More stories

  • in

    Performance comparison of two reduced-representation based genome-wide marker-discovery strategies in a multi-taxon phylogeographic framework

    1.
    Avise, J. C. Phylogeography: retrospect and prospect. J. Biogeogr. 36, 3–15 (2009).
    Article  Google Scholar 
    2.
    Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).
    Article  Google Scholar 

    3.
    Linder, P. H. Phylogeography. J. Biogeogr. 44, 243–244 (2017).
    Article  Google Scholar 

    4.
    Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. 105, 13486–13491 (2008).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    5.
    Philippe, H. et al. Pitfalls in supermatrix phylogenomics. Pitfalls supermatrix phylogenomics. Eur. J. Taxon. 28, 3. https://doi.org/10.5852/ejt.2017.283 (2017).
    Article  Google Scholar 

    6.
    Villaverde, T. et al. Bridging the micro- and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above. New Phytol. 220, 636–650 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Vos, P. et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Meudt, H. M. & Clarke, A. C. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci. 12, 106–117 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Paun, O. & Schönswetter, P. Amplified fragment length polymorphism: an invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. Methods Mol. Biol. 862, 75–87 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Dejaco, T., Gassner, M., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Taxonomist’s nightmare … evolutionist’s delight: an integrative approach resolves species limits in jumping bristletails despite widespread hybridization and parthenogenesis. Syst. Biol. 65, 947–974 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Sefc, K. M. et al. Shifting barriers and phenotypic diversification by hybridisation. Ecol. Lett. 20, 651–662 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Suchan, T., Malicki, M. & Ronikier, M. Relict populations and Central European glacial refugia: the case of Rhododendron ferrugineum (Ericaceae). J. Biogeogr. 46, 392–404 (2019).
    Article  Google Scholar 

    13.
    Schneeweiss, G. M. & Schönswetter, P. A re-appraisal of nunatak survival in arctic-alpine phylogeography. Mol. Ecol. 20, 190–192 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Lemmon, A. R. & Lemmon, E. M. High-throughput identification of informative nuclear loci for shallow-scale phylogenetics and phylogeography. Syst. Biol. 61, 745–761 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, 1–7 (2008).
    Article  CAS  Google Scholar 

    16.
    Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius L.. Mol. Ecol. 25, 2997–3018 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Bohling, J., Small, M., Von Bargen, J., Louden, A. & DeHaan, P. Comparing inferences derived from microsatellite and RADseq datasets: a case study involving threatened bull trout. Conserv. Genet. 20, 329–342 (2019).
    CAS  Article  Google Scholar 

    19.
    Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—implications for brown trout conservation. Ecol. Evol. 9, 2106–2120 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Mesak, F., Tatarenkov, A., Earley, R. L. & Avise, J. C. Hundreds of SNPs vs. dozens of SSRs: which dataset better characterizes natural clonal lineages in a self-fertilizing fish?. Front. Ecol. Evol. 2, 74 (2014).
    Article  Google Scholar 

    21.
    Fay, M. F., Cowan, R. S. & Leitch, I. J. The effects of nuclear DNA content (C-value) on the quality and utility of AFLP fingerprints. Ann. Bot. 95, 237–246 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Karam, M.-J., Lefèvre, F., Dagher-Kharrat, M. B., Pinosio, S. & Vendramin, G. G. Genomic exploration and molecular marker development in a large and complex conifer genome using RADseq and mRNAseq. Mol. Ecol. Resour. 15, 601–612 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A. & Cresko, W. A. SNP Discovery and Genotyping for Evolutionary Genetics Using RAD Sequencing. Methods in Molecular Biology (Clifton, N.J.) Vol. 772, 157–178 (Springer, Berlin, 2011).
    Google Scholar 

    24.
    Davey, J. L. & Blaxter, M. W. RADseq: next-generation population genetics. Brief. Funct. Genomics 9, 416–423 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Głowacka, K. et al. Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. GCB Bioenergy 7, 386–404 (2015).
    Article  CAS  Google Scholar 

    26.
    Leaché, A. D., Banbury, B. L., Felsenstein, J., De Oca, A. N. M. & Stamatakis, A. Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Wu, C.-H. & Drummond, A. J. Joint inference of microsatellite mutation models, population history and genealogies using transdimensional Markov Chain Monte Carlo. Genetics 188, 151–164 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Emerson, K. J. et al. Resolving postglacial phylogeography using high-throughput sequencing. Proc. Natl. Acad. Sci. 107, 16196–16200 (2010).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    29.
    Sboner, A., Mu, X., Greenbaum, D., Auerbach, R. K. & Gerstein, M. B. The real cost of sequencing: higher than you think!. Genome Biol. 12, 125 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Muir, P. et al. The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol. 17, 53 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    32.
    Mittermeier, R. A. & Mittermeier, C. G. Megadiversity: Earth’s Biologically Wealthiest Nations. in 501 (CEMEX, 1997).

    33.
    Trimble, M. J. & van Aarde, R. J. Geographical and taxonomic biases in research on biodiversity in human-modified landscapes. Ecosphere 3, art119 (2012).
    Article  Google Scholar 

    34.
    Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl. Acad. Sci. USA 110, 12144–12148 (2013).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    35.
    Adenle, A. et al. Stakeholder visions for biodiversity conservation in developing countries. Sustainability 7, 271–293 (2014).
    Article  Google Scholar 

    36.
    Adenle, A. A., Stevens, C. & Bridgewater, P. Global conservation and management of biodiversity in developing countries: an opportunity for a new approach. Environ. Sci. Policy 45, 104–108 (2015).
    Article  Google Scholar 

    37.
    Barber, P. H. et al. Advancing biodiversity research in developing countries: the need for changing paradigms. Bull. Mar. Sci. 90, 187–210 (2014).
    Article  ADS  Google Scholar 

    38.
    Byrne, M. Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora. Aust. J. Bot. 55, 316 (2007).
    Article  Google Scholar 

    39.
    Dufresnes, C. et al. Conservation phylogeography: does historical diversity contribute to regional vulnerability in European tree frogs (Hyla arborea)?. Mol. Ecol. 22, 5669–5684 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).
    Article  Google Scholar 

    41.
    Trimble, M. J. & van Aarde, R. J. Species inequality in scientific study. Conserv. Biol. 24, 886–890 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Kirschner, P. et al. Long-term isolation of European steppe outposts boosts the biome’s conservation value. Nat. Commun. 11, 1–10 (2020).
    Article  CAS  Google Scholar 

    43.
    Záveská, E. et al. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol. Phylogenet. Evol. https://doi.org/10.1016/J.YMPEV.2019.106572 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Luo, M.-C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    45.
    Wang, X. X. et al. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 5, 2957 (2014).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    46.
    Hensen, I. et al. Low genetic variability and strong differentiation among isolated populations of the rare steppe grass Stipa capillata L. Central Europe. Plant Biol. 12, 526–536 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Huang, H. & Knowles, L. L. Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Syst. Biol 65, 1–9 (2014).
    Google Scholar 

    48.
    Crotti, M., Barratt, C. D., Loader, S. P., Gower, D. J. & Streicher, J. W. Causes and analytical impacts of missing data in RADseq phylogenetics: insights from an African frog (Afrixalus). Zool. Scr. 48, 157–167 (2019).
    Article  Google Scholar 

    49.
    Sinclair, E. A. & Hobbs, R. J. Sample size effects on estimates of population genetic structure: implications for ecological restoration. Restor. Ecol. 17, 837–844 (2009).
    Article  Google Scholar 

    50.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Althoff, D. M., Gitzendanner, M. A. & Segraves, K. A. The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst. Biol. 56, 477–484 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Felsenstein, J. Inferring Phylogenies (Oxford University Press Inc., Oxford, 2004).
    Google Scholar 

    54.
    Eaton, D. A. R., Spriggs, E. L., Park, B. & Donoghue, M. J. Misconceptions on missing data in RAD-seq phylogenetics with a deep-scale example from flowering plants. Syst. Biol. 66, 399–412 (2016).
    Google Scholar 

    55.
    Hodel, R. G. J. et al. The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl. Plant Sci. 4, 1600025 (2016).
    Article  Google Scholar 

    56.
    Puritz, J. B. et al. Demystifying the RAD fad. Mol. Ecol. 23, 5937–5942 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Wagner, H. C. et al. Light at the end of the tunnel: Integrative taxonomy delimits cryptic species in the Tetramorium caespitum complex (Hymenoptera: Formicidae). Myrmecol. News 25, 95–129 (2017).
    Google Scholar 

    59.
    Wheeler, Q. D. Taxonomic Shock and Awe. In The New Taxonomy (ed. Wheeler, Q. D.) 211–226 (CRC Press, Boca Raton, FL, 2008). https://doi.org/10.1201/9781420008562.ch10.
    Google Scholar 

    60.
    Holderegger, R. et al. Conservation genetics: linking science with practice. Mol. Ecol. 28, 3848–3856 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Tel-Zur, N., Abbo, S., Myslabodski, D. & Mizrahi, Y. Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol. Biol. Rep. 17, 249–254 (1999).
    CAS  Article  Google Scholar 

    62.
    Wachter, G. A. et al. Pleistocene survival on central Alpine nunataks: genetic evidence from the jumping bristletail Machilis pallida. Mol. Ecol. 21, 4983–4995 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. optiFLP: software for automated optimization of amplified fragment length polymorphism scoring parameters. Mol. Ecol. Resour. 11, 1113–1118 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Arthofer, W. TinyFLP and tinyCAT: software for automatic peak selection and scoring of AFLP data tables. Mol. Ecol. Resour. 10, 385–388 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner, H. Vegan: Community Ecology Package. R package. (2017).

