More stories

  • in

    Legume-rhizobium specificity effect on nodulation, biomass production and partitioning of faba bean (Vicia faba L.)

    1.
    Giller, K. E. et al. N2 Africa: Putting nitrogen fixation to work for smallholder farmers in Africa. In Agrological Intensification of Agricultural Systems in the African Highlands (eds Vanlauwe, B. et al.) 156–174 (Routledge, London, 2013).
    Google Scholar 
    2.
    Goss, M. J., de Varennes, A., Smith, P. S. & Ferguson, J. A. Nitrogen fixation by soybean grown with different levels of mineral nitrogen and fertilizer replacement value for a following crop. Can. J. So. Sci. 82, 139–145 (2002).
    Article  Google Scholar 

    3.
    Abdul-Aziz, A.L. Contribution of rhizobium and phosphorus fertilizer to biological nitrogen fixation and grain yield of soybean in the Tolon District. A Thesis Submitted to the Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, in partial fulfillment of the requirement of the degree of Master of Science in soil science (2013).

    4.
    Argaw, S. Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas spp. effect on soybean (Glycine max L. (Merri)) in Assossa area. J. Agric. Sci. Tech. 14, 213–224 (2012).
    CAS  Google Scholar 

    5.
    Keneni, G. et al. Phenotypic diversity for symbio-agronomic characters in Ethiopia chickpea (Cicer arietinum L.) germplasm accessions. Afr. J. Biotechnol. 11(63), 12634–12651 (2012).
    Google Scholar 

    6.
    Ouma, E. W., Asango, A. M., Maingi, J. & Njeru, M. Elucidating the potential of native rhizobial isolates to improve biological nitrogen fixation and growth of common bean and soybean in smallholder farming systems of Kenya. Int. J. Agron. 2016, 1–7 (2016).
    Article  CAS  Google Scholar 

    7.
    Stajković, O. et al. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom. Biotech. Lett. 16, 5919–5926 (2011).
    Google Scholar 

    8.
    Chen, Y. X. et al. Faba bean (Vicia faba L.) nodulating rhizobia in Panxi, China, are diverse at species, plant growth promoting ability, and symbiosis related gene levels. Front. Microbiol. 9, 1–10 (2018).
    Article  Google Scholar 

    9.
    Saἲdi, S., Chebil, S., Gtari, M. & Mhamdi, R. Characterization of root-nodule bacteria isolated from vicia faba and selection of plant growth promoting isolates. World J. Microbiol. Biotechnol. 29, 1099–1106 (2013).
    Article  CAS  Google Scholar 

    10.
    Workalemahu, W. The effect of indigenous toot nodulating bacteria on nodulation and growth of faba bean (Vicia faba L.) in the low-input agricultural systems of Tigray highlands, northern Ethiopia. Momona Ethiop. J. Sci. 1(2), 30–43 (2009).
    Article  Google Scholar 

    11.
    Sánchez-Cañizares, C. et al. Genomic diversity in the endosymbiotic bacterium Rhizobium leguminosarum. Genes. 9(60), 1–26 (2018).
    Google Scholar 

    12.
    Laguerre, G., Louvrier, P., Allard, M. R. & Amarger, N. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host-legumes. Appl. Environ. Microbiol. 69(4), 2276–2283 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Sachs, J. L., Kembel, S. W., Lau, A. M. & Simms, E. L. In situphylogenetic structure and diversity of wild Bradyrhizobium communities. Appl. Environ. Microbiol. 75, 4727–4735 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Laguerre, G., Depret, G., Bourion, V. & Duc, G. Rhizobium leguminosarumbv. viciae genotypes interact with pea plants in developmental responses of nodules, roots and shoots. New Phytol. 176, 680–690 (2007).
    PubMed  Article  Google Scholar 

    15.
    McKenzie, R. H. et al. Response of peat or rhizobia inoculation and start nitrogen in Alberta. Can. J. Plant Sci. 81, 637–643 (2001).
    Article  Google Scholar 

    16.
    Siczek, A. & Lipiec, J. Impact of faba bean-seed rhizobial inoculation on microbial activity in the rhizosphere soil during growing season. Int. J. Mol. Sci. 17(784), 1–9 (2016).
    Google Scholar 

    17.
    Downie, J. A. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol. Rev. 34, 150–170 (2010).
    CAS  PubMed  Article  Google Scholar 

    18.
    Fujita, H., Aoki, S. & Kawaguchi, M. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis. PLoS ONE 9, e93670 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Beltayef, H. et al. Statement of biological nitrogen fixation in snap bean under Mediterranean semi-arid conditions. Bulgarian J. of Agri. Sci. 24(2), 244–251 (2018).
    Google Scholar 

    20.
    Pitkäjärvi, J. et al. Persistence, population dynamics and competitiveness for nodulation of marker gene tagged Rhizobium galegaestrains in field lysimeters in the Boreal climatic zone. FEMS Microbiol. Ecol. 2, 2 (2003).
    Google Scholar 

    21.
    Bouyoucos, G. J. Hydrometer method improvement for making particle size analysis of soils. Agron. J. 54, 179–186 (1962).
    Google Scholar 

    22.
    Black, G. R. & Hertge, K. H. Bulk density. In methods of soil analysis (ed. Klute, A.) 377–382 (SSSA, Madison, Wiscosin, 1986).
    Google Scholar 

    23.
    Carter, M. R. & Gregorich, E. G. Soil Sampling and Methods of Analysis 2nd edn. (Canadian Soil Science Society, Boca Raton, 2008).
    Google Scholar 

    24.
    Mclean, E. O. Aluminum. In Methods of Soil Analysis, Part 2 chemical methods (ed. Black, C. A.) 978–998 (America Sci. Agron, Madison, 1965).
    Google Scholar 

    25.
    van Reeuwijk, L. P. Procedures for Soil Analysis 6th edn. (Technical Paper/International Soil Reference and Information Center, Wageningen, 2002).
    Google Scholar 

    26.
    Jońca, Z. & Lewandowski, W. Verification of measurement capabilities of flame atomic spectrometry for the determination of sodium, potassium, magnesium, and calcium in natural fresh water part I. Comparison of recommended methods. Polish J. Environ. Studies 13(3), 275–280 (2004).
    Google Scholar 

    27.
    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).
    ADS  CAS  Article  Google Scholar 

    28.
    Bremner, J. M. & Mulvaney, C. S. Nitrogen total in methods of soil analysis. In Chemical and Microbiological Properties (ed. Page, A. L.) (SSSA, Wiscosin, 1982).
    Google Scholar 

    29.
    Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of available phosphorous in soils by extraction with sodium bicarbonate. USDA Circ. 939, 1–19 (1954).
    Google Scholar 

    30.
    Vincent, J. M. A manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook No 15 (Blackwell Scientific Publications Ltd, Oxford, 1970).
    Google Scholar 

    31.
    Woomer, P., Bennett, J. & Yost, R. Overcoming inflexibilities in most-probable-number-procedures. Agron. J. 82, 349–353 (1990).
    Article  Google Scholar 

    32.
    Somasegaran, P. & Hoben, H. J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology (Springer Verlag, New York, 1994).
    Google Scholar 

    33.
    Broughton, W. J. & Diworth, M. J. Control of leghemoglobin synthesis in snake beans. Biochem. J. 125, 1075–1080 (1971).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Guene, N. F. D., Diouf, A. & Gueye, M. Nodulation and nitrogen fixation of field grown common bean (Phaseolus vulgaris) as influenced by fungicide seed treatment. Afr. J. Biotechnol. 2(7), 198–201 (2003).
    CAS  Article  Google Scholar 

    35.
    Ondieki, D. K., Nyaboga, E. N., Wagacha, J. M. & Mwaura, F. B. Morphological and genetic diversity of rhizobia nodulating cowpea (Vigna unguiculata L.) from agricultural soils of Lower Eastern Kenya. Int. J. Microbiol. 2017, 1–9 (2017).
    Article  CAS  Google Scholar 

    36.
    Rice, W. A., Clyton, G. W., Lupwayi, N. Z. & Olsen, P. E. Evaluation of coated seeds as a Rhizobium delivery system for field pea. Can. J. Plant Sci. 81(1), 248–249 (2001).
    Google Scholar 

    37.
    Beets, P. N., Pearce, S. H., Oliver, G. R. & Clinton, P. W. Root to shoot rations for deriving below-ground biomass of Pinus radiate standards. New Zealand J. Forestry Sci. 37(2), 267–288 (2007).
    Google Scholar 

    38.
    SAS. SAS/STAT Software Syntax, Version 9.0. SAS Institute, Cary, NC. USA(2010).

    39.
    Raposeiras, R. et al. Rhizobium strains competitiveness on bean nodulation in Cerrado soils. Brasilia 41, 439–447 (2006).
    Google Scholar 

    40.
    Ulzen, J. Optimizing legume-rhizobia symbiosis to enhance legume grain yield in smallholder farming system in Ghana. A thesis submitted to the Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University Science and Technology, Kumasi, in partial fulfillment of the requirements of the degree of doctor of philosophy in soil science(2018).

