Bayesian Network Analysis reveals resilience of the jellyfish Aurelia aurita to an Irish Sea regime shift
1.
Lynam, C. P. et al. Have jellyfish in the Irish Sea benefited from climate change and overfishing?. Glob. Change Biol. 17, 767–782 (2011).
ADS Article Google Scholar
2.
Condon, R. H. et al. Recurrent jellyfish blooms are a consequence of global oscillations. Proc. Natl. Acad. Sci. 110, 1000–1005 (2013).
ADS CAS PubMed Article Google Scholar
3.
Lynam, C. P., Hay, S. J. & Brierley, A. S. Jellyfish abundance and climatic variation: Contrasting responses in oceanographically distinct regions of the North Sea, and possible implications for fisheries. J. Mar. Biol. Assoc. 85, 435–450 (2005).
Article Google Scholar
4.
Lynam, C. P. et al. Jellyfish overtake fish in a heavily fished ecosystem. Curr. Biol. 16, R492-493 (2006).
CAS PubMed Article Google Scholar
5.
Hays, G. C., Doyle, T. K. & Houghton, J. D. R. A paradigm shift in the trophic importance of jellyfish?. Trends Ecol. Evol. 33, 874–884 (2018).
PubMed Article Google Scholar
6.
Gibbons, M. J. & Richardson, A. J. Patterns of jellyfish abundance in the North Atlantic. In Jellyfish Blooms: Causes, Consequences, and Recent Advances: Proceedings of the Second International Jellyfish Blooms Symposium, held at the Gold Coast, Queensland, Australia, 24–27 June, 2007 (eds. Pitt, K. A. & Purcell, J. E.) 51–65 (Springer Netherlands, 2009). https://doi.org/10.1007/978-1-4020-9749-2_4.
7.
Attrill, M. J., Wright, J. & Edwards, M. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol. Oceanogr. 52, 480–485 (2007).
ADS Article Google Scholar
8.
Brodeur, R. D., Sugisaki, H. & Hunt, G. L. Jr. Increases in jellyfish biomass in the Bering Sea: Implications for the ecosystem. Mar. Ecol. Prog. Ser. 233, 89–103 (2002).
ADS Article Google Scholar
9.
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).
ADS CAS PubMed Article Google Scholar
10.
Purcell, J. E. & Arai, M. N. Interactions of pelagic cnidarians and ctenophores with fish: A review. Hydrobiologia 451, 27–44 (2001).
Article Google Scholar
11.
Robinson, K. L. et al. Jellyfish, forage fish, and the world’s major fisheries. Oceanography 27, 104–115 (2014).
Article Google Scholar
12.
Uye, S. Blooms of the giant jellyfish Nemopilema nomurai: A threat to the fisheries sustainability of the East Asian Marginal Seas. Plankton Benthos Res. 3, 125–131 (2008).
Article Google Scholar
13.
Wright, R. M., Le Quéré, C., Buitenhuis, E., Pitois, S. & Gibbons, M. Unique role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model. Biogeosci. Discuss. https://doi.org/10.5194/bg-2020-136 (2020).
Article Google Scholar
14.
Jackson, J. B. C. Ecological extinction and evolution in the brave new ocean. Proc. Natl. Acad. Sci. 105, 11458–11465 (2008).
ADS CAS PubMed Article Google Scholar
15.
Kintner, A. & Brierley, A. S. Cryptic hydrozoan blooms pose risks to gill health in farmed North Atlantic salmon (Salmo salar). J. Mar. Biol. Assoc. 99, 539–550 (2019).
Article Google Scholar
16.
Flynn, B. A. et al. Temporal and spatial patterns in the abundance of jellyfish in the northern Benguela upwelling ecosystem and their link to thwarted pelagic fishery recovery. Afr. J. Mar. Sci. 34, 131–146 (2012).
Article Google Scholar
17.
Luo, J. Y. et al. Gelatinous zooplankton-mediated carbon flows in the global oceans: A data-driven modeling study. Glob. Biogeochem. Cycles 34, e2020GB006704 (2020).
ADS CAS Article Google Scholar
18.
Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).
ADS CAS PubMed Article Google Scholar
19.
Hays, G. C., Richardson, A. J. & Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 20, 337–344 (2005).
PubMed Article Google Scholar
20.
Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the northeast Atlantic. Science 305, 1609–1612 (2004).
