Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease
1.
Carré, P. & Pouzet, A. Rapeseed market, worldwide and in Europe. OCL 21(1), D102. https://doi.org/10.1051/ocl/201h3054 (2014).
Article Google Scholar
2.
Hammond, K. E. & Lewis, B. E. The timing and sequence of events leading to stem canker disease in populations of Brassica napus var. oleifera in the field. Plant Pathol. 35, 551–556. https://doi.org/10.1111/j.1365-3059.1986.tb02054.x (1986).
Article Google Scholar
3.
Deb, D., Khan, A. & Dey, N. Phoma diseases: Epidemiology and control. Plant. Pathol. 00, 1–15. https://doi.org/10.1111/ppa.13221 (2020).
CAS Article Google Scholar
4.
Fitt, B. D. L., Brun, H., Barbetti, M. J. & Rimmer, S. R. World-wide importance of Phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur. J. Plant Pathol. 114, 3–15. https://doi.org/10.1007/s10658-005-2233-5 (2006).
Article Google Scholar
5.
Winter, M. & Koopmann, B. Race spectra of Leptosphaeria maculans, the causal agent of blackleg disease of oilseed rape, in different geographic regions in northern Germany. Eur. J. Plant Pathol. 145, 629–641. https://doi.org/10.1007/s10658-016-0932-8 (2016).
Article Google Scholar
6.
Derbyshire, M. C. & Denton-Giles, M. The control of Sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant. Pathol. 65, 859–877. https://doi.org/10.1111/ppa.12517 (2016).
CAS Article Google Scholar
7.
Gladders, P., Symonds, B. V., Hardwick, N. V. & Sansford, C. E. Opportunities to control canker (Leptosphaeria maculans) in winter oilseed rape by improved spray timing. IOBC/WPRS Bull. 21, 111–120 (1998).
Google Scholar
8.
Kuai, J. et al. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res. 199, 89–98. https://doi.org/10.1016/j.fcr.2016.09.025 (2016).
Article Google Scholar
9.
Card, S. D. et al. Beneficial endophytic microorganisms of Brassica —A review. Biol. Control 90, 102–112. https://doi.org/10.1016/j.biocontrol.2015.06.001 (2015).
Article Google Scholar
10.
Weyens, N., van der Lelie, D., Taghavi, S., Newman, L. & Vangronsveld, J. Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 27, 591–598. https://doi.org/10.1016/j.tibtech.2009.07.006 (2009).
CAS Article PubMed Google Scholar
11.
Müller, H. & Berg, G. Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. Biocontrol 53, 905–916. https://doi.org/10.1007/s10526-007-9111-3 (2008).
Article Google Scholar
12.
Granér, G., Persson, P., Meijer, J. & Alström, S. A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol. Lett. 224, 269–276. https://doi.org/10.1016/S0378-1097(03)00449-X (2003).
CAS Article PubMed Google Scholar
13.
Croes, S. et al. Bacterial communities associated with Brassica napus L. grown on trace-element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microb. Biotechnol. 6, 371–384. https://doi.org/10.1111/1751-7915.12057 (2013).
CAS Article PubMed PubMed Central Google Scholar
14.
Zhang, Q. et al. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control 72, 98–102. https://doi.org/10.1016/j.biocontrol.2014.02.018 (2014).
Article Google Scholar
15.
Berg, G. et al. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol. Ecol. 56, 250–261. https://doi.org/10.1111/j.1574-6941.2005.00025.x (2006).
CAS Article PubMed Google Scholar
16.
Berg, G. et al. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl. Environ. Microbiol. 71, 4203–4213. https://doi.org/10.1128/AEM.71.8.4203-4213.2005 (2005).
CAS Article PubMed PubMed Central Google Scholar
17.
Robin, A. H. K. et al. Leptosphaeria maculans alters glucosinolate profiles in blackleg disease-resistant and -susceptible cabbage lines. Front. Plant Sci. 8, 1789. https://doi.org/10.3389/fpls.2017.01769 (2017).
Article Google Scholar
18.
Garrido-Sanz, D. et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS ONE 11(2), e0150183. https://doi.org/10.1371/journal.pone.0153733 (2016).
CAS Article PubMed PubMed Central Google Scholar
19.
Taylor, A. Fungal diversity in ectotomycorrhizal communities: sampling effort and species distribution. Plant Soil 244, 19–28. https://doi.org/10.1023/A:1020279815472 (2002).
ADS CAS Article Google Scholar
20.
Schmidt, C. S. et al. Distinct communities of poplar endophytes on an unpolluted and a risk elements-polluted site and their plant growth promoting potential in vitro. Microb. Ecol. 75, 955–969. https://doi.org/10.1007/s00248-017-1103-y (2018).
