Light exposure mediates circadian rhythms of rhizosphere microbial communities
1.Sharma VK. Adaptive significance of circadian clocks. Chronobiol Int. 2003;20:901–19.PubMed
Article
Google Scholar
2.Paranjpe DA, Kumar Sharma V. Evolution of temporal order in living organisms. J Circadian Rhythms. 2005;3:1–13.Article
CAS
Google Scholar
3.Nobs SP, Tuganbaev T, Elinav E. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep. 2019;20:e47129.PubMed
PubMed Central
Article
CAS
Google Scholar
4.Sartor F, Eelderink-Chen Z, Aronson B, Bosman J, Hibbert LE, Dodd AN, et al. Are there circadian clocks in non-photosynthetic bacteria? Biology. 2019;8:41.CAS
PubMed Central
Article
PubMed
Google Scholar
5.Soriano M, Roibas B, Garcia A, Espinosa-Urgel M. Evidence of circadian rhythms in non-photosynthetic bacteria? J Circadian Rhythms. 2010;8:1–4.Article
Google Scholar
6.Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159:514–29.CAS
PubMed
Article
Google Scholar
7.Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, et al. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science. 1998;281:1519–23.CAS
PubMed
Article
PubMed Central
Google Scholar
8.Aylward FO, Boeuf D, Mende DR, Wood-Charlson EM, Vislova A, Eppley JM, et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc Natl Acad Sci USA. 2017;114:11446–51.CAS
PubMed
Article
Google Scholar
9.Dvornyk V, Vinogradova O, Nevo E. Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci USA. 2003;100:2495–500.CAS
PubMed
Article
PubMed Central
Google Scholar
10.Maniscalco M, Nannen J, Sodi V, Silver G, Lowrey PL, Bidle KA. Light-dependent expression of four cryptic archaeal circadian gene homologs. Front Microbiol. 2014;5:79.PubMed
PubMed Central
Article
Google Scholar
11.Bernal P, Allsopp LP, Filloux A, Llamas MA. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J. 2017;11:972–87.CAS
PubMed
PubMed Central
Article
Google Scholar
12.Schmelling NM, Lehmann R, Chaudhury P, Beck C, Albers S-V, Axmann IM, et al. Minimal tool set for a prokaryotic circadian clock. BMC Evol Biol. 2017;17:1–20.Article
CAS
Google Scholar
13.Hong L, Vani BP, Thiede EH, Rust MJ, Dinner AR. Molecular dynamics simulations of nucleotide release from the circadian clock protein KaiC reveal atomic-resolution functional insights. Proc Natl Acad Sci USA. 2018;115:11475–84.Article
CAS
Google Scholar
14.Edgar RS, Green EW, Zhao Y, Ooijen Gvan, Olmedo M, Qin X, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012;485:459–64.CAS
PubMed
PubMed Central
Article
Google Scholar
15.Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 2000;290:2110–3.CAS
PubMed
Article
PubMed Central
Google Scholar
16.Farré EM, Weise SE. The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol. 2012;15:293–300.PubMed
Article
CAS
PubMed Central
Google Scholar
17.Harmer SL. The circadian system in higher plants. Annu Rev Plant Biol. 2009;60:357–77.CAS
PubMed
Article
PubMed Central
Google Scholar
18.Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AAR. Photosynthetic entrainment of the Arabidopsis circadian clock. Nature. 2013;502:689–92.CAS
PubMed
Article
PubMed Central
Google Scholar
19.DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK. Selective progressive response of soil microbial community to wild oat roots. ISME J. 2009;3:168–78.CAS
PubMed
Article
PubMed Central
Google Scholar
20.Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.CAS
PubMed
PubMed Central
Article
Google Scholar
21.Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80.CAS
PubMed
Article
PubMed Central
Google Scholar
22.Wu G, Tang W, He Y, Hu J, Gong S, He Z, et al. Light exposure influences the diurnal oscillation of gut microbiota in mice. Biochem Biophys Res Commun. 2018;501:16–23.CAS
PubMed
Article
PubMed Central
Google Scholar
23.Teichman EM, O’Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When rhythms meet the blues: circadian interactions with the microbiota-gut-brain axis. Cell Metab. 2020;31:448–71.CAS
PubMed
