More stories

  • in

    Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease

    1.
    Carré, P. & Pouzet, A. Rapeseed market, worldwide and in Europe. OCL 21(1), D102. https://doi.org/10.1051/ocl/201h3054 (2014).
    Article  Google Scholar 
    2.
    Hammond, K. E. & Lewis, B. E. The timing and sequence of events leading to stem canker disease in populations of Brassica napus var. oleifera in the field. Plant Pathol. 35, 551–556. https://doi.org/10.1111/j.1365-3059.1986.tb02054.x (1986).
    Article  Google Scholar 

    3.
    Deb, D., Khan, A. & Dey, N. Phoma diseases: Epidemiology and control. Plant. Pathol. 00, 1–15. https://doi.org/10.1111/ppa.13221 (2020).
    CAS  Article  Google Scholar 

    4.
    Fitt, B. D. L., Brun, H., Barbetti, M. J. & Rimmer, S. R. World-wide importance of Phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur. J. Plant Pathol. 114, 3–15. https://doi.org/10.1007/s10658-005-2233-5 (2006).
    Article  Google Scholar 

    5.
    Winter, M. & Koopmann, B. Race spectra of Leptosphaeria maculans, the causal agent of blackleg disease of oilseed rape, in different geographic regions in northern Germany. Eur. J. Plant Pathol. 145, 629–641. https://doi.org/10.1007/s10658-016-0932-8 (2016).
    Article  Google Scholar 

    6.
    Derbyshire, M. C. & Denton-Giles, M. The control of Sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant. Pathol. 65, 859–877. https://doi.org/10.1111/ppa.12517 (2016).
    CAS  Article  Google Scholar 

    7.
    Gladders, P., Symonds, B. V., Hardwick, N. V. & Sansford, C. E. Opportunities to control canker (Leptosphaeria maculans) in winter oilseed rape by improved spray timing. IOBC/WPRS Bull. 21, 111–120 (1998).
    Google Scholar 

    8.
    Kuai, J. et al. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res. 199, 89–98. https://doi.org/10.1016/j.fcr.2016.09.025 (2016).
    Article  Google Scholar 

    9.
    Card, S. D. et al. Beneficial endophytic microorganisms of Brassica —A review. Biol. Control 90, 102–112. https://doi.org/10.1016/j.biocontrol.2015.06.001 (2015).
    Article  Google Scholar 

    10.
    Weyens, N., van der Lelie, D., Taghavi, S., Newman, L. & Vangronsveld, J. Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 27, 591–598. https://doi.org/10.1016/j.tibtech.2009.07.006 (2009).
    CAS  Article  PubMed  Google Scholar 

    11.
    Müller, H. & Berg, G. Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. Biocontrol 53, 905–916. https://doi.org/10.1007/s10526-007-9111-3 (2008).
    Article  Google Scholar 

    12.
    Granér, G., Persson, P., Meijer, J. & Alström, S. A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol. Lett. 224, 269–276. https://doi.org/10.1016/S0378-1097(03)00449-X (2003).
    CAS  Article  PubMed  Google Scholar 

    13.
    Croes, S. et al. Bacterial communities associated with Brassica napus L. grown on trace-element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microb. Biotechnol. 6, 371–384. https://doi.org/10.1111/1751-7915.12057 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Zhang, Q. et al. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control 72, 98–102. https://doi.org/10.1016/j.biocontrol.2014.02.018 (2014).
    Article  Google Scholar 

    15.
    Berg, G. et al. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol. Ecol. 56, 250–261. https://doi.org/10.1111/j.1574-6941.2005.00025.x (2006).
    CAS  Article  PubMed  Google Scholar 

    16.
    Berg, G. et al. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl. Environ. Microbiol. 71, 4203–4213. https://doi.org/10.1128/AEM.71.8.4203-4213.2005 (2005).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Robin, A. H. K. et al. Leptosphaeria maculans alters glucosinolate profiles in blackleg disease-resistant and -susceptible cabbage lines. Front. Plant Sci. 8, 1789. https://doi.org/10.3389/fpls.2017.01769 (2017).
    Article  Google Scholar 

    18.
    Garrido-Sanz, D. et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS ONE 11(2), e0150183. https://doi.org/10.1371/journal.pone.0153733 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Taylor, A. Fungal diversity in ectotomycorrhizal communities: sampling effort and species distribution. Plant Soil 244, 19–28. https://doi.org/10.1023/A:1020279815472 (2002).
    ADS  CAS  Article  Google Scholar 

    20.
    Schmidt, C. S. et al. Distinct communities of poplar endophytes on an unpolluted and a risk elements-polluted site and their plant growth promoting potential in vitro. Microb. Ecol. 75, 955–969. https://doi.org/10.1007/s00248-017-1103-y (2018).
    CAS  Article  PubMed  Google Scholar 

    21.
    Jedryczka, M. Epidemiology and damage caused by stem canker of oilseed rape in Poland. Phytopathol. Pol. 45, 73–75 (2007).
    Article  Google Scholar 

    22.
    Mazáková, J., Urban, J., Zouhar, M. & Ryšánek, P. Analysis of Leptosphaeria species complex causing Phoma leaf spot and stem canker of winter oilseed rape (Brassica napus) in the Czech Republic. Crop Pasture Sci. 68, 254–264. https://doi.org/10.1071/CP16308 (2017).
    CAS  Article  Google Scholar 

    23.
    El Hadrami, A., Fernando, W. G. D. & Daayf, F. Variations in relative humidity modulate Leptosphaeria spp. pathogenicity and interfere with canola mechanisms of defence. Eur. J. Plant Pathol. 126, 187–202. https://doi.org/10.1007/s10658-009-9532-1 (2010).
    Article  Google Scholar 

    24.
    Hilton, S., Bennett, A. J., Chandler, D., Mills, P. & Bending, G. D. Preceding crop and seasonal effects influence fungal, bacterial and nematode diversity in wheat and oilseed rape rhizosphere and soil. Appl. Soil Ecol. 126, 34–46. https://doi.org/10.1016/j.apsoil.2018.02.007 (2018).
    Article  Google Scholar 

    25.
    Glynou, K. et al. The local environment determines the assembly of root endophytic fungi at a continental scale. Environ. Microbiol. 18, 2418–2434. https://doi.org/10.1111/1462-2920.13112 (2016).
    CAS  Article  PubMed  Google Scholar 

    26.
    Croes, S., Weyens, N., Colpaet, J. & Vangronveld, J. Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: An evaluation of sampling and isolation protocols. Environ. Microbiol. 17, 2379–2392., https://doi.org/10.1111/1462-2920.12701 (2015).

    27.
    Alström, S. Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. J. Phytopathol. 149, 57–64. https://doi.org/10.1046/j.1439-0434.2001.00585.x (2001).
    Article  Google Scholar 

    28.
    Cope-Selby, N. et al. Endophytic bacteria in Miscanthus seed: Implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy 9, 57–77. https://doi.org/10.1111/gcbb.12364 (2017).
    CAS  Article  Google Scholar 

    29.
    Rathore, R. et al. Crop establishment practices are a driver of the plant microbiota in winter oilseed rape (Brassica napus). Front. Microbiol. 8, 1489. https://doi.org/10.3389/fmicb.2017.01489 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Lay, C. Y. et al. Canola-Root-Associated microbiomes in the Canadian prairies. Front. Microbiol. 9, 1189. https://doi.org/10.3389/fmicb.2018.01188 (2018).
    Article  Google Scholar 

    31.
    Sundara-Rao, W. V. B. & Sinha, M. K. Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J. Agric. Sci. 33, 272–278. https://doi.org/10.1007/BF01372637 (1963).
    Article  Google Scholar 

    32.
    Bashan, Y., Kamnev, A. A. & de-Bashan, L. E. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: A proposal for an alternative procedure. Biol. Fertil. Soils 49, 465–479. https://doi.org/10.1007/s00374-012-0737-7 (2013).
    CAS  Article  Google Scholar 

    33.
    Pii, Y. et al. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 51, 403–415. https://doi.org/10.1007/s00374-015-0996-1 (2015).
    CAS  Article  Google Scholar 

    34.
    Reddy, C. A. & Saravanan, R. S. Polymicrobial multi-functional approach for enhancement of crop productivity. in Advances in Applied Microbiology (eds. Gadd, G. M. & Sariaslani, S.) 53–113 (Oxford Academic, Oxford, 2013).

    35.
    Lally, R. D. et al. Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front. Plant Sci. 8, 2193. https://doi.org/10.3389/fpls.2017.02193 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Parikh, L., Eskelson, M. J. & Adesemoye, A. O. Relationship of in vitro and in planta screening: improving the selection process for biological control agents against Fusarium root rot in row crops. Arch. Phytopathol. Plant Protect. 51, 156–169. https://doi.org/10.1080/03235408.2018.1441098 (2018).
    Article  Google Scholar 

    37.
    Bakker, P. A. H. M., Pieterse, C. M. J. & van Loon, L. C. Induced systemic resistance by fluorescent Pseudomonas sp. Phytopathology 97, 239–243. https://doi.org/10.1094/PHYTO-97-2-0239 (2007).
    Article  PubMed  Google Scholar 

    38.
    Youssef, S. A., Tartoura, K. A. & Greash, A. G. Serratia proteamaculans mediated alteration of tomato defense system and growth parameters in response to early blight pathogen Alternaria solani infection. Physiol. Mol. Plant Pathol. 103, 16–22. https://doi.org/10.1016/j.pmpp.2018.04.004 (2018).
    CAS  Article  Google Scholar 

    39.
    Li, H. et al. The use of Pseudomonas fluorescens P13 to control Sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. J. Microbiol. 49, 884–889. https://doi.org/10.1007/s12275-011-1261-4 (2011).
    Article  PubMed  Google Scholar 

    40.
    Smolińska, U. & Kowalska, B. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum—A review. J. Plant Pathol. 100, 1–12. https://doi.org/10.1007/s42161-018-0023-0 (2018).
    Article  Google Scholar 

    41.
    Shaukat, M. F. Seed bio-priming with Serratia plymuthica HRO-C48 for the control of Verticillium longisporum and Phoma lingam in Brassica napus L. spp. oleifera. (PhD Dissertation, University of Uppsala, Sweden, 2013).

    42.
    Castellano-Hinojosa, A., Pérez-Tapia, V., Bedmar, E. J. & Santillana, N. Purple corn-associated rhizobacteria with potential for plant growth promotion. J. Appl. Microbiol. 124, 1254–1264. https://doi.org/10.1111/jam.13708 (2018).
    CAS  Article  PubMed  Google Scholar 

    43.
    Li, L. et al. Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek 111, 1735–1748. https://doi.org/10.1007/s10482-018-1062-4 (2018).
    Article  PubMed  Google Scholar 

    44.
    Barnawal, D., Bharti, N., Maji, D., Chanotiya, C. S. & Kalra, A. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol. Biochem. 58, 227–235. https://doi.org/10.1016/j.plaphy.2012.07.008 (2012).
    CAS  Article  PubMed  Google Scholar 

    45.
    Egamberdieva, D., Wirth, S., Behrendt, U., Ahmad, P. & Berg, G. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front. Microbiol. 8, 199. https://doi.org/10.3389/fmicb.2017.00199 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Joe, M. M. et al. Resistance responses of rice to rice blast fungus after seed treatment with the endophytic Achromobacter xylosoxidans AUM54 strains. Crop Protect. 42, 141–148. https://doi.org/10.1016/j.cropro.2012.07.006 (2012).
    Article  Google Scholar 

    47.
    Bertrand, H. et al. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can. J. Microbiol. 46, 229–236 (2000).
    CAS  Article  Google Scholar 

    48.
    Abuamsha, R., Salman, M. & Ehlers, R. U. Role of different additives on survival of Serratia plymuthica HRO-C48 on oilseed rape seeds and control of Phoma lingam. Br. Microbiol. Res. J. 4, 737–748 (2014).
    Article  Google Scholar 

    49.
    Garrity, G. M., Winters, M. & Searles, D. B. Taxonomic outline of the prokaryotes. in Bergey’s Manual of Systematic Bacteriology, 2nd Edn, Release 1.0 (Springer, New York, 2001).

    50.
    Unterseher, M. & Schnittler, M. Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)—Different cultivation techniques influence fungal biodiversity assessment. Mycol. Res. 113, 645–654. https://doi.org/10.1016/j.mycres.2009.02.002 (2009).
    Article  PubMed  Google Scholar 

    51.
    Zadok, J. C., Chang, T. T. & Konzak, A. A decimal code for the growth stages of cereals. Weed Res. 14, 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x (1974).
    Article  Google Scholar 

    52.
    Schmidt, C. S., Mrnka, L., Frantík, T., Lovecká, P. & Vosátka, M. Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils. World J. Microbiol. Biotechnol. 34, 48. https://doi.org/10.1007/s11274-018-2426-7 (2018).
    CAS  Article  PubMed  Google Scholar 

    53.
    Koubek, J. et al. Whole-cell MALDI-TOF: Rapid screening method in environmental microbiology. Int. Biodeter. Biodegr. 69, 82–86. https://doi.org/10.1016/j.ibiod.2011.12.007 (2012).
    CAS  Article  Google Scholar 

    54.
    Uhlik, O. et al. Matrix-assisted laser desorption ionization (MALDI)–time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microb. 77, 6858–6866. https://doi.org/10.1128/AEM.05465-11 (2011).
    CAS  Article  Google Scholar 

    55.
    Štorchová, H. et al. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49, 79–84. https://doi.org/10.2307/1223934 (2000).
    Article  Google Scholar 

    56.
    White, T. J., Bruns, T. D., Lee, S. & Taylor, J. Analysis of phylogenetic relationship by amplification and direct sequencing of ribosomal RNA genes. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315–322 (Academic Press Inc., New York, 1990).

    57.
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x (1993).
    CAS  Article  PubMed  Google Scholar 

    58.
    McLaughlin, D. J., Hibbett, D. S., Lutzoni, F., Spatafora, J. W. & Vilgalys, R. The search for the fungal tree of life. Trends Microbiol. 11, 488–497. https://doi.org/10.1016/j.tim.2009.08.001 (2009).
    CAS  Article  Google Scholar 

    59.
    Alexander, D. B. & Zuberer, D. A. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39–45. https://doi.org/10.1007/BF00369386 (1991).
    CAS  Article  Google Scholar 

    60.
    Penrose, D. M. & Glick, B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118, 10–15. https://doi.org/10.1034/j.1399-3054.2003.00086.x (2003).
    CAS  Article  PubMed  Google Scholar 

    61.
    Li, Z., Chang, S., Lin, L., Li, Y. & An, Q. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett. Appl. Microbiol. 53, 178–185. https://doi.org/10.1111/j.1472-765X.2011.03088.x (2011).
    CAS  Article  PubMed  Google Scholar 

    62.
    Villano, D., Fernandez-Pachon, M. S., Moya, M. L., Troncoso, A. M. & Garcıa-Parrilla, M. C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71, 230–235. https://doi.org/10.1016/j.talanta.2006.03.050 (2007).
    CAS  Article  PubMed  Google Scholar 

    63.
    Hajšlová, J., Fenclová, M. & Zachariašová, M. Methodology for the Rapid Screening of Isolates of Endophytic Microorganisms and Identification of Strains with Phytohormonal Activity (in Czech, ISBN 978-80-7080-869-6 ) (2013).

    64.
    Veprikova, Z. et al. Mycotoxins in plant-based dietary supplements: Hidden health risk for consumers. J. Agric. Food Chem. 63, 6633–6643. https://doi.org/10.1021/acs.jafc.5b02105 (2015).
    CAS  Article  PubMed  Google Scholar 

    65.
    Zhou, Q. Untersuchungen zum Infektionsmodus, immunologischen Nachweis und zur biologischen Bekämpfung von Leptosphaeria maculans (Desm) Ces. & de Not., dem Erreger der Wurzelhals- und Stängelfäule an Winterraps (Brassica napus L.). (Ph.D Dissertation, University of Göttingen, Göttingen, 2001).