CAS Article PubMed Google Scholar
21.
Jedryczka, M. Epidemiology and damage caused by stem canker of oilseed rape in Poland. Phytopathol. Pol. 45, 73–75 (2007).
Article Google Scholar
22.
Mazáková, J., Urban, J., Zouhar, M. & Ryšánek, P. Analysis of Leptosphaeria species complex causing Phoma leaf spot and stem canker of winter oilseed rape (Brassica napus) in the Czech Republic. Crop Pasture Sci. 68, 254–264. https://doi.org/10.1071/CP16308 (2017).
CAS Article Google Scholar
23.
El Hadrami, A., Fernando, W. G. D. & Daayf, F. Variations in relative humidity modulate Leptosphaeria spp. pathogenicity and interfere with canola mechanisms of defence. Eur. J. Plant Pathol. 126, 187–202. https://doi.org/10.1007/s10658-009-9532-1 (2010).
Article Google Scholar
24.
Hilton, S., Bennett, A. J., Chandler, D., Mills, P. & Bending, G. D. Preceding crop and seasonal effects influence fungal, bacterial and nematode diversity in wheat and oilseed rape rhizosphere and soil. Appl. Soil Ecol. 126, 34–46. https://doi.org/10.1016/j.apsoil.2018.02.007 (2018).
Article Google Scholar
25.
Glynou, K. et al. The local environment determines the assembly of root endophytic fungi at a continental scale. Environ. Microbiol. 18, 2418–2434. https://doi.org/10.1111/1462-2920.13112 (2016).
CAS Article PubMed Google Scholar
26.
Croes, S., Weyens, N., Colpaet, J. & Vangronveld, J. Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: An evaluation of sampling and isolation protocols. Environ. Microbiol. 17, 2379–2392., https://doi.org/10.1111/1462-2920.12701 (2015).
27.
Alström, S. Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. J. Phytopathol. 149, 57–64. https://doi.org/10.1046/j.1439-0434.2001.00585.x (2001).
Article Google Scholar
28.
Cope-Selby, N. et al. Endophytic bacteria in Miscanthus seed: Implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy 9, 57–77. https://doi.org/10.1111/gcbb.12364 (2017).
CAS Article Google Scholar
29.
Rathore, R. et al. Crop establishment practices are a driver of the plant microbiota in winter oilseed rape (Brassica napus). Front. Microbiol. 8, 1489. https://doi.org/10.3389/fmicb.2017.01489 (2017).
Article PubMed PubMed Central Google Scholar
30.
Lay, C. Y. et al. Canola-Root-Associated microbiomes in the Canadian prairies. Front. Microbiol. 9, 1189. https://doi.org/10.3389/fmicb.2018.01188 (2018).
Article Google Scholar
31.
Sundara-Rao, W. V. B. & Sinha, M. K. Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J. Agric. Sci. 33, 272–278. https://doi.org/10.1007/BF01372637 (1963).
Article Google Scholar
32.
Bashan, Y., Kamnev, A. A. & de-Bashan, L. E. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: A proposal for an alternative procedure. Biol. Fertil. Soils 49, 465–479. https://doi.org/10.1007/s00374-012-0737-7 (2013).
CAS Article Google Scholar
33.
Pii, Y. et al. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 51, 403–415. https://doi.org/10.1007/s00374-015-0996-1 (2015).
CAS Article Google Scholar
34.
Reddy, C. A. & Saravanan, R. S. Polymicrobial multi-functional approach for enhancement of crop productivity. in Advances in Applied Microbiology (eds. Gadd, G. M. & Sariaslani, S.) 53–113 (Oxford Academic, Oxford, 2013).
35.
Lally, R. D. et al. Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front. Plant Sci. 8, 2193. https://doi.org/10.3389/fpls.2017.02193 (2017).
Article PubMed PubMed Central Google Scholar
36.
Parikh, L., Eskelson, M. J. & Adesemoye, A. O. Relationship of in vitro and in planta screening: improving the selection process for biological control agents against Fusarium root rot in row crops. Arch. Phytopathol. Plant Protect. 51, 156–169. https://doi.org/10.1080/03235408.2018.1441098 (2018).
Article Google Scholar
37.
Bakker, P. A. H. M., Pieterse, C. M. J. & van Loon, L. C. Induced systemic resistance by fluorescent Pseudomonas sp. Phytopathology 97, 239–243. https://doi.org/10.1094/PHYTO-97-2-0239 (2007).
Article PubMed Google Scholar
38.