    41.
    Zengeni, R., Mpepereki, S. & Giller, K. E. Manure and soil properties affect survival and persistence of soybean nodulation rhizobia in smallholder soils of Zimbabwe. Agric. Ecosyst. Environ. Appl. Soil Eco. 32, 232–242 (2006).
    Article  Google Scholar 

    42.
    Jida, M. & Assefa, F. Phenotypic diversity and plant growth promoting characteristics of Mesorhizobium species isolated from faba bean (Vicia faba L.) growing areas of Ethiopia. Afr. J. Biotechnol. 11, 7483–7493 (2012).
    CAS  Google Scholar 

    43.
    Kawaletz, H., Molder, I., Terwei, P. A. A. & Ammer, S. Z. C. Pot experiments with woody species. A review. Forestry 87, 4 (2014).
    Article  Google Scholar 

    44.
    Farid, M. & Navabi, A. N2 fixation ability of different dry bean genotypes. Can. J. Plant Sci. 95, 1243–1257 (2015).
    CAS  Article  Google Scholar 

    45.
    Nkot, L. N. et al. Abundance of legume nodulating bacteria in soils of diverse land use systems in Cameroon. Univ. J. Plant Sci. 3(5), 97–108 (2015).
    Article  Google Scholar 

    46.
    Solomon, T., Pant, L.M. & Angaw, T. Effects of inoculation by Bradyrhizobium japonicum strains on nodulation, nitrogen fixation, and yield of soybean (Glycine max L. Merill) varieties on Nitosols of Bako, western Ethiopia. International Scholarly Research Network ISRN Agron. 2012, Article ID 261475, Pp. 1–8 (2012).

    47.
    Adamu, A., Hailemariam, A., Assefa, F. & Bekele, E. Studies of Rhizobium inoculation and fertilizer treatment on growth and production of faba bean (Vicia faba L.) in some yield-depleted and yield-sustained regions of Semen Shoa. Ethiopia J. of Sci. 24, 197–211 (2001).
    Google Scholar 

    48.
    Mohammadi, K., Sohrabi, Y., Heidari, G., Khalesro, S. & Majidi, M. Effective factors on biological nitrogen fixation. Afr. J. Agric. Res. 7, 1782–1788 (2012).
    Google Scholar 

    49.
    Raven, J. A. Protein turnover and plant RNA and phosphorus requirement in relation to nitrogen fixation. Plant Sci. 189, 25–35 (2012).
    Article  CAS  Google Scholar 

    50.
    Bello, S. K., Yusuf, A. A. & Cargele, M. Performance of cowpea as influenced by native strain of rhizobia, lime and phosphorus in Samaru, Nigeria. Symbiosis 75, 167–176 (2018).
    CAS  PubMed  Article  Google Scholar 

    51.
    Talaat, N. B. & Abdallah, A. M. Response of faba bean (Vicia faba L.) to dual inoculation with Rhizobium and VA mycorrhiza under different levels of N and P fertilization. J. Appl. Sci. Res. 4, 1092–1102 (2008).
    CAS  Google Scholar 

    52.
    Yoseph, T. & Worku, W. Effect of NP fertilizer rate and Bradyrhizobium inoculation on nodulation, N-uptake and crude protein content of soybean (Glycine Max (L) Merrill), at Jinka. Southern Ethiopia. J. Biol. Agric. Healthcare 4(6), 49–54 (2014).
    Google Scholar 

    53.
    Hungria, M., Campo, R. J. & Mendes, I. C. Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol. Fertl. Soils 39, 51–61 (2003).
    Article  CAS  Google Scholar 

    54.
    Kellman, A.W. Rhizobium inoculation, cultivar and management effects on the growth, development and yield of common bean (Phaseolus vulgaris L.). A PhD thesis, Lincoln University, New Zealand(2008).

    55.
    Voisin, A. S., Salon, C. & Warembourg, F. R. Seasonal patterns of 13C partitioning between shoot and nodulated roots of N2-or nitrate fed- Pisum sativum (L). Ann. Bot. 91, 539–546 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Graham, P. H., Hungria, M. & Tlusty, B. Breeding for better nitrogen fixation in grain legumes: Where do the rhizobia fit in?. Crop Manag https://doi.org/10.1094/CM-2004-0301-02-RV (2004).
    Article  Google Scholar 

    57.
    Minalku, A., Gebrekidan, H. & Assefa, F. Symbiotic effectiveness and characterization of Rhizobium strains of faba bean (Vicia faba L.) collected from eastern and western Hararghe highlands of Ethiopia. Ethiopian J. Nat. Resour 11(2), 223–244 (2009).
    Google Scholar 

    58.
    Sindhu, S., Dua, S., Verma, M. K. & Khandewal, A. Growth promotion of legumes by inoculation of rhizosphere bacteria. In Microbes for Legume Improvement (eds Khan, M. S. et al.) (Springer-Verlag, Wien, 2010).
    Google Scholar 

    59.
    Hemissi, I. et al. Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. Afr. J. Micro. Res. 5(25), 4080–4090 (2011).
    CAS  Google Scholar 

    60.
    Zahran, H. H. Rhizobia from Wild legumes: Diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotechnol. 91, 143–153 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Zahir, Z. A., Arshad, M. & Frankenberger, J. R. Plant growth promoting Rhizobacteria: Applications and perspectives in agriculture. J. Adv. Agron. 81, 97–16 (2004).
    CAS  Article  Google Scholar 

    62.
    Thilakarathna, M. S. et al. Evaluating the effectiveness of Rhizobium inoculants and micronutrients as technologies for Nepalese common bean smallholder farmers in the real-world context of highly variable hillside environments and indigenous farming practices. Agriculture 9(20), 1–17 (2019).
    Google Scholar 

    63.
    Tena, W., Wolde-Meskel, E. & Walley, F. Symbiotic efficiency of native and exotic Rhizobium strains nodulating lentil (Lens culinaris Medik) in soils of southern Ethiopia. Agronomy 6, 1–11 (2016).
    Article  CAS  Google Scholar 

    64.
    Cakmakci, R., Donmez, M. F. & Erdogan, U. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk. J. Agr. For. 31, 189–199 (2007).
    CAS  Google Scholar 

    65.
    Kyei-Boahen, S., Giroux, C. & Walley, F. L. Fall vs Springrhizobial inoculation of chickpea. Can. J. Plant Sci. 85, 893–896 (2005).
    Article  Google Scholar 

    66.
    Oğutcu, H., Algur, O. F., Elkoca, E. & Kantar, F. The determination of symbiotic effectiveness of Rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum. Turkey J. Agric. Forestry 32, 241–248 (2008).
    Google Scholar 

    67.
    Korir, H., Mungai, N. W., Thuita, M., Hamba, Y. & Masso, G. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 8, 141 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    van de Werf, A. & Negal, O. S. Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: Opinion. Plant Soil 185, 21–32 (1996).
    Article  Google Scholar 

    69.
    Koevoets, I. T., Venema, J. H., Elzegna, J. T. M. & Testerink, C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 7, 1335 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Ferreira, P. A. A., Bomfeti, C. A., Soares, B. L. & Moreira, F. M. S. Efficient nitrogen-fixing Rhizobium strains isolated from Amazonian soils are highly tolerant to acidity and aluminum. World J. Microbiol. Biotechnol. 28(5), 1947–1959 (2012).
    Article  CAS  Google Scholar 

    71.
    Kawaka, F., Dida, M.M., Peter, A., Opala, P.A., Ombori, O., Maingi, J., Osoro, N., Muthini, M., Amoding, A., Mukaminega, D. & Muoma, J. Symbiotic efficiency of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in soils of western Kenya. International Scholarly Research Notices (2014).