    66.
    Chèvre, A. M. et al. Stabilization of resistance to Leptosphaeria maculans in Brassica napus–B. juncea recombinant lines and its introgression into spring-type Brassica napus. Plant Dis. 92, 1208–1214. https://doi.org/10.1094/PDIS-92-8-1208 (2008).
    Article  PubMed  Google Scholar 

    67.
    El-Tarabily, K. A. et al. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49, 573–583. https://doi.org/10.1046/j.1365-3059.2000.00494.x (2000).
    Article  Google Scholar 

    68.
    Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation 2nd edn. (Primer-E, Plymouth, 2001).
    Google Scholar 

    69.
    Frisvad, J. C., Smedsgaard, J., Larsen, T. O. & Samson, R. A. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 49, 201–241 (2004).
    Google Scholar 

    70.
    Romero, F. M., Rossi, F. R., Gárriz, A., Carrasco, P. & Ruíz, O. A. A bacterial endophyte from apoplast fluids protects canola plants from different pathogens via antibiosis and induction of host resistance. Phytopathology 109, 375–383 (2019).
    CAS  Article  Google Scholar 

    71.
    Kamal, M. M., Lindbeck, K. D., Savocchia, S. & Ash, G. J. Biological control of Sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathol. 64, 1375–1384 (2015).
    CAS  Article  Google Scholar 

    72.
    Fernando, W. G. D., Nakkeeran, S., Zhang, Y., Savchuk, S. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protect. 26, 100–107. https://doi.org/10.1016/j.cropro.2006.04.007 (2007)

    73.
    Peng, G., McGregor, L., Lahlali, R., Gossen, B. D., Hwang, S. F., Adhikari, K. K., Strelkov, S. E., McDonald, M. R. Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathol. 60, 566–574. https://doi.org/10.1111/j.1365-3059.2010.02400.x (2011)

    74.
    Wu, Y., Yuan, J., Raza, W., Shen, Q., Huang, Q. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. J. Microbiol. Biotechnol. 24, 1327–1336. https://doi.org/10.4014/jmb.1402.02061 (2014)

    75.
    Auer, S. & Ludwig-Müller, J. Biological control of clubroot (Plasmodiophora brassicae) by an endophytic fungus. Integrated control in oilseed crops. IOBC-WPRS Bull. 136, 155–156 (2018).
    Google Scholar 

    76.
    Huang, H.-C. & Erickson, R. S. Biological control of Sclerotinia stem rot of canola using Ulocladium atrum. Plant Pathol. Bull. 16, 55–59 (2007).
    CAS  Google Scholar 

    77.
    Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S., Castro, P.M.L. Assessment of the plant growth promoting abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 42, 1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014 (2010) More

  • in

    The morphological and chemical properties of fine roots respond to nitrogen addition in a temperate Schrenk’s spruce (Picea schrenkiana) forest

    1.
    Agren, G. I. Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. Syst. 39, 153–170 (2008).
    Article  Google Scholar 
    2.
    Strand, A. E., Pritchard, S. G., McCormack, M. L., Davis, M. A. & Oren, R. Irreconcilable differences: Fine-root life spans and soil carbon persistence. Science 319, 456–458 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Norby, R. J. & Jackson, R. B. Root dynamics and global change: Seeking an ecosystem perspective. New Phytol. 147, 3–12 (2000).
    CAS  Article  Google Scholar 

    4.
    Valliere, J. M. & Allen, E. B. Interactive effects of nitrogen deposition and drought-stress on plant-soil feedbacks of Artemisia californica seedlings. Plant Soil 403, 277–290 (2016).
    CAS  Article  Google Scholar 

    5.
    Schulte-Uebbing, L. & de Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Glob. Change Biol. 24, E416–E431 (2018).
    Article  Google Scholar 

    6.
    Vanguelova, E. I. & Pitman, R. M. Nutrient and carbon cycling along nitrogen deposition gradients in broadleaf and conifer forest stands in the east of England. For. Ecol. Manage. 447, 180–194 (2019).
    Article  Google Scholar 

    7.
    Wang, L. X., Mou, P. P. & Jones, R. H. Nutrient foraging via physiological and morphological plasticity in three plant species. Can. J. For. Res. 36, 164–173 (2006).
    CAS  Article  Google Scholar 

    8.
    Yu, G. et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12, 424–429 (2019).
    ADS  CAS  Article  Google Scholar 

    9.
    Wang, W. J., Mo, Q. F., Han, X. G., Hui, D. F. & Shen, W. J. Fine root dynamics responses to nitrogen addition depend on root order, soil layer, and experimental duration in a subtropical forest. Biol. Fertil. Soils 55, 723–736 (2019).
    CAS  Article  Google Scholar 

    10.
    Ostonen, I. et al. Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob. Change Biol. 17, 3620–3632 (2011).
    ADS  Article  Google Scholar 

    11.
    Makita, N. et al. Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiol. 29, 579–585 (2009).
    CAS  PubMed  Article  Google Scholar 

    12.
    Craine, J. M., Froehle, J., Tilman, G. D., Wedin, D. A. & Chapin, F. S. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93, 274–285 (2001).
    Article  Google Scholar 

    13.
    Liu, R. Q. et al. Plasticity of fine-root functional traits in the litter layer in response to nitrogen addition in a subtropical forest plantation. Plant Soil 415, 317–330 (2017).
    CAS  Article  Google Scholar 

    14.
    Nadelhoffer, K. J. The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol. 147, 131–139 (2000).
    CAS  Article  Google Scholar 

    15.
    Noguchi, K., Nagakura, J. & Kaneko, S. Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after 3 years of nitrogen fertilization. Front. Plant Sci. 4, 7 (2013).
    Article  Google Scholar 

    16.
    Lu, X. K., Mao, Q. G., Gilliam, F. S., Luo, Y. Q. & Mo, J. M. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801 (2014).
    ADS  Article  Google Scholar 

    17.
    Li, W. B. et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biol. Biochem. 82, 112–118 (2015).
    CAS  Article  Google Scholar 

    18.
    Comas, L. H. & Eissenstat, D. M. Patterns in root trait variation among 25 co-existing North American forest species. New Phytol. 182, 919–928 (2009).
    CAS  PubMed  Article  Google Scholar 

    19.
    Zhang, X. et al. Effects of long-term nitrogen addition and decreased precipitation on the fine root morphology and anatomy of the main tree species in a temperate forest. For. Ecol. Manag. 455, 117664 (2020). https://doi.org/10.1016/j.foreco.2019.117664.
    Article  Google Scholar 

    20.
    Burton, A. J., Pregitzer, K. S. & Hendrick, R. L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125, 389–399 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Pregitzer, K. S. et al. Fine root architecture of nine North American trees. Ecol. Monogr. 72, 293–309 (2002).
    Article  Google Scholar 

    22.
    Wurzburger, N. & Wright, S. J. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96, 2137–2146 (2015).
    PubMed  Article  Google Scholar 

    23.
    Penuelas, J., Sardans, J., Rivas-Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N and P in Earth’s life system. Glob. Change Biol. 18, 3–6 (2012).
    ADS  Article  Google Scholar 

    24.
    Loewe, A., Einig, W., Shi, L., Dizengremel, P. & Hampp, R. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol. 145, 565–574 (2000).
    CAS  Article  Google Scholar 

    25.
    Grechi, I. et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environ. Exp. Bot. 59, 139–149 (2007).
    CAS  Article  Google Scholar 

    26.
    Jing, H. et al. Effect of nitrogen addition on the decomposition and release of compounds from fine roots with different diameters: The importance of initial substrate chemistry. Plant Soil 438, 281–296 (2019).
    CAS  Article  Google Scholar 

    27.
    Mucha, J. et al. Fine root classification matters: Nutrient levels in different functional categories, orders and diameters of roots in boreal Pinus sylvestris across a latitudinal gradient. Plant Soil 447, 507–520 (2019). https://doi.org/10.1007/s11104-019-04395-1.
    CAS  Article  Google Scholar 

    28.
    Aubrey, D. P. & Teskey, R. O. Stored root carbohydrates can maintain root respiration for extended periods. New Phytol. 218, 142–152 (2018).
    CAS  PubMed  Article  Google Scholar 

    29.
    Kou, L. et al. Simulated nitrogen deposition affects stoichiometry of multiple elements in resource-acquiring plant organs in a seasonally dry subtropical forest. Sci. Total Environ. 624, 611–620 (2018). https://doi.org/10.1016/j.scitotenv.2017.12.080.
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Yan, X. L., Jia, L. M. & Dai, T. F. Fine root morphology and growth in response to nitrogen addition through drip fertigation in a Populus × euramericana “Guariento” plantation over multiple years. Ann. For. Sci. 76 (2019).

    31.
    Yan, G. et al. Spatial and temporal effects of nitrogen addition on root morphology and growth in a boreal forest. Geoderma 303, 178–187 (2017).
    ADS  CAS  Article  Google Scholar 

    32.
    Lu, X. K. et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proc. Natl. Acad. Sci. USA 115, 5187–5192 (2018).
    CAS  PubMed  Article  Google Scholar 

    33.
    Van der Sande, M. T. et al. Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Funct. Ecol. 32, 461–474 (2018).
    Article  Google Scholar 

    34.
    Burton, A. J., Jarvey, J. C., Jarvi, M. P., Zak, D. R. & Pregitzer, K. S. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests. Glob. Change Biol. 18, 258–266 (2012).
    ADS  Article  Google Scholar 

    35.
    Eissenstat, D. M. & Yanai, R. D. The ecology of root lifespan. Adv. Ecol. Res. 27, 2–60 (1997).
    Google Scholar 

    36.
    Chen, D. M., Lan, Z. C., Hu, S. J. & Bai, Y. F. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs soil acidification. Soil Biol. Biochem. 89, 99–108 (2015).
    CAS  Article  Google Scholar 

    37.
    Vanguelova, E. I., Nortcliff, S., Moffat, A. J. & Kennedy, F. Morphology, biomass and nutrient status of fine roots of Scots pine (Pinussylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant Soil 270, 233–247 (2005).
    CAS  Article  Google Scholar 

    38.
    Zhang, H., Liu, Y., Zhou, Z. & Zhang, Y. Inorganic nitrogen addition affects soil respiration and belowground organic carbon fraction for a Pinus tabuliformis forest. Forests 10, 369 (2019).
    Article  Google Scholar 

    39.
    Lalnunzira, C., Brearley, F. Q. & Tripathi, S. K. Root growth dynamics during recovery of tropical mountain forest in North-east India. J. Mt. Sci. 16, 2335–2347 (2019).
    Article  Google Scholar 

    40.
    Kochsiek, A., Tan, S. & Russo, S. E. Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils. Plant Ecol. 214, 869–882 (2013).
    Article  Google Scholar 

    41.
    Ostonen, I. et al. Specific root length as an indicator of environmental change. Plant Biosyst. 141, 426–442 (2007).
    Article  Google Scholar 

    42.
    Fitter, A. H., Stickland, T. R., Harvey, M. L. & Wilson, G. W. Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytol. 118, 375–382 (1991).
    Article  Google Scholar 

    43.
    Hodge, A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 162, 9–24 (2004).
    Article  Google Scholar 

    44.
    Zhou, Y. M., Tang, J. W., Melillo, J. M., Butler, S. & Mohan, J. E. Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiol. 31, 707–717 (2011).
    PubMed  Article  CAS  Google Scholar 

    45.
    Fujita, Y., Robroek, B. J. M., de Ruiter, P. C., Heil, G. W. & Wassen, M. J. Increased N affects P uptake of eight grassland species: The role of root surface phosphatase activity. Oikos 119, 1665–1673 (2010).
    CAS  Article  Google Scholar 

    46.
    Alvarez-Clare, S. & Mack, M. C. Do foliar, litter, and root nitrogen and phosphorus concentrations reflect nutrient limitation in a lowland tropical wet forest?. PLoS ONE 10, e0123796 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Koerselman, W. & Meuleman, A. F. M. The vegetation NP ratio a new tool to detect the nature. J. Appl. Ecol. 33, 1441 (1996).
    Article  Google Scholar 

    48.
    Wang, Z. Q. et al. The scaling of fine root nitrogen versus phosphorus in terrestrial plants: A global synthesis. Funct. Ecol. 33, 2081–2094 (2019).
    Article  Google Scholar 

    49.
    Desrochers, A., Landhausser, S. M. & Lieffers, V. J. Coarse and fine root respiration in aspen (Populus tremuloides). Tree Physiol. 22, 725–732 (2002).
    PubMed  Article  Google Scholar 

    50.
    Son, Y. & Hwang, J. H. Fine root biomass, production and turnover in a fertilized Larix leptolepis plantation in central Korea. Ecol. Res. 18, 339–346 (2003).
    Article  Google Scholar 

    51.
    Eissenstat, D. M. & Volder, A. The efficiency of nutrient acquisition over the life of a root, 185–220. In Nutrient Acquisition by Plants: An Ecological Perspective (ed. Barririrad, H.) (Springer, Berlin, Heidelberg, 2005).
    Google Scholar 

    52.
    Chen, L., Deng, Q., Yuan, Z., Mu, X. & Kallenbach, R. L. Age-related C:N:P stoichiometry in two plantation forests in the Loess Plateau of China. Ecol. Eng. 120, 14–22 (2018).
    Article  Google Scholar 

    53.
    Wapongnungsang, R. H. & Tripathi, S. K. Fine root growth and soil nutrient dynamics during shifting cultivation in tropical semi-evergreen forests of northeast India. J. Environ. Biol. 40, 45–52 (2019).
    CAS  Article  Google Scholar 

    54.
    Razaq, M., Salahuddin, Shen, H., Sher, H. & Zhang, P. Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of Acer mono. Sci. Rep. 7, 5367 (2017). https://doi.org/10.1038/s41598-017-05721-2.

    55.
    Kobe, R. K., Iyer, M. & Walters, M. B. Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology 91, 166–179 (2010).
    PubMed  Article  Google Scholar 

    56.
    Li, W. B. et al. Effects of nitrogen enrichment on tree carbon allocation: A global synthesis. Glob. Ecol. Biogeogr. 29, 573–589 (2020).
    Article  Google Scholar 

    57.
    Wang, T. et al. Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains, northwestern China. For. Ecol. Manage. 196, 267–274 (2004).
    Article  Google Scholar 

    58.
    Li, J., Yutao, Z., Li, J., Li, X. & Lu, J. Effect of stimulated nitrogen deposition on the fine root decomposition and related nutrient release of Picea schrenkiana var. tianshanica. Acta Bot. Boreal. Occident. Sin. 35, 0182–0188 (2015) (in chinese).
    Google Scholar 

    59.
    Bremner, J. & Mulvaney, R. Urease Activity in Soils (Academic Press, London, 1978).
    Google Scholar 

    60.
    Liu, Y. et al. Nitrogen addition alleviates microbial nitrogen limitations and promotes soil respiration in a subalpine coniferous forest. Forests 10, 16 (2019).
    Google Scholar 

    61.
    Bao, S. N. Soil Agrochemical Analysis 20–38 (China Agricultural Press, Beijing, 2000) (in Chinese).
    Google Scholar 

    62.
    Buysse, J. & Merckx, R. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 44, 1627–1629 (1993).
    CAS  Article  Google Scholar 

    63.
    Su, L. et al. Soil and fine roots ecological stoichiometry in different vegetation restoration stages in a karst area, southwest China. J. Environ. Manag. 252, 109694 (2019).
    CAS  Article  Google Scholar  More

  • in

    Photosynthetic parameters of a sedge-grass marsh as a big-leaf: effect of plant species composition

    1.
    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, 2013).
    2.
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Matson, P. A., Harriss, a. R. C. (ed.) Biogenic Trace Gases: Measuring Emissions from Soil and Water. Methods in ecology (Blackwell Science, Oxford [England]; Cambridge, Mass., USA, 1995).

    4.
    Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorl. Soc. 82, 2415–2434 (2001).
    ADS  Article  Google Scholar 

    5.
    Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B. & Hall, F. G. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 42, 187–216 (1992).
    ADS  Article  Google Scholar 

    6.
    de Pury, D. & Farquhar, G. D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537–557 (1997).
    Article  Google Scholar 

    7.
    Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 16, 187–208 (2010).
    ADS  Article  Google Scholar 

    8.
    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).
    ADS  CAS  Article  Google Scholar 

    9.
    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1995).
    Article  Google Scholar 

    10.
    Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 1999, 95–113 (1999).
    Article  Google Scholar 

    11.
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Tilman, D. Functional diversity. Ecyclopedia Biodivers. 2001, 109–121 (2001).
    Article  Google Scholar 

    13.
    Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups (Springer, Berlin, 2003).
    Google Scholar 

    14.
    Crawford, R. M. M. Studies in Plant Survival: Ecological Case Histories of Plant Adaptation to Adversity (Blackwell Scientific Publications, Oxford, 1989).
    Google Scholar 

    15.
    Kaplan, Z. (ed.) Klíč ke květeně: České republiky. Second editions. (Academia, Prague, 2019).

    16.
    Jeník, J., Kurka, R. & Husák, Š. Wetlands of the Třeboň Basin Biosphere Reserve in the central European context, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 11–18 (CRC Press, New York, 2002).