Youssef, S. A., Tartoura, K. A. & Greash, A. G. Serratia proteamaculans mediated alteration of tomato defense system and growth parameters in response to early blight pathogen Alternaria solani infection. Physiol. Mol. Plant Pathol. 103, 16–22. https://doi.org/10.1016/j.pmpp.2018.04.004 (2018).
CAS Article Google Scholar
39.
Li, H. et al. The use of Pseudomonas fluorescens P13 to control Sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. J. Microbiol. 49, 884–889. https://doi.org/10.1007/s12275-011-1261-4 (2011).
Article PubMed Google Scholar
40.
Smolińska, U. & Kowalska, B. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum—A review. J. Plant Pathol. 100, 1–12. https://doi.org/10.1007/s42161-018-0023-0 (2018).
Article Google Scholar
41.
Shaukat, M. F. Seed bio-priming with Serratia plymuthica HRO-C48 for the control of Verticillium longisporum and Phoma lingam in Brassica napus L. spp. oleifera. (PhD Dissertation, University of Uppsala, Sweden, 2013).
42.
Castellano-Hinojosa, A., Pérez-Tapia, V., Bedmar, E. J. & Santillana, N. Purple corn-associated rhizobacteria with potential for plant growth promotion. J. Appl. Microbiol. 124, 1254–1264. https://doi.org/10.1111/jam.13708 (2018).
CAS Article PubMed Google Scholar
43.
Li, L. et al. Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek 111, 1735–1748. https://doi.org/10.1007/s10482-018-1062-4 (2018).
Article PubMed Google Scholar
44.
Barnawal, D., Bharti, N., Maji, D., Chanotiya, C. S. & Kalra, A. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol. Biochem. 58, 227–235. https://doi.org/10.1016/j.plaphy.2012.07.008 (2012).
CAS Article PubMed Google Scholar
45.
Egamberdieva, D., Wirth, S., Behrendt, U., Ahmad, P. & Berg, G. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front. Microbiol. 8, 199. https://doi.org/10.3389/fmicb.2017.00199 (2017).
Article PubMed PubMed Central Google Scholar
46.
Joe, M. M. et al. Resistance responses of rice to rice blast fungus after seed treatment with the endophytic Achromobacter xylosoxidans AUM54 strains. Crop Protect. 42, 141–148. https://doi.org/10.1016/j.cropro.2012.07.006 (2012).
Article Google Scholar
47.
Bertrand, H. et al. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can. J. Microbiol. 46, 229–236 (2000).
CAS Article Google Scholar
48.
Abuamsha, R., Salman, M. & Ehlers, R. U. Role of different additives on survival of Serratia plymuthica HRO-C48 on oilseed rape seeds and control of Phoma lingam. Br. Microbiol. Res. J. 4, 737–748 (2014).
Article Google Scholar
49.
Garrity, G. M., Winters, M. & Searles, D. B. Taxonomic outline of the prokaryotes. in Bergey’s Manual of Systematic Bacteriology, 2nd Edn, Release 1.0 (Springer, New York, 2001).
50.
Unterseher, M. & Schnittler, M. Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)—Different cultivation techniques influence fungal biodiversity assessment. Mycol. Res. 113, 645–654. https://doi.org/10.1016/j.mycres.2009.02.002 (2009).
Article PubMed Google Scholar
51.
Zadok, J. C., Chang, T. T. & Konzak, A. A decimal code for the growth stages of cereals. Weed Res. 14, 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x (1974).
Article Google Scholar
52.
Schmidt, C. S., Mrnka, L., Frantík, T., Lovecká, P. & Vosátka, M. Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils. World J. Microbiol. Biotechnol. 34, 48. https://doi.org/10.1007/s11274-018-2426-7 (2018).
CAS Article PubMed Google Scholar
53.
Koubek, J. et al. Whole-cell MALDI-TOF: Rapid screening method in environmental microbiology. Int. Biodeter. Biodegr. 69, 82–86. https://doi.org/10.1016/j.ibiod.2011.12.007 (2012).
CAS Article Google Scholar
54.
Uhlik, O. et al. Matrix-assisted laser desorption ionization (MALDI)–time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microb. 77, 6858–6866. https://doi.org/10.1128/AEM.05465-11 (2011).
CAS Article Google Scholar
55.
Štorchová, H. et al. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49, 79–84. https://doi.org/10.2307/1223934 (2000).
Article Google Scholar
56.
White, T. J., Bruns, T. D., Lee, S. & Taylor, J. Analysis of phylogenetic relationship by amplification and direct sequencing of ribosomal RNA genes. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315–322 (Academic Press Inc., New York, 1990).
57.
Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x (1993).
CAS Article PubMed Google Scholar
58.
