More stories

  • in

    Resolving cryptic species complexes in marine protists: phylogenetic haplotype networks meet global DNA metabarcoding datasets

    1.
    Mayr E. Populations, species, and evolution: an abridgment of animal species and evolution. Cambridge: Belknap Press of Harvard University Press; 1970.
    2.
    Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22:148–55.
    PubMed  Article  Google Scholar 

    3.
    Fišer C, Robinson CT, Malard F. Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol. 2018;27:613–35.
    PubMed  Article  Google Scholar 

    4.
    Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI, et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol. 2018;33:153–63.
    PubMed  Article  Google Scholar 

    5.
    Sarno D, Kooistra WHCF, Medlin LK, Percopo I, Zingone A. Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy of S. costatum-like species with the description of four new species. J Phycol. 2005;41:151–76.
    Article  Google Scholar 

    6.
    Gaonkar CC, Kooistra WHCF, Lange CB, Montresor M, Sarno D. Two new species in the Chaetoceros socialis complex (Bacillariophyta): C. sporotruncatus and C. dichatoensis, and characterization of its relatives. J Phycol. 2017;53:889–907.
    CAS  PubMed  Article  Google Scholar 

    7.
    Li Y, Boonprakob A, Gaonkar CC, Kooistra WHCF, Lange CB, Hernández-Becerril D, et al. Diversity in the globally distributed diatom genus Chaetoceros (Bacillariophyceae): three new species from warm-temperate waters. PLoS ONE. 2017;12:e0168887.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Finlay BJ, Clarke KJ. Ubiquitous dispersal of microbial species. Nature. 1999;400:828.
    CAS  Article  Google Scholar 

    9.
    Finlay BJ, Fenchel T. Divergent perspectives on protist species richness. Protist. 1999;150:229–33.
    CAS  PubMed  Article  Google Scholar 

    10.
    Fenchel T, Finlay BJ. The ubiquity of small species: patterns of local and global diversity. Bioscience. 2004;54:777.
    Article  Google Scholar 

    11.
    Fenchel T. Cosmopolitan microbes and their ‘cryptic’ species. Aquat Microb Ecol. 2005;41:49–54.
    Article  Google Scholar 

    12.
    Miglietta MP, Faucci A, Santini F. Speciation in the sea: overview of the symposium and discussion of future directions. Integr Comp Biol. 2011;51:449–55.
    PubMed  Article  Google Scholar 

    13.
    Kooistra WHCF, Sarno D, Balzano S, Gu H, Andersen RA, Zingone A. Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist. 2008;159:177–93.
    CAS  PubMed  Article  Google Scholar 

    14.
    Nanjappa D, Audic S, Romac S, Kooistra WHCF, Zingone A. Assessment of species diversity and distribution of an ancient diatom lineage using a DNA metabarcoding approach. PLoS ONE. 2014;9:e103810.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Kaczmarska I, Mather L, Luddington IA, Muise F, Ehrman JM. Cryptic diversity in a cosmopolitan diatom known as Asterionellopsis glacialis (Fragilariaceae): Implications for ecology, biogeography, and taxonomy. Am J Bot. 2014;101:267–86.
    PubMed  Article  Google Scholar 

    16.
    Zhao Y, Yi Z, Gentekaki E, Zhan A, Al-Farraj SA, Song W. Utility of combining morphological characters, nuclear and mitochondrial genes: An attempt to resolve the conflicts of species identification for ciliated protists. Mol Phylogenet Evol. 2016;94:718–29.
    PubMed  Article  Google Scholar 

    17.
    Weiner A, Aurahs R, Kurasawa A, Kitazato H, Kucera M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol Ecol. 2012;21:4063–73.
    PubMed  Article  Google Scholar 

    18.
    Lamari N, Ruggiero MV, d’Ippolito G, Kooistra WHCF, Fontana A, Montresor M. Specificity of lipoxygenase pathways supports species delineation in the marine diatom genus Pseudo-nitzschia. PLoS ONE. 2013;8:e73281.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Škaloud P, Friedl T, Hallmann C, Beck A, Dal Grande F. Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). J Phycol. 2016;52:599–617.
    PubMed  Article  CAS  Google Scholar 

    20.
    de Jesus PB, Costa AL, de Castro Nunes JM, Manghisi A, Genovese G, Morabito M, et al. Species delimitation methods reveal cryptic diversity in the Hypnea cornuta complex (Cystocloniaceae, Rhodophyta). Eur J Phycol. 2019;54:135–53.
    Article  CAS  Google Scholar 

    21.
    Díaz-Tapia P, Ly M, Verbruggen H. Extensive cryptic diversity in the widely distributed Polysiphonia scopulorum (Rhodomelaceae, Rhodophyta): molecular species delimitation and morphometric analyses. Mol Phylogenet Evol. 2020;152:106909.
    PubMed  Article  Google Scholar 

    22.
    Huson DH, Rupp R, Scornavacca C. Phylogenetic networks. Cambridge: Cambridge University Press; 2009.

    23.
    Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.
    CAS  PubMed  Article  Google Scholar 

    24.
    Solís-Lemus C, Yang M, Ané C. Inconsistency of species tree methods under gene flow. Syst Biol. 2016;65:843–51.
    PubMed  Article  Google Scholar 

    25.
    Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol Ecol. 2017;26:5872–95.
    PubMed  Article  Google Scholar 

    26.
    Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, et al. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 2012;10:e1001419.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Trobajo R, Mann DG, Clavero E, Evans KM, Vanormelingen P, McGregor RC. The use of partial cox1, rbcL and LSU rDNA sequences for phylogenetics and species identification within the Nitzschia palea species complex (Bacillariophyceae). Eur J Phycol. 2010;45:413–25.
    CAS  Article  Google Scholar 

    28.
    Decelle J, Suzuki N, Mahé F, De Vargas C, Not F. Molecular phylogeny and morphological evolution of the acantharia (Radiolaria). Protist. 2012;163:435–50.
    PubMed  Article  Google Scholar 

    29.
    Stoeck T, Przybos E, Dunthorn M. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates. Mol Ecol Resour. 2014;14:458–68.
    CAS  PubMed  Article  Google Scholar 

    30.
    Moniz MBJ, Kaczmarska I. Barcoding of diatoms: nuclear encoded ITS revisited. Protist. 2010;161:7–34.
    CAS  PubMed  Article  Google Scholar 

    31.
    Gile GH, Stern RF, James ER, Keeling PJ. DNA barcoding of chlorarachniophytes using nucleomorph ITS sequences. J Phycol. 2010;46:743–50.
    CAS  Article  Google Scholar 

    32.
    Stern RF, Andersen RA, Jameson I, Küpper FC, Coffroth M-A, Vaulot D, et al. Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS ONE. 2012;7:e42780.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Saunders GW. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans R Soc B Biol Sci. 2005;360:1879–88.

    34.
    MacGillivary ML, Kaczmarska I. Survey of the efficacy of a short fragment of the rbcL gene as a supplemental DNA barcode for diatoms. J Eukaryot Microbiol. 2011;58:529–36.
    CAS  PubMed  Article  Google Scholar 

    35.
    Zimmermann J, Jahn R, Gemeinholzer B. Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org Divers Evol. 2011;11:173–92.
    Article  Google Scholar 

    36.
    Piredda R, Tomasino MP, D’Erchia AM, Manzari C, Pesole G, Montresor M, et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol Ecol. 2016;93:fiw200.
    PubMed  Article  CAS  Google Scholar 

    37.
    Pawlowski J, Lecroq B. Short rDNA barcodes for species identification in foraminifera. J Eukaryot Microbiol. 2010;57:197–205.
    CAS  PubMed  Article  Google Scholar 

    38.
    Mordret S, Piredda R, Vaulot D, Montresor M. Kooistra WHCF, Sarno D. dinoref: a curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene. Mol Ecol Resour. 2018;18:974–87.
    CAS  Article  Google Scholar 

    39.
    Gaonkar CC, Piredda R, Minucci C, Mann DG, Montresor M, Sarno D, et al. Annotated 18S and 28S rDNA reference sequences of taxa in the planktonic diatom family Chaetocerotaceae. PLoS ONE. 2018;13:e0208929.
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Balzano S, Percopo I, Siano R, Gourvil P, Chanoine M, Marie D, et al. Morphological and genetic diversity of Beaufort Sea diatoms with high contributions from the Chaetoceros neogracilis species complex. J Phycol. 2017;53:161–87.
    CAS  PubMed  Article  Google Scholar 

    41.
    Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, et al. The ocean sampling day consortium. Gigascience. 2015;4. https://doi.org/10.1186/s13742-015-0066-5.

    42.
    Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. 2015;2:150023.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Yau S, Lopes dos Santos A, Eikrem W, Gérikas Ribeiro C, Gourvil P, Balzano S, et al. Mantoniella beaufortii and Mantoniella baffinensis sp. nov. (Mamiellales, Mamiellophyceae), two new green algal species from the high arctic. J Phycol. 2020;56:37–51.
    PubMed  Article  Google Scholar 

    44.
    Lopes Dos Santos A, Gourvil P, Tragin M, Noël M-H, Decelle J, Romac S, et al. Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters. ISME J. 2017;11:512–28.
    PubMed  Article  Google Scholar 

    45.
    Kuwata A, Yamada K, Ichinomiya M, Yoshikawa S, Tragin M, Vaulot D, et al. Bolidophyceae, a sister picoplanktonic group of diatoms—a review. Front Mar Sci. 2018;5:370.
    Article  Google Scholar 

    46.
    Segawa T, Matsuzaki R, Takeuchi N, Akiyoshi A, Navarro F, Sugiyama S, et al. Bipolar dispersal of red-snow algae. Nat Commun. 2018;9:1–8.
    CAS  Article  Google Scholar 

    47.
    Ichinomiya M, Dos Santos AL, Gourvil P, Yoshikawa S, Kamiya M, Ohki K, et al. Diversity and oceanic distribution of the Parmales (Bolidophyceae), a picoplanktonic group closely related to diatoms. ISME J. 2016;10:2419–34.
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Tragin M, Vaulot D. Novel diversity within marine Mamiellophyceae (Chlorophyta) unveiled by metabarcoding. Sci Rep. 2019;9:1–14.
    CAS  Article  Google Scholar 

    49.
    Morard R, Vollmar NM, Greco M, Kucera M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS ONE. 2019;14:e0213936.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Pinseel E, Janssens SB, Verleyen E, Vanormelingen P, Kohler TJ, Biersma EM, et al. Global radiation in a rare biosphere soil diatom. Nat Commun. 2020;11:1–12.
    Article  CAS  Google Scholar 

    51.
    Hasle GR, Syvertsen EE. Marine diatoms. In: Tomas CR, editor. Identifying marine phytoplankton. San Diego: Academic Press; 1997. pp 5–385.

    52.
    Kooistra WHCF, Sarno D, Hernández-Becerril DU, Assmy P, Di Prisco C, Montresor M. Comparative molecular and morphological phylogenetic analyses of taxa in the Chaetocerotaceae (Bacillariophyta). Phycologia. 2010;49:471–500.
    Article  Google Scholar 

    53.
    De Luca D, Sarno D, Piredda R, Kooistra WHCF. A multigene phylogeny to infer the evolutionary history of Chaetocerotaceae (Bacillariophyta). Mol Phylogenet Evol. 2019;140:106575.
    PubMed  Article  Google Scholar 

    54.
    Longhurst AR. Toward and ecological geography of the sea. In: Longhurst AR, editor. Ecological geography of the sea. 2nd ed. Cambridge: Academic Press; 2007. pp 1–17.

    55.
    Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.
    CAS  PubMed  Article  Google Scholar 

    56.
    Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE. 2009;4:e6372.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    De Vargas C, Audic S, Tara Oceans Consortium C, Tara Oceans Expedition P. Total V9 rDNA information organized at the metabarcode level for the Tara Oceans Expedition (2009–12). 2017. PANGAEA. https://doi.org/10.1594/PANGAEA.873277.

    59.
    Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, et al. Global trends in marine plankton diversity across kingdoms of life. Cell. 2019;179:1084–97.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
    CAS  Article  Google Scholar 

    61.
    Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Han MV, Zmasek CM. phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinform. 2009;10:356.
    Article  CAS  Google Scholar 

    64.
    Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992;132:619–33.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–9.
    CAS  PubMed  Article  Google Scholar 

    66.
    Leigh JW, Bryant D. popart: full‐feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6.
    Article  Google Scholar 

    67.
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
    CAS  Article  Google Scholar 

    68.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Jukes TH, Cantor CR. Evolution of protein molecules. Mamm Protein Metab. 1969;3:21–132.
    CAS  Article  Google Scholar 

    71.
    Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. 2005;3:e422.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    R Core Team. R: a language and environment for statistical computing. 2019. Vienna, Austria: R Foundation for Statistical Computing; 2019.

    73.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. https://ggplot2.tidyverse.org.

    75.
    Becker A, Wilks AR. Maps: draw geographical maps. 2018. https://CRAN.R-project.org/package=maps.

    76.
    Markmann M, Tautz D. Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philos Trans R Soc Lond B Biol Sci. 2005;360:1917–24.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    López-Escardó D, Paps J, de Vargas C, Massana R, Ruiz-Trillo I, Del Campo J. Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity. Sci Rep. 2018;8:9106.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Álvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol. 2003;29:417–34.