    17.
    Holubičková, B. Příspěvek ke studiu rašeliništní vegetace. I. Mokré louky u Třeboně (A contribution to the study of peatland vegetation. I. Mokré louky near Třeboň). (1959).

    18.
    Blažková, D. Pflanzensoziologische Studie über die Wiesen der Südböhmischen Becken. Stud. CSAV 73, 1–172 (1973).
    Google Scholar 

    19.
    Prach, K. Vegetational changes in a wet meadow complex, south-bohemia, Czech Republic. Folia Geobot. Phytotaxon. 28, 1–13 (1993).
    ADS  Article  Google Scholar 

    20.
    Prach, K. Vegetation changes in a wet meadow complex during the past half-century. Folia Geobot. 43, 119–130 (2008).
    Article  Google Scholar 

    21.
    Prach, K. & Soukupová, L. Alterations in the Wet Meadows vegetation pattern, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 243–254 (CRC Press, 2002).

    22.
    Balátová-Tuláčková, E. Die Nass- und Feuchtwiesen Nordwest-Böhmens mit besonderer Berücksichtigung Der Magnocaricetalia-Gesellschaften. Rozpr. Českoslov. Akad. Věd, Řada Mat. Přír. Věd 1978.

    23.
    Květ, J. (ed.) Freshwater Wetlands and their Sustainable Future: A Case of the Třeboň Basin Biosphere Reserve, Czech Republic. Man and the biosphere series 28. (UNESCO, Paris, 2002).

    24.
    Honissová, M. et al. Seasonal dynamics of biomass partitioning in a tall sedge Carex acuta L. Aquat. Bot. 125, 64–71 (2015).
    Article  Google Scholar 

    25.
    Hejný, S. Dynamic changes in the macrophyte vegetation of South Bohemian fishponds after 35 years. Folia Geobot. Phytotaxon. 25, 245–255 (1990).
    Article  Google Scholar 

    26.
    Káplová, M., Edwards, K. R. & Květ, J. The effect of nutrient level on plant structure and production in a wet grassland: a field study. Plant Ecol. 212, 809–819 (2011).
    Article  Google Scholar 

    27.
    Chambers, J. M. Software for Data Analysis: Programming with R (Springer, Berlin, 2008).
    Google Scholar 

    28.
    Koyama, K. & Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 4, 4389 (2015).
    Article  CAS  Google Scholar 

    29.
    Nobel, P. S. Physicochemical and Environmental Plant Physiology (Academic Press, New York, 2009).
    Google Scholar 

    30.
    Gilmanov, T. G. et al. Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements: GPP OF SOUTHERN PLAINS ECOSYSTEMS. Glob. Biogeochem. Cycles 17, 1–15 (2003).
    Google Scholar 

    31.
    Bates, D. M. & Watts, D. G. Nonlinear Regression Analysis and Its Applications (Wiley, New York, 1988).
    Google Scholar 

    32.
    Ogren, E. Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiol. 101, 7 (1993).
    Article  Google Scholar 

    33.
    Hollander, M., Wolfe, D. A. & Chicken, E. Nonparametric Statistical Methods (Wiley, New York, 2014).
    Google Scholar 

    34.
    Best, D. J. & Roberts, D. E. Algorithm AS 89: the upper tail probabilities of Spearman’s Rho. Appl. Stat. 24, 377 (1975).
    Article  Google Scholar 

    35.
    Busch, J. & Losch, R. The gas exchange of Carex species from eutrophic wetlands and its dependence on microclimatic and soil wetness conditions. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 24, 117–120 (1999).
    ADS  Article  Google Scholar 

    36.
    Ondok, J. & Gloser, J. Leaf photosynthesis and dark respiration in a sedge-grass marsh. 1. model for mid-summer conditions. Photosynthetica 17, 77–88 (1983).
    Google Scholar 

    37.
    Caudle, K. L. & Maricle, B. R. Physiological relationship between oil tolerance and flooding tolerance in marsh plants. Environ. Exp. Bot. 107, 7–14 (2014).
    CAS  Article  Google Scholar 

    38.
    Ge, Z.-M. et al. Measured and modeled biomass growth in relation to photosynthesis acclimation of a bioenergy crop (Reed canary grass) under elevated temperature, CO2 enrichment and different water regimes. Biomass Bioenerg. 46, 251–262 (2012).
    CAS  Article  Google Scholar 

    39.
    Waring, E. F. & Maricle, B. R. Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding. Environ. Exp. Bot. 77, 77–86 (2012).
    CAS  Article  Google Scholar 

    40.
    Gloser, J. Net photosynthesis and dark respiration of reed estimated by gas-exchange measurements, in Pond Littoral Ecosystems. Structure and Functioning, vol. 1978, 227–234 (Springer, Berlin, 1978).

    41.
    Zhou, X., Liu, X., Wallace, L. L. & Luo, Y. Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. J. Integr. Plant Biol. 49, 270–281 (2007).
    CAS  Article  Google Scholar 

    42.
    Jones, H. G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology (Cambridge University Press, Cambridge, 1992).
    Google Scholar 

    43.
    Smith, M. & Houpis, J. L. J. Gas exchange responses of the wetland plant Schoenoplectus hallii to irradiance and vapor pressure deficit. Aquat. Bot. 79, 267–275 (2004).
    CAS  Article  Google Scholar 

    44.
    Li, M., Yang, D. & Li, W. Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. Photosynthetica 45, 222–228 (2007).
    Google Scholar 

    45.
    Li, M., Hou, G., Yang, D., Deng, G. & Li, W. Photosynthetic traits of Carex cinerascens in flooded and nonflooded conditions. Photosynthetica 48, 370–376 (2010).
    CAS  Article  Google Scholar 

    46.
    Vervuren, P., Beurskens, S. & Blom, C. Light acclimation, CO2 response and long-term capacity of underwater photosynthesis in three terrestrial plant species. Plant Cell Environ. 22, 959–968 (1999).
    Article  Google Scholar 

    47.
    Bouma, T. J., De Visser, R., Van Leeuwen, P. H., De Kock, M. J. & Lambers, H. The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature source leaves and their contribution to leaf dark respiration. J. Exp. Bot. 46, 1185–1194 (1995).
    CAS  Article  Google Scholar 

    48.
    McCutchan, C. L. & Monson, R. K. Night-time respiration rate and leaf carbohydrate concentrations are not coupled in two alpine perennial species. New Phytol. 149, 419–430 (2002).
    Article  Google Scholar 

    49.
    Emerson, R. The quantum yield of photosynthesis. Annu. Rev. Plant Physiol. 9, 1–24 (1958).
    CAS  Article  Google Scholar 

    50.
    Singsaas, E. L., Ort, D. R. & DeLucia, E. H. Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia 128, 15–23 (2001).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    de Lobo, F. A. et al. Fitting net photosynthetic light-response curves with Microsoft Excel—a critical look at the models. Photosynthetica 51, 445–456 (2013).
    CAS  Article  Google Scholar 

    52.
    Busch, J. Characteristic values of key ecophysiological parameters in the genus Carex. FLORA 196, 405–430 (2001).
    Article  Google Scholar 

    53.
    Hull, J. C. Photosynthetic induction dynamics to sunflecks of four deciduous forest understory herbs with different phenologies1. Int. J. Plant Sci. 163, 913–924 (2002).
    ADS  Article  Google Scholar 

    54.
    Wayne, E. R. & Van Auken, O. W. Light responses of Carex planostachys from various microsites in a Juniperus community. J. Arid Environ. 73, 435–443 (2009).
    ADS  Article  Google Scholar 

    55.
    Colmer, T. D. & Pedersen, O. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol. 177, 918–926 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Mommer, L. & Visser, E. J. W. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann. Bot. 96, 581–589 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Dušek, J. Seasonal dynamic of nonstructural saccharides in a rhizomatous grass Calamagrostis epigeios. Biol. Plant. 45, 383–387 (2002).
    Article  Google Scholar 

    58.
    Mitsch, W. J. (ed.) Wetland Ecosystems (Wiley, Hoboken, NJ, 2009).

    59.
    Soukupová, L. Life strategy of graminoid populations in the wet meadows, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 255–267 (CRC Press, New York, 2002).

    60.
    Polechová, J. & Storch, D. Ecological Niche, in Encyclopedia of Ecology 72–80 (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/B978-0-12-409548-9.11113-3.

    61.
    Dykyjová, D. Production ecology of Acorus calamus. Folia Geobot. Phytotaxon. 15, 29–57 (1980).
    Article  Google Scholar 

    62.
    Westlake, D. F., Květ, J., Andrzej Szczepański, a International Biological Programme. (ed.) The Production Ecology of Wetlands: The IBP Synthesis (Cambridge University Press, Cambridge, UK; New York, NY, USA, 1998).

    63.
    Pai, A. & McCarthy, B. C. Variation in shoot density and rhizome biomass of Acorus calamus L. With respect to environment. Castanea 70, 263–275 (2005).
    Article  Google Scholar 

    64.
    Pai, A. & McCarthy, B. C. Suitability of the medicinal plant, Acorus calamus L, for wetland restoration. Nat. Areas J. 30, 380–386 (2010).
    Article  Google Scholar 

    65.
    Květ, J., Lukavská, J. & Tetter, M. Biomass and net primary production in graminoid vegetation. in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 293–299 (CRC Press, Boca Raton, 2002).

    66.
    Hejný, S. The dynamic characteristics of littoral vegetation with respect to changes of water level. Hidrobiol. Bucur. 1971, 71–85 (1971).
    Google Scholar  More

  • in

    Reduced nest development of reared Bombus terrestris within apiary dense human-modified landscapes

    1.
    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x (2011).
    Article  Google Scholar 
    2.
    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
    Article  Google Scholar 

    3.
    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. U.S.A. 99, 16812–16816. https://doi.org/10.1073/pnas.262413599 (2002).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).
    Article  PubMed  Google Scholar 

    5.
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biol. Rev. 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).
    Article  PubMed  Google Scholar 

    6.
    Winfree, R., Aguilar, R., Vazquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076. https://doi.org/10.1890/08-1245.1 (2009).
    Article  PubMed  Google Scholar 

    7.
    Isaacs, R. et al. Integrated crop pollination: Combining strategies to ensure stable and sustainable yields of pollination-dependent crops. Basic Appl. Ecol. 22, 44–60. https://doi.org/10.1016/j.baae.2017.07.003 (2017).
    Article  Google Scholar 

    8.
    Steffan-Dewenter, I. & Tscharntke, T. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia 122, 288–296. https://doi.org/10.1007/s004420050034 (2000).
    ADS  CAS  Article  Google Scholar 

    9.
    Paini, D. R. & Roberts, J. D. Commercial honey bees (Apis mellifera) reduce the fecundity of an Australian native bee (Hylaeus alcyoneus). Biol. Cons. 123, 103–112. https://doi.org/10.1016/j.biocon.2004.11.001 (2005).
    Article  Google Scholar 

    10.
    Schaffer, W. M. et al. Competition for nectar between introduced honey bees and native North American bees and ants. Ecology 64, 564–577. https://doi.org/10.2307/1939976 (1983).
    Article  Google Scholar 

    11.
    Dupont, Y. L., Hansen, D. M., Valido, A. & Olesen, J. M. Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biol. Cons. 118, 301–311. https://doi.org/10.1016/j.biocon.2003.09.010 (2004).
    Article  Google Scholar 

    12.
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Thomson, D. M. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecol. Lett. 19, 1247–1255. https://doi.org/10.1111/ele.12659 (2016).
    Article  PubMed  Google Scholar 

    14.
    Thomson, D. Competitive interactions between the invasive European honey bee and native bumble bees. Ecology 85, 458–470. https://doi.org/10.1890/02-0626 (2004).
    Article  Google Scholar 

    15.
    Goulson, D. & Sparrow, K. Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J. Insect. Conserv. 13, 177–181. https://doi.org/10.1007/s10841-008-9140-y (2009).
    Article  Google Scholar 

    16.
    Paini, D. R. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera : Apidae) on native bees: A review. Austral. Ecol. 29, 399–407. https://doi.org/10.1111/j.1442-9993.2004.01376.x (2004).
    Article  Google Scholar 

    17.
    Gross, C. L. The effect of introduced honeybees on native bee visitation and fruit-set in Dillwynia juniperina (Fabaceae) in a fragmented ecosystem. Biol. Cons. 102, 89–95. https://doi.org/10.1016/s0006-3207(01)00088-x (2001).
    Article  Google Scholar 

    18.
    Nielsen, A., Reitan, T., Rinvoll, A. W. & Brysting, A. K. Effects of competition and climate on a crop pollinator community. Agric. Ecosyst. Environ. 246, 253–260. https://doi.org/10.1016/j.agee.2017.06.006 (2017).
    Article  Google Scholar 

    19.
    Lindström, S. A. M., Herbertssön, L., Rundlof, M., Bommarco, R. & Smith, H. G. Experimental evidence that honeybees depress wild insect densities in a flowering crop. Proc. R. Soc. B Biol. Sci. 283, 8. https://doi.org/10.1098/rspb.2016.1641 (2016).
    Article  Google Scholar 

    20.
    Magrach, A., González-Varo, J. P., Boiffier, M., Vilà, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0249-9 (2017).
    Article  PubMed  Google Scholar 

    21.
    González-Varo, J. P. & Vilà, M. Spillover of managed honeybees from mass-flowering crops into natural habitats. Biol. Conserv. 212, 376–382. https://doi.org/10.1016/j.biocon.2017.06.018 (2017).
    Article  Google Scholar 

    22.
    Begon, M., Harper, J. L. & Townsend, C. R. Ecology: Individuals, Populations, and Communities 3rd edn. (Blackwell Science Ltd, Hoboken, 1996).
    Google Scholar 

    23.
    United Nations. (United Nations, Department of Economic and Social Affairs, Population Division, New York, 2012).

    24.
    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1435. https://doi.org/10.1126/science.1255957 (2015).
    CAS  Article  Google Scholar 

    25.
    Scheper, J. et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 52, 1165–1175. https://doi.org/10.1111/1365-2664.12479 (2015).
    Article  Google Scholar 

    26.
    McCune, F., Normandin, E., Mazerolle, M. J. & Fournier, V. Response of wild bee communities to beekeeping, urbanization, and flower availability. Urban Ecosyst. https://doi.org/10.1007/s11252-019-00909-y (2019).
    Article  Google Scholar 

    27.
    Samuelson, A. E., Gill, R. J., Brown, M. J. F. & Leadbeater, E. Lower bumblebee colony reproductive success in agricultural compared with urban environments. Proc. R. Soc. B Biol. Sci. 285, 9. https://doi.org/10.1098/rspb.2018.0807 (2018).
    Article  Google Scholar 

    28.
    Steffan-Dewenter, I. & Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. R. Soc. B Biol. Sci. 270, 569–575. https://doi.org/10.1098/rspb.2002.2292 (2003).
    Article  Google Scholar 

    29.
    Couvillon, M. J., Schurch, R. & Ratnieks, F. L. W. Dancing bees communicate a foraging preference for rural lands in high-level agri-environment schemes. Curr. Biol. 24, 1212–1215. https://doi.org/10.1016/j.cub.2014.03.072 (2014).
    CAS  Article  PubMed  Google Scholar 

    30.
    Bänsch, S., Tscharntke, T., Ratnieks, F. L. W., Härtel, S. & Westphal, C. Foraging of honey bees in agricultural landscapes with changing patterns of flower resources. Agric. Ecosyst. Environ. 291, 106792. https://doi.org/10.1016/j.agee.2019.106792 (2020).
    Article  Google Scholar 

    31.
    Walther-Hellwig, K. & Frankl, R. Foraging distances of Bombus muscorum, Bombus lapidarius, and Bombus terrestris (Hymenoptera, Apidae). J. Insect Behav. 13, 239–246. https://doi.org/10.1023/A:1007740315207 (2000).
    Article  Google Scholar 

    32.
    Chauzat, M. P. et al. Demographics of the European apicultural industry. PLoS ONE 8, e79018. https://doi.org/10.1371/journal.pone.0079018 (2013).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Stanley, D. A., Gunning, D. & Stout, J. C. Pollinators and pollination of oilseed rape crops (Brassica napus L.) in Ireland: ecological and economic incentives for pollinator conservation. J. Insect Conserv. 17, 1181–1189. https://doi.org/10.1007/s10841-013-9599-z (2013).
    Article  Google Scholar 

    34.
    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671. https://doi.org/10.1890/07-1292.1 (2008).
    Article  Google Scholar 

    35.
    Lebuhn, G., Droege, S., Connor, E., Gemmill-Herren, B. & Azzu, N. in Guidance for practioners 64 pp. (FAO, Rome, 2016).