ADS CAS PubMed Article Google Scholar
21.
Suikkanen, S. et al. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 8, e66475 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
22.
Wiafe, G., Yaqub, H. B., Mensah, M. A. & Frid, C. L. J. Impact of climate change on long-term zooplankton biomass in the upwelling region of the Gulf of Guinea. ICES J. Mar. Sci. 65, 318–324 (2008).
Article Google Scholar
23.
Reid, P. C., Colebrook, J. M., Matthews, J. B. L. & Aiken, J. The Continuous Plankton Recorder: Concepts and history, from Plankton Indicator to undulating recorders. Prog. Oceanogr. 58, 117–173 (2003).
ADS Article Google Scholar
24.
Edwards, M. et al. Plankton, jellyfish and climate in the North-East Atlantic. MCCIP Sci. Rev. 2020, 322–353. https://doi.org/10.14465/2020.arc15.plk (2020).
Article Google Scholar
25.
ICES. Report of the Working Group on the Celtic Seas Ecoregion (WGCSE), 11–19 May 2011, Copenhagen, Denmark. (2011).
26.
Bartolino, V. et al. Herring assessment working group for the area south of 62° N (HAWG). (2019) https://doi.org/10.17895/ices.pub.5460.
27.
ICES Advice Book 5. https://www.ices.dk/sites/pub/Publication%20Reports/Advice/2007/may/her-nirs.pdf (2007).
28.
Beaugrand, G. The North Sea regime shift: Evidence, causes, mechanisms and consequences. Prog. Oceanogr. 60, 245–262 (2004).
ADS Article Google Scholar
29.
Gregory, B., Christophe, L. & Martin, E. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Change Biol. 15, 1790–1803 (2009).
ADS Article Google Scholar
30.
deYoung, B. et al. Regime shifts in marine ecosystems: Detection, prediction and management. Trends Ecol. Evol. 23, 402–409 (2008).
PubMed Article Google Scholar
31.
Bastian, T. et al. Large-scale sampling reveals the spatio-temporal distributions of the jellyfish Aurelia aurita and Cyanea capillata in the Irish Sea. Mar. Biol. 158, 2639–2652 (2011).
Article Google Scholar
32.
Houghton, J. D. R., Doyle, T. K., Davenport, J. & Hays, G. C. Developing a simple, rapid method for identifying and monitoring jellyfish aggregations from the air. Mar. Ecol. Prog. Ser. 314, 159–170 (2006).
ADS Article Google Scholar
33.
Bastian, T., Lilley, M. K. S., Beggs, S. E., Hays, G. C. & Doyle, T. K. Ecosystem relevance of variable jellyfish biomass in the Irish Sea between years, regions and water types. Estuar. Coast. Shelf Sci. 149, 302–312 (2014).
ADS Article Google Scholar
34.
Heckerman, D., Geiger, D. & Chickering, D. M. Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20, 197–243 (1995).
MATH Google Scholar
35.
Milns, I., Beale, C. M. & Smith, V. A. Revealing ecological networks using Bayesian network inference algorithms. Ecology 91, 1892–1899 (2010).
PubMed Article Google Scholar
36.
Mitchell, E. G. & Neutel, A.-M. Feedback spectra of soil food webs across a complexity gradient, and the importance of three-species loops to stability. Theor. Ecol. 5, 153–159 (2012).
Article Google Scholar
37.
Olff, H. et al. Parallel ecological networks in ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 364, 1755–1779 (2009).
Article Google Scholar
38.
Mitchell, E. G., Whittle, R. & Griffths, H. J. Benthic ecosystem cascade effects in Antarctica using Bayesian network inference. Commun. Biol. 3, 582 (2020).
PubMed PubMed Central Article Google Scholar
39.
Yu, J., Smith, V. A., Wang, P. P., Hartemink, A. J. & Jarvis, E. D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004).
CAS PubMed Article Google Scholar
40.
Yu, J., Smith, V. A., Wang, P. P., Hartemink, E. J. & Jarvis, E. D. Using Bayesian network inference algorithms to recover molecular genetic regulatory networks. In Prof. of Int. (2002).
41.
Smith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J. & Jarvis, E. D. Computational inference of neural information flow networks. PLOS Comput. Biol. 2, e161 (2006).
ADS PubMed PubMed Central Article CAS Google Scholar
42.