    72.
    Guo, Y. J., Ni, Y. & Huang, J. G. Effects of Rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop. Grassl. 44, 109–114 (2010).
    Google Scholar 

    73.
    Gicharu, G. K., Gitonga, N. M., Boga, H., Cheruiyot, R. C. & Maingi, J. M. Effect of inoculating selected climbing bean cultivars with different rhizobia strains on nitrogen fixation. Int. J. Microbiol. Res. 1(2), 25–31 (2013).
    Google Scholar 

    74.
    Mothapo, N. V. et al. Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth) genotypes with resident soil rhizobia. Biol. Fertil. Soils. 49(7), 871–879 (2013).
    Article  Google Scholar 

    75.
    Oono, R. & Denison, R. F. Comparing symbiotic efficiency between swollen versus non-swollen RhizobialBacteriods. Plant Physiol. 154, 1541–1548 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Sharma, S., Upadhyay, R. G. & Sharma, C. R. Effect of Rhizobium inoculation and nitrogen on growth, dry matter accumulation and yield of black gram (Vigna mungo). Legume Res. 23(1), 64–66 (2000).
    Google Scholar 

    77.
    Kantar, F., Elkoca, E., Ögütcü, H. & Algur, Ö. F. Chickpea yields in relation to Rhizobium inoculation from wild chickpea at high altitudes. J. Agron. Crop Sci. 189, 291–297 (2003).
    Article  Google Scholar  More

  • in

    Livestock-associated MRSA survival on house flies (Musca domestica) and stable flies (Stomoxys calcitrans) after removal from a Danish pig farm

    1.
    Anker, J. C. H. et al. Distance to pig farms as risk factor for community-onset livestock-associated MRSA CC398 infection in persons without known contact to pig farms: a nationwide study. Zoonoses Public Health 65, 352–360 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Broens, E. M., Graat, E. A. M., Van Der Wolf, P. J., Van De Giessen, A. W. & De Jong, M. C. M. Prevalence and risk factor analysis of livestock associated MRSA-positive pig herds in The Netherlands. Prev. Vet. Med. 102, 41–49 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Sørensen, A. I. V. Spread and control of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Danish pig herds. PhD Thesis, March 2018 Anna Irene Vedel Sørensen. (2018).

    4.
    Danish Veterinary and Food Administration. Results of screening for livestock-associated MRSA in pigs in 2016. Fødevarestyrelsen. www.foedevarestyrelsen.dk/Nyheder/Aktuelt/Documents/MRSA%20ekspertgruppe%20-%20resultatene%20forekomst%20af%20husdyr-MRSA%20i%20svin%202016.pdf (2017).

    5.
    Schulz, J., Boklund, A., Toft, N. & Halasa, T. Drivers for livestock-associated methicillin-resistant staphylococcus aureus spread among Danish pig herds: a simulation study. Sci. Rep. 8, 1–11 (2018).
    Article  CAS  Google Scholar 

    6.
    Borck Høg, B. et al. DANMAP 2016: use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Statens Serum Institut, National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark (2017).

    7.
    Borck Høg, B. et al. DANMAP 2017: use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Statens Serum Institut, National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark (2018).

    8.
    Larsen, J. et al. Emergence of livestock-associated methicillin-resistant staphylococcus aureus bloodstream infections in Denmark. Clin. Infect. Dis. 65, 1072–1076 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Gibbs, S. G., Green, C. F., Tarwater, P. M. & Scarpino, P. V. Airborne antibiotic resistant and nonresistant bacteria and fungi recovered from two swine herd confined animal feeding operations. J. Occup. Environ. Hyg. 1, 699–706 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Scarpino, P. V. & Quinn, H. Bioaerosol distribution patterns adjacent to two swine-growing-finishing housed confinement units in the American Midwest. J. Aerosol Sci. 29, 553–554 (1998).
    ADS  Article  Google Scholar 

    11.
    Baldacchino, F., Muenworn, V., Desquesnes, M., Desoli, F. & Charoenviriyaphap, T. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): a review. Parasite 20, 26 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Nayduch, D. & Burrus, R. G. Flourishing in filth: house fly-microbe interactions across life history. Ann. Entomol. Soc. Am. 110, 6–18 (2017).
    CAS  Article  Google Scholar 

    13.
    Bahrndorff, S., De Jonge, N., Skovgård, H. & Nielsen, J. L. Bacterial communities associated with houseflies (Musca domestica L.) sampled within and between farms. PLoS ONE 12, 1–15 (2017).
    Article  CAS  Google Scholar 

    14.
    Park, R. et al. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome 7, 1–12 (2019).
    CAS  Article  Google Scholar 

    15.
    Forsey, T. & Darougar, S. Transmission of chlamydiae by the housefly. Br. J. Ophthalmol. 65, 147–150 (1981).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Skovgård, H., Kristensen, K. & Hald, B. Retention of Campylobacter (Campylobacterales: Campylobacteraceae) in the house fly (Diptera: Muscidae). J. Med. Entomol. 48, 1202–1209 (2011).
    PubMed  Article  Google Scholar 

    17.
    Mellor, P. S., Kitching, R. P. & Wilkinson, P. J. Mechanical transmission of capripox virus and African swine fever virus by Stomoxys calcitrans. Res. Vet. Sci. 43, 109–112 (1987).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Nayduch, D., Cho, H. & Joyner, C. Staphylococcus aureus in the house fly: temporospatial fate of bacteria and expression of the antimicrobial peptide defensin. J. Med. Entomol. 50, 171–178 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Espinosa-Gongora, C., Dahl, J., Elvstrøm, A., van Wamel, W. J. & Guardabassi, L. Individual predisposition to Staphylococcus aureus colonization in pigs on the basis of quantification, carriage dynamics, and serological profiles. Appl. Environ. Microbiol. 81, 1251–1256 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Friesen, K., Berkebile, D. R., Zhu, J. J. & Taylor, D. B. Laboratory rearing of stable flies and other Muscoid Diptera. J. Vis. Exp. 138, 1–7 (2018)
    Google Scholar 

    21.
    Liu, C. M. et al. Staphylococcus aureus and the ecology of the nasal microbiome. Sci. Adv. 1, 5 (2015).
    Google Scholar 

    22.
    Beresford, D. V. & Sutcliffe, J. F. Local infestation or long-distance migration? The seasonal recolonization of dairy farms by Stomoxys calcitrans (Diptera: Muscidae) in South Central Ontario, Canada. J. Econ. Entomol. 102, 788–798 (2009).
    CAS  PubMed  Article  Google Scholar 

    23.
    Bailey, D. L., Whitfield, T. L. & Smittle, B. J. Flight and dispersal of the stable fly. J. Econ. Entomol. 66, 410–411 (1973).
    Article  Google Scholar 

    24.
    Hogsette, J. A. & Ruff, J. P. Stable fly (Diptera: Muscidae) migration in northwest Florida. Environ. Entomol. 14, 170–175 (1985).
    Article  Google Scholar 

    25.
    SPF-system. Landbrug and Fødevarer: Sundhedsstyringen. http://spfsus.dk/en (2020).

    26.
    Hansen, J. E. et al. LA-MRSA CC398 in dairy cattle and veal calf farms indicates spillover from pig production. Front. Microbiol. 10, 2733 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Singhal, N., Kumar, M., Kanaujia, P. K. & Virdi, J. S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6, 1–16 (2015).
    Article  Google Scholar 

    28.
    IBM Corp. IBM SPSS Statistics for Windows v 25.0. Armonk, NY: IBM Corp. (2017).

    29.
    Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404 (1934).
    MATH  Article  Google Scholar 

    30.
    Therneau, T. A Package for Survival Analysis in R. R package version 3. 1–11. https://cran.r-project.org/package=survival. (2020).

