Social signaling via bioluminescent blinks determines nearest neighbor distance in schools of flashlight fish Anomalops katoptron
1.Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493. https://doi.org/10.1146/annurev-marine-120308-081028 (2010).ADS
Article
Google Scholar
2.Bessho-Uehara, M. et al. Kleptoprotein bioluminescence: parapriacanthus fish obtain luciferase from ostracod prey. Sci. Adv. 6, eaax4942. https://doi.org/10.1126/sciadv.aax4942 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
3.Davis, M. P., Sparks, J. S. & Smith, W. L. Repeated and widespread evolution of bioluminescence in marine fishes. PLoS ONE 11, e0155154. https://doi.org/10.1371/journal.pone.0155154 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
4.Claes, J. M. & Mallefet, J. Early development of bioluminescence suggests camouflage by counter-illumination in the velvet belly lantern shark Etmopterus spinax (Squaloidea: Etmopteridae). J. Fish Biol. 73, 1337–1350. https://doi.org/10.1111/j.1095-8649.2008.02006.x (2008).Article
Google Scholar
5.Harper, R. D. & Case, J. F. Disruptive counterillumination and its anti-predatory value in the plainfish midshipman Porichthys notatus. Mar. Biol. 134, 529–540. https://doi.org/10.1007/s002270050568 (1999).Article
Google Scholar
6.Herring, P. J. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J. Mar. Biol. Ass. 87, 829–842. https://doi.org/10.1017/S0025315407056433 (2007).CAS
Article
Google Scholar
7.Widder, E. A. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science (New York, NY) 328, 704–708. https://doi.org/10.1126/science.1174269 (2010).ADS
CAS
Article
Google Scholar
8.Hellinger, J. et al. The flashlight fish anomalops katoptron uses bioluminescent light to detect prey in the dark. PLoS ONE 12, e170489. https://doi.org/10.1371/journal.pone.0170489 (2017).CAS
Article
Google Scholar
9.Golani, D., Fricke, R. & Appelbaum-Golani, B. Review of the genus Photoblepharon (Actinopterygii: Beryciformes: Anomalopidae). Acta Ichthyol. Piscat. 49, 33–41. https://doi.org/10.3750/AIEP/02530 (2019).Article
Google Scholar
10.Ho, H.-C. & Johnson, G. D. Protoblepharon mccoskeri, a new flashlight fish from eastern Taiwan (Teleostei: Anomalopidae). Zootaxa https://doi.org/10.11646/zootaxa.3479.1.5 (2012).Article
Google Scholar
11.Morin, J. G. et al. Light for all reasons: versatility in the behavioral repertoire of the flashlight fish. Science 190, 74–76. https://doi.org/10.1126/science.190.4209.74 (1975).ADS
Article
Google Scholar
12.Hellinger, J. et al. Analysis of the territorial aggressive behavior of the bioluminescent flashlight fish photoblepharon steinitzi in the Red Sea. Front. Mar. Sci. 7, 431. https://doi.org/10.3389/fmars.2020.00078 (2020).ADS
Article
Google Scholar
13.Gruber, D. F. et al. Bioluminescent flashes drive nighttime schooling behavior and synchronized swimming dynamics in flashlight fish. PLoS ONE 14, e0219852. https://doi.org/10.1371/journal.pone.0219852 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
14.Hendry, T. A., de Wet, J. R. & Dunlap, P. V. Genomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrate. Environ. Microbiol. 16, 2611–2622. https://doi.org/10.1111/1462-2920.12302 (2014).CAS
Article
PubMed
Google Scholar
15.Hendry, T. A., de Wet, J. R., Dougan, K. E. & Dunlap, P. V. Genome evolution in the obligate but environmentally active luminous symbionts of flashlight fish. Genome Biol. Evol. 8, 2203–2213. https://doi.org/10.1093/gbe/evw161 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
16.Haneda, Y. & Tsuji, F. I. Light production in the luminous fishes Photoblepharon and Anomalops from the Banda Islands. Science (New York, NY) 173, 143–145. https://doi.org/10.1126/science.173.3992.143 (1971).ADS
CAS
Article
Google Scholar
17.Bassot, J.-M. in Bioluminescence in Progress, edited by F. H. Johnson & Y. Haneda (Princeton University Press1966), pp. 557–610.18.Watson, M., Thurston, E. L. & Nicol, J. A. C. Reflectors in the Light Organ of Anomalops (Anomalopidae, Teleostei). Proc. R. Soc. Lond. Ser. B Biol. Sci. 202, 339–351 (1978).ADS
CAS
Article
Google Scholar
19.Mark, M. D. et al. Visual tuning in the flashlight fish Anomalops katoptron to detect blue, bioluminescent light. PLoS ONE 13, e0198765. https://doi.org/10.1371/journal.pone.0198765 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
20.Howland, H. C., Murphy, C. J. & McCosker, J. E. Detection of eyeshine by flashlight fishes of the family anomalopidae. Vis. Res. 32, 765–769. https://doi.org/10.1016/0042-6989(92)90191-K (1992).CAS
Article
PubMed
Google Scholar
21.McCosker, J. E. & Rosenblatt, R. H. Notes on the biology, taxonomy, and distribution of flashlight fishes (Beryciformes: Anomalopidae). Jpn. J. Ich. 34, 157–164. https://doi.org/10.1007/BF02912410 (1987).Article
Google Scholar
22.Parrish, J. K., Viscido, S. V. & Grünbaum, D. Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202, 296–305. https://doi.org/10.2307/1543482 (2002).Article
PubMed
Google Scholar
23.Pitcher, T. J. (ed.) Behaviour of Teleost Fishes (Chapman & Hall, 1993).
