More stories

  • in

    1 °C warming increases spatial competition frequency and complexity in Antarctic marine macrofauna

    For millions of years the Southern Ocean has been one of the most thermally constant of Earth’s environments, but is now undergoing multiple, complex, interacting physical changes1. This region includes a major centre of considerable, recent warming in the shallows, and this is forecast to be sustained1. It will likely drive varied and considerable biological change, which remains little investigated in situ. Most existing knowledge is for responses of individual species, in isolation2, but cumulative responses at assemblage and community levels, though poorly studied, will likely have greater consequences3. There is now a wide literature on indirect impacts of warming on biota (e.g., snow and ice retreat, freshening, and sedimentation from glaciers, among others4,5,6,7) but few field studies on specifically direct thermal effects. To date, warming impacts have been predicted to change species success4,8 and the first polar assemblage level data demonstrated increased growth9. However, this only occurred in a few species at moderately increased temperature. If sessile animals become larger (owing to increased growth) this is more likely to make space a limiting resource and increase the incidence, and importance, of spatial competition.
    In the current study, we investigated how in situ warming impacts physical ‘fighting’ for space (so called contest competitive interactions), between species in assemblages. This is where the boundaries of colonies/individuals meet others, which leads to either a cessation and redirection of growth by both competitors (a tie or draw) or overgrowth of one (a loser) by the other (winner). To our knowledge, the impact of climate-forcing on spatial competition has not been considered in polar seas. Yet, for species unchanging in growth performance (and even some of those which do increase growth) competitive encounter frequency might be easier to detect and therefore be an earlier measure of response to environmental change. This is because snapshots of the extent of spatial competition can be obtained using still photographs either by SCUBA or Remotely Operated Vehicles. In comparison, growth has to be monitored over long periods of time and compared within species across years. Bryozoans and other encrusting cryptofauna have proved strong model taxa for investigating spatial competition and artificial substrata, in the form of settlement panels, are good experimental surfaces to investigate such encounter dynamics7,9,10,11,12,13. To investigate responses to global physical change, the next step is to be able to manipulate one aspect of artificial substrata in situ whilst not altering any others.
    Heat controllable settlement panels9 allow exploration of predicted mid or end-century shallow sea temperature levels in situ, which is enhanced by including several warming regimes (year-round and summer only) and levels (0, +1, and +2 °C). Different levels of warming treatments aid prediction of future responses, but are also useful because warming is geographically highly variable, even around the West Antarctic Peninsula (WAP). Using this apparatus, Ashton et al.9 found that growth (and per cent cover change) responses varied considerably between warming levels in the six most common recruit species9. In particular, a 1 °C temperature rise led to one bryozoan species, Fenestrulina rugula, monopolising most space (~60%), despite being a weak spatial competitor (it is out competed and overgrown in physical encounters with most other species it meets)7. What does this mean for assemblage dynamics and intra- and interspecific competition for space? Other factors being equal, more-occupied space should increase the incidence and importance of spatial competition. Thus Ashton et al.’s9 findings led us to hypothesise that (1) competitive encounters per unit area, and the probability of a given individual, or colony, being involved in spatial competition would increase with moderate (1 °C) warming, but less so, if at all, with 2 °C warming. The reasoning behind increased competition with 1 °C but not 2 °C warming was that Ashton et al.9 found increased growth with 1 °C but not 2 °C warming—making it more likely that the boundaries of species should come into contact. Our hypothesis (2) was that the spatial dominance of F. rugula would lead to more competition involving this species and fewer interactions involving other species (less complexity). Typically, investigation of the impacts of treatments such as warming, compares changes in species composition across treatments14. We, however, compared competitive pairings between species (across treatments). We predicted that the similarity of competitor pairings would provide a stronger response signal to warming than mere species composition, as the number of potential competitive interactions between species is the factorial of presence/absence.
    We found that panels that were warmed to 1 °C above ambient (either throughout the year or just summer only) increased the probability of spatial competition among encrusting nearshore Antarctic fauna. This level of warming also increased the density and complexity of spatial competitive interactions. In contrast, warming to 2 °C above ambient increased variance (rather than mean) in the probability and density of competition, but competition did not significantly differ from ambient (control) levels. Thus biological responses, in terms of spatial competition, to warming change alter with both level and (seasonal) timing of warming. We found evidence that changes in competitive structure may be detected before changes in species composition, thus panels may be a powerful tool for monitoring early community responses to stressors such as climate change. More

  • in

    The effects of soil freeze–thaw processes on water and salt migrations in the western Songnen Plain, China

    Soil freeze–thaw characteristics in different landscapes
    In this study, the FT characteristics exhibited certain differences among the three landscapes. AS land had the largest frost depth and the longest freeze duration, followed by LT grassland, and then farmland (Fig. 3). These differences may be attributed to the differences in dependent soil physical properties, soil surface covers and initial soil water contents of the landscape17,18. The denser soil structure of the AS land quickened the more spread of the cold from the upper soils to the lower soils than LT land and farmland during freezing. Furthermore, AS land had the lowest snow cover and no residue, which promotes heat transport at the soil–atmosphere interface19. Therefore, the soil temperature decreased rapidly with the air temperature, resulting in a significant increase in the frost depth and freezing rate of AS land. These was in accordance with the conclusions of Iwata et al. (2010)20, who clearly demonstrated that the reduction in a snow cover deposition could cause a dramatic increase in the frost depth, as well as those of Fu et al. (2018)2 who reported that the decrease in snow cover strengthened the actions of soil temperature on freezing front. In addition, the higher SWC in the LT grassland (0.21 cm3/cm3) and AS land (0.32 cm3/cm3) would slow down soil temperature changes21, because more heat release from the soil when soil freezes, or more heat is needed when soil thaws. Consequently, the wetter conditions in the LT grassland and AS land would postpone the freeze–thaw processes, as indicated by other researches17. Similar results were obtained in the study of Yi et al. (2014) on soil freeze–thaw characteristics of different landscapes in the Heihe River Basin, Gansu, China22.
    Influence of freeze–thaw process on the soil water content (SWC)
    In this study, the freezing process led to an upward enrichment in soil water within different landscapes in the study area (Fig. 5). One possible reason for this phenomenon was that the soil temperature gradient drove the upward flux of water towards the frozen layers, and water finally accumulated in the frozen layers23,24. However, during the spring thawing, soil water in the upper soil layer and the deeper soil layers decreased and increased, respectively (Table 2). This was because soils thawed bi–directionally, the water above the frozen layer moved upwards and ultimately intensively evaporated away, whereas the water below the frozen infiltrated into the deeper layers. These results agreed with the findings of Zhang and Wang (2001)12, Wang et al. (2009)14 and Bing et al. (2015)4. Furthermore, this freeze-induced soil water enrichment in the frozen zone can facilitate to soil water conservation by reducing evaporation and seepage, thus maintaining a high water content1,3,22, which can be helpful to farming and plant germination in the following spring. However, in this study there were obvious differences in profiled water redistributions upon freezing in different landscapes. The SWC in the AS land at a depth of 0–5 cm decreased during freezing and increased during thawing. This may be attributed to fierce regional winds, no plant residue on the surface, lack of snow cover and frequent heat exchanges between the surface soil and air during winter in the study area. Furthermore, because of the higher initial moisture content, the greater frost depth and intensity in the AS land, the water in the frozen layer continuously replenished the surface soil, and even produced internal runoff during spring thawing, despite an intensification of evaporation. This occurrence thereby increased the surface SWC, which proved the conclusions of Iwata et al. (2010)20, Nagare et al. (2012)25 and Wu et al. (2019)21. In addition, the profiled soil water migration rates in the farmland, LT grassland and AS land were substantially different during the FT processes. It was the highest in the LT grassland, whereas the lowest in the farmland. This is because the LT grassland was less salinised than the AS land and surface soil of the former had the highest organic matter content (0–25 cm, 2.50%) (Table 1), which resulted in a good soil structure that facilitated a better movement of soil water compared to the AS land. Therefore, more water migrated in the LT grassland than that in AS land during the FT processes. However, for the farmland, the lower initial moisture content (0.11 cm3/cm3) and soil compaction caused by farming activity over many years inhibited soil water migration. Furthermore, the FT affect soil physical properties, such as soil structure, soil cracking, soil thermal properties and heat flux, which were also an important reason explaining the difference of water migration in soil profiles of different landscapes. For example, frozen soils are divided into layered and reticulate structures by ice, resulting in a higher soil water permeability coefficient; thus, water can be quickly discharged from cracking during soil thawing23,24,26. Additionally, the groundwater table declined during freezing and rose during thawing, thus suggesting that a mutual transport occurred between the soil water and groundwater in deeper soil.
    Influence of freeze-thaw process on the soil salinity and alkalinity
    According to the data obtained from this study, the profiled soil salinity distributions were characterised by an accumulation of soil salt towards the frozen layer with soil water during the freezing. Consequently, the salt content obviously increased throughout the entire frozen layer, which experimentally verified the findings of Stahli and Stadler (1997)27 and Wang et al. (2009)14. A possible explanation for these results was that the soil salt along with water in the deeper unfrozen layer and groundwater both moved upward towards the frozen layer because of temperature gradient between the frozen and unfrozen layer. In fact, the freeze-induced soil salt migration was exceedingly complex and could not be solely attributed to the temperature gradient. Instead, this dynamic represented the integrated result of many factors, such as land use, initial soil water, soil salinisation, soil temperature, groundwater level. Furthermore, our results also showed that the salinised ratio in the upper soil profile was substantially higher than that in the deeper soil profile during freezing. This behavior may be attributed to the liquid water occurring in the frost layer and temperature gradient forcing the liquid water to carry the salt upwards. Some researchers have observed that it is possible for liquid water to exist as membrane water, wherein its thickness gradually becomes thinner from the deep soil to the upper soil, thereby causing salt to move upwards along with water28.
    Furthermore, our study showed that the salification layer moved upwards and expanded, and the surface soil exhibited the significant salt accumulations in the LT grassland and AS land during spring thawing. This appears to experimentally explain the phenomenon of topsoil salt explosive increases that resemble an ‘eruption’ during spring thawing12,14. The results were in accordance with Han et al. (2010)29, who pointed out that the surface soil salinity increased rapidly in spring because of strong evaporation, more FT cycles and longer freezing durations. This is because the quantity of evaporation is five times higher than the amount of rainfall in the western Songnen Plain; thus, this intense soil evaporation induces a redistribution of the accumulated salt in the frozen layer, and transports a large quantity of salt upwards to the surface. More importantly, these findings revealed that FT processes were mainly responsible for the obvious soil salinisation in our study, which aligns with the analysis of Bing et al. (2015)4, who determined that FT processes are the main driving force of soil water and salt movement and are responsible for soil salinisation during the spring in cold and arid regions. However, these results slightly contradicted the findings of Wang. (1993)8, who noted that the surface soil salt ‘eruption’ in spring was controlled by ‘the critical depth of ground water’ rather than FT actions, yet which contradicted the local practical condition of using phreatic water as the only water source influencing the soil salinisation in this study area. The water exchanges were blocked by the frozen layers between the soil surface and underground water; therefore, soil salinisation during the spring was not related to groundwater5,12. However, their findings slightly contradicted with the results observed in our study that suggested that bi-directional thawing also possibly caused the salt under the freezing layer to accumulate in the middle soil profile. This was because the thawed water carrying salt infiltrated towards the deeper soil into the groundwater, which implied that the profiled salt distributions had a relationship with the groundwater. Moreover, the results from our study also revealed that landscapes affected the salification of the soil surface and the desalinisation of the subsurface soil, with the trend being AS land  > LT grassland  > farmland. This discrepancy may be interpreted by four aspects. Firstly, the initial soil salt content of AS land was 19.3 times higher than that of the LT grassland, consequently causing a higher accumulation ratio of soil salt, as indicated by Wan et al. (2019)6, who observed that the salt crystallisation increased the salt migration during the freezing process, and that salt migration was positively correlated with the salt content. Secondly, LT grassland had a larger coverage area and a higher litter amount reduced the quantity of ground evaporation and avoided surface salt accumulation. Thirdly, the improved soil structure of the LT grassland, with its larger root system and higher organic content was beneficial to increase infiltration and promote the downward movement of salt from the upper soil layers30. Finally, the soil of AS land started to thaw earliest because of its lowest freezing point resulted from its highest salt content at corresponding depths, which accelerated the consumption of soil water by evaporation. Additionally, the salinised ratio of the farmland was weaker than that of AS land and LT grassland, which was attributed to its lower initial salt content (64.73 mg/kg), initial water content (0.11 cm3/cm3), lower frost depth and intensity in farmland21,25.
    The soil SAR and ESP have been recommended the sensitive indicators of soil alkalisation for a soil alkalisation assessment in the Songnen grassland31. In this study, FT cycles induced the increases in the SAR and ESP in the upper soil layers for all three landscapes (Fig. 8 and Table 5), which implied that the FT processes not only contributed to soil salinisation but also to soil alkalisation. As indicated in Table 6, the soil salinisation within the frozen soil layer shows a significantly positive correlation with the soil alkalisation, which was similar to the findings observed by Yu et al. (2018)31. This occurrence may be mainly attributed to the fact that the salts migrating towards the frozen layer had a prevalence of NaHCO3 and Na2CO313. Wang et al. (2009)14 also reported that soil FT were one of the most important causes of soil salinisation and alkalisation in the western Songnen Plain and further proved that the influence of groundwater could not be ignored. Groundwater in the study area comprises a weak mineralised water of NaHCO3 type, where Na+, CO32− and HCO3−contents can be up to 853.55 mg/L, the salinity is as high as 1.21 g/L and the SAR can reach 88.65. Accordingly, groundwater migrating upwards due to soil freezing induced soil both salinisation and alkalisation, which accelerated soil degradation13. Conversely, some studies have reported that FT cycles had no significant effects on soil CEC or exchangeable Ca2+ and Mg2+ but significantly decreased the exchangeable K+32 that indicated that FT cycles can possibly reduce the soil alkalisation, which was different from our results. The cause of this difference is not clear that is the integrated result of various factors, such as soil types, vegetation types, microbial activity, ground level, and so on. The experimental conditions in this study were different from Hinman (1970)32 in which soils were fumigated and sterilize without groundwater exchange and vegetation. Furthermore, the influences of soil FT on soil alkalisation varied with soil types and soil depths. In this study, the FT-induced soil alkalisation in the AS land was more pronounced than that in the farmland and LT grassland (Table 4). This may be a comprehensive consequence of land use, groundwater levels, topography, soil-human activities, and so on.
    Hypothetical mechanism of freeze–thaw influences on soil salinity and alkalinity
    The FT process caused variations in profiled soil water and salt distributions12, yet the internal mechanism still stayed at an exploration stage. During freezing, the potential head gradients between the frozen and unfrozen zones created by the temperature gradient exerted a certain driving force behind an upward flux of water towards the upper zones3,25. Salt, using water as the carrier, also rose towards the upper layer and was finally enriched in the frozen layer, which thereby increased the salinity. The enriched salts in the frozen layer were driven by intense surface evaporation to move towards soil surface and then accumulated, which been characterized as ‘eruptions’ during the spring. Therefore, the intensity of freezing during the winter and the strength of surface evaporation during the spring determined the extent of surface soil salinity-alkalinity.
    Moreover, there was sufficient evidence to prove that soil salt migration was related to land use and vegetation. Soil colloidal particles were dispersed most widely in the AS land because of the highest Na+ contents, and most dispersed fine clay particles moved downward through the subsoil to act as a dense water barrier. Additionally, the poor soil structure of the AS land directly slowed down the soil water and salt migration rate on the unfrozen layer and the upward migration of groundwater toward the frozen layer. The relatively superior soil structure in the LT grassland promoted soil water and salt removal. Furthermore, various types of vegetation have differentially improved the soil physical, chemical and biological properties31,33, and these differential reactions may contribute to the response to FT actions. The vegetation coverages and the sizes of their root networks influenced evapotranspiration and soil water percolation, which consequently further influenced the upward water and salt migrations during FT. Maize vegetation has been found to have a greater impact than grass vegetation on repairing saline-sodic soils in the study area, and were both found to have superior soil physical properties compared to non-vegetated AS land28. Therefore, the FT processes, as associated with different landscapes and vegetation coverage, controlled soil water and salt migration during the winter and spring, which were mainly responsible for the variations in the soil salinity and alkalinity in the study area. More