    36.
    De Saeger, S. et al. (ed Rapporten van het Instituut voor Natuur- en Bosonderzoek 2016) (Instituut voor Natuur- en Bosonderzoek, Brussel, 2016).

    37.
    3QGIS_Development_Team. QGIS Geographic Information System, 2018).

    38.
    Oksanen, J. et al. Community Ecology Package ‘Vegan’. (2016). https://github.com/vegandevs/vegan.

    39.
    Meeus, I., de Graaf, D. C., Jans, K. & Smagghe, G. Multiplex PCR detection of slowly-evolving trypanosomatids and neogregarines in bumblebees using broad-range primers. J. Appl. Microbiol. 109, 107–115. https://doi.org/10.1111/j.1365-2672.2009.04635.x (2010).
    CAS  Article  PubMed  Google Scholar 

    40.
    Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58. https://doi.org/10.1016/j.jip.2014.08.007 (2014).
    Article  PubMed  Google Scholar 

    41.
    De Smet, L. et al. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS ONE 7, e47953. https://doi.org/10.1371/journal.pone.0047953 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Parmentier, L. et al. Commercial bumblebee hives to assess an anthropogenic environment for pollinator support: A case study in the region of Ghent (Belgium). Environ. Monit. Assess. 186, 2357–2367. https://doi.org/10.1007/s10661-013-3543-2 (2014).
    CAS  Article  PubMed  Google Scholar 

    43.
    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80. https://doi.org/10.1038/nature14420 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    44.
    Goulson, D. Bumblebees: Their Behaviour and Ecology (Oxford University Press, Oxford, 2003).
    Google Scholar 

    45.
    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    46.
    Hedges, L. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, Cambridge, 1985).
    Google Scholar 

    47.
    DeBach, P. The competitive displacement and coexistence principles. Annu. Rev. Entomol. 11, 183–212. https://doi.org/10.1146/annurev.en.11.010166.001151 (1966).
    Article  Google Scholar 

    48.
    Balfour, N. J., Gandy, S. & Ratnieks, F. L. W. Exploitative competition alters bee foraging and flower choice. Behav. Ecol. Sociobiol. 69, 1731–1738. https://doi.org/10.1007/s00265-015-1985-y (2015).
    Article  Google Scholar 

    49.
    Herbertssön, L., Lindström, S. A. M., Rundlof, M., Bornmarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616. https://doi.org/10.1016/j.baae.2016.05.001 (2016).
    Article  Google Scholar 

    50.
    Ropars, L., Dajoz, I., Fontaine, C., Muratet, A. & Geslin, B. Wild pollinator activity negatively related to honey bee colony densities in urban context. PLoS ONE 14, 16. https://doi.org/10.1371/journal.pone.0222316 (2019).
    CAS  Article  Google Scholar 

    51.
    Ellis, C., Park, K. J., Whitehorn, P., David, A. & Goulson, D. The neonicotinoid insecticide Thiacloprid impacts upon bumblebee colony development under field conditions. Environ. Sci. Technol. 51, 1727–1732. https://doi.org/10.1021/acs.est.6b04791 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    52.
    Geslin, B., Gauzens, B., Thebault, E. & Dajoz, I. Plant pollinator networks along a gradient of urbanisation. PLoS ONE 8, e63421 (2013).
    ADS  Article  Google Scholar 

    53.
    Neame, L. A., Griswold, T. & Elle, E. Pollinator nesting guilds respond differently to urban habitat fragmentation in an oak-savannah ecosystem. Insect Conserv. Divers. 6, 57–66 (2013).
    Article  Google Scholar 

    54.
    Glaum, P., Simao, M.-C., Vaidya, C., Fitch, G. & Iulinao, B. Big city Bombus: Using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development. R. Soc. Open Sci. 4, 170156 (2017).
    ADS  Article  Google Scholar 

    55.
    Normandin, E., Vereecken, N. J., Buddle, C. M. & Fournier, V. Taxonomic and functional trait diversity of wild bees in two urban settings. PeerJ 5, e3051 (2017).
    Article  Google Scholar 

    56.
    Moerman, R., Vanderplanck, M., Fournier, D., Jacquemart, A. L. & Michez, D. Pollen nutrients better explain bumblebee colony development than pollen diversity. Insect Conserv. Divers. 10, 171–179. https://doi.org/10.1111/icad.12213 (2017).
    Article  Google Scholar  More

  • in

    Bridgehead effect and multiple introductions shape the global invasion history of a termite

    1.
    Lewis, S. L. & Maslin, M. A. Defining the Anthropocene. Nature 519, 171–180 (2015).
    CAS  PubMed  Article  Google Scholar 
    2.
    Capinha, C., Essl, F., Seebens, H., Moser, D. & Miguel Pereira, H. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).
    CAS  PubMed  Article  Google Scholar 

    3.
    Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).
    Article  Google Scholar 

    4.
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).
    Article  Google Scholar 

    5.
    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Schrieber, K. & Lachmuth, S. The genetic paradox of invasions revisited: the potential role of inbreeding  environment interactions in invasion success. Biol. Rev. 92, 939–952 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Allendorf, F. W. & Lundquist, L. L. Introduction: population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).
    Article  Google Scholar 

    11.
    Estoup, A. et al. Is there a genetic paradox of biological invasion? Annu. Rev. Ecol. Evol. Syst. 47, 51–72 (2016).
    Article  Google Scholar 

    12.
    Roman, J. & Darling, J. A. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22, 454–464 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Uller, T. & Leimu, R. Founder events predict changes in genetic diversity during human-mediated range expansions. Glob. Change Biol. 17, 3478–3485 (2011).
    Article  Google Scholar 

    14.
    Bossdorf, O. et al. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144, 1–11 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Hufbauer, R. A. et al. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol. Appl. 5, 89–101 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Facon, B., Pointier, J.-P., Jarne, P., Sarda, V. & David, P. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr. Biol. 18, 363–367 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Lombaert, E. et al. Bridgehead effect in the worldwide invasion of the biocontrol Harlequin ladybird. PLoS ONE 5, e9743 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Ascunce, M. S. et al. Global invasion history of the fire ant Solenopsis invicta. Science 331, 1066–1068 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Bertelsmeier, C. et al. Recurrent bridgehead effects accelerate global alien ant spread. Proc. Natl Acad. Sci. USA 115, 5486 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Bertelsmeier, C. & Keller, L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol. Evol. 33, 527–534 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Cristescu, M. E. Genetic reconstructions of invasion history. Mol. Ecol. 24, 2212–2225 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Estoup, A. & Guillemaud, T. Reconstructing routes of invasion using genetic data: why, how and so what? Mol. Ecol. 19, 4113–4130 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database Vol. 12 (Invasive Species Specialist Group, 2000).

    26.
    Wang, J. & Grace, J. K. Current status of Coptotermes Wasmann (Isoptera: Rhinotermitidae) in China, Japan, Australia and the American Pacific. Sociobiology 33, 295–305 (1999).
    Google Scholar 

    27.
    Evans, T. A., Forschler, B. T. & Grace, J. K. Biology of invasive termites: a worldwide review. Annu. Rev. Entomol. 58, 455–474 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Shiraki, T. On the Japanese termites. Transcr. Entomol., Jpn. 2, 229–242 (1909).
    Google Scholar 

    29.
    Kistner, D. H. A new genus and species of termitophilous Aleocharinae from mainland China associated with Coptotermes formosanus and its zoogeographical significance (Coleoptera: Staphylinidae). Sociobiology 10, 93–104 (1985).
    Google Scholar 

    30.
    Maruyama, M. & Iwata, R. Two new termitophiles of the tribe Termitohospitini (Coleoptera: Staphylinidae: Aleocharinae) associated with Coptotermes formosanus (Isoptera: Rhinotermitidae). Can. Entomologist 134, 419–432 (2002).
    Article  Google Scholar 

    31.
    Maruyama, M., Kanao, T. & Iwata, R. Discovery of two Aleocharine Staphylinid species (Coleoptera) associated with Coptotermes formosanus (Isoptera: Rhinotermitidae) from Central Japan, with a review of the possible natural distribution of C. formosanus in Japan and surrounding countries. Sociobiology 59, 605–616 (2014).
    Google Scholar 

    32.
    Li, G. in Fauna Sinica: Insecta (eds Huang, F. et al.) 299–341 (Science Press, 2000).

    33.
    Chouvenc, T. et al. Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic road map for species validity and distribution of an economically important subterranean termite genus. Syst. Entomol. 41, 299–306 (2016).
    Article  Google Scholar 

    34.
    Yeap, B.-K., Othman, A. S. & Lee, C.-Y. Molecular systematics of Coptotermes (Isoptera: Rhinotermitidae) from East Asia and Australia. Ann. Entomol. Soc. Am. 102, 1077–1090 (2009).
    Article  Google Scholar 

    35.
    Lee, T. R. C., Cameron, S. L., Evans, T. A., Ho, S. Y. W. & Lo, N. The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers. Mol. Phylogen. Evol. 82, 234–244 (2015).
    Article  Google Scholar 

    36.
    Austin, J. W. et al. Genetic evidence for two introductions of the Formosan subterranean termite, Coptotermes Formosanus (Isoptera: Rhinotermitidae), to the United States. Fla. Entomol. 89, 183–193 (2006).
    CAS  Article  Google Scholar 

    37.
    Li, H.-F., Ye, W., Su, N.-Y. & Kanzaki, N. Phylogeography of Coptotermes Gestroi and Coptotermes Formosanus (Isoptera: Rhinotermitidae) in Taiwan. Ann. Entomol. Soc. Am. 102, 684–693 (2009).
    Article  Google Scholar 

    38.
    Fang, R., Huang, L. & Zhong, J. H. Surprising low levels of genetic diversity of Formosan subterranean termites in South China as revealed by the COII gene (Isoptera: Rhinotermitidae). Sociobiology 51, 1–20 (2008).
    Google Scholar 

    39.
    Tokuda, G., Isagawa, H. & Sugio, K. The complete mitogenome of the Formosan termite, Coptotermes formosanus Shiraki. Insectes Soc. 59, 17–24 (2012).
    Article  Google Scholar 

    40.
    Vargo, E. L., Husseneder, C. & Grace, J. K. Colony and population genetic structure of the Formosan subterranean termite, Coptotermes formosanus, in Japan. Mol. Ecol. 12, 2599–2608 (2003).
    CAS  PubMed  Article  Google Scholar 

    41.
    Broughton, R. E. & Grace, J. K. Lack of mitochondrial DNA variation in an introduced population of the Formosan subterranean termite (Isoptera: Rhinotermitidae). Sociobiology 24, 121–126 (1994).
    Google Scholar 

    42.
    Korman, A. K. & Pashley, D. P. Genetic comparisons among U.S. populations of Formosan subterranean termites. Sociobiology 19, 41–50 (1991).
    Google Scholar 

    43.
    Wang, J. & Grace, J. K. Genetic relationship of Coptotermes formosanus (Isoptera: Rhinotermitidae) populations from the United States and China. Sociobiology 36, 7–19 (2000).
    Google Scholar 

    44.
    Vargo, E. L., Husseneder, C., Woodson, D., Waldvogel, M. G. & Grace, J. K. Genetic analysis of colony and population structure of three introduced populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in the continental United States. Environ. Entomol. 35, 151–166 (2006).
    Article  Google Scholar 

    45.
    Gentz, M. C., Rubinoff, D. & Grace, J. K. Phylogenetic analysis of subterranean termites (Coptotermes spp., Isoptera: Rhinotermitidae) indicates the origins of Hawaiian and North American invasions: potential implications for invasion biology. Proc. Hawaii. Entomol. Soc. 40, 1–9 (2008).
    Google Scholar 

    46.
    Husseneder, C. et al. Genetic diversity and colony breeding structure in native and introduced ranges of the Formosan subterranean termite, Coptotermes formosanus. Biol. Invasions 14, 419–437 (2012).
    Article  Google Scholar 

    47.
    Haverty, M. I., Nelson, L. J. & Page, M. Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. J. Chem. Ecol. 16, 1635–1647 (1990).
    CAS  PubMed  Article  Google Scholar 

    48.
    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Swezey, O. H. Notes and exhibitions. Proc. Hawaii. Entomol. Soc. 3 (1914).

    50.
    Swezey, O. H. Entomological notes. Proc. Hawaii. Entomol. Soc. 3 (1915).

    51.
    Su, N.-Y. & Tamashiro, M. An Overview of the Formosan Subterranean Termite (Isoptera: Rhinotermitidae) in the World 3–15 (University of Hawaii, College of Tropical Agriculture and Human Resources research extension series, 1987).

    52.
    Chambers, D. M., Zungoli, P. A. & Hill, H. S. J. Distribution and habitats of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in South Carolina. J. Econ. Entomol. 81, 1611–1619 (1988).
    Article  Google Scholar 

    53.
    Beal, R. H. Formosan invader. Pest Control 35, 13–17 (1967).
    Google Scholar 

    54.
    Spink, W. The Formosan subterranean termite in Louisiana. La. State Univeristy Circ. 89, 12 (1967).
    Google Scholar 

    55.
    Shi, M.-M., Michalski, S. G., Welk, E., Chen, X.-Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: genetic east–west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720 (2014).
    Article  Google Scholar 

    56.
    Ye, Z. et al. Phylogeography of a semi-aquatic bug, Microvelia horvathi (Hemiptera: Veliidae): an evaluation of historical, geographical and ecological factors. Sci. Rep. 6, 21932 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Qiu, Y.-X., Fu, C.-X. & Comes, H. P. Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol. Phylogen. Evol. 59, 225–244 (2011).
    Article  Google Scholar 

    58.
    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness – Implications for brown trout conservation. Ecol. Evol. 9, 2106–2120 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Fischer, M. C. et al. Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom. 18, 69 (2017).
    Article  Google Scholar 

    60.
    Mori, H. The Formosan Subterranean Termite in Japan: its Distribution, Damage, and Current and Potential Control Measures 23–26 (University of Hawaii, College of Tropical Agriculture and Human Resources research extension series, 1987).