    31.
    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, New York, 2000).
    Google Scholar 

    32.
    R Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (2020).

    33.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    34.
    Anonymous Kort and Matrikelstyrelsen. Beregnede adressekoordinater v 1.0 (2001).

    35.
    Dahlem, G. A. House fly: (musca domestica) in Encyclopedia of insects. In Encyclopedia Insects (eds Resh, V. H. & Cardé, R. T.) 469–470 (Elsevier, Amsterdam, 2009).
    Google Scholar 

    36.
    Skovgård, H. & Nachman, G. Population dynamics of stable flies Stomoxys Calcitrans (Diptera: Muscidae) at an organic dairy farm in Denmark based on mark-recapture with destructive sub-sampling. Environ. Entomol. 41, 20–29 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Taylor, D. B. et al. Dispersal of stable flies (Diptera: Muscidae) from Larval development sites in a Nebraska landscape. Environ. Entomol. 39, 1101–1110 (2010).
    CAS  PubMed  Article  Google Scholar 

    38.
    Quarterman, K., Kilpatrick, J. & Mathis, W. Fly dispersal in a rural area near Savannah, Georgia. J. Econ. Entomol. 47, 413–419 (1954).
    Article  Google Scholar 

    39.
    Schoof, H. F., Siverly, R. E. & Jensen, J. A. House fly dispersion studies in metropolitan areas. J. Econ. Entomol. 45, 675–683 (1952).
    CAS  Article  Google Scholar 

    40.
    Chakrabarti, S., Kambhampati, S. & Zurek, L. Assessment of house fly dispersal between rural and urban habitats in Kansas, USA. J. Kansas Entomol. Soc. 83, 172–188 (2010).
    Article  Google Scholar 

    41.
    Gill, C., Bahrndorff, S. & Lowenberger, C. Campylobacter jejuni in Musca domestica: an examination of survival and transmission potential in light of the innate immune responses of the house flies. Insect Sci. 24, 584–598 (2017).
    CAS  PubMed  Article  Google Scholar 

    42.
    Nayduch, D., Noblet, G. P. & Stutzenberger, F. J. Vector potential of houseflies for the bacterium Aeromonas caviae. Med. Vet. Entomol. 16, 193–198 (2002).
    CAS  PubMed  Article  Google Scholar 

    43.
    Fasanella, A. et al. Evaluation of the house fly Musca domestica as a mechanical vector for an Anthrax. PLoS ONE 5, 4–8 (2010).
    Article  CAS  Google Scholar 

    44.
    Baleba, S. B. S., Torto, B., Masiga, D., Weldon, C. W. & Getahun, M. N. Egg-laying decisions based on olfactory cues enhance offspring fitness in Stomoxys calcitrans L. (Diptera: Muscidae). Sci. Rep. 9, 1–13 (2019).
    CAS  Article  Google Scholar 

    45.
    Zhu, J. J., Zhang, Q. H., Taylor, D. B. & Friesen, K. A. Visual and olfactory enhancement of stable fly trapping. Pest Manag. Sci. 72, 1765–1771 (2016).
    CAS  PubMed  Article  Google Scholar 

    46.
    Rosen, K., Roesler, U., Merle, R. & Friese, A. Persistent and transient airborne MRSA colonization of piglets in a newly established animal model. Front. Microbiol. 9, 1–12 (2018).
    Article  Google Scholar 

    47.
    Angen, Ø., Feld, L., Larsen, J., Rostgaard, K. & Skov, R. Transmission of methicillin-resistant staphylococcus aureus to human volunteers visiting a swine farm. Appl. Environ. Microbiol. 83, 1–10 (2017).
    CAS  Article  Google Scholar 

    48.
    Feld, L., Bay, H., Angen, Ø., Larsen, A. R. & Madsen, A. M. Survival of LA-MRSA in dust from swine farms. Ann. Work Expo. Heal. 62, 147–156 (2018).
    CAS  Article  Google Scholar 

    49.
    Madsen, A. M., Markouch, A., Frederiksen, M. W. & Tendal, K. Measurement of dust-borne MRSA in pig farms using different approaches. J. Appl. Microbiol. 126, 1580–1593 (2019).
    CAS  PubMed  Article  Google Scholar 

    50.
    Hald, B., Sommer, H. M. & Skovgård, H. Use of fly screens to reduce Campylobacter spp. introduction in broiler houses. Emerg. Infect. Dis. 13, 1951–1953 (2007).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Long-term movements and activity patterns of platypus on regulated rivers

    1.
    Grant, T. & Denny, M. J. S. Distribution of the platypus in Australia with guidelines for management. A report to Australian National Parks and Wildlife Service. Mount King Ecological Surveys, Oberon, New South Wales (1991).
    2.
    Serena, M., Worley, M., Swinnerton, M. & Williams, G. Effect of food availability and habitat on the distribution of platypus (Ornithorhynchus anatinus) foraging activity. Aust. J. Zool. 49, 263–277 (2001).
    Article  Google Scholar 

    3.
    Serena, M., Thomas, J., Williams, G. & Officer, R. Use of stream and river habitats by the platypus, Ornithorhynchus anatinus, in an urban fringe environment. Aust. J. Zool. 46, 267–282 (1998).
    Article  Google Scholar 

    4.
    Bino, G. et al. The platypus: evolutionary history, biology, and an uncertain future. J. Mammal. 100, 308–327 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Gardner, J. & Serena, M. Spatial-organization and movement patterns of adult male platypus, Ornithorhynchus anatinus (Monotremata, Ornithorhynchidae). Aust. J. Zool. 43, 91–103 (1995).
    Article  Google Scholar 

    6.
    Bino, G., Kingsford, R. T., Grant, T., Taylor, M. D. & Vogelnest, L. Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales. Sci. Rep. 8, 5117 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Grant, T., Grigg, G. C., Beard, L. & Augee, M. Movements and burrow use by platypuses, Ornithorhynchus anatinus, in the Thredbo River, New South Wales. In Platypus and Echidnas (ed. Augee, M. L.) 263–267 (The Royal Zoological Society of NSW, Sydney, 1992).
    Google Scholar 

    8.
    Griffiths, J., Kelly, T. & Weeks, A. Impacts of high flows on platypus movements and habitat use in an urban stream. Report to Melbourne Water. Cesar, VIC, Australia (2014).

    9.
    Gust, N. & Handasyde, K. Seasonal-variation in the ranging behavior of the platypus (Ornithorhynchus anatinus) on the Goulburn River, Victoria. Aust. J. Zool. 43, 193–208 (1995).
    Article  Google Scholar 

    10.
    Serena, M. Use of time and space by platypus (Ornithorhynchus anatinus: Monotremata) along a Victorian stream. J. Zool. 232, 117–131 (1994).
    Article  Google Scholar 

    11.
    Temple-Smith, P. & Grant, T. Uncertain breeding: a short history of reproduction in monotremes. Reprod. Fertil. Dev. 13, 487–497 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Temple-Smith, P. D. Seasonal breeding biology of the platypus, Ornithorhynchus anatinus (Shaw, 1799), with special reference to the male (1973).

    13.
    Bino, G., Grant, T. R. & Kingsford, R. T. Life history and dynamics of a platypus (Ornithorhynchus anatinus) population: four decades of mark-recapture surveys. Sci. Rep. 5, 16073 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Serena, M. & Williams, G. A. Movements and cumulative range size of the platypus (Ornithorhynchus anatinus) inferred from mark-recapture studies. Aust. J. Zool. 60, 352–359 (2012).
    Article  Google Scholar 

    15.
    Grant, T. Body temperatures of free-ranging platypuses, Ornithorhynchus anatinus (Monotremata), with observations on their use of burrows. Aust. J. Zool. 31, 117–122 (1983).
    Article  Google Scholar 

    16.
    Bethge, P., Munks, S., Otley, H. & Nicol, S. Activity patterns and sharing of time and space of platypuses, Ornithorhynchus anatinus, in a subalpine Tasmanian lake. J. Mammal. 90, 1350–1356 (2009).
    Article  Google Scholar 

    17.
    Macgregor, J. et al. Novel use of in-stream microchip readers to monitor wild platypuses. Pac. Conserv. Biol. 21, 101–101 (2015).
    Article  Google Scholar 

    18.
    Grant, T. Captures, capture mortality, age and sex ratios of platypuses, Ornithorhynchus anatinus, during studies over 30 years in the upper Shoalhaven River in New South Wales. Proc. Linn. Soc. NSW 125, 217–226 (2004).
    Google Scholar 

    19.
    Grant, T. & Temple-Smith, P. Conservation of the platypus, Ornithorhynchus anatinus: threats and challenges. Aquat. Ecosyst. Health Manag. 6, 5–18 (2003).
    Article  Google Scholar 

    20.
    Griffiths, J., Kelly, T. & Weeks, A. Net-avoidance behaviour in platypuses. Aust. Mammal. 35, 245–247 (2013).
    Article  Google Scholar 

    21.
    Griffiths, J. & Weeks, A. Impact of environmental flows on platypuses in a regulated river. Report to Melbourne Water. Cesar, VIC, Australia (2015).