    66.
    Doležel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244 (2007).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    67.
    Davey, F. & RADseq counter. (2012). https://www.wiki.ed.ac.uk/display/RADSequencing/Home. (Accessed: 15th June 2014)

    68.
    Paun, O. et al. Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 65, 212–227 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org. (Accessed: 1st September 2016)

    71.
    Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936–939 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    73.
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Rosenberg, N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
    Article  Google Scholar 

    75.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    77.
    Kosman, E. & Leonard, K. J. Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol. Ecol. 14, 415–424 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Miclaus, K., Wolfinger, R. & Czika, W. SNP selection and multidimensional scaling to quantify population structure. Genet. Epidemiol. 33, 488–496 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
    Article  Google Scholar 

    80.
    Wickham, H. ggplot2 (Springer, Berlin, 2009). https://doi.org/10.1007/978-0-387-98141-3.
    Google Scholar  More

  • in

    Paternal exposure to a common pharmaceutical (Ritalin) has transgenerational effects on the behaviour of Trinidadian guppies

    1.
    Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Franklin, T. B., Linder, N., Russig, H., Thöny, B. & Mansuy, I. M. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS ONE 6, e21842. https://doi.org/10.1371/journal.pone.0021842 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    McCarthy, D. M. et al. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol. 16, e2006497. https://doi.org/10.1371/journal.pbio.2006497 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Alfonso, S. et al. Examining multi- and transgenerational behavioral and molecular alterations resulting from parental exposure to an environmental PCB and PBDE mixture. Aquat. Toxicol. 208, 29–38 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Anway, M. D., Memon, M. A., Uzumcu, M. & Skinner, M. K. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J. Androl. 27, 868–879 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Crews, D. et al. Transgenerational epigenetic imprints on mate preference. PNAS 104, 5942–5946 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Crews, D. et al. Epigenetic transgenerational inheritance of altered stress responses. PNAS 109, 9143–9148 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Gillette, R. et al. Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology 155, 3853–3866 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Gillette, R., Son, M. J., Ton, L., Gore, A. C. & Crews, D. Passing experiences on to future generations: endocrine disruptors and transgenerational inheritance of epimutations in brain and sperm. Epigenetics 13, 1106–1126 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Bhandari, R., Saal, F. & vom Tillitt, D. Transgenerational effects from early developmental exposures to bisphenol A or 17α-ethinylestradiol in medaka Oryzias latipes. Sci. Rep. 5, 9303. https://doi.org/10.1038/srep09303 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Kidd, K. A. et al. Collapse of a fish population after exposure to a synthetic estrogen. PNAS 104, 8897–8901 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Skinner, M. K. et al. Gene bionetworks involved in the epigenetic transgenerational inheritance of altered mate preference: environmental epigenetics and evolutionary biology. BMC Genom. 15, 377. https://doi.org/10.1186/1471-2164-15-377 (2014).
    Article  Google Scholar 

    14.
    Pembrey, M. E. et al. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14, 159–166 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Moisiadis, V. G. & Matthews, S. G. Glucocorticoids and fetal programming part 1: outcomes. Nature 10, 391–402 (2014).
    CAS  Google Scholar 

    16.
    Crean, A. J. & Bondurianksy, R. What is a paternal effect?. Trends Ecol. Evol. 29, 554–559 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Champagne, F. A. Interplay between paternal germline and maternal effects in shaping development: the overlooked importance of behavioural ecology. Funct. Ecol. 34, 401–413 (2019).
    Article  Google Scholar 

    18.
    Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Reznik, S. Y., Vaghina, N. P. & Voinovich, N. D. Multigenerational maternal effect on diapause induction in Trichogramma species (Hymenoptera: Trichogrammatidae). Biocontrol Sci. Technol. 22, 429–445 (2012).
    Article  Google Scholar 

    20.
    Rechavi, O. et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277–287 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Shama, L. N. S. et al. Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean. Evol. Appl. 9, 1096–1111 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Dunn, G. A. & Bale, T. L. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152, 2228–2236 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Skinner, M. K. et al. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 11, 228. https://doi.org/10.1186/1741-7015-11-228 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Zhu, J., Lee, K. P., Spencer, T. J., Biederman, J. & Bhide, P. G. Transgenerational transmission of hyperactivity in a mouse model of ADHD. J. Neurosci. 34, 2768–2773 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Leroux, S. et al. Embryonic environment and transgenerational effects in quail. Genet. Sel. Evol. 49, 14. https://doi.org/10.1186/s12711-017-0292-7 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Vera-Chang, M. N. et al. Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. PNAS 115, E12435–E12442 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Sheriff, M. J., McMahon, E. K., Krebs, C. J. & Boonstra, R. Risk severity predicts generational impact. J. Zool. 296, 305–310 (2015).
    Article  Google Scholar 

    28.
    Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    He, N. et al. Parental life events cause behavioral difference among offspring: adult pre-gestational restraint stress reduces anxiety across generations. Sci. Rep. 6, 39497. https://doi.org/10.1038/srep39497 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Pentinat, T., Ramon-Krauel, M., Cebria, J., Diaz, R. & Jimenez-Chillaron, J. C. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 151, 5617–5623 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. PNAS 111, 1873–1878 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Cropley, J. E. et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol. Metab. 5, 699–708 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Dunn, G. A., Morgan, C. P. & Bale, T. L. Sex-specificity in transgenerational epigenetic programming. Horm. Behav. 59, 290–295 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Glover, V. & Hill, J. Sex differences in the programming effects of prenatal stress on psychopathology and stress responses: an evolutionary perspective. Physiol. Behav. 106, 736–740 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Saavedra-Rodríguez, L. & Feig, L. A. Chronic social instability induces anxiety and defective social interactions across generations. Biol. Psychiatry 73, 44–53 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Moisiadis, V. G., Constantinof, A., Kostaki, A., Szyf, M. & Matthews, S. G. Prenatal glucocorticoid exposure modifies endocrine function and behaviour for 3 generations following maternal and paternal transmission. Sci. Rep. 7, 11814. https://doi.org/10.1038/s41598-017-11635-w (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Hellmann, J. K., Carlson, E. R. & Bell, A. M. Sex-specific plasticity across generations II: grandpaternal effects are lineage specific and sex specific. J. Anim. Ecol. 89, 2800–2812 (2020).
    Article  Google Scholar 

    38.
    gene duplications and functional diversification in Craniates. Le Crom, S., Kapsimali, M., Barome, P-O. & Vernier, P. Dopamine receptors for every species. J. Struct. Funct. Genomics 3, 161–176 (2003).
    Article  Google Scholar 

    39.
    Melis, M. R. & Argiolas, A. Dopamine and sexual behavior. Neurosci. Biobehav. R. 19, 19–38 (1995).
    CAS  Article  Google Scholar 

    40.
    Pfaus, J. G., Ismail, N. & Coria-Avila, G. A. Sexual motivation. In Encyclopedia of Behavioral Neuroscience (eds. Koob, G. F., Le Moal, M. & Thompson, R. F.) 201–-209 (Oxford, Oxford Academic Press, 2010).

    41.
    Bardo, M. T., Donohew, R. L. & Harrington, N. G. Psychobiology of novelty seeking and drug seeking behavior. Behav. Brain Res. 77, 23–43 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Mällo, T. et al. Rats with persistently low or high exploratory activity: behaviour in tests of anxiety and depression and extracellular levels of dopamine. Behav. Brain Res. 177, 269–281 (2006).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    43.
    Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: a meta-analysis. Behav. Ecol. 19, 448–455 (2007).
    Article  Google Scholar 

    44.
    Csoka, A. B. & Szyf, M. Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med. Hypotheses 73, 770–780 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Kuczenski, R. & Segal, D. S. Effects of methylphenidate on extracellular dopamine serotonin, and norepinephrine: comparison with amphetamine. J. Neurochem. 68, 2032–2037 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Gamo, N. J., Wang, M. & Arnsten, A. F. T. Methylphenidate and atomoxetine enhance prefrontal function through α2-adrenergic and dopamine D1 receptors. J. Am. Acad. Child Adolesc. Psychiatry 49, 1011–1023 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Greenhill, L. L. et al. Guidelines and algorithms for the use of methylphenidate in children with attention-deficit/hyperactivity disorder. J. Atten. Disord. 6, S89–S100 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Kessler, R. C. et al. The prevalence and correlates of adult ADHD in the United States: results from the national comorbidity survey replication. Am. J. Psychiatry 163, 716–723 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Visser, S. N. et al. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003–2011. J. Am. Acad. Child. Psychiatry 53, 34–46 (2014).
    Article  Google Scholar 

    50.
    Karlstad, Ø. et al. Use of drugs for ADHD among adults—a multinational study among 15.8 million adults in the Nordic countries. Eur. J. Clin. Pharmacol. 72, 1507–1514 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Biederman, J. Attention-deficit/hyperactivity disorder: a selective overview. Biol. Psychiatry 57, 1215–1220 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    McFadyen-Leussis, M. P., Lewis, S. P., Bond, T. L. Y., Carrey, N. & Brown, R. E. Prenatal exposure to methylphenidate hydrochloride decreases anxiety and increases exploration in mice. Pharmacol. Biochem. Behav. 77, 491–500 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Levin, E. D. et al. 2011. Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish. Neurotoxicol. Teratol. 33, 668–673 (2011).

    54.
    Lloyd, S. A. et al. Prenatal exposure to psychostimulants increases impulsivity, compulsivity, and motivation for rewards in adult mice. Physiol. Behav. 119, 43–51 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Lepelletier, F. X. et al. Prenatal exposure to methylphenidate affects the dopamine system and the reactivity to natural reward in adulthood in rats. Int. J. Neuropsychoph. https://doi.org/10.1093/ijnp/pyu044 (2015).
    Article  Google Scholar 

    56.
    Montagnini, B. G. et al. Effects of repeated administration of methylphenidate on reproductive parameters in male rats. Physiol. Behav. 133, 122–129 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    He, F., Lidow, I. A. & Lidow, M. S. Consequences of paternal cocaine exposure in mice. Neurotoxicol. Teratol. 28, 198–209 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Killinger, C. E., Robinson, S. & Stanwood, G. D. Subtle biobehavioral effects produced by paternal cocaine exposure. Synapse 66, 902–908 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Vassoler, F. M., White, S. L., Schmidt, H. D., Sadri-Vakili, G. & Pierce, R. C. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci. 16, 42–67 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Fischer, D. K., Rice, R. C., Rivera, A. M., Donohoe, M. & Rajadhyaksha, A. M. Altered reward sensitivity in female offspring of cocaine-exposed fathers. Behav. Brain Res. 332, 23–31 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Wimmer, M. E. et al. Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Mol. Psychiatry 22, 1641–1650 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Yano, M. & Steiner, H. Methylphenidate and cocaine: the same effects on gene regulation?. Trends Pharmacol. Sci. 28, 588–596 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Hall, Z. J., De Serrano, A. R., Rodd, F. H. & Tropepe, V. Casting a wider fish net on animal models in neuropsychiatric research. Prog. Neuropsychopharmacol. Biol. Psychiatry 55, 7–15 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Fontana, B. D., Mezzomo, N. J., Kalueff, A. V. & Rosemberg, D. B. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: a critical review. Exp. Neurol. 299, 157–171 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Reznick, D. N. The impact of predation on life history evolution in Trinidadian guppies: genetic basis of observed life history patterns. Evolution 36, 1236–1250 (1982).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    DeMarais, A. & Oldis, D. Matrotrophic transfer of fluorescent microspheres in Poeciliid fishes. Copeia 3, 632–636 (2005).
    Article  Google Scholar 

    67.
    Hughes, K. A., Du, L., Rodd, F. H. & Reznick, D. N. Familiarity leads to female mate preference for novel males in the guppy Poecilia reticulata. Anim. Behav. 58(907), 916 (1999).
    Google Scholar 

    68.
    Rodd, F. H., Hughes, K. A., Grether, G. F. & Baril, C. T. A possible non-sexual origin of mate preference: are male guppies mimicking fruit?. Proc. R. Soc. B Biol. Sci. 269, 475–481 (2002).
    Article  Google Scholar 

