Performance comparison of two reduced-representation based genome-wide marker-discovery strategies in a multi-taxon phylogeographic framework
1.
Avise, J. C. Phylogeography: retrospect and prospect. J. Biogeogr. 36, 3–15 (2009).
Article Google Scholar
2.
Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).
Article Google Scholar
3.
Linder, P. H. Phylogeography. J. Biogeogr. 44, 243–244 (2017).
Article Google Scholar
4.
Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. 105, 13486–13491 (2008).
CAS PubMed Article ADS PubMed Central Google Scholar
5.
Philippe, H. et al. Pitfalls in supermatrix phylogenomics. Pitfalls supermatrix phylogenomics. Eur. J. Taxon. 28, 3. https://doi.org/10.5852/ejt.2017.283 (2017).
Article Google Scholar
6.
Villaverde, T. et al. Bridging the micro- and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above. New Phytol. 220, 636–650 (2018).
PubMed Article PubMed Central Google Scholar
7.
Vos, P. et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).
CAS PubMed PubMed Central Article Google Scholar
8.
Meudt, H. M. & Clarke, A. C. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci. 12, 106–117 (2007).
CAS PubMed Article PubMed Central Google Scholar
9.
Paun, O. & Schönswetter, P. Amplified fragment length polymorphism: an invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. Methods Mol. Biol. 862, 75–87 (2012).
CAS PubMed PubMed Central Article Google Scholar
10.
Dejaco, T., Gassner, M., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Taxonomist’s nightmare … evolutionist’s delight: an integrative approach resolves species limits in jumping bristletails despite widespread hybridization and parthenogenesis. Syst. Biol. 65, 947–974 (2016).
PubMed PubMed Central Article Google Scholar
11.
Sefc, K. M. et al. Shifting barriers and phenotypic diversification by hybridisation. Ecol. Lett. 20, 651–662 (2017).
PubMed PubMed Central Article Google Scholar
12.
Suchan, T., Malicki, M. & Ronikier, M. Relict populations and Central European glacial refugia: the case of Rhododendron ferrugineum (Ericaceae). J. Biogeogr. 46, 392–404 (2019).
Article Google Scholar
13.
Schneeweiss, G. M. & Schönswetter, P. A re-appraisal of nunatak survival in arctic-alpine phylogeography. Mol. Ecol. 20, 190–192 (2011).
PubMed Article PubMed Central Google Scholar
14.
Lemmon, A. R. & Lemmon, E. M. High-throughput identification of informative nuclear loci for shallow-scale phylogenetics and phylogeography. Syst. Biol. 61, 745–761 (2012).
CAS PubMed Article PubMed Central Google Scholar
15.
Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, 1–7 (2008).
Article CAS Google Scholar
16.
Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92 (2016).
CAS PubMed PubMed Central Article Google Scholar
17.
Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius L.. Mol. Ecol. 25, 2997–3018 (2016).
PubMed Article PubMed Central Google Scholar
18.
Bohling, J., Small, M., Von Bargen, J., Louden, A. & DeHaan, P. Comparing inferences derived from microsatellite and RADseq datasets: a case study involving threatened bull trout. Conserv. Genet. 20, 329–342 (2019).
CAS Article Google Scholar
19.
Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—implications for brown trout conservation. Ecol. Evol. 9, 2106–2120 (2019).
PubMed PubMed Central Article Google Scholar
20.
Mesak, F., Tatarenkov, A., Earley, R. L. & Avise, J. C. Hundreds of SNPs vs. dozens of SSRs: which dataset better characterizes natural clonal lineages in a self-fertilizing fish?. Front. Ecol. Evol. 2, 74 (2014).
Article Google Scholar
21.
Fay, M. F., Cowan, R. S. & Leitch, I. J. The effects of nuclear DNA content (C-value) on the quality and utility of AFLP fingerprints. Ann. Bot. 95, 237–246 (2005).
CAS PubMed PubMed Central Article Google Scholar
22.
Karam, M.-J., Lefèvre, F., Dagher-Kharrat, M. B., Pinosio, S. & Vendramin, G. G. Genomic exploration and molecular marker development in a large and complex conifer genome using RADseq and mRNAseq. Mol. Ecol. Resour. 15, 601–612 (2015).
CAS PubMed Article PubMed Central Google Scholar
23.
Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A. & Cresko, W. A. SNP Discovery and Genotyping for Evolutionary Genetics Using RAD Sequencing. Methods in Molecular Biology (Clifton, N.J.) Vol. 772, 157–178 (Springer, Berlin, 2011).
