More stories

  • in

    Conservation priorities in an endangered estuarine seahorse are informed by demographic history

    1.
    Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2000).
    Article  Google Scholar 
    2.
    Wan, Q.-H., Wu, H., Fujihara, T. & Fang, S.-G. Which genetic marker for which conservation genetics issue? Electrophoresis 25, 2165–2176 (2004).
    CAS  PubMed  Article  Google Scholar 

    3.
    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).
    PubMed  Article  Google Scholar 

    4.
    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).
    CAS  PubMed  Google Scholar 

    5.
    Nabholz, B., Mauffrey, J.-F., Bazin, E., Galtier, N. & Glemin, S. Determination of mitochondrial genetic diversity in mammals. Genetics 178, 351–361 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Whitfield, A., Mkare, T. K., Teske, P. R., James, N. & Cowley, P. D. Life-histories explain the conservation status of two estuary-associated pipefishes. Biol. Conserv. 212, 256–264 (2017).
    Article  Google Scholar 

    7.
    Leffler, E. M. et al. Revisiting an old riddle: what determines genetic diversity levels within species?. PLoS Biol. 10, e1001388 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983).
    Google Scholar 

    10.
    Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).
    CAS  PubMed  Article  Google Scholar 

    12.
    Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500 (1996).
    Article  Google Scholar 

    13.
    Teske, P. R. et al. Implications of life history for genetic structure and migration rates of southern African coastal invertebrates: planktonic, abbreviated and direct development. Mar. Biol. 152, 697–711 (2007).
    Article  Google Scholar 

    14.
    Mkare, T. K., van Vuuren, B. J. & Teske, P. R. Conservation implications of significant population differentiation in an endangered estuarine seahorse. Biodivers. Conserv. 26, 1275–1293 (2017).
    Article  Google Scholar 

    15.
    Vandewoestijne, S., Schtickzelle, N. & Baguette, M. Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol. 6, 46 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Frankham, R. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618 (2015).
    PubMed  Article  Google Scholar 

    17.
    Nussear, K. E. et al. Translocation as a conservation tool for Agassiz’s desert tortoises: survivorship, reproduction, and movements. J. Wildl. Manag. 76, 1341–1353 (2012).
    Article  Google Scholar 

    18.
    Wright, D. J. et al. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler. Mol. Ecol. 23, 2165–2177 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).
    PubMed  Article  Google Scholar 

    20.
    Edmands, S. & Timmerman, C. C. Modeling factors affecting the severity of outbreeding depression. Conserv. Biol. 17, 883–892 (2003).
    Article  Google Scholar 

    21.
    Tallmon, D. A., Luikart, G. & Waples, R. S. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19, 489–496 (2004).
    PubMed  Article  Google Scholar 

    22.
    Frankham, R. et al. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465–475 (2011).
    PubMed  Article  Google Scholar 

    23.
    Miller, K. A. et al. Securing the demographic and genetic future of tuatara through assisted colonization. Conserv. Biol. 26, 790–798 (2012).
    PubMed  Article  Google Scholar 

    24.
    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
    Article  Google Scholar 

    25.
    Peniche, G. et al. Protecting free-living dormice: molecular identification of cestode parasites in captive dormice (Muscardinus avellanarius) destined for reintroduction. EcoHealth 14, 106–116 (2017).
    PubMed  Article  Google Scholar 

    26.
    Pollom, R. Hippocampus capensis. The IUCN Red List of Threatened Species 2017: .T10056A54903534. http://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T10056A54903534.en (2017).

    27.
    Bell, E. M., Lockyear, J. F., McPherson, J. M., Marsden, A. D. & Vincent, A. C. J. First field studies of an endangered South African seahorse, Hippocampus capensis. Environ. Biol. Fishes 67, 35–46 (2003).
    Article  Google Scholar 

    28.
    Lockyear, J. F., Hecht, T., Kaiser, H. & Teske, P. R. The distribution and abundance of the endangered Knysna seahorse Hippocampus capensis (Pisces: Syngnathidae) in South African estuaries. Afr. J. Aquat. Sci. 31, 275–283 (2006).
    Article  Google Scholar 

    29.
    Teske, P. R., Cherry, M. I. & Matthee, C. A. Population genetics of the endangered Knysna seahorse, Hippocampus capensis. Mol. Ecol. 12, 1703–1715 (2003).
    CAS  PubMed  Article  Google Scholar 

    30.
    López, A., Vera, M., Planas, M. & Bouza, C. Conservation genetics of threatened Hippocampus guttulatus in vulnerable habitats in NW Spain: temporal and spatial stability of wild populations with flexible polygamous mating system in captivity. PLoS ONE 10, e0117538 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Lande, R. Genetics and demography in biological conservation. Science 241, 1455–1460 (1988).
    ADS  CAS  PubMed  Article  Google Scholar 

    33.
    Wang, J. Estimation of effective population sizes from data on genetic markers. Phil. Trans. R. Soc. B360, 1395–1409 (2005).
    Article  CAS  Google Scholar 

    34.
    Schwartz, M. K., Luikart, G. & Waples, R. S. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22, 25–33 (2007).
    PubMed  Article  Google Scholar 

    35.
    Armstrong, D. P. & Seddon, P. J. Directions in reintroduction biology. Trends Ecol. Evol. 23, 20–25 (2008).
    PubMed  Article  Google Scholar 

    36.
    Cerón-Souza, I. et al. Contrasting demographic history and gene flow patterns of two mangrove species on either side of the Central American Isthmus. Ecol. Evol. 5, 3486–3499 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Woodall, L. C., Koldewey, H. J., Boehm, J. T. & Shaw, P. W. Past and present drivers of population structure in a small coastal fish, the European long snouted seahorse Hippocampus guttulatus. Conserv. Genet. 16, 1139–1153 (2015).
    Article  Google Scholar 

    38.
    Teske, P. R. et al. Molecular evidence for long-distance colonization in an Indo-Pacific seahorse lineage. Mar. Ecol. Prog. Ser. 286, 249–260 (2005).
    ADS  CAS  Article  Google Scholar 

    39.
    Heydorn, A. E. F. & Grindley, J. R. Estuaries of the Cape: Part II Synopses of available information on individual systems. Report 30. (Associated Printing and Publishing Co. (Pty) Ltd., 1985).

    40.
    Turpie, J. K. & Clark, B. Development of a conservation plan for temperate South African estuaries on the basis of biodiversity importance, ecosystem health and economic costs and benefits. Report by Anchor Environmental Consultants. C.A.P.E. Regional Estuarine Management Programme. 125 (2007).

    41.
    Penrith, M. J. & Penrith, M. Redescription of Pandaka silvana (Barnard) (Pisces, Gobiidae). Ann. South Afr. Mus. 60, 105–108 (1972).
    Google Scholar 

    42.
    Branch, G. M. The ecology of Patella linnaeus from the cape Peninsula, South Africa I. Zonation, movements and feeding. Zool. Afr. 6, 1–38 (1971).
    Article  Google Scholar 

    43.
    Largier, J. L., Attwood, C. & Harcourt-Baldwin, J. L. The hydrographic character of the Knysna Estuary. Trans. R. Soc. South Afr. 55, 107–122 (2000).
    Article  Google Scholar 

    44.
    Russell, I. A. Mass mortality of marine and estuarine fish in the Swartvlei and Wilderness lake systems, Southern Cape. South. Afr. J. Aquat. Sci. 20, 93–96 (1994).
    Google Scholar 

    45.
    Roberts, M. J., van der Lingen, C. D., Whittle, C. & van den Berg, M. Shelf currents, lee-trapped and transient eddies on the inshore boundary of the Agulhas Current, South Africa: their relevance to the KwaZulu-Natal sardine run. Afr. J. Mar. Sci. 32, 423–447 (2010).
    Article  Google Scholar 

    46.
    Teske, P. R., Bader, S. & Golla, T. R. Passive dispersal against an ocean current. Mar. Ecol. Prog. Ser. 539, 153–163 (2015).
    ADS  CAS  Article  Google Scholar 

    47.
    Claassens, L. An artificial water body provides habitat for an endangered estuarine seahorse species. Estuar. Coast. Shelf Sci. 180, 1–10 (2016).
    ADS  Article  Google Scholar 

    48.
    Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States: Assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. Bioscience 48, 607–615 (1998).
    Article  Google Scholar 

    49.
    Hey, J. Isolation with migration models for more than two populations. Mol. Biol. Evol. 27, 905–920 (2010).
    CAS  PubMed  Article  Google Scholar 

    50.
    Claassens, L., Barnes, R. S. K., Wasserman, J., Lamberth, S. J., Miranda, A. F., van Niekerk, L. & Adams, J. B. Knysna Estuary health: ecological status, threats and options for the future. Afr. J. Aquat. 45 (2020).