    69.
    Valvo, J., Rodd, F. H. & Hughes, K. A. Consistent female preference for rare and unfamiliar male color patterns in wild guppy populations. Behav. Ecol. 30, 1672–1681 (2019).
    Article  Google Scholar 

    70.
    Daniel, M. J., Koffinas, L. & Hughes, K. A. Mating preference for novel phenotypes can be explained by general neophilia in female guppies. Am. Nat. 196, 414–428 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Deacon, A. E., Ramnarine, I. W. & Magurran, A. E. How reproductive ecology contributes to the spread of a globally invasive fish. PLoS ONE 6, e24416. https://doi.org/10.1371/journal.pone.0024416 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Hughes, K. A., Houde, A. E., Price, A. C. & Rodd, F. H. Mating advantage for rare males in wild guppy populations. Nature 503, 108–110 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    De Serrano, A. R., Fong, C. & Rodd, F. H. Effects of methylphenidate on responses to novelty in a teleost fish (Poecilia reticulata). Behav. Brain Res. 302, 53–59 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    74.
    Schmitz, F. et al. Methylphenidate causes behavioral impairments and neuron and astrocyte loss in the hippocampus of juvenile rats. Mol. Neurobiol. 54, 4201–4216 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    75.
    Bolaños, C. A., Barrot, M., Berton, O., Wallace-Black, D. & Nestler, E. J. Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol. Psychiatry 54, 1317–1329 (2003).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    76.
    Bell, A. M. & Hellman, J. K. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annu. Rev. Ecol. Evol. S. 50, 97–118 (2019).
    Article  Google Scholar 

    77.
    Walsh, R. N. & Cummins, R. A. Open-field test—critical review. Psychol. Bull. 83, 482–504 (1976).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Hill, M. O. Correspondence analysis: a neglected multivariate method. J. R. Stat. Soc. C Appl. 23, 340–354 (1974).
    MathSciNet  Google Scholar 

    79.
    Godin, J. G. J. Evading predators. In Behavioural Ecology of Teleost Fishes (ed. Godin, J. G. J.) 191–236 (Oxford, Oxford University Press, 1997).

    80.
    Sih, A. Foraging strategies and the avoidance of predation by an aquatic insect Notonecta Hoffmanni. Ecology 63(786), 796 (1982).
    Google Scholar 

    81.
    McPeek, M. A., Grace, M. & Richardson, J. M. L. Physiological and behavioral responses to predators shape the growth/predation risk trade-off in damselflies. Ecology 82, 1535–1545 (2001).
    Article  Google Scholar 

    82.
    Burns, J. G. The validity of three tests of temperament in guppies (Poecilia reticulata). J. Comp. Psychol. 122, 344–356 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Morris, S. M. et al. The genetic toxicity of methylphenidate: a review of the current literature. J. Appl. Toxicol. 32, 756–764 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    SAS Institute. SAS/STAT 9.4 User’s Guide (SAS Institute, Cary, 2013).

    85.
    Seghers, B. H. Feeding behavior and terrestrial locomotion in the cyprinodontid fish, Rivulus harti (Boulenger). Verh. Internat. Verein. Limnol. 20, 2055–2059 (1978).
    Google Scholar 

    86.
    Mattingly, H. T. & Butler, M. J. Laboratory predation on the Trinidadian guppy: implications for the size-selective predation hypothesis and guppy life history evolution. OIKOS 69, 54–64 (1994).
    Article  Google Scholar 

    87.
    Reznick, D. N., Butler, M. J., Rodd, F. H. & Ross, P. N. Life history evolution in guppies (Poecilia reticulata): 6—differential mortality as a mechanism for natural selection. Evolution 50, 1651–1660 (1996).
    PubMed  PubMed Central  Google Scholar 

    88.
    Bijlsma, L., Emke, E., Hernandez, F. & de Voogt, P. Investigation of drugs of abuse and relevant metabolites in Dutch sewage water by liquid chromatography coupled to high resolution mass spectrometry. Chemosphere 89, 1399–1406 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    89.
    Racamonde, I., Rodil, R., Quintana, J. B., Villaverde-de-Saa, E. & Cela, R. Determination of benzodiazepines, related pharmaceuticals and metabolites in water by solid-phase extraction and liquid-chromatography-tandem mass spectrometry. J. Chromatogr. A 1352, 69–79 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Laland, K. et al. Does evolutionary theory need a rethink?. Nature 514, 161–164 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 9, 2973. https://doi.org/10.1038/s41467-018-05445-5 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    92.
    Soubry, A., Hoyo, C., Jirtle, R. L. & Murphy, S. K. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays 36, 359–371 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Hughes, L. C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. PNAS 115, 6249–6254 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    Wang, X. & Bhandari, R. K. DNA methylation dynamics during epigenetic reprogramming of medaka embryo. Epigenetics 14, 611–622 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    95.
    Wang, X. & Bhandari, R. K. The dynamics of DNA methylation during epigenetic reprogramming of primordial germ cells in medaka (Oryzias latipes). Epigenetics 15, 483–498 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    96.
    Furchtgott, E., Dees, J. W. & Wechkin, S. Open-field exploration as a function of age. J. Comp. Physiol. Psychol. 54, 386–388 (1961).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Werboff, J. & Havlena, J. The effects of aging on open-field behavior. Psychol. Rep. 10, 395–398 (1962).
    Article  Google Scholar 

    98.
    Valle, F. P. Rats performance on repeated tests in open field as a function of age. Psychon. Sci. 23, 333–335 (1971).
    Article  Google Scholar 

    99.
    Franklin, T. B. et al. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    100.
    McBirney, M. et al. Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers. PLoS One 12, e0184306. https://doi.org/10.1371/journal.pone.0184306 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    101.
    Becker, J. B. & Chartoff, E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology 44, 166–183 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Rubinow, D. R. & Schmidt, P. J. Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 44, 111–128 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    103.
    Eriksson, K., Halkka, O., Lokki, J. & Saura, A. Enzyme polymorphism in feral, outbred and inbred rats (Rattus norvegicus). Heredity 37, 341–349 (1976).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    104.
    Connor, J. L. & Belucci, M. J. Natural selection resisting inbreeding depression in captive wild housemice (Mus musculus). Evolution 33, 929–940 (1979).
    PubMed  Article  PubMed Central  Google Scholar 

    105.
    Mina, N. S., Sheldon, B. L., Yoo, B. H. & Frankham, R. Heterozygosity at protein loci in inbred and outbred lines of chickens. Poult. Sci. 70, 1864–1872 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    106.
    Turissini, D. A., Gamez, S. & White, B. J. Genome-wide patterns of polymorphism in an inbred line of the African malaria mosquito Anopheles gambiae. Genome Biol. Evol. 6, 3094–3104 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    107.
    Gray, J. D. et al. Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviors, appetite, and stress. J. Neurosci. 27, 7196–7207 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Marco, E. M. et al. Neurobehavioral adaptations to methylphenidate: the issue of early adolescent exposure. Neurosci. Biobehav. Rev. 35, 1722–1739 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    109.
    American Psychiatric Association. Attention-deficit/hyperactivity disorder. In Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (American Psychiatric Association, Philadelphia, 2014).

    110.
    Novartis Pharmaceuticals Canada Inc. Product monograph for Ritalin and Ritalin SR (2017).

    111.
    Brenhouse, H. C. & Andersen, S. L. Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci. Biobehav. Rev. 35, 1687–1703 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    112.
    Houde, A. E. Sex, Color, and Mate Choice in Guppies (Princeton, Princeton University Press, 1997).
    Google Scholar 

    113.
    Yoshida, M., Nagamine, M. & Uematsu, K. Comparison of behavioral responses to a novel environment between three teleosts, bluegill Lepomis macrochirus, crucian carp Carassius langsdorfii, and goldfish Carassius auratus. Fisheries Sci. 71, 314–319 (2005).
    CAS  Article  Google Scholar 

    114.
    Blumstein, D. T., Evans, C. S. & Daniels, J. C. JWatcher (v. 1.0, 2006).

    115.
    Ahmad, F. & Richardson, M. K. Exploratory behaviour in the open field test adapted for larval zebrafish: impact of environmental complexity. Behav. Process. 92, 88–98 (2013).
    Article  Google Scholar 

    116.
    Burns, J. G., Price, A. C., Thomson, J. D., Hughes, K. A. & Rodd, F. H. Environmental and genetic effects on exploratory behavior of high- and low-predation guppies (Poecilia reticulata). Behav. Ecol. Sociobiol. 70, 1187–1196 (2016).
    Article  Google Scholar 

    117.
    Marriott, A. S. The effects of amphetamine, caffeine and methylphenidate on the locomotor activity of rats in an unfamiliar environment. Int. J. Neuropharmacol. 7, 487–491 (1968).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    118.
    Dyne, L. J. & Hughes, R. N. Effects of methylphenidate on activity and reactions to novelty in rats. Psychon. Sci. 19, 267–268 (1970).
    Article  Google Scholar 

    119.
    R Core Team. R: A Language and Environment for Statistical Computing (Vienna, R Foundation for Statistical Computing, 2018).

    120.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, Berlin, 2002).
    Google Scholar 

    121.
    Volkow, N. D. et al. Dopamine transporters decrease with age. J. Nucl. Med. 37, 554–559 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    122.
    Andersen, S. L. & Teicher, M. H. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 24, 137–141 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    123.
    Arvidsson, E., Viereckel, T., Mikulovic, S. & Wallén-Mackenzie, Å. Age- and sex-dependence of dopamine release and capacity for recovery identified in the dorsal striatum of C57/Bl6J mice. PLoS One 9, e99592. https://doi.org/10.1371/journal.pone.0099592 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    124.
    Faraone, S. V., Biederman, J., Morley, C. P. & Spencer, T. J. Effect of stimulants on height and weight: a review of the literature. J. Am. Acad. Child Adolesc. Psychiatry 47, 994–1009 (2008).
    PubMed  PubMed Central  Google Scholar 

    125.
    Tempelman, R. J. & Rosa, G. J. M. Empirical Bayes approaches to mixed model inference in quantitative genetics. In Genetic Analysis of Complex Traits Using SAS (ed. Saxton, A.) (SAS Institute, Cary, 2004).