    61.
    Westphal, M. I., Browne, M., MacKinnon, K. & Noble, I. The link between international trade and the global distribution of invasive alien species. Biol. Invasions 10, 391–398 (2008).
    Article  Google Scholar 

    62.
    Floerl, O., Inglis, G. J., Dey, K. & Smith, A. The importance of transport hubs in stepping-stone invasions. J. Appl. Ecol. 46, 37–45 (2009).
    Article  Google Scholar 

    63.
    Nordyke, E. C. & Lee, R. K. C. Chinese in Hawai’i: a historical and demographic perspective. Hawaii. J. Hist. 23, 196–216 (1989).
    Google Scholar 

    64.
    Gay, F. J. A World Review of Introduced Species of Termites (CSIRO, 1967).

    65.
    Boyd, M. Oriental immigration: the experience of the Chinese, Japanese, and Filipino populations in the United States. Int. Migr. Rev. 5, 48–61 (1971).
    Article  Google Scholar 

    66.
    Matsumoto, Y. S. Okinawa migrants to Hawaii. Hawaii. J. Hist. 16, 125–133 (1982).
    Google Scholar 

    67.
    Javal, M. et al. Deciphering the worldwide invasion of the Asian long-horned beetle: a recurrent invasion process from the native area together with a bridgehead effect. Mol. Ecol. 28, 951–967 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    van Boheemen, L. A. et al. Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol. Ecol. 26, 5421–5434 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Lesieur, V. et al. The rapid spread of Leptoglossus occidentalis in Europe: a bridgehead invasion. J. Pest Sci. 92, 189–200 (2019).
    Article  Google Scholar 

    70.
    Correa, M. C. G. et al. European bridgehead effect in the worldwide invasion of the obscure mealybug. Biol. Invasions 21, 123–136 (2019).
    Article  Google Scholar 

    71.
    Sherpa, S. et al. Unravelling the invasion history of the Asian tiger mosquito in Europe. Mol. Ecol. 28, 2360–2377 (2019).
    PubMed  Article  Google Scholar 

    72.
    Yang, C.-C. et al. Propagule pressure and colony social organization are associated with the successful invasion and rapid range expansion of fire ants in China. Mol. Ecol. 21, 817–833 (2012).
    PubMed  Article  Google Scholar 

    73.
    Blumenfeld, A. J. & Vargo, E. L. Geography, opportunity and bridgeheads facilitate termite invasions to the United States. Biol. Invasions 22, 3269–3282 (2020).
    Article  Google Scholar 

    74.
    Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522–524 (1991).
    CAS  PubMed  Article  Google Scholar 

    75.
    Crnokrak, P. & Barrett, S. C. H. Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56, 2347–2358 (2002).
    PubMed  Article  Google Scholar 

    76.
    Eyer, P. A. et al. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol. Ecol. 27, 4711–4724 (2018).
    PubMed  Google Scholar 

    77.
    Facon, B. et al. Inbreeding depression is purged in the invasive insect Harmonia axyridis. Curr. Biol. 21, 424–427 (2011).
    CAS  PubMed  Article  Google Scholar 

    78.
    Charlesworth, J. & Eyre-Walker, A. The other side of the nearly neutral theory, evidence of slightly advantageous back-mutations. Proc. Natl Acad. Sci. USA 104, 16992 (2007).
    CAS  PubMed  Article  Google Scholar 

    79.
    Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 14, 82 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Zepeda‐Paulo, F. et al. The invasion route for an insect pest species: the tobacco aphid in the New World. Mol. Ecol. 19, 4738–4752 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Miller, N. et al. Multiple transatlantic introductions of the western corn rootworm. Science 310, 992 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Kolbe, J. J. et al. Multiple sources, admixture, and genetic variation in introduced Anolis lizard populations. Conserv. Biol. 21, 1612–1625 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Whitney, K. D. & Gabler, C. A. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers. Distrib. 14, 569–580 (2008).
    Article  Google Scholar 

    84.
    Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the success of an invasive species. Proc. Natl Acad. Sci. USA 97, 5948–5953 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Pearcy, M., Goodisman, M. A. & Keller, L. Sib mating without inbreeding in the longhorn crazy ant. Proc. R. Soc. B: Biol. Sci. 278, 2677–2681 (2011).
    Article  Google Scholar 

    86.
    Eyer, P.-A., Blumenfeld, A. J. & Vargo, E. L. Sexually antagonistic selection promotes genetic divergence between males and females in an ant. Proc. Natl Acad. Sci. USA 116, 24157–24163 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Su, N.-Y., Scheffrahn, R. H. & Weissling, T. A new introduction of a subterranean termite, Coptotermes havilandi Holmgren (Isoptera: Rhinotermitidae) in Miami, Florida. Fla. Entomol. 80, 408–411 (1997).
    Article  Google Scholar 

    88.
    Chouvenc, T., Scheffrahn, R. H., Mullins, A. J. & Su, N.-Y. Flight phenology of two Coptotermes species (Isoptera: Rhinotermitidae) in southeastern Florida. J. Econ. Entomol. 110, 1693–1704 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    89.
    Chouvenc, T., Helmick, E. E. & Su, N.-Y. Hybridization of two major termite invaders as a consequence of human activity. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0120745 (2015).

    90.
    Chouvenc, T., Sillam-Dussès, D. & Robert, A. Courtship behavior confusion in two subterranean termite species that evolved in allopatry (Blattodea, Rhinotermitidae, Coptotermes). J. Chem. Ecol. https://doi.org/10.1007/s10886-020-01178-2 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    91.
    Perdereau, E. et al. Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol. Ecol. 22, 1105–1119 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    92.
    Perdereau, E. et al. Relationship between invasion success and colony breeding structure in a subterranean termite. Mol. Ecol. 24, 2125–2142 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    93.
    Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).
    PubMed Central  Article  Google Scholar 

    94.
    Clement, J. L. & Bagneres, A. G. in Pheromone Communication in Social Insects. Ants, Wasps, Bees, and Termites (eds Vander Meer, R. K., Breed, M. D., Espelie, K. E. & Winston, M. L.) 126–155 (Westview Press, 1998).

    95.
    Perdereau, E., Dedeine, F., Christidès, J.-P. & Bagnères, A.-G. Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J. Chem. Ecol. 36, 1189–1198 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Perdereau, E., Dedeine, F., Christidès, J. P., Dupont, S. & Bagnères, A. G. Competition between invasive and indigenous species: an insular case study of subterranean termites. Biol. Invasions 13, 1457–1470 (2010).
    Article  Google Scholar 

    97.
    Perdereau, E., Bagnères, A. G., Dupont, S. & Dedeine, F. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc. 57, 393–402 (2010).
    Article  Google Scholar 

    98.
    Fournier, D. et al. Clonal reproduction by males and females in the little fire ant. Nature 435, 1230–1234 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    99.
    Thoms, E. M. et al. Bugs, baits, and bureaucracy: completing the first termite bait efficacy trials (quarterly replenishment of noviflumuron) initiated after adoption of Florida Rule, Chapter 5E-2.0311. Am. Entomol. 55, 29–39 (2009).
    Article  Google Scholar 

    100.
    Vargo, E. & Husseneder, C. in Biology of Termites: A Modern Synthesis (eds Bignell, D. E., Roisin, Y. & Lo, N.) 321–348 (Springer, 2011).

    101.
    FastQC v0.11.8 (Babraham Bioinformatics, Babraham Institute, 2018).

    102.
    Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    103.
    Paris, J. R., Stevens, J. R. & Catchen, J. M. Lost in parameter space: a road map for stacks. Methods Ecol. Evol. 8, 1360–1373 (2017).
    Article  Google Scholar 

    104.
    Benestan, L. M. et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol. Ecol. 25, 2967–2977 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    105.
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    106.
    Lischer, H. E. L. & Excoffier, L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    107.
    Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational Inference of Population Structure in Large SNP Data Sets. Genetics 197, 573 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    108.
    Pina-Martins, F., Silva, D. N., Fino, J. & Paulo, O. S. Structure_threader: an improved method for automation and parallelization of programs structure, fastStructure and MavericK on multicore CPU systems. Mol. Ecol. Resour. 17, e268–e274 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    109.
    Chhatre, V. E. Distruct v2.3, A modified cluster membership plotting script. http://distruct2.popgen.org (2018).

    110.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    111.
    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).

    112.
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    113.
    Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: population inference from RADseq data. Mol. Biol. Evol. 35, 1284–1290 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    114.
    Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    115.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    116.
    Leaché, A. D., Banbury, B. L., Felsenstein, J., de Oca, An-M. & Stamatakis, A. Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    117.
    Pattengale, N. D., Masoud, A., Bininda-Emonds, O. R. P., Moret, B. M. E. & Stamatkis, A. How many bootstrap replicates are necessary? J. Comput. Biol. 17, 337–354 (2010).
    CAS  PubMed  Article  Google Scholar 

    118.
    Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162, 2025 (2002).
    PubMed  PubMed Central  Google Scholar 

    119.
    Pudlo, P. et al. Reliable ABC model choice via random forests. Bioinformatics 32, 859–866 (2016).
    CAS  PubMed  Article  Google Scholar 

    120.
    Ryan, S. F. et al. Global invasion history of the agricultural pest butterfly Pieris rapae revealed with genomics and citizen science. Proc. Natl Acad. Sci. USA 116, 20015 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    121.
    Fraimout, A. et al. Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol. Biol. Evol. 34, 980–996 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    122.
    Cornuet, J.-M. et al. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    123.
    Raynal, L. et al. ABC random forests for Bayesian parameter inference. Bioinformatics 35, 1720–1728 (2018).
    Article  CAS  Google Scholar 

    124.
    Liu, X. & Fu, Y.-X. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 280 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    125.
    Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    126.
    Liu, X., Fu, Y.-X., Maxwell, T. J. & Boerwinkle, E. Estimating population genetic parameters and comparing model goodness-of-fit using DNA sequences with error. Genome Res. 20, 101–109 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    127.
    Nielsen, R. Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics 154, 931 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    128.
    Liu, S., Ferchaud, A.-L., Grønkjær, P., Nygaard, R. & Hansen, M. M. Genomic parallelism and lack thereof in contrasting systems of three-spined sticklebacks. Mol. Ecol. 27, 4725–4743 (2018).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Patterns and processes of pathogen exposure in gray wolves across North America

    1.
    Ferrari, M. J. et al. The dynamics of measles in sub-Saharan Africa. Nature 451, 679–684 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hudson, P. J. et al. Trophic interactions and population growth rates: Describing patterns and identifying mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 357, 1259–1271 (2002).
    Article  Google Scholar 

    3.
    Thieltges, D. W., Ferguson, M. A. D., Jones, C. S., Leslie, R. & Poulin, R. Biogeographical patterns of marine larval trematode parasites in two intermediate snail hosts in Europe. J. Biogeogr. 36, 1493–1501 (2009).
    Article  Google Scholar 

    4.
    Bryan, H. M. et al. Seasonal and biogeographical patterns of gastrointestinal parasites in large carnivores: Wolves in a coastal archipelago. Parasitology 139, 781–790 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Hosseini, P. R., Dhondt, A. A. & Dobson, A. Seasonality and wildlife disease: how seasonal birth, aggregation and variation in immunity affect the dynamics of Mycoplasma gallisepticum in house finches. Proc. R Soc. London Ser. B Biol. Sci. 271, 2569–2577 (2004).
    Article  Google Scholar 

    6.
    Guernier, V., Hochberg, M. E. & Guégan, J. F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, 740–746 (2004).
    CAS  Article  Google Scholar 

    7.
    Nunn, C. L., Altizer, S. M., Sechrest, W. & Cunningham, A. A. Latitudinal gradients of parasite species richness in primates. Divers. Distrib. 11, 249–256 (2005).
    Article  Google Scholar 

    8.
    Merino, S. et al. Haematozoa in forest birds from southern Chile: Latitudinal gradients in prevalence and parasite lineage richness. Austral. Ecol. 33, 329–340 (2008).
    Article  Google Scholar 

    9.
    Benejam, L., Alcaraz, C., Sasal, P., Simon-Levert, G. & García-Berthou, E. Life history and parasites of the invasive mosquitofish (Gambusia holbrooki) along a latitudinal gradient. Biol. Invasions 11, 2265–2277 (2009).
    Article  Google Scholar 

    10.
    Seabloom, E. W., Borer, E. T., Mitchell, C. E. & Power, A. G. Viral diversity and prevalence gradients in North American Pacific Coast grasslands. Ecology 91, 721–732 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Bonds, M. H., Dobson, A. P. & Keenan, D. C. Disease ecology, biodiversity, and the latitudinal gradient in income. PLoS Biol. 10, e1001456 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Peterson, R. O., Thomas, N. J., Thurber, J. M., Vucetich, J. A. & Waite, T. A. Population limitations and the wolves of Isle Royale. J. Mammal. 97, 828–841 (1998).
    Article  Google Scholar 

    14.
    Almberg, E. S., Mech, L. D., Smith, D. W., Sheldon, J. W. & Crabtree, R. L. A serological survey of infectious disease in Yellowstone National Park’s canid community. PLoS ONE 4, e7042 (2009).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Almberg, E. S. et al. Social living mitigates the costs of a chronic illness in a cooperative carnivore. Ecol. Lett. 18, 660–667 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Brandell, E. E. et al. Infectious diseases in Yellowstone’s Wolves. In Yellowstone Wolves: Science and Discovery in the World’s First National Park (eds. Smith, D. W., Stahler, D. R. & MacNulty, D. R.) 121–133 (The University of Chicago Press, 2020).

    17.
    Watts, D. E. & Benson, A. M. Prevalence of antibodies for selected canine pathogens among wolves (Canis lupus) from the Alaska Peninsula, USA. J. Wildl. Dis. 52, 506–515 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Carstensen, M. et al. A serosurvey of diseases of free-ranging gray wolves (Canis lupus) in Minnesota, USA. J. Wildl. Dis. 53, 459–471 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Anderson, R. M. & May, R. M. Regulation and stability of host-parasite population interactions: I. Regulatory processes. J. Anim. Ecol. 47, 219–247 (1978).
    Article  Google Scholar 

    20.
    Silbernagel, E. R., Skelton, N. K., Waldner, C. L. & Bollinger, T. K. Interaction among deer in a chronic wasting disease endemic zone. J. Wildl. Manag. 75, 1453–1461 (2011).
    Article  Google Scholar 

    21.
    Gehrt, S. D. Raccoons and allies. In Wild Mammals of North America: Biology, Management, and Conservation (eds. Feldhamer, G., Thompson, B. & Chapman, J.) 611–633 (2003).

    22.
    McFarlane, R., Sleigh, A. & McMichael, T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9, 24–35 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Woodroffe, R. et al. Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PLoS ONE 7, e30099 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Knobel, D. L., Butler, J. R., Lembo, T., Critchlow, R. & Gompper, M. E. Dogs, disease, and wildlife. In Free-Ranging Dogs and Wildlife Conservation (ed. Gompper, M. E.) (Oxford University Press, Oxford, 2014).
    Google Scholar 

    25.
    Viana, M. et al. Dynamics of a morbillivirus at the domestic–wildlife interface: Canine distemper virus in domestic dogs and lions. Proc. Natl. Acad. Sci. 112, 1464–1469 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Bianco, A. et al. Two waves of canine distemper virus showing different spatio-temporal dynamics in Alpine wildlife (2006–2018). Infect. Genet. Evol. 84, 104359 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Dubey, J. P., Schares, G. & Ortega-Mora, L. M. Epidemiology and control of neosporosis and Neospora caninum. Clin. Microbiol. Rev. 20, 323–367 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Anderson, T. M. et al. Molecular and evolutionary history of melanism in North American gray wolves. Science 323, 1339–1343 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Candille, S. I. et al. A β-defensin mutation causes black coat color in domestic dogs. Science 318, 1418–1423 (2007).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Coulson, T., Macnulty, D. R., Stahler, D. R., Wayne, R. K. & Smith, D. W. Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history. Science 334, 1275–1278 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Hedrick, P. W., Stahler, D. R. & Dekker, D. Heterozygote advantage in a finite population: Black color in wolves. J. Hered. 105, 457–465 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Altizer, S., Davis, A. K., Cook, K. C. & Cherry, J. J. Age, sex, and season affect the risk of mycoplasmal conjunctivitis in a southeastern house finch population. Can. J. Zool. 82, 755–763 (2004).
    Article  Google Scholar 

    33.
    Biek, R. et al. Factors associated with pathogen seroprevalence and infection in Rocky Mountains cougars. J. Wildl. Dis. 42, 606–615 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Härkönen, T., Harding, K., Rasmussen, T. D., Teilmann, J. & Dietz, R. Age- and sex-specific mortality patterns in an emerging wildlife epidemic: The phocine distemper in European harbour seals. PLoS ONE 2, e887 (2007).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Guerra-Silveira, F. & Abad-Franch, F. Sex bias in infectious disease epidemiology: Patterns and processes. PLoS ONE 8, e62390 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    McDonald, J. L., Smith, G. C., McDonald, R. A., Delahay, R. J. & Hodgson, D. Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife–disease interactions. Proc. R. Soc. B Biol. Sci. 281, 20140526 (2014).
    Article  Google Scholar 

    37.
    Williams, E. S. & Barker, I. K. (eds) Infectious Diseases of Wild Mammals (Wiley, New York, 2001).
    Google Scholar 

    38.
    USGS. North America Political Boundaries. (2006). Available at: https://www.sciencebase.gov/catalog/item/4fb555ebe4b04cb937751db9.

    39.
    Justice-Allen, A. & Clement, M. J. Effect of canine parvovirus and canine distemper virus on the Mexican wolf (Canis lupus baileyi) population in the USA. J. Wildl. Dis. 55, 682–688 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Nelson, B. et al. Prevalence of antibodies to canine parvovirus and distemper virus in wolves in the Canadian Rocky Mountains. J. Wildl. Dis. 48, 68–76 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing). (2019 v3.6.3). Available at: https://www.R-project.org.