    79.
    Alverson AJ, Kolnick L. Intragenomic nucleotide polymorphism among small subunit (18S) rDNA paralogs in the diatom genus Skeletonema (Bacillariophyta). J Phycol. 2005;41:1248–57.
    CAS  Article  Google Scholar 

    80.
    Gaonkar CC, Piredda R, Sarno D, Zingone A, Montresor M, Kooistra WHCF. Species detection and delineation in the marine planktonic diatoms Chaetoceros and Bacteriastrum through metabarcoding: making biological sense of haplotype diversity. Environ Microbiol. 2020;22:1917–29.
    CAS  PubMed  Article  Google Scholar 

    81.
    Cleve PT. Pelagisk Diatomeer från Kattegat. In: Petersen CGJ, editor. Det Videnskabelige Udbytte af Kanonbaaden ‘Hauchs’ Togter i de Danske Have Indefor Skagen, I. Aarene 1883–86. Kjøbenhavn: Andr. Fred. Høst & Sons Forlag; 1889. pp 53–56.

    82.
    Gran HH. Den Norske Nordhaus-Expedition 1876-1878. Botanik, Protophyta: Diatomaceae, Silicoflagellata og Cilioflagellata. Christiania: Grøndal & Søns; 1897.

    83.
    De Luca D, Kooistra WHCF, Sarno D, Gaonkar CC, Piredda R. Global distribution and diversity of Chaetoceros (Bacillariophyta, Mediophyceae): integration of classical and novel strategies. PeerJ. 2019;7:e7410.
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Wang J, Wu J. Occurrence and potential risks of harmful algal blooms in the East China Sea. Sci Total Environ. 2009;407:4012–21.
    CAS  PubMed  Article  Google Scholar 

    85.
    Zhen Y, Mi T, Yu Z. Detection of several harmful algal species by sandwich hybridization integrated with a nuclease protection assay. Harmful Algae. 2009;8:651–7.
    CAS  Article  Google Scholar 

    86.
    Richter DJ, Watteaux R, Vannier T, Leconte J, Frémont P, Reygondeau G, et al. Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems. bioRxiv. 2019. https://doi.org/10.1101/867739.

    87.
    Sarno D, Kooistra WHCF, Balzano S, Hargraves PE, Zingone A. Diversity in the genus Skeletonema (Bacillariophyceae). III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp. nov. J Phycol. 2007;43:156–70.
    CAS  Article  Google Scholar 

    88.
    Hasle GR. The biogeography of some marine planktonic diatoms. Deep Sea Res Oceanogr Abstr. 1976;23:319–338, IN1-IN6.

    89.
    Pargana A. Functional and molecular diversity of the diatom family Leptocylindraceae. 2017. PhD Thesis, The Open University, Milton Keynes, UK.

    90.
    Novis PM. Taxonomy of Klebsormidium (Klebsormidiales, Charophyceae) in New Zealand streams and the significance of low-pH habitats. Phycologia. 2006;45:293–301.
    Article  Google Scholar 

    91.
    Rindi F, Guiry MD, López-Bautista JM. Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. J Phycol. 2008;44:1529–40.
    PubMed  Article  Google Scholar 

    92.
    Rindi F, Mikhailyuk TI, Sluiman HJ, Friedl T, López-Bautista JM. Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol Phylogenet Evol. 2011;58:218–31.
    PubMed  Article  Google Scholar 

    93.
    Škaloud P, Rindi F. Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). J Eukaryot Microbiol. 2013;60:350–62.
    PubMed  Article  CAS  Google Scholar 

    94.
    Baas Becking LGM. Geobiologie of Inleiding tot de Milieukunde. The Hague: Van Stockum & Zoon; 1934).

    95.
    Shapiro BJ, Leducq J-B, Mallet J. What is speciation? PLoS Genet. 2016;12:e1005860.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    96.
    Godhe A, Rynearson T. The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160399.
    PubMed  PubMed Central  Article  Google Scholar 

    97.
    de Vargas C, Norris R, Zaninetti L, Gibb SW, Pawlowski J. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proc Natl Acad Sci USA. 1999;96:2864–8.
    PubMed  Article  Google Scholar 

    98.
    Amato A, Kooistra WHCF, Levialdi Ghiron JH, Mann DG, Pröschold T, Montresor M. Reproductive isolation among sympatric cryptic species in marine diatoms. Protist. 2007;158:193–207.
    CAS  PubMed  Article  Google Scholar 

    99.
    Weisse T. Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodivers Conserv. 2007;17:243–59.
    Article  Google Scholar 

    100.
    Vanelslander B, Créach V, Vanormelingen P, Ernst A, Chepurnov VA, Sahan E, et al. Ecological differentiation between sympatric pseudocryptic species in the estuarine benthic diatom Navicula phyllepta (Bacillariophyceae). J Phycol. 2009;45:1278–89.
    CAS  PubMed  Article  Google Scholar  More

  • in

    Impacts of wildlife trade on terrestrial biodiversity

    1.
    Haken, J. Transnational Crime in the Developing World (Global Financial Integrity, 2011).
    2.
    Patel, N. G. et al. Quantitative methods of identifying the key nodes in the illegal wildlife trade network. Proc. Natl Acad. Sci. USA 112, 7948–7953 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Bager Olsen, M. T. et al. Thirty-six years of legal and illegal wildlife trade entering the USA. Oryx https://doi.org/10.1017/S0030605319000541 (2019).

    4.
    Tittensor, D. P. et al. Evaluating the relationships between the legal and illegal international wildlife trades. Conserv. Lett. https://doi.org/10.1111/conl.12724 (2020).

    5.
    Harfoot, M. et al. Unveiling the patterns and trends in 40 years of global trade in CITES-listed wildlife. Biol. Conserv. 223, 47–57 (2018).
    Article  Google Scholar 

    6.
    Scheffers, B. R., Oliveira, B. F., Lamb, I. & Edwards, D. P. Global wildlife trade across the tree of life. Science 76, 71–76 (2019).
    Article  CAS  Google Scholar 

    7.
    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Nielsen, M. R., Meilby, H., Smith-Hall, C., Pouliot, M. & Treue, T. The importance of wild meat in the global south. Ecol. Econ. 146, 696–705 (2018).
    Article  Google Scholar 

    9.
    ’t Sas-Rolfes, M., Challender, D. W. S., Hinsley, A., Veríssimo, D. & Milner-Gulland, E. J. Illegal wildlife trade: scale, processes, and governance. Annu. Rev. Environ. Resour. 44, 201–228 (2019).
    Article  Google Scholar 

    10.
    Cooney, R. et al. From poachers to protectors: engaging local communities in solutions to illegal wildlife trade. Conserv. Lett. 10, 367–374 (2017).
    Article  Google Scholar 

    11.
    Bodmer, R. E. & Lozano, E. P. Rural development and sustainable wildlife use in Peru. Conserv. Biol. 15, 1163–1170 (2001).
    Article  Google Scholar 

    12.
    McClenachan, L., Cooper, A. B. & Dulvy, N. K. Rethinking trade-driven extinction risk in marine and terrestrial megafauna. Curr. Biol. 26, 1640–1646 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Wittemyer, G. et al. Illegal killing for ivory drives global decline in African elephants. Proc. Natl Acad. Sci. USA 111, 13117–13121 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Brook, S., Van Coeverden De Groot, P. J., Mahood, S. & Long, B. Extinction of the Javan Rhinoceros (Rhinoceros sondaicus) from Vietnam (WWF, 2011).

    15.
    Heinrich, S. et al. Where did all the pangolins go? International CITES trade in pangolin species. Glob. Ecol. Conserv. 8, 241–253 (2016).
    Article  Google Scholar 

    16.
    Cowlishaw, G., Mendelson, S. & Rowcliffe, J. M. Evidence for post-depletion sustainability in a mature bushmeat market. J. Appl. Ecol. 42, 460–468 (2005).
    Article  Google Scholar 

    17.
    Hutton, J. M. & Webb, G. in The Trade in Wildlife: Regulation for Conservation (ed. Oldfield, S.) Ch. 11 (Earthscan, 2003).

    18.
    Harris, J. B. C. et al. Using market data and expert opinion to identify overexploited species in the wild bird trade. Biol. Conserv. 187, 51–60 (2015).
    Article  Google Scholar 

    19.
    Milner-Gulland, E. J. & Clayton, L. The trade in babirusas and wild pigs in North Sulawesi, Indonesia. Ecol. Econ. 42, 165–183 (2002).
    Article  Google Scholar 

    20.
    Thuiller, W. et al. Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob. Change Biol. 12, 424–440 (2006).
    Article  Google Scholar 

    21.
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    22.
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    CITES Trade Statistics Derived from the CITES Trade Database (CITES, 2020).

    24.
    Phelps, J. & Webb, E. L. ‘Invisible’ wildlife trades: Southeast Asia’s undocumented illegal trade in wild ornamental plants. Biol. Conserv. 186, 296–305 (2015).
    Article  Google Scholar 

    25.
    Davies, G., Schulte-Herbrüggen, B., Kümpel, N. F. & Mendelson, S. Hunting and trapping in Gola Forests, south-eastern Sierra Leone: bushmeat from farm, fallow and forest. Bushmeat Livelihoods Wildl. Manage. Poverty Reduct. https://doi.org/10.1002/9780470692592.ch1 (2008).

    26.
    Linder, J. M. & Oates, J. F. Differential impact of bushmeat hunting on monkey species and implications for primate conservation in Korup National Park, Cameroon. Biol. Conserv. 144, 738–745 (2011).
    Article  Google Scholar 

    27.
    Gilroy, J. J. & Edwards, D. P. Source–sink dynamics: a neglected problem for landscape-scale biodiversity conservation in the tropics. Curr. Landsc. Ecol. Rep. 2, 51–60 (2017).
    Article  Google Scholar 

    28.
    Watson, J. E. M. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Marshall, H. et al. Spatio-temporal dynamics of consumer demand driving the Asian songbird crisis. Biol. Conserv. 241, 108237 (2020).
    Article  Google Scholar 

    30.
    Harris, J. B. C. et al. Measuring the impact of the pet trade on Indonesian birds. Conserv. Biol. 31, 394–405 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Carrasco, L. R., Chan, J., Mcgrath, F. L. & Nghiem, L. T. P. Biodiversity conservation in a telecoupled world. Ecol. Soc. 22, 24 (2017).
    Article  Google Scholar 

    32.
    Blundell, A. G. & Mascia, M. B. Discrepancies in reported levels of international wildlife trade. Conserv. Biol. 19, 2020–2025 (2005).
    Article  Google Scholar 

    33.
    Nelson, A. et al. A suite of global accessibility indicators. Sci. Data 6, 266 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Rao, M., Zaw, T., Htun, S. & Myint, T. Hunting for a living: wildlife trade, rural livelihoods and declining wildlife in the Hkakaborazi National Park, North Myanmar. Environ. Manage. 48, 158–167 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 4052 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Hinsley, A. et al. Building sustainability into the Belt and Road Initiative’s traditional Chinese medicine trade. Nat. Sustain. 3, 96–100 (2020).
    Article  Google Scholar 

    37.
    Lechner, A. M., Chan, F. K. S. & Campos-Arceiz, A. Biodiversity conservation should be a core value of China’s Belt and Road Initiative. Nat. Ecol. Evol. 2, 408–409 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Farhadinia, M. S. et al. Belt and Road Initiative may create new supplies for illegal wildlife trade in large carnivores. Nat. Ecol. Evol. 3, 1267–1268 (2019).
    PubMed  Article  Google Scholar 

    39.
    Courchamp, F. et al. Rarity value and species extinction: the anthropogenic Allee effect. PLoS Biol. 4, 2405–2410 (2006).
    CAS  Article  Google Scholar 

    40.
    Jetz, W. & Freckleton, R. P. Towards a general framework for predicting threat status of data-deficient species from phylogenetic, spatial and environmental information. Phil. Trans. R. Soc. B 370, 20140016 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Dulac, J. Global Land Transport Infrastructure Requirements: Estimating Road and Railway Infrastructure Capacity and Costs to 2050 (IEA, 2013).

    42.
    Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl Acad. Sci. USA 117, 7095–7102 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Challender, D. W. S., Harrop, S. R. & MacMillan, D. C. Towards informed and multi-faceted wildlife trade interventions. Glob. Ecol. Conserv. 3, 129–148 (2015).
    Article  Google Scholar 

    44.
    Papworth, S., Milner-Gulland, E. J. & Slocombe, K. Hunted woolly monkeys (Lagothrix poeppigii) show threat-sensitive responses to human presence. PLoS ONE 8, e62000 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Toledo-Aceves, T., Garcia-Franco, J. G. & Lopez-Barrera, F. Bromeliad rain: an opportunity for cloud forest management. Ecol. Manage. 329, 129–136 (2014).
    Article  Google Scholar 

    46.
    Challender, D. W. S. et al. Mischaracterization of wildlife trade threat. Science (30 October 2019).

    47.
    Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature https://doi.org/10.1038/s41586-020-2920-6 (2020).

    48.
    Tierney, M. et al. Use it or lose it: measuring trends in wild species subject to substantial use. Oryx 48, 420–429 (2014).
    Article  Google Scholar 

    49.
    Jachmann, H. Monitoring law-enforcement performance in nine protected areas in Ghana. Biol. Conserv. 141, 89–99 (2008).
    Article  Google Scholar 

    50.
    Cardador, L., Tella, J. L., Anadón, J. D., Abellán, P. & Carrete, M. The European trade ban on wild birds reduced invasion risks. Conserv. Lett. https://doi.org/10.1111/conl.12631 (2019).