Google Scholar
24.Helfman, G. S., Collette, B. B., Facey, D. E. & Bowen, B. W. The Diversity of Fishes. Biology, Evolution, and Ecology 2nd edn. (Wiley-Blackwell, Oxford, 2009).
Google Scholar
25.McLean, S., Persson, A., Norin, T. & Killen, S. S. Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr. Biol. 28, 1144–1149. https://doi.org/10.1016/j.cub.2018.02.043 (2018).CAS
Article
PubMed
Google Scholar
26.Pitcher, T. J., Magurran, A. E. & Winfield, I. J. Fish in larger shoals find food faster. Behav. Ecol. Sociobiol. 10, 149–151. https://doi.org/10.1007/BF00300175 (1982).Article
Google Scholar
27.Ioannou, C. C., Guttal, V. & Couzin, I. D. Predatory fish select for coordinated collective motion in virtual prey. Science (New York, NY) 337, 1212–1215. https://doi.org/10.1126/science.1218919 (2012).ADS
CAS
Article
Google Scholar
28.Turner, G. F. & Pitcher, T. J. Attack abatement: a model for group protection by combined avoidance and dilution. Am. Nat. 128, 228–240. https://doi.org/10.1086/284556 (1986).Article
Google Scholar
29.Landeau, L. & Terborgh, J. Oddity and the ‘confusion effect’ in predation. Anim. Behav. 34, 1372–1380. https://doi.org/10.1016/S0003-3472(86)80208-1 (1986).Article
Google Scholar
30.Kowalko, J. E. et al. Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms. Curr. Biol. 23, 1874–1883. https://doi.org/10.1016/j.cub.2013.07.056 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
31.Partridge, B. L. & Pitcher, T. J. The sensory basis of fish schools: Relative roles of lateral line and vision. J. Comp. Physiol. 135, 315–325. https://doi.org/10.1007/BF00657647 (1980).Article
Google Scholar
32.Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2017.1126 (2017).Article
PubMed
PubMed Central
Google Scholar
33.Bierbach, D. et al. Using a robotic fish to investigate individual differences in social responsiveness in the guppy. R. Soc. Open Sci. 5, 181026. https://doi.org/10.1098/rsos.181026 (2018).Article
PubMed
PubMed Central
Google Scholar
34.Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science (New York, NY) 339, 574–576. https://doi.org/10.1126/science.1225883(2013) (2013).ADS
CAS
Article
Google Scholar
35.Sosna, M. M. G. et al. Individual and collective encoding of risk in animal groups. Proc. Natl. Acad. Sci. USA 116, 20556–20561. https://doi.org/10.1073/pnas.1905585116 (2019).CAS
Article
PubMed
Google Scholar
36.Kunz, H. & Hemelrijk, C. K. Artificial fish schools: collective effects of school size, body size, and body form. Artif. Life 9, 237–253. https://doi.org/10.1162/106454603322392451 (2003).Article
PubMed
Google Scholar
37.Worm, M. et al. Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish. Proc. Natl. Acad. Sci. USA 115, 6852–6857. https://doi.org/10.1073/pnas.1801283115 (2018).CAS
Article
PubMed
Google Scholar
38.Marras, S., Batty, R. S. & Domenici, P. Information transfer and antipredator maneuvers in schooling herring. Adapt. Behav. 20, 44–56. https://doi.org/10.1177/1059712311426799 (2012).Article
Google Scholar
39.Cohen, A. C. & Morin, J. G. It’s all about sex: bioluminescent courtship displays, morphological variation and sexual selection in two new genera of caribbean ostracodes. J. Crustacean Biol. 30, 56–67. https://doi.org/10.1651/09-3170.1 (2010).Article
Google Scholar
40.Rivers, T. J. & Morin, J. G. Complex sexual courtship displays by luminescent male marine ostracods. J. Exp. Biol. 211, 2252–2262. https://doi.org/10.1242/jeb.011130 (2008).Article
PubMed
Google Scholar
41.Widder, E. A., Latz, M. I., Herring, P. J. & Case, J. F. Far red bioluminescence from two deep-sea fishes. Science (New York, NY) 225, 512–514. https://doi.org/10.1126/science.225.4661.512 (1984).ADS
CAS
Article
Google Scholar
42.Mensinger, A. F. & Case, J. F. Luminescent properties of deep sea fish. J. Exp. Mar. Biol. Ecol. 144, 1–15. https://doi.org/10.1016/0022-0981(90)90015-5 (1990).Article
Google Scholar
