Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site
1.
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
CAS PubMed Article PubMed Central Google Scholar
2.
Conversi, A. et al. A holistic view of marine regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130279 (2015).
Article Google Scholar
3.
Möllmann, C., Folke, C., Edwards, M. & Conversi, A. Marine regime shifts around the globe: theory, drivers and impacts. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130260 (2015).
Article Google Scholar
4.
Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
Article Google Scholar
5.
Hastings, A. & Wysham, D. B. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010).
PubMed Article PubMed Central Google Scholar
6.
Rocha, J., Yletyinen, J., Biggs, R., Blenckner, T. & Peterson, G. Marine regime shifts: drivers and impacts on ecosystems services. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130273 (2015).
7.
Suding, K. N., Gross, K. L. & Houseman, G. R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19, 46–53 (2004).
PubMed Article PubMed Central Google Scholar
8.
Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. 285, 20172577 (2018).
Article Google Scholar
9.
Knowlton, N. Thresholds and multiple stable states in coral reef community dynamics. Am. Zool. 32, 674–682 (1992).
Article Google Scholar
10.
Moy, F. E. & Christie, H. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar. Biol. Res. 8, 309–321 (2012).
Article Google Scholar
11.
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
CAS PubMed Article PubMed Central Google Scholar
12.
Airoldi, L. Roles of disturbance, sediment stress, and substratum retention on spatial dominance in algal turf. Ecology 79, 2759–2770 (1998).
Article Google Scholar
13.
Connell, S. D., Foster, M. S. & Airoldi, L. What are algal turfs? Towards a better description of turfs. Mar. Ecol. Prog. Ser. 495, 299–307 (2014).
Article Google Scholar
14.
Hughes, T. P. & Connell, J. H. Multiple stressors on coral reefs: a long-term perspective. Limnol. Oceanogr. 44, 932–940 (1999).
Article Google Scholar
15.
Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312 (2014).
Article Google Scholar
16.
O’Brien, J. & Scheibling, R. Turf wars: competition between foundation and turf-forming species on temperate and tropical reefs and its role in regime shifts. Mar. Ecol. Prog. Ser. 590, 1–17 (2018).
Article Google Scholar
17.
Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).
CAS PubMed Article PubMed Central Google Scholar
18.
Kéfi, S., Holmgren, M. & Scheffer, M. When can positive interactions cause alternative stable states in ecosystems? Funct. Ecol. 30, 88–97 (2015).
Article Google Scholar
19.
May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).
Article Google Scholar
20.
Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).
CAS PubMed Article PubMed Central Google Scholar
21.
Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).
Article Google Scholar
22.
Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130269 (2015).
Article Google Scholar
23.
Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. BioScience 68, 64–76 (2018).
Article Google Scholar
24.
Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009).
CAS PubMed Article PubMed Central Google Scholar
25.
Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).
PubMed Article PubMed Central Google Scholar
26.
Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA 108, 14515–14520 (2011).
CAS PubMed Article PubMed Central Google Scholar
27.
Vizzini, S. et al. Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers. Sci. Rep. 7, 4018 (2017).
CAS PubMed PubMed Central Article Google Scholar
28.
Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical-temperate transition zone. Sci. Rep. 8, 11354 (2018).
PubMed PubMed Central Article CAS Google Scholar
29.
Connell, S. D. et al. The duality of ocean acidification as a resource and a stressor. Ecology 99, 1005–1010 (2018).
PubMed Article PubMed Central Google Scholar
30.
Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120442 (2013).
Article CAS Google Scholar
31.
Cornwall, C. E. et al. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 7, 46297 (2017).
CAS PubMed PubMed Central Article Google Scholar
32.
Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).
PubMed PubMed Central Article Google Scholar
33.
Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
Article Google Scholar
34.
Harvey, B. P., Agostini, S., Kon, K., Wada, S. & Hall-Spencer, J. M. Diatoms dominate and alter marine food-webs when CO2 rises. Diversity 11, 242 (2019).
CAS Article Google Scholar
35.
Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).
CAS PubMed Article PubMed Central Google Scholar
36.
Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Change 1, 165–169 (2011).
CAS Article Google Scholar
37.
Enochs, I. C. et al. Shift from coral to macroalgae dominance on a volcanically acidified reef. Nat. Clim. Change 5, 1083–1088 (2015).
CAS Article Google Scholar
38.
Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 3, 197–206 (2019).
CAS PubMed PubMed Central Article Google Scholar
39.
Johnson, C. R. & Mann, K. H. Diversity, patterns of adaptation, and stability of Nova Scotian kelp beds. Ecol. Monogr. 58, 129–154 (1988).
Article Google Scholar
40.
McCook, L., Jompa, J. & Diaz-Pulido, G. Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19, 400–417 (2001).
Article Google Scholar
41.
Ghedini, G., Russell, B. D. & Connell, S. D. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol. Lett. 18, 182–187 (2015).
PubMed Article PubMed Central Google Scholar
42.
Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
CAS PubMed Article PubMed Central Google Scholar
43.
Anthony, K. R. et al. Ocean acidification and warming will lower coral reef resilience. Glob. Change Biol. 17, 1798–1808 (2011).
Article Google Scholar
44.
Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162 (2011).
PubMed PubMed Central Article Google Scholar
45.
Gorman, D. & Connell, S. D. Recovering subtidal forests in human-dominated landscapes. J. Appl. Ecol. 46, 1258–1265 (2009).
Article Google Scholar
46.
Bellgrove, A., McKenzie, P., McKenzie, J. & Sfiligoj, B. Restoration of the habitat-forming fucoid alga Hormosira banksii at effluent-affected sites: competitive exclusion by coralline turfs. Mar. Ecol. Prog. Ser. 419, 47–56 (2010).
Article Google Scholar
47.
Birrell, C. L., McCook, L. J. & Willis, B. L. Effects of algal turfs and sediment on coral settlement. Mar. Pollut. Bull. 51, 408–414 (2005).
CAS PubMed Article PubMed Central Google Scholar
48.
Vermeij, M. J. A., Smith, J. E., Smith, C. M., Vega Thurber, R. & Sandin, S. A. Survival and settlement success of coral planulae: independent and synergistic effects of macroalgae and microbes. Oecologia 159, 325–336 (2009).
CAS PubMed Article PubMed Central Google Scholar
49.
Isæus, M., Malm, T., Persson, S. & Svensson, A. Effects of filamentous algae and sediment on recruitment and survival of Fucus serratus (Phaeophyceae) juveniles in the eutrophic Baltic Sea. Eur. J. Phycol. 39, 301–307 (2004).
Article Google Scholar
50.
Airoldi, L. The effects of sedimentation on rocky coast assemblages. Oceanogr. Mar. Biol. Annu. Rev. 41, 169–171 (2003).
Google Scholar
51.
Decho, A. W. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28, 9–16 (1990).
Google Scholar
52.
Schiel, D. R., Wood, S. A., Dunmore, R. A. & Taylor, D. I. Sediment on rocky intertidal reefs: effects on early post-settlement stages of habitat-forming seaweeds. J. Exp. Mar. Biol. Ecol. 331, 158–172 (2006).
Article Google Scholar
53.
Chapman, A. S., Albrecht, A. S. & Fletcher, R. L. Differential effects of sediments on survival and growth of Fucus serratus embryos (Fucales, Phaeophyceae). J. Phycol. 38, 894–903 (2002).
Article Google Scholar
54.
Decho, A. W. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273 (2000).
Article Google Scholar
55.
Haas, A. F. et al. Organic matter release by coral reef associated benthic algae in the Northern Red Sea. J. Exp. Mar. Biol. Ecol. 389, 53–60 (2010).
CAS Article Google Scholar
56.
Smith, J. E. et al. Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol. Lett. 9, 835–845 (2006).
PubMed Article PubMed Central Google Scholar
57.
Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 16042 (2016).
CAS PubMed Article PubMed Central Google Scholar
58.
Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).
CAS PubMed PubMed Central Article Google Scholar
59.