  • in

    Optimal fishing effort benefits fisheries and conservation

    1.
    Hall-Spencer, J. M. & Moore, P. G. Scallop dredging has profound, long-term impacts on maerl habitats. ICES J. Mar. Sci. 57, 1407–1415 (2000).
    Article  Google Scholar 
    2.
    Eigaard, O. R. et al. The footprint of bottom trawling in European waters: Distribution, intensity, and seabed integrity. ICES J. Mar. Sci. 74, 847–865 (2017).
    Article  Google Scholar 

    3.
    Auster, P. J. et al. The impacts of mobile fishing gear on seafloor habitats in the gulf of maine (Northwest Atlantic): Implications for conservation of fish populations. Rev. Fish. Sci. 4, 185–202 (1996).
    ADS  Article  Google Scholar 

    4.
    Gell, F. R. & Roberts, C. M. Benefits beyond boundaries: The fishery effects of marine reserves. Trends Ecol. Evol. 18, 448–455 (2003).
    Article  Google Scholar 

    5.
    Roberts, C. M. et al. Marine reserves canmitigate and promote adaptation to climate change. Proc. Natl. Acad. Sci. USA 114, 6167–6175 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Sciberras, M., Jenkins, S. R., Kaiser, M. J., Hawkins, S. J. & Pullin, A. S. Evaluating the biological effectiveness of fully and partially protected marine areas. Environ. Evid. 2, 1–31 (2013).
    Article  Google Scholar 

    7.
    Afonso, P., Schmiing, M., Diogo, H. & Serra, R. With various conservation objectives and targets. ICES J. Mar. Sci. 72, 851–862 (2015).
    Article  Google Scholar 

    8.
    Schmiing, M., Diogo, H., Santos, R. S. & Afonso, P. Marine conservation of multispecies and multi-use areas with various conservation objectives and targets. ICES J. Mar. Sci. 72, 851–862 (2015).
    Article  Google Scholar 

    9.
    Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: A regional meta-analysis. Sci. Rep. 7, 1–12 (2017).
    ADS  CAS  Article  Google Scholar 

    10.
    Zupan, M. et al. Marine partially protected areas: Drivers of ecological effectiveness. Front. Ecol. Environ. 16, 20 (2018).
    ADS  Article  Google Scholar 

    11.
    Halpern, B. S. The impact of marine reserves: Do reserves work and does reserve size matter. Ecol. Appl. 13, S117–S137 (2003).
    Article  Google Scholar 

    12.
    Pikitch, E. K. et al. Ecosystem-based fishery management. Science (80–) 305, 20 (2004).
    Article  Google Scholar 

    13.
    Claudet, J. et al. Marine reserves: Size and age do matter. Ecol. Lett. 11, 481–489 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Lester, S. E. et al. Biological effects within no-take marine reserves: A global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).
    ADS  Article  Google Scholar 

    15.
    Fraschetti, S., Guarnieri, G., Bevilacqua, S., Terlizzi, A. & Boero, F. Protection enhances community and habitat stability: Evidence from a Mediterranean marine protected area. PLoS One 8, 20 (2013).
    Google Scholar 

    16.
    Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 1–6 (2013).
    Article  Google Scholar 

    17.
    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Hiddink, J. G. et al. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl. Acad. Sci. USA 114, 8301–8306 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Lombard, A. T. et al. Key challenges in advancing an ecosystem-based approach to marine spatial planning under economic growth imperatives. Front. Mar. Sci. 6, 20 (2019).
    Article  Google Scholar 

    20.
    Trochta, J. T. et al. Ecosystem-based fisheries management: Perception on definitions, implementations, and aspirations. PLoS One 13, 1–9 (2018).
    Google Scholar 

    21.
    EEA. Marine Protected Areas in Europe’s Seas. An Overview and Perspectives for the Future. (2015). https://doi.org/10.2800/99473.

    22.
    Mangi, S. C., Rodwell, L. D. & Hattam, C. Assessing the impacts of establishing MPAs on fishermen and fish merchants: The case of Lyme Bay, UK. Ambio 40, 457–468 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Luisetti, T. et al. Coastal and marine ecosystem services valuation for policy and management: Managed realignment case studies in England. Ocean Coast. Manag. 54, 212–224 (2011).
    Article  Google Scholar 

    24.
    Molfese, C., Beare, D. & Hall-Spencer, J. M. Overfishing and the replacement of demersal finfish by shellfish: An example from the english channel. PLoS One 9, 20 (2014).
    Google Scholar 

    25.
    Eno, N. C. et al. Effects of crustacean traps on benthic fauna. ICES J. Mar. Sci. 58, 11–20 (2001).
    Article  Google Scholar 

    26.
    Coleman, R. A., Hoskin, M. G., von Carlshausen, E. & Davis, C. M. Using a no-take zone to assess the impacts of fishing: Sessile epifauna appear insensitive to environmental disturbances from commercial potting. J. Exp. Mar. Bio. Ecol. 440, 100–107 (2013).
    Article  Google Scholar 

    27.
    Lewis, C. F., Slade, S. L., Maxwell, K. E. & Matthews, T. R. Lobster trap impact on coral reefs: Effects of wind-driven trap movement. New Zeal. J. Mar. Freshw. Res. 43, 271–282 (2009).
    Article  Google Scholar 

    28.
    Micheli, F., De Leo, G., Butner, C., Martone, R. G. & Shester, G. A risk-based framework for assessing the cumulative impact of multiple fisheries. Biol. Conserv. 176, 224–235 (2014).
    Article  Google Scholar 

    29.
    Stephenson, F., Mill, A. C., Scott, C. L., Polunin, N. V. C. & Fitzsimmons, C. Experimental potting impacts on common UK reef habitats in areas of high and low fishing pressure. ICES J. Mar. Sci. 74, 1648–1659 (2017).
    Article  Google Scholar 

    30.
    Sinclair, M. & Valdimarsson, G. Responsible fisheries in the marine ecosystem. Fish. Res. 20, 426 (2014).
    Google Scholar 

    31.
    Sheehan, E. V., Stevens, T. F., Gall, S. C., Cousens, S. L. & Attrill, M. J. Recovery of a temperate reef assemblage in a marine protected area following the exclusion of towed demersal fishing. PLoS One 8, 1–12 (2013).
    Google Scholar 

    32.
    Sheehan, E. V. et al. Drawing lines at the sand: Evidence for functional vs visual reef boundaries in temperate Marine Protected Areas. Mar. Pollut. Bull. 76, 194–202 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Jackson, E. L., Langmead, O., Barnes, M., Tyler-Walters, H. & Hiscock, K. Lyme Bay—A Case Study: Measuring Recovery of Benthic Species, Assessing Potential Spill-Over Effects and Socio-economic Changes. (2008).

    34.
    Stevens, T. F., Sheehan, E. V., Gall, S. C., Fowell, S. C. & Attrill, M. J. Monitoring benthic biodiversity restoration in Lyme Bay marine protected area: Design, sampling and analysis. Mar. Policy 45, 310–317 (2014).
    Article  Google Scholar 

    35.
    Picton, B. E. & Morrow, C. C. Encyclopedia of Marine Life of Britain and Ireland (The Ulster Museum, Belfast, 2016).
    Google Scholar 

    36.
    Langmead. Lyme Bay—A Case Study: Measuring Recovery of Benthic Species, Assessing Potential Spill-Over Effects and Socio-Economic Changes. 44 (2012).