    51.
    Grames, E. M., Stillman, A. N., Tingley, M. W. & Elphick, C. S. An automated approach to identifying search terms for systematic reviews using keyword co-occurrence networks. Methods Ecol. Evol. 10, 1645–1654 (2019).
    Article  Google Scholar 

    52.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    53.
    Espinosa-Andrade, S. R. Road development, bushmeat extraction and jaguar conservation in Yasuni Biosphere Reserve Ecuador PhD Thesis, Univ. Florida (2012); https://ufdc.ufl.edu/UFE0044108/00001/citation

    54.
    Schoppe, S., Matillano, J., Cervancia, M. & Acosta, D. Conservation needs of the critically endangered Philippine forest turtle, Siebenrockiella leytensis, in Palawan, Philippines. Chelonian Conserv. Biol. 9, 145–153 (2010).
    Article  Google Scholar 

    55.
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
    Article  Google Scholar 

    56.
    Slavenko, A., Tallowin, O. J. S., Itescu, Y., Raia, P. & Meiri, S. Late Quaternary reptile extinctions: size matters, insularity dominates. Glob. Ecol. Biogeogr. 25, 1308–1320 (2016).
    Article  Google Scholar 

    57.
    Aquino, R. & Calle, A. Evaluation of the conservation status of the game mammals: a comparative model in communities of the Pacaya Samira National Reserve (Loreto, Peru). Rev. Peru. Biol. 10, 163–174 (2003).
    Google Scholar 

    58.
    Aquino, R., Lopez, L., Garcia, G., Charpentier, E. & Arevalo, I. Conservation status and threats to atelids in the northeastern Peruvian Amazon. Primate Conserv. 30, 21–29 (2016).
    Google Scholar 

    59.
    Carrillo, E., Wong, G. & Cuarón, A. D. Monitoring mammal populations in Costa Rican protected areas under different hunting restrictions. Conserv. Biol. 14, 1580–1591 (2000).
    Article  Google Scholar 

    60.
    Cronin, D. T. The Impact of Bushmeat Hunting on the Primates of Bioko Island, Equatorial Guinea (Drexel Univ., 2013).

    61.
    Dasgupta, S. & Hilaluddin Differential effects of hunting on populations of hornbills and imperial pigeons in the rainforests of the eastern Indian Himalaya. Indian Forester 138, 902–909 (2012).
    Google Scholar 

    62.
    De Thoisy, B., Renoux, F. & Julliot, C. Hunting in northern French Guiana and its impact on primate communities. Oryx 39, 149–157 (2005).
    Article  Google Scholar 

    63.
    Fay, J. M. An elephant (Loxodonta africana) survey using dung counts in the forests of the Central African Republic. J. Trop. Ecol. 7, 25–36 (1991).
    Article  Google Scholar 

    64.
    Gamble, T. & Simons, A. M. Comparison of harvested and nonharvested painted turtle populations. Wildl. Soc. Bull. 32, 1269–1277 (2004).
    Article  Google Scholar 

    65.
    Gonzalez, J. A. Harvesting, local trade, and conservation of parrots in the northeastern Peruvian Amazon. Biol. Conserv. 114, 437–446 (2003).
    Article  Google Scholar 

    66.
    Gray, T. N. E. & Phan, C. Habitat preferences and activity patterns of the larger mammal community in Phnom Prich Wildlife Sanctuary, Cambodia. Raffles Bull. Zool. 59, 311–318 (2011).
    Google Scholar 

    67.
    Hall, J. S. et al. A survey of elephants (Loxodonta africana) in the Kahuzi-Biega National Park lowland sector and adjacent forest in eastern Zaire. Afr. J. Ecol. 35, 213–223 (1997).
    Article  Google Scholar 

    68.
    Klemens, M. W. & Moll, D. An assessment of the effects of commercial exploitation on the pancake tortoise, Malacochersus tornieri, in Tanzania. Chelonian Conserv. Biol. 1, 197–206 (1995).
    Google Scholar 

    69.
    Kümpel, N. F., Milner-Gulland, E. J., Rowcliffe, J. M. & Cowlishaw, G. Impact of gun-hunting on diurnal primates in continental Equatorial Guinea. Int. J. Primatol. 29, 1065–1082 (2008).
    Article  Google Scholar 

    70.
    Magige, F. J., Holmern, T., Stokke, S., Mlingwa, C. & Røskaft, E. Does illegal hunting affect density and behaviour of African grassland birds? A case study on ostrich (Struthio camelus). Biodivers. Conserv. 18, 1361–1373 (2009).
    Article  Google Scholar 

    71.
    Maldonado, A. M. & Peck, M. R. Research and in situ conservation of owl monkeys enhances environmental law enforcement at the Colombian–Peruvian border. Am. J. Primatol. 76, 658–669 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    72.
    Maldonado, A. M., Nijman, V. & Bearder, S. K. Trade in night monkeys Aotus spp. in the Brazil–Colombia–Peru tri-border area: international wildlife trade regulations are ineffectively enforced. Endanger. Species Res. 9, 143–149 (2009).
    Article  Google Scholar 

    73.
    Muchaal, P. K. & Ngandjui, G. Impact of village hunting on wildlife populations in the Western Dja Reserve, Cameroon. Conserv. Biol. 13, 385–396 (1999).
    Article  Google Scholar 

    74.
    Nuñez-iturril, G. & Howe, H. F. Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in western Amazonia. Biotropica 39, 348–354 (2007).
    Article  Google Scholar 

    75.
    O’Brien, S. et al. Decline of the Madagascar radiated tortoise Geochelone radiata due to overexploitation. Oryx 37, 338–343 (2003).
    Google Scholar 

    76.
    Patrick, D. A., Shirk, P., Vonesh, J. R., Harper, E. B. & Howell, K. M. Abundance and roosting ecology of chameleons in the Eastern Arc Mountains of Tanzania and potential effects of harvesting. Herpetol. Conserv. Biol. 6, 422–431 (2011).
    Google Scholar 

    77.
    Poulsen, J. R., Clark, C. J. & Bolker, B. M. Decoupling the effect of logging and hunting on an Afrotropical animal community. Ecol. Appl. 21, 1819–1836 (2011).
    CAS  PubMed  Article  Google Scholar 

    78.
    Remis, M. J. & Kpanou, J. B. Primate and ungulate abundance in response to multi-use zoning and human extractive activities in a central African reserve. Afr. J. Ecol. 49, 70–80 (2010).
    Article  Google Scholar 

    79.
    Rist, J., Milner-Gulland, E. J., Cowlishaw, G. & Rowcliffe, J. M. The importance of hunting and habitat in determining the abundance of tropical forest species in Equatorial Guinea. Biotropica 41, 700–710 (2009).
    Article  Google Scholar 

    80.
    Rovero, F., Mtui, A. S., Kitegile, A. S. & Nielsen, M. R. Hunting or habitat degradation? Decline of primate populations in Udzungwa Mountains, Tanzania: an analysis of threats. Biol. Conserv. 146, 89–96 (2012).
    Article  Google Scholar 

    81.
    Segura, A. & Acevedo, P. The importance of protected and unprotected areas for the Mediterranean spur-thighed tortoise demography in northwest Morocco. Amphib. Reptilia https://doi.org/10.6084/m9.figshare.7751783.v1 (2019).

    82.
    Sung, Y.-H., Karraker, N. E. & Hau, B. C. H. Demographic evidence of illegal harvesting of an endangered Asian turtle. Conserv. Biol. 27, 1421–1428 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Topp-Jorgensen, E., Nielsen, M. R., Marshall, A. R. & Pedersen, U. Relative densities of mammals in response to different levels of bushmeat hunting in the Udzungwa Mountains, Tanzania. Trop. Conserv. Sci. 2, 70–87 (2009).
    Article  Google Scholar 

    84.
    Yasuoka, H. The sustainability of duiker (Cephalophus spp.) hunting for the Baka hunter–gatherers in southeastern Cameroon. Afr. Study Monogr. 33, 95–120 (2006).
    Google Scholar 

    85.
    Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2020).

    86.
    QGIS Development Team QGIS Geographic Information System v.3.12.0 (Open Source Geospatial Foundation Project, 2020).

    87.
    User Manual for the World Database on Protected Areas and World Database on Other Effective Area-Based Conservation Measures: 1.6 (UNEP-WCMC, 2019).

    88.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Article  Google Scholar 

    89.
    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    90.
    Lajeunesse, M. J. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J. et al.) Ch. 13 (Princeton Univ. Press, 2013); https://doi.org/10.23943/princeton/9780691137285.003.0013

    91.
    Rubin, D. B. & Schenker, N. Multiple imputation in health-care databases: an overview and some applications. Stat. Med. 10, 585–598 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    92.
    Sweeting, M. J., Sutton, A. J. & Lambert, P. C. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat. Med. 23, 1351–1375 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    93.
    Viechtbauer, W. Conducting meta-analyses in R with the metafor. J. Stat. Softw. 36, 1–48 (2010).
    Article  Google Scholar 

    94.
    Hothorn, T. et al. multcomp: Simultaneous inference in general parametric models. R package version 1.4-15 (2016).

    95.
    Cochran, W. G. The combination of estimates from different experiments. Biometrics 10, 101–129 (1954).
    Article  Google Scholar 

    96.
    Hoaglin, D. C. Misunderstandings about Q and ‘Cochran’s Q test’ in meta-analysis. Stat. Med. 35, 485–495 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    97.
    McFadden, D. Quantitative Methods for Analyzing Travel Behaviour of Individuals: Some Recent Developments Discussion Paper No. 474 (Cowles Foundation, 1977).

    98.
    Geary, R. C. The frequency distribution of the quotient of two normal variates. J. R. Stat. Soc. 93, 442–446 (1930).
    Article  Google Scholar 

    99.
    Lajeunesse, M. J. Bias and correction for the log response ratio in ecological meta-analysis. Ecol. Soc. Am. 96, 2056–2063 (2015).
    Google Scholar 

    100.
    Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).
    Article  Google Scholar 

    101.
    Rosenberg, M. S. The file-drawer problem revisited: a general weighted method for calculating fail-safe number in meta-analysis. Evolution 59, 464–468 (2005).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer

    Nonnutritive sweeteners promote conjugative transfer
    To test the effect of nonnutritive sweeteners on the conjugative transfer of ARGs, both intra- and intergenus-transfer experiments (model I) were first conducted, in which the bacteria were exposed to various concentrations of four commonly used nonnutritive sweeteners (SAC, SUC, ASP, and ACE-K) for 8 h at room temperature. Notably, in both mating systems, the whole concentration range (from 0.03 to 300 mg/L) of three sweeteners (SUC, ASP, and ACE-K) caused a significant concentration-dependent increase (p = 0.00017 ~ 0.047, Fig. S1a, b); Pearson correlation analysis was shown in Table S3 in conjugative transfer compared to the control (Fig. 1a, b). The intragenus (donor Escherichia coli K-12 LE392 and recipient E. coli K-12 MG1655) spontaneous conjugative transfer frequency was (1.9 ± 0.2) × 10−4 transconjugants per recipient cell (Fig. S2). However, the conjugative transfer frequencies were significantly enhanced by the sweeteners SUC, ASP, and ACE-K at 0.3 mg/L or above. For example, SUC, ASP, and ACE-K at 300 mg/L enhanced the conjugative frequencies by 1.5- (p = 0.00027), 4.1- (p = 0.000000089), and 3.4-fold (p = 0.0000020), respectively (Fig. 1a). In contrast, SAC did not significantly change the conjugative transfer frequency in the conjugation system (p = 0.200 ~ 0.670, Fig. 1a). For intergenus conjugation (donor E. coli K-12 LE392 and recipient Pseudomonas alloputida), all sweeteners at concentrations of 3 mg/L or higher (except for SAC) were seen to promote the conjugative transfer of the donor RP4 plasmid to recipients of different genera (p = 0.000047 ~0.042, Fig. 1b). SUC, ASP, and ACE-K at 300 mg/L caused a great increase in conjugative transfer, by 2.6- (p = 0.0000020), 4.1- (p = 0.000036), and 4.2-fold (p = 0.000019), respectively (Fig. 1b). It should be noted that the enhanced transfer frequencies were associated with the increased number of colonies on selective transconjugant plates, rather than decreased recipient numbers (Fig. S3).
    Fig. 1: Nonnutritive sweeteners (SAC, SUC, ASP, and ACE-K) promoted RP4 plasmid-mediated conjugative transfer.

    a Fold changes in conjugative ARG transfer within genera. At high concentrations ( >0.3 mg/L), all tested sweeteners (except for SAC) promoted conjugation (N = 6; ANOVA, p  More

  • in

    Reply to: ‘Flooding is a key driver of the Tonle Sap dai fishery in Cambodia’

    We empirically analyzed1 an industrial-scale ‘Dai’ fishery (2000/2001–2014/2015) presenting the signatures of indiscriminate fishing effects on the Tonle Sap’s fish community. Halls and Hortle2 suggest that apparent recent changes in Tonle Sap’s fish catch are more likely to reflect changing hydrological conditions than fishing-down effects, possibly caused by climate change and hydropower development. In addition, they question (1) the use of the Dai fishery data from 2000/01 onwards, as the fishery has been assessed since 19943,4; (2) the Dai data being generated from a ‘standardized biological catch assessment’; (3) the explanation of compensatory response from small-bodied species in stabilizing the Dai seasonal catches; and (4) the mean fish weight used in1 being subject to ‘sampling related bias’. Finally, they claim that fishing effort from Tonle Sap may have declined as a result of fishing lot removal since 2012, and conclude that our findings may distract attention from irreversible and growing threats to fisheries caused by ongoing hydropower dam developments. We appreciate Halls and Hortle’s contributions and the opportunity to discuss these issues.
    To begin with, we re-analyzed our data and quantified temporal trends in species’ catch while accounting for both Flood Index (FI) suggested by Halls and Hortle and water temperature effects. To do this, we computed FI using mean daily water level data from Kampong Loung (Tonle Sap Lake) following4 and mean annual water temperature at Prek Kdam in Tonle Sap River where the Dai fishery operates. We then computed for each species a linear model expressing species abundance as a function of the two drivers, and assessed temporal trends in the residuals of these models (i.e. the part of variation not explained by FI and water temperature). The results indicated that 50% of species still showed a declining trend in residuals, with declines significantly more pronounced for large-bodied species (p-value = 0.016, Fig. 1). Here, we reiterate that our results support the findings of others, stressing the increasing contribution of catches of small-bodied species and the decline in the average fish size of the lower Mekong fisheries, both signs of overfishing5,6,7 and indiscriminate fishing effects8,9.
    Figure 1

    Temporal trend in residuals from the linear models relating species’ catch to Flood Index and water temperature against (a) log-transformed fish species’ maximum total length and (b) trophic level. The results indicated that 50% of species showed a declining trend in residuals, and this decline was significantly stronger for large-bodied fish species (p-value = 0.016).