    126.
    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
    Article  Google Scholar 

    127.
    Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D. & Schabenberger, O. SAS for Mixed Models (SAS Institute, Cary, 2006).
    Google Scholar  More

  • in

    Contrasting effects of male immigration and rainfall on rank-related patterns of miscarriage in female olive baboons

    1.
    Hrdy, S. B. Infanticide among animals: A review, classification, and examination of the implications for the reproductive strategies of females. Ethol. Sociobiol. 1, 13–40 (1979).
    Article  Google Scholar 
    2.
    Lukas, D. & Huchard, E. The evolution of infanticide by males in mammalian societies. Science 346, 841–844 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Berger, J. Induced abortion and social factors in wild horses. Nature 303, 59–61 (1983).
    ADS  CAS  Article  Google Scholar 

    4.
    Packer, C. & Pusey, A. E. Infanticide in carnivores. In Infanticide: Comparative and Evolutionary Perspectives (eds Hausfater, G. & Hrdy, S. B.) 31–42 (Aldine, New York, 1984).
    Google Scholar 

    5.
    Zipple, M. N. et al. Conditional fetal and infant killing by male baboons. Proc. R. Soc. B 284(1847), 20162561 (2017).
    Article  Google Scholar 

    6.
    Zipple, M. N., Roberts, E. K., Alberts, S. C. & Beehner, J. C. Male-mediated prenatal loss: Functions and mechanisms. Evol. Anthropol. Issues News Rev. 28(3), 114–125 (2019).
    Article  Google Scholar 

    7.
    Bruce, H. M. An exteroceptive block to pregnancy in the mouse. Nature 184, 105 (1959).
    ADS  CAS  Article  Google Scholar 

    8.
    Schwagmeyer, P. L. The Bruce effect: An evaluation of male/female advantages. Am. Nat. 114(6), 932–938 (1979).
    Article  Google Scholar 

    9.
    Labov, J. B. Pregnancy blocking in rodents: Adaptive advantages for females. Am. Nat. 118, 361–371 (1981).
    Article  Google Scholar 

    10.
    Roberts, E. K., Lu, A., Bergman, T. J. & Beehner, J. C. A Bruce effect in wild geladas. Science 335, 1222–1225 (2012).
    ADS  CAS  Article  Google Scholar 

    11.
    Busse, C. & Hamilton, W. J. Infant carrying by male chacma baboons. Science 212(4500), 1281–1283 (1981).
    ADS  CAS  Article  Google Scholar 

    12.
    Palombit, R. A., Seyfarth, R. M. & Cheney, D. L. The adaptive value of “friendships” to female baboons: Experimental and observational evidence. Anim. Behav. 54, 599–614 (1997).
    CAS  Article  Google Scholar 

    13.
    Palombit, R. A. Male infanticide in wild savanna baboons: Adaptive significance and intraspecific variation. In Sexual Selection and Reproductive Competition in Primates: New Perspectives and Directions (ed. Jones, C. B.) 367–412 (The American Society of Primatologists, Norman, 2003).
    Google Scholar 

    14.
    Weingrill, T. Infanticide and the value of male-female relationships in mountain chacma baboons. Behaviour 137, 337–359 (2000).
    Article  Google Scholar 

    15.
    Packer, C. Male dominance and reproductive activity in Papio anubis. Anim. Behav. 27, 37–45 (1979).
    Article  Google Scholar 

    16.
    Smuts, B. B. Sex and Friendship in Baboons (Aldine, New York, 1985).
    Google Scholar 

    17.
    Bercovitch, F. B. Coalitions, cooperation and reproductive tactics among adult male baboons. Anim. Behav. 36, 1198–1209 (1988).
    Article  Google Scholar 

    18.
    Packer, C. Male care and exploitation of infants in Papio anubis. Anim. Behav. 28, 512–520 (1980).
    Article  Google Scholar 

    19.
    Alberts, S. C., Sapolsky, R. M. & Altmann, J. Behavioral, endocrine, and immunological correlates of immigration by an aggressive male into a natural primate group. Horm. Behav. 26, 167–178 (1992).
    CAS  Article  Google Scholar 

    20.
    Packer, C., Collins, D., Sindimwo, A. & Goodall, J. Reproductive constraints on aggressive competition in female baboons. Nature 373, 60–63 (1995).
    ADS  CAS  Article  Google Scholar 

    21.
    Pusey, A., Williams, J. & Goodall, J. The influence of dominance rank on the reproductive success of female chimpanzees. Science 277, 828–831 (1997).
    CAS  Article  Google Scholar 

    22.
    Storey, A. E. & Snow, D. T. Postimplantation pregnancy disruptions in meadow voles: Relationship to variation in male sexual and aggressive behavior. Physiol. Behav. 47(1), 19–25 (1990).
    CAS  Article  Google Scholar 

    23.
    Beehner, J. C., Nguyen, N., Wango, E. O., Alberts, S. C. & Altmann, J. The endocrinology of pregnancy and fetal loss in wild baboons. Horm. Behav. 49, 688 (2006).
    CAS  Article  Google Scholar 

    24.
    Ransom, T. Beach Troop of the Gombe (Bucknell Press, Lewisburg, 1981).
    Google Scholar 

    25.
    Bailey, A., Eberly, L. E. & Packer, C. Does pregnancy coloration reduce female conspecific aggression in the presence of maternal kin?. Anim. Behav. 108, 199–206 (2015).
    Article  Google Scholar 

    26.
    Pratt, N. C. & Lisk, R. D. Effects of social stress during early pregnancy on litter size and sex ratio in the golden hamster (Mesocricetus auratus). J. Reprod. Fertil. 87, 763–769 (1989).
    CAS  Article  Google Scholar 

    27.
    Young, A. J. et al. Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proc. Natl. Acad. Sci. U.S.A. 103, 12005–12010 (2006).
    ADS  CAS  Article  Google Scholar 

    28.
    Arck, P., Hansen, P. J., Mulac Jericevic, B., Piccinni, M. & Szekeres-Bartho, J. Progesterone during pregnancy: endocrine–immune cross talk in mammalian species and the role of stress. Am. J. Reprod. Immunol. 58, 268–279 (2007).
    CAS  Article  Google Scholar 

    29.
    Beehner, J. C. & Lu, A. Reproductive suppression in female primates: A review. Evol. Anthropol. Issues News Rev. 22, 226–238 (2013).
    Article  Google Scholar 

    30.
    Sapolsky, R. M. Endocrine aspects of social instability in the olive baboon (Papio anubis). Am. J. Primatol. 5, 365–379 (1983).
    CAS  Article  Google Scholar 

    31.
    van Lawick-Goodall, J. The behavior of free-living chimpanzees in the Gombe stream reserve. Anim. Behav. Monogr. 1, 161–311 (1968).
    Article  Google Scholar 

    32.
    Altmann, S. A. The pregnancy sign in savannah baboons. J. Zoo Anim. Med. 4, 8–12 (1973).
    Article  Google Scholar 

    33.
    Beehner, J. C., Onderdonk, D. A., Alberts, S. C. & Altmann, J. The ecology of conception and pregnancy failure in wild baboons. Behav. Ecol. 17(5), 741–750 (2006).
    Article  Google Scholar 

    34.
    Higham, J. The reproductive ecology of female olive baboons (Papio hamadryas anubis) at Gashaka-Gumti National Park, Nigeria. PhD Thesis. Roehampton University: London (2006).

    35.
    Tinsley Johnson, E., Snyder-Mackler, N., Lu, A., Bergman, T. J. & Beehner, J. C. Social and ecological drivers of reproductive seasonality in geladas. Behav. Ecol. 29(3), 574–588 (2018).
    Article  Google Scholar  More

  • in

    Reply to: Concerns about phytoplankton bloom trends in global lakes

    1.
    Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).
    ADS  CAS  Article  Google Scholar 
    2.
    Feng, L. et al. Concerns about phytoplankton bloom trends in global lakes. Nature https://doi.org/10.1038/s41586-021-03254-3 (2021).

    3.
    Ho, J. C., Stumpf, R. P., Bridgeman, T. B. & Michalak, A. M. Using Landsat to extend the historical record of lacustrine phytoplankton blooms: a Lake Erie case study. Remote Sens. Environ. 191, 273–285 (2017).
    ADS  Article  Google Scholar 

    4.
    Bridgeman, T. B., Chaffin, J. D. & Filbrun, J. E. A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011. J. Great Lakes Res. 39, 83–89 (2013).
    Article  Google Scholar 

    5.
    Wynne, T. T. & Stumpf, R. P. Spatial and temporal patterns in the seasonal distribution of toxic cyanobacteria in Western Lake Erie from 2002–2014. Toxins 7, 1649–1663 (2015).
    CAS  Article  Google Scholar 

    6.
    Mishra, S. et al. Measurement of cyanobacterial bloom magnitude using satellite remote sensing. Sci. Rep. 9, 18310 (2019).
    ADS  CAS  Article  Google Scholar 

    7.
    Ho, J. C. & Michalak, A. M. Challenges in tracking harmful algal blooms: a synthesis of evidence from Lake Erie. J. Great Lakes Res. 41, 317–325 (2015).
    Article  Google Scholar 

    8.
    Bertani, I. et al. Tracking cyanobacteria blooms: do different monitoring approaches tell the same story? Sci. Total Environ. 575, 294–308 (2017).
    ADS  CAS  Article  Google Scholar 

    9.
    Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

    10.
    Havens, K. et al. Extreme weather events and climate variability provide a lens to how shallow lakes may respond to climate change. Water 8, 229 (2016).
    ADS  Article  Google Scholar 

    11.
    King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A. & Hubanks, P. A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 51, 3826–3852 (2013).
    ADS  Article  Google Scholar 

    12.
    Ackerman, S. A. et al. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 103, 32141–32157 (1998).
    ADS  Article  Google Scholar 

    13.
    Hu, C. et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. 115, C04002 (2010).
    ADS  Google Scholar 

    14.
    Sharma, S. et al. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci. Data 2, 150008 (2015).
    Article  Google Scholar 

    15.
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
    ADS  Article  Google Scholar  More

  • in

    Insecticidal and oviposition deterrent effects of essential oils of Baccharis spp. and histological assessment against Drosophila suzukii (Diptera: Drosophilidae)

    1.
    Budel, J. et al. Essential oils of five Baccharis species: Investigations on the chemical composition and biological activities. Molecules 23, 1–19 (2018).
    Article  CAS  Google Scholar 
    2.
    Heiden, G. & Schneider, A. Baccharis in Lista de Espécies da Flora do Brasil, Jardim Botânico do Rio de Janeiro (2015). http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB5255. Accessed 10 September 2020.

    3.
    Forzza, R. C. et al. New Brazilian floristic list highlights conservation challenges. Bioscience 62, 39–45 (2012).
    Article  Google Scholar 

    4.
    Ramos Campos, F., Bressan, J. & Jasinski, V. C. G. Baccharis (Asteraceae): Chemical constituents and biological activities. Chem. Biodivers. 13, 1–17 (2016).
    CAS  PubMed  Article  Google Scholar 

    5.
    Trombin-Souza, M. et al. Chemical composition of the essential oils of Baccharis species from southern Brazil: A comparative study using multivariate statistical analysis. J. Essent. Oil Res. 29, 400–406 (2017).
    CAS  Article  Google Scholar 

    6.
    Alves, K. F. et al. Baccharis dracunculifolia (Asteraceae) essential oil toxicity to Culex quinquefasciatus (Culicidae). Environ. Sci. Pollut. Res. 25, 31718–31726 (2018).
    CAS  Article  Google Scholar 

    7.
    García, M., Donadel, O. J., Ardanaz, C. E., Tonn, C. E. & Sosa, M. E. Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manage. Sci. 61, 612–618 (2005).
    Article  CAS  Google Scholar 

    8.
    Buss, E.A. & Park-Brown, S.G. Natural Products for Insect Pest Management. Preprint at https://edis.ifas.ufl.edu/in197 (2002).