    37.
    Bradshaw, C., Collins, P. & Brand, A. R. To what extent does upright sessile epifauna affect benthic biodiversity and community composition?. Mar. Biol. 143, 783–791 (2003).
    Article  Google Scholar 

    38.
    Cocito, S., Ferdeghini, F. & Sgorbini, S. Pentapora fascialis (Pallas) [Cheilostomata: Ascophora] colonization of one sublittoral rocky site after sea-storm in the northwestern mediterranean. Hydrobiologia 375–376, 59–66 (1998).
    Article  Google Scholar 

    39.
    Eggleston, D., Lipcius, R., Miller, D. & Coba-Cetina, L. Shelter scaling regulates survival of juvenile Caribbean spiny lobster Panulirus argus. Mar. Ecol. Prog. Ser. 62, 79–88 (1990).
    ADS  Article  Google Scholar 

    40.
    Pirtle, J. L., Eckert, G. L. & Stoner, A. W. Habitat structure influences the survival and predator-prey interactions of early juvenile red king crab Paralithodes camtschaticus. Mar. Ecol. Prog. Ser. 465, 169–184 (2012).
    ADS  Article  Google Scholar 

    41.
    Gall, S. C. et al. The impact of potting for crustaceans on temperate rocky reef habitats: Implications for management. Mar. Environ. Res. 162, 105134 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Lambert, G. I., Jennings, S., Kaiser, M. J., Hinz, H. & Hiddink, J. G. Quantification and prediction of the impact of fishing on epifaunal communities. Mar. Ecol. Prog. Ser. 430, 71–86 (2011).
    ADS  Article  Google Scholar 

    43.
    Soldant, J., Mullier, T., Elliott, T. & Sheehan, E. V. Managing marine protected areas in Europe: Moving from ‘feature-based’ to ’whole-site; management of sites. In Marine Protected Areas: Science, Policy and Management Vol 828 (eds Humphreys, J. & Clark, R. W. E.) (Elsevier, New York, 2020).
    Google Scholar 

    44.
    Staples, D. & Funge-Smith, S. Ecosystem Approach to Fisheries and Aquaculture: Implementing the FAO Code of Conduct for Responsible Fisheries (RAP Publication, Bangkok, 2009).
    Google Scholar 

    45.
    Garcia, S. M., Rice, J. & Charles, A. Bridging fisheries management and biodiversity conservation norms: Potential and challenges ofbalancing harvest in ecosystem- based frameworks. Nature 6, 20 (2015).
    Google Scholar 

    46.
    DEFRA. Marine Protected Areas Network Report 2012–2018. (2018).

    47.
    Burke, C. Ireland’s need for inshore local management. Fish. News 7, 20 (2015).
    Google Scholar 

    48.
    Rees, S. E. et al. An evaluation Framework to Determine the Impact of the Lyme Bay Fisheries and Conservation Reserve and the Activities of the Lyme Bay Consultative Committee on Ecosystem Services and Human Wellbeing Final Report To the October 2016. (2016).

    49.
    Cork, M., McNulty, S. & Gaches, P. Site Selection Report for Inshore Marine SACs Project. Poole Bay to Lyme Bay. Report No. 9S0282/SSR/PooleLymeBay/01 (2008).

    50.
    Attrill, M. J. et al. Lyme Bay—A Case Study: Measuring Recovery of Benthic Species, Assessing Potential Spill-Over Effects and Socio-economic chaNges. (2012).

    51.
    Ross, R. South Devon Reef Video Baseline Surveys for the Prawle Point to Plymouth Sound & Eddystone cSAC and Surrounding Areas As commissioned by Natural England South Devon Reef Video Baseline Surveys for the Prawle Point to Plymouth Sound & Eddystone cSAC and Su. (2016)https://doi.org/10.13140/2.1.2313.1205.

    52.
    Vanstaen, K. & Eggleton, J. Mapping Annex 1 Reef Habitat Present in Specific areas Within the Lyme Bay and Torbay cSAC. (2011).

    53.
    Sheehan, E. V., Stevens, T. F., Attrill, M. J., Ropert-Coudert, Y. A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments. PLoS ONE 5(12), e14461 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Sheehan, E. V. et al. An experimental comparison of three towed underwater video systems using species metrics, benthic impact and performance. Methods Ecol. Evol. 7(7), 843–852 (2016).
    Article  Google Scholar 

    55.
    Bicknell, A. W. J., Sheehan, E. V., Godley, B. J., Doherty, P. D. & Witt, M. J. Assessing the impact of introduced infrastructure at sea with cameras: A case study for spatial scale, time and statistical power. Mar. Environ. Res. 147, 126–137 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the porcupine seabight, North-East Atlantic: Observations by baited camera, trap and trawl. Nat. Hist. https://doi.org/10.1017/s0025315400047615 (1994).
    Article  Google Scholar 

    57.
    Watson, D. L., Harvey, E. S., Anderson, M. J. & Kendrick, G. A. A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Mar. Biol. 148, 415–425 (2005).
    Article  Google Scholar 

    58.
    Cappo, M., Harvey, E. & Shortis, M. Counting and measuring fish with baited video techniques—an overview. Aust. Soc. Fish Biol. 1100, 1–9 (2006).
    Google Scholar 

    59.
    Elliott, S. A. M., Turrell, W. R., Heath, M. R. & Bailey, D. M. Juvenile gadoid habitat and ontogenetic shift observations using stereo-video baited cameras. Mar. Ecol. Prog. Ser. 568, 123–135 (2017).
    ADS  Article  Google Scholar 

    60.
    McLean, D. L., Harvey, E. S., Fairclough, D. V. & Newman, S. J. Large decline in the abundance of a targeted tropical lethrinid in areas open and closed to fishing. Mar. Ecol. Prog. Ser. 418, 189–199 (2010).
    ADS  Article  Google Scholar 

    61.
    Harvey, E. S. et al. Comparison of the relative efficiencies of stereo-BRUVs and traps for sampling tropical continental shelf demersal fishes. Fish. Res. 125–126, 108–120 (2012).
    Article  Google Scholar 

    62.
    Maragos, J. E. Marine and Coastal Biodiversity in the Tropical Island Pacific Region. (East-West Center, 1995).

    63.
    Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-E Ltd., Plymouth Marine Laboratory, Plymouth, 2001).
    Google Scholar 

    64.
    Taylor, P., Anderson, M. & Ter Braak, C. J. Stat. Comput. Permut. Tests Multi-Factor. Anal. Variance https://doi.org/10.1080/00949650215733 (2006).
    Article  Google Scholar 

    65.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance MARTI. Austral Ecol. 26, 32–46 (2001).
    Google Scholar  More

  • in

    Social signals mediate oviposition site selection in Drosophila suzukii

    1.
    Prokopy, R. J. & Roitberg, B. D. Joining and avoidance behavior in nonsocial insects. Annu. Rev. Entomol. 46, 631–665 (2001).
    CAS  PubMed  Article  Google Scholar 
    2.
    Rudolf, V. H. & Rödel, M. O. Oviposition site selection in a complex and variable environment: the role of habitat quality and conspecific cues. Oecologia 142, 316–325 (2005).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Carrasco, D., Larsson, M. C. & Anderson, P. Insect host plant selection in complex environments. Curr. Opin. Insect Sci. 8, 1–7 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Dall, S. R., Giraldeau, L. A., Olsson, O., McNamara, J. M. & Stephens, D. W. Information and its use by animals in evolutionary ecology. Trends Ecol. Evol. 20, 187–193 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Kennedy, G. G. & Storer, N. P. Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annu. Rev. Entomol. 45, 467–493 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Prokopy, R. J. Marking pheromones. In: Capinera J. L. (eds) Encyclopedia of Entomology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6359-6_1730 (2008).

    7.
    Edmunds, A. J., Aluja, M., Diaz-Fleischer, F., Patrian, B. & Hagmann, L. Host marking pheromone (HMP) in the Mexican fruit fly Anastrepha ludens. CHIMIA Int. J. Chem. 64, 37–42 (2010).
    CAS  Article  Google Scholar 

    8.
    Hauser, M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag. Sci. 67, 1352–1357 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Calabria, G., Máca, J., Bächli, G., Serra, L. & Pascual, M. First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Entomol. 136, 139–147 (2012).
    Article  Google Scholar 

    10.
    Deprá, M., Poppe, J. L., Schmitz, H. J., De Toni, D. C. & Valente, V. L. The first records of the invasive pest Drosophila suzukii in the South American continent. J. Pest Sci. 87, 379–383 (2014).
    Article  Google Scholar 

    11.
    Hassani, I. M. et al. First occurrence of the pest Drosophila suzukii (Diptera: Drosophilidae) in the Comoros Archipelago (Western Indian Ocean). Afr. Entomol. 28, 78–83 (2020).
    Article  Google Scholar 

    12.
    Bellamy, D. E., Sisterson, M. S. & Walse, S. S. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukii. PLoS One, 8, e61227. https://doi.org/10.1371/journal.pone.0061227 (2013).

    13.
    Lee, J. C. et al. Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 108, 117–129 (2015).
    Article  Google Scholar 

    14.
    Kenis, M. et al. Non-crop plants used as hosts by Drosophila suzukii in Europe. J. Pest Sci. 89, 735–748 (2016).
    Article  Google Scholar 

    15.
    Elsensohn, J. E. & Loeb, G. M. Non-crop host sampling yields insights into small-scale population dynamics of Drosophila suzukii (Matsumura). Insects 9, 5. https://doi.org/10.3390/insects9010005 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Mitsui, H., Takahashi, K. H. & Kimura, M. T. Spatial distributions and clutch sizes of Drosophila species ovipositing on cherry fruits of different stages. Pop. Ecol. 48, 233–237 (2006).
    Article  Google Scholar 

    17.
    Atallah, J., Teixeira, L., Salazar, R., Zaragoza, G. & Kopp, A. The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 281, 20132840. https://doi.org/10.1098/rspb.2013.2840 (2014).
    Article  Google Scholar 

    18.
    Crava, C. M. et al. Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. J. Insect Physiol. 125, 104088 (2020).
    CAS  PubMed  Article  Google Scholar 

    19.
    Burrack, H. J., Fernandez, G. E., Spivey, T. & Kraus, D. A. Variation in selection and utilization of host crops in the field and laboratory by Drosophila suzukii Matsumara (Diptera: Drosophilidae), an invasive frugivore. Pest Manag. Sci. 69, 1173–1180 (2013).
    CAS  PubMed  Article  Google Scholar 

    20.
    Karageorgi, M. et al. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr. Biol. 27, 847–853 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Silva-Soares, N. F., Nogueira-Alves, A., Beldade, P. & Mirth, C. K. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii. BMC Ecol. 17, 21 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Olazcuaga, L. et al. Oviposition preference and larval performance of Drosophila suzukii (Diptera: Drosophilidae), spotted-wing Drosophila: Effects of fruit identity and composition. Environ. Entomol. 48, 867–881 (2019).
    PubMed  Article  Google Scholar 

    23.
    Rendon, D. et al. Interactions among morphotype, nutrition, and temperature impact fitness of an invasive fly. Ecol. Evol. 9, 2615–2628 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G. & Syed, Z. Volatile codes: correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 5, 14059. https://doi.org/10.1038/srep14059 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Keesey, I. W. et al. Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J. Chem. Ecol. 42, 739–747 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Lasa, R., Navarro-de-la-Fuente, L., Gschaedler-Mathis, A. C., Kirchmayr, M. R. & Williams, T. Yeast species, strains, and growth media mediate attraction of Drosophila suzukii (Diptera: Drosophilidae). Insects 10, 228. https://doi.org/10.3390/insects10080228 (2019).
    Article  PubMed Central  PubMed  Google Scholar 

    27.
    Bellutti, N. et al. Dietary yeast affects preference and performance in Drosophila suzukii. J. Pest Sci. 91, 651–660 (2018).
    Article  Google Scholar 

    28.
    Wallingford, A. K., Hesler, S. P., Cha, D. H. & Loeb, G. M. Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Manag. Sci. 72, 701–706 (2016).
    CAS  PubMed  Article  Google Scholar 

    29.
    Tait, G. et al. Reproductive site selection: evidence of an oviposition cue in a highly adaptive dipteran, Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 49, 355–363 (2020).
    CAS  PubMed  Article  Google Scholar 

    30.
    Lin, C. C., Prokop-Prigge, K. A., Preti, G. & Potter, C. J. Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. Elife 4, e08688. https://doi.org/10.7554/eLife.08688 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Duménil, C. et al. Pheromonal cues deposited by mated females convey social information about egg-laying sites in Drosophila melanogaster. J. Chem. Ecol. 42, 259–269 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Barker, J. S. F. & Podger, R. N. Interspecific competition between Drosophila melanogaster and Drosophila simulans: effects of larval density on viability, developmental period and adult body weight. Ecol. 51, 170–189 (1970).
    Article  Google Scholar 

    33.
    Rohlfs, M., Obmann, B. & Petersen, R. Competition with filamentous fungi and its implication for a gregarious lifestyle in insects living on ephemeral resources. Ecol. Entomol. 30, 556–563 (2005).
    Article  Google Scholar 

    34.
    Durisko, Z., Anderson, B. & Dukas, R. Adult fruit fly attraction to larvae biases experience and mediates social learning. J. Exp. Biol. 217, 1193–1197 (2014).
    PubMed  Article  Google Scholar 

    35.
    Prokopy, R. J. & Duan, J. J. Socially facilitated egglaying behavior in Mediterranean fruit flies. Behav. Ecol. Sociobiol. 42, 117–122 (1998).
    Article  Google Scholar 

    36.
    Elsensohn, J. Factors affecting oviposition behavior. In Drosophila suzukii (North Carolina State University, Raleigh, 2020).