    Full size image

    We analyzed the Dai data using 14 rows (Dai row 2–15) from 2000/01 onwards because of changes in sampling schemes and sampling intensity applied to assess the fishery. From 2000/01 onwards, Dai row 1 was discontinued, and it was only from that time that sampling intensity was relatively stable (see Halls et al. 2013, Table 114) with Dai rows and their location unchanged. Although variation in the use of net types and mesh sizes may happen, the Dai gear is long-lasting of about 7 years on average10 and those gears are used seasonally to exploit fish systematically. This makes it seasonally comparable, particularly when the catch is assessed for the entire fishery.
    By re-analysing the trends of seasonal catch of the three most prolific small species of the genus Henichorynchus, Halls and Hortle showed no compelling evidence of a compensatory response by small species, but did not consider the increasing trends of other small-bodied species (e.g. Labiobarbus lineatus) that were reported in the Dai catch (see Ngor et al.’s Supplementary Information Table S61). Moreover, Halls and Hortle claim that fishing effort has declined, referring to the fisheries reform in 201211. This reform has led to the establishment of 516 community fisheries (CFi) countrywide. While such policy changes open larger space for local community participation, Cambodia is suffering from governance challenges to successfully implement this policy. The challenges include unclear roles and responsibilities of stakeholders, poor coordination among resource management agencies, limited decentralization of roles and responsibilities to the CFis, weak capacity of the CFi to manage their local resources, insufficient funding to implement the policy and strong livelihoods dependency of the local communities on fisheries, finally resulting in intensification of fishing effort and conflicts over access rights to fisheries resources12,13,14,15,16,17. Fishers indeed borrow money to buy fishing gears, and felt compelled to catch as many fish as possible to repay their loans and meet the household needs15. There is no data on changes in fishing effort, so the claims made by Halls and Hortle on its decrease since 2012 cannot be empirically confirmed or denied. Our reading of the situation is that the fisheries remain under intense pressure despite attempts to implement improved fisheries governance.
    Finally, while Tonle Sap remains one of the world’s largest inland fisheries, the system is facing many challenges, including intensive fishing pressure, with most large-sized Mekong fishes listed as threatened by IUCN and unsustainable fishing identified as a primary threat18. Our results do not imply that other impacts are unimportant, but rather that multiple (and potentially synergistic) stressors likely deteriorate the current status of the Tonle Sap fisheries19,20 and need to be further assessed and considered in the decision-making process. More

  • in

    Optimal fishing effort benefits fisheries and conservation

    1.
    Hall-Spencer, J. M. & Moore, P. G. Scallop dredging has profound, long-term impacts on maerl habitats. ICES J. Mar. Sci. 57, 1407–1415 (2000).
    Article  Google Scholar 
    2.
    Eigaard, O. R. et al. The footprint of bottom trawling in European waters: Distribution, intensity, and seabed integrity. ICES J. Mar. Sci. 74, 847–865 (2017).
    Article  Google Scholar 

    3.
    Auster, P. J. et al. The impacts of mobile fishing gear on seafloor habitats in the gulf of maine (Northwest Atlantic): Implications for conservation of fish populations. Rev. Fish. Sci. 4, 185–202 (1996).
    ADS  Article  Google Scholar 

    4.
    Gell, F. R. & Roberts, C. M. Benefits beyond boundaries: The fishery effects of marine reserves. Trends Ecol. Evol. 18, 448–455 (2003).
    Article  Google Scholar 

    5.
    Roberts, C. M. et al. Marine reserves canmitigate and promote adaptation to climate change. Proc. Natl. Acad. Sci. USA 114, 6167–6175 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Sciberras, M., Jenkins, S. R., Kaiser, M. J., Hawkins, S. J. & Pullin, A. S. Evaluating the biological effectiveness of fully and partially protected marine areas. Environ. Evid. 2, 1–31 (2013).
    Article  Google Scholar 

    7.
    Afonso, P., Schmiing, M., Diogo, H. & Serra, R. With various conservation objectives and targets. ICES J. Mar. Sci. 72, 851–862 (2015).
    Article  Google Scholar 

    8.
    Schmiing, M., Diogo, H., Santos, R. S. & Afonso, P. Marine conservation of multispecies and multi-use areas with various conservation objectives and targets. ICES J. Mar. Sci. 72, 851–862 (2015).
    Article  Google Scholar 

    9.
    Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: A regional meta-analysis. Sci. Rep. 7, 1–12 (2017).
    ADS  CAS  Article  Google Scholar 

    10.
    Zupan, M. et al. Marine partially protected areas: Drivers of ecological effectiveness. Front. Ecol. Environ. 16, 20 (2018).
    ADS  Article  Google Scholar 

    11.
    Halpern, B. S. The impact of marine reserves: Do reserves work and does reserve size matter. Ecol. Appl. 13, S117–S137 (2003).
    Article  Google Scholar 

    12.
    Pikitch, E. K. et al. Ecosystem-based fishery management. Science (80–) 305, 20 (2004).
    Article  Google Scholar 

    13.
    Claudet, J. et al. Marine reserves: Size and age do matter. Ecol. Lett. 11, 481–489 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Lester, S. E. et al. Biological effects within no-take marine reserves: A global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).
    ADS  Article  Google Scholar 

    15.
    Fraschetti, S., Guarnieri, G., Bevilacqua, S., Terlizzi, A. & Boero, F. Protection enhances community and habitat stability: Evidence from a Mediterranean marine protected area. PLoS One 8, 20 (2013).
    Google Scholar 

    16.
    Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 1–6 (2013).
    Article  Google Scholar 

    17.
    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Hiddink, J. G. et al. Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. Proc. Natl. Acad. Sci. USA 114, 8301–8306 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Lombard, A. T. et al. Key challenges in advancing an ecosystem-based approach to marine spatial planning under economic growth imperatives. Front. Mar. Sci. 6, 20 (2019).
    Article  Google Scholar 

    20.
    Trochta, J. T. et al. Ecosystem-based fisheries management: Perception on definitions, implementations, and aspirations. PLoS One 13, 1–9 (2018).
    Google Scholar 

    21.
    EEA. Marine Protected Areas in Europe’s Seas. An Overview and Perspectives for the Future. (2015). https://doi.org/10.2800/99473.

    22.
    Mangi, S. C., Rodwell, L. D. & Hattam, C. Assessing the impacts of establishing MPAs on fishermen and fish merchants: The case of Lyme Bay, UK. Ambio 40, 457–468 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Luisetti, T. et al. Coastal and marine ecosystem services valuation for policy and management: Managed realignment case studies in England. Ocean Coast. Manag. 54, 212–224 (2011).
    Article  Google Scholar 

    24.
    Molfese, C., Beare, D. & Hall-Spencer, J. M. Overfishing and the replacement of demersal finfish by shellfish: An example from the english channel. PLoS One 9, 20 (2014).
    Google Scholar 

    25.
    Eno, N. C. et al. Effects of crustacean traps on benthic fauna. ICES J. Mar. Sci. 58, 11–20 (2001).
    Article  Google Scholar 

    26.
    Coleman, R. A., Hoskin, M. G., von Carlshausen, E. & Davis, C. M. Using a no-take zone to assess the impacts of fishing: Sessile epifauna appear insensitive to environmental disturbances from commercial potting. J. Exp. Mar. Bio. Ecol. 440, 100–107 (2013).
    Article  Google Scholar 

    27.
    Lewis, C. F., Slade, S. L., Maxwell, K. E. & Matthews, T. R. Lobster trap impact on coral reefs: Effects of wind-driven trap movement. New Zeal. J. Mar. Freshw. Res. 43, 271–282 (2009).
    Article  Google Scholar 

    28.
    Micheli, F., De Leo, G., Butner, C., Martone, R. G. & Shester, G. A risk-based framework for assessing the cumulative impact of multiple fisheries. Biol. Conserv. 176, 224–235 (2014).
    Article  Google Scholar 

    29.
    Stephenson, F., Mill, A. C., Scott, C. L., Polunin, N. V. C. & Fitzsimmons, C. Experimental potting impacts on common UK reef habitats in areas of high and low fishing pressure. ICES J. Mar. Sci. 74, 1648–1659 (2017).
    Article  Google Scholar 

    30.
    Sinclair, M. & Valdimarsson, G. Responsible fisheries in the marine ecosystem. Fish. Res. 20, 426 (2014).
    Google Scholar 

    31.
    Sheehan, E. V., Stevens, T. F., Gall, S. C., Cousens, S. L. & Attrill, M. J. Recovery of a temperate reef assemblage in a marine protected area following the exclusion of towed demersal fishing. PLoS One 8, 1–12 (2013).
    Google Scholar 

    32.
    Sheehan, E. V. et al. Drawing lines at the sand: Evidence for functional vs visual reef boundaries in temperate Marine Protected Areas. Mar. Pollut. Bull. 76, 194–202 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Jackson, E. L., Langmead, O., Barnes, M., Tyler-Walters, H. & Hiscock, K. Lyme Bay—A Case Study: Measuring Recovery of Benthic Species, Assessing Potential Spill-Over Effects and Socio-economic Changes. (2008).

    34.
    Stevens, T. F., Sheehan, E. V., Gall, S. C., Fowell, S. C. & Attrill, M. J. Monitoring benthic biodiversity restoration in Lyme Bay marine protected area: Design, sampling and analysis. Mar. Policy 45, 310–317 (2014).
    Article  Google Scholar 

    35.
    Picton, B. E. & Morrow, C. C. Encyclopedia of Marine Life of Britain and Ireland (The Ulster Museum, Belfast, 2016).
    Google Scholar 

    36.
    Langmead. Lyme Bay—A Case Study: Measuring Recovery of Benthic Species, Assessing Potential Spill-Over Effects and Socio-Economic Changes. 44 (2012).

    37.
    Bradshaw, C., Collins, P. & Brand, A. R. To what extent does upright sessile epifauna affect benthic biodiversity and community composition?. Mar. Biol. 143, 783–791 (2003).
    Article  Google Scholar 

    38.
    Cocito, S., Ferdeghini, F. & Sgorbini, S. Pentapora fascialis (Pallas) [Cheilostomata: Ascophora] colonization of one sublittoral rocky site after sea-storm in the northwestern mediterranean. Hydrobiologia 375–376, 59–66 (1998).
    Article  Google Scholar 

    39.
    Eggleston, D., Lipcius, R., Miller, D. & Coba-Cetina, L. Shelter scaling regulates survival of juvenile Caribbean spiny lobster Panulirus argus. Mar. Ecol. Prog. Ser. 62, 79–88 (1990).
    ADS  Article  Google Scholar 

    40.
    Pirtle, J. L., Eckert, G. L. & Stoner, A. W. Habitat structure influences the survival and predator-prey interactions of early juvenile red king crab Paralithodes camtschaticus. Mar. Ecol. Prog. Ser. 465, 169–184 (2012).
    ADS  Article  Google Scholar 

    41.
    Gall, S. C. et al. The impact of potting for crustaceans on temperate rocky reef habitats: Implications for management. Mar. Environ. Res. 162, 105134 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Lambert, G. I., Jennings, S., Kaiser, M. J., Hinz, H. & Hiddink, J. G. Quantification and prediction of the impact of fishing on epifaunal communities. Mar. Ecol. Prog. Ser. 430, 71–86 (2011).
    ADS  Article  Google Scholar 

    43.
    Soldant, J., Mullier, T., Elliott, T. & Sheehan, E. V. Managing marine protected areas in Europe: Moving from ‘feature-based’ to ’whole-site; management of sites. In Marine Protected Areas: Science, Policy and Management Vol 828 (eds Humphreys, J. & Clark, R. W. E.) (Elsevier, New York, 2020).
    Google Scholar 

    44.
    Staples, D. & Funge-Smith, S. Ecosystem Approach to Fisheries and Aquaculture: Implementing the FAO Code of Conduct for Responsible Fisheries (RAP Publication, Bangkok, 2009).
    Google Scholar 

    45.
    Garcia, S. M., Rice, J. & Charles, A. Bridging fisheries management and biodiversity conservation norms: Potential and challenges ofbalancing harvest in ecosystem- based frameworks. Nature 6, 20 (2015).
    Google Scholar 

    46.
    DEFRA. Marine Protected Areas Network Report 2012–2018. (2018).

    47.
    Burke, C. Ireland’s need for inshore local management. Fish. News 7, 20 (2015).
    Google Scholar 

    48.
    Rees, S. E. et al. An evaluation Framework to Determine the Impact of the Lyme Bay Fisheries and Conservation Reserve and the Activities of the Lyme Bay Consultative Committee on Ecosystem Services and Human Wellbeing Final Report To the October 2016. (2016).