    51.
    Nielsen, R. & Wakeley, J. Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158, 885–896 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Whitfield, A. K. Threatened fishes of the world: Hippocampus capensis Boulenger, 1900 (Syngnathidae). Environ. Biol. Fishes 44, 362–362 (1995).
    Article  Google Scholar 

    53.
    Yue, G. H., David, L. & Orban, L. Mutation rate and pattern of microsatellites in common carp (Cyprinus carpio L.). Genetica 129, 329–331 (2007).
    CAS  PubMed  Article  Google Scholar 

    54.
    Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).
    PubMed  Article  Google Scholar 

    55.
    Do, C. et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).
    CAS  PubMed  Article  Google Scholar 

    56.
    Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Lischer, H. E. L. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299 (2012).
    CAS  PubMed  Article  Google Scholar 

    60.
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. (2014). More

  • in

    Marauding plants steer clear of a communist-ruled island

    Cuba has hosted relatively small numbers of tourist groups given its size, which might have helped to keep invasive plants at bay. Credit: Roberto Machado Noa/LightRocket/Getty

    Ecology
    18 February 2021

    Cuba’s relatively closed economy could explain why it has fewer invasive plant species per unit area than other Caribbean islands.

    For more than 60 years, the rocky relationship between the United States and Cuba has helped to steer tourists and businesses away from the Caribbean island. Now, researchers have found that Cuba’s economic and political isolation might also have limited the spread of invasive plants.
    Meghan Brown at Hobart and William Smith Colleges in Geneva, New York, and her colleagues estimated the number of invasive plant species on 45 Caribbean islands. The researchers found that larger islands tend to have more exotic plant species than do smaller ones. But Cuba, the biggest island in the Caribbean, is home to hundreds fewer such species than expected for its size.
    Mass tourism seems to favour the introduction of invasive plants, the team found, probably because hotels plant exotic ornamental species and tourists carry seeds in their bags or on their shoes. Cuba — which has one of the region’s lowest shares of holidaymakers in comparison to its area — has about the same number of invasive species as Puerto Rico, which is one-tenth the size of Cuba but has many more visitors for its land area. More

  • in

    Dogs (Canis familiaris) recognize their own body as a physical obstacle

    1.
    Bahrick, L. E. & Watson, J. S. Detection of intermodal proprioceptive–visual contingency as a potential basis of self-perception in infancy. Dev. Psychol. 21, 963 (1985).
    Article  Google Scholar 
    2.
    Van Den Bos, E. & Jeannerod, M. Sense of body and sense of action both contribute to self-recognition. Cognition 85, 177–187 (2002).
    Article  Google Scholar 

    3.
    Wilson, M. Six views of embodied cognition. Psychon. B. Rev. 9, 625–636 (2002).
    Article  Google Scholar 

    4.
    Smith, L. & Gasser, M. The development of embodied cognition: Six lessons from babies. Artif. life 11, 13–29 (2005).
    Article  Google Scholar 

    5.
    Shettleworth, S. J. Cognition, Evolution, and Behavior. Oxford University Press.

    6.
    Kohda, M. et al. If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals?. PLoS Biol 17, e3000021 (2019).
    CAS  Article  Google Scholar 

    7.
    Gallup, G. G. Chimpanzees: Self-recognition. Science 167, 86–87 (1970).
    ADS  Article  Google Scholar 

    8.
    Epstein, R., Lanza, R. P. & Skinner, B. F. “Self-awareness” in the pigeon. Science 212, 695–696 (1981).
    ADS  CAS  Article  Google Scholar 

    9.
    Heyes, C. M. Self-recognition in primates: Further reflections create a hall of mirrors. Anim. Behav. 50, 1533–1542 (1995).
    Article  Google Scholar 

    10.
    Suddendorf, T. & Butler, D. L. Response to Gallup et al.: Are rich interpretations of visual self-recognition a bit too rich?. Trends. Cogn. Sci. 18, 58–59 (2014).
    Article  Google Scholar 

    11.
    Reiss, D. & Marino, L. Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proc. Natl. Acad. Sci. USA 98, 5937–5942 (2001).
    ADS  CAS  Article  Google Scholar 

    12.
    Plotnik, J. M., De Waal, F. B. & Reiss, D. Self-recognition in an Asian elephant. Proc. Natl. Acad. Sci. USA 103, 17053–17057 (2006).
    ADS  CAS  Article  Google Scholar 

    13.
    Prior, H., Schwarz, A. & Güntürkün, O. Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biol 6, e202 (2008).
    Article  Google Scholar 

    14.
    Bekoff, M. & Sherman, P. W. Reflections on animal selves. Trends Ecol. Evol. 19, 176–180 (2004).
    Article  Google Scholar 

    15.
    Lenkei, R., Faragó, T., Kovács, D., Zsilák, B. & Pongrácz, P. That dog won’t fit: Body size awareness in dogs. Anim. Cogn 23, 337–350 (2019).
    Article  Google Scholar 

    16.
    Zazzo, R. Des enfants, des singes et des chiens devant le miroir. Rev. Psychol. Appl. 29, 235–246 (1979).
    Google Scholar 

    17.
    Cuthill, I. & Guilford, T. Perceived risk and obstacle avoidance in flying birds. Anim. Behav. 40, 188–190 (1990).
    Article  Google Scholar 

    18.
    Khvatov, I. A., Sokolov, A. Y. & Kharitonov, A. N. Snakes Elaphe radiata may acquire awareness of their body limits when trying to hide in a shelter. Behav. Sci. 9, 67 (2019).
    Article  Google Scholar 

    19.
    Maeda, T. & Fujita, K. Do dogs (Canis familiaris) recognize their own body size? In Proceedings of the 2nd Canine Science Forum, Vienna, Austria, 52 (2010).

    20.
    Dale, R. & Plotnik, J. M. Elephants know when their bodies are obstacles to success in a novel transfer task. Sci. Rep. 7, 46309 (2017).
    ADS  CAS  Article  Google Scholar 

    21.
    Brownell, C. A., Zerwas, S. & Ramani, G. B. “So big”: The development of body self-awareness in toddlers. Child Dev. 78, 1426–1440 (2007).
    Article  Google Scholar 

    22.
    Povinelli, D. J. & Cant, J. G. Arboreal clambering and the evolution of self-conception. Q. Rev. Biol. 70, 393–421 (1995).
    CAS  Article  Google Scholar 

    23.
    Povinelli, D. J. Failure to find self-recognition in Asian elephants (Elephas maximus) in contrast to their use of mirror cues to discover hidden food. J. Comp. Psychol. 103, 122 (1989).
    Article  Google Scholar 

    24.
    Topál, J. et al. The dog as a model for understanding human social behaviour. Adv. Stud. Behav. 39, 71–116 (2009).
    Article  Google Scholar 

    25.
    Sanford, E. M., Burt, E. R. & Meyers-Manor, J. E. Timmy’s in the well: Empathy and prosocial helping in dogs. Learn. Behav. 46, 374–386 (2018).
    Article  Google Scholar 

    26.
    Pongrácz, P., Bánhegyi, P. & Miklósi, Á. When rank counts—dominant dogs learn better from a human demonstrator in a two-action test. Behaviour 149, 111–132 (2012).
    Article  Google Scholar 

    27.
    Huber, L., Popovová, N., Riener, S., Salobir, K. & Cimarelli, G. Would dogs copy irrelevant actions from their human caregiver?. Learn. Behav. 46, 387–397 (2018).
    Article  Google Scholar 

    28.
    Virányi, Z. S., Topál, J., Miklósi, Á. & Csányi, V. A nonverbal test of knowledge attribution: A comparative study on dogs and children. Anim. Cogn. 9, 13–26 (2006).
    Article  Google Scholar 