    37.
    Hardin, J. A., Kraus, D. A. & Burrack, H. J. Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol. Exp. Appl. 156, 59–65 (2015).
    CAS  Article  Google Scholar 

    38.
    Averill, A. L. & Prokopy, R. J. Intraspecific competition in the tephritid fruit fly Rhagoletis pomonella. Ecol. 68, 878–886 (1987).
    Article  Google Scholar 

    39.
    Arredondo, J. & Diaz-Fleischer, F. Oviposition deterrents for the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) from fly faeces extracts. Bull. Entomol. Res. 96, 35–42 (2006).
    CAS  PubMed  Article  Google Scholar 

    40.
    Nufio, C. R. & Papaj, D. R. Host marking behavior in phytophagous insects and parasitoids. Entomol. Exp. Appl. 99, 273–293 (2001).
    Article  Google Scholar 

    41.
    Papaj, D. R. Use and avoidance of occupied hosts as a dynamic process in tephritid flies. In Insect-Plant Interactions (ed. Bernays, E.A.) 25–46 (CRC Press, Boca Raton, 2017).

    42.
    Bernays, E.A. & Chapman, R.F. Behavior: the process of host-plant selection. In Host-Plant Selection by Phytophagous Insects Vol. 2. (eds. Bernays, E.A. & Chapman, R.F) 95–165 (Springer Science & Business Media, Berlin, 2007).

    43.
    Schoonhoven, L. M. Host-marking pheromones in Lepidoptera, with special reference to two Pieris spp. J. Chem. Ecol. 16, 3043–3052 (1990).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Dancau, T., Stemberger, T. L., Clarke, P. & Gillespie, D. R. Can competition be superior to parasitism for biological control? The case of spotted wing Drosophila (Drosophila suzukii), Drosophila melanogaster and Pachycrepoideus vindemmiae. Biocontrol Sci. Tech. 27, 3–16 (2017).
    Article  Google Scholar 

    45.
    Rosenheim, J. A. The relative contributions of time and eggs to the cost of reproduction. Evol. 53, 376–385 (1999).
    Article  Google Scholar 

    46.
    Jiménez-Padilla, Y., Ferguson, L. V. & Sinclair, B. J. Comparing apples and oranges (and blueberries and grapes): fruit type affects development and cold susceptibility of immature Drosophila suzukii (Diptera: Drosophilidae). Can. Entomol. 152, 532–545 (2020).
    Article  Google Scholar 

    47.
    Papaj, D. R. & Messing, R. H. Functional shifts in the use of parasitized hosts by a tephritid fly: the role of host quality. Behav. Ecol. 7, 235–242 (1996).
    Article  Google Scholar 

    48.
    Ingleby, F. C. Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6, 732–742. https://doi.org/10.3390/insects6030732 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Snellings, Y. et al. The role of cuticular hydrocarbons in mate recognition in Drosophila suzukii. Sci. Rep. 8, 1–11 (2018).
    CAS  Article  Google Scholar 

    50.
    Li, G. & Ishikawa, Y. Oviposition deterrents in larval frass of four Ostrinia species fed on an artificial diet. J. Chem Ecol. 30, 1445–1456 (2004).
    CAS  PubMed  Article  Google Scholar 

    51.
    Wada-Katsumata, A. et al. Gut bacteria mediate aggregation in the German cockroach. Proc. Nat. Acad. Sci. 112, 15678–15683 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    52.
    Mansourian, S. et al. Fecal-derived phenol induces egg-laying aversion in Drosophila. Curr. Biol. 26, 2762–2769 (2016).
    CAS  PubMed  Article  Google Scholar 

    53.
    Bueno, E. et al. Response of wild spotted Wing Drosophila (Drosophila suzukii) to microbial volatiles. J. Chem. Ecol. 39, 1–11 (2019).
    Google Scholar 

    54.
    Behar, A., Jurkevitch, E. & Yuval, B. Bringing back the fruit into fruit fly–bacteria interactions. Mol. Ecol. 17, 1375–1386 (2008).
    CAS  PubMed  Article  Google Scholar 

    55.
    Yun, J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Bing, X., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio 9, e02199-e2217. https://doi.org/10.1128/mBio.02199-17 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Martinez-Sañudo, I. et al. Metagenomic analysis reveals changes of the Drosophila suzukii microbiota in the newly colonized regions. Insect Sci. 25, 833–846 (2018).
    PubMed  Article  Google Scholar 

    58.
    Silva, M. A., Bezerra-Silva, G. C. D. & Mastrangelo, T. The host marking pheromone application on the management of fruit flies—a review. Braz. Arch. Biol. Tech. 55, 835–842 (2012).
    CAS  Article  Google Scholar 

    59.
    Hamby, K. A. & Becher, P. G. Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J. Pest Sci. 89, 621–630 (2016).
    Article  Google Scholar 

    60.
    Alkema, J. T., Dicke, M. & Wertheim, B. Context-dependence and the development of push-pull approaches for integrated management of Drosophila suzukii. Insects 10, 454. https://doi.org/10.3390/insects10120454 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    61.
    Revadi, S. et al. Sexual behavior of Drosophila suzukii. Insects 6(183), 196. https://doi.org/10.3390/insects6010183 (2015).
    Article  Google Scholar 

    62.
    Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. Elife 7, e34414. https://doi.org/10.7554/eLife.34414 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    63.
    Emiljanowicz, L. M., Ryan, G. D., Langille, A. & Newman, J. Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J Econ. Entomol. 107, 1392–1398 (2014).
    PubMed  Article  Google Scholar 

    64.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019). More

  • in

    Soil mite communities (Acari: Mesostigmata) as indicators of urban ecosystems in Bucharest, Romania

    1.
    Bremner, J. et al. World population highlights: Key findings from PRB’s 2010 world population data sheet. Popul. Bull. 65(2), 1–12 (2010).
    Google Scholar 
    2.
    McGranahan, G., Marcotullio, P. Urban systems. In Ecosystems and Human Well-being: Current State and Trends. Volume I (eds. Hassan, R., Scholes, R., Ash, N.) 795–825 (Island Press, Washington, DC, 2005).

    3.
    Robrecht, H. & Lorena, L. Ecosystem services in cities and public management. In The Economics of Ecosystems and Biodiversity for Local and Regional Policy (ed Wittmer, H.) 60–80 (Progress Press, 2010).

    4.
    Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111 (2016).
    ADS  CAS  Article  Google Scholar 

    5.
    Millennium Ecosystem Assessment Panel. Ecosystems and Human Well-being: Synthesis. Washington, DC: Island Press. https://www.millenniumassessment.org/en/index.html (2005).

    6.
    McDonald, R.I., Marcotullio, P.J. & Güneralp, B. Urbanization and Global Trends in Biodiversity and Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. A Global Assessment (eds. Elmqvist, T. et al.) 31–52 (Springer, Dordrecht, 2013).

    7.
    Anthrop, M. Changing patterns in the urbanized countryside of Western Europe. Landsc. Ecol. 15, 257–270 (2000).
    Article  Google Scholar 

    8.
    Coleman, D.C. & Wall, D.H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In Soil Microbiology, Ecology and Biochemistry (ed Paul, E.) 111–149 (Academic Press, Waltham, 2015).

    9.
    Dirilgen, T. et al. Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity. Appl. Soil Ecol. 97, 86–97 (2016).
    Article  Google Scholar 

    10.
    Culliney, T. W. Role of arthropods in maintaining soil fertility. Agriculture. 3, 629–659 (2013).
    Article  Google Scholar 

    11.
    Krantz, G. W. & Walter, D. E. A manual of Acarology. (ed. Texas Tech University Press, USA) 98–100 (Krantz & Walter, 2009).

    12.
    McIntyre, N. E. Ecology of urban arthropods: A review and a call to action. Ann. Entomol. Soc. Am. 93, 825–835 (2000).
    Article  Google Scholar 

    13.
    Jones, E. L. & Leather, S. R. Invertebrates in urban areas: A review. Eur. J. Entomol. 109, 463–478 (2012).
    Article  Google Scholar 

    14.
    Koehler, H. H. Predatory mites (Gamasina, Mesostigmata). Agric. Ecosyst. Environ. 74, 395–410 (1999).
    Article  Google Scholar 

    15.
    Gulvik, M. E. Mites (Acari) as indicators of soil biodiversity and land use monitoring: A review. Pol. J. Ecol. 55, 415–450 (2007).
    Google Scholar 

    16.
    Salmane, I. & Brumelis, G. Species list and habitat preference of Mesostigmata mites (Acari, Parasitiformes) in Latvia. Acarologia. 50, 373–394 (2010).
    Article  Google Scholar 

    17.
    Kaczmarek, S., Marquardt, T. & Falenczyk-Kozirog, K. Diversity of the Mesostigmata (Acari) in tree-hollows of selected deciduous tree species. Biol. Lett. 48, 29–37 (2011).
    Article  Google Scholar 

    18.
    Madej, G., Barczyk, G. & Gawenda, J. Importance of microhabitats for preservation of species diversity, on the basis of mesostigmatid mites (Mesostigmata, Arachnida, Acari). Pol. J. Environ. Stud. 20(4), 961–968 (2011).
    Google Scholar 

    19.
    Huhta, V., Pietikäinen, A. S. & Penttinen, R. Importance of dead wood for soil mite (Acarina) communities in boreal old-growth forests. Soil Organ. 84(3), 499–512 (2012).
    Google Scholar 

    20.
    Wissuwa, J., Salamon, J. A. & Frank, T. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria. Soil Biol. Biochem. 50, 96–107 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Manu, M. Structure and dynamics of the predatory mites (Acari: Mesostigmata- Gamasina) from the central parks and forest ecosystems from/near Bucharest. In Species Monitoring in the Central Parks of Bucharest (ed. Onete, M.) 68–78 (Ars Docendi, Universitatea Bucureşti, 2008).

    22.
    Manu, M., Szekely, L., Vasiliu, Oromulu, L., Bărbuceanu, D., Honciuc, V. et al. Bucharest. In Vertebrates and Invertebrates of European Cities: Selected Non-Avian Fauna (ed. Kelcey, J.G.) 257–322 (Springer Science+Business Media LLC, New York, 2015).