    22.
    Hawke, T. et al. Fine-scale movements and interactions of platypuses, and the impact of an environmental flushing flow. Freshw. Biol. 2020(00), 1–12 (2020).
    Google Scholar 

    23.
    Erskine, W. et al. Bedform maintenance and pool destratification by the new environmental flows on the Snowy River downstream of the Jindabyne Dam, New South Wales. J. Proc. R. Soc. N. S. W. 150, 152–171 (2017).
    Google Scholar 

    24.
    Rohlfs, A. M. Rehabilitating the Snowy River: The influence of environmental flow releases on dissolved organic carbon supply and utilisation. PhD thesis, University of Technology, Sydney, Australia (2016).

    25.
    Pigram, J. J. Options for rehabilitation of Australia’s Snowy River: an economic perspective. Regul. Rivers Res. Manag. 16, 363–373 (2000).
    Article  Google Scholar 

    26.
    Davey, C. Mitta Mitta Biological Monitoring Program 2013–2014 Annual Report. Annual report prepared for the Murray Darling Basin Authority by The Murray–Darling Freshwater Research Centre, MDFRC Publication 45/2014, September, 88pp. Canberra, Australia (2014).

    27.
    Watts, R. J., Ryder, D. S. & Allan, C. Environmental monitoring of variable flow trials conducted at Dartmouth Dam, 2001/02-07/08-Synthesis of key findings and operational guidelines. Institute for Land, Water and Society Report Number 50, Charles Sturt University, Albury, NSW (2009).

    28.
    Vogelnest, L. & Woods, R. Medicine of Australian Mammals (CSIRO Publishing, Clayton, 2008).
    Google Scholar 

    29.
    McCullagh, P. & Nelder, J. A. Generalized Linear Models 2nd edn. (Chapman and Hall, London, 1989).
    Google Scholar 

    30.
    Bates, D. et al. Package “lme4”. Convergence 12, 2 (2015).
    Google Scholar 

    31.
    R Development Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

    32.
    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.0. https://CRAN.R-project.org/package=emmean.

    33.
    Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling “Manuscript”. Ecol. Model. 157, 157–177 (2002).
    Article  Google Scholar 

    34.
    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, Boca Raton, 2017).
    Google Scholar 

    35.
    Wood, S., Scheipl, F. & Wood, M. S. Package ‘gamm4’. Am. Stat. 45, 339 (2017).
    Google Scholar 

    36.
    Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221–240 (2012).
    ADS  Article  Google Scholar 

    37.
    McClellan, C. M. & Read, A. J. Complexity and variation in loggerhead sea turtle life history. Biol. Lett. 3, 592–594 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Taylor, M. D., Babcock, R. C., Simpfendorfer, C. A. & Crook, D. A. Where technology meets ecology: acoustic telemetry in contemporary Australian aquatic research and management. Mar. Freshw. Res. 68, 1397–1402 (2017).
    Article  Google Scholar 

    39.
    Pillans, R., Fry, G., Steven, A. & Patterson, T. Environmental influences on long-term movement patterns of a euryhaline Elasmobranch (Carcharhinus leucas) within a subtropical estuary. Estuar. Coasts 43, 2152–2169 (2020).
    CAS  Article  Google Scholar 

    40.
    Otley, H. M., Munks, S. A. & Hindell, M. A. Activity patterns, movements and burrows of platypuses (Ornithorhynchus anatinus) in a sub-alpine Tasmanian lake. Aust. J. Zool. 48, 701–713 (2000).
    Article  Google Scholar 

    41.
    Hendry, A. P. et al. Evolution Illuminated: Salmon and Their Relatives (Oxford University Press, Oxford, 2003).
    Google Scholar 

    42.
    Stevick, P. et al. Population spatial structuring on the feeding grounds in North Atlantic humpback whales (Megaptera novaeangliae). J. Zool. 270, 244–255 (2006).
    Article  Google Scholar 

    43.
    Cutts, C., Brembs, B., Metcalfe, N. & Taylor, A. Prior residence, territory quality and life-history strategies in juvenile Atlantic salmon (Salmo salar L.). J. Fish Biol. 55, 784–794 (1999).
    Article  Google Scholar 

    44.
    Haley, M. P. Resource-holding power asymmetries, the prior residence effect, and reproductive payoffs in male northern elephant seal fights. Behav. Ecol. Sociobiol. 34, 427–434 (1994).
    Article  Google Scholar 

    45.
    Lindstedt, S. L., Miller, B. J. & Buskirk, S. W. Home range, time, and body size in mammals. Ecology 67, 413–418 (1986).
    Article  Google Scholar 

    46.
    Turner, F. B., Jennrich, R. I. & Weintraub, J. D. Home ranges and body size of lizards. Ecology 50, 1076–1081 (1969).
    Article  Google Scholar 

    47.
    Slavenko, A., Itescu, Y., Ihlow, F. & Meiri, S. Home is where the shell is: predicting turtle home range sizes. J. Anim. Ecol. 85, 106–114 (2016).
    PubMed  Article  Google Scholar 

    48.
    McNab, B. K. Bioenergetics and the determination of home range size. Am. Nat. 97, 133–140 (1963).
    Article  Google Scholar 

    49.
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).
    Article  Google Scholar 

    50.
    Soderquist, T. R. & Serena, M. Juvenile behaviour and dispersal of chuditch (Dasyurus geoffroii) (Marsupialia: Dasyuridae). Aust. J. Zool. 48, 551–560 (2000).
    Article  Google Scholar 

    51.
    Cockburn, A., Scott, M. P. & Scotts, D. J. Inbreeding avoidance and male-biased natal dispersal in Antechinus spp. (Marsupialia: Dasyuridae). Anim. Behav. 33, 908–915 (1985).
    Article  Google Scholar 

    52.
    Furlan, E. et al. Dispersal patterns and population structuring among platypuses, Ornithorhynchus anatinus, throughout south-eastern Australia. Conserv. Genet. 14, 837–853 (2013).
    CAS  Article  Google Scholar 

    53.
    Kolomyjec, S. H. Relationships of northern platypus (Ornithorhynchus anatinus) populations: a molecular approach (2010).

    54.
    Faragher, R., Grant, T. & Carrick, F. Food of the platypus (Ornithorhynchus anatinus) with notes on the food of brown trout (Salmo trutta) in the Shoalhaven River, NSW. Aust. J. Ecol. 4, 171–179 (1979).
    Article  Google Scholar 

    55.
    Todd, C. R., Ryan, T., Nicol, S. J. & Bearlin, A. R. The impact of cold water releases on the critical period of post-spawning survival and its implications for Murray cod (Maccullochella peelii peelii): a case study of the Mitta Mitta River, southeastern Australia. River Res. Appl. 21, 1035–1052 (2005).
    Article  Google Scholar 

    56.
    Koehn, J., Doeg, T., Harrington, D. & Milledge, G. The effects of Dartmouth Dam on the aquatic fauna of the Mitta Mitta River. Report to the Murray-Darling Basin Commission. Arthur Rylah Institute for Environmental Research, Melbourne (1995).

    57.
    Hawke, T., Bino, G., & Kingsford, R. T. Damming insights: impacts and implications of river regulation on platypus populations. Aquat Conserv Mar Freshw Ecosystems. in press. (2021).