Mitchell, E. G. & Butterfield, N. J. Spatial analyses of Ediacaran communities at Mistaken Point. Paleobiology 44, 40–57 (2018).
Article Google Scholar
43.
Mitchell, E. G., Durden, J. M. & Ruhl, H. A. First network analysis of interspecific associations of abyssal benthic megafauna reveals potential vulnerability of abyssal hill community. Prog. Oceanogr. 187, 102401 (2020).
Article Google Scholar
44.
Mitchell, E. G. & Harris, S. Mortality, population and community dynamics of the glass sponge dominated community “The Forest of the Weird” from the RIDGE seamount, Johnston Atoll, Pacific Ocean. Front. Mar. Sci. 7, 872 (2020).
Article Google Scholar
45.
Reid, P. C., Borges, M. D. F. & Svendsen, E. A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fish. Res. 50, 163–171 (2001).
Article Google Scholar
46.
Brierley, A. S. et al. Acoustic observations of jellyfish in the Namibian Benguela. Mar. Ecol. Prog. Ser. 210, 55–66 (2001).
ADS Article Google Scholar
47.
Brierley, A. S. et al. Towards the acoustic estimation of jellyfish abundance. Mar. Ecol. Prog. Ser. 295, 105–111 (2005).
ADS Article Google Scholar
48.
MacLennan, D. N. & Simmonds, E. J. Fisheries Acoustics (Springer, Berlin, 2013).
Google Scholar
49.
Planque, B. & Fromentin, J. Calanus and environment in the eastern North Atlantic. I. Spatial and temporal patterns of C. finmarchicus and C. helgolandicus. Mar. Ecol. Prog. Ser. 134, 101–109 (1996).
ADS Article Google Scholar
50.
Batten, S. D. et al. CPR sampling: The technical background, materials and methods, consistency and comparability. Prog. Oceanogr. 58, 193–215 (2003).
ADS Article Google Scholar
51.
Richardson, A. J. et al. Using continuous plankton recorder data. Prog. Oceanogr. 68, 27–74 (2006).
ADS Article Google Scholar
52.
John, E. H. et al. Continuous plankton records stand the test of time: Evaluation of flow rates, clogging and the continuity of the CPR time-series. J. Plankton Res. 24, 941–946 (2002).
Article Google Scholar
53.
Beaugrand, G., Ibañez, F., Lindley, J. A. & Reid, P. C. Diversity of calanoid copepods in the North Atlantic and adjacent seas: Species associations and biogeography. Mar. Ecol. Prog. Ser. 232, 179–195 (2002).
ADS Article Google Scholar
54.
Yu, J. Developing Bayesian Network Inference Algorithms to Predict Causal Functional Pathways in Biological Systems (Duke University, Durham, 2005).
Google Scholar
55.
Chickering, D. M. Learning Bayesian Networks is NP-Complete. In Learning from Data: Artificial Intelligence and Statistics V (eds. Fisher, D. & Lenz, H.-J.) 121–130 (Springer, Berlin, 1996). https://doi.org/10.1007/978-1-4612-2404-4_12.
56.
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, (2003).
57.
Jones, P. D., Jonsson, T. & Wheeler, D. Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).
Article Google Scholar
58.
Mitchell, E. G. Functional programming through deep time: Modeling the first complex ecosystems on earth. ACM SIGPLAN Not. 46, 28–31 (2011).
MATH Article Google Scholar
59.
Jones, S. P. Haskell 98 Language and Libraries: The Revised Report (Cambridge University Press, Cambridge, 2003).
Google Scholar
60.
Friedman, N., Geiger, D. & Goldszmidt, M. Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997).
MATH Article Google Scholar
61.
Dickey-Collas, M., Nash, R. D. M. & Brown, J. The location of spawning of Irish sea herring (Clupea harengus). J. Mar. Biol. Assoc. 81, 713–714 (2001).
Article Google Scholar
62.
Nash, R. D. M. & Geffen, A. J. Seasonal and interannual variation in abundance of Calanus finmarchicus (Gunnerus) and Calanus helgolandicus (Claus) in inshore waters (west coast of the Isle of Man) in the central Irish Sea. J. Plankton Res. 26, 265–273 (2004).
Article Google Scholar
63.
Hurrell, J. W. & Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 78, 28–41 (2009).
Article Google Scholar
64.