    29.
    Polgárdi, R., Topál, J. & Csányi, V. Intentional behaviour in dog-human communication: An experimental analysis of “showing” behaviour in the dog. Anim. Cogn. 3, 159–166 (2000).
    Article  Google Scholar 

    30.
    Pongrácz, P., Hegedüs, D., Sanjurjo, B., Kővári, A. & Miklósi, Á. “We will work for you”—Social influence may suppress individual food preferences in a communicative situation in dogs. Learn. Motiv. 44, 270–281 (2013).
    Article  Google Scholar 

    31.
    Fugazza, C., Pogány, Á. & Miklósi, Á. Recall of others’ actions after incidental encoding reveals episodic-like memory in dogs. Curr. Biol. 26, 3209–3213 (2016).
    CAS  Article  Google Scholar 

    32.
    Horowitz, A. Smelling themselves: Dogs investigate their own odours longer when modified in an “olfactory mirror” test. Behav. Proc. 143, 17–24 (2017).
    Article  Google Scholar 

    33.
    Moore, C., Mealiea, J., Garon, N. & Povinelli, D. J. The development of body self-awareness. Infancy 11, 157–174 (2007).
    Article  Google Scholar 

    34.
    Howell, T. J. & Bennett, P. C. Can dogs (Canis familiaris) use a mirror to solve a problem?. J. Vet. Behav. 6, 306–312 (2011).
    Article  Google Scholar 

    35.
    Bekoff, M. Awareness: Animal reflections. Nature 419, 255 (2002).
    ADS  CAS  Article  Google Scholar 

    36.
    Kaplan, J. T., Aziz-Zadeh, L., Uddin, L. Q. & Iacoboni, M. The self across the senses: An fMRI study of self-face and self-voice recognition. Soc. Cogn. Affect. Neur. 3, 218–223 (2008).
    Article  Google Scholar  More

  • in

    Reply to: Concerns about phytoplankton bloom trends in global lakes

    1.
    Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).
    ADS  CAS  Article  Google Scholar 
    2.
    Feng, L. et al. Concerns about phytoplankton bloom trends in global lakes. Nature https://doi.org/10.1038/s41586-021-03254-3 (2021).

    3.
    Ho, J. C., Stumpf, R. P., Bridgeman, T. B. & Michalak, A. M. Using Landsat to extend the historical record of lacustrine phytoplankton blooms: a Lake Erie case study. Remote Sens. Environ. 191, 273–285 (2017).
    ADS  Article  Google Scholar 

    4.
    Bridgeman, T. B., Chaffin, J. D. & Filbrun, J. E. A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011. J. Great Lakes Res. 39, 83–89 (2013).
    Article  Google Scholar 

    5.
    Wynne, T. T. & Stumpf, R. P. Spatial and temporal patterns in the seasonal distribution of toxic cyanobacteria in Western Lake Erie from 2002–2014. Toxins 7, 1649–1663 (2015).
    CAS  Article  Google Scholar 

    6.
    Mishra, S. et al. Measurement of cyanobacterial bloom magnitude using satellite remote sensing. Sci. Rep. 9, 18310 (2019).
    ADS  CAS  Article  Google Scholar 

    7.
    Ho, J. C. & Michalak, A. M. Challenges in tracking harmful algal blooms: a synthesis of evidence from Lake Erie. J. Great Lakes Res. 41, 317–325 (2015).
    Article  Google Scholar 

    8.
    Bertani, I. et al. Tracking cyanobacteria blooms: do different monitoring approaches tell the same story? Sci. Total Environ. 575, 294–308 (2017).
    ADS  CAS  Article  Google Scholar 

    9.
    Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

    10.
    Havens, K. et al. Extreme weather events and climate variability provide a lens to how shallow lakes may respond to climate change. Water 8, 229 (2016).
    ADS  Article  Google Scholar 

    11.
    King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A. & Hubanks, P. A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 51, 3826–3852 (2013).
    ADS  Article  Google Scholar 

    12.
    Ackerman, S. A. et al. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 103, 32141–32157 (1998).
    ADS  Article  Google Scholar 

    13.
    Hu, C. et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. 115, C04002 (2010).
    ADS  Google Scholar 

    14.
    Sharma, S. et al. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci. Data 2, 150008 (2015).
    Article  Google Scholar 

    15.
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Article  Google Scholar  More

  • in

    Insecticidal and oviposition deterrent effects of essential oils of Baccharis spp. and histological assessment against Drosophila suzukii (Diptera: Drosophilidae)

    1.
    Budel, J. et al. Essential oils of five Baccharis species: Investigations on the chemical composition and biological activities. Molecules 23, 1–19 (2018).
    Article  CAS  Google Scholar 
    2.
    Heiden, G. & Schneider, A. Baccharis in Lista de Espécies da Flora do Brasil, Jardim Botânico do Rio de Janeiro (2015). http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB5255. Accessed 10 September 2020.

    3.
    Forzza, R. C. et al. New Brazilian floristic list highlights conservation challenges. Bioscience 62, 39–45 (2012).
    Article  Google Scholar 

    4.
    Ramos Campos, F., Bressan, J. & Jasinski, V. C. G. Baccharis (Asteraceae): Chemical constituents and biological activities. Chem. Biodivers. 13, 1–17 (2016).
    CAS  PubMed  Article  Google Scholar 

    5.
    Trombin-Souza, M. et al. Chemical composition of the essential oils of Baccharis species from southern Brazil: A comparative study using multivariate statistical analysis. J. Essent. Oil Res. 29, 400–406 (2017).
    CAS  Article  Google Scholar 

    6.
    Alves, K. F. et al. Baccharis dracunculifolia (Asteraceae) essential oil toxicity to Culex quinquefasciatus (Culicidae). Environ. Sci. Pollut. Res. 25, 31718–31726 (2018).
    CAS  Article  Google Scholar 

    7.
    García, M., Donadel, O. J., Ardanaz, C. E., Tonn, C. E. & Sosa, M. E. Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manage. Sci. 61, 612–618 (2005).
    Article  CAS  Google Scholar 

    8.
    Buss, E.A. & Park-Brown, S.G. Natural Products for Insect Pest Management. Preprint at https://edis.ifas.ufl.edu/in197 (2002).

    9.
    Park, C. G., Jang, M., Yoon, K. A. & Kim, J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crop Prod. 89, 507–513 (2016).
    CAS  Article  Google Scholar 

    10.
    Asplen, M. K. et al. Invasion biology of Spotted Wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 88, 469–494 (2015).
    Article  Google Scholar 

    11.
    De La Veja, G. J., Corley, J. C. & Soliani, C. Genetic assessment of the invasion history of Drosophila suzukii in Argentina. J. Pest Sci. 93, 63–75 (2020).
    Article  Google Scholar 

    12.
    Rota-Stabelli, O. et al. Distinct genotypes and phenotypes in European and American strains of Drosophila suzukii: Implications for biology and management of an invasive organism. J. Pest Sci. 93, 77–89 (2020).
    Article  Google Scholar 

    13.
    Bernardi, D. et al. Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind. Crop Prod. 110, 30–35 (2017).
    CAS  Article  Google Scholar 

    14.
    Kienzle, R., Groß, L. B., Caughman, S. & Rohlfs, M. Resource use by individual Drosophila suzukii reveals a flexible preference for oviposition into healthy fruits. Sci. Rep. 10, 3132 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Souza, M. T. et al. Physicochemical characteristics and superficial damage modulate persimmon infestation by Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Environ. Entomol. 49, 1290–1299 (2020).
    Article  Google Scholar 

    16.
    Hamby, K. A. et al. Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J. Pest Sci. 89, 605–619 (2016).
    Article  Google Scholar 

    17.
    Sánchez-Ramos, I., Gómez-Casado, E., Fernández, C. E. & González-Núñez, M. Reproductive potential and population increase of Drosophila suzukii at constant temperatures. Entomol. Gen. 39, 103–115 (2019).
    Article  Google Scholar 

    18.
    Spitaler, U. et al. Yeast species affects feeding and fitness of Drosophila suzukii adults. J. Pest Sci. 93, 1295–1309 (2020).
    Article  Google Scholar 