    49.
    Cork, M., McNulty, S. & Gaches, P. Site Selection Report for Inshore Marine SACs Project. Poole Bay to Lyme Bay. Report No. 9S0282/SSR/PooleLymeBay/01 (2008).

    50.
    Attrill, M. J. et al. Lyme Bay—A Case Study: Measuring Recovery of Benthic Species, Assessing Potential Spill-Over Effects and Socio-economic chaNges. (2012).

    51.
    Ross, R. South Devon Reef Video Baseline Surveys for the Prawle Point to Plymouth Sound & Eddystone cSAC and Surrounding Areas As commissioned by Natural England South Devon Reef Video Baseline Surveys for the Prawle Point to Plymouth Sound & Eddystone cSAC and Su. (2016)https://doi.org/10.13140/2.1.2313.1205.

    52.
    Vanstaen, K. & Eggleton, J. Mapping Annex 1 Reef Habitat Present in Specific areas Within the Lyme Bay and Torbay cSAC. (2011).

    53.
    Sheehan, E. V., Stevens, T. F., Attrill, M. J., Ropert-Coudert, Y. A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments. PLoS ONE 5(12), e14461 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Sheehan, E. V. et al. An experimental comparison of three towed underwater video systems using species metrics, benthic impact and performance. Methods Ecol. Evol. 7(7), 843–852 (2016).
    Article  Google Scholar 

    55.
    Bicknell, A. W. J., Sheehan, E. V., Godley, B. J., Doherty, P. D. & Witt, M. J. Assessing the impact of introduced infrastructure at sea with cameras: A case study for spatial scale, time and statistical power. Mar. Environ. Res. 147, 126–137 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the porcupine seabight, North-East Atlantic: Observations by baited camera, trap and trawl. Nat. Hist. https://doi.org/10.1017/s0025315400047615 (1994).
    Article  Google Scholar 

    57.
    Watson, D. L., Harvey, E. S., Anderson, M. J. & Kendrick, G. A. A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Mar. Biol. 148, 415–425 (2005).
    Article  Google Scholar 

    58.
    Cappo, M., Harvey, E. & Shortis, M. Counting and measuring fish with baited video techniques—an overview. Aust. Soc. Fish Biol. 1100, 1–9 (2006).
    Google Scholar 

    59.
    Elliott, S. A. M., Turrell, W. R., Heath, M. R. & Bailey, D. M. Juvenile gadoid habitat and ontogenetic shift observations using stereo-video baited cameras. Mar. Ecol. Prog. Ser. 568, 123–135 (2017).
    ADS  Article  Google Scholar 

    60.
    McLean, D. L., Harvey, E. S., Fairclough, D. V. & Newman, S. J. Large decline in the abundance of a targeted tropical lethrinid in areas open and closed to fishing. Mar. Ecol. Prog. Ser. 418, 189–199 (2010).
    ADS  Article  Google Scholar 

    61.
    Harvey, E. S. et al. Comparison of the relative efficiencies of stereo-BRUVs and traps for sampling tropical continental shelf demersal fishes. Fish. Res. 125–126, 108–120 (2012).
    Article  Google Scholar 

    62.
    Maragos, J. E. Marine and Coastal Biodiversity in the Tropical Island Pacific Region. (East-West Center, 1995).

    63.
    Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-E Ltd., Plymouth Marine Laboratory, Plymouth, 2001).
    Google Scholar 

    64.
    Taylor, P., Anderson, M. & Ter Braak, C. J. Stat. Comput. Permut. Tests Multi-Factor. Anal. Variance https://doi.org/10.1080/00949650215733 (2006).
    Article  Google Scholar 

    65.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance MARTI. Austral Ecol. 26, 32–46 (2001).
    Google Scholar  More

  • in

    Social signals mediate oviposition site selection in Drosophila suzukii

    1.
    Prokopy, R. J. & Roitberg, B. D. Joining and avoidance behavior in nonsocial insects. Annu. Rev. Entomol. 46, 631–665 (2001).
    CAS  PubMed  Article  Google Scholar 
    2.
    Rudolf, V. H. & Rödel, M. O. Oviposition site selection in a complex and variable environment: the role of habitat quality and conspecific cues. Oecologia 142, 316–325 (2005).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Carrasco, D., Larsson, M. C. & Anderson, P. Insect host plant selection in complex environments. Curr. Opin. Insect Sci. 8, 1–7 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Dall, S. R., Giraldeau, L. A., Olsson, O., McNamara, J. M. & Stephens, D. W. Information and its use by animals in evolutionary ecology. Trends Ecol. Evol. 20, 187–193 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Kennedy, G. G. & Storer, N. P. Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annu. Rev. Entomol. 45, 467–493 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Prokopy, R. J. Marking pheromones. In: Capinera J. L. (eds) Encyclopedia of Entomology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6359-6_1730 (2008).

    7.
    Edmunds, A. J., Aluja, M., Diaz-Fleischer, F., Patrian, B. & Hagmann, L. Host marking pheromone (HMP) in the Mexican fruit fly Anastrepha ludens. CHIMIA Int. J. Chem. 64, 37–42 (2010).
    CAS  Article  Google Scholar 

    8.
    Hauser, M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag. Sci. 67, 1352–1357 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Calabria, G., Máca, J., Bächli, G., Serra, L. & Pascual, M. First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Entomol. 136, 139–147 (2012).
    Article  Google Scholar 

    10.
    Deprá, M., Poppe, J. L., Schmitz, H. J., De Toni, D. C. & Valente, V. L. The first records of the invasive pest Drosophila suzukii in the South American continent. J. Pest Sci. 87, 379–383 (2014).
    Article  Google Scholar 

    11.
    Hassani, I. M. et al. First occurrence of the pest Drosophila suzukii (Diptera: Drosophilidae) in the Comoros Archipelago (Western Indian Ocean). Afr. Entomol. 28, 78–83 (2020).
    Article  Google Scholar 

    12.
    Bellamy, D. E., Sisterson, M. S. & Walse, S. S. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukii. PLoS One, 8, e61227. https://doi.org/10.1371/journal.pone.0061227 (2013).

    13.
    Lee, J. C. et al. Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 108, 117–129 (2015).
    Article  Google Scholar 

    14.
    Kenis, M. et al. Non-crop plants used as hosts by Drosophila suzukii in Europe. J. Pest Sci. 89, 735–748 (2016).
    Article  Google Scholar 

    15.
    Elsensohn, J. E. & Loeb, G. M. Non-crop host sampling yields insights into small-scale population dynamics of Drosophila suzukii (Matsumura). Insects 9, 5. https://doi.org/10.3390/insects9010005 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Mitsui, H., Takahashi, K. H. & Kimura, M. T. Spatial distributions and clutch sizes of Drosophila species ovipositing on cherry fruits of different stages. Pop. Ecol. 48, 233–237 (2006).
    Article  Google Scholar 

    17.
    Atallah, J., Teixeira, L., Salazar, R., Zaragoza, G. & Kopp, A. The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 281, 20132840. https://doi.org/10.1098/rspb.2013.2840 (2014).
    Article  Google Scholar 

    18.
    Crava, C. M. et al. Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. J. Insect Physiol. 125, 104088 (2020).
    CAS  PubMed  Article  Google Scholar 

    19.
    Burrack, H. J., Fernandez, G. E., Spivey, T. & Kraus, D. A. Variation in selection and utilization of host crops in the field and laboratory by Drosophila suzukii Matsumara (Diptera: Drosophilidae), an invasive frugivore. Pest Manag. Sci. 69, 1173–1180 (2013).
    CAS  PubMed  Article  Google Scholar 

    20.
    Karageorgi, M. et al. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr. Biol. 27, 847–853 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Silva-Soares, N. F., Nogueira-Alves, A., Beldade, P. & Mirth, C. K. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii. BMC Ecol. 17, 21 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Olazcuaga, L. et al. Oviposition preference and larval performance of Drosophila suzukii (Diptera: Drosophilidae), spotted-wing Drosophila: Effects of fruit identity and composition. Environ. Entomol. 48, 867–881 (2019).
    PubMed  Article  Google Scholar 

    23.
    Rendon, D. et al. Interactions among morphotype, nutrition, and temperature impact fitness of an invasive fly. Ecol. Evol. 9, 2615–2628 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G. & Syed, Z. Volatile codes: correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 5, 14059. https://doi.org/10.1038/srep14059 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Keesey, I. W. et al. Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J. Chem. Ecol. 42, 739–747 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Lasa, R., Navarro-de-la-Fuente, L., Gschaedler-Mathis, A. C., Kirchmayr, M. R. & Williams, T. Yeast species, strains, and growth media mediate attraction of Drosophila suzukii (Diptera: Drosophilidae). Insects 10, 228. https://doi.org/10.3390/insects10080228 (2019).
    Article  PubMed Central  PubMed  Google Scholar 

    27.
    Bellutti, N. et al. Dietary yeast affects preference and performance in Drosophila suzukii. J. Pest Sci. 91, 651–660 (2018).
    Article  Google Scholar 

    28.
    Wallingford, A. K., Hesler, S. P., Cha, D. H. & Loeb, G. M. Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Manag. Sci. 72, 701–706 (2016).
    CAS  PubMed  Article  Google Scholar 

    29.
    Tait, G. et al. Reproductive site selection: evidence of an oviposition cue in a highly adaptive dipteran, Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 49, 355–363 (2020).
    CAS  PubMed  Article  Google Scholar 

    30.
    Lin, C. C., Prokop-Prigge, K. A., Preti, G. & Potter, C. J. Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. Elife 4, e08688. https://doi.org/10.7554/eLife.08688 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Duménil, C. et al. Pheromonal cues deposited by mated females convey social information about egg-laying sites in Drosophila melanogaster. J. Chem. Ecol. 42, 259–269 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Barker, J. S. F. & Podger, R. N. Interspecific competition between Drosophila melanogaster and Drosophila simulans: effects of larval density on viability, developmental period and adult body weight. Ecol. 51, 170–189 (1970).
    Article  Google Scholar 

    33.
    Rohlfs, M., Obmann, B. & Petersen, R. Competition with filamentous fungi and its implication for a gregarious lifestyle in insects living on ephemeral resources. Ecol. Entomol. 30, 556–563 (2005).
    Article  Google Scholar 

    34.
    Durisko, Z., Anderson, B. & Dukas, R. Adult fruit fly attraction to larvae biases experience and mediates social learning. J. Exp. Biol. 217, 1193–1197 (2014).
    PubMed  Article  Google Scholar 

    35.
    Prokopy, R. J. & Duan, J. J. Socially facilitated egglaying behavior in Mediterranean fruit flies. Behav. Ecol. Sociobiol. 42, 117–122 (1998).
    Article  Google Scholar 

    36.
    Elsensohn, J. Factors affecting oviposition behavior. In Drosophila suzukii (North Carolina State University, Raleigh, 2020).

    37.
    Hardin, J. A., Kraus, D. A. & Burrack, H. J. Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol. Exp. Appl. 156, 59–65 (2015).
    CAS  Article  Google Scholar 

    38.
    Averill, A. L. & Prokopy, R. J. Intraspecific competition in the tephritid fruit fly Rhagoletis pomonella. Ecol. 68, 878–886 (1987).
    Article  Google Scholar 

    39.
    Arredondo, J. & Diaz-Fleischer, F. Oviposition deterrents for the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) from fly faeces extracts. Bull. Entomol. Res. 96, 35–42 (2006).
    CAS  PubMed  Article  Google Scholar 

    40.
    Nufio, C. R. & Papaj, D. R. Host marking behavior in phytophagous insects and parasitoids. Entomol. Exp. Appl. 99, 273–293 (2001).
    Article  Google Scholar 

    41.
    Papaj, D. R. Use and avoidance of occupied hosts as a dynamic process in tephritid flies. In Insect-Plant Interactions (ed. Bernays, E.A.) 25–46 (CRC Press, Boca Raton, 2017).

    42.
    Bernays, E.A. & Chapman, R.F. Behavior: the process of host-plant selection. In Host-Plant Selection by Phytophagous Insects Vol. 2. (eds. Bernays, E.A. & Chapman, R.F) 95–165 (Springer Science & Business Media, Berlin, 2007).