Article
PubMed Central
Google Scholar
24.Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014;20:1006–17.CAS
PubMed
PubMed Central
Article
Google Scholar
25.Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17:681–9.CAS
PubMed
PubMed Central
Article
Google Scholar
26.Liang X, Bushman FD, FitzGerald GA. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci USA. 2015;112:10479–84.CAS
PubMed
Article
PubMed Central
Google Scholar
27.Kaczmarek JL, Musaad SM, Holscher HD. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr. 2017;106:1220–31.CAS
PubMed
PubMed Central
Google Scholar
28.Deaver JA, Eum SY, Toborek M. Circadian disruption changes gut microbiome taxa and functional gene composition. Front Microbiol. 2018;9:737.PubMed
PubMed Central
Article
Google Scholar
29.Hubbard CJ, Brock MT, van Diepen LT, Maignien L, Ewers BE, Weinig C. The plant circadian clock influences rhizosphere community structure and function. ISME J. 2018;12:400–10.PubMed
Article
PubMed Central
Google Scholar
30.Staley C, Ferrieri AP, Tfaily MM, Cui Y, Chu RK, Wang P, et al. Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism. Microbiome. 2017;5:1–13.Article
Google Scholar
31.Feng J, Xu Y, Ma B, Tang C, Brookes PC, He Y, et al. Assembly of root-associated microbiomes of typical rice cultivars in response to lindane pollution. Environ Int. 2019;131:104975.CAS
PubMed
Article
Google Scholar
32.Gremion F, Chatzinotas A, Harms H. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol. 2003;5:896–907.CAS
PubMed
Article
Google Scholar
33.Lavecchia A, Curci M, Jangid K, Whitman WB, Ricciuti P, Pascazio S, et al. Microbial 16S gene-based composition of a sorghum cropped rhizosphere soil under different fertilization managements. Biol Fertil Soils. 2015;51:661–72.CAS
Article
Google Scholar
34.Wang B, Zhao J, Guo Z, Ma J, Xu H, Jia Z. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J. 2015;9:1062–75.CAS
PubMed
Article
Google Scholar
35.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed
PubMed Central
Article
Google Scholar
36.Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:633–42.Article
CAS
Google Scholar
37.Edgar RC. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. 2016. https://www.biorxiv.org/content/10.1101/074161v1.38.Deng Y, Ruan Y, Ma B, Timmons MB, Lu H, Xu X, et al. Multi-omics analysis reveals niche and fitness differences in typical denitrification microbial aggregations. Environ Int. 2019;132:105085.CAS
PubMed
Article
Google Scholar
39.Yu M, Meng J, Yu L, Su W, Afzal M, Li Y, et al. Changes in nitrogen related functional genes along soil pH, C and nutrient gradients in the charosphere. Sci Total Environ. 2019;650:626–32.CAS
PubMed
Article
PubMed Central
Google Scholar
40.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–12.Article
CAS
Google Scholar
41.Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010;4:17–27.CAS
PubMed
Article
PubMed Central
Google Scholar
42.Zhang J, Zhang N, Liu Y-X, Zhang X, Hu B, Qin Y, et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci China Life Sci. 2018;61:613–21.PubMed
Article
PubMed Central
Google Scholar
43.Liaw A, Wiener M. Classification and regression by random Forest. R News. 2002;2:18–22.
Google Scholar
44.Breiman L. Random forests. Mach Learn. 2001;45:5–32.Article
Google Scholar
45.Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016;10:1891–901.CAS
PubMed
PubMed Central
Article
Google Scholar
46.Wang B, Pourshafeie A, Zitnik M, Zhu J, Bustamante CD, Batzoglou S, et al. Network enhancement as a general method to denoise weighted biological networks. Nat Commun. 2018;9:1–8.Article
CAS
Google Scholar
47.Luo F, Zhong J, Yang Y, Scheuermann RH, Zhou J. Application of random matrix theory to biological networks. Phys Lett A. 2006;357:420–3.CAS
Article
Google Scholar
48.Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. Complex Syst. 2006;1695:1–9.
Google Scholar
49.Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Icwsm. 2009;8:361–2.