    23.
    Manu, M., Băncilă, R. I. & Onete, M. Importance of moss habitats for mesostigmatid mites (Acari: Mesostigmata) in Romania. Turk. J. Zool. 42(6), 673–683 (2018).
    Article  Google Scholar 

    24.
    Klarner, B., Maraun, M. & Scheu, S. Trophic diversity and niche partitioning in a species rich predator guild—natural variations in stable isotope ratios (13C/12C, 15N/14N) of mesostigmatid mites (Acari, Mesostigmata) from Central European beech forests. Soil Biol. Biochem. 57, 327–333 (2013).
    CAS  Article  Google Scholar 

    25.
    da Groot, A. G., Jagers op Akkerhuis, G. J. A. M., Dimmers, W. J., Charrier, X. & Faber, J. H. Biomass and diversity of soil mite functional groups respond to extensification of land management, potentially affecting soil ecosystem services. Front. Environ. Sci. 4, 1–15 (2016).
    Article  Google Scholar 

    26.
    Manu, M., Iordache, V., Băncilă, R. I., Bodescu, F. & Onete, M. The influence of environmental variables on soil mite communities (Acari: Mesostigmata) from overgrazed grassland ecosystems—Romania. Ital. J. Zool. 83, 89–97 (2016).
    CAS  Article  Google Scholar 

    27.
    Meehan, M. L., Zhuoyan Song, Z. & Proctor, H. Roles of environmental and spatial factors in structuring assemblages of forest-floor Mesostigmata in the boreal region of Northern Alberta, Canada. Int. J. Acarol. 44, 300–309 (2018).
    Article  Google Scholar 

    28.
    Kamczyc, J. et al. Response of soil mites (Acari, Mesostigmata) to long-term Norway spruce plantation along a mountain stream. Exp. Appl. Acarol. 76(1–3), 1–18 (2018).
    Google Scholar 

    29.
    Santorufo, L., Van Gestel, C. M., Rocco, A. & Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 161, 57–63 (2015).
    Article  CAS  Google Scholar 

    30.
    N’Dri, J. K., Hance, T., Andr,é, H. M., Lagerlöf, J. & Tondoh, J. E. Microarthropod use as bioindicators of the environmental state: Case of soil mites (Acari) from Côte d’Ivoire. J. Anim. Plant Sci. 29(2), 4622–4637 (2016).
    Google Scholar 

    31.
    George, P. B. L. et al. Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme. Soil Biol. Biochem. 115, 537–546 (2017).
    CAS  Article  Google Scholar 

    32.
    Manu, M., Onete, M. & Băncilă, R. I. The effect of heavy metals on mite communities (Acari: Gamasina) from urban parks—Bucharest, Romania. Environ. Eng. Manag. J. 17(9), 2071–2081 (2018).
    CAS  Article  Google Scholar 

    33.
    Spiller, M. S., Spiller, C. & Garle, J. Arthropod bioindicators of environmental quality. Revista Agroambiente. 12(1), 41–57 (2018).
    Google Scholar 

    34.
    Niedbała, W., Błaszak, C., Błoszyk, J., Kaliszewski, M. & Kazmierski, A. Soils mites (Acari) of Warsaw and Mazovia. Memorabilia Zool. 36, 235–252 (1982).
    Google Scholar 

    35.
    Niedbała, W., Błoszyk, J., Kaliszewski, M., Kazmierski, A. & Olszanowski, Z. Structure of soil mite (Acari) communities in urban green of Warsaw. Fragmenta Faunistica. 33, 21–44 (1990).
    Article  Google Scholar 

    36.
    Pouyat, R. V., Parmelee, R. W. & Carreiro, M. M. Environmental effects of forest soil-invertebrate and fungal densities in oak stands along an urban-rural land use gradient. Pedobiologia 38, 385–399 (1994).
    CAS  Google Scholar 

    37.
    Minor, M. A. & Cianciolo, J. M. Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of use types in New York. Appl. Soil Ecol. 35, 140–153 (2007).
    Article  Google Scholar 

    38.
    Skorupski, M., Horodecki, P. & Jagodziński, A. M. Roztocze z rzędu Mesostigmata (Arachnida, Acari) na terenach przemysłowych i poprzemysłowych w Polsce. (Mite species of Mesostigmata order (Arachnida, Acari) in industrial and post-industrial areas of Poland). Nauka Przyr. Technol. 11, 1–23 (2013).
    Google Scholar 

    39.
    Minova, S., Jankevica, L., Salmane, I. & Èekstere, G. Preliminary studies on microbial biomass and the microarthropod community as soil health and quality indicators in urban grasslands, Rîga as an example. Proc. Latvian Acad. Sci. Sect. B. 69(3), 140–144 (2015).
    CAS  Google Scholar 

    40.
    Telnov, D. & Salmane, I. Ecology and diversity of urban pine forest soil invertebrates in Rîga, Latvia. Proc. Latvian Acad. Sci. Sect. B Nat. 69(3), 120–131 (2015).

    41.
    Napierała, A., Skwierczyñski, F. & Jankowiak, A. Materials to knowledge of Uropodina (Acari: Mesostigmata) of Poznań District. Badania Fizjograficzne R. I Seria C Zoologia. C51, 7–19 (2010).

    42.
    Kontschán, J., Ács, A., Wang, G. Q. & Neményi, A. New data to the mite fauna of Hungarian bamboo plantations. Acta Phytopathol. Entomol. Hung. 50(1), 77–83 (2015).
    Article  Google Scholar 

    43.
    Fend’a, P. & Hruzova, K. Mites (Acari, Mesostigmata) in urban green of Bratislava (Slovakia) In 8th Symposium of the European Association of Acarologist (ed Universitat Politecnica de Valencia) 41 (Book of Abstract, 2016).

    44.
    Hrúzová, K. & Fend’a, P. First record of Parasitus americanus (Berlese, 1905) and Cornigamasus ocliferius Skorupski and Witaliński, 1997 (Acari: Mesostigmata: Parasitidae) from Slovakia. Check List. 13(4), 239–243 (2017).

    45.
    Salmane, I. Soil microarthropods (Acari, Collembola) in the Rīga city habitats. Environ. Exp. Biol. 16, 73–74 (2018).
    Google Scholar 

    46.
    Błoszyk, J., Klimczak, I. & Leśniewska, M. Phoretic relationships between Uropodina (Acari: Mesostigmata) and centipedes (Chilopoda) as an example of evolutionary adaptation of mites to temporary microhabitats. Eur. J. Entomol. 103, 699–707 (2006).
    Article  Google Scholar 

    47.
    Napierała, A. et al. Phoretic relationships between uropodid mites (Acari: Mesostigmata) and centipedes (Chilopoda) in urban agglomeration areas. Int. J. Acarol. 41(4), 250–258 (2015).
    Article  Google Scholar 

    48.
    Mizser, S., Nagy, L. & Tóthmérész, B. Mite infection of Carabus violaceus in rural forest patches and urban parks. Period. Biol. 118(3), 307–309 (2016).
    Article  Google Scholar 

    49.
    Honciuc, V. & Manu, M. Ecological study on the edaphically mite’s populations (Acari: Mesostigmata—Gamasina: Oribatida) in urban areas from Romania. Rom. J. Biol. Zool. 55(1), 19–30 (2010).
    Google Scholar 

    50.
    Manu, M. & Honciuc, V. Rang correlations at the level of the predator and the decomposer populations soil mites (Acari: Mesostigmata-Gamasina, Oribatida) from central parks of Bucharest city, Romania. Acta Entomol. Serb. 5(1), 129–140 (2010).
    Google Scholar 

    51.
    Manu, M. & Honciuc, V. Ecological research on the soil mite’s populations (Acari: Mesostigmata-Gamasina, Oribatida) from forest ecosystems near Bucharest city. Rom. J. Biol. Zool. 55(1), 19–30 (2010).
    Google Scholar 

    52.
    Iojă, C. I., Rozylowicz, L., Pătroescu, M., Niţă, M. R. & Vânau, G. O. Dog walkers’ vs other park visitors’ perceptions: The importance of planning sustainable urban parks in Bucharest, Romania. Landsc. Urban. Plan. 103, 74–82 (2011).
    Article  Google Scholar 

    53.
    Pătroescu, M., Ioja, C., Necsuliu, R. & Brailescu, C. The quality of oxygenating surfaces. The green areas of Bucharest. A case studies. Rev. Roum. Geogr. 47–48, 205–216 (2004).
    Google Scholar 

    54.
    Trzyna, T. Urban Protected Areas: Profiles and best practice guidelines. Best Practice Protected Area Guidelines Series No. 22, Gland, Switzerland: IUCN (2014).

    55.
    Ghiliarov, M.S. & Bregetova, N.G. Opredeliteli obitayushchikh v pochve kleshcheĭ Mesostigmata. (Akademia Nauk USSR, Zoologicheskiĭ Institut Evolyucionoĭ Morfologii i Ekologii zhivotnikh im A.H. Savertova, Izd. Nauka, Leningrad, 1977).

    56.
    Hyatt, K. H. Mites of the subfamily Parasitinae (Mesostigmata: Parasitidae) in the British Isles. Bull. Br. Mus. Nat. Hist. Zool. 38, 237–378 (1980).
    Google Scholar 

    57.
    Karg, W. Acari (Acarina), Milben Parasitiformes (Anactinochaeta) Cohors Gamasina Leach. 59, 1–513 (1993).

    58.
    Mašán, P. Macrochelid Mites of Slovakia (Acari, Mesostigmata, Macrochelidae) (Institute of Zoology, Slovak Academy of Science, Bratislava, 2003).

    59.
    Mašán, P. Identification key to Central European species of Trachytes (Acari: Uropodina) with redescription, ecology and distribution of Slovak species. Eur. J. Entomol. 100, 435–448 (2003).
    Article  Google Scholar 

    60.
    Mašán, P. & Fenďa, P. Zerconid Mites of Slovakia (Acari, Mesostigmata, Zerconidae (Institute of Zoology, Slovakia Academy of Science, Bratislava, 2004).
    Google Scholar 

    61.
    Mašán, P. A Review of the Family Pachylaelapidae in Slovakia with Systematics and Ecology of European Species (Acari: Mesostigmata: Eviphidoidea) (Institute of Zoology, Slovak Academy of Science, Bratislava, 2007).
    Google Scholar 

    62.
    Mašán, P., Fenďa, P. & Mihál, I. New edaphic mites of the genus Veigaia from Slovakia and Bulgaria, with a key to the European species (Acari, Mesostigmata, Veigaiidae). Zootaxa. 1897, 1–19 (2008).
    Article  Google Scholar 

    63.
    Mášan, P. & Halliday, B. Review of the European genera of Eviphididae (Acari: Mesostigmata) and the species occurring in Slovakia. Zootaxa. 2585, 1–122 (2010).
    Article  Google Scholar 

    64.
    Oksanen, J., Blanchet, G.F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchi, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H., Szoecs, E., Wagner, H. Vegan: Community Ecology Package. R package version 2.4–0. https://cran.r-project.org/package=RVAideMemoire (2019).

    65.
    Herve, ́ M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-66. https://CRAN.R-project.org/package=RVAideMemoire (2017).

    66.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information—Theoretic Approach (Springer, New York, 2002).
    Google Scholar 

    67.
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 

    69.
    Ruf, A. A maturity index for predatory soil mites (Mesostigmata, Gamasina) as an indicator of environmental impacts of pollution of forest soils. Appl. Soil Ecol. 9, 447–452 (1998).
    Article  Google Scholar 

    70.
    De Caceres, M., Legendre, P. Associations Between Species and Groups of Sites: Indices an Statistical Inference. Ecology. http://sites.google.com/site/miqueldecaceres (2009).

    71.
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monog. 67(3), 345–366 (1997).
    Google Scholar 

    72.
    Zaharia, V. & Găitănaru, D. Aspects of water budget in Văcăreşti wetland. Math. Model. Civ. Eng. 14(1), 12–23 (2018).
    Article  Google Scholar 

    73.
    Xu, G.-L., Kuster, T. M., Günthardt-Goerg, M. S., Dobbertin, M. & Li, M.-H. Seasonal exposure to drought and air warming affects soil collembola and mites. PLoS ONE 7(8), e43102 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Gülser, C. & Candemir, F. Changes in penetration resistance of a clay field with organic waste applications. Eurasian J. Soil Sci. 1, 16–21 (2012).
    Google Scholar 

    75.
    Bergamin, A. C. et al. Relationship of soil physical quality parameters and maize yield in a Brazilian Oxisol. Chil. J. Agric. Res. 75(3), 357–365 (2015).
    Article  Google Scholar 

    76.
    Jones, M. F. & Arp, P. A. Relating cone penetration and rutting resistance to variations in forest soil properties and daily moisture fluctuations. Open J. Soil Sci. 7, 149–171 (2017).
    Article  Google Scholar 

    77.
    Ekschmitta, K., Liub, M., Vettera, S., Foxa, O. & Wolters, V. Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil?. Geoderma 128, 167–176 (2005).
    ADS  Article  Google Scholar 

    78.
    Gulvik, M. E., Błoszyk, J., Austad, I., Bajaczyk, R. & Piwczyński, D. Abundance and diversity of soil microarthropod communities related to different land use regime in a traditional farm in Western Norway. Pol. J. Ecol. 56(2), 273–288 (2008).
    Google Scholar 

    79.
    Newman, A. C. D. The significance of clays in agriculture and soils. Philos. Trans. R. Soc. Lond A. 311, 375–389 (1984).
    ADS  CAS  Article  Google Scholar 