    43.
    Schoonhoven, L. M. Host-marking pheromones in Lepidoptera, with special reference to two Pieris spp. J. Chem. Ecol. 16, 3043–3052 (1990).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Dancau, T., Stemberger, T. L., Clarke, P. & Gillespie, D. R. Can competition be superior to parasitism for biological control? The case of spotted wing Drosophila (Drosophila suzukii), Drosophila melanogaster and Pachycrepoideus vindemmiae. Biocontrol Sci. Tech. 27, 3–16 (2017).
    Article  Google Scholar 

    45.
    Rosenheim, J. A. The relative contributions of time and eggs to the cost of reproduction. Evol. 53, 376–385 (1999).
    Article  Google Scholar 

    46.
    Jiménez-Padilla, Y., Ferguson, L. V. & Sinclair, B. J. Comparing apples and oranges (and blueberries and grapes): fruit type affects development and cold susceptibility of immature Drosophila suzukii (Diptera: Drosophilidae). Can. Entomol. 152, 532–545 (2020).
    Article  Google Scholar 

    47.
    Papaj, D. R. & Messing, R. H. Functional shifts in the use of parasitized hosts by a tephritid fly: the role of host quality. Behav. Ecol. 7, 235–242 (1996).
    Article  Google Scholar 

    48.
    Ingleby, F. C. Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6, 732–742. https://doi.org/10.3390/insects6030732 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Snellings, Y. et al. The role of cuticular hydrocarbons in mate recognition in Drosophila suzukii. Sci. Rep. 8, 1–11 (2018).
    CAS  Article  Google Scholar 

    50.
    Li, G. & Ishikawa, Y. Oviposition deterrents in larval frass of four Ostrinia species fed on an artificial diet. J. Chem Ecol. 30, 1445–1456 (2004).
    CAS  PubMed  Article  Google Scholar 

    51.
    Wada-Katsumata, A. et al. Gut bacteria mediate aggregation in the German cockroach. Proc. Nat. Acad. Sci. 112, 15678–15683 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    52.
    Mansourian, S. et al. Fecal-derived phenol induces egg-laying aversion in Drosophila. Curr. Biol. 26, 2762–2769 (2016).
    CAS  PubMed  Article  Google Scholar 

    53.
    Bueno, E. et al. Response of wild spotted Wing Drosophila (Drosophila suzukii) to microbial volatiles. J. Chem. Ecol. 39, 1–11 (2019).
    Google Scholar 

    54.
    Behar, A., Jurkevitch, E. & Yuval, B. Bringing back the fruit into fruit fly–bacteria interactions. Mol. Ecol. 17, 1375–1386 (2008).
    CAS  PubMed  Article  Google Scholar 

    55.
    Yun, J. H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Bing, X., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio 9, e02199-e2217. https://doi.org/10.1128/mBio.02199-17 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Martinez-Sañudo, I. et al. Metagenomic analysis reveals changes of the Drosophila suzukii microbiota in the newly colonized regions. Insect Sci. 25, 833–846 (2018).
    PubMed  Article  Google Scholar 

    58.
    Silva, M. A., Bezerra-Silva, G. C. D. & Mastrangelo, T. The host marking pheromone application on the management of fruit flies—a review. Braz. Arch. Biol. Tech. 55, 835–842 (2012).
    CAS  Article  Google Scholar 

    59.
    Hamby, K. A. & Becher, P. G. Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J. Pest Sci. 89, 621–630 (2016).
    Article  Google Scholar 

    60.
    Alkema, J. T., Dicke, M. & Wertheim, B. Context-dependence and the development of push-pull approaches for integrated management of Drosophila suzukii. Insects 10, 454. https://doi.org/10.3390/insects10120454 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    61.
    Revadi, S. et al. Sexual behavior of Drosophila suzukii. Insects 6(183), 196. https://doi.org/10.3390/insects6010183 (2015).
    Article  Google Scholar 

    62.
    Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. Elife 7, e34414. https://doi.org/10.7554/eLife.34414 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    63.
    Emiljanowicz, L. M., Ryan, G. D., Langille, A. & Newman, J. Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J Econ. Entomol. 107, 1392–1398 (2014).
    PubMed  Article  Google Scholar 

    64.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019). More

  • in

    Soil mite communities (Acari: Mesostigmata) as indicators of urban ecosystems in Bucharest, Romania

    1.
    Bremner, J. et al. World population highlights: Key findings from PRB’s 2010 world population data sheet. Popul. Bull. 65(2), 1–12 (2010).
    Google Scholar 
    2.
    McGranahan, G., Marcotullio, P. Urban systems. In Ecosystems and Human Well-being: Current State and Trends. Volume I (eds. Hassan, R., Scholes, R., Ash, N.) 795–825 (Island Press, Washington, DC, 2005).

    3.
    Robrecht, H. & Lorena, L. Ecosystem services in cities and public management. In The Economics of Ecosystems and Biodiversity for Local and Regional Policy (ed Wittmer, H.) 60–80 (Progress Press, 2010).

    4.
    Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111 (2016).
    ADS  CAS  Article  Google Scholar 

    5.
    Millennium Ecosystem Assessment Panel. Ecosystems and Human Well-being: Synthesis. Washington, DC: Island Press. https://www.millenniumassessment.org/en/index.html (2005).

    6.
    McDonald, R.I., Marcotullio, P.J. & Güneralp, B. Urbanization and Global Trends in Biodiversity and Ecosystem Services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. A Global Assessment (eds. Elmqvist, T. et al.) 31–52 (Springer, Dordrecht, 2013).

    7.
    Anthrop, M. Changing patterns in the urbanized countryside of Western Europe. Landsc. Ecol. 15, 257–270 (2000).
    Article  Google Scholar 

    8.
    Coleman, D.C. & Wall, D.H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In Soil Microbiology, Ecology and Biochemistry (ed Paul, E.) 111–149 (Academic Press, Waltham, 2015).

    9.
    Dirilgen, T. et al. Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity. Appl. Soil Ecol. 97, 86–97 (2016).
    Article  Google Scholar 

    10.
    Culliney, T. W. Role of arthropods in maintaining soil fertility. Agriculture. 3, 629–659 (2013).
    Article  Google Scholar 

    11.
    Krantz, G. W. & Walter, D. E. A manual of Acarology. (ed. Texas Tech University Press, USA) 98–100 (Krantz & Walter, 2009).

    12.
    McIntyre, N. E. Ecology of urban arthropods: A review and a call to action. Ann. Entomol. Soc. Am. 93, 825–835 (2000).
    Article  Google Scholar 

    13.
    Jones, E. L. & Leather, S. R. Invertebrates in urban areas: A review. Eur. J. Entomol. 109, 463–478 (2012).
    Article  Google Scholar 

    14.
    Koehler, H. H. Predatory mites (Gamasina, Mesostigmata). Agric. Ecosyst. Environ. 74, 395–410 (1999).
    Article  Google Scholar 

    15.
    Gulvik, M. E. Mites (Acari) as indicators of soil biodiversity and land use monitoring: A review. Pol. J. Ecol. 55, 415–450 (2007).
    Google Scholar 

    16.
    Salmane, I. & Brumelis, G. Species list and habitat preference of Mesostigmata mites (Acari, Parasitiformes) in Latvia. Acarologia. 50, 373–394 (2010).
    Article  Google Scholar 

    17.
    Kaczmarek, S., Marquardt, T. & Falenczyk-Kozirog, K. Diversity of the Mesostigmata (Acari) in tree-hollows of selected deciduous tree species. Biol. Lett. 48, 29–37 (2011).
    Article  Google Scholar 

    18.
    Madej, G., Barczyk, G. & Gawenda, J. Importance of microhabitats for preservation of species diversity, on the basis of mesostigmatid mites (Mesostigmata, Arachnida, Acari). Pol. J. Environ. Stud. 20(4), 961–968 (2011).
    Google Scholar 

    19.
    Huhta, V., Pietikäinen, A. S. & Penttinen, R. Importance of dead wood for soil mite (Acarina) communities in boreal old-growth forests. Soil Organ. 84(3), 499–512 (2012).
    Google Scholar 

    20.
    Wissuwa, J., Salamon, J. A. & Frank, T. Effects of habitat age and plant species on predatory mites (Acari, Mesostigmata) in grassy arable fallows in Eastern Austria. Soil Biol. Biochem. 50, 96–107 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Manu, M. Structure and dynamics of the predatory mites (Acari: Mesostigmata- Gamasina) from the central parks and forest ecosystems from/near Bucharest. In Species Monitoring in the Central Parks of Bucharest (ed. Onete, M.) 68–78 (Ars Docendi, Universitatea Bucureşti, 2008).

    22.
    Manu, M., Szekely, L., Vasiliu, Oromulu, L., Bărbuceanu, D., Honciuc, V. et al. Bucharest. In Vertebrates and Invertebrates of European Cities: Selected Non-Avian Fauna (ed. Kelcey, J.G.) 257–322 (Springer Science+Business Media LLC, New York, 2015).

    23.
    Manu, M., Băncilă, R. I. & Onete, M. Importance of moss habitats for mesostigmatid mites (Acari: Mesostigmata) in Romania. Turk. J. Zool. 42(6), 673–683 (2018).
    Article  Google Scholar 

    24.
    Klarner, B., Maraun, M. & Scheu, S. Trophic diversity and niche partitioning in a species rich predator guild—natural variations in stable isotope ratios (13C/12C, 15N/14N) of mesostigmatid mites (Acari, Mesostigmata) from Central European beech forests. Soil Biol. Biochem. 57, 327–333 (2013).
    CAS  Article  Google Scholar 

    25.
    da Groot, A. G., Jagers op Akkerhuis, G. J. A. M., Dimmers, W. J., Charrier, X. & Faber, J. H. Biomass and diversity of soil mite functional groups respond to extensification of land management, potentially affecting soil ecosystem services. Front. Environ. Sci. 4, 1–15 (2016).
    Article  Google Scholar 

    26.
    Manu, M., Iordache, V., Băncilă, R. I., Bodescu, F. & Onete, M. The influence of environmental variables on soil mite communities (Acari: Mesostigmata) from overgrazed grassland ecosystems—Romania. Ital. J. Zool. 83, 89–97 (2016).
    CAS  Article  Google Scholar 

    27.
    Meehan, M. L., Zhuoyan Song, Z. & Proctor, H. Roles of environmental and spatial factors in structuring assemblages of forest-floor Mesostigmata in the boreal region of Northern Alberta, Canada. Int. J. Acarol. 44, 300–309 (2018).
    Article  Google Scholar 

    28.
    Kamczyc, J. et al. Response of soil mites (Acari, Mesostigmata) to long-term Norway spruce plantation along a mountain stream. Exp. Appl. Acarol. 76(1–3), 1–18 (2018).
    Google Scholar 

    29.
    Santorufo, L., Van Gestel, C. M., Rocco, A. & Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 161, 57–63 (2015).
    Article  CAS  Google Scholar 

    30.
    N’Dri, J. K., Hance, T., Andr,é, H. M., Lagerlöf, J. & Tondoh, J. E. Microarthropod use as bioindicators of the environmental state: Case of soil mites (Acari) from Côte d’Ivoire. J. Anim. Plant Sci. 29(2), 4622–4637 (2016).
    Google Scholar 

    31.
    George, P. B. L. et al. Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme. Soil Biol. Biochem. 115, 537–546 (2017).
    CAS  Article  Google Scholar 

    32.
    Manu, M., Onete, M. & Băncilă, R. I. The effect of heavy metals on mite communities (Acari: Gamasina) from urban parks—Bucharest, Romania. Environ. Eng. Manag. J. 17(9), 2071–2081 (2018).
    CAS  Article  Google Scholar 

    33.
    Spiller, M. S., Spiller, C. & Garle, J. Arthropod bioindicators of environmental quality. Revista Agroambiente. 12(1), 41–57 (2018).
    Google Scholar 

    34.
    Niedbała, W., Błaszak, C., Błoszyk, J., Kaliszewski, M. & Kazmierski, A. Soils mites (Acari) of Warsaw and Mazovia. Memorabilia Zool. 36, 235–252 (1982).
    Google Scholar 

    35.
    Niedbała, W., Błoszyk, J., Kaliszewski, M., Kazmierski, A. & Olszanowski, Z. Structure of soil mite (Acari) communities in urban green of Warsaw. Fragmenta Faunistica. 33, 21–44 (1990).
    Article  Google Scholar 

    36.
    Pouyat, R. V., Parmelee, R. W. & Carreiro, M. M. Environmental effects of forest soil-invertebrate and fungal densities in oak stands along an urban-rural land use gradient. Pedobiologia 38, 385–399 (1994).
    CAS  Google Scholar 

    37.
    Minor, M. A. & Cianciolo, J. M. Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of use types in New York. Appl. Soil Ecol. 35, 140–153 (2007).
    Article  Google Scholar 

    38.
    Skorupski, M., Horodecki, P. & Jagodziński, A. M. Roztocze z rzędu Mesostigmata (Arachnida, Acari) na terenach przemysłowych i poprzemysłowych w Polsce. (Mite species of Mesostigmata order (Arachnida, Acari) in industrial and post-industrial areas of Poland). Nauka Przyr. Technol. 11, 1–23 (2013).
    Google Scholar 

    39.
    Minova, S., Jankevica, L., Salmane, I. & Èekstere, G. Preliminary studies on microbial biomass and the microarthropod community as soil health and quality indicators in urban grasslands, Rîga as an example. Proc. Latvian Acad. Sci. Sect. B. 69(3), 140–144 (2015).
    CAS  Google Scholar 

    40.
    Telnov, D. & Salmane, I. Ecology and diversity of urban pine forest soil invertebrates in Rîga, Latvia. Proc. Latvian Acad. Sci. Sect. B Nat. 69(3), 120–131 (2015).

    41.
    Napierała, A., Skwierczyñski, F. & Jankowiak, A. Materials to knowledge of Uropodina (Acari: Mesostigmata) of Poznań District. Badania Fizjograficzne R. I Seria C Zoologia. C51, 7–19 (2010).