    19.
    Santoiemma, G. et al. Habitat preference of Drosophila suzukii across heterogeneous landscapes. J. Pest Sci. 92, 485–494 (2019).
    Article  Google Scholar 

    20.
    Tait, G. et al. Drosophila suzukii daily dispersal between distinctly different habitats. Entomol. Gen. 40, 25–37 (2020).
    Article  Google Scholar 

    21.
    Delbac, L., Rusch, A. & Thiéry, D. Temporal dynamics of Drosophila suzukii in vineyard landscapes. Entomol. Gen. 40, 285–295 (2020).
    Article  Google Scholar 

    22.
    Renkema, J. M., Wright, D., Buitenhuis, R. & Hallett, R. H. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci. Rep. 6, 21432 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Wiman, N. G. et al. Drosophila suzukii population response to environment and management strategies. J. Pest Sci. 89, 653–665 (2016).
    Article  Google Scholar 

    24.
    Santoiemma, G. et al. Integrated management of Drosophila suzukii in sweet cherry orchards. Entomol. Gen. 40, 297–305 (2020).
    Article  Google Scholar 

    25.
    Mermer, S. et al. Timing and order of different insecticide classes drive control of Drosophila suzukii; a modeling approach. J. Pest Sci. https://doi.org/10.1007/s10340-020-01292-w (2020).
    Article  Google Scholar 

    26.
    Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manage. Sci. 75, 1270–1276 (2018).
    Article  CAS  Google Scholar 

    27.
    Van Timmeren, S., Sial, A. A., Lanka, S. K., Spaulding, N. R. & Isaacs, R. Development of a rapid assessment method for detecting insecticide resistance in Spotted Wing Drosophila (Drosophila suzukii Matsumura). Pest Manage. Sci. 75, 1782–1793 (2019).
    Article  CAS  Google Scholar 

    28.
    Zanardi, O. Z. et al. Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Prot. 67, 160–167 (2015).
    Article  Google Scholar 

    29.
    Souza, M. T. et al. Chemical composition of essential oils of selected species of Piper and their insecticidal activity against Drosophila suzukii and Trichopria anastrephae. Environ. Sci. Pollut. Res. 27, 13056–13065 (2020).
    Article  CAS  Google Scholar 

    30.
    Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N. & Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manage. Sci. 58, 1101–1106 (2002).
    CAS  Article  Google Scholar 

    31.
    Chaaban, A. et al. Insecticide activity of Baccharis dracunculifolia essential oil against Cochliomyia macellaria (Diptera: calliphoridae). Nat. Prod. Res. 32, 2854–2958 (2017).
    Google Scholar 

    32.
    Charlie-Silva, I., Souza, L. M., Pereira, C. C., Mazzonetto, F. & Belo, M. A. A. Insecticidal efficacy of aqueous extracts of Ricinus communis, Baccharis trimera and Chenopodium ambrosioides on adults of Alphitobius diaperinus. Ars. Vet. 35, 7–11 (2019).
    CAS  Article  Google Scholar 

    33.
    Khorram, M. S., Nasabi, N. T., Jafarnia, S. & Khosroshahi, S. The toxicity of selected monoterpene hydrocarbons as singles compounds and mixtures against different developmental stages of colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). J. Entomol. 8, 404–416 (2011).
    CAS  Article  Google Scholar 

    34.
    Fang, R. et al. Insecticidal activity of essential oil of carum carvi fruits from China and its main components against two grain storage insects. Molecules 15, 9391–9402 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Malacrinò, A., Campolo, O. & Laudani, F. Fumigant and repellent activity of limonene enantiomers against Tribolium confusum du Val. Neotrop. Entomol. 45, 597–603 (2016).
    PubMed  Article  Google Scholar 

    36.
    Macchioni, F. et al. Acaricidal activity of pine essential oils and their main components against Tyrophagus putrescentiae, a stored food mite. J. Agric. Food Chem. 50, 4586–4588 (2002).
    CAS  PubMed  Article  Google Scholar 

    37.
    Tiberi, R. et al. The role of the monoterpene composition in Pinus spp. needles, in host selection by the pine processionary caterpillar, Thaumetopoea pityocampa. Phytoparas. 27, 263–272 (1999).
    CAS  Article  Google Scholar 

    38.
    Schuster, D. J., Thompson, S., Ortega, L. D. & Polston, J. E. Laboratory evaluation of products to reduce settling of sweet potato whitefly adults. J. Econ. Entomol. 102, 1482–1489 (2009).
    CAS  PubMed  Article  Google Scholar 

    39.
    Raina, A. et al. Effects of orange oil extract on the Formosan Subterranean Termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 100, 880–885 (2010).
    Article  Google Scholar 

    40.
    Andreazza, F. et al. Toxicities and effects of insecticidal toxic baits to control Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Pest Manage. Sci. 73, 146–152 (2017).
    CAS  Article  Google Scholar 

    41.
    Bruck, D. J. et al. Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manage. Sci. 67, 1375–1385 (2011).
    CAS  Article  Google Scholar 

    42.
    Beers, E. H. et al. Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manage. Sci. 67, 1386–1395 (2011).
    CAS  Article  Google Scholar 

    43.
    Van Timmeren, S. & Isaacs, R. Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot. 54, 126–133 (2013).
    Article  CAS  Google Scholar 

    44.
    Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crop Prod. 60, 247–258 (2014).
    CAS  Article  Google Scholar 

    45.
    Dias, C. N. & Moraes, D. F. C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: A review. Parasitol. Res. 113, 565–592 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Jankowska, M., Rogalska, J., Wyszkowska, J. & Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system–A review. Molecules https://doi.org/10.3390/molecules23010034 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Trombetta, D. et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 49, 2474–2478 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Holley, R. A. & Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 22, 273–292 (2005).
    CAS  Article  Google Scholar 

    49.
    Oussalah, M., Caillet, S., Saucier, L. & Lacroix, M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18, 414–420 (2007).
    CAS  Article  Google Scholar 

    50.
    Abdelgaleil, S., Badawy, M., Shawir, M. & Mohamed, M. Chemical composition, fumigant and contact toxicities of essential oils isolated from egyptian plants against the stored grain insects; Sitophilus oryzae L. and Tribolium castaneum (Herbst). Egypt J. Biol. Pest Co 25, 639–647 (2015).
    Google Scholar 

    51.
    Badawy, M. E. I., El-Arami, S. A. A. & Abdelgaleil, S. A. M. Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae. Exp. Appl. Acarol. 52, 261–274 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Chaaban, A. et al. Essential oil from Curcuma longa leaves: Can an overlooked by-product from turmeric industry be effective for myiasis control?. Ind. Crop Prod. 132, 352–364 (2019).
    CAS  Article  Google Scholar 

    53.
    Kumar, P., Mishra, S., Malik, A. & Satya, S. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: muscidae). Ecotoxicol. Environ. Safe 100, 1–6 (2014).
    CAS  Article  Google Scholar 

    54.
    Benelli, G. et al. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crop Prod. 112, 668–680 (2018).
    CAS  Article  Google Scholar 

    55.
    Pavela, R. et al. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 136, 111037 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Pavela, R. Lethal and sublethal effects of thyme oil (Thymus vulgaris L.) on the house fly (Musca domestica Lin.). J. Essent. Oil-Bear. Plants 10, 346–356 (2007).
    CAS  Article  Google Scholar 

    57.
    Haviland, D. R. & Beers, E. H. Chemical control programs for Drosophila suzukii that comply with international limitations on pesticide residues for exported sweet cherries. J. Integr. Pest Manage. 3, 1–6 (2012).
    Article  Google Scholar 

    58.
    Shaw, B., Brain, P., Wijnen, H. & Fountain, M. T. Implications of sub-lethal rates of insecticides and daily time of application on Drosophila suzukii lifecycle. Crop Prot. 121, 182–194 (2019).
    CAS  Article  Google Scholar 

    59.
    Richards, O. W. & Davies, R. G. Imms’ General Textbook of Entomology: Structure, Physiology and Development 101–263 (Chapman and Hall, London, 1977).
    Google Scholar 