    9.
    Park, C. G., Jang, M., Yoon, K. A. & Kim, J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crop Prod. 89, 507–513 (2016).
    CAS  Article  Google Scholar 

    10.
    Asplen, M. K. et al. Invasion biology of Spotted Wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 88, 469–494 (2015).
    Article  Google Scholar 

    11.
    De La Veja, G. J., Corley, J. C. & Soliani, C. Genetic assessment of the invasion history of Drosophila suzukii in Argentina. J. Pest Sci. 93, 63–75 (2020).
    Article  Google Scholar 

    12.
    Rota-Stabelli, O. et al. Distinct genotypes and phenotypes in European and American strains of Drosophila suzukii: Implications for biology and management of an invasive organism. J. Pest Sci. 93, 77–89 (2020).
    Article  Google Scholar 

    13.
    Bernardi, D. et al. Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind. Crop Prod. 110, 30–35 (2017).
    CAS  Article  Google Scholar 

    14.
    Kienzle, R., Groß, L. B., Caughman, S. & Rohlfs, M. Resource use by individual Drosophila suzukii reveals a flexible preference for oviposition into healthy fruits. Sci. Rep. 10, 3132 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Souza, M. T. et al. Physicochemical characteristics and superficial damage modulate persimmon infestation by Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Environ. Entomol. 49, 1290–1299 (2020).
    Article  Google Scholar 

    16.
    Hamby, K. A. et al. Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J. Pest Sci. 89, 605–619 (2016).
    Article  Google Scholar 

    17.
    Sánchez-Ramos, I., Gómez-Casado, E., Fernández, C. E. & González-Núñez, M. Reproductive potential and population increase of Drosophila suzukii at constant temperatures. Entomol. Gen. 39, 103–115 (2019).
    Article  Google Scholar 

    18.
    Spitaler, U. et al. Yeast species affects feeding and fitness of Drosophila suzukii adults. J. Pest Sci. 93, 1295–1309 (2020).
    Article  Google Scholar 

    19.
    Santoiemma, G. et al. Habitat preference of Drosophila suzukii across heterogeneous landscapes. J. Pest Sci. 92, 485–494 (2019).
    Article  Google Scholar 

    20.
    Tait, G. et al. Drosophila suzukii daily dispersal between distinctly different habitats. Entomol. Gen. 40, 25–37 (2020).
    Article  Google Scholar 

    21.
    Delbac, L., Rusch, A. & Thiéry, D. Temporal dynamics of Drosophila suzukii in vineyard landscapes. Entomol. Gen. 40, 285–295 (2020).
    Article  Google Scholar 

    22.
    Renkema, J. M., Wright, D., Buitenhuis, R. & Hallett, R. H. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci. Rep. 6, 21432 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Wiman, N. G. et al. Drosophila suzukii population response to environment and management strategies. J. Pest Sci. 89, 653–665 (2016).
    Article  Google Scholar 

    24.
    Santoiemma, G. et al. Integrated management of Drosophila suzukii in sweet cherry orchards. Entomol. Gen. 40, 297–305 (2020).
    Article  Google Scholar 

    25.
    Mermer, S. et al. Timing and order of different insecticide classes drive control of Drosophila suzukii; a modeling approach. J. Pest Sci. https://doi.org/10.1007/s10340-020-01292-w (2020).
    Article  Google Scholar 

    26.
    Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manage. Sci. 75, 1270–1276 (2018).
    Article  CAS  Google Scholar 

    27.
    Van Timmeren, S., Sial, A. A., Lanka, S. K., Spaulding, N. R. & Isaacs, R. Development of a rapid assessment method for detecting insecticide resistance in Spotted Wing Drosophila (Drosophila suzukii Matsumura). Pest Manage. Sci. 75, 1782–1793 (2019).
    Article  CAS  Google Scholar 

    28.
    Zanardi, O. Z. et al. Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Prot. 67, 160–167 (2015).
    Article  Google Scholar 

    29.
    Souza, M. T. et al. Chemical composition of essential oils of selected species of Piper and their insecticidal activity against Drosophila suzukii and Trichopria anastrephae. Environ. Sci. Pollut. Res. 27, 13056–13065 (2020).
    Article  CAS  Google Scholar 

    30.
    Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N. & Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manage. Sci. 58, 1101–1106 (2002).
    CAS  Article  Google Scholar 

    31.
    Chaaban, A. et al. Insecticide activity of Baccharis dracunculifolia essential oil against Cochliomyia macellaria (Diptera: calliphoridae). Nat. Prod. Res. 32, 2854–2958 (2017).
    Google Scholar 

    32.
    Charlie-Silva, I., Souza, L. M., Pereira, C. C., Mazzonetto, F. & Belo, M. A. A. Insecticidal efficacy of aqueous extracts of Ricinus communis, Baccharis trimera and Chenopodium ambrosioides on adults of Alphitobius diaperinus. Ars. Vet. 35, 7–11 (2019).
    CAS  Article  Google Scholar 

    33.
    Khorram, M. S., Nasabi, N. T., Jafarnia, S. & Khosroshahi, S. The toxicity of selected monoterpene hydrocarbons as singles compounds and mixtures against different developmental stages of colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). J. Entomol. 8, 404–416 (2011).
    CAS  Article  Google Scholar 

    34.
    Fang, R. et al. Insecticidal activity of essential oil of carum carvi fruits from China and its main components against two grain storage insects. Molecules 15, 9391–9402 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Malacrinò, A., Campolo, O. & Laudani, F. Fumigant and repellent activity of limonene enantiomers against Tribolium confusum du Val. Neotrop. Entomol. 45, 597–603 (2016).
    PubMed  Article  Google Scholar 

    36.
    Macchioni, F. et al. Acaricidal activity of pine essential oils and their main components against Tyrophagus putrescentiae, a stored food mite. J. Agric. Food Chem. 50, 4586–4588 (2002).
    CAS  PubMed  Article  Google Scholar 

    37.
    Tiberi, R. et al. The role of the monoterpene composition in Pinus spp. needles, in host selection by the pine processionary caterpillar, Thaumetopoea pityocampa. Phytoparas. 27, 263–272 (1999).
    CAS  Article  Google Scholar 

    38.
    Schuster, D. J., Thompson, S., Ortega, L. D. & Polston, J. E. Laboratory evaluation of products to reduce settling of sweet potato whitefly adults. J. Econ. Entomol. 102, 1482–1489 (2009).
    CAS  PubMed  Article  Google Scholar 

    39.
    Raina, A. et al. Effects of orange oil extract on the Formosan Subterranean Termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 100, 880–885 (2010).
    Article  Google Scholar 

    40.
    Andreazza, F. et al. Toxicities and effects of insecticidal toxic baits to control Drosophila suzukii and Zaprionus indianus (Diptera: Drosophilidae). Pest Manage. Sci. 73, 146–152 (2017).
    CAS  Article  Google Scholar 

    41.
    Bruck, D. J. et al. Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manage. Sci. 67, 1375–1385 (2011).
    CAS  Article  Google Scholar 

    42.
    Beers, E. H. et al. Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manage. Sci. 67, 1386–1395 (2011).
    CAS  Article  Google Scholar 

    43.
    Van Timmeren, S. & Isaacs, R. Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot. 54, 126–133 (2013).
    Article  CAS  Google Scholar 

    44.
    Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind. Crop Prod. 60, 247–258 (2014).
    CAS  Article  Google Scholar 

    45.
    Dias, C. N. & Moraes, D. F. C. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: A review. Parasitol. Res. 113, 565–592 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Jankowska, M., Rogalska, J., Wyszkowska, J. & Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system–A review. Molecules https://doi.org/10.3390/molecules23010034 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    47.
    Trombetta, D. et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 49, 2474–2478 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Holley, R. A. & Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 22, 273–292 (2005).
    CAS  Article  Google Scholar 

    49.
    Oussalah, M., Caillet, S., Saucier, L. & Lacroix, M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18, 414–420 (2007).
    CAS  Article  Google Scholar 

    50.
    Abdelgaleil, S., Badawy, M., Shawir, M. & Mohamed, M. Chemical composition, fumigant and contact toxicities of essential oils isolated from egyptian plants against the stored grain insects; Sitophilus oryzae L. and Tribolium castaneum (Herbst). Egypt J. Biol. Pest Co 25, 639–647 (2015).
    Google Scholar 

    51.
    Badawy, M. E. I., El-Arami, S. A. A. & Abdelgaleil, S. A. M. Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetranychus urticae. Exp. Appl. Acarol. 52, 261–274 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Chaaban, A. et al. Essential oil from Curcuma longa leaves: Can an overlooked by-product from turmeric industry be effective for myiasis control?. Ind. Crop Prod. 132, 352–364 (2019).
    CAS  Article  Google Scholar 

    53.
    Kumar, P., Mishra, S., Malik, A. & Satya, S. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: muscidae). Ecotoxicol. Environ. Safe 100, 1–6 (2014).
    CAS  Article  Google Scholar 

    54.
    Benelli, G. et al. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crop Prod. 112, 668–680 (2018).
    CAS  Article  Google Scholar 

    55.
    Pavela, R. et al. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 136, 111037 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Pavela, R. Lethal and sublethal effects of thyme oil (Thymus vulgaris L.) on the house fly (Musca domestica Lin.). J. Essent. Oil-Bear. Plants 10, 346–356 (2007).
    CAS  Article  Google Scholar 

    57.
    Haviland, D. R. & Beers, E. H. Chemical control programs for Drosophila suzukii that comply with international limitations on pesticide residues for exported sweet cherries. J. Integr. Pest Manage. 3, 1–6 (2012).
    Article  Google Scholar 

    58.
    Shaw, B., Brain, P., Wijnen, H. & Fountain, M. T. Implications of sub-lethal rates of insecticides and daily time of application on Drosophila suzukii lifecycle. Crop Prot. 121, 182–194 (2019).
    CAS  Article  Google Scholar 

    59.
    Richards, O. W. & Davies, R. G. Imms’ General Textbook of Entomology: Structure, Physiology and Development 101–263 (Chapman and Hall, London, 1977).
    Google Scholar 