Barott, K. L. & Rohwer, F. L. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20, 621–628 (2012).
CAS PubMed Article PubMed Central Google Scholar
60.
Dijkstra, J. A. et al. Invasive seaweeds transform habitat structure and increase biodiversity of associated species. J. Ecol. 105, 1668–1678 (2017).
Article Google Scholar
61.
Sieg, J. & Heard, R. W. Tanaidacea (Crustacea: Peracardia) of the Gulf of Mexico. III. On the Occurrence of Teleotanais gerlachi Lang, 1956 (Nototanaidae) in the Eastern Gulf. Gulf Caribb. Res. 7, 267–271 (1983).
Google Scholar
62.
Allen, R., Foggo, A., Fabricius, K., Balistreri, A. & Hall-Spencer, J. M. Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment. Mar. Pollut. Bull. 124, 607–613 (2017).
CAS PubMed Article PubMed Central Google Scholar
63.
IPCC. Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the IPCC. p. 1535 (2013).
64.
Falkenberg, L. J., Connell, S. D. & Russell, B. D. Disrupting the effects of synergies between stressors: improved water quality dampens the effects of future CO2 on a marine habitat. J. Appl. Ecol. 50, 51–58 (2013).
CAS Article Google Scholar
65.
Atalah, J., Hopkins, G. A. & Forrest, B. M. Augmentative biocontrol in natural marine habitats: persistence, spread and non-target effects of the sea urchin Evechinus chloroticus. PLoS ONE 8, e80365 (2013).
PubMed PubMed Central Article CAS Google Scholar
66.
Conklin, E. J. & Smith, J. E. Abundance and spread of the invasive red algae, Kappaphycus spp., in Kane’ohe Bay, Hawai’i and an experimental assessment of management options. Biol. Invasions 7, 1029–1039 (2005).
Article Google Scholar
67.
Neilson, B. J., Wall, C. B., Mancini, F. T. & Gewecke, C. A. Herbivore biocontrol and manual removal successfully reduce invasive macroalgae on coral reefs. PeerJ 6, e5332 (2018).
PubMed PubMed Central Article Google Scholar
68.
Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11, 36–42 (2004).
Google Scholar
69.
R Development Core Team. R: A language and environment for statistical computing (2017).
70.
Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2System Calculations, ORNL/CDIAC-105 (2006).
71.
Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicz, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).
CAS Article Google Scholar
72.
Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part Oceanogr. Res. Pap. 34, 1733–1743 (1987).
CAS Article Google Scholar
73.
Dickson, A. G. Thermodynamics of the dissociation of boric acid in potassium chloride solutions from 273.15 to 318.15 K. J. Chem. Eng. Data 35, 253–257 (1990).
CAS Article Google Scholar
74.
Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).
Article Google Scholar
75.
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
CAS PubMed Article PubMed Central Google Scholar
76.
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
Article Google Scholar
77.
Griffith, J. C., Lee, W. G., Orlovich, D. A. & Summerfield, T. C. Contrasting bacterial communities in two indigenous Chionochloa (Poaceae) grassland soils in New Zealand. PLoS ONE 12, e0179652 (2017).
PubMed PubMed Central Article CAS Google Scholar
78.
Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 5, 1492 (2016).
79.
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).
CAS PubMed PubMed Central Article Google Scholar
80.
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
CAS Article Google Scholar
81.
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261 (2007).
CAS PubMed PubMed Central Article Google Scholar
82.
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
CAS PubMed PubMed Central Article Google Scholar
83.
Oksanen, J. et al. The vegan package. Vegan Community Ecol. Package R Package Version 25-5 Httpscranr-Proj (2019).
84.
Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests (2020).
85.
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
Article Google Scholar
86.
Kassambara, A. ggpubr:“ggplot2” based publication ready plots. R Package Version 024 (2019).
87.
Harvey, B. P. et al. ‘Feedback mechanisms stabilise degraded turf algal systems at a CO2seep site’ – Associated Raw Data for Figures https://doi.org/10.6084/m9.figshare.13289588.v1 (2020). More