Google Scholar
50.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article
Google Scholar
51.Li H, Su J-Q, Yang X-R, Zhu Y-G. Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Sci Total Environ. 2019;649:422–30.CAS
PubMed
Article
PubMed Central
Google Scholar
52.Vieira S, Sikorski J, Dietz S, Herz K, Schrumpf M, Bruelheide H, et al. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J. 2019; 1–13.53.Yerushalmi S, Green RM. Evidence for the adaptive significance of circadian rhythms. Ecol Lett. 2009;12:970–81.PubMed
Article
PubMed Central
Google Scholar
54.Pedersen O, Sand‐Jensen K, Revsbech NP. Diel pulses of O2 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna. Ecology. 1995;76:1536–45.Article
Google Scholar
55.Hernandez ME, Beck DAC, Lidstrom ME, Chistoserdova L. Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ. 2015;3:e801.PubMed
PubMed Central
Article
Google Scholar
56.Saifuddin M, Bhatnagar JM, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:1–10.CAS
Article
Google Scholar
57.Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.PubMed
Article
PubMed Central
Google Scholar
58.Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.Article
Google Scholar
59.Cozzi G, Broekhuis F, McNutt JW, Turnbull LA, Macdonald DW, Schmid B. Fear of the dark or dinner by moonlight? Reduced temporal partitioning among Africa’s large carnivores. Ecology. 2012;93:2590–9.PubMed
Article
PubMed Central
Google Scholar
60.Kohl MT, Ruth TK, Metz MC, Stahler DR, Smith DW, White PJ, et al. Do prey select for vacant hunting domains to minimize a multi-predator threat? Ecol Lett. 2019;22:1724–33.PubMed
Article
PubMed Central
Google Scholar
61.de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:1–12.Article
CAS
Google Scholar
62.Schmidt JE, Kent AD, Brisson VL, Gaudin ACM. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome. 2019;7:1–18.Article
Google Scholar
63.DeCoursey PJ, Walker JK, Smith SA. A circadian pacemaker in free-living chipmunks: essential for survival? J Comp Physiol A. 2000;186:169–80.CAS
PubMed
Article
PubMed Central
Google Scholar
64.Worden BD, Skemp AK, Papaj DR. Learning in two contexts: the effects of interference and body size in bumblebees. J Exp Biol. 2005;208:2045–53.PubMed
Article
PubMed Central
Google Scholar
65.Yerushalmi S, Bodenhaimer S, Bloch G. Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. J Exp Biol. 2006;209:1044–51.PubMed
Article
PubMed Central
Google Scholar
66.Lone SR, Sharma VK. Exposure to light enhances pre-adult fitness in two dark-dwelling sympatric species of ants. BMC Dev Biol. 2008;8:1–11.Article
Google Scholar
67.Yadav P, Choudhury D, Sadanandappa MK, Sharma VK. Extent of mismatch between the period of circadian clocks and light/dark cycles determines time-to-emergence in fruit flies. Insect Sci. 2015;22:569–77.CAS
PubMed
Article
PubMed Central
Google Scholar
68.Yadav P, Thandapani M, Sharma VK. Interaction of light regimes and circadian clocks modulate timing of pre-adult developmental events in Drosophila. BMC Dev Biol. 2014;14:1–12.Article
CAS
Google Scholar
69.Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol. 2004;14:1481–6.CAS
PubMed
Article
PubMed Central
Google Scholar
70.Lambert G, Chew J, Rust MJ. Costs of clock-environment misalignment in individual cyanobacterial cells. Biophys J. 2016;111:883–91.CAS
PubMed
PubMed Central
Article
Google Scholar
71.Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JHM, Dijkwel PP. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci USA. 2012;109:17129–34.CAS
PubMed
Article
Google Scholar
72.Tanaka K, Ishikawa M, Kaneko M, Kamiya K, Kato S, Nakanishi S. The endogenous redox rhythm is controlled by a central circadian oscillator in cyanobacterium Synechococcus elongatus PCC7942. Photosynth Res. 2019;142:203–10.CAS
PubMed
Article
Google Scholar
73.Tanaka K, Nakanishi S Time-of-day dependent responses of cyanobacterial cellular viability against oxidative stress. 2019. https://www.biorxiv.org/content/10.1101/851774v2.74.Krittika S, Yadav P. Circadian clocks: an overview on its adaptive significance. Biol Rhythm Res 2019;0:1–24.CAS
Google Scholar
75.Koilraj AJ, Sharma VK, Marimuthu G, Chandrashekaran MK. Presence of circadian rhythms in the locomotor activity of a cave-dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiol Int. 2000;17:757–65.CAS
PubMed
Article
Google Scholar
76.Roenneberg T, Merrow M. Life before the clock: modeling circadian evolution. J Biol Rhythms. 2002;17:495–505.PubMed
Article
Google Scholar
77.Espinasa L, Jeffery WR. Conservation of retinal circadian rhythms during cavefish eye degeneration. Evol Dev. 2006;8:16–22.PubMed
Article
Google Scholar
78.Hubbard CJ, McMinn RL, Weinig C. Rhizosphere microbes influence host circadian clock function. 2018. https://www.biorxiv.org/content/10.1101/444539v1. More