    60.
    Alves, S. N., Serrão, J. E. & Melo, A. L. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron 41, 592–597 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Rossi, C. A., Roat, T. C., Tavares, D. A., Cintra-Socolowski, P. & Malaspina, O. Effects of sublethal doses of imidacloprid in malpighian tubules of africanized Apis melífera (Hymenoptera, Apidae). Microsc. Res. Techniq. 76, 552–558 (2013).
    CAS  Article  Google Scholar 

    62.
    Kerr, J. F. R. History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182, 471–474 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Rossi-Stacconi, M. V. et al. Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive Spotted Wing Drosophila. Biol. Control 117, 188–196 (2018).
    Article  Google Scholar 

    64.
    Giorgini, M. et al. Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid. J. Pest Sci. 92, 509–522 (2018).
    Article  Google Scholar 

    65.
    Garriga, A. et al. Soil emergence of Drosophila suzukii adults: A susceptible period for entomopathogenic nematodes infection. J. Pest Sci. 93, 639–646 (2020).
    Article  Google Scholar 

    66.
    Wolf, S., Boycheva-Woltering, S., Romeis, J. & Collatz, J. Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J. Pest Sci. 93, 627–638 (2020).
    Article  Google Scholar 

    67.
    Pavela, R. & Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21, 1000–1007 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Krzyzowski, M., Baran, B. & Łozowski, B. The role of dilution mediums in studies of fumigant insecticidal activity of essential oils. J. Pest Sci. 93, 1119–1124 (2020).
    Article  Google Scholar 

    69.
    Campolo, O. et al. Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Ind. Crop Prod 157, 112935 (2020).
    CAS  Article  Google Scholar 

    70.
    McLafferty, F. W., Stauffer, D. A., Loh, S. Y. & Wesdemiotis, C. Unknown identification using reference mass spectra. Quality evaluation of databases. J. Am. Soc. Mass Spectr. 10, 1229–1240 (1999).
    CAS  Article  Google Scholar 

    71.
    Van Den Dool, H. & Kratz, P. D. J. A. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 11, 463–471 (1963).
    Article  Google Scholar 

    72.
    Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy 5th edn. (Texensis Publishing, New York, 2017).
    Google Scholar 

    73.
    Schlesener, D. C. H. et al. Biology and fertility life table of Drosophila suzukii on artificial diets. Entomol. Exp. Appl. 166, 932–936 (2018).
    Google Scholar 

    74.
    Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Am. Mosquito Contr. 3, 302–303 (1925).
    Google Scholar 

    75.
    Finney, D. J. Statistical Method in Biological Assay (Charles Griffin & Company, London, 1978).
    Google Scholar 

    76.
    Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. B 135, 370–384 (1972).
    Google Scholar 

    77.
    Hinde, J. & Demétrio, C. G. B. Overdispersion: Models and estimation. Comput. Stat. Data Anal. 27, 151–170 (1998).
    MATH  Article  Google Scholar 

    78.
    R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 (2012). http://www.R-project.org. Accessed 2 September 2020.

    79.
    Institute, S. A. S. SAS System–SAS/STAT. Computer Program, Version 9.2 84 (SAS Institute, Cary, 2011).
    Google Scholar 

    80.
    Throne, J. E., Weaver, D. K., Chew, V. B. & James, E. Probit analysis of correlated data: Multiple observations over time at one concentration. J. Econ. Entomol. 88, 1510–1512 (1995).
    Article  Google Scholar 

    81.
    Obeng-Ofori, D. Plant oils as grain protectants against infestations of Cryptolestes pusillus and Rhyzopertha dominica in stored grain. Entomol. Exp. Appl. 77, 133–139 (1995).
    Article  Google Scholar  More

  • in

    Mapping ticks and tick-borne pathogens in China

    Distribution of tick species in mainland China
    We compiled a database comprising 7344 unique records on geographic distributions of 124 known tick species, including 113 hard tick species in seven genera and 11 soft tick species in two genera, together with 103 tick-associated agents detected in either ticks or humans, which were recorded in 1134 counties (39% of all counties in the mainland of China) (Supplementary Fig. 1 and Supplementary Note 1). The most widely distributed tick genus was Dermacentor (in 574 counties), followed by Heamaphysalis (570), Ixodes (432), Rhipicephalus (431), Hyalomma (298), Argas (90), Ornithodoros (38), Amblyomma (37), and Anomalohimalaya (5) (Supplementary Data 1 and Supplementary Figs. 2‒10). At the species level, D. nuttalli, Ha. longicornis, D. silvarum, Hy. scupense, and R. sanguineus were each found in >200 counties, followed by R. microplus, I. persulcatus, I. sinensis, I. granulatus, and Hy. asiaticum that were each detected in 100‒200 counties (Supplementary Data 1). We identified 19 predominant ticks that were detected in more than 40 counties, including five Ixodes species, four Heamaphysalis, four Dermacentor, three Rhipicephalus, two Hyalomma, and one Argas tick species. Forest and meadowlands are the major vegetation types for these 19 tick species, accounting for a median of 46.4% (IQR: 40.0%‒68.9%) of their habitats (Supplementary Data 1).
    The abundance of tick species varies substantially across the seven biogeographic zones which are defined by climatic and ecological characteristics (Fig. 1)18,19. Tick species are most abundant in Central China, South China, and Inner Mongolia–Xinjiang districts, hosting 61, 57, and 50 tick species, respectively (Supplementary Data 2). Eight prefectures reported ≥20 tick species, three in Xinjiang Autonomous Region of northwestern China, two in Yunnan Province of southwestern China, and one in each of Gansu, Hubei, and Fujian provinces of northwestern, central, and southeastern China, respectively (Fig. 1). Most genera except for Amblyomma were found in northwestern China, particularly in Xinjiang Autonomous Region. In contrast, less tick diversity was observed in northeastern China, which only harbors Ixodes, Heamaphysalis, and Dermacentor (Supplementary Figs. 2‒10).
    Fig. 1: Tick species richness (circles) at the prefecture level in seven biogeographic zones in mainland China from 1950 to 2018.

    I = Northeast district (NE), II = North China district (N), III = Inner Mongolia–Xinjiang district (IMX), IV = Qinghai–Tibet district (QT), V = Southwest district (SW), VI = Central China district (C), and VII = South China district (S). Source data are provided as a Source Data file.

    Full size image

    Risk mapping and risk factors for 19 predominant tick species
    The ecological modeling results for the 19 predominant tick species showed highly accurate predictions, with the average testing area-under-curve (AUC) ranging from 0.83 to 0.97 (Table 1) and the testing partial AUC ratio ranging from 1.30 to 1.78 (Supplementary Tables 1‒5), indicating decent predictive power. The ecoclimatic and environmental variables that were predictive of the geographic distribution of the ticks differed among the species, even for those in the same genus (Fig. 2f, Supplementary Tables 1‒5). Temperature seasonality and mean temperature in the driest quarter were the two most important drivers, contributing ≥5% to the ensemble of models for 14- and 12- tick species, respectively, followed by elevation contributing ≥5% to the models for seven tick species (Fig. 2f, Supplementary Tables 1‒5). The same predictor, however, may drive the risk in different directions for different tick species (Supplementary Figs. 11‒29). For example, a high temperature in the driest quarter was associated with a high probability of presence for I. granulatus and R. haemaphysaloide but with a low probability for I. persulcatus and Ha. longicornis (Supplementary Figs. 11, 13, 16, 22).
    Table 1 The average testing areas under the curve (AUC) of the BRT models at the county level and model-predicted numbers, areas and population sizes of affected counties for the 19 most prevalent tick species in China.
    Full size table

    Fig. 2: Clustering of tick species based on their ecological features and spatial distributions at the county level.

    Panels a‒e indicate the spatial distribution of the five clusters (clusters I‒V). The boundaries of the seven biogeographic zones are shown as black solid lines. The dendrogram in panel f displays the clusters I‒V of tick species. The features used for clustering are three quantities associated with each predictor in the BRT models. Two of the three quantities were displayed in panel f to indicate the possible level of ecological suitability: relative contributions (colors in ascending order from yellow to red) and the standardized median value of the predictor (numbers in the heatmap) among counties with tick occurrence (numbers 1‒4 indicate the position of this median in reference to the quartiles of this predictor among all counties). Source data are provided as a Source Data file.