McLaughlin, D. J., Hibbett, D. S., Lutzoni, F., Spatafora, J. W. & Vilgalys, R. The search for the fungal tree of life. Trends Microbiol. 11, 488–497. https://doi.org/10.1016/j.tim.2009.08.001 (2009).
CAS Article Google Scholar
59.
Alexander, D. B. & Zuberer, D. A. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39–45. https://doi.org/10.1007/BF00369386 (1991).
CAS Article Google Scholar
60.
Penrose, D. M. & Glick, B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118, 10–15. https://doi.org/10.1034/j.1399-3054.2003.00086.x (2003).
CAS Article PubMed Google Scholar
61.
Li, Z., Chang, S., Lin, L., Li, Y. & An, Q. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett. Appl. Microbiol. 53, 178–185. https://doi.org/10.1111/j.1472-765X.2011.03088.x (2011).
CAS Article PubMed Google Scholar
62.
Villano, D., Fernandez-Pachon, M. S., Moya, M. L., Troncoso, A. M. & Garcıa-Parrilla, M. C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71, 230–235. https://doi.org/10.1016/j.talanta.2006.03.050 (2007).
CAS Article PubMed Google Scholar
63.
Hajšlová, J., Fenclová, M. & Zachariašová, M. Methodology for the Rapid Screening of Isolates of Endophytic Microorganisms and Identification of Strains with Phytohormonal Activity (in Czech, ISBN 978-80-7080-869-6 ) (2013).
64.
Veprikova, Z. et al. Mycotoxins in plant-based dietary supplements: Hidden health risk for consumers. J. Agric. Food Chem. 63, 6633–6643. https://doi.org/10.1021/acs.jafc.5b02105 (2015).
CAS Article PubMed Google Scholar
65.
Zhou, Q. Untersuchungen zum Infektionsmodus, immunologischen Nachweis und zur biologischen Bekämpfung von Leptosphaeria maculans (Desm) Ces. & de Not., dem Erreger der Wurzelhals- und Stängelfäule an Winterraps (Brassica napus L.). (Ph.D Dissertation, University of Göttingen, Göttingen, 2001).
66.
Chèvre, A. M. et al. Stabilization of resistance to Leptosphaeria maculans in Brassica napus–B. juncea recombinant lines and its introgression into spring-type Brassica napus. Plant Dis. 92, 1208–1214. https://doi.org/10.1094/PDIS-92-8-1208 (2008).
Article PubMed Google Scholar
67.
El-Tarabily, K. A. et al. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49, 573–583. https://doi.org/10.1046/j.1365-3059.2000.00494.x (2000).
Article Google Scholar
68.
Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation 2nd edn. (Primer-E, Plymouth, 2001).
Google Scholar
69.
Frisvad, J. C., Smedsgaard, J., Larsen, T. O. & Samson, R. A. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 49, 201–241 (2004).
Google Scholar
70.
Romero, F. M., Rossi, F. R., Gárriz, A., Carrasco, P. & Ruíz, O. A. A bacterial endophyte from apoplast fluids protects canola plants from different pathogens via antibiosis and induction of host resistance. Phytopathology 109, 375–383 (2019).
CAS Article Google Scholar
71.
Kamal, M. M., Lindbeck, K. D., Savocchia, S. & Ash, G. J. Biological control of Sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathol. 64, 1375–1384 (2015).
CAS Article Google Scholar
72.
Fernando, W. G. D., Nakkeeran, S., Zhang, Y., Savchuk, S. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protect. 26, 100–107. https://doi.org/10.1016/j.cropro.2006.04.007 (2007)
73.
Peng, G., McGregor, L., Lahlali, R., Gossen, B. D., Hwang, S. F., Adhikari, K. K., Strelkov, S. E., McDonald, M. R. Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathol. 60, 566–574. https://doi.org/10.1111/j.1365-3059.2010.02400.x (2011)
74.
Wu, Y., Yuan, J., Raza, W., Shen, Q., Huang, Q. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. J. Microbiol. Biotechnol. 24, 1327–1336. https://doi.org/10.4014/jmb.1402.02061 (2014)
75.
Auer, S. & Ludwig-Müller, J. Biological control of clubroot (Plasmodiophora brassicae) by an endophytic fungus. Integrated control in oilseed crops. IOBC-WPRS Bull. 136, 155–156 (2018).
Google Scholar
76.
Huang, H.-C. & Erickson, R. S. Biological control of Sclerotinia stem rot of canola using Ulocladium atrum. Plant Pathol. Bull. 16, 55–59 (2007).
CAS Google Scholar
77.
Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S., Castro, P.M.L. Assessment of the plant growth promoting abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 42, 1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014 (2010) More