    60.
    Alves, S. N., Serrão, J. E. & Melo, A. L. Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron 41, 592–597 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Rossi, C. A., Roat, T. C., Tavares, D. A., Cintra-Socolowski, P. & Malaspina, O. Effects of sublethal doses of imidacloprid in malpighian tubules of africanized Apis melífera (Hymenoptera, Apidae). Microsc. Res. Techniq. 76, 552–558 (2013).
    CAS  Article  Google Scholar 

    62.
    Kerr, J. F. R. History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182, 471–474 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Rossi-Stacconi, M. V. et al. Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive Spotted Wing Drosophila. Biol. Control 117, 188–196 (2018).
    Article  Google Scholar 

    64.
    Giorgini, M. et al. Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid. J. Pest Sci. 92, 509–522 (2018).
    Article  Google Scholar 

    65.
    Garriga, A. et al. Soil emergence of Drosophila suzukii adults: A susceptible period for entomopathogenic nematodes infection. J. Pest Sci. 93, 639–646 (2020).
    Article  Google Scholar 

    66.
    Wolf, S., Boycheva-Woltering, S., Romeis, J. & Collatz, J. Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits. J. Pest Sci. 93, 627–638 (2020).
    Article  Google Scholar 

    67.
    Pavela, R. & Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21, 1000–1007 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Krzyzowski, M., Baran, B. & Łozowski, B. The role of dilution mediums in studies of fumigant insecticidal activity of essential oils. J. Pest Sci. 93, 1119–1124 (2020).
    Article  Google Scholar 

    69.
    Campolo, O. et al. Essential oil-based nano-emulsions: Effect of different surfactants, sonication and plant species on physicochemical characteristics. Ind. Crop Prod 157, 112935 (2020).
    CAS  Article  Google Scholar 

    70.
    McLafferty, F. W., Stauffer, D. A., Loh, S. Y. & Wesdemiotis, C. Unknown identification using reference mass spectra. Quality evaluation of databases. J. Am. Soc. Mass Spectr. 10, 1229–1240 (1999).
    CAS  Article  Google Scholar 

    71.
    Van Den Dool, H. & Kratz, P. D. J. A. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 11, 463–471 (1963).
    Article  Google Scholar 

    72.
    Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy 5th edn. (Texensis Publishing, New York, 2017).
    Google Scholar 

    73.
    Schlesener, D. C. H. et al. Biology and fertility life table of Drosophila suzukii on artificial diets. Entomol. Exp. Appl. 166, 932–936 (2018).
    Google Scholar 

    74.
    Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Am. Mosquito Contr. 3, 302–303 (1925).
    Google Scholar 

    75.
    Finney, D. J. Statistical Method in Biological Assay (Charles Griffin & Company, London, 1978).
    Google Scholar 

    76.
    Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. B 135, 370–384 (1972).
    Google Scholar 

    77.
    Hinde, J. & Demétrio, C. G. B. Overdispersion: Models and estimation. Comput. Stat. Data Anal. 27, 151–170 (1998).
    MATH  Article  Google Scholar 

    78.
    R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 (2012). http://www.R-project.org. Accessed 2 September 2020.

    79.
    Institute, S. A. S. SAS System–SAS/STAT. Computer Program, Version 9.2 84 (SAS Institute, Cary, 2011).
    Google Scholar 

    80.
    Throne, J. E., Weaver, D. K., Chew, V. B. & James, E. Probit analysis of correlated data: Multiple observations over time at one concentration. J. Econ. Entomol. 88, 1510–1512 (1995).
    Article  Google Scholar 

    81.
    Obeng-Ofori, D. Plant oils as grain protectants against infestations of Cryptolestes pusillus and Rhyzopertha dominica in stored grain. Entomol. Exp. Appl. 77, 133–139 (1995).
    Article  Google Scholar  More

  • in

    Mapping ticks and tick-borne pathogens in China

    Distribution of tick species in mainland China
    We compiled a database comprising 7344 unique records on geographic distributions of 124 known tick species, including 113 hard tick species in seven genera and 11 soft tick species in two genera, together with 103 tick-associated agents detected in either ticks or humans, which were recorded in 1134 counties (39% of all counties in the mainland of China) (Supplementary Fig. 1 and Supplementary Note 1). The most widely distributed tick genus was Dermacentor (in 574 counties), followed by Heamaphysalis (570), Ixodes (432), Rhipicephalus (431), Hyalomma (298), Argas (90), Ornithodoros (38), Amblyomma (37), and Anomalohimalaya (5) (Supplementary Data 1 and Supplementary Figs. 2‒10). At the species level, D. nuttalli, Ha. longicornis, D. silvarum, Hy. scupense, and R. sanguineus were each found in >200 counties, followed by R. microplus, I. persulcatus, I. sinensis, I. granulatus, and Hy. asiaticum that were each detected in 100‒200 counties (Supplementary Data 1). We identified 19 predominant ticks that were detected in more than 40 counties, including five Ixodes species, four Heamaphysalis, four Dermacentor, three Rhipicephalus, two Hyalomma, and one Argas tick species. Forest and meadowlands are the major vegetation types for these 19 tick species, accounting for a median of 46.4% (IQR: 40.0%‒68.9%) of their habitats (Supplementary Data 1).
    The abundance of tick species varies substantially across the seven biogeographic zones which are defined by climatic and ecological characteristics (Fig. 1)18,19. Tick species are most abundant in Central China, South China, and Inner Mongolia–Xinjiang districts, hosting 61, 57, and 50 tick species, respectively (Supplementary Data 2). Eight prefectures reported ≥20 tick species, three in Xinjiang Autonomous Region of northwestern China, two in Yunnan Province of southwestern China, and one in each of Gansu, Hubei, and Fujian provinces of northwestern, central, and southeastern China, respectively (Fig. 1). Most genera except for Amblyomma were found in northwestern China, particularly in Xinjiang Autonomous Region. In contrast, less tick diversity was observed in northeastern China, which only harbors Ixodes, Heamaphysalis, and Dermacentor (Supplementary Figs. 2‒10).
    Fig. 1: Tick species richness (circles) at the prefecture level in seven biogeographic zones in mainland China from 1950 to 2018.

    I = Northeast district (NE), II = North China district (N), III = Inner Mongolia–Xinjiang district (IMX), IV = Qinghai–Tibet district (QT), V = Southwest district (SW), VI = Central China district (C), and VII = South China district (S). Source data are provided as a Source Data file.

    Full size image

    Risk mapping and risk factors for 19 predominant tick species
    The ecological modeling results for the 19 predominant tick species showed highly accurate predictions, with the average testing area-under-curve (AUC) ranging from 0.83 to 0.97 (Table 1) and the testing partial AUC ratio ranging from 1.30 to 1.78 (Supplementary Tables 1‒5), indicating decent predictive power. The ecoclimatic and environmental variables that were predictive of the geographic distribution of the ticks differed among the species, even for those in the same genus (Fig. 2f, Supplementary Tables 1‒5). Temperature seasonality and mean temperature in the driest quarter were the two most important drivers, contributing ≥5% to the ensemble of models for 14- and 12- tick species, respectively, followed by elevation contributing ≥5% to the models for seven tick species (Fig. 2f, Supplementary Tables 1‒5). The same predictor, however, may drive the risk in different directions for different tick species (Supplementary Figs. 11‒29). For example, a high temperature in the driest quarter was associated with a high probability of presence for I. granulatus and R. haemaphysaloide but with a low probability for I. persulcatus and Ha. longicornis (Supplementary Figs. 11, 13, 16, 22).
    Table 1 The average testing areas under the curve (AUC) of the BRT models at the county level and model-predicted numbers, areas and population sizes of affected counties for the 19 most prevalent tick species in China.
    Full size table

    Fig. 2: Clustering of tick species based on their ecological features and spatial distributions at the county level.

    Panels a‒e indicate the spatial distribution of the five clusters (clusters I‒V). The boundaries of the seven biogeographic zones are shown as black solid lines. The dendrogram in panel f displays the clusters I‒V of tick species. The features used for clustering are three quantities associated with each predictor in the BRT models. Two of the three quantities were displayed in panel f to indicate the possible level of ecological suitability: relative contributions (colors in ascending order from yellow to red) and the standardized median value of the predictor (numbers in the heatmap) among counties with tick occurrence (numbers 1‒4 indicate the position of this median in reference to the quartiles of this predictor among all counties). Source data are provided as a Source Data file.

    Full size image

    The model-predicted high-risk areas of the 19 tick species were much more extensive than have been observed, 31‒520% greater in the number of affected counties, 14‒476% larger in the size of affected geographic area, and 25‒556% larger in the affected population size (Table 1, Supplementary Figs. 30‒34). Ha. longicornis was predicted to have the widest distribution that potentially affected 588 million people in 1140 counties, followed by I. sinensis and R. microplus that affected 363 and 350 million people in 630 and 678 counties, respectively (Table 1). High-risk areas of these three tick species collectively covered nearly all densely populated areas in China, mainly provinces in the central, eastern, southern, and southwestern China (Supplementary Figs. 30(b), 31(a), and 32(b)). R. sanguineus, and R. haemaphysaloides each affected more than 200 million people. D. nuttalli, I. crenulatus, Hy. asiaticum, Ar. persicus, and D. daghestanicus ticks were the top five tick species affecting the largest areas at the scale of 2.0‒3.8 million km2 (Table 1).
    Ecological clustering of tick species
    Based on the ecological similarity represented by the environmental and ecoclimatic predictors, the 19 tick species were grouped into five clusters with clear patterns of spatial aggregation (Fig. 2). D. nuttalli and D. silvarum constituted cluster I that covered the vast region in northern (including northeastern and northwestern) China. This cluster stretches over biogeographic zones I‒IV characterized by middle to high elevations, shrub grassland, strong seasonality in temperature, relatively low temperature in the wettest quarter (often also the warmest quarter), and low precipitation in the driest month (Fig. 2 and Supplementary Figs. 23, 24). Ha. longicornis, Hy. scupense, and R. sanguineus were grouped into Cluster II which was mainly found in biogeographic zones II, III, and VI, featuring the landscape of shrub grassland and irrigated or rainfed croplands at low-middle elevations (7% (Table 2). SFTSV ecologically prefers regions at low to moderate elevations ( 7%). High risks of TBEV were flagged by low to medium elevations ( More

  • in

    Antagonist effects of the leek Allium porrum as a companion plant on aphid host plant colonization

    1.
    Parolin, P. et al. Secondary plants used in biological control: a review. Int. J. Pest Manag. 58, 91–100 (2012).
    Article  Google Scholar 
    2.
    Parker, J. E., Snyder, W. E., Hamilton, G. C. & Rodriguez‐Saona, C. Companion planting and insect pest control. Weed and Pest Control – Conventional and New Challenges (2013). https://doi.org/10.5772/55044

    3.
    Held, D. W., Gonsiska, P. & Potter, D. A. Evaluating companion planting and non-host masking odors for protecting roses from the Japanese beetle (Coleoptera: Scarabaeidae). J. Econ. Entomol. 96, 81–87 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Togni, P. H. B., Laumann, R. A., Medeiros, M. A. & Suji, E. R. Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomol. Exp. Appl. 136, 164–173 (2010).
    Article  Google Scholar 

    5.
    Deletre, E. et al. Prospects for repellent in pest control: current developments and future challenges. Chemoecology 26, 127–142 (2016).
    CAS  Article  Google Scholar 

    6.
    Ben-Issa, R., Gomez, L. & Gautier, H. Companion plants for aphid pest management. Insects 8, 112 (2017).
    PubMed Central  Article  Google Scholar 

    7.
    Niemeyer, H. Secondary plant chemicals in aphid-host interactions. RK. RK Campbell RD Eikenbary Aphid-plant genotype Interact, 101–111 (1990).