Brotz, L., Cheung, W. W. L., Kleisner, K., Pakhomov, E. & Pauly, D. Increasing jellyfish populations: trends in Large Marine Ecosystems. In Jellyfish Blooms IV: Interactions with Humans and Fisheries (eds. Purcell, J. et al.) 3–20 (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-5316-7_2.
65.
Purcell, J. E. Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annu. Rev. Mar. Sci. 4, 209–235 (2012).
ADS Article Google Scholar
66.
Pitt, K. A., Lucas, C. H., Condon, R. H., Duarte, C. M. & Stewart-Koster, B. Claims that anthropogenic stressors facilitate jellyfish blooms have been amplified beyond the available evidence: A systematic review. Front. Mar. Sci. 5, 451 (2018).
Article Google Scholar
67.
Sanz-Martín, M. et al. Flawed citation practices facilitate the unsubstantiated perception of a global trend toward increased jellyfish blooms. Glob. Ecol. Biogeogr. 25, 1039–1049 (2016).
Article Google Scholar
68.
Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
Article Google Scholar
69.
Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: Critical values for stability. Nature 228, 784–784 (1970).
ADS CAS PubMed Article Google Scholar
70.
Lawton, J. H. & Brown, V. K. Redundancy in ecosystems. In Biodiversity and Ecosystem Function (eds. Schulze, E.-D. & Mooney, H. A.) 255–270 (Springer, Berlin, 1994). https://doi.org/10.1007/978-3-642-58001-7_12.
71.
Thébault, E. & Loreau, M. Trophic interactions and the relationship between species diversity and ecosystem stability. Am. Nat. 166, E95–E114 (2005).
PubMed Article Google Scholar
72.
Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).
PubMed PubMed Central Article Google Scholar
73.
Van Voris, P., O’Neill, R. V., Emanuel, W. R. & Shugart, H. H. Functional complexity and ecosystem stability. Ecology 61, 1352–1360 (1980).
Article Google Scholar
74.
Graham, W. M. & Kroutil, R. M. Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita. J. Plankton Res. 23, 67–74 (2001).
Article Google Scholar
75.
Marques, R., Bonnet, D., Carré, C., Roques, C. & Darnaude, A. M. Trophic ecology of a blooming jellyfish (Aurelia coerulea) in a Mediterranean coastal lagoon. Limnol. Oceanogr. n/a.
76.
Anninsky, B. E., Finenko, G. A., Datsyk, N. A. & Kıdeyş, A. E. Trophic ecology and assessment of the predatory impact of the Moon jellyfish Aurelia aurita (Linnaeus, 1758) on zooplankton in the Black Sea (2020) https://doi.org/10.21411/cbm.a.96dd01aa.
77.
Widmer, C. L., Fox, C. J. & Brierley, A. S. Effects of temperature and salinity on four species of northeastern Atlantic scyphistomae (Cnidaria: Scyphozoa). Mar. Ecol. Prog. Ser. 559, 73–88 (2016).
ADS Article Google Scholar
78.
Watson, D. I. & Barnes, D. K. A. Temporal and spatial components of variability in benthic recruitment, a 5-year temperate example. Mar. Biol. 145, 201–214 (2004).
Article Google Scholar
79.
Arrhenius, F. & Hansson, S. Food consumption of larval, young and adult herring and sprat in the Baltic Sea. Mar. Ecol. Prog. Ser. 96, 125–137 (1993).
ADS Article Google Scholar
80.
Williams, R., Conway, D. V. P. & Hunt, H. G. The role of copepods in the planktonic ecosystems of mixed and stratified waters of the European shelf seas. Hydrobiologia 292, 521–530 (1994).
Article Google Scholar
81.
Gowen, R. J., Mills, D. K., Trimmer, M. & Nedwell, D. B. Production and its fate in two coastal regions of the Irish Sea: The influence of anthropogenic nutrients. Mar. Ecol. Prog. Ser. 208, 51–64 (2000).
ADS Article Google Scholar
82.
Scorrano, S., Aglieri, G., Boero, F., Dawson, M. N. & Piraino, S. Unmasking Aurelia species in the Mediterranean Sea: An integrative morphometric and molecular approach. Zool. J. Linn. Soc. 180, 243–267 (2017).
Google Scholar
83.
Haussermann, V., Dawson, M. N. & Forsterra, G. First record of the moon jellyfish, Aurelia for Chile. Spixana 32, 3–7 (2009).
Google Scholar More