    42.
    Kontschán, J., Ács, A., Wang, G. Q. & Neményi, A. New data to the mite fauna of Hungarian bamboo plantations. Acta Phytopathol. Entomol. Hung. 50(1), 77–83 (2015).
    Article  Google Scholar 

    43.
    Fend’a, P. & Hruzova, K. Mites (Acari, Mesostigmata) in urban green of Bratislava (Slovakia) In 8th Symposium of the European Association of Acarologist (ed Universitat Politecnica de Valencia) 41 (Book of Abstract, 2016).

    44.
    Hrúzová, K. & Fend’a, P. First record of Parasitus americanus (Berlese, 1905) and Cornigamasus ocliferius Skorupski and Witaliński, 1997 (Acari: Mesostigmata: Parasitidae) from Slovakia. Check List. 13(4), 239–243 (2017).

    45.
    Salmane, I. Soil microarthropods (Acari, Collembola) in the Rīga city habitats. Environ. Exp. Biol. 16, 73–74 (2018).
    Google Scholar 

    46.
    Błoszyk, J., Klimczak, I. & Leśniewska, M. Phoretic relationships between Uropodina (Acari: Mesostigmata) and centipedes (Chilopoda) as an example of evolutionary adaptation of mites to temporary microhabitats. Eur. J. Entomol. 103, 699–707 (2006).
    Article  Google Scholar 

    47.
    Napierała, A. et al. Phoretic relationships between uropodid mites (Acari: Mesostigmata) and centipedes (Chilopoda) in urban agglomeration areas. Int. J. Acarol. 41(4), 250–258 (2015).
    Article  Google Scholar 

    48.
    Mizser, S., Nagy, L. & Tóthmérész, B. Mite infection of Carabus violaceus in rural forest patches and urban parks. Period. Biol. 118(3), 307–309 (2016).
    Article  Google Scholar 

    49.
    Honciuc, V. & Manu, M. Ecological study on the edaphically mite’s populations (Acari: Mesostigmata—Gamasina: Oribatida) in urban areas from Romania. Rom. J. Biol. Zool. 55(1), 19–30 (2010).
    Google Scholar 

    50.
    Manu, M. & Honciuc, V. Rang correlations at the level of the predator and the decomposer populations soil mites (Acari: Mesostigmata-Gamasina, Oribatida) from central parks of Bucharest city, Romania. Acta Entomol. Serb. 5(1), 129–140 (2010).
    Google Scholar 

    51.
    Manu, M. & Honciuc, V. Ecological research on the soil mite’s populations (Acari: Mesostigmata-Gamasina, Oribatida) from forest ecosystems near Bucharest city. Rom. J. Biol. Zool. 55(1), 19–30 (2010).
    Google Scholar 

    52.
    Iojă, C. I., Rozylowicz, L., Pătroescu, M., Niţă, M. R. & Vânau, G. O. Dog walkers’ vs other park visitors’ perceptions: The importance of planning sustainable urban parks in Bucharest, Romania. Landsc. Urban. Plan. 103, 74–82 (2011).
    Article  Google Scholar 

    53.
    Pătroescu, M., Ioja, C., Necsuliu, R. & Brailescu, C. The quality of oxygenating surfaces. The green areas of Bucharest. A case studies. Rev. Roum. Geogr. 47–48, 205–216 (2004).
    Google Scholar 

    54.
    Trzyna, T. Urban Protected Areas: Profiles and best practice guidelines. Best Practice Protected Area Guidelines Series No. 22, Gland, Switzerland: IUCN (2014).

    55.
    Ghiliarov, M.S. & Bregetova, N.G. Opredeliteli obitayushchikh v pochve kleshcheĭ Mesostigmata. (Akademia Nauk USSR, Zoologicheskiĭ Institut Evolyucionoĭ Morfologii i Ekologii zhivotnikh im A.H. Savertova, Izd. Nauka, Leningrad, 1977).

    56.
    Hyatt, K. H. Mites of the subfamily Parasitinae (Mesostigmata: Parasitidae) in the British Isles. Bull. Br. Mus. Nat. Hist. Zool. 38, 237–378 (1980).
    Google Scholar 

    57.
    Karg, W. Acari (Acarina), Milben Parasitiformes (Anactinochaeta) Cohors Gamasina Leach. 59, 1–513 (1993).

    58.
    Mašán, P. Macrochelid Mites of Slovakia (Acari, Mesostigmata, Macrochelidae) (Institute of Zoology, Slovak Academy of Science, Bratislava, 2003).

    59.
    Mašán, P. Identification key to Central European species of Trachytes (Acari: Uropodina) with redescription, ecology and distribution of Slovak species. Eur. J. Entomol. 100, 435–448 (2003).
    Article  Google Scholar 

    60.
    Mašán, P. & Fenďa, P. Zerconid Mites of Slovakia (Acari, Mesostigmata, Zerconidae (Institute of Zoology, Slovakia Academy of Science, Bratislava, 2004).
    Google Scholar 

    61.
    Mašán, P. A Review of the Family Pachylaelapidae in Slovakia with Systematics and Ecology of European Species (Acari: Mesostigmata: Eviphidoidea) (Institute of Zoology, Slovak Academy of Science, Bratislava, 2007).
    Google Scholar 

    62.
    Mašán, P., Fenďa, P. & Mihál, I. New edaphic mites of the genus Veigaia from Slovakia and Bulgaria, with a key to the European species (Acari, Mesostigmata, Veigaiidae). Zootaxa. 1897, 1–19 (2008).
    Article  Google Scholar 

    63.
    Mášan, P. & Halliday, B. Review of the European genera of Eviphididae (Acari: Mesostigmata) and the species occurring in Slovakia. Zootaxa. 2585, 1–122 (2010).
    Article  Google Scholar 

    64.
    Oksanen, J., Blanchet, G.F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchi, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H., Szoecs, E., Wagner, H. Vegan: Community Ecology Package. R package version 2.4–0. https://cran.r-project.org/package=RVAideMemoire (2019).

    65.
    Herve, ́ M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R package version 0.9-66. https://CRAN.R-project.org/package=RVAideMemoire (2017).

    66.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information—Theoretic Approach (Springer, New York, 2002).
    Google Scholar 

    67.
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 

    69.
    Ruf, A. A maturity index for predatory soil mites (Mesostigmata, Gamasina) as an indicator of environmental impacts of pollution of forest soils. Appl. Soil Ecol. 9, 447–452 (1998).
    Article  Google Scholar 

    70.
    De Caceres, M., Legendre, P. Associations Between Species and Groups of Sites: Indices an Statistical Inference. Ecology. http://sites.google.com/site/miqueldecaceres (2009).

    71.
    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monog. 67(3), 345–366 (1997).
    Google Scholar 

    72.
    Zaharia, V. & Găitănaru, D. Aspects of water budget in Văcăreşti wetland. Math. Model. Civ. Eng. 14(1), 12–23 (2018).
    Article  Google Scholar 

    73.
    Xu, G.-L., Kuster, T. M., Günthardt-Goerg, M. S., Dobbertin, M. & Li, M.-H. Seasonal exposure to drought and air warming affects soil collembola and mites. PLoS ONE 7(8), e43102 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Gülser, C. & Candemir, F. Changes in penetration resistance of a clay field with organic waste applications. Eurasian J. Soil Sci. 1, 16–21 (2012).
    Google Scholar 

    75.
    Bergamin, A. C. et al. Relationship of soil physical quality parameters and maize yield in a Brazilian Oxisol. Chil. J. Agric. Res. 75(3), 357–365 (2015).
    Article  Google Scholar 

    76.
    Jones, M. F. & Arp, P. A. Relating cone penetration and rutting resistance to variations in forest soil properties and daily moisture fluctuations. Open J. Soil Sci. 7, 149–171 (2017).
    Article  Google Scholar 

    77.
    Ekschmitta, K., Liub, M., Vettera, S., Foxa, O. & Wolters, V. Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil?. Geoderma 128, 167–176 (2005).
    ADS  Article  Google Scholar 

    78.
    Gulvik, M. E., Błoszyk, J., Austad, I., Bajaczyk, R. & Piwczyński, D. Abundance and diversity of soil microarthropod communities related to different land use regime in a traditional farm in Western Norway. Pol. J. Ecol. 56(2), 273–288 (2008).
    Google Scholar 

    79.
    Newman, A. C. D. The significance of clays in agriculture and soils. Philos. Trans. R. Soc. Lond A. 311, 375–389 (1984).
    ADS  CAS  Article  Google Scholar 

    80.
    Shen, C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211 (2013).
    CAS  Article  Google Scholar 

    81.
    Lăcătuşu, R., Lăcătuşu, A. R., Lungu, M. & Breaban, I. G. Macro- and microelements abundance in some urban soils from Romania. Carpath. J. Earth Environ. Sci. 3(1), 75–83 (2008).
    Google Scholar 

    82.
    Chikoski, J. M., Ferguson, S. H. & Meyer, L. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment. Acta Oecol. 30, 203–211 (2006).
    ADS  Article  Google Scholar 

    83.
    Nitzu, E. et al. Scree habitats: Ecological function, species conservation and spatial-temporal variation in the arthropod community. Syst. Biodivers. 12(1), 65–75 (2014).
    Article  Google Scholar  More

  • in

    Rainfall as a trigger of ecological cascade effects in an Australian groundwater ecosystem

    Study area
    The field work was carried out at the Sturt Meadows calcrete aquifer (28°41′ S 120°58′ E) located on Sturt Meadows pastoral station, Western Australia, ~ 42 km from the settlement of Leonora (833 km northeast of Perth, see Fig. 1a). The study area is a calcrete aquifer lying in the Raeside paleodrainages in the Yilgarn region of Western Australia (Fig. 1a). The vegetation of the area is Acacia woodlands, primarily Acacia aneura (F.Muell. ex Benth.), and is subjected to combined grazing pressure from domestic stock, feral animals and macropods. The aquifer is accessible through a bore grid comprising 115 bore holes of between 5 and 11 m depth (Fig. 1b).
    Figure 1

    Map of the Sturt Meadows calcrete. (a) Location within the Yilgarn craton region and detailed paleodrainages/cacretes in the area and (b) the grid map showing the location of the boreholes sampled for stygofauna together with probe samples, water samples (in light blue) and the combination of both. Map was produced in ArcGIS Desktop 10.679 and edited in Adobe Illustrator 25.080.