    8.
    Powell, G., Tosh, C. R. & Hardie, J. HOST PLANT SELECTION BY APHIDS: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Mansion-Vaquié, A., Ferrer, A., Ramon-Portugal, F., Wezel, A. & Magro, A. Intercropping impacts the host location behaviour and population growth of aphids. Entomol. Exp. Appl. 168, 41–52 (2020).
    Article  Google Scholar 

    10.
    Nottingham, S. F. et al. Behavioral and electrophysiological responses of Aphids to host and nonhost plant volatiles. J. Chem. Ecol. 17, 1231–1242 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Ben Issa, R., Gautier, H. & Gomez, L. Influence of neighbouring companion plants on the performance of aphid populations on sweet pepper plants under greenhouse conditions. Agric. For. Entomol. 19, 181–191 (2017).
    Article  Google Scholar 

    12.
    Hatt, S., Xu, Q., Francis, F. & Osawa, N. Aromatic plants of East Asia to enhance natural enemies towards biological control of insect pests. A review. Entomol. Gener. 38, 275–315 (2019).
    Article  Google Scholar 

    13.
    Basedow, T., Hua, L. & Aggarwal, N. The infestation of Vicia faba L. (Fabaceae) by Aphis fabae (Scop.) (Homoptera: Aphididae) under the influence of Lamiaceae (Ocimum basilicum L. and Satureja hortensis L.). J. Pest Sci. 79, 149 (2006).
    Article  Google Scholar 

    14.
    Beizhou, S. et al. Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants. Pest Manag. Sci. 67, 1107–1114 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Glinwood, R., Ninkovic, V., Pettersson, J. & Ahmed, E. Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids. Ecol. Entomol. 29, 188–195 (2004).
    Article  Google Scholar 

    16.
    Jankowska, B., Poniedziałek, M. & Jędrszczyk, E. Effect of intercropping white cabbage with French Marigold (Tagetes patula nana L.) and Pot Marigold (Calendula officinalis L.) on the colonization of plants by pest insects. Folia Hortic. 21, 95–103 (2009).
    Article  Google Scholar 

    17.
    Tang, G. B. et al. Repellent and attractive effects of herbs on insects in pear orchards intercropped with aromatic plants. Agroforest. Syst. 87, 273–285 (2013).
    Article  Google Scholar 

    18.
    de Lima, J. S. S. et al. Agroeconomic evaluation of intercropping rocket and carrot by uni- and multivariate analyses in a semi-arid region of Brazil. Ecol. Ind. 41, 109–114 (2014).
    Article  Google Scholar 

    19.
    Sujayanand, G. K., Sharma, R. K., Shankarganesh, K., Saha, S. & Tomar, R. S. Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae). Fla. Entomol. 98, 305–314 (2015).
    Article  Google Scholar 

    20.
    McCall, P. J. & Eaton, G. Olfactory memory in the mosquito Culex quinquefasciatus. Med. Vet. Entomol. 15, 197–203 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Little, C. M., Chapman, T. W. & Hillier, N. K. Considerations for insect learning in integrated pest management. J. Insect Sci. 19, 6 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Bandara, K. A. N. P. et al. Can leek interfere with bean plant-bean fly interaction? Test of ecological pest management in mixed cropping. J. Econ. Entomol. 102, 999–1008 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Mutiga, S. K., Gohole, L. S. & Auma, E. O. Effects of integrating companion cropping and nitrogen application on the performance and infestation of collards by Brevicoryne brassicae. Entomol. Exp. Appl. 134, 234–244 (2010).
    CAS  Article  Google Scholar 

    24.
    Dugravot, S., Thibout, E., Abo-Ghalia, A. & Huignard, J. How a specialist and a non-specialist insect cope with dimethyl disulfide produced by Allium porrum. Neth. Entomol. Soc. Entomol. Exp. Appl. 113, 173–179 (2004).
    Article  Google Scholar 

    25.
    Thibout, E. & Auger, J. Composés soufrés des Allium et lutte contre les insectes. Acta Bot. Gallica 144, 419–426 (1997).
    Article  Google Scholar 

    26.
    Auger, J., Dugravot, S., Naudin, A. & Abo-Ghalia, A. Utilisation des composes allelochimiques des Allium en tant qu’insecticides. Use of pheromones and other semiochemicals in integrated production IOBC wprs Bulletin Vol. 25, 13 (2002).

    27.
    Amarawardana, L. et al. Olfactory response of Myzus persicae (Homoptera: Aphididae) to volatiles from leek and chive: potential for intercropping with sweet pepper. Acta Agric. Scand. Sect. B – Soil Plant Sci. 57, 87–91 (2007).
    Google Scholar 

    28.
    Zhou, H. et al. Influence of garlic intercropping or active emitted volatiles in releasers on aphid and related beneficial in wheat fields in China. J. Integr. Agric. 12, 467–473 (2013).
    Article  Google Scholar 

    29.
    Mauck, K. E., De Moraes, C. M. & Mescher, M. C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. USA 107, 3600–3605 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Tjallingii, W. F. Electrical recording of stylet penetration activities. In Aphids, Their Biology, Natural Enemies and Control (eds Minks, A. K. & Harrewijn, P.) 95–108 (Elsevier, Amsterdam, 1988).
    Google Scholar 

    31.
    Tjallingii, W. F. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721–730 (1978).
    Article  Google Scholar 

    32.
    Giordanengo, P. EPG-Calc: a PHP-based script to calculate electrical penetration graph (EPG) parameters. Arthropod-Plant Interact. 8, 163–169 (2014).
    Article  Google Scholar 

    33.
    MacGillivray, M. E. & Anderson, G. B. Three useful insect cages. Can. Entomol. 89, 43–46 (1957).
    Article  Google Scholar 

    34.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2014).
    Google Scholar 

    35.
    Järvenpää, E. P., Zhang, Z., Huopalahti, R. & King, J. W. Determination of fresh onion (Allium cepa L.) volatiles by solid phase microextraction combined with gas chromatography-mass spectrometry. Z. Lebensm Unters Forsch 207, 39–43 (1998).
    Article  Google Scholar 

    36.
    Løkke, M. M., Edelenbos, M., Larsen, E. & Feilberg, A. Investigation of volatiles emitted from freshly cut onions (Allium cepa L.) by real time proton-transfer reaction-mass spectrometry (PTR-MS) . Sensors 12, 16060–16076 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    37.
    Camacho-Coronel, X., Molina-Torres, J. & Heil, M. Sequestration of exogenous volatiles by plant cuticular waxes as a mechanism of passive associational resistance: a proof of concept. Front. Plant Sci. 11, 121 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Himanen, S. J. et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—a mechanism for associational herbivore resistance?. New Phytol. 186, 722–732 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Dahlin, I., Vucetic, A. & Ninkovic, V. Changed host plant volatile emissions induced by chemical interaction between unattacked plants reduce aphid plant acceptance with intermorph variation. J Pest Sci 88, 249–257 (2015).
    Article  Google Scholar 

    40.
    Dardouri, T. et al. Non-host volatiles disturb the feeding behavior and reduce the fecundity of the green peach aphid, Myzus persicae. Pest Manag Sci. https://doi.org/10.1002/ps.6190 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Dancewicz, K., Gabryś, B. & Przybylska, M. Effect of garlic (Allium sativum L.) and tansy (Tanaceum vulgare L.) extracts and potassic horticultural soap on the probing and feeding behaviour of Myzus persicae (Sulzer, 1776). Aphids Other Homopterous Insects 17, 126–136 (2011).
    Google Scholar 

    42.
    Chyb, S., Eichenseer, H., Hollister, B., Mullin, C. A. & Frazier, J. L. Identification of sensilla involved in taste mediation in adult western corn rootworm (Diabrotica virgifera virgifera LeConte). J. Chem. Ecol. 21, 313–329 (1995).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Prado, E. & Tjallingii, W. F. Effects of previous plant infestation on sieve element acceptance by two aphids. Entomol. Exp. Appl. 82, 189–200 (1997).
    Article  Google Scholar 

    44.
    Sauge, M.-H., Lacroze, J.-P., Poëssel, J.-L., Pascal, T. & Kervella, J. Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomol. Exp. Appl. 102, 29–37 (2002).
    Article  Google Scholar 

    45.
    Tolosa, T. A. et al. Molasses grass induces direct and indirect defense responses in neighbouring maize plants. J. Chem. Ecol. 45, 982–992 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Ninkovic, V., Rensing, M., Dahlin, I. & Markovic, D. Who is my neighbor? Volatile cues in plant interactions. Plant Signal Behav. 14, 1634993 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol. Lett. 17, 44–52 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Kumar, P., Mishra, S., Malik, A. & Satya, S. Insecticidal properties of Mentha species: a review. Ind. Crops Prod. 34, 802–817 (2011).
    CAS  Article  Google Scholar 

    49.
    Nuñez-Mejía, G., Valadez-Lira, J. A., Gomez-Flores, R., Rodríguez-Padilla, C. & Tamez-Guerra, P. Trichoplusia ni (Lepidoptera: Noctuidae) survival, immune response, and gut bacteria changes after exposure to Azadirachta indica (Sapindales: Meliaceae) volatiles. Fla. Entomol. 99, 12–20 (2016).
    Article  Google Scholar 

    50.
    Regnault-Roger, C., Vincent, C. & Arnason, J. T. Essential oils in insect control: low-risk products in a high-stakes world. Annu. Rev. Entomol. 57, 405–424 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Sousa, R. M. O. F., Rosa, J. S., Oliveira, L., Cunha, A. & Fernandes-Ferreira, M. Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Ind. Crops Prod. 63, 226–237 (2015).
    CAS  Article  Google Scholar 

    52.
    Petrakis, E. A. et al. Responses of Myzus persicae (Sulzer) to three Lamiaceae essential oils obtained by microwave-assisted and conventional hydrodistillation. Ind. Crops Prod. 62, 272–279 (2014).
    CAS  Article  Google Scholar 

    53.
    Poorjavad, N., Goldansaz, S. H., Dadpour, H. & Khajehali, J. Effect of Ferula assafoetida essential oil on some biological and behavioral traits of Trichogramma embryophagum and T. evanescens. Biocontrol 59, 403–413 (2014).
    CAS  Article  Google Scholar 