43.Sasaki, A. et al. Field evidence for bioluminescent signaling in the Pony Fish, Leiognathus elongatus. Environ. Biol. Fishes 66, 307–311. https://doi.org/10.1023/A:1023959123422 (2003).Article
Google Scholar
44.McFall-Ngai, M. J. & Dunlap, P. V. Three new modes of luminescence in the leiognathid fish Gazza minuta: discrete projected luminescence, ventral body flash, and buccal luminescence. Mar. Biol. 73, 227–237. https://doi.org/10.1007/BF00392247 (1983).Article
Google Scholar
45.Johnson, G. D. & Rosenblatt, R. H. Mechanisms of light organ occlusion in flashlight fishes, family Anomalopidae (Teleostei: Beryciformes), and the evolution of the group. Zool. J. Linnean Soc. 94, 65–96. https://doi.org/10.1111/j.1096-3642.1988.tb00882.x (1988).Article
Google Scholar
46.Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. Proc. Natl. Acad. Sci. USA 108, 18726–18731. https://doi.org/10.1073/pnas.1109355108 (2011).ADS
CAS
Article
PubMed
Google Scholar
47.Siebeck, U. E., Parker, A. N., Sprenger, D., Mäthger, L. M. & Wallis, G. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. CB 20, 407–410. https://doi.org/10.1016/j.cub.2009.12.047 (2010).CAS
Article
PubMed
Google Scholar
48.Larsch, J. & Baier, H. Biological Motion as an Innate Perceptual Mechanism Driving Social Affiliation. Curr. Biol. 28, 3523-3532.e4. https://doi.org/10.1016/j.cub.2018.09.014 (2018).CAS
Article
PubMed
Google Scholar
49.Kasumyan, A. O. Acoustic signaling in fish. J. Ichthyol. 49, 963–1020. https://doi.org/10.1134/S0032945209110010 (2009).Article
Google Scholar
50.Santon, M. et al. Redirection of ambient light improves predator detection in a diurnal fish. Proc. Biol. Sci. 287, 20192292. https://doi.org/10.1098/rspb.2019.2292 (2020).Article
PubMed
PubMed Central
Google Scholar
51.de Busserolles, F., Fogg, L., Cortesi, F. & Marshall, J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.05.027 (2020).Article
PubMed
Google Scholar
52.Bainbridge, R. The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Exp. Biol. 35, 109 (1958).
Google Scholar
53.Videler, J. J. & Wardle, C. S. Fish swimming stride by stride: speed limits and endurance. Rev. Fish. Biol. Fish. 1, 23–40. https://doi.org/10.1007/BF00042660 (1991).Article
Google Scholar
54.Ware, D. M. Bioenergetics of pelagic fish: theoretical change in swimming speed and ration with body size. J. Fish. Res. Bd. Can. 35, 220–228. https://doi.org/10.1139/f78-036 (1978).ADS
Article
Google Scholar
55.Meyer-Rochow, V. B. Loss of bioluminescence inAnomalops katoptron due to starvation. Experientia 32, 1175–1176. https://doi.org/10.1007/BF01927610 (1976).Article
Google Scholar
56.Barber, I., Downey, L. C. & Braithwaite, V. A. Parasitism, oddity and the mechanism of shoal choice. J. Fish Biol. 53, 1365–1368. https://doi.org/10.1111/j.1095-8649.1998.tb00256.x (1998).Article
Google Scholar
57.Ward, A. J. W., Duff, A. J., Krause, J. & Barber, I. Shoaling behaviour of sticklebacks infected with the microsporidian parasite, Glugea anomala. Environ. Biol. Fish. 72, 155–160. https://doi.org/10.1007/s10641-004-9078-1 (2005).Article
Google Scholar
58.Theodorakis, C. W. Size segregation and the effects of oddity on predation risk in minnow schools. Anim. Behav. 38, 496–502. https://doi.org/10.1016/S0003-3472(89)80042-9 (1989).Article
Google Scholar
59.Steche, O. Die Leuchtorgane von Anomalops katoptron und Photoblepharon palpebratus, zwei Oberflächenfischen aus dem malayischen Archipel: Ein Beitrag zur Anatomie und Physiologie der Leuchtorgane der Fische (Z Wiss Zool., 1909).60.Parrish, J. K. & Edelstein-Keshet, L. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science (New York, NY) 284, 99–101. https://doi.org/10.1126/science.284.5411.99 (1999).ADS
CAS
Article
Google Scholar
61.Woodland, D. J., Cabanban, A. S., Taylor, V. M. & Taylor, R. J. A synchronized rhythmic flashing light display by schooling Leiognathus splendens (Leiognathidae : Perciformes). Mar. Freshwater Res. 53, 159. https://doi.org/10.1071/MF01157 (2002).Article
Google Scholar More