    58.
    Hawke, T., Bino, G. & Kingsford, R. T. Platypus: paucities and peril. A response to: limitations on the use of historical and database sources to identify changes in distribution and abundance of the platypus. Glob. Ecol. Conserv. 21, e00857 (2019).
    Article  Google Scholar 

    59.
    Hawke, T., Bino, G. & Kingsford, R. T. A silent demise: historical insights into population changes of the iconic platypus (Ornithorhynchus anatinus). Glob. Ecol. Conserv. 20, e00720 (2019).
    Article  Google Scholar 

    60.
    Bino, G., Kingsford, R. T. & Wintle, B. A. A stitch in time—synergistic impacts to platypus metapopulation extinction risk. Biol. Conserv. 242, 108399 (2020).
    Article  Google Scholar  More

  • in

    Insufficient sampling constrains our characterization of plant microbiomes

    Different sampling strategies yield different microbial communities
    The sampling strategies compared in this study (homogenizing tissue before subsampling and homogenizing tissue after subsampling) are common methods found in the literature for characterizing plant-associated microbial communities14,23,26,29. Procrustes analyses and community overlap between sampling strategies demonstrated that different strategies can capture disparate microbial communities within plants, with the extent of these differences depending on the community targeted and plant tissue type sampled. In FFE as well as bacterial and non-AM fungal communities in roots, subsamples from the same plant resulted in completely different sets of species recovered, illustrating the severe undersampling that is inherent to each of these strategies. With these sampling strategies, we are undoubtedly sacrificing power and accuracy to characterize the subtler aspects of plant microbiome interactions, despite often seeing community differences across landscapes, treatments or seasons.
    Richness was higher when homogenizing before subsampling for bacteria only, despite differences observed in composition for all groups. It is perhaps surprising that homogenizing plant tissues before subsampling did not recover more species than homogenizing after subsampling for fungi as well, because with the former approach, more plant tissue is initially represented. Indeed, a previous study showed that sample pooling or homogenizing before subsampling resulted in a higher richness of soil fungi compared to equally sized individual samples50. In Song et al. (2015)50 they also found that multiple individual subsamples, rather than the single homogenized subsample, resulted in higher richness. This may suggest that the scale at which we are physically able to break down the particle size of plant tissues, as opposed to soil, is not always fine enough to sufficiently homogenize the fungi within. Because of this, plant-associated microbial communities may require a greater sampling effort than soil microbes. Additionally, the removal of low-abundant SVs did not result in differences in richness between the two sampling strategies for any microbial group, suggesting that neither strategy is better at capturing rare species. Although this study was performed only on milkweed plants, we believe that these results are applicable to other plant species as well. The richness reported here is similar to other studies of plant-associated microbes (e.g.51,52), indicating that differences in subsamples were not due to extreme richness of milkweed-associated microbes.
    Microbial diversity should inform sampling effort
    The higher congruency that we saw between sampling strategies for AMF compared to other microbial communities may be due to the differences in their local and global estimated richness. While the global number of AMF species has been estimated in the hundreds to low thousands42,53, global estimates of fungal species in general range in the millions54,55. A recent global estimate of bacterial richness suggests similar scales56. In this study specifically, AMF had the lowest total SV richness and the greatest similarity between sampling strategies, while foliar fungal endophytes had the highest SV richness, and the lowest overlap of SVs between strategies. Since the amount of tissue sampled was equal for all microbial communities, the sampling effort was likely much higher for AMF (relative to the whole AMF community), than it was for bacteria and non-AM fungi. Consequently, with each sample we are likely sampling a much larger proportion of true AMF species richness.
    Even though the estimated total community richness was highest for foliar fungi, the average estimated richness per individual plant was highest for AMF. This suggests that similar AMF SVs re-occurred across all plants with low species turnover. On the other hand, fungi in leaves had lower average richness per plant (Fig. 4, Supplementary Fig. S3), but the highest total richness, meaning that there was higher turnover of FFE species among plants sampled. These results may be a direct reflection of the overall community richness of the different microbial groups as well as their ability to spread and co-occur within plants. Based on these patterns, more individual plants and a greater sampling effort within individuals are likely needed to characterize FFE communities compared to AMF communities.
    Rare SVs contribute to variation among subsamples
    Our results show that low abundant, rare SVs largely contributed to the differences seen between sampling strategies. Even AMF communities, which were already similar, increased in overlap by 50% between strategies after low abundant SVs (represented by  More

  • in

    Insect reproductive behaviors are important mediators of carrion nutrient release into soil

    1.
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 
    2.
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Article  Google Scholar 

    3.
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    4.
    Losey, E. J. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311 (2006).
    Article  Google Scholar 

    5.
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115, 6506–6511 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Yang, L. H. & Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2, 26–32 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Hunter, M. D. Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric. For. Entomol. 3, 77–84 (2001).
    Article  Google Scholar 

    8.
    Nichols, E. et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141, 1461–1474 (2008).
    Article  Google Scholar 

    9.
    Lobry de Bruyn, L. A. & Conacher, A. J. The role of termites and ants in soil modification: a review. Aust. J. Soil Res. 28, 55–93 (1990).
    Google Scholar 

    10.
    Shukla, R. K., Singh, H., Rastogi, N. & Agarwal, V. M. Impact of abundant Pheidole ant species on soil nutrients in relation to the food biology of the species. Appl. Soil Ecol. 71, 15–23 (2013).
    Article  Google Scholar 

    11.
    López-Hernández, D. Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco Llanos (Venezuela). Soil Biol. Biochem. 33, 747–753 (2001).
    Article  Google Scholar 

    12.
    Nkem, J. N., Lobry de Bruyn, L. A., Grant, C. D. & Hulugalle, N. R. The impact of ant bioturbation and foraging activities on surrounding soil properties. Pedobiologia 44, 609–621 (2000).
    Article  Google Scholar 

    13.
    Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47, 215–222 (2011).
    Article  Google Scholar 

    14.
    Frost, C. J. & Hunter, M. D. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85, 3335–3347 (2004).
    Article  Google Scholar 

    15.
    Calderon-Cortes, N. et al. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela. J. Insect Physiol. 84, 128–136 (2016).
    CAS  PubMed  Article  Google Scholar 

    16.
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).
    ADS  PubMed  Article  Google Scholar 

    17.
    Danell, K., Aux, D. B. & Bráthen, K. A. Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Artic 55, 389–392 (2002).
    Google Scholar 

    18.
    Melis, C. et al. Soil and vegetation nutrient response to bison carcasses in Bialowieza primeval forest Poland. Ecol. Res. 22, 807–813 (2007).
    ADS  CAS  Article  Google Scholar 

    19.
    Bump, J. K., Peterson, R. O. & Vucetich, J. A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90, 3159–3167 (2009).
    PubMed  Article  Google Scholar 

    20.
    Benninger, L. A., Carter, D. O. & Forbes, S. L. The biochemical alteration of soil beneath a decomposing carcass. Forensic Sci. Int. 180, 70–75 (2008).
    CAS  PubMed  Article  Google Scholar 

    21.
    Anderson, G. S. & VanLaerhoven, S. L. Initial studies on insect succession on carrion in Southwestern British Columbia. J. Forensic Sci. 41, 617–625 (1996).
    Article  Google Scholar 

    22.
    Matuszewski, S., Bajerlein, D., Konwerski, S. & Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: succession of carrion fauna. Forensic Sci. Int. 207, 150–163 (2011).
    PubMed  Article  Google Scholar 

    23.
    Barton, P. S., Evans, M. J., Pechal, J. L. & Benbow, M. E. Necrophilous insect dynamics at small vertebrate carrion in a temperate eucalypt woodland. J. Med. Entomol. 54, 964–973 (2017).
    PubMed  Article  Google Scholar 

    24.
    Benbow, M. E., Lewis, A. J., Tomberlin, J. K. & Pechal, J. L. Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J. Med. Entomol. 50, 440–450 (2013).
    CAS  PubMed  Article  Google Scholar 

    25.
    Payne, J. A. A summer carrion study of the baby pig Sus Scrofa Linnaeus. Ecology 46, 592–602 (1965).
    Article  Google Scholar 

    26.
    Kočárek, P. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur. J. Soil Biol. 39, 31–45 (2003).
    Article  Google Scholar 

