinia species fed on an artificial diet. J. Chem Ecol. 30, 1445–1456 (2004).
CAS PubMed Article Google Scholar
51.
Wada-Katsumata, A. et al. Gut bacteria mediate aggregation in the German cockroach. Proc. Nat. Acad. Sci. 112, 15678–15683 (2015).
ADS CAS PubMed Article Google Scholar
52.
Mansourian, S. et al. Fecal-derived phenol induces egg-laying aversion in Drosophila. Curr. Biol. 26, 2762–2769 (2016).
CAS PubMed Article Google Scholar
53.
Bueno, E. et al. Response of wild spotted Wing Drosophila (Drosophila suzukii) to microbial volatiles. J. Chem. Ecol. 39, 1–11 (2019).
Google Scholar
54.
Behar, A., Jurkevitch, E. & Yuval, B. Bringing back the fruit into fruit fly–bacteria interactions. Mol. Ecol. 17, 1375–1386 (2008).
CAS PubMed Article Google Scholar
55.
Yun, J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).
PubMed PubMed Central Article CAS Google Scholar
56.
Bing, X., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio 9, e02199-e2217. https://doi.org/10.1128/mBio.02199-17 (2018).
CAS Article PubMed PubMed Central Google Scholar
57.
Martinez-Sañudo, I. et al. Metagenomic analysis reveals changes of the Drosophila suzukii microbiota in the newly colonized regions. Insect Sci. 25, 833–846 (2018).
PubMed Article Google Scholar
58.
Silva, M. A., Bezerra-Silva, G. C. D. & Mastrangelo, T. The host marking pheromone application on the management of fruit flies—a review. Braz. Arch. Biol. Tech. 55, 835–842 (2012).
CAS Article Google Scholar
59.
Hamby, K. A. & Becher, P. G. Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J. Pest Sci. 89, 621–630 (2016).
Article Google Scholar
60.
Alkema, J. T., Dicke, M. & Wertheim, B. Context-dependence and the development of push-pull approaches for integrated management of Drosophila suzukii. Insects 10, 454. https://doi.org/10.3390/insects10120454 (2019).
Article PubMed PubMed Central Google Scholar
61.
Revadi, S. et al. Sexual behavior of Drosophila suzukii. Insects 6(183), 196. https://doi.org/10.3390/insects6010183 (2015).
Article Google Scholar
62.
Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. Elife 7, e34414. https://doi.org/10.7554/eLife.34414 (2018).
Article PubMed PubMed Central Google Scholar
63.
Emiljanowicz, L. M., Ryan, G. D., Langille, A. & Newman, J. Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J Econ. Entomol. 107, 1392–1398 (2014).
PubMed Article Google Scholar
64.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019). More