Google Scholar
24.
Davey, J. L. & Blaxter, M. W. RADseq: next-generation population genetics. Brief. Funct. Genomics 9, 416–423 (2010).
CAS PubMed Article PubMed Central Google Scholar
25.
Głowacka, K. et al. Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. GCB Bioenergy 7, 386–404 (2015).
Article CAS Google Scholar
26.
Leaché, A. D., Banbury, B. L., Felsenstein, J., De Oca, A. N. M. & Stamatakis, A. Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst. Biol. 64, 1032–1047 (2015).
PubMed PubMed Central Article CAS Google Scholar
27.
Wu, C.-H. & Drummond, A. J. Joint inference of microsatellite mutation models, population history and genealogies using transdimensional Markov Chain Monte Carlo. Genetics 188, 151–164 (2011).
PubMed PubMed Central Article Google Scholar
28.
Emerson, K. J. et al. Resolving postglacial phylogeography using high-throughput sequencing. Proc. Natl. Acad. Sci. 107, 16196–16200 (2010).
CAS PubMed Article ADS PubMed Central Google Scholar
29.
Sboner, A., Mu, X., Greenbaum, D., Auerbach, R. K. & Gerstein, M. B. The real cost of sequencing: higher than you think!. Genome Biol. 12, 125 (2011).
PubMed PubMed Central Article Google Scholar
30.
Muir, P. et al. The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol. 17, 53 (2016).
PubMed PubMed Central Article CAS Google Scholar
31.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).
CAS PubMed PubMed Central Article ADS Google Scholar
32.
Mittermeier, R. A. & Mittermeier, C. G. Megadiversity: Earth’s Biologically Wealthiest Nations. in 501 (CEMEX, 1997).
33.
Trimble, M. J. & van Aarde, R. J. Geographical and taxonomic biases in research on biodiversity in human-modified landscapes. Ecosphere 3, art119 (2012).
Article Google Scholar
34.
Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl. Acad. Sci. USA 110, 12144–12148 (2013).
CAS PubMed Article ADS PubMed Central Google Scholar
35.
Adenle, A. et al. Stakeholder visions for biodiversity conservation in developing countries. Sustainability 7, 271–293 (2014).
Article Google Scholar
36.
Adenle, A. A., Stevens, C. & Bridgewater, P. Global conservation and management of biodiversity in developing countries: an opportunity for a new approach. Environ. Sci. Policy 45, 104–108 (2015).
Article Google Scholar
37.
Barber, P. H. et al. Advancing biodiversity research in developing countries: the need for changing paradigms. Bull. Mar. Sci. 90, 187–210 (2014).
Article ADS Google Scholar
38.
Byrne, M. Phylogeography provides an evolutionary context for the conservation of a diverse and ancient flora. Aust. J. Bot. 55, 316 (2007).
Article Google Scholar
39.
Dufresnes, C. et al. Conservation phylogeography: does historical diversity contribute to regional vulnerability in European tree frogs (Hyla arborea)?. Mol. Ecol. 22, 5669–5684 (2013).
PubMed Article PubMed Central Google Scholar
40.
Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).
Article Google Scholar
41.
Trimble, M. J. & van Aarde, R. J. Species inequality in scientific study. Conserv. Biol. 24, 886–890 (2010).
PubMed Article PubMed Central Google Scholar
42.
Kirschner, P. et al. Long-term isolation of European steppe outposts boosts the biome’s conservation value. Nat. Commun. 11, 1–10 (2020).
Article CAS Google Scholar
43.
Záveská, E. et al. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol. Phylogenet. Evol. https://doi.org/10.1016/J.YMPEV.2019.106572 (2019).
Article PubMed PubMed Central Google Scholar
44.
Luo, M.-C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).
CAS PubMed PubMed Central Article ADS Google Scholar
45.
Wang, X. X. et al. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 5, 2957 (2014).
PubMed PubMed Central Article ADS CAS Google Scholar
46.
Hensen, I. et al. Low genetic variability and strong differentiation among isolated populations of the rare steppe grass Stipa capillata L. Central Europe. Plant Biol. 12, 526–536 (2010).
CAS PubMed Article PubMed Central Google Scholar
47.
Huang, H. & Knowles, L. L. Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Syst. Biol 65, 1–9 (2014).
Google Scholar
48.
Crotti, M., Barratt, C. D., Loader, S. P., Gower, D. J. & Streicher, J. W. Causes and analytical impacts of missing data in RADseq phylogenetics: insights from an African frog (Afrixalus). Zool. Scr. 48, 157–167 (2019).