    80.
    Shen, C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211 (2013).
    CAS  Article  Google Scholar 

    81.
    Lăcătuşu, R., Lăcătuşu, A. R., Lungu, M. & Breaban, I. G. Macro- and microelements abundance in some urban soils from Romania. Carpath. J. Earth Environ. Sci. 3(1), 75–83 (2008).
    Google Scholar 

    82.
    Chikoski, J. M., Ferguson, S. H. & Meyer, L. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment. Acta Oecol. 30, 203–211 (2006).
    ADS  Article  Google Scholar 

    83.
    Nitzu, E. et al. Scree habitats: Ecological function, species conservation and spatial-temporal variation in the arthropod community. Syst. Biodivers. 12(1), 65–75 (2014).
    Article  Google Scholar  More

  • in

    Interspecies bacterial competition regulates community assembly in the C. elegans intestine

    Monocultures differ significantly in their ability to colonize the C. elegans intestine
    To investigate community assembly in the gut of C. elegans, we fed germ-free synchronized adult worms with different bacterial species, in monoculture or in mixture, over 4 days in a well-mixed rich liquid medium (Methods, Fig. S1A). The majority of worms survived the 4-day period of feeding and colonization, after which we allowed live worms to feed briefly on heat-killed E. coli OP50 to remove transient colonizers [35, 45]. We then cleaned the surface of the worms with consecutive washes, and measured the intestinal bacterial densities by grinding batches of worms, plating, and counting colony forming units (CFU, Fig. S1B) with distinct morphologies [46]. The supernatant of each sample was plated to verify that CFU counts came from the worm digestions instead of the background media (Methods). This protocol allowed us to construct and quantify simple microbiotas in C. elegans.
    We began by feeding C. elegans in monoculture to quantify the ability of a range of bacterial species to colonize and grow in the worm intestine. As a starting point, we first utilized an immunocompromised C. elegans mutant (AU37) and a set of eleven non-native bacterial species (Fig. 1B), representing the phyla Firmicutes (gram-positive) and Proteobacteria (gram-negative). We found that all bacterial species colonize (i.e., accumulate with or without active growth) the C. elegans intestine, with mean population sizes (Figs. 1C, S1C) ranging from 200 CFU per worm in the case of B. cereus, up to 20,000 CFU/worm in the case of S. marcescens. Our three Firmicutes reach low population sizes in the worm gut and low carrying capacities in the liquid media (Fig. S1E), but the carrying capacities in the liquid media do not explain the variation in monoculture colonization (Fig. S1F, G). These results indicate that different non-native bacterial species have a wide range of abilities to colonize the C. elegans intestine in monoculture.
    Composition of two-species microbiotas are influenced by competitive and hierarchical bacterial interspecies interactions
    To assess the compositional trends of the C. elegans microbiota, we constructed the simplest intestinal communities in this worm by feeding it with all possible two-species mixtures from the same eleven non-native bacteria as before (55 pairs, Figs. 2A, S2A). We fed worms with both bacteria present at similar concentrations (~107 CFU/mL, Methods) to normalize the rate of ingestion. We found that a majority (41 out of 55, ~75%) of pairs displayed coexistence, with both species present above the detection limit of 2%, whereas the remainder (14 out of 55, ~25%) led to competitive exclusion of a species (Figs. 2B, S2B). These results show that bacteria with no prior conditioning for the C. elegans gut commonly reach coexistence in two-species microbiotas.
    Fig. 2: Monoculture colonization of the worm intestine often fails to predict composition of two-species microbiotas.

    A LEFT panels: Fractional abundances of 55 co-culture experiments in C. elegans intestine (AU37); error bars are the s.e.m. of 2–8 biological replicates (Fig. S2). Bacterial species are ordered from left to right by their mean fraction across all co-cultures. RIGHT panels: Null expectation for the fractional abundances based on a noninteracting model where each bacterial species reaches its population size in monoculture; error bars are the s.e.m. from bootstrapping over the monoculture data. * and ** represent a statistically significant difference between the two panels at p values of 0.05 and 0.01, respectively (Welch’s T test). B Coexistence of two species is more common than competitive exclusion in the worm intestine. C Low yields in two species microbiotas—relative to monocultures—are indicative of competitive interactions (Fig. S2); error bars on X-axis are the s.e.m. and on Y-axis the s.e.m. from bootstrapping over monoculture and pairwise data simultaneously. D Competitive ability, defined as the mean fractional abundance in co-culture experiments, relates to monoculture population size, but there are significant deviations; error bars on Y-axis are the propagated error from the s.e.m. of the co-culture experiments.

    Full size image

    The interactions between bacterial species in a microbiota can be classified as positive, negative, or neutral based on the yields of the bacteria relative to their monoculture population sizes. To classify the interactions in our two-species microbiotas, we calculated the relative yield of species “i” with species “j”, RYi|j, as its population size in co-culture, Ni|j, divided by its population size in monoculture, Ni (RYi|j = Ni|j/Ni, see Methods for detailed implementation). We found that most species cannot reach their monoculture population size in co-culture experiments, RY  More

  • in

    Depth-dependent parental effects create invisible barriers to coral dispersal

    1.
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
    Article  Google Scholar 
    2.
    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Syst. 24, 189–216 (1993).
    Article  Google Scholar 

    4.
    Palumbi, S. R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 25, 547–572 (1994).
    Article  Google Scholar 

    5.
    Carlon, D. B. & Budd, A. F. Incipient speciation across a depth gradient in a scleractinian coral? Evolution 56, 2227–2242 (2002).
    PubMed  Article  Google Scholar 

    6.
    Rocha, L. A., Robertson, D. R., Roman, J. & Bowen, B. W. Ecological speciation in tropical reef fishes. Proc. Biol. Sci. 272, 573–579 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17, 5104–5117 (2008).
    CAS  PubMed  Article  Google Scholar 

    8.
    Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype–environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).
    CAS  PubMed  Article  Google Scholar 

    9.
    Ingram, T. Speciation along a depth gradient in a marine adaptive radiation. Proc. Biol. Sci. 278, 613–618 (2011).
    PubMed  Google Scholar 

    10.
    Prada, C. & Hellberg, M. E. Long prereproductive selection and divergence by depth in a Caribbean candelabrum coral. Proc. Natl Acad. Sci. USA 110, 3961–3966 (2013).
    CAS  PubMed  Article  Google Scholar 

    11.
    Muir, P. R., Wallace, C. C., Done, T. & Aguirre, J. D. Limited scope for latitudinal extension of reef corals. Science 348, 1135–1138 (2015).
    CAS  PubMed  Article  Google Scholar 

    12.
    Kenkel, C. D., Setta, S. P. & Matz, M. V. Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides. Heredity 115, 509–516 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Brown, B., Dunne, R., Goodson, M. & Douglas, A. Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21, 119–126 (2002).
    Article  Google Scholar 

    14.
    Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. Biol. Sci. 276, 2893–2901 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).
    PubMed  Article  Google Scholar 

    16.
    Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Chang. Biol. 19, 3640–3647 (2013).
    PubMed  Article  Google Scholar 

    17.
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
    CAS  PubMed  Article  Google Scholar 

    18.
    Dixon, G. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).
    CAS  PubMed  Article  Google Scholar 

    19.
    Smith, T. B. et al. Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob. Chang. Biol. 22, 2756–2765 (2016).
    PubMed  Article  Google Scholar 

    20.
    Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 0014 (2017).
    Article  Google Scholar 

    21.
    Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Badyaev, A. V. & Uller, T. Parental effects in ecology and evolution: mechanisms, processes and implications. Philos. Trans. R. Soc. B Biol. Sci. 364, 1169–1177 (2009).
    Article  Google Scholar 

    25.
    Marshall, D. J., Allen, R. M. & Crean, A. J. The ecological and evolutionary importance of maternal effects in the sea. Oceanogr. Mar. Biol. 46, 203–250 (2008).
    Google Scholar 

    26.
    Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627–636 (2017).
    Article  Google Scholar 

    27.
    Padilla-Gamiño, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D. From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS One 7, e38440 (2012).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Quigley, K. M., Willis, B. L. & Bay, L. K. Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. R. Soc. Open Sci. 3, 160471 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Goodbody-Gringley, G., Wong, K. H., Becker, D. M., Glennon, K. & de Putron, S. J. Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones. Coral Reefs 37, 483–494 (2018).
    Article  Google Scholar 

    30.
    Bellworthy, J., Spangenberg, J. E. & Fine, M. Feeding increases the number of offspring but decreases parental investment of Red Sea coral Stylophora pistillata. Ecol. Evol. 9, 12245–12258 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Putnam, H. M., Ritson-Williams, R., Cruz, J. A., Davidson, J. M. & Gates, R. D. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci. Rep. 10, 13664 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Gleason, D. F. & Wellington, G. M. Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar. Biol. 123, 693–703 (1995).
    Article  Google Scholar 

    33.
    Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: implications for depth-dependent settlement? J. Exp. Mar. Bio. Ecol. 223, 235–255 (1998).
    Article  Google Scholar 

    34.
    Wellington, G. M. & Fitt, W. K. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192 (2003).
    CAS  Article  Google Scholar 

    35.
    Baird, A. H., Babcock, R. C. & Mundy, C. P. Habitat selection by larvae influences the depth distribution of six common coral species. Mar. Ecol. Prog. Ser. 252, 289–293 (2003).
    Article  Google Scholar 

    36.
    Fogarty, N. D. Caribbean acroporid coral hybrids are viable across life history stages. Mar. Ecol. Prog. Ser. 446, 145–159 (2012).
    Article  Google Scholar 

    37.
    Strader, M. E., Davies, S. W. & Matz, M. V. Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat. R. Soc. Open Sci. 2, 150358 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).
    Article  Google Scholar 

    39.
    DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).
    CAS  PubMed  Article  Google Scholar 

    40.
    Hendry, A. P. Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evol. Ecol. Res. 6, 1219–1236 (2004).
    Google Scholar 

    41.
    Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59, 705–719 (2005).
    PubMed  Google Scholar 

    42.
    Eytan, R. I., Hayes, M., Arbour-Reily, P., Miller, M. & Hellberg, M. E. Nuclear sequences reveal mid‐range isolation of an imperilled deep‐water coral population. Mol. Ecol. 18, 2375–2389 (2009).
    CAS  PubMed  Article  Google Scholar 

    43.
    Brazeau, D. A., Lesser, M. P. & Slattery, M. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS One 8, e65845 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    van Oppen, M. J. H. et al. Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Mol. Ecol. 27, 2956–2971 (2018).
    PubMed  Article  CAS  Google Scholar 

    45.
    Drury, C., Pérez Portela, R., Serrano, X. M., Oleksiak, M. & Baker, A. C. Fine‐scale structure among mesophotic populations of the great star coral Montastraea cavernosa revealed by SNP genotyping. Ecol. Evol. 10, 6009–6019 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    van Oppen, M. J. H., Bongaerts, P., Underwoord, J. N., Peplow, L. M. & Cooper, T. F. The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol. Ecol. 20, 1647–1660 (2011).
    PubMed  Article  Google Scholar 

    47.
    Serrano, X. M. et al. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol. Ecol. 23, 4226–4240 (2014).
    CAS  PubMed  Article  Google Scholar 

    48.
    Serrano, X. M. et al. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci. Rep. 6, 21619 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Bongaerts, P. et al. Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Eckert, R. J., Studivan, M. S. & Voss, J. D. Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci. Rep. 9, 7200 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531 (2003).
    Article  Google Scholar 

    52.
    Bongaerts, P. & Smith, T. B. Beyond the “Deep Reef Refuge” hypothesis: a conceptual framework to characterize persistence at depth. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 45 (Springer, 2019).

    53.
    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).
    Article  Google Scholar 

    54.
    van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).
    Article  Google Scholar 

    55.
    Sinniger, F., Morita, M. & Harii, S. ‘Locally extinct’ coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32, 153 (2013).
    Article  Google Scholar 

    56.
    Prasetia, R., Sinniger, F., Hashizume, K. & Harii, S. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery. PLoS One 12, e0177034 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Richmond, R. H. Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93, 527–533 (1987).
    Article  Google Scholar 

    58.
    Graham, E. M., Baird, A. H. & Connolly, S. R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27, 529–539 (2008).
    Article  Google Scholar 

    59.
    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).
    CAS  PubMed  Article  Google Scholar 

    60.
    Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity? Prog. Oceanogr. 165, 110–122 (2018).
    Article  Google Scholar 

    61.
    Kahng, S. E. et al. Light, Temperature, photosynthesis, heterotrophy, and the lower depth limits of mesophotic coral ecosystems. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 42 (Springer, 2019).