    42.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    43.
    Gelman, A. & Loken, E. The garden of forking paths: Why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time. Psychol. Bull. 140, 1272–1280 (2013).
    Google Scholar 

    44.
    Fuller, T. K. & Murray, D. L. Biological and logistical explanations of variation in wolf population density. Anim. Conserv. 1, 153–157 (1998).
    Article  Google Scholar 

    45.
    Fuller, T. K. & Sievert, P. R. Carnivore demography and the consequences of changes in prey availability. In Conservation biology series – Cambridge 163–178 (2001).

    46.
    MacNulty, D. R., Tallian, A., Stahler, D. R. & Smith, D. W. Influence of group size on the success of wolves hunting bison. PLoS ONE 9, 1–8 (2014).
    Article  CAS  Google Scholar 

    47.
    Barber-Meyer, S. M., Mech, L. D., Newton, W. E. & Borg, B. L. Differential wolf-pack-size persistence and the role of risk when hunting dangerous prey. Behaviour 153, 1473–1487 (2016).
    Article  Google Scholar 

    48.
    Gipson, P. S., Ballard, W. B., Nowak, R. M. & Mech, L. D. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manag. 64, 752 (2000).
    Article  Google Scholar 

    49.
    Fuller, T. K., Mech, L. D. & Cochrane, J. F. Wolf population dynamics. In Wolves: Behavior, Ecology, and Conservation (eds Mech, L. D. & Boitani, L.) 161–191 (University of Chicago Press, Chicago, 2003).
    Google Scholar 

    50.
    Jimenez, M. D. et al. Wolf dispersal in the Rocky Mountains, Western United States: 1993–2008. J. Wildl. Manag. 81, 581–592 (2017).
    Article  Google Scholar 

    51.
    NASA Socioeconomic Data and Applications Center. Gridded Population of the World (GPW), v4. EarthData (2015). Available at: https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11/data-download.

    52.
    Millán, J. et al. Patterns of exposure of Iberian wolves (Canis lupus) to canine viruses in human-dominated landscapes. EcoHealth 13, 123–134 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    North American Land Change Monitoring System 30m, 2010–2015 (Landsat). Commission of Environmental Cooperation (2015). Available at: http://www.cec.org/north-american-land-change-monitoring-system/.

    54.
    USGS EROS Archive—Digital Elevation—Global 30 Arc-Second Elevation (GTOPO30). Earth Resources Observation and Science (EROS) Center (1996).

    55.
    Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).
    Article  Google Scholar 

    56.
    Poole, K. G., Wakelyn, L. A. & Nicklen, P. N. Habitat selection by lynx in the Northwest Territories. Can. J. Zool. 74, 845–850 (1996).
    Article  Google Scholar 

    57.
    Nielsen, S. E., Boyce, M. S., Stenhouse, G. B. & Munro, R. H. M. Modeling grizzly bear habitats in the yellowhead ecosystem of Alberta: Taking autocorrelation seriously. Ursus 13, 45–56 (2001).
    Google Scholar 

    58.
    Arjo, W. M. & Pletscher, D. H. Coyote and wolf habitat use in northwestern Montana. Northwest Sci. 78, 24–32 (2004).
    Google Scholar 

    59.
    Oakleaf, J. K. et al. Habitat selection by recolonizing wolves in the northern Rocky Mountains of the United States. J. Wildl. Manag. 70, 554–563 (2006).
    Article  Google Scholar 

    60.
    Hebblewhite, M. & Merrill, E. Modelling wildlife-human relationships for social species with mixed-effects resource selection models. J. Appl. Ecol. 45, 834–844 (2008).
    Article  Google Scholar 

    61.
    Roever, C. L., Boyce, M. S. & Stenhouse, G. B. Grizzly bears and forestry II: Grizzly bear habitat selection and conflicts with road placement. For. Ecol. Manag. 256, 1262–1269 (2008).
    Article  Google Scholar 

    62.
    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J. P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landsc. Ecol. 25, 419–433 (2010).
    Article  Google Scholar 

    63.
    Mayor, S. J., Schneider, D. C., Schaefer, J. A. & Mahoney, S. P. Habitat selection at multiple scales. Ecoscience 16, 238–247 (2009).
    Article  Google Scholar 

    64.
    Milakovic, B. et al. Habitat selection by a focal predator (Canis lupus) in a multiprey ecosystem of the northern Rockies. J. Mammal. 92, 568–582 (2011).
    Article  Google Scholar 

    65.
    Kittle, A. M. et al. Wolves adapt territory size, not pack size to local habitat quality. J. Anim. Ecol. 84, 1177–1186 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Kittle, A. M. et al. Landscape-level wolf space use is correlated with prey abundance, ease of mobility, and the distribution of prey habitat. Ecosphere 8, e01783 (2017).
    Article  Google Scholar 

    67.
    Morin, S. J., Bowman, J., Marrotte, R. R. & Fortin, M. J. Fine-scale habitat selection by sympatric Canada lynx and bobcat. Ecol. Evol. 10, 9396–9409 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    O’Neil, S. T., Vucetich, J. A., Beyer, D. E., Hoy, S. R. & Bump, J. K. Territoriality drives preemptive habitat selection in recovering wolves: Implications for carnivore conservation. J. Anim. Ecol. 89, 1433–1447 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models (Cambridge University Press, 2007).

    70.
    Menard, S. Standards for standardized logistic regression coefficients. Soc. Forces 89, 1409–1428 (2011).

    71.
    Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression (Wiley, New York, 2000).
    Google Scholar 

    72.
    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, Berlin, 2009).
    Google Scholar 

    73.
    Finkelman, B. S. et al. Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral coexistence and latitudinal gradients. PLoS ONE 2, e1296 (2007).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Nguyen, D. et al. Fungal disease incidence along tree diversity gradients depends on latitude in European forests. Ecol. Evol. 6, 2426–2438 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    75.
    Rhodes, C. J., Atkinson, R. P. D., Anderson, R. M. & Macdonald, D. W. Rabies in Zimbabwe: reservoir dogs and the implications for disease control. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 353, 999–1010 (1998).
    CAS  Article  Google Scholar 

    76.
    Lembo, T. et al. Exploring reservoir dynamics: A case study of rabies in the Serengeti ecosystem. J. Appl. Ecol. 45, 1246–1257 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. Comparative tests of parasite species richness in primates. Am. Nat. 162, 597–614 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    78.
    Nunn, C. L. & Heymann, E. W. Malaria infection and host behavior: A comparative study of Neotropical primates Malaria infection and host behavior. Behav. Ecol. Sociobiol. 59, 30–37 (2005).
    Article  Google Scholar 

    79.
    Begon, M., Bowers, R. G., Kadianakis, N. & Hodgkinson, D. E. Disease and community structure: the importance of host self-regulation in a host-host-pathogen model. Am. Nat. 139, 1131–1150 (1992).
    Article  Google Scholar 

    80.
    Power, A. G. & Mitchell, C. E. Pathogen spillover in disease epidemics. Am. Nat. 164, S79–S89 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Schweizer, R. M. et al. Natural selection and origin of a melanistic allele in North American gray wolves. Mol. Biol. Evol. 35, 1190–1209 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Wilson, P. J., Grewal, S. K., Mallory, F. F. & White, B. N. Genetic characterization of hybrid wolves across Ontario. J. Hered. 100, S80–S89 (2009).
    CAS  Article  Google Scholar 

    84.
    Gondim, L. F. P. et al. Transmission of Neospora caninum between wild and domestic animals. J. Parasitol. 90, 1361–1365 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    85.
    Dubey, J. P. et al. Seroprevalence of Neospora caninum and Toxoplasma gondii antibodies in white-tailed deer (Odocoileus virginianus) from Iowa and Minnesota using four serologic tests. Vet. Parasitol. 161, 330–334 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Stieve, E., Beckmen, K., Kania, S. A., Widner, A. & Patton, S. Neospora caninum and Toxoplasma gondii antibody prevalence in Alaska wildlife. J. Wildl. Dis. 46, 348–355 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    Pruvot, M., Hutchins, W. & Orsel, K. Statistical evaluation of a commercial Neospora caninum competitive ELISA in the absence of a gold standard: Application to wild elk (Cervus elaphus) in Alberta. Parasitol. Res. 113, 2899–2905 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    88.
    Bondo, K. J. et al. Health survey of boreal caribou (Rangifer tarandus caribou) in northeastern British Columbia, Canada. J. Wildl. Dis. 55, 544–562 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Donahoe, S. L., Lindsay, S. A., Krockenberger, M., Phalen, D. & Šlapeta, J. A review of neosporosis and pathologic findings of Neospora caninum infection in wildlife. Int. J. Parasitol. Parasites Wildl. 4, 216–238 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Huggard, D. J. Prey selectivity of wolves in Banff National Park I. Prey species. Can. J. Zool. 71, 130–139 (1993).
    Article  Google Scholar 

    91.
    Hebblewhite, M., Paquet, P. C., Pletscher, D. H., Lessard, R. B. & Callaghan, C. J. Development and application of a ratio estimator to estimate wolf kill rates and variance in a multiple-prey system. Wildl. Soc. Bull. 31, 933–946 (2003).
    Google Scholar 

    92.
    Adams, L. G. et al. Are inland wolf-ungulate systems influenced by marine subsidies of Pacific salmon?. Ecol. Appl. 20, 251–262 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    93.
    Latham, A. D. M., Latham, M. C., McCutchen, N. A. & Boutin, S. Invading white-tailed deer change wolf-caribou dynamics in northeastern Alberta. J. Wildl. Manag. 75, 204–212 (2011).
    Article  Google Scholar 

    94.
    Metz, M. C., Smith, D. W., Vucetich, J. A., Stahler, D. R. & Peterson, R. O. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park. J. Anim. Ecol. 81, 553–563 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    95.
    Merkle, J. A., Polfus, J. L., Derbridge, J. J. & Heinemeyer, K. S. Dietary niche partitioning among black bears, grizzly bears and wolves in a multi-prey ecosystem. Can. J. Zool. 95, 663–671 (2017).
    Article  Google Scholar 

    96.
    Gable, T. D., Windels, S. K., Bruggink, J. G. & Barber-Meyer, S. M. Weekly summer diet of gray wolves (Canis lupus) in northeastern Minnesota. Am. Midl. Nat. 179, 15–27 (2018).
    Article  Google Scholar 

    97.
    O’Donovan, S. A., Budge, S. M., Hobson, K. A., Kelly, A. P. & Derocher, A. E. Intrapopulation variability in wolf diet revealed using a combined stable isotope and fatty acid approach. Ecosphere 9, e02420 (2018).
    Article  Google Scholar 

    98.
    Whittington, J., St. Clair, C. C. & Mercer, G. Spatial responses of wolves to roads and trails in mountain valleys. Ecol. Appl. 15, 543–553 (2005).
    Article  Google Scholar  More

  • in

    Capturing yeast associated with grapes and spontaneous fermentations of the Negro Saurí minority variety from an experimental vineyard near León

    1.
    Csoma, H., Zakany, N., Capece, A., Romano, P. & Sipiczki, M. Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: Comparative genotypic and phenotypic analysis. Int. J. Food Microbiol. 140, 239–248. https://doi.org/10.1016/j.ijfoodmicro.2010.03.024 (2010).
    CAS  Article  PubMed  Google Scholar 
    2.
    Di Maio, S. et al. Biodiversity of indigenous Saccharomyces populations from old wineries of South-Eastern Sicily (Italy): Preservation and economic potential. PLoS ONE 7, e30428. https://doi.org/10.1371/journal.pone.0030428 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Bokulich, N. A., Ohta, M., Richardson, P. M. & Mills, D. A. Monitoring seasonal changes in winery-resident microbiota. PLoS ONE 8, e66437. https://doi.org/10.1371/journal.pone.0066437 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Mas, A., Padilla, B., Esteve-Zarzoso, B. & Beltran, G. Utilización de inóculos mixtos de levaduras autóctonas como herramienta para reproducir la huella microbiológica de la zona. Acenologica. http://www.acenologia.com/cienciaytecnologia/inoculos_mixtos_levaduras_autoctonas_cienc0715.htm (2013).

    5.
    Varela, C. & Borneman, A. R. Yeasts found in vineyards and wineries. Yeast 34, 111–128. https://doi.org/10.1002/yea.3219 (2017).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fleet, G. H. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86, 11–22. https://doi.org/10.1016/S0168-1605(03)00245-9 (2003).
    CAS  Article  PubMed  Google Scholar 

    7.
    Mannazzu, I., Clementi, F. & Ciani, M. In Biodiversity and Biotechnology of Wine Yeasts 19–34 (2002).

    8.
    Martini, A., Ciani, M. & Scorzetti, G. Direct enumeration and isolation of wine yeasts from grape surfaces. Am. J. Enol. Vit. 47, 435 (1996).
    Google Scholar 

    9.
    Mortimer, R. & Polsinelli, M. On the origins of wine yeast. Res. Microbiol. 150, 199–204. https://doi.org/10.1016/S0923-2508(99)80036-9 (1999).
    CAS  Article  PubMed  Google Scholar 

    10.
    Ciani, M., Comitini, F., Mannazzu, I. & Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res. 10, 123–133. https://doi.org/10.1111/j.1567-1364.2009.00579.x (2010).
    CAS  Article  PubMed  Google Scholar 

    11.
    Ribéreau-Gayon, P., Dubourdieu, D., Donéche, B. & Lonvaud, A. The Microbiology of Wine and Vinifications 2nd edn, Vol. 1, 512 (2006).

    12.
    Charoenchai, C., Fleet, G. H., Henschke, P. A. & Todd, B. E. N. T. Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aus. J. Grape Wine Res. 3, 2–8. https://doi.org/10.1111/j.1755-0238.1997.tb00109.x (1997).
    CAS  Article  Google Scholar 

    13.
    Fernández, M. T., Ubeda, J. F. & Briones, A. I. Comparative study of non-Saccharomyces microflora of musts in fermentation, by physiological and molecular methods. FEMS Microbiol. Lett. 173, 223–229. https://doi.org/10.1111/j.1574-6968.1999.tb13506.x (1999).
    Article  Google Scholar 

    14.
    Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A. & Masneuf-Pomarede, I. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int. J. Food Microbiol. 125, 197–203. https://doi.org/10.1016/j.ijfoodmicro.2008.04.001 (2008).
    CAS  Article  PubMed  Google Scholar 

    15.
    Grangeteau, C. et al. Diversity of yeast strains of the genus Hanseniaspora in the winery environment: What is their involvement in grape must fermentation?. Food Microbiol. 50, 70–77. https://doi.org/10.1016/j.fm.2015.03.009 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    16.
    Fleet, G. H. Wine yeasts for the future. FEMS Yeast Res. 8, 979–995. https://doi.org/10.1111/j.1567-1364.2008.00427.x (2008).
    CAS  Article  PubMed  Google Scholar 

    17.
    Canonico, L., Comitini, F., Oro, L. & Ciani, M. Sequential fermentation with selected immobilized non-Saccharomyces yeast for reduction of ethanol content in wine. Front. Microbiol. 7, 278–278. https://doi.org/10.3389/fmicb.2016.00278 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Padilla, B., Gil, J. V. & Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 7, 411–411. https://doi.org/10.3389/fmicb.2016.00411 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Esteve-Zarzoso, B., Manzanares, P., Ramön, D. & Quero, A. The role of non-Saccharomyces yeasts in industrial winemaking. Int. Microbiol. 1, 143–148 (1998).
    CAS  PubMed  Google Scholar 

    20.
    Gonzalez, R., Quirós, M. & Morales, P. Yeast respiration of sugars by non-Saccharomyces yeast species: A promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci. Techol. 29, 55–61. https://doi.org/10.1016/j.tifs.2012.06.015 (2013).
    CAS  Article  Google Scholar 

    21.
    Quirós, M., Rojas, V., Gonzalez, R. & Morales, P. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int. J. Food Microbiol. 181, 85–91. https://doi.org/10.1016/j.ijfoodmicro.2014.04.024 (2014).
    CAS  Article  PubMed  Google Scholar 