    Full size image

    The model-predicted high-risk areas of the 19 tick species were much more extensive than have been observed, 31‒520% greater in the number of affected counties, 14‒476% larger in the size of affected geographic area, and 25‒556% larger in the affected population size (Table 1, Supplementary Figs. 30‒34). Ha. longicornis was predicted to have the widest distribution that potentially affected 588 million people in 1140 counties, followed by I. sinensis and R. microplus that affected 363 and 350 million people in 630 and 678 counties, respectively (Table 1). High-risk areas of these three tick species collectively covered nearly all densely populated areas in China, mainly provinces in the central, eastern, southern, and southwestern China (Supplementary Figs. 30(b), 31(a), and 32(b)). R. sanguineus, and R. haemaphysaloides each affected more than 200 million people. D. nuttalli, I. crenulatus, Hy. asiaticum, Ar. persicus, and D. daghestanicus ticks were the top five tick species affecting the largest areas at the scale of 2.0‒3.8 million km2 (Table 1).
    Ecological clustering of tick species
    Based on the ecological similarity represented by the environmental and ecoclimatic predictors, the 19 tick species were grouped into five clusters with clear patterns of spatial aggregation (Fig. 2). D. nuttalli and D. silvarum constituted cluster I that covered the vast region in northern (including northeastern and northwestern) China. This cluster stretches over biogeographic zones I‒IV characterized by middle to high elevations, shrub grassland, strong seasonality in temperature, relatively low temperature in the wettest quarter (often also the warmest quarter), and low precipitation in the driest month (Fig. 2 and Supplementary Figs. 23, 24). Ha. longicornis, Hy. scupense, and R. sanguineus were grouped into Cluster II which was mainly found in biogeographic zones II, III, and VI, featuring the landscape of shrub grassland and irrigated or rainfed croplands at low-middle elevations (7% (Table 2). SFTSV ecologically prefers regions at low to moderate elevations ( 7%). High risks of TBEV were flagged by low to medium elevations ( More

  • in

    Antagonist effects of the leek Allium porrum as a companion plant on aphid host plant colonization

    1.
    Parolin, P. et al. Secondary plants used in biological control: a review. Int. J. Pest Manag. 58, 91–100 (2012).
    Article  Google Scholar 
    2.
    Parker, J. E., Snyder, W. E., Hamilton, G. C. & Rodriguez‐Saona, C. Companion planting and insect pest control. Weed and Pest Control – Conventional and New Challenges (2013). https://doi.org/10.5772/55044

    3.
    Held, D. W., Gonsiska, P. & Potter, D. A. Evaluating companion planting and non-host masking odors for protecting roses from the Japanese beetle (Coleoptera: Scarabaeidae). J. Econ. Entomol. 96, 81–87 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Togni, P. H. B., Laumann, R. A., Medeiros, M. A. & Suji, E. R. Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomol. Exp. Appl. 136, 164–173 (2010).
    Article  Google Scholar 

    5.
    Deletre, E. et al. Prospects for repellent in pest control: current developments and future challenges. Chemoecology 26, 127–142 (2016).
    CAS  Article  Google Scholar 

    6.
    Ben-Issa, R., Gomez, L. & Gautier, H. Companion plants for aphid pest management. Insects 8, 112 (2017).
    PubMed Central  Article  Google Scholar 

    7.
    Niemeyer, H. Secondary plant chemicals in aphid-host interactions. RK. RK Campbell RD Eikenbary Aphid-plant genotype Interact, 101–111 (1990).

    8.
    Powell, G., Tosh, C. R. & Hardie, J. HOST PLANT SELECTION BY APHIDS: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Mansion-Vaquié, A., Ferrer, A., Ramon-Portugal, F., Wezel, A. & Magro, A. Intercropping impacts the host location behaviour and population growth of aphids. Entomol. Exp. Appl. 168, 41–52 (2020).
    Article  Google Scholar 

    10.
    Nottingham, S. F. et al. Behavioral and electrophysiological responses of Aphids to host and nonhost plant volatiles. J. Chem. Ecol. 17, 1231–1242 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Ben Issa, R., Gautier, H. & Gomez, L. Influence of neighbouring companion plants on the performance of aphid populations on sweet pepper plants under greenhouse conditions. Agric. For. Entomol. 19, 181–191 (2017).
    Article  Google Scholar 

    12.
    Hatt, S., Xu, Q., Francis, F. & Osawa, N. Aromatic plants of East Asia to enhance natural enemies towards biological control of insect pests. A review. Entomol. Gener. 38, 275–315 (2019).
    Article  Google Scholar 

    13.
    Basedow, T., Hua, L. & Aggarwal, N. The infestation of Vicia faba L. (Fabaceae) by Aphis fabae (Scop.) (Homoptera: Aphididae) under the influence of Lamiaceae (Ocimum basilicum L. and Satureja hortensis L.). J. Pest Sci. 79, 149 (2006).
    Article  Google Scholar 

    14.
    Beizhou, S. et al. Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants. Pest Manag. Sci. 67, 1107–1114 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Glinwood, R., Ninkovic, V., Pettersson, J. & Ahmed, E. Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids. Ecol. Entomol. 29, 188–195 (2004).
    Article  Google Scholar 

    16.
    Jankowska, B., Poniedziałek, M. & Jędrszczyk, E. Effect of intercropping white cabbage with French Marigold (Tagetes patula nana L.) and Pot Marigold (Calendula officinalis L.) on the colonization of plants by pest insects. Folia Hortic. 21, 95–103 (2009).
    Article  Google Scholar 

    17.
    Tang, G. B. et al. Repellent and attractive effects of herbs on insects in pear orchards intercropped with aromatic plants. Agroforest. Syst. 87, 273–285 (2013).
    Article  Google Scholar 

    18.
    de Lima, J. S. S. et al. Agroeconomic evaluation of intercropping rocket and carrot by uni- and multivariate analyses in a semi-arid region of Brazil. Ecol. Ind. 41, 109–114 (2014).
    Article  Google Scholar 

    19.
    Sujayanand, G. K., Sharma, R. K., Shankarganesh, K., Saha, S. & Tomar, R. S. Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae). Fla. Entomol. 98, 305–314 (2015).
    Article  Google Scholar 

    20.
    McCall, P. J. & Eaton, G. Olfactory memory in the mosquito Culex quinquefasciatus. Med. Vet. Entomol. 15, 197–203 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Little, C. M., Chapman, T. W. & Hillier, N. K. Considerations for insect learning in integrated pest management. J. Insect Sci. 19, 6 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Bandara, K. A. N. P. et al. Can leek interfere with bean plant-bean fly interaction? Test of ecological pest management in mixed cropping. J. Econ. Entomol. 102, 999–1008 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Mutiga, S. K., Gohole, L. S. & Auma, E. O. Effects of integrating companion cropping and nitrogen application on the performance and infestation of collards by Brevicoryne brassicae. Entomol. Exp. Appl. 134, 234–244 (2010).
    CAS  Article  Google Scholar 

    24.
    Dugravot, S., Thibout, E., Abo-Ghalia, A. & Huignard, J. How a specialist and a non-specialist insect cope with dimethyl disulfide produced by Allium porrum. Neth. Entomol. Soc. Entomol. Exp. Appl. 113, 173–179 (2004).
    Article  Google Scholar 

    25.
    Thibout, E. & Auger, J. Composés soufrés des Allium et lutte contre les insectes. Acta Bot. Gallica 144, 419–426 (1997).
    Article  Google Scholar 

    26.
    Auger, J., Dugravot, S., Naudin, A. & Abo-Ghalia, A. Utilisation des composes allelochimiques des Allium en tant qu’insecticides. Use of pheromones and other semiochemicals in integrated production IOBC wprs Bulletin Vol. 25, 13 (2002).