Article Google Scholar
49.
Sinclair, E. A. & Hobbs, R. J. Sample size effects on estimates of population genetic structure: implications for ecological restoration. Restor. Ecol. 17, 837–844 (2009).
Article Google Scholar
50.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
51.
Althoff, D. M., Gitzendanner, M. A. & Segraves, K. A. The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst. Biol. 56, 477–484 (2007).
CAS PubMed Article PubMed Central Google Scholar
52.
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
CAS PubMed PubMed Central Article Google Scholar
53.
Felsenstein, J. Inferring Phylogenies (Oxford University Press Inc., Oxford, 2004).
Google Scholar
54.
Eaton, D. A. R., Spriggs, E. L., Park, B. & Donoghue, M. J. Misconceptions on missing data in RAD-seq phylogenetics with a deep-scale example from flowering plants. Syst. Biol. 66, 399–412 (2016).
Google Scholar
55.
Hodel, R. G. J. et al. The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl. Plant Sci. 4, 1600025 (2016).
Article Google Scholar
56.
Puritz, J. B. et al. Demystifying the RAD fad. Mol. Ecol. 23, 5937–5942 (2014).
CAS PubMed Article PubMed Central Google Scholar
57.
Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).
CAS PubMed Article PubMed Central Google Scholar
58.
Wagner, H. C. et al. Light at the end of the tunnel: Integrative taxonomy delimits cryptic species in the Tetramorium caespitum complex (Hymenoptera: Formicidae). Myrmecol. News 25, 95–129 (2017).
Google Scholar
59.
Wheeler, Q. D. Taxonomic Shock and Awe. In The New Taxonomy (ed. Wheeler, Q. D.) 211–226 (CRC Press, Boca Raton, FL, 2008). https://doi.org/10.1201/9781420008562.ch10.
Google Scholar
60.
Holderegger, R. et al. Conservation genetics: linking science with practice. Mol. Ecol. 28, 3848–3856 (2019).
PubMed Article PubMed Central Google Scholar
61.
Tel-Zur, N., Abbo, S., Myslabodski, D. & Mizrahi, Y. Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol. Biol. Rep. 17, 249–254 (1999).
CAS Article Google Scholar
62.
Wachter, G. A. et al. Pleistocene survival on central Alpine nunataks: genetic evidence from the jumping bristletail Machilis pallida. Mol. Ecol. 21, 4983–4995 (2012).
PubMed Article PubMed Central Google Scholar
63.
Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. optiFLP: software for automated optimization of amplified fragment length polymorphism scoring parameters. Mol. Ecol. Resour. 11, 1113–1118 (2011).
CAS PubMed Article PubMed Central Google Scholar
64.
Arthofer, W. TinyFLP and tinyCAT: software for automatic peak selection and scoring of AFLP data tables. Mol. Ecol. Resour. 10, 385–388 (2010).
CAS PubMed Article PubMed Central Google Scholar
65.
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner, H. Vegan: Community Ecology Package. R package. (2017).
66.
Doležel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244 (2007).
PubMed Article CAS PubMed Central Google Scholar
67.
Davey, F. & RADseq counter. (2012). https://www.wiki.ed.ac.uk/display/RADSequencing/Home. (Accessed: 15th June 2014)
68.
Paun, O. et al. Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 65, 212–227 (2016).
PubMed Article PubMed Central Google Scholar
69.
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
PubMed PubMed Central Article Google Scholar
70.
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org. (Accessed: 1st September 2016)
71.
Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936–939 (2011).
CAS PubMed PubMed Central Article Google Scholar
72.
Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).
CAS PubMed Article ADS PubMed Central Google Scholar
73.
Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
CAS PubMed Article PubMed Central Google Scholar
74.
Rosenberg, N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
Article Google Scholar
75.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
CAS PubMed Article PubMed Central Google Scholar
76.
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).
CAS PubMed Article PubMed Central Google Scholar
77.
Kosman, E. & Leonard, K. J. Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol. Ecol. 14, 415–424 (2005).
CAS PubMed Article PubMed Central Google Scholar
78.
Miclaus, K., Wolfinger, R. & Czika, W. SNP selection and multidimensional scaling to quantify population structure. Genet. Epidemiol. 33, 488–496 (2009).
PubMed Article PubMed Central Google Scholar
79.
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
Article Google Scholar
80.
Wickham, H. ggplot2 (Springer, Berlin, 2009). https://doi.org/10.1007/978-0-387-98141-3.
Google Scholar More