    62.
    Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecology 99, 421–437 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Dishon, G., Dubinsky, Z., Fine, M. & Iluz, D. Underwater light field patterns in subtropical coastal waters: a case study from the Gulf of Eilat (Aqaba). Isr. J. Plant Sci. 60, 265–275 (2012).
    Article  Google Scholar 

    64.
    Shlesinger, T. & Loya, Y. Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. Coral Reefs 35, 1357–1368 (2016).
    Article  Google Scholar 

    65.
    Shlesinger, T. & Loya, Y. Sexual reproduction of scleractinian corals in mesophotic coral ecosystems vs. shallow reefs. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 35 (Springer, 2019).

    66.
    Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nat. Clim. Change 3, 528–530 (2013).
    Article  Google Scholar 

    67.
    Soares, M. O. et al. Why do mesophotic coral ecosystems have to be protected? Sci. Total Environ. 726, 138456 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic Coral Ecosystems, Vol. 12 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) Ch. 1 (Springer, 2019).

    69.
    Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 12407 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Ritson-Williams, R. et al. New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson. Contrib. Mar. Sci. 38, 437–457 (2009).

    71.
    Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Whitman, T. N., Negri, A. P., Bourne, D. G. & Randall, C. J. Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens. Sci. Rep. 10, 16397 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Doropoulos, C. et al. Depth gradients drive changes in early successional community composition and associated coral larvae settlement interactions. Mar. Biol. 167, 59 (2020).
    Article  Google Scholar 

    74.
    Sammarco, P. W. & Andrews, J. C. Localized dispersal and recruitment in Great Barrier Reef corals: the Helix experiment. Science 239, 1422–1424 (1988).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Vollmer, S. V. & Palumbi, S. R. Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J. Hered. 98, 40–50 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Figueiredo, J., Baird, A. H. & Connolly, S. R. Synthesizing larval competence dynamics and reef‐scale retention reveals a high potential for self‐recruitment in corals. Ecology 94, 650–659 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Underwood, J. N. et al. Extreme seascape drives local recruitment and genetic divergence in brooding and spawning corals in remote north‐west Australia. Evol. Appl. 13, 2404–2421 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    78.
    Dubé, C. E., Boissin, E., Mercière, A. & Planes, S. Parentage analyses identify local dispersal events and sibling aggregations in a natural population of Millepora hydrocorals, a free‐spawning marine invertebrate. Mol. Ecol. 29, 1508–1522 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 445 (2018).
    Article  Google Scholar 

    80.
    Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018).
    Article  Google Scholar 

    81.
    Carlon, D. B. & Olson, R. R. Larval dispersal distance as an explanation for adult spatial pattern in two Caribbean reef corals. J. Exp. Mar. Bio. Ecol. 173, 247–263 (1993).
    Article  Google Scholar 

    82.
    Miller, K. & Mundy, C. Rapid settlement in broadcast spawning corals: implications for larval dispersal. Coral Reefs 22, 99–106 (2003).
    Article  Google Scholar 

    83.
    Cooper, T. F. et al. Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc. Biol. Sci. 278, 1840–1850 (2011).
    PubMed  PubMed Central  Google Scholar 

    84.
    Pochon, X. et al. Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawai’i. R. Soc. Open Sci. 2, 140351 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571 (2009).
    Article  Google Scholar 

    86.
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).
    Article  Google Scholar 

    87.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
    CAS  PubMed  Article  Google Scholar 

    88.
    Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: a silent threat to coral persistence. Science 365, 1002–1007 (2019).
    CAS  PubMed  Article  Google Scholar 

    89.
    Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).
    CAS  PubMed  Article  Google Scholar 

    90.
    Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Goreau, T. F. The ecology of Jamaican coral reefs I. Species composition and zonation. Ecology 40, 67–90 (1959).
    Article  Google Scholar 

    92.
    Loya, Y. Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar. Biol. 13, 100–123 (1972).
    Article  Google Scholar 

    93.
    Sheppard, C. R. C. Coral populations on reef slopes and their major controls. Mar. Ecol. Prog. Ser. 7, 83–115 (1982).
    Article  Google Scholar 

    94.
    Vermeij, M. J. A. & Bak, R. P. M. Species-specific population structure of closely related coral morphospecies along a depth gradient (5-60 m) over a Caribbean reef slope. Bull. Mar. Sci. 73, 725–744 (2003).
    Google Scholar 

    95.
    Rocha, L. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow‐to‐mesophotic coral community transition. Ecosphere 10, e02839 (2019).
    Article  Google Scholar 

    97.
    Roberts, T. E., Bridge, T. C. L., Caley, M. J., Madin, J. S. & Baird, A. H. Resolving the depth zonation paradox in reef‐building corals. Ecology 100, e02761 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    98.
    Benayahu, Y. & Loya, Y. Surface brooding in the Red Sea soft coral Parerythropodium fulvum fulvum (Forskål, 1775). Biol. Bull. 165, 353–369 (1983).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    99.
    Shefy, D., Shashar, N. & Rinkevich, B. The reproduction of the Red Sea coral Stylophora pistillata from Eilat: 4-decade perspective. Mar. Biol. 165, 27 (2018).
    Article  Google Scholar 

    100.
    Rosenberg, Y., Doniger, T. & Levy, O. Sustainability of coral reefs are affected by ecological light pollution in the Gulf of Aqaba/Eilat. Commun. Biol. 2, 289 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    101.
    Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).
    Article  Google Scholar 

    102.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2020). More

  • in

    Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease

    1.
    Carré, P. & Pouzet, A. Rapeseed market, worldwide and in Europe. OCL 21(1), D102. https://doi.org/10.1051/ocl/201h3054 (2014).
    Article  Google Scholar 
    2.
    Hammond, K. E. & Lewis, B. E. The timing and sequence of events leading to stem canker disease in populations of Brassica napus var. oleifera in the field. Plant Pathol. 35, 551–556. https://doi.org/10.1111/j.1365-3059.1986.tb02054.x (1986).
    Article  Google Scholar 

    3.
    Deb, D., Khan, A. & Dey, N. Phoma diseases: Epidemiology and control. Plant. Pathol. 00, 1–15. https://doi.org/10.1111/ppa.13221 (2020).
    CAS  Article  Google Scholar 

    4.
    Fitt, B. D. L., Brun, H., Barbetti, M. J. & Rimmer, S. R. World-wide importance of Phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur. J. Plant Pathol. 114, 3–15. https://doi.org/10.1007/s10658-005-2233-5 (2006).
    Article  Google Scholar 

    5.
    Winter, M. & Koopmann, B. Race spectra of Leptosphaeria maculans, the causal agent of blackleg disease of oilseed rape, in different geographic regions in northern Germany. Eur. J. Plant Pathol. 145, 629–641. https://doi.org/10.1007/s10658-016-0932-8 (2016).
    Article  Google Scholar 

    6.
    Derbyshire, M. C. & Denton-Giles, M. The control of Sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant. Pathol. 65, 859–877. https://doi.org/10.1111/ppa.12517 (2016).
    CAS  Article  Google Scholar 

    7.
    Gladders, P., Symonds, B. V., Hardwick, N. V. & Sansford, C. E. Opportunities to control canker (Leptosphaeria maculans) in winter oilseed rape by improved spray timing. IOBC/WPRS Bull. 21, 111–120 (1998).
    Google Scholar 

    8.
    Kuai, J. et al. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res. 199, 89–98. https://doi.org/10.1016/j.fcr.2016.09.025 (2016).
    Article  Google Scholar 

    9.
    Card, S. D. et al. Beneficial endophytic microorganisms of Brassica —A review. Biol. Control 90, 102–112. https://doi.org/10.1016/j.biocontrol.2015.06.001 (2015).
    Article  Google Scholar 

    10.
    Weyens, N., van der Lelie, D., Taghavi, S., Newman, L. & Vangronsveld, J. Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 27, 591–598. https://doi.org/10.1016/j.tibtech.2009.07.006 (2009).
    CAS  Article  PubMed  Google Scholar 

    11.
    Müller, H. & Berg, G. Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. Biocontrol 53, 905–916. https://doi.org/10.1007/s10526-007-9111-3 (2008).
    Article  Google Scholar 

    12.
    Granér, G., Persson, P., Meijer, J. & Alström, S. A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol. Lett. 224, 269–276. https://doi.org/10.1016/S0378-1097(03)00449-X (2003).
    CAS  Article  PubMed  Google Scholar 

    13.
    Croes, S. et al. Bacterial communities associated with Brassica napus L. grown on trace-element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microb. Biotechnol. 6, 371–384. https://doi.org/10.1111/1751-7915.12057 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Zhang, Q. et al. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol. Control 72, 98–102. https://doi.org/10.1016/j.biocontrol.2014.02.018 (2014).
    Article  Google Scholar 

    15.
    Berg, G. et al. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol. Ecol. 56, 250–261. https://doi.org/10.1111/j.1574-6941.2005.00025.x (2006).
    CAS  Article  PubMed  Google Scholar 

    16.
    Berg, G. et al. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl. Environ. Microbiol. 71, 4203–4213. https://doi.org/10.1128/AEM.71.8.4203-4213.2005 (2005).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Robin, A. H. K. et al. Leptosphaeria maculans alters glucosinolate profiles in blackleg disease-resistant and -susceptible cabbage lines. Front. Plant Sci. 8, 1789. https://doi.org/10.3389/fpls.2017.01769 (2017).
    Article  Google Scholar 

    18.
    Garrido-Sanz, D. et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS ONE 11(2), e0150183. https://doi.org/10.1371/journal.pone.0153733 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Taylor, A. Fungal diversity in ectotomycorrhizal communities: sampling effort and species distribution. Plant Soil 244, 19–28. https://doi.org/10.1023/A:1020279815472 (2002).
    ADS  CAS  Article  Google Scholar 

    20.
    Schmidt, C. S. et al. Distinct communities of poplar endophytes on an unpolluted and a risk elements-polluted site and their plant growth promoting potential in vitro. Microb. Ecol. 75, 955–969. https://doi.org/10.1007/s00248-017-1103-y (2018).
    CAS  Article  PubMed  Google Scholar 

    21.
    Jedryczka, M. Epidemiology and damage caused by stem canker of oilseed rape in Poland. Phytopathol. Pol. 45, 73–75 (2007).
    Article  Google Scholar 

    22.
    Mazáková, J., Urban, J., Zouhar, M. & Ryšánek, P. Analysis of Leptosphaeria species complex causing Phoma leaf spot and stem canker of winter oilseed rape (Brassica napus) in the Czech Republic. Crop Pasture Sci. 68, 254–264. https://doi.org/10.1071/CP16308 (2017).
    CAS  Article  Google Scholar 

    23.
    El Hadrami, A., Fernando, W. G. D. & Daayf, F. Variations in relative humidity modulate Leptosphaeria spp. pathogenicity and interfere with canola mechanisms of defence. Eur. J. Plant Pathol. 126, 187–202. https://doi.org/10.1007/s10658-009-9532-1 (2010).
    Article  Google Scholar 

    24.
    Hilton, S., Bennett, A. J., Chandler, D., Mills, P. & Bending, G. D. Preceding crop and seasonal effects influence fungal, bacterial and nematode diversity in wheat and oilseed rape rhizosphere and soil. Appl. Soil Ecol. 126, 34–46. https://doi.org/10.1016/j.apsoil.2018.02.007 (2018).
    Article  Google Scholar 

    25.
    Glynou, K. et al. The local environment determines the assembly of root endophytic fungi at a continental scale. Environ. Microbiol. 18, 2418–2434. https://doi.org/10.1111/1462-2920.13112 (2016).
    CAS  Article  PubMed  Google Scholar 

    26.
    Croes, S., Weyens, N., Colpaet, J. & Vangronveld, J. Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: An evaluation of sampling and isolation protocols. Environ. Microbiol. 17, 2379–2392., https://doi.org/10.1111/1462-2920.12701 (2015).