    27.
    Amarawardana, L. et al. Olfactory response of Myzus persicae (Homoptera: Aphididae) to volatiles from leek and chive: potential for intercropping with sweet pepper. Acta Agric. Scand. Sect. B – Soil Plant Sci. 57, 87–91 (2007).
    Google Scholar 

    28.
    Zhou, H. et al. Influence of garlic intercropping or active emitted volatiles in releasers on aphid and related beneficial in wheat fields in China. J. Integr. Agric. 12, 467–473 (2013).
    Article  Google Scholar 

    29.
    Mauck, K. E., De Moraes, C. M. & Mescher, M. C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. USA 107, 3600–3605 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Tjallingii, W. F. Electrical recording of stylet penetration activities. In Aphids, Their Biology, Natural Enemies and Control (eds Minks, A. K. & Harrewijn, P.) 95–108 (Elsevier, Amsterdam, 1988).
    Google Scholar 

    31.
    Tjallingii, W. F. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721–730 (1978).
    Article  Google Scholar 

    32.
    Giordanengo, P. EPG-Calc: a PHP-based script to calculate electrical penetration graph (EPG) parameters. Arthropod-Plant Interact. 8, 163–169 (2014).
    Article  Google Scholar 

    33.
    MacGillivray, M. E. & Anderson, G. B. Three useful insect cages. Can. Entomol. 89, 43–46 (1957).
    Article  Google Scholar 

    34.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2014).
    Google Scholar 

    35.
    Järvenpää, E. P., Zhang, Z., Huopalahti, R. & King, J. W. Determination of fresh onion (Allium cepa L.) volatiles by solid phase microextraction combined with gas chromatography-mass spectrometry. Z. Lebensm Unters Forsch 207, 39–43 (1998).
    Article  Google Scholar 

    36.
    Løkke, M. M., Edelenbos, M., Larsen, E. & Feilberg, A. Investigation of volatiles emitted from freshly cut onions (Allium cepa L.) by real time proton-transfer reaction-mass spectrometry (PTR-MS) . Sensors 12, 16060–16076 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    37.
    Camacho-Coronel, X., Molina-Torres, J. & Heil, M. Sequestration of exogenous volatiles by plant cuticular waxes as a mechanism of passive associational resistance: a proof of concept. Front. Plant Sci. 11, 121 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Himanen, S. J. et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—a mechanism for associational herbivore resistance?. New Phytol. 186, 722–732 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Dahlin, I., Vucetic, A. & Ninkovic, V. Changed host plant volatile emissions induced by chemical interaction between unattacked plants reduce aphid plant acceptance with intermorph variation. J Pest Sci 88, 249–257 (2015).
    Article  Google Scholar 

    40.
    Dardouri, T. et al. Non-host volatiles disturb the feeding behavior and reduce the fecundity of the green peach aphid, Myzus persicae. Pest Manag Sci. https://doi.org/10.1002/ps.6190 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Dancewicz, K., Gabryś, B. & Przybylska, M. Effect of garlic (Allium sativum L.) and tansy (Tanaceum vulgare L.) extracts and potassic horticultural soap on the probing and feeding behaviour of Myzus persicae (Sulzer, 1776). Aphids Other Homopterous Insects 17, 126–136 (2011).
    Google Scholar 

    42.
    Chyb, S., Eichenseer, H., Hollister, B., Mullin, C. A. & Frazier, J. L. Identification of sensilla involved in taste mediation in adult western corn rootworm (Diabrotica virgifera virgifera LeConte). J. Chem. Ecol. 21, 313–329 (1995).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Prado, E. & Tjallingii, W. F. Effects of previous plant infestation on sieve element acceptance by two aphids. Entomol. Exp. Appl. 82, 189–200 (1997).
    Article  Google Scholar 

    44.
    Sauge, M.-H., Lacroze, J.-P., Poëssel, J.-L., Pascal, T. & Kervella, J. Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomol. Exp. Appl. 102, 29–37 (2002).
    Article  Google Scholar 

    45.
    Tolosa, T. A. et al. Molasses grass induces direct and indirect defense responses in neighbouring maize plants. J. Chem. Ecol. 45, 982–992 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Ninkovic, V., Rensing, M., Dahlin, I. & Markovic, D. Who is my neighbor? Volatile cues in plant interactions. Plant Signal Behav. 14, 1634993 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol. Lett. 17, 44–52 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Kumar, P., Mishra, S., Malik, A. & Satya, S. Insecticidal properties of Mentha species: a review. Ind. Crops Prod. 34, 802–817 (2011).
    CAS  Article  Google Scholar 

    49.
    Nuñez-Mejía, G., Valadez-Lira, J. A., Gomez-Flores, R., Rodríguez-Padilla, C. & Tamez-Guerra, P. Trichoplusia ni (Lepidoptera: Noctuidae) survival, immune response, and gut bacteria changes after exposure to Azadirachta indica (Sapindales: Meliaceae) volatiles. Fla. Entomol. 99, 12–20 (2016).
    Article  Google Scholar 

    50.
    Regnault-Roger, C., Vincent, C. & Arnason, J. T. Essential oils in insect control: low-risk products in a high-stakes world. Annu. Rev. Entomol. 57, 405–424 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Sousa, R. M. O. F., Rosa, J. S., Oliveira, L., Cunha, A. & Fernandes-Ferreira, M. Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Ind. Crops Prod. 63, 226–237 (2015).
    CAS  Article  Google Scholar 

    52.
    Petrakis, E. A. et al. Responses of Myzus persicae (Sulzer) to three Lamiaceae essential oils obtained by microwave-assisted and conventional hydrodistillation. Ind. Crops Prod. 62, 272–279 (2014).
    CAS  Article  Google Scholar 

    53.
    Poorjavad, N., Goldansaz, S. H., Dadpour, H. & Khajehali, J. Effect of Ferula assafoetida essential oil on some biological and behavioral traits of Trichogramma embryophagum and T. evanescens. Biocontrol 59, 403–413 (2014).
    CAS  Article  Google Scholar 

    54.
    Vázquez-Covarrubias, D. A., Jiménez-Pérez, A., Castrejón-Ayala, F., Figueroa-Brito, R. & Belmont, R. M. Effects of five species of Chenopodiaceae on the development and reproductive potential of Copitarsia decolora (Lepidoptera: Noctuidae). Fla. Entomol. 98, 80–85 (2015).
    Article  Google Scholar 

    55.
    Bharti, G., Prasad, S. & Upadhyay, V. B. The influence of plant volatile of Allium sativum on the reproductive ability of multivoltine mulberry silkworm Bombyx mori Linn. Afr. J. Basic Appl. Sci. 5(6), 242–249 (2013).
    Google Scholar 

    56.
    Ameline, A., Couty, A., Martoub, M., Sourice, S. & Giordanengo, P. Modification of Macrosiphum euphorbiae colonisation behaviour and reproduction on potato plants treated by mineral oil. Entomol. Exp. Appl. 135, 77–84 (2010).
    Article  Google Scholar 

    57.
    Calabrese, E. J. Hormesis: why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 27, 1451–1474 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Ayyanath, M.-M., Cutler, G. C., Scott-Dupree, C. D. & Sibley, P. K. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 8, e74532 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Yu, Y., Shen, G., Zhu, H. & Lu, Y. Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer). Pestic. Biochem. Physiol. 98, 238–242 (2010).
    CAS  Article  Google Scholar 

    60.
    Stephens, D. W. Learning and behavioral ecology: incomplete information and environmental predictability. In Insect Learning: Ecology and Evolutionary Perspectives (eds Papaj, D. R. & Lewis, A. C.) 195–218 (Springer, New York, 1993).
    Google Scholar 

    61.
    Bedini, S. et al. Allium sativum, Rosmarinus officinalis, and Salvia officinalis essential oils: a spiced shield against blowflies. Insects 11, 143 (2020).
    PubMed Central  Article  Google Scholar 

    62.
    Shi, J. et al. Laboratory evaluation of acute toxicity of the essential oil of Allium tuberosum leaves and its selected major constituents against Apolygus lucorum (Hemiptera: Miridae). J. Insect Sci. 15, 117 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Potential impacts of marine urbanization on benthic macrofaunal diversity

    Study area
    We established field survey sites in four different habitat types (BW: breakwater wall; EB: eelgrass bed; IF: intertidal flat; SB: subtidal bottom) within Matsunaga Bay, located in the eastern Seto Inland Sea, Japan (Fig. 1). Matsunaga Bay is a small semi-closed bay with an area of approximately 12 km2. It is connected with other water bodies through the Tozaki-Seto Strait (width: approx. 400 m) and the Onomichi Strait (width: approx. 200 m)29,30. Water depths are mostly less than 20 m throughout the bay. The water depths at our four survey sites were approximately 4.5 m, but part of site SB located near a shipping channel reached depths of 10–13 m. Intertidal flats cover 35% (4.3 km2) of the bay area, whereas eelgrass beds cover 1.7% (0.2 km2)31. The bottom sediment type is mainly muddy throughout the bay, although some parts of EB and SB have sandy and muddy bottoms (see Supplementary Table S1)30.
    Figure 1

    Locations of sampling sites in Matsunaga Bay, Hiroshima, Japan. This map was created based on coordinate data from Google (http://www.gis-tool.com/mapview/maptocoordinates.html). The four habitats examined in this study are indicated by BW (breakwater wall; grey circle), EB (eelgrass bed; grey circle), IF (intertidal flat; grey rectangle), and SB (subtidal bottom; grey polygon).