    22.
    Morales, P., Rojas, V., Quirós, M. & Gonzalez, R. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl. Microbiol. Biotechnol. 99, 3993–4003. https://doi.org/10.1007/s00253-014-6321-3 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Varela, C. et al. Strategies for reducing alcohol concentration in wine. Aus. J. Grape Wine Res. 21, 670–679. https://doi.org/10.1111/ajgw.12187 (2015).
    Article  Google Scholar 

    24.
    Roudil, L. et al. Non-Saccharomyces commercial starter cultures: Scientific trends, recent patents and innovation in the wine sector. Recent Patents Food Nutr. Agric. https://doi.org/10.2174/2212798410666190131103713 (2019).
    Article  Google Scholar 

    25.
    Le Jeune, C., Erny, C., Demuyter, C. & Lollier, M. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiol. 23, 709–716. https://doi.org/10.1016/j.fm.2006.02.007 (2006).
    CAS  Article  PubMed  Google Scholar 

    26.
    Versavaud, A., Courcoux, P., Roulland, C., Dulau, L. & Hallet, J. N. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl. Environ. Microbiol. 61, 3521 (1995).
    CAS  Article  Google Scholar 

    27.
    Pérez-Coello, M. S., Briones Pérez, A. I., Ubeda Iranzo, J. F. & Martin Alvarez, P. J. Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region. Food Microbiol. 16, 563–573. https://doi.org/10.1006/fmic.1999.0272 (1999).
    CAS  Article  Google Scholar 

    28.
    Torriani, S., Zapparoli, G. & Suzzi, G. Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine. Antonie Van Leeuwenhoek 75, 207–215. https://doi.org/10.1023/A:1001773916407 (1999).
    CAS  Article  PubMed  Google Scholar 

    29.
    Naumov, G. I., Masneuf, I., Naumova, E. S., Aigle, M. & Dubourdieu, D. Association of Saccharomyces bayanus var. uvarum with some French wines: Genetic analysis of yeast populations. Res. Microbiol. 151, 683–691. https://doi.org/10.1016/s0923-2508(00)90131-1 (2000).
    CAS  Article  PubMed  Google Scholar 

    30.
    Redžepović, S., Orlić, S., Sikora, S., Majdak, A. & Pretorius, I. S. Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Letts. Appl. Microbiol. 35, 305–310. https://doi.org/10.1046/j.1472-765X.2002.01181.x (2002).
    Article  Google Scholar 

    31.
    Rementeria, A. et al. Yeast associated with spontaneous fermentations of white wines from the “Txakoli de Bizkaia” region (Basque Country, North Spain). Int. J. Food Microbiol. 86, 201–207. https://doi.org/10.1016/S0168-1605(03)00289-7 (2003).
    CAS  Article  PubMed  Google Scholar 

    32.
    Cappello, M. S., Bleve, G., Grieco, F., Dellaglio, F. & Zacheo, G. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. J. Appl. Microbiol. 97, 1274–1280. https://doi.org/10.1111/j.1365-2672.2004.02412.x (2004).
    CAS  Article  PubMed  Google Scholar 

    33.
    Fay, J. C. & Benavides, J. A. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1, e5. https://doi.org/10.1371/journal.pgen.0010005 (2005).
    CAS  Article  PubMed Central  Google Scholar 

    34.
    Schuller, D., Alves, H., Dequin, S. & Casal, M. Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol. Ecol. 51, 167–177. https://doi.org/10.1016/j.femsec.2004.08.003 (2005).
    CAS  Article  PubMed  Google Scholar 

    35.
    Viel, A. et al. The geographic distribution of Saccharomyces cerevisiae isolates within three Italian neighboring winemaking regions reveals strong differences in yeast abundance, genetic diversity and industrial strain dissemination. Front. Microbiol. 8, 1595–1595. https://doi.org/10.3389/fmicb.2017.01595 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Sun, Y. et al. Evaluation of Chinese Saccharomyces cerevisiae wine strains from different geographical origins. Am. J. Enol. Vit. 68, 73. https://doi.org/10.5344/ajev.2016.16059 (2017).
    Article  Google Scholar 

    37.
    da Silva, G. A. D., Agustini, B. C., de Mello, L. M. R. & Tonietto, J. Autochthonous yeast populations from different Brazilian geographic indications. BIO Web Conf. 7 (2016).

    38.
    Crosato, G. et al. Genetic variability and physiological traits of Saccharomyces cerevisiae strains isolated from “Vale dos Vinhedos” vineyards reflect agricultural practices and history of this Brazilian wet subtropical area. World J. Microbiol. Biotechnol. 34, 105. https://doi.org/10.1007/s11274-018-2490-z (2018).
    CAS  Article  PubMed  Google Scholar 

    39.
    Chavan, P. et al. Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiol. 26, 801–808. https://doi.org/10.1016/j.fm.2009.05.005 (2009).
    CAS  Article  PubMed  Google Scholar 

    40.
    Kachalkin, A. V., Abdullabekova, D. A., Magomedova, E. S., Magomedov, G. G. & Chernov, I. Y. Yeasts of the vineyards in Dagestan and other regions. Microbiology 84, 425–432. https://doi.org/10.1134/S002626171503008X (2015).
    CAS  Article  Google Scholar 

    41.
    Cordero-Bueso, G., Arroyo, T., Serrano, A. & Valero, E. Remanence and survival of commercial yeast in different ecological niches of the vineyard. FEMS Microbiol. Ecol. 77, 429–437. https://doi.org/10.1111/j.1574-6941.2011.01124.x (2011).
    CAS  Article  PubMed  Google Scholar 

    42.
    Valero, E., Schuller, D., Cambon, B., Casal, M. & Dequin, S. Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study. FEMS Yeast Res. 5, 959–969. https://doi.org/10.1016/j.femsyr.2005.04.007 (2005).
    CAS  Article  PubMed  Google Scholar 

    43.
    Valero, E., Cambon, B., Schuller, D., Casal, M. & Dequin, S. Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res. 7, 317–329. https://doi.org/10.1111/j.1567-1364.2006.00161.x (2007).
    CAS  Article  PubMed  Google Scholar 

    44.
    Blanco, P., Mirás-Avalos, J. M. & Orriols, I. Effect of must characteristics on the diversity of Saccharomyces strains and their prevalence in spontaneous fermentations. J. Appl. Microbiol. 112, 936–944. https://doi.org/10.1111/j.1365-2672.2012.05278.x (2012).
    CAS  Article  PubMed  Google Scholar 

    45.
    Garofalo, C., Tristezza, M., Grieco, F., Spano, G. & Capozzi, V. From grape berries to wine: Population dynamics of cultivable yeasts associated to “Nero di Troia” autochthonous grape cultivar. World J. Microbiol. Biotechnol. 32, 59. https://doi.org/10.1007/s11274-016-2017-4 (2016).
    CAS  Article  PubMed  Google Scholar 

    46.
    Schuller, D. et al. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS ONE 7, e32507. https://doi.org/10.1371/journal.pone.00325 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Martinez, M. C. & Perez, J. E. The forgotten vineyard of the Asturias Princedom (north of Spain) and ampelographic description of its grapevine cultivars (Vitis vinifera L.). Am. J. Enol. Vit. 51, 370–378 (2000).
    Google Scholar 

    48.
    Yuste, J. et al. Identification of autochthonous grapevine varieties in the germplasm collection at the ITA of “Castilla y León” in Zamadueñas Station, Valladolid. Spain. Spanish J. Agric. Res. https://doi.org/10.5424/sjar/2006041-175 (2006).
    Article  Google Scholar 

    49.
    Cabello, F., Saiz, R. & Muñoz, G. Estudio de variedades españolas minoritarias de vid. Acenologica. http://www.acenologia.com/cienciaytecnologia/variedades_minoritarias_cienc0213.htm (2013).

    50.
    Balda, P. & de Toda, F. M. Variedades minoritarias de vid en La Rioja. Consejería de Agricultura, Ganadería y Medio Ambiente. (2017).

    51.
    Martínez de Toda, F. Veinte nuevas variedades de vid, rescatadas de la desaparición, en la viticultura española y nuevos vinos. Acenologica. http://www.acenologia.com/dossier/dossier135.htm (2013).

    52.
    Arranz, C. et al. Variedades de vid cultivadas en la Sierra de Francia. Importancia, identificación, sinonimias y homonimias. La Semana Vitivinícola 3223, 1414–1420 (2008).
    Google Scholar 

    53.
    Ibáñez, J., Carreño, J., Yuste, J. & Martínez-Zapater, J. M. In Grapevine Breeding Programs for the Wine Industry (ed Reynolds, A.) 183–209 (Woodhead Publishing, 2015).

    54.
    Arranz Hernández, C., Barajas Tola, E., Yuste Bombín, J. & Rubio Cano, J. A. 45–58 (Comunidad de Madrid (España): Ministerio de Agricultura, Alimentación y Medio Ambiente, 2016).

    55.
    Esteve-Zarzoso, B., Belloch, C., Uruburu, F. & Querol, A. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bact. 49, 329–337. https://doi.org/10.1099/00207713-49-1-329 (1999).
    CAS  Article  Google Scholar 

    56.
    Madden, T. L., Tatusov, R. L. & Zhang, J. Methods in Enzymology Vol. 266, 131–141 (Academic Press, London, 1996).
    Google Scholar 

    57.
    Legras, J.-L. & Karst, F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol. Lett. 221, 249–255. https://doi.org/10.1016/S0378-1097(03)00205-2 (2003).
    CAS  Article  PubMed  Google Scholar 

    58.
    Ness, F., Lavallée, F., Dubourdieu, D., Aigle, M. & Dulau, L. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62, 89–94. https://doi.org/10.1002/jsfa.2740620113 (1993).
    CAS  Article  Google Scholar 

    59.
    Lebart, L., Morineau, A. & Piron, M. Statistique Exploratoire Multidimensionnelle (Dunod Publishers, Paris, 1995).
    Google Scholar 

    60.
    Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L. & Maggio, R. M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 72, 83–90. https://doi.org/10.1016/j.tifs.2017.12.006 (2018).
    CAS  Article  Google Scholar 

    61.
    Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M. & Perona, I. An extensive comparative study of cluster validity indices. Pattern Recogn. 46, 243–256. https://doi.org/10.1016/j.patcog.2012.07.021 (2013).
    Article  Google Scholar 

    62.
    Orlić, S. et al. Diversity and oenological characterization of indigenous Saccharomyces cerevisiae associated with Žilavka grapes. World J. Microbiol. Biotechnol. 26, 1483–1489. https://doi.org/10.1007/s11274-010-0323-9 (2010).
    Article  Google Scholar 

    63.
    Tristezza, M. et al. Molecular and technological characterization of Saccharomyces cerevisiae strains isolated from natural fermentation of Susumaniello grape must in Apulia, Southern Italy. Int. J. Microbiol. 897428–897428, 2014. https://doi.org/10.1155/2014/897428 (2014).
    CAS  Article  Google Scholar 

    64.
    SchvarczovÁ, E. V. A., ŠtefáNiková, J., Jankura, E. & Kolek, E. Selection of autochthonous Saccharomyces cerevisiae strains for production of typical Pinot Gris wines. J. Food Nutr. Res. 56, 389–397 (2017).
    Google Scholar 

    65.
    Tristezza, M. et al. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 36, 335–342. https://doi.org/10.1016/j.fm.2013.07.001 (2013).
    CAS  Article  PubMed  Google Scholar 

    66.
    Sabate, J., Cano, J., Querol, A. & Guillamon, J. M. Diversity of Saccharomyces strains in wine fermentations: Analysis for two consecutive years. Lett. Appl. Microbiol. 26, 452–455. https://doi.org/10.1046/j.1472-765X.1998.00369.x (1998).
    CAS  Article  PubMed  Google Scholar 

    67.
    Bougreau, M., Ascencio, K., Bugarel, M., Nightingale, K. & Loneragan, G. Yeast species isolated from Texas High Plains vineyards and dynamics during spontaneous fermentations of Tempranillo grapes. PLoS ONE 14, e0216246–e0216246. https://doi.org/10.1371/journal.pone.0216246 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    68.
    Martiniuk, J. T. et al. Impact of commercial strain use on Saccharomyces cerevisiae population structure and dynamics in Pinot Noir vineyards and spontaneous fermentations of a Canadian winery. PLoS ONE 11, e0160259. https://doi.org/10.1371/journal.pone.0160259 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Mercado, L., Jubany, S., Gaggero, C., Masuelli, R. W. & Combina, M. Molecular relationships between Saccharomyces cerevisiae strains involved in winemaking from Mendoza, Argentina. Curr. Microbiol. 61, 506–514. https://doi.org/10.1007/s00284-010-9645-y (2010).
    CAS  Article  PubMed  Google Scholar 

    70.
    de Celis, M. et al. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards. Lett. Appl. Microbiol. 68, 580–588. https://doi.org/10.1111/lam.13155 (2019).
    Article  PubMed  Google Scholar 

    71.
    Knight, S., Klaere, S., Fedrizzi, B. & Goddard, M. R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 5, 14233. https://doi.org/10.1038/srep14233 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Álvarez-Pérez, J. M., Garzón-Jimeno, E. & Coque, J. J. R. Population of indigenous yeast strains from Prieto Picudo grapes in different growing areas of Denomination of Origin “Tierra de León”. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 72, 17–26. https://doi.org/10.15835/buasvmcn-hort:11013 (2015).
    Article  Google Scholar 

    73.
    Sabate, J., Cano, J., Esteve-Zarzoso, B. & Guillamón, J. M. Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol. Res. 157, 267–274. https://doi.org/10.1078/0944-5013-00163 (2002).
    CAS  Article  PubMed  Google Scholar 

    74.
    Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259. https://doi.org/10.1016/j.ijfoodmicro.2011.11.025 (2012).
    CAS  Article  PubMed  Google Scholar 

    75.
    Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS 111, E139–E148. https://doi.org/10.1073/pnas.1317377110 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    76.
    Russo, P. et al. Pesticide residues and stuck fermentation in Wine: New evidences indicate the urgent need of tailored regulations. Fermentation 5, 23. https://doi.org/10.3390/fermentation5010023 (2019).
    CAS  Article  Google Scholar 

    77.
    Agarbati, A., Canonico, L., Ciani, M. & Comitini, F. The impact of fungicide treatments on yeast biota of Verdicchio and Montepulciano grape varieties. PLoS ONE 14, e0217385. https://doi.org/10.1371/journal.pone.0217385 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    78.
    Kosel, J., Raspor, P. & Čadež, N. Maximum residue limit of fungicides inhibits the viability and growth of desirable non-Saccharomyces wine yeasts. Aust. J. Grape Wine Res. 25, 43–52. https://doi.org/10.1111/ajgw.12364 (2019).
    CAS  Article  Google Scholar 

    79.
    Čadež, N., Zupan, J. & Raspor, P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10, 619–630. https://doi.org/10.1111/j.1567-1364.2010.00635.x (2010).
    CAS  Article  PubMed  Google Scholar 

    80.
    Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).
    CAS  Article  Google Scholar 

    81.
    Killham, K., Lindley, N. D. & Wainwright, M. Inorganic sulfur oxidation by Aureobasidium pullulans. Appl. Environ. Microbiol. 42, 629–631 (1981).
    CAS  Article  Google Scholar 

    82.
    Gadd, G. M. & de Rome, L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29, 610–617. https://doi.org/10.1007/BF00260993 (1988).
    CAS  Article  Google Scholar 

    83.
    Belda, I. et al. Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Front. Microbiol. 7, 12–12. https://doi.org/10.3389/fmicb.2016.00012 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    84.
    Lin, M.M.-H. et al. Evaluation of indigenous non-Saccharomyces yeasts isolated from a South Australian vineyard for their potential as wine starter cultures. Int. J. Food Microbiol. 312, 108373. https://doi.org/10.1016/j.ijfoodmicro.2019.108373 (2020).
    CAS  Article  PubMed  Google Scholar 

    85.
    Hranilovic, A., Bely, M., Masneuf-Pomarede, I., Jiranek, V. & Albertin, W. The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems. PLoS ONE 12, e0184652. https://doi.org/10.1371/journal.pone.0184652 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    86.
    Hranilovic, A. et al. Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation. Sci. Rep. 8, 14812. https://doi.org/10.1038/s41598-018-33105-7 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    87.
    Hu, K., Jin, G.-J., Mei, W.-C., Li, T. & Tao, Y.-S. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem. 239, 495–501. https://doi.org/10.1016/j.foodchem.2017.06.151 (2018).
    CAS  Article  PubMed  Google Scholar 

    88.
    Oro, L., Ciani, M. & Comitini, F. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J. Appl. Microbiol. 116, 1209–1217. https://doi.org/10.1111/jam.12446 (2014).
    CAS  Article  PubMed  Google Scholar 

    89.
    Contreras, A., Curtin, C. & Varela, C. Yeast population dynamics reveal a potential ‘collaboration’ between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl. Microbiol. Biotechnol. 99, 1885–1895. https://doi.org/10.1007/s00253-014-6193-6 (2015).
    CAS  Article  PubMed  Google Scholar 

    90.
    Benito, S. The impacts of Lachancea thermotolerans yeast strains on winemaking. Appl. Microbiol. Biotechnol. 102, 6775–6790. https://doi.org/10.1007/s00253-018-9117-z (2018).
    CAS  Article  PubMed  Google Scholar 

    91.
    Morata, A. et al. Lachancea thermotolerans applications in wine technology. Fermentation https://doi.org/10.3390/fermentation4030053 (2018).
    Article  Google Scholar 

    92.
    Belda, I. et al. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Int. J. Food Microbiol. 223, 1–8. https://doi.org/10.1016/j.ijfoodmicro.2016.02.003 (2016).
    CAS  Article  PubMed  Google Scholar 

    93.
    Jolly, N., Augustyn, O. & Pretorius, I. The role and use of non-Saccharomyces yeasts in wine production. J. Enol. Vitic. 27. https://doi.org/10.21548/27-1-1475 (2006).