    27.
    Bornemissza, G. F. An analysis of arthropod succession in carrion and the effects of its decomposition on the soil fauna. J. Zool. 5, 1–12 (1957).
    Google Scholar 

    28.
    Parmenter, R. R. & MacMahon, J. A. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 79, 637–661 (2009).
    Article  Google Scholar 

    29.
    Pechal, J. L., Benbow, M. E., Crippen, T. L., Tarone, A. M. & Tomberlin, J. K. Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere 5, 1–21 (2014).
    Article  Google Scholar 

    30.
    Pukowski, E. Ökologische untersuchungen an necrophorus. Z. Morphol. Oekol. 27, 518–586 (1933).
    Article  Google Scholar 

    31.
    Scott, M. P. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43, 595–618 (1998).
    CAS  PubMed  Article  Google Scholar 

    32.
    Milne, L. J. & Milne, M. The social behavior of burying beetles. Sci. Am. 235, 84–89 (1976).
    Article  Google Scholar 

    33.
    Müller, J. K. & Eggert, A. K. Paternity assurance by ‘helpful’ males: adaptations to sperm competition in burying beetles. Behav. Ecol. Sociobiol. 24, 245–249 (1989).
    Article  Google Scholar 

    34.
    House, C. M. et al. The evolution of repeated mating in the burying beetle Nicorphorus vespilloides. Evolution 62, 2004–2014 (2008).
    PubMed  Article  Google Scholar 

    35.
    Pettinger, A. M., Steiger, S., Müller, J. K., Sakaluk, S. K. & Eggert, A. K. Dominance status and carcass availability affect the outcome of sperm competition in burying beetles. Behav. Ecol. 22, 1079–1087 (2011).
    Article  Google Scholar 

    36.
    Rozen, D. E., Engelmoer, D. J. P. & Smiseth, P. T. Antimicrobial strategies in burying beetles breeding on carrion. Proc. Natl. Acad. Sci. USA 105, 17890–17895 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Arce, A. N., Johnston, P. R., Smiseth, P. T. & Rozen, D. E. Mechanisms and fitness effects of antibacterial defences in a carrion beetle. J. Evol. Biol. 25, 930–937 (2012).
    CAS  PubMed  Article  Google Scholar 

    38.
    Hall, C. L. et al. Inhibition of microorganisms on a carrion breeding resource: the antimicrobial peptide activity of burying beetle (Coleoptera: Silphidae) oral and anal secretions. Environ. Entomol. 40, 669–678 (2011).
    PubMed  Article  Google Scholar 

    39.
    Duarte, A., Welch, M., Swannack, C., Wagner, J. & Kilner, R. M. Strategies for managing rival bacterial communities: lessons from burying beetles. J. Anim. Ecol. 87, 414–427 (2018).
    PubMed  Article  Google Scholar 

    40.
    Trumbo, S. T. Reproductive benefits and the duration of paternal care in a biparental burying beetle Necrophorus orbicollis. Behaviour 117, 82–105 (1991).
    Article  Google Scholar 

    41.
    Trumbo, S. T. Fate of mouse carcasses in a Northern Woodland. Ecol. Entomol. 41, 737–740 (2016).
    Article  Google Scholar 

    42.
    Hoback, W. W., Freeman, L., Payton, M. & Peterson, B. C. Burying beetle (Coleoptera: Silphidae: Nicrophorus fabricius) brooding improves soil fertility. Coleopt. Bull. 74, 427–433 (2020).
    Article  Google Scholar 

    43.
    Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, 1–26 (2018).
    Google Scholar 

    44.
    Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94, 12–24 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Carter, D. O., Yellowlees, D. & Tibbett, M. Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl. Soil Ecol. 40, 129–137 (2008).
    Article  Google Scholar 

    46.
    Meyer, J., Anderson, B. & Carter, D. O. Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (Dfa) climate. J. Forensic Sci. 58, 1175–1182 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Chen, Y. A., Forschler, B. T. & Nielsen, U. Elemental concentrations in the frass of saproxylic insects suggest a role in micronutrient cycling. Ecosphere 7, 1–13 (2016).
    Google Scholar 

    49.
    Couture, J. J. & Lindroth, R. L. Atmospheric change alters frass quality of forest canopy herbivores. Arthropod. Plant. Interact. 8, 33–47 (2014).
    Article  Google Scholar 

    50.
    Metcalf, J. L. et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. Elife 2013, 1–19 (2013).
    Google Scholar 

    51.
    Xu, S., Liu, L. L. & Sayer, E. J. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences 10, 7423–7433 (2013).
    ADS  Article  CAS  Google Scholar 

    52.
    Wilson, W. A. et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol. Rev. 34, 952–985 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Achbergerová, L. & Nahálka, J. Polyphosphate—an ancient energy source and active metabolic regulator. Microb. Cell Fact. 10, 1–14 (2011).
    Article  CAS  Google Scholar 

    54.
    Kornberg, A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J. Bacteriol. 177, 491–496 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Wilkinson, J. F. Carbon and energy storage in bacteria. J. Gen. Microbiol. 32, 171–176 (1963).
    CAS  PubMed  Article  Google Scholar 

    56.
    Paul, E. A. Soil Microbiology, Ecology and Biochemistry (Academic Press, Cambridge, 2014).
    Google Scholar 

    57.
    DeVault, T. L., Brisbin, I. L. Jr. & Rhodes, O. E. Jr. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
    Article  Google Scholar 

    58.
    DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
    Article  Google Scholar 

    59.
    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. 47, 185–192 (2002).
    Article  Google Scholar 

    60.
    Smith, J. B., Laatsch, L. J. & Beasley, J. C. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition. Sci. Rep. 7, 1–8 (2017).
    Article  CAS  Google Scholar 

    61.
    Wilson, D. S. & Fudge, J. Burying beetles: intraspecific interactions and reproductive success in the field. Ecol. Entomol. 9, 195–203 (1984).
    Article  Google Scholar 

    62.
    Keller, M. L., Howard, D. R. & Hall, C. L. Spatiotemporal niche partitioning in a specious silphid community (Coleoptera: Silphidae Nicrophorus). Sci. Nat. 106, 1–12 (2019).
    ADS  Article  CAS  Google Scholar 

    63.
    Owings, C. G. & Picard, C. J. Temporal survey of a carrion beetle (Coleoptera:Silphidae) community in Indiana. Proc. Indiana Acad. Sci. 124, 124–128 (2015).
    Google Scholar 

    64.
    Snyder, D. P. Survival rates, longevity, and population fluctuations in the white-footed mouse, Peromyscus leucopus Southeastern Michigan. Museum Zool. Universty Michigan 95, 1–33 (1956).
    Google Scholar 

    65.
    Stephens, R. B., Hocking, D. J., Yamasaki, M. & Rowe, R. J. Synchrony in small mammal community dynamics across a forested landscape. Ecography 40, 1198–1209 (2017).
    Article  Google Scholar 

    66.
    Leasure, D. R., Rupe, D. M., Phillips, E. A., Opine, D. R. & Huxel, G. R. Efficient new above-ground bucket traps produce comparable data to that of standard transects for the endangered American Burying Beetle, Nicrophorus americanus Olivier (Coleoptera: Silphidae). Coleopt. Bull. 66, 209–218 (2012).
    Article  Google Scholar 

    67.
    Bedick, J. C., Ratcliffe, B. C. & Higley, L. G. A new sampling protocol for the endangered American Burying Beetle, Nicrophorus americanus Olivier (Coleoptera: Silphidae). Coleopt. Bull. 58, 57–70 (2004).
    Article  Google Scholar 

    68.
    Trumbo, S. T. Reproductive success, phenology and biogeography of burying beetles (Silphidae, Nicrophorus). Am. Midl. Nat. 124, 1–11 (1990).
    Article  Google Scholar 

    69.
    Trumbo, S. T. Nesting failure in burying beetles and the origin of communal associations. Evol. Ecol. 9, 125–130 (1995).
    Article  Google Scholar 

    70.
    Braman, R. S. & Hendrix, S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715–2718 (1989).
    CAS  PubMed  Article  Google Scholar 