    Full size image

    Three sampling campaigns were carried out, two of them (LR1: 26/07/2017 and LR2: 07/11/2017) corresponding to low rainfall periods24 and one during the wet season (high rainfall, HR; two consecutive days of sampling collection: 17-18/03/2018) (Supplementary Fig. 1). The well-studied stygofaunal community of the area is composed of 11 main stygofaunal taxa belonging to five Classes: Oligochaeta (family Tubificidae (Vejdovský 1884)), subcohort Hydrachnidia, Maxillopoda (two species of harpacticoids: Novanitocrella cf. aboriginesi (Karanovic, 2004), Schizopera cf. austindownsi (Karanovic, 2004) and four species of cyclopoids: Halicyclops kieferi (Karanovic, 2004), Halicyclops cf. ambiguous (Kiefer, 1967), Schizopera slenderfurca (Karanovic & Cooper, 2012) and Fierscyclops fiersi (De Laurentiis et al., 2001)), Malacostraca: Amphipoda (species Scutachiltonia axfordi (King, 2012), Yilgarniella sturtensis (King, 2012) and Stygochiltonia bradfordae (King, 2012)) and Insecta: Coleoptera: Dytiscidae (species Paroster macrosturtensis (Watts & Humphreys 2006), Paroster mesosturtensis (Watts & Humphreys 2006) and Paroster microsturtensis (Watts & Humphreys 2006) and respective larvae).
    Field work procedures and sample preparation
    Given the sensitivity of the hydrological dynamics in shallow calretes23,25, extensive water extraction along the bores was avoided, and preliminary tests on the bores with the highest water depth were carried out to quantify potential risk of dewatering the calcrete. During the field campaigns LR2 and HR, 20 water samples in total (two samples for stable isotope analysis on DOC (Dissolved Organic Carbon) and DIC (Dissolved Inorganic Carbon), three samples for radiocarbon analysis on DOC, one sample for radiocarbon analysis on DIC, and two samples for stable isotope and radiocarbon analyses on POC (Particulate Organic Carbon)) were collected from bores D13 and W4 (Fig. 1b), which are representative of the two main geological conformations of the area—calcrete (W4) and clay (D13) (Supplementary Fig. 2)—and host stable hydrological and biotic conditions7. Water samples were collected using a submersible centrifugal pump (GEOSub 12 V Purging Pump) after wells were purged of three well-volumes and stabilisation of in-field parameters was observed, according to the methodology in Bryan et al.26.
    Samples for 14CDIC analysis were filtered through 0.45 μm filters and collected in 1 L high density poly-ethylene (HDPE) bottles. δ13CDIC samples were filtered through 0.2 μm filters, collected in 12 mL glass vials (Exetainers) and refrigerated after sampling. δ 13CDOC samples were filtered through 0.2 μm filters, collected in 60 mL HDPE bottles and frozen after sampling.14CDOC samples were filtered through 0.2 μm filters, collected in 3 L HDPE bottles and frozen after sampling.
    In order to investigate 14C and δ 13C content of POC, two extra liters were collected from the same bores (D13, W4) and kept frozen (− 20 °C) until further analyses. 14CPOC δ13CPOC samples were then filtered through pre-combusted GF/F filters (12 h at 450 °C), washed with 1.2 N HCl to remove any inorganic carbon, and subsequently dried at 60 °C for 24 h. All samples were closed with sealing tape after collection to limit atmospheric exchange and kept in darkness.
    Temperature, pH, ORP, salinity, DO and depth were measured in situ using a portable Hydrolab Quanta Multi‐Probe Meter across 30 bores during LR1, LR2 and HR23 (presented in Supplementary Table 8). Adult and larval stygofaunal specimens were collected from the same bores by hauling a weighted plankton net (mesh 100 μm27) five times through the water column (Fig. 1b). All biological samples were kept frozen (− 20 °C) in darkness until laboratory processing. Individual organisms were counted and identified (and consequently separated) to the lowest taxonomic level via optical microscopy and reference to specific taxonomic keys. Plant material, sediment samples and fauna were each separated during the sorting in the laboratory and each taxon pooled according to sampling campaign (LR1, LR2 or HR) and subsequently washed with Milli-Q water to remove surface impurities from their bodies. Sediment samples were soaked in acid (0.1 N HCl) to remove inorganic carbon, and together with the other samples were then oven dried at 60 °C overnight and ground until obtaining a homogeneous fine powder and stored at − 20 °C until further analyses.
    Previous investigations on the ecological niche trends at Sturt Meadows indicated that all stygofauna characterize similar niche occupations under low rainfall regimes (LR1 and LR2)23. Stygofaunal specimens from the two low rainfall sampling events were combined to form sample LR to address the competing requirements between isotopic detection limits, analytical replicates and cost, while maintaining the main taxonomic and biological classifications7.
    Bulk isotope and 14C analyses
    Water δ13CDIC and δ13CPOC isotopic ratios were analysed by Isotope Ratio Mass Spectrometer—WABC at The University of Western Australia using a GasBench II coupled with a Delta XL Mass Spectrometer (Thermo-Fisher Scientific)—and the results, with a precision of ± 0.10‰, were reported as ‰ deviation from the NBS19 and NSB18 international carbonate standard28.
    δ13CDOC isotopic ratios of waters were analysed via Liquid Chromatography Isotope Ratio Mass Spectrometer (LC-IRMS) at the La Trobe Institute for Molecular Sciences (LIMS, La Trobe University, Melbourne, Australia) comprising an Accela 600 pump connected to a Delta V Plus Isotope Ratio Mass Spectrometer via a Thermo Scientific LC Isolink (Thermo Scientific).
    C and N bulk SIA on homogenised samples of sediment, roots, stygofauna and copepods (cyclopoids and harpacticoids) were performed at the Australian Nuclear Science and Technology Organisation (ANSTO, Sydney, Australia). Samples were loaded into tin capsules and analysed with a continuous flow isotope ratio mass spectrometer (CF-IRMS), model Delta V Plus (Thermo Scientific Corporation, U.S.A.), interfaced with an elemental analyser (Thermo Fisher Flash 2000 HT EA, Thermo Electron Corporation, USA) following the procedure published by Mazumder et al.29.
    For radiocarbon analyses, samples (sediment, roots, copepods, ants, stygofauna) were treated with 1 M HCl for 2 h to remove all possible carbonate contamination. These pre-treated samples together with 14CPOC, 14CDOC and 14CDIC samples were subjected to CO2 extraction and graphitization following the methodology published by Hua et al.30. 14C content of samples was determined by means of the Accelerator Mass Spectrometry (AMS) at ANSTO.
    Carbon CSIA
    Carbon CSIA followed the procedure described in Saccò et al.7. Samples of roots and stygofaunal specimens were hydrolysed under vacuum with 0.5 to 1 mL of amino acid-free 6 M HCl (Sigma-Aldrich) at 110 °C for 24 h. The protein hydrolysates were dried overnight in a rotary vacuum concentrator and stored in a freezer. Prior to analysis, the samples were dissolved in Milli-Q water and 10 μL of 1-mmol solution of 2-aminoisobutyric acid (Sigma-Aldrich) as internal standard. The sample stock had a concentration of approximately 8 to 10 mg/mL, which was further diluted as needed. Single amino acid carbon isotope analysis was carried out at the La Trobe Institute for Molecular Sciences (LIMS, La Trobe University, Melbourne, Australia) using an Accela 600 pump connected to a Delta V Plus Isotope Ratio Mass Spectrometer via a Thermo Scientific LC Isolink (Thermo Scientific).
    The amino acids were separated using a mixed mode (reverse phase/ion exchange) Primesep A column (2.1 × 250 mm, 100 °C, 5 μm, SIELC Technologies) following the chromatographic method described in Mora et al.31 after Smith et al.32. Mobile phases are those described in Mora et al.33. Percentage of Phases B and C in the conditioning run, as well as flow rate of the analytical run and timing of onset of 100% Phase C were adjusted as needed. Samples were injected onto the column in the 15 μL—partial loop or no waste—injection mode, and measured in duplicate or triplicate.
    To elucidate carbon flows through the stygofaunal community we focused on the essential amino acids Valine (Val), Phenylalanine (Phe) and Arginine (Arg), as these compounds must be integrated through diet and cannot be synthetised internally by the fauna14,34. In addition, to distinguish between terrestrial and aquatic carbon sources, the ratio between Val and Phe signals (δ13CVal-Phe), a widely employed index in archaeology and freshwater biology35, was calculated for roots, water mites, aquatic worms, amphipods and beetles (larvae and adults).
    Microbial taxonomic and functional gene analyses
    Consumer amphipods (Scutachiltonia axfordi (AM1), Yilgarniella sturtensis (AM2), S. bradfordae (AM3)), cyclopoids and harpacticoids, together with predator stygobiotic beetles (Paroster macrosturtensis (B), P. mesosturtensis (M) and P. microsturtensis (S)) (see Saccò el at 7. for further details on the trophic characterisation of the stygofaunal community at Sturt Meadows), were used for gut microbiome bacterial 16S metabarcoding and microbial functional analysis. A total of 16 AM1, 16 AM2, 16 AM3, 20 cyclopoids and 20 harpaticoids and 20 of each one of the three Paroster species (B, M and S), were sorted into duplicates of stygobiotic pools of 3–5 individuals from both LR and HR events for DNA extraction. Prior to DNA extraction stygobitic animals (3–5 individuals per pool; n = 40) were placed in a petri dish containing ultrapure water and UV sterilized in a UV oven for 10 min to eliminate any bacterial species that may be contained on the exoskeleton as this study targeted the gut microbiome. Immediately post-UV treatment, the animals were placed into tissue lysis tubes with 180 μL tissue lysis buffer (ATL) and 20 μL Proteinase K and homogenised using Minilys tissue homogeniser (ThermoFisher Scientific, Australia) at high speed for 30 s. Lysis tubes, inclusive of two laboratory controls, were incubated at 56 °C using an agitating heat block (Eppendorf ThermoStat C, VWR, Australia) for 5 h.
    Following the incubation, the analytical procedure was adapted from Saccò et al.22 and DNA extraction was carried out using DNeasy Blood and Tissue Kit (Qiagen; Venlo, Netherlands) and eluted off the silica column in 30–50 μL AE buffer. The quality and quantity of DNA extracted from each stygobitic pool was measured using quantitative PCR (qPCR), targeting the bacterial 16S gene. PCR reactions were used to assess the quality and quantity of the DNA target of interest via qPCR (Applied Biosystems [ABI], USA) in 25 μL reaction volumes consisting of 2 mM MgCl2 (Fisher Biotec, Australia), 1 × PCR Gold Buffer (Fisher Biotec, Australia), 0.4 μM dNTPs (Astral Scientific, Australia), 0.1 mg bovine serum albumin (Fisher Biotec, Australia), 0.4 μM of each primer (Bact16S_515F and Bact16S_806R36,37), and 0.2 μL of AmpliTaq Gold (AmpliTaq Gold, ABI, USA), and 2 μL of template DNA (Neat, 1/10, 1/100 dilutions). The cycling conditions were: initial denaturation at 95 °C for 5 min, followed by 40 cycles of 95 °C for 30 s, 52 °C for 30 s, 72 °C for 30 s, and a final extension at 72 °C for 10 min.
    DNA extracts that successfully yielded DNA of sufficient quality, free of inhibition, as determined by the initial qPCR screen (detailed above), were assigned a unique 6–8 bp multiplex identifier tag (MID-tag) with the bacterial 16S primer set. Independent MID-tag qPCR for each stygobiotic pool were carried out in 25 μL reactions containing 1 × PCR Gold Buffer, 2.5 mM MgCl2, 0.4 mg/mL BSA, 0.25 mM of each dNTP, 0.4 μM of each primer, 0.2 μL AmpliTaq Gold and 2–4 μL of DNA as determined by the initial qPCR screen. The cycling conditions for qPCR using the MID-tag primer sets were as described above. MID-tag PCR amplicons were generated in duplicate and the library was pooled in equimolar ratio post-PCR for DNA sequencing. The final library was size selected (160–600 bp) using Pippin Prep (Sage Sciences, USA) to remove any MID-tag primer-dimer products that may have formed during amplification. The final library concentration was determined using a QuBitTM 4 Fluorometer (Thermofischer, Australia) and sequenced using a 300 cycle V2 kit on an Illumina MiSeq platform (Illumina, USA).
    MID-tag bacterial 16S sequence reads obtained from the MiSeq were sorted (filtered) back to the stygobitic pool based on the MID-tags assigned to each DNA extract using Geneious v10.2.538. MID-tag and primer sequences were trimmed from the sequence reads allowing for no mismatch in length or base composition.
    Filtered reads were then input into a containerised workflow comprising USEARCH39 and BLASTN40, which was run on a high-throughput HPC cluster at Pawsey supercomputing centre. The fastx-uniques, unoise3 (with minimum abundance of 8) and otutab commands of USEARCH were applied to generate unique sequences, ZOTUs (zero-radius Operational Taxonomic Units) and abundance table, respectively. The ZOTUs were compared against the nucleotide database using the following parameters in BLASTN: perc_identity ≥ 94, evalue ≤ 1e−3, best_hit_score_edge 0.05, best_hit_overhang 0.25, qcov_hsp_perc 100, max_target_seqs = 5. An in-house Python script was used to assign the ZOTUs to their lowest common ancestor (LCA)41. The threshold for dropping a taxonomic assignment to LCA was set to perc_identity ≥ 96 and the difference between the % of identity of the two hits when their query coverage is equal was set to 1. Results on the microbial taxonomic diversity detected in ground water samples from a previous study on carbon inputs in the aquifer22 were incorporated in this work to allow qualitative comparison with the stygofaunal gut diversity.
    To investigate functional activity involved in carbon cycling, the 16S metabarcoding data were fed to the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) software package to generate predicted metagenome profiles42. These profiles were clustered into Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologs (KOs)43 and MetaCyc pathway abundances44 focusing on the relative abundances of four carbon metabolisms: carbon fixation in prokaryotes, carbohydrates, lipids and amino acid metabolisms. Relative abundance of pathways linked with methane, nitrogen and sulfur metabolisms were also investigated.
    Statistical analyses
    The Phyloseq package in R45,46 was used to plot the ZOTU abundance for the styfofaunal specimens at the order level under LR and HR periods. The Statistical Analysis of Metagenomic Profiles (STAMP) bioinformatics software package was used to carry out Principal Components Analysis (PCA) to assess the differences between functional genomic fingerprints based on the KEGG orthologs function prediction between copepods (C and H) and amphipods (AM1, AM2 and AM3), and determine statistically significant results from the PICRUSt2 output47. Clustering patterns according to rainfall periods (LR and HR) and major consumers taxonomic groups (cyclopoids, harpacticoids and amphipods) were assessed through Permutational multivariate analysis of variance (PERMANOVA, R-package46 ‘vegan’) and pairwise post hoc pairwise multilevel comparisons48.
    For comparison of potential shifts in abundances of microbial metabolic pathways within groundwater samples, copepods and amphipods across rainfall periods, analysis of variance (ANOVA) was performed on the abundance data (two replicates per each group) on the predicted pathways depicting carbon fixation, carbohydrate, lipid, amino acid, methane, nitrogen and sulfur metabolisms. ANOVAs coupled with Tukey’s HSD pairwise comparisons (R-package46 ‘stats’) were employed to inspect significant differences between bulk SIA (δ13C and δ15N) and essential amino acid (δ13CPhe, δ13CArg, δ13CVal and δ13CVal-Phe) data from the stygofaunal taxa within the different rainfall conditions (LR and HR). PERMANOVAs (R-package46 ‘vegan’) were also performed to investigate the potential clustering trends within the stygofaunal taxa across rainfall periods from the combination of radiocarbon (Δ14C) and carbon SIA (δ13C) isotopic fingerprints.
    SIMM (Stable Isotope Mixing Models, R-package46 ‘simmr’) were used to estimate dietary proportions of copepods and amphipods within a Bayesian framework. Due to the lack of species-specific trophic discrimination factors for stygofauna, we employed the widely accepted values of 3.4 ± 2‰ for nitrogen and 0.5 ± 1‰ for carbon49. Markov chain Monte Carlo (MCMC) algorithms were used for simulating posterior distributions in SIMM, and MCMC convergence was evaluated using the Gelman-Rubin diagnostic by using 1.1 as a threshold value for analysis validation. More