    27.
    Alström, S. Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. J. Phytopathol. 149, 57–64. https://doi.org/10.1046/j.1439-0434.2001.00585.x (2001).
    Article  Google Scholar 

    28.
    Cope-Selby, N. et al. Endophytic bacteria in Miscanthus seed: Implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy 9, 57–77. https://doi.org/10.1111/gcbb.12364 (2017).
    CAS  Article  Google Scholar 

    29.
    Rathore, R. et al. Crop establishment practices are a driver of the plant microbiota in winter oilseed rape (Brassica napus). Front. Microbiol. 8, 1489. https://doi.org/10.3389/fmicb.2017.01489 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    30.
    Lay, C. Y. et al. Canola-Root-Associated microbiomes in the Canadian prairies. Front. Microbiol. 9, 1189. https://doi.org/10.3389/fmicb.2018.01188 (2018).
    Article  Google Scholar 

    31.
    Sundara-Rao, W. V. B. & Sinha, M. K. Phosphate dissolving microorganisms in the soil and rhizosphere. Indian J. Agric. Sci. 33, 272–278. https://doi.org/10.1007/BF01372637 (1963).
    Article  Google Scholar 

    32.
    Bashan, Y., Kamnev, A. A. & de-Bashan, L. E. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: A proposal for an alternative procedure. Biol. Fertil. Soils 49, 465–479. https://doi.org/10.1007/s00374-012-0737-7 (2013).
    CAS  Article  Google Scholar 

    33.
    Pii, Y. et al. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 51, 403–415. https://doi.org/10.1007/s00374-015-0996-1 (2015).
    CAS  Article  Google Scholar 

    34.
    Reddy, C. A. & Saravanan, R. S. Polymicrobial multi-functional approach for enhancement of crop productivity. in Advances in Applied Microbiology (eds. Gadd, G. M. & Sariaslani, S.) 53–113 (Oxford Academic, Oxford, 2013).

    35.
    Lally, R. D. et al. Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front. Plant Sci. 8, 2193. https://doi.org/10.3389/fpls.2017.02193 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Parikh, L., Eskelson, M. J. & Adesemoye, A. O. Relationship of in vitro and in planta screening: improving the selection process for biological control agents against Fusarium root rot in row crops. Arch. Phytopathol. Plant Protect. 51, 156–169. https://doi.org/10.1080/03235408.2018.1441098 (2018).
    Article  Google Scholar 

    37.
    Bakker, P. A. H. M., Pieterse, C. M. J. & van Loon, L. C. Induced systemic resistance by fluorescent Pseudomonas sp. Phytopathology 97, 239–243. https://doi.org/10.1094/PHYTO-97-2-0239 (2007).
    Article  PubMed  Google Scholar 

    38.
    Youssef, S. A., Tartoura, K. A. & Greash, A. G. Serratia proteamaculans mediated alteration of tomato defense system and growth parameters in response to early blight pathogen Alternaria solani infection. Physiol. Mol. Plant Pathol. 103, 16–22. https://doi.org/10.1016/j.pmpp.2018.04.004 (2018).
    CAS  Article  Google Scholar 

    39.
    Li, H. et al. The use of Pseudomonas fluorescens P13 to control Sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. J. Microbiol. 49, 884–889. https://doi.org/10.1007/s12275-011-1261-4 (2011).
    Article  PubMed  Google Scholar 

    40.
    Smolińska, U. & Kowalska, B. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum—A review. J. Plant Pathol. 100, 1–12. https://doi.org/10.1007/s42161-018-0023-0 (2018).
    Article  Google Scholar 

    41.
    Shaukat, M. F. Seed bio-priming with Serratia plymuthica HRO-C48 for the control of Verticillium longisporum and Phoma lingam in Brassica napus L. spp. oleifera. (PhD Dissertation, University of Uppsala, Sweden, 2013).

    42.
    Castellano-Hinojosa, A., Pérez-Tapia, V., Bedmar, E. J. & Santillana, N. Purple corn-associated rhizobacteria with potential for plant growth promotion. J. Appl. Microbiol. 124, 1254–1264. https://doi.org/10.1111/jam.13708 (2018).
    CAS  Article  PubMed  Google Scholar 

    43.
    Li, L. et al. Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek 111, 1735–1748. https://doi.org/10.1007/s10482-018-1062-4 (2018).
    Article  PubMed  Google Scholar 

    44.
    Barnawal, D., Bharti, N., Maji, D., Chanotiya, C. S. & Kalra, A. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol. Biochem. 58, 227–235. https://doi.org/10.1016/j.plaphy.2012.07.008 (2012).
    CAS  Article  PubMed  Google Scholar 

    45.
    Egamberdieva, D., Wirth, S., Behrendt, U., Ahmad, P. & Berg, G. Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Front. Microbiol. 8, 199. https://doi.org/10.3389/fmicb.2017.00199 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    46.
    Joe, M. M. et al. Resistance responses of rice to rice blast fungus after seed treatment with the endophytic Achromobacter xylosoxidans AUM54 strains. Crop Protect. 42, 141–148. https://doi.org/10.1016/j.cropro.2012.07.006 (2012).
    Article  Google Scholar 

    47.
    Bertrand, H. et al. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Can. J. Microbiol. 46, 229–236 (2000).
    CAS  Article  Google Scholar 

    48.
    Abuamsha, R., Salman, M. & Ehlers, R. U. Role of different additives on survival of Serratia plymuthica HRO-C48 on oilseed rape seeds and control of Phoma lingam. Br. Microbiol. Res. J. 4, 737–748 (2014).
    Article  Google Scholar 

    49.
    Garrity, G. M., Winters, M. & Searles, D. B. Taxonomic outline of the prokaryotes. in Bergey’s Manual of Systematic Bacteriology, 2nd Edn, Release 1.0 (Springer, New York, 2001).

    50.
    Unterseher, M. & Schnittler, M. Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)—Different cultivation techniques influence fungal biodiversity assessment. Mycol. Res. 113, 645–654. https://doi.org/10.1016/j.mycres.2009.02.002 (2009).
    Article  PubMed  Google Scholar 

    51.
    Zadok, J. C., Chang, T. T. & Konzak, A. A decimal code for the growth stages of cereals. Weed Res. 14, 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x (1974).
    Article  Google Scholar 

    52.
    Schmidt, C. S., Mrnka, L., Frantík, T., Lovecká, P. & Vosátka, M. Plant growth promotion of Miscanthus × giganteus by endophytic bacteria and fungi on non-polluted and polluted soils. World J. Microbiol. Biotechnol. 34, 48. https://doi.org/10.1007/s11274-018-2426-7 (2018).
    CAS  Article  PubMed  Google Scholar 

    53.
    Koubek, J. et al. Whole-cell MALDI-TOF: Rapid screening method in environmental microbiology. Int. Biodeter. Biodegr. 69, 82–86. https://doi.org/10.1016/j.ibiod.2011.12.007 (2012).
    CAS  Article  Google Scholar 

    54.
    Uhlik, O. et al. Matrix-assisted laser desorption ionization (MALDI)–time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microb. 77, 6858–6866. https://doi.org/10.1128/AEM.05465-11 (2011).
    CAS  Article  Google Scholar 

    55.
    Štorchová, H. et al. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49, 79–84. https://doi.org/10.2307/1223934 (2000).
    Article  Google Scholar 

    56.
    White, T. J., Bruns, T. D., Lee, S. & Taylor, J. Analysis of phylogenetic relationship by amplification and direct sequencing of ribosomal RNA genes. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 315–322 (Academic Press Inc., New York, 1990).

    57.
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x (1993).
    CAS  Article  PubMed  Google Scholar 

    58.
    McLaughlin, D. J., Hibbett, D. S., Lutzoni, F., Spatafora, J. W. & Vilgalys, R. The search for the fungal tree of life. Trends Microbiol. 11, 488–497. https://doi.org/10.1016/j.tim.2009.08.001 (2009).
    CAS  Article  Google Scholar 

    59.
    Alexander, D. B. & Zuberer, D. A. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39–45. https://doi.org/10.1007/BF00369386 (1991).
    CAS  Article  Google Scholar 

    60.
    Penrose, D. M. & Glick, B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118, 10–15. https://doi.org/10.1034/j.1399-3054.2003.00086.x (2003).
    CAS  Article  PubMed  Google Scholar 

    61.
    Li, Z., Chang, S., Lin, L., Li, Y. & An, Q. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett. Appl. Microbiol. 53, 178–185. https://doi.org/10.1111/j.1472-765X.2011.03088.x (2011).
    CAS  Article  PubMed  Google Scholar 

    62.
    Villano, D., Fernandez-Pachon, M. S., Moya, M. L., Troncoso, A. M. & Garcıa-Parrilla, M. C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71, 230–235. https://doi.org/10.1016/j.talanta.2006.03.050 (2007).
    CAS  Article  PubMed  Google Scholar 

    63.
    Hajšlová, J., Fenclová, M. & Zachariašová, M. Methodology for the Rapid Screening of Isolates of Endophytic Microorganisms and Identification of Strains with Phytohormonal Activity (in Czech, ISBN 978-80-7080-869-6 ) (2013).

    64.
    Veprikova, Z. et al. Mycotoxins in plant-based dietary supplements: Hidden health risk for consumers. J. Agric. Food Chem. 63, 6633–6643. https://doi.org/10.1021/acs.jafc.5b02105 (2015).
    CAS  Article  PubMed  Google Scholar 

    65.
    Zhou, Q. Untersuchungen zum Infektionsmodus, immunologischen Nachweis und zur biologischen Bekämpfung von Leptosphaeria maculans (Desm) Ces. & de Not., dem Erreger der Wurzelhals- und Stängelfäule an Winterraps (Brassica napus L.). (Ph.D Dissertation, University of Göttingen, Göttingen, 2001).

    66.
    Chèvre, A. M. et al. Stabilization of resistance to Leptosphaeria maculans in Brassica napus–B. juncea recombinant lines and its introgression into spring-type Brassica napus. Plant Dis. 92, 1208–1214. https://doi.org/10.1094/PDIS-92-8-1208 (2008).
    Article  PubMed  Google Scholar 

    67.
    El-Tarabily, K. A. et al. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. 49, 573–583. https://doi.org/10.1046/j.1365-3059.2000.00494.x (2000).
    Article  Google Scholar 

    68.
    Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation 2nd edn. (Primer-E, Plymouth, 2001).
    Google Scholar 

    69.
    Frisvad, J. C., Smedsgaard, J., Larsen, T. O. & Samson, R. A. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 49, 201–241 (2004).
    Google Scholar 

    70.
    Romero, F. M., Rossi, F. R., Gárriz, A., Carrasco, P. & Ruíz, O. A. A bacterial endophyte from apoplast fluids protects canola plants from different pathogens via antibiosis and induction of host resistance. Phytopathology 109, 375–383 (2019).
    CAS  Article  Google Scholar 

    71.
    Kamal, M. M., Lindbeck, K. D., Savocchia, S. & Ash, G. J. Biological control of Sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathol. 64, 1375–1384 (2015).
    CAS  Article  Google Scholar 

    72.
    Fernando, W. G. D., Nakkeeran, S., Zhang, Y., Savchuk, S. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protect. 26, 100–107. https://doi.org/10.1016/j.cropro.2006.04.007 (2007)

    73.
    Peng, G., McGregor, L., Lahlali, R., Gossen, B. D., Hwang, S. F., Adhikari, K. K., Strelkov, S. E., McDonald, M. R. Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathol. 60, 566–574. https://doi.org/10.1111/j.1365-3059.2010.02400.x (2011)

    74.
    Wu, Y., Yuan, J., Raza, W., Shen, Q., Huang, Q. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot. J. Microbiol. Biotechnol. 24, 1327–1336. https://doi.org/10.4014/jmb.1402.02061 (2014)

    75.
    Auer, S. & Ludwig-Müller, J. Biological control of clubroot (Plasmodiophora brassicae) by an endophytic fungus. Integrated control in oilseed crops. IOBC-WPRS Bull. 136, 155–156 (2018).
    Google Scholar 

    76.
    Huang, H.-C. & Erickson, R. S. Biological control of Sclerotinia stem rot of canola using Ulocladium atrum. Plant Pathol. Bull. 16, 55–59 (2007).
    CAS  Google Scholar 

    77.
    Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S., Castro, P.M.L. Assessment of the plant growth promoting abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 42, 1229–1235. https://doi.org/10.1016/j.soilbio.2010.04.014 (2010) More