    94.
    Capozzi, V., Fragasso, M. & Russo, P. Microbiological safety and the management of microbial resources in artisanal foods and beverages: The need for a transdisciplinary assessment to conciliate actual trends and risks avoidance. Microorganisms 8, 306. https://doi.org/10.3390/microorganisms (2020).
    Article  PubMed Central  Google Scholar 

    95.
    Benito, S. The impact of Torulaspora delbrueckii yeast in winemaking. Appl. Microbiol. Biotechnol. 102, 3081–3094. https://doi.org/10.1007/s00253-018-8849-0 (2018).
    CAS  Article  PubMed  Google Scholar 

    96.
    Attila, K., Ján, M., Eva, I., Margarita, T. & Miroslava, K. Microorganisms of grape berries. In Proc. Latvian Acad. Sciences. Section B. Natural, Exact & Appl. Sci. Vol. 71, 502–508, https://doi.org/10.1515/prolas-2017-0087 (2017).

    97.
    Pretorius, I. S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 16, 675–729. https://doi.org/10.1002/1097-0061(20000615)16:8%3c675::AID-YEA585%3e3.0.CO;2-B (2000).
    CAS  Article  PubMed  Google Scholar 

    98.
    Clavijo, A., Calderón, I. L. & Paneque, P. Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serranía de Ronda (Spain) vine-growing region. Int. J. Food Microbiol. 143, 241–245. https://doi.org/10.1016/j.ijfoodmicro.2010.08.010 (2010).
    CAS  Article  PubMed  Google Scholar 

    99.
    Capece, A. et al. Diversity of Saccharomyces cerevisiae strains isolated from two Italian wine-producing regions. Front Microbiol. 7, 1018. https://doi.org/10.3389/fmicb (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    100.
    Santamaría, P. et al. Biodiversity of Saccharomyces cerevisiae yeasts in spontaneous alcoholic fermentations: Typical cellar or zone strains? Advances in Grape and Wine Biotechnology. (ed. Morata, A. & Loira, I.) 1–15 (Intech Open, 2019). https://doi.org/10.5772/intechopen.84870

    101.
    Kurtzman, C., P., & Fell, J. W. The Yeasts, A Taxonomic Study. 4th edn, (Elsevier Science Publishers, 1998).

    102.
    Lõoke, M., Kristjuhan, K. & Kristjuhan, A. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50, 325–328. https://doi.org/10.2144/000113672 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    103.
    Liu, Y., Wang, C., Joseph, C. M. L. & Bisson, L. F. Comparison of two PCR-based genetic fingerprinting methods for assessment of genetic diversity in Saccharomyces strains. Am. J. Enol. Vit. 65, 109. https://doi.org/10.5344/ajev.2013.13056 (2014).
    Article  Google Scholar 

    104.
    Dazy, F. & Le Barzic, J.-F. L’analyse des donnees evolutives: Methodes et applications (Technip Publishers, 1996). More

  • in

    Bacterial microbiota similarity between predators and prey in a blue tit trophic network

    1.
    Hooper LV, Bry L, Falk PG, Gordon JI. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays. 1998;20:336–43.
    CAS  PubMed  Article  Google Scholar 
    2.
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–18.
    CAS  Article  Google Scholar 

    3.
    Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–52.
    CAS  Article  Google Scholar 

    5.
    Erny D, de Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    van der Waaij D. The ecology of the human intestine and its consequences for overgrowth by pathogens such as clostridium difficile. Annu Rev Microbiol. 1989;43:69–87.
    PubMed  Article  Google Scholar 

    7.
    Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015;63:1–9.
    PubMed  Article  Google Scholar 

    8.
    Hird SM. Evolutionary biology needs wild microbiomes. Front Microbiol. 2017;8:1–10.
    Article  Google Scholar 

    9.
    Scupham AJ, Patton TG, Bent E, Bayles DO. Comparison of the cecal microbiota of domestic and wild turkeys. Micro Ecol. 2008;56:322–31.
    Article  Google Scholar 

    10.
    Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. Cross-species comparisons of host genetic associations with the microbiome. Science. 2016;352:532–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Hird SM, Carstens BC, Cardiff SW, Dittmann DL, Brumfield RT. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic brown-headed cowbird (Molothrus ater). PeerJ. 2014;2:1–21.
    Article  Google Scholar 

    12.
    Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci. 2019;107:18933–8.
    Article  Google Scholar 

    13.
    Musitelli F, Ambrosini R, Rubolini D, Saino N, Franzetti A, Gandolfi I. Cloacal microbiota of barn swallows from Northern Italy. Ethol Ecol Evol. 2018;30:362–72.
    Article  Google Scholar 

    14.
    Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Hird SM, Sánchez C, Carstens BC, Brumfield RT. Comparative gut microbiota of 59 neotropical bird species. Front Microbiol. 2015;6:1403.
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Bili M, Cortesero AM, Mougel C, Gauthier JP, Ermel G, Simon JC, et al. Bacterial community diversity harboured by interacting species. PLoS One. 2016;11:1–23.
    Article  CAS  Google Scholar 

    17.
    Sugio A, Dubreuil G, Giron D, Simon J. Plant – insect interactions under bacterial influence: ecological implications and underlying mechanisms. J Exp Bot. 2015;66:467–78.
    CAS  PubMed  Article  Google Scholar 

    18.
    Hannula SE, Zhu F, Heinen R, Bezemer TM. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat Commun. 2019;10:1–9.
    CAS  Article  Google Scholar 

    19.
    White J, Mirleau P, Danchin E, Mulard H, Hatch SA, Heeb P, et al. Sexually transmitted bacteria affect female cloacal assemblages in a wild bird. Ecol Lett. 2010;13:1515–24.
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Schlechter RO, Miebach M, Remus-Emsermann MNP. Driving factors of epiphytic bacterial communities: a review. J Adv Res. 2019;19:57–65.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Remus-Emsermann MNP, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Remus-Emsermann MNP, Tecon R, Kowalchuk GA, Leveau JHJ. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 2012;6:756–65.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Rogers TJ, Leppanen C, Brown V, Fordyce JA, LeBude A, Ranney T, et al. Exploring variation in phyllosphere microbial communities across four hemlock species. Ecosphere. 2018;9:1–11.
    Article  Google Scholar 

    24.
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12:2885–93.
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Laforest-Lapointe I, Messier C, Kembel SW. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome. 2016;4:1–10.
    Article  Google Scholar 

    26.
    Kembel SW, Mueller RC. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany. 2014;92:303–11.
    Article  Google Scholar 

    27.
    Appel MH. The chewing herbivore gut lumen: Physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens. In: Bernays EA (ed.). Insect-plant interactions, 1st ed. 1994. CRC Press, Boca Raton, pp 209–23.

    28.
    Shannon AL, Attwood G, Hopcroft DH, Christeller JT. Characterization of lactic acid bacteria in the larval midgut of the keratinophagous lepidopteran, Hofmannophila pseudospretella. Lett Appl Microbiol. 2001;32:36–41.
    CAS  PubMed  Article  Google Scholar 

    29.
    Kukal O, Dawson TE, Kukal O, Dawson TE. Temperature and food quality influences feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia. 1989;79:526–32.
    PubMed  Article  Google Scholar 

    30.
    Vilanova C, Baixeras J, Latorre A, Porcar M. The generalist inside the specialist: gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front Microbiol. 2016;7:1–8.
    Article  Google Scholar 

    31.
    Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One. 2012;7:1–10.
    Google Scholar 

    32.
    Jones AG, Mason CJ, Felton GW, Hoover K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep. 2019;9:1–11.
    Article  CAS  Google Scholar 

    33.
    Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. Caterpillars lack a resident gut microbiome. PNAS. 2017;114:9641–6.
    CAS  PubMed  Article  Google Scholar 

    34.
    Whitaker MRL, Salzman S, Sanders JG, Kaltenpoth M, Pierce NE. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front Microbiol. 2016;7:1–13.
    Article  Google Scholar 

    35.
    Stanley D, Geier MS, Hughes RJ, Denman SE, Moore RJ. Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One. 2013;8:6–13.
    Google Scholar 

    36.
    Azcárate-García M, Ruiz-Rodríguez M, Díaz-Lora S, Ruiz-Castellano C, Soler JJ. Experimentally broken faecal sacs affect nest bacterial environment, development and survival of spotless starling nestlings. J Avian Biol. 2019;50:1–10.
    Article  Google Scholar 

    37.
    Devaynes A, Antunes A, Bedford A, Ashton P. Progression in the bacterial load during the breeding season in nest boxes occupied by the Blue Tit and its potential impact on hatching or fledging success. J Ornithol. 2018;159:1009–17.
    Article  Google Scholar 

    38.
    Janczyk P, Hall B, Souffrant WB. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poult Sci. 2009;88:2324–32.
    CAS  PubMed  Article  Google Scholar 

    39.
    Waite DW, Taylor MW. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol. 2015;6:1–12.
    Article  Google Scholar 

    40.
    Pan D, Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 2014;5:108–19.
    PubMed  Article  Google Scholar 

    41.
    Lewis WB, Moore FR, Wang S. Changes in gut microbiota of migratory passerines during stopover after crossing an ecological barrier. Auk. 2017;134:137–45.
    Article  Google Scholar 

    42.
    Kulkarni S, Heeb P. Social and sexual behaviours aid transmission of bacteria in birds. Behav Process. 2007;74:88–92.
    Article  Google Scholar 

    43.
    Dawkins R. The extended phenotype. Oxford: Oxford University Press; 1982.
    Google Scholar 

    44.
    Fisher DN, Haines JA, Boutin S, Dantzer B, Lane JE, Coltman DW, et al. Indirect effects on fitness between individuals that have never met via an extended phenotype. Ecol Lett. 2019;22:697–706.
    PubMed  Article  Google Scholar 

    45.
    Mennerat A, Perret P, Lambrechts MM. Local individual preferences for nest materials in a passerine bird. PLoS One. 2009;4:1–6.
    Article  CAS  Google Scholar 

    46.
    Blondel J, Thomas DW, Charmantier A, Perret P, Bourgault P, Lambrechts MM. A thirty-year study of phenotypic and genetic variation of blue tits in mediterranean habitat mosaics. Bioscience. 2006;56:661–73.
    Article  Google Scholar 

    47.
    Blondel J, Dias PC, Maistre M, Perret P. Habitat heterogeneity and life-history variation of mediterranean blue tits (Parus caeruleus). Auk. 1993;110:511–20.
    Article  Google Scholar 

    48.
    Visser ME, Van Noordwijk AJ, Tinbergen JM, Lessells CM. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc B Biol Sci. 1998;265:1867–70.
    Article  Google Scholar 

    49.
    Stenning M. The Blue Tit, 1st ed. (T. & A. D. Poyser, London, UK. 2018) pp 69–109.

    50.
    Blondel J, Aronson J, Bodiou J-Y, Boeuf G. The mediterranean region: biological diversity in space and time, 2nd ed. 2010. Oxford University Press, Oxford.

    51.
    Charmantier A, Doutrelant C, Dubuc-messier G, Fargevieille A, Szulkin M. Mediterranean blue tits as a case study of local adaptation. Evol Appl. 2016;9:135–52.
    PubMed  Article  Google Scholar 

    52.
    Dubuc-Messier G, Réale D, Perret P, Charmantier A. Environmental heterogeneity and population differences in blue tits personality traits. Behav Ecol. 2017;28:448–59.
    PubMed  Google Scholar 

    53.
    Bańbura J, Blondel J, de Wilde-Lambrechts H, Galan M-J, Maistre M. Nestling diet variation in an insular mediterranean population of blue tits Parus caeruleus: effects of years, territories and individuals. Oecologia. 1994;100:413–20.
    PubMed  Article  Google Scholar 

    54.
    Alda F, Rey I, Doadrio I. An improved method of extracting degraded DNA samples from birds and other species. Ardeola. 2007;54:331–4.
    Google Scholar 

    55.
    Oehm J, Juen A, Nagiller K, Neuhauser S, Traugott M. Molecular scatology: how to improve prey DNA detection success in avian faeces? Mol Ecol Resour. 2011;11:620–8.
    PubMed  Article  Google Scholar 

    56.
    Eriksson P, Mourkas E, González-Acuna D, Olsen B, Ellström P. Evaluation and optimization of microbial DNA extraction from fecal samples of wild Antarctic bird species. Infect Ecol Epidemiol. 2017;7:1–9.
    Google Scholar 

    57.
    Chelius MK, Triplett EW. The diversity of archaea and bacteria in association with the roots of Zea mays L. Micro Ecol. 2001;41:252–63.
    CAS  Article  Google Scholar 

    58.
    Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Davis NM, Proctor D, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2017;6:1–8.
    Google Scholar 

    61.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:1–11.
    Article  CAS  Google Scholar 

    62.
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 

    63.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. R package version 2.5-7. 2020.

    64.
    Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.
    CAS  PubMed  Article  Google Scholar 

    66.
    Müller T, Ruppel S. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol. 2014;87:2–17.
    PubMed  Article  CAS  Google Scholar 

    67.
    Chaturvedi S, Rego A, Lucas LK, Gompert Z. Sources of variation in the gut microbial community of Lycaeides melissa caterpillars. Sci Rep. 2017;7:1–13.
    Article  CAS  Google Scholar 

    68.
    Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis CK. Measuring the gut microbiome in birds: comparison of faecal and cloacal sampling. Mol Ecol Resour. 2017;18:424–34.
    PubMed  Article  CAS  Google Scholar 

    69.
    Lewis WB, Moore FR, Wang S. Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J Avian Biol. 2016;47:659–68.
    Article  Google Scholar 

    70.
    Sun CH, Liu H-Y, Zhang Y, Lu C-H. Comparative analysis of the gut microbiota of hornbill and toucan in captivity. Microbiologyopen. 2019;8:1–7.
    CAS  Article  Google Scholar 

    71.
    Teyssier A, Lens L, Matthysen E, White J. Dynamics of gut microbiota diversity during the early development of an avian host: evidence from a cross-foster experiment. Front Microbiol. 2018;9:1–12.
    Article  Google Scholar 

    72.
    Ambrosini R, Corti M, Franzetti A, Caprioli M, Rubolini D, Motta VM, et al. Cloacal microbiomes and ecology of individual barn swallows. FEMS Microbiol Ecol. 2019;95:1–13.
    Article  CAS  Google Scholar 

    73.
    Minard G, Tikhonov G, Ovaskainen O, Saastamoinen M. The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environ Microbiol. 2019;21:4253–69.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Godoy-Vitorino F, Leal SJ, Díaz WA, Rosales J, Goldfarb KC, García-Amado MA, et al. Differences in crop bacterial community structure between hoatzins from different geographical locations. Res Microbiol. 2012;163:211–20.
    PubMed  Article  Google Scholar 

    75.
    Lucas FS, Heeb P. Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. J Avian Biol. 2005;36:510–6.
    Article  Google Scholar  More