    Full size image

    Although human activities along the coast of Matsunaga Bay appear to be associated with artificial structures (e.g., industrial plants, marinas, and lumber yards), natural habitats are still relatively well-preserved compared to areas in the eastern Seto Inland Sea29. The total population of towns within 5 km of the coastline of the bay can be expected to exceed 100,000 people, which ranks within the top 20% of administrative districts in Japan, including prefectures, towns, villages, and the 23 wards of Tokyo32.
    Data collection
    We conducted one field survey in September 2016 (summer) and another in January 2017 (winter) to collect data on benthic community structures and environmental conditions in each habitat. We established five sampling sites within each habitat to obtain replicated samples. To reduce biases due to tidal cycle, we performed all field sampling and measurements at high tide, when all habitats were underwater.
    We used a standard sample area (approximately 0.15 m2 per sample) at each sampling site irrespective of sampling method to obtain comparable data on benthic communities. Some of our sampling methods involved Smith–McIntyre grab samplers and quadrats that could not cover the standard sample area in a single sample; for these methods, we combined the data from three samples to make up a single sampling site. At BW, benthic macrofauna (hereafter referred to as “benthos”) samples were collected by SCUBA divers. We established 15 sampling positions in a 5 × 3 grid (i.e., five depths [sampling sites] and three replicates) based on distance from the seafloor at the breakwater wall (Supplementary Fig. S1). The SCUBA divers used scraper blades, 0.1-mm mesh bags, and 22.5 cm × 22.5 cm quadrats because the benthic communities were mainly composed of sessile organisms. At EB, we employed different sampling methods for the above- and belowground components. SCUBA divers collected aboveground samples of eelgrass-associated benthos and eelgrass shoots using a mesh bag (mesh size: 0.1 mm; bag diameter: 45 cm). They then cut away the eelgrass shoots near each aboveground site and collected belowground samples of the benthos on top of and within the sediment by using the bucket part of a Smith–McIntyre grab sampler (sampling area: 22.5 cm × 22.5 cm). At IF and SB, benthos and bottom sediment samples were collected from a ship using a Smith–McIntyre grab sampler (sampling area: 22.5 cm × 22.5 cm).
    All benthos was extracted using a 1-mm sieve and preserved in buffered 10% formalin in the field as soon as possible after sampling. The samples were identified to the lowest possible taxonomic unit and counted in the laboratory. After identification, we organized the dominant benthic species (or taxa) according to their primary feeding types and common life forms with reference to the World Register of Marine Species (http://www.marinespecies.org/) and the literature. No vertebrate species were targeted in this study. We defined the primary life forms of adult benthic species on/in their substrates as “common life forms.”
    Although differences in environmental conditions were not the focus of our study, we did assess whether there were considerable water quality differences among sites. The purpose of this assessment was to try to identify sites with similar conditions so that exogenous impacts on biological communities could be discounted as much as possible in the analysis. We measured water and sediment conditions at each sampling site (except at BW, where sediment conditions were not measured due to the absence of sediment). Prior to benthos and sediment sampling, we measured water temperature, salinity, pH, and dissolved oxygen concentration at each site at a depth directly above the seafloor by using a multi-parameter water quality meter (AAQ‐RINKO, JFE Advantech Co. Ltd., Japan). At BW, where the substrate (i.e., the breakwater) is oriented vertically (see Supplementary Fig. S1), we measured water conditions in the middle of the water column. We also measured temperature, pH, oxidation–reduction potential (ORP), water content, and median particle size (D50) in the sediment. Sediment temperature, pH, and ORP were measured by using a portable ion meter (IM-32P, DKK-TOA Co., Japan) immediately after each sample was collected. Sediment water content and D50 were measured in the laboratory once benthic species had been removed from the sample.
    Data analysis
    First, we identified how many species were shared between all habitat pairs to understand inter-habitat species-sharing relationships. Second, we compared species compositions and abundances among habitats using similarity indices and multivariate analysis (described below).
    To detect species sharing in terms of species commonality and endemism among the four habitats, we classified benthic species into the following three categories: common, endemic, and shifting. Common species were defined as species that occurred across all habitats. Endemic species are those that were found in only one habitat. Shifting species were defined as those that occurred in multiple habitats (but not across all habitats) and therefore showed a broad allowable range of habitat types or conditions. To analyse the importance of habitat sets in maintaining local species diversity, we further categorized the shifting species into two- or three-habitat users (i.e., those that occurred in two or three different habitats). Moreover, we calculated the numbers and proportions (i.e., using the Jaccard similarity index) of shared species in each habitat pair to evaluate the potential strength of any inter-habitat relationships. The Jaccard similarity index ((J)) is calculated as follows:

    $$ J = frac{{S_{alpha beta } }}{{S_{alpha } + S_{beta } – S_{alpha beta } }}, $$

    where (S_{alpha }) is the number of species in habitat (alpha), (S_{beta }) is the number of species in habitat (beta), and (S_{alpha beta }) is the number of species that are shared among habitats (alpha) and (beta).
    In terms of the functional groups, we analysed abundance matrices of abundant species grouped by primary feeding types and common life forms. Focusing on abundant species is a useful way to reflect the functional characteristics of biological communities14. Therefore, we identified the most abundant species from each sample before constructing the abundance data matrices. To determine how many species to select for analysis, we calculated the number e of equally-abundant species that would be required to obtain the Simpson diversity index of each community (i.e., the effective number of species33). We then selected e abundant species from each sample in rank order from most to least abundant. If multiple species of the same rank occupied this cut-off threshold, we selected all of them. This selection method, which is unique to our study, successfully identified dominant species that accounted for over 70% of the total abundance in each community in all habitats.
    To compare benthic macrofaunal communities among habitats, we performed non‐metric multidimensional scaling (NMDS)34 based on dissimilarity matrices obtained by using the metaMDS function in the vegan package35. To compare species compositions, we constructed Jaccard dissimilarity matrices based on presence/absence data, and to compare species abundance and functional compositions, we constructed Bray–Curtis dissimilarity matrices based on abundance datasets. All abundance datasets were square-root transformed before calculating the Bray–Curtis dissimilarity matrices to reduce the influence of abundance bias. We accepted the NMDS ordinations if stress values were less than 0.2 to maintain the accuracy of the two‐dimensional ordinations34. Then, we tested the effects of habitat type and sampling time by conducting a two-way permutational multivariate analysis of variance (two-way PERMANOVA)36 using the adonis function in the vegan package. Here, we considered four habitats (Habitat), two sampling times (Time), and their interaction term as explanatory factors. Although our main focus was differences in community compositions among habitats at each sampling time, we also examined the magnitude of variation in each habitat by comparing two stable seasonal extremes (i.e., summer and winter). If the results of the PERMANOVA were significant, we performed post-hoc tests (pairwise PERMANOVA) to identify which pairs of community structures were significantly different by using the pairwise.perm.manova function in the RVAideMemoire package37. We used 9999 permutations for the NMDS ordination, PERMANOVA, and pairwise PERMANOVA. P-values calculated during the pairwise PERMANOVA were corrected using the false discovery rate method38. For the benthic community data collected at each sampling point at EB, above- and belowground datasets were integrated to reflect spatial representativeness (see Figs. S3 and S4). All analyses were performed using R version 3.5.139. More