    54.
    Vázquez-Covarrubias, D. A., Jiménez-Pérez, A., Castrejón-Ayala, F., Figueroa-Brito, R. & Belmont, R. M. Effects of five species of Chenopodiaceae on the development and reproductive potential of Copitarsia decolora (Lepidoptera: Noctuidae). Fla. Entomol. 98, 80–85 (2015).
    Article  Google Scholar 

    55.
    Bharti, G., Prasad, S. & Upadhyay, V. B. The influence of plant volatile of Allium sativum on the reproductive ability of multivoltine mulberry silkworm Bombyx mori Linn. Afr. J. Basic Appl. Sci. 5(6), 242–249 (2013).
    Google Scholar 

    56.
    Ameline, A., Couty, A., Martoub, M., Sourice, S. & Giordanengo, P. Modification of Macrosiphum euphorbiae colonisation behaviour and reproduction on potato plants treated by mineral oil. Entomol. Exp. Appl. 135, 77–84 (2010).
    Article  Google Scholar 

    57.
    Calabrese, E. J. Hormesis: why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 27, 1451–1474 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Ayyanath, M.-M., Cutler, G. C., Scott-Dupree, C. D. & Sibley, P. K. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 8, e74532 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Yu, Y., Shen, G., Zhu, H. & Lu, Y. Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer). Pestic. Biochem. Physiol. 98, 238–242 (2010).
    CAS  Article  Google Scholar 

    60.
    Stephens, D. W. Learning and behavioral ecology: incomplete information and environmental predictability. In Insect Learning: Ecology and Evolutionary Perspectives (eds Papaj, D. R. & Lewis, A. C.) 195–218 (Springer, New York, 1993).
    Google Scholar 

    61.
    Bedini, S. et al. Allium sativum, Rosmarinus officinalis, and Salvia officinalis essential oils: a spiced shield against blowflies. Insects 11, 143 (2020).
    PubMed Central  Article  Google Scholar 

    62.
    Shi, J. et al. Laboratory evaluation of acute toxicity of the essential oil of Allium tuberosum leaves and its selected major constituents against Apolygus lucorum (Hemiptera: Miridae). J. Insect Sci. 15, 117 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Potential impacts of marine urbanization on benthic macrofaunal diversity

    Study area
    We established field survey sites in four different habitat types (BW: breakwater wall; EB: eelgrass bed; IF: intertidal flat; SB: subtidal bottom) within Matsunaga Bay, located in the eastern Seto Inland Sea, Japan (Fig. 1). Matsunaga Bay is a small semi-closed bay with an area of approximately 12 km2. It is connected with other water bodies through the Tozaki-Seto Strait (width: approx. 400 m) and the Onomichi Strait (width: approx. 200 m)29,30. Water depths are mostly less than 20 m throughout the bay. The water depths at our four survey sites were approximately 4.5 m, but part of site SB located near a shipping channel reached depths of 10–13 m. Intertidal flats cover 35% (4.3 km2) of the bay area, whereas eelgrass beds cover 1.7% (0.2 km2)31. The bottom sediment type is mainly muddy throughout the bay, although some parts of EB and SB have sandy and muddy bottoms (see Supplementary Table S1)30.
    Figure 1

    Locations of sampling sites in Matsunaga Bay, Hiroshima, Japan. This map was created based on coordinate data from Google (http://www.gis-tool.com/mapview/maptocoordinates.html). The four habitats examined in this study are indicated by BW (breakwater wall; grey circle), EB (eelgrass bed; grey circle), IF (intertidal flat; grey rectangle), and SB (subtidal bottom; grey polygon).

    Full size image

    Although human activities along the coast of Matsunaga Bay appear to be associated with artificial structures (e.g., industrial plants, marinas, and lumber yards), natural habitats are still relatively well-preserved compared to areas in the eastern Seto Inland Sea29. The total population of towns within 5 km of the coastline of the bay can be expected to exceed 100,000 people, which ranks within the top 20% of administrative districts in Japan, including prefectures, towns, villages, and the 23 wards of Tokyo32.
    Data collection
    We conducted one field survey in September 2016 (summer) and another in January 2017 (winter) to collect data on benthic community structures and environmental conditions in each habitat. We established five sampling sites within each habitat to obtain replicated samples. To reduce biases due to tidal cycle, we performed all field sampling and measurements at high tide, when all habitats were underwater.
    We used a standard sample area (approximately 0.15 m2 per sample) at each sampling site irrespective of sampling method to obtain comparable data on benthic communities. Some of our sampling methods involved Smith–McIntyre grab samplers and quadrats that could not cover the standard sample area in a single sample; for these methods, we combined the data from three samples to make up a single sampling site. At BW, benthic macrofauna (hereafter referred to as “benthos”) samples were collected by SCUBA divers. We established 15 sampling positions in a 5 × 3 grid (i.e., five depths [sampling sites] and three replicates) based on distance from the seafloor at the breakwater wall (Supplementary Fig. S1). The SCUBA divers used scraper blades, 0.1-mm mesh bags, and 22.5 cm × 22.5 cm quadrats because the benthic communities were mainly composed of sessile organisms. At EB, we employed different sampling methods for the above- and belowground components. SCUBA divers collected aboveground samples of eelgrass-associated benthos and eelgrass shoots using a mesh bag (mesh size: 0.1 mm; bag diameter: 45 cm). They then cut away the eelgrass shoots near each aboveground site and collected belowground samples of the benthos on top of and within the sediment by using the bucket part of a Smith–McIntyre grab sampler (sampling area: 22.5 cm × 22.5 cm). At IF and SB, benthos and bottom sediment samples were collected from a ship using a Smith–McIntyre grab sampler (sampling area: 22.5 cm × 22.5 cm).
    All benthos was extracted using a 1-mm sieve and preserved in buffered 10% formalin in the field as soon as possible after sampling. The samples were identified to the lowest possible taxonomic unit and counted in the laboratory. After identification, we organized the dominant benthic species (or taxa) according to their primary feeding types and common life forms with reference to the World Register of Marine Species (http://www.marinespecies.org/) and the literature. No vertebrate species were targeted in this study. We defined the primary life forms of adult benthic species on/in their substrates as “common life forms.”
    Although differences in environmental conditions were not the focus of our study, we did assess whether there were considerable water quality differences among sites. The purpose of this assessment was to try to identify sites with similar conditions so that exogenous impacts on biological communities could be discounted as much as possible in the analysis. We measured water and sediment conditions at each sampling site (except at BW, where sediment conditions were not measured due to the absence of sediment). Prior to benthos and sediment sampling, we measured water temperature, salinity, pH, and dissolved oxygen concentration at each site at a depth directly above the seafloor by using a multi-parameter water quality meter (AAQ‐RINKO, JFE Advantech Co. Ltd., Japan). At BW, where the substrate (i.e., the breakwater) is oriented vertically (see Supplementary Fig. S1), we measured water conditions in the middle of the water column. We also measured temperature, pH, oxidation–reduction potential (ORP), water content, and median particle size (D50) in the sediment. Sediment temperature, pH, and ORP were measured by using a portable ion meter (IM-32P, DKK-TOA Co., Japan) immediately after each sample was collected. Sediment water content and D50 were measured in the laboratory once benthic species had been removed from the sample.
    Data analysis
    First, we identified how many species were shared between all habitat pairs to understand inter-habitat species-sharing relationships. Second, we compared species compositions and abundances among habitats using similarity indices and multivariate analysis (described below).
    To detect species sharing in terms of species commonality and endemism among the four habitats, we classified benthic species into the following three categories: common, endemic, and shifting. Common species were defined as species that occurred across all habitats. Endemic species are those that were found in only one habitat. Shifting species were defined as those that occurred in multiple habitats (but not across all habitats) and therefore showed a broad allowable range of habitat types or conditions. To analyse the importance of habitat sets in maintaining local species diversity, we further categorized the shifting species into two- or three-habitat users (i.e., those that occurred in two or three different habitats). Moreover, we calculated the numbers and proportions (i.e., using the Jaccard similarity index) of shared species in each habitat pair to evaluate the potential strength of any inter-habitat relationships. The Jaccard similarity index ((J)) is calculated as follows:

    $$ J = frac{{S_{alpha beta } }}{{S_{alpha } + S_{beta } – S_{alpha beta } }}, $$

    where (S_{alpha }) is the number of species in habitat (alpha), (S_{beta }) is the number of species in habitat (beta), and (S_{alpha beta }) is the number of species that are shared among habitats (alpha) and (beta).
    In terms of the functional groups, we analysed abundance matrices of abundant species grouped by primary feeding types and common life forms. Focusing on abundant species is a useful way to reflect the functional characteristics of biological communities14. Therefore, we identified the most abundant species from each sample before constructing the abundance data matrices. To determine how many species to select for analysis, we calculated the number e of equally-abundant species that would be required to obtain the Simpson diversity index of each community (i.e., the effective number of species33). We then selected e abundant species from each sample in rank order from most to least abundant. If multiple species of the same rank occupied this cut-off threshold, we selected all of them. This selection method, which is unique to our study, successfully identified dominant species that accounted for over 70% of the total abundance in each community in all habitats.
    To compare benthic macrofaunal communities among habitats, we performed non‐metric multidimensional scaling (NMDS)34 based on dissimilarity matrices obtained by using the metaMDS function in the vegan package35. To compare species compositions, we constructed Jaccard dissimilarity matrices based on presence/absence data, and to compare species abundance and functional compositions, we constructed Bray–Curtis dissimilarity matrices based on abundance datasets. All abundance datasets were square-root transformed before calculating the Bray–Curtis dissimilarity matrices to reduce the influence of abundance bias. We accepted the NMDS ordinations if stress values were less than 0.2 to maintain the accuracy of the two‐dimensional ordinations34. Then, we tested the effects of habitat type and sampling time by conducting a two-way permutational multivariate analysis of variance (two-way PERMANOVA)36 using the adonis function in the vegan package. Here, we considered four habitats (Habitat), two sampling times (Time), and their interaction term as explanatory factors. Although our main focus was differences in community compositions among habitats at each sampling time, we also examined the magnitude of variation in each habitat by comparing two stable seasonal extremes (i.e., summer and winter). If the results of the PERMANOVA were significant, we performed post-hoc tests (pairwise PERMANOVA) to identify which pairs of community structures were significantly different by using the pairwise.perm.manova function in the RVAideMemoire package37. We used 9999 permutations for the NMDS ordination, PERMANOVA, and pairwise PERMANOVA. P-values calculated during the pairwise PERMANOVA were corrected using the false discovery rate method38. For the benthic community data collected at each sampling point at EB, above- and belowground datasets were integrated to reflect spatial representativeness (see Figs. S3 and S4). All analyses were performed using R version 3.5.139. More