    71.
    Sims, G. K., Ellsworth, T. R. & Mulvaney, R. L. Microscale determination of inorganic nitrogen in water and soil extracts. Commun. Soil Sci. Plant Anal. 26, 303–316 (1995).
    CAS  Article  Google Scholar 

    72.
    Contosta, A. R., Frey, S. D. & Cooper, A. B. Seasonal dynamics of soil respiration and N mineralization in chronically warmed and fertilized soils. Ecosphere 2, 1–21 (2011).
    Article  Google Scholar 

    73.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).
    CAS  Article  Google Scholar 

    74.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
    CAS  Article  Google Scholar 

    75.
    Brookes, P. D. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
    CAS  Article  Google Scholar 

    76.
    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
    CAS  PubMed  Article  Google Scholar 

    77.
    White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62 (1979).
    ADS  CAS  PubMed  Article  Google Scholar 

    78.
    Guckert, J. B., Antworth, C. P., Nichols, P. D. & White, D. C. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol. Lett. 31, 147–158 (1985).
    CAS  Article  Google Scholar 

    79.
    Bardgett, R. D., Hobbs, P. J. & Frostegårde, A. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22, 261–264 (1996).
    Article  Google Scholar 

    80.
    Bååth, E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb. Ecol. 45, 373–383 (2003).
    PubMed  Article  CAS  Google Scholar 

    81.
    Ekelund, F., Olsson, S. & Johansen, A. Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Biol. Biochem. 35, 1507–1516 (2003).
    CAS  Article  Google Scholar 

    82.
    Leckie, S. E., Prescott, C. E., Grayston, S. J., Neufeld, J. D. & Mohn, W. W. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability. Microb. Ecol. 48, 29–40 (2004).
    CAS  PubMed  Article  Google Scholar 

    83.
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
    CAS  PubMed  Article  Google Scholar 

    84.
    Oksanen, J. et al. Vegan: community ecology package (2019). http://cran.r-project.org/.

    85.
    Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics version 0.9-75 from CRAN. R package version 0.9-75 (2020).

    86.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications Inc, Thousand Oaks, 2018).
    Google Scholar  More

  • in

    Shallow seamounts represent speciation islands for circumglobal yellowtail Seriola lalandi

    1.
    Holland, K. N. & Grubbs, R. D. Fish visitors to seamounts: Tunas and billfish at seamounts. In Seamounts: Ecology, Fisheries and Conservation (eds Pitcher, T. J. et al.) 89–201 (Blackwell Publishing, Oxford, 2007).
    Google Scholar 
    2.
    Pitcher, T. J. et al. Seamounts: Ecology, Fisheries & Conservation (John Wiley & Sons, New York, 2008). .
    Google Scholar 

    3.
    Pazmiño, D. A. et al. Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus galapagensis) revealed by genome-wide cytonuclear markers. Heredity 120, 407–421 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Berrisford, C. D. Biology and zoogeography of Vema Seamount: A report on the first biological collection made on the summit. Trans. R. Soc. S. Afr. 38, 387–398 (1969).
    Article  Google Scholar 

    5.
    Collette, B. B. & Parin, N. V. Shallow-water fishes of Walters Shoals Madagascar Ridge. Bull. Mar. Sci. 48, 1–22 (1991).
    Google Scholar 

    6.
    Baxter, J. L. A. study of the yellowtail Seriola dorsalis (Gill). State of California department of fish and game. Mol. Biol. Ecol. 110, 96 (1960).
    Google Scholar 

    7.
    Gillanders, B. M., Ferrell, D. J. & Andrew, N. L. Size at maturity and seasonal changes in gonad activity of yellowtail kingfish (Seriola lalandi; Carangidae) in New South Wales, Australia, New Zealand. Mol. Biol. Ecol. 33, 457–468 (1999).
    Google Scholar 

    8.
    Shiraishi, T., Ohshimo, S. & Yukami, R. Age, growth and reproductive characteristics of gold striped amberjack Seriola lalandi in the waters off western Kyushu Japan. Mol. Biol. Ecol. 44, 117–127 (2010).
    CAS  Google Scholar 

    9.
    Miranda, I. T. & Peet, C. Farmed Yellowtail Seriola spp. Japan and Australia. Final Report, October 22, 2008 (2008)

    10.
    Griffiths, M. H. Long-trends in catch and effort of commercial linefish off South Africa’s Cape Province: Snapshots of the 20th century. S. Afr. J. Marine Sci. 22, 81–110 (2000).
    Article  Google Scholar 

    11.
    Kerwath and Wilke. Yellowtail (Seriola lalandi). In: Southern African Marine Linefish Species Profiles (ed. Mann BQ, Special Publication, Oceanographic Research Institute, Durban 9, 23–24, 2013).

    12.
    Penney, A. The southern Cape yellowtail fishery—a research perspective and preliminary results. Internal Report, Sea Fisheries Research Institute South Africa 08: 19 pp (1982)

    13.
    Wilke, C. G. & Griffiths, M. H. Movement patterns of offshore linefish based on tagging results. SANCOR Occ. Rep. 5, 98–107 (1999).
    Google Scholar 

    14.
    Gillanders, B. M., Ferrell, D. J. & Andrew, N. L. Estimates of movement and life-history parameters of yellowtail kingfish (Seriola lalandi): How useful are data from a cooperative tagging programme?. Mol. Biol. Ecol. 52, 179–192 (2001).
    Google Scholar 

    15.
    Holdsworth, J. C., McKenzie, J. R., Walsh, C., van der Straten, K.M. & Ó Maolagáin, C. Catch-at-age of yellowtail kingfish (Seriola lalandi) caught by recreational fishers in KIN 1, New Zealand. New Zealand Fisheries Assessment Report 2013/3. 31 p. (2013).

    16.
    Dunn, K. The diet, reproductive biology age and growth of yellowtail, Seriola lalandi, in South Africa. Unpublished MSc thesis, University of Cape Town (2014).

    17.
    Gilchrist, J. D. F. The development of the South African fishes Part-1. Mar. Investig. South Africa 2, 181–201 (1903).
    Google Scholar 

    18.
    Martinez-Takeshita, N. et al. A tale of three tails: Cryptic speciation in a globally distributed marine fish of the genus Seriola. Copeia 103, 357–368 (2015).
    Article  Google Scholar 

    19.
    Swart, B. L., Bester-van der Merwe, A. E., Kerwath, S. E. & Roodt-Wilding, R. Phylogeography of the pelagic fish Seriola lalandi at different scales: confirmation of interocean population structure and evaluation of southern African genetic diversity. Afr. J. Mar. Sci. 38, 513–524 (2016).
    Article  Google Scholar 

    20.
    Rogers, A. D. The biology of seamounts. Adv. Mar. Biol. 30, 304–360 (1994).
    Google Scholar 

    21.
    Samadi, S. et al. Seamount endemism questioned by the geographical distribution and population genetic structure of marine invertebrates. Mar. Biol. 149, 1463–1475 (2006).
    Article  Google Scholar 

    22.
    Clark, M. R. et al. The ecology of seamounts: Structure, function, and human impacts. Annu. Rev. Mar. Sci. 2, 253–278 (2010).
    ADS  Article  Google Scholar 

    23.
    Cho, W. & Shank, T. M. Incongruent patterns of genetic connectivity among four ophiuroid species with differing coral host specificity on North Atlantic seamounts. Mar. Ecol. 31, 121–143 (2010).
    ADS  Article  Google Scholar 

    24.
    Shank, T. M. Deep-ocean laboratories of faunal connectivity, evolution, and endemism. Oceanography 23, 108–122 (2010).
    Article  Google Scholar 

    25.
    Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 275, 1803–1809 (2008).
    Google Scholar 

    26.
    Diggles, B. K. Import risk assessment: juvenile yellowtail kingfish (Seriola lalandi) from Spencer Gulf aquaculture, South Australia. Client Report No. WLG 2002/03. National Institute of Water and Atmospheric Research (NIWA) Ltd, Kilbirnie, Wellington, New Zealand (2002).

    27.
    Bang, N. D. Dynamic interpretations of a detailed Surface temperature chart of the Agulhas Current retroflexion and fragmentation area. S. Afr. Geogr. J. 52, 67–76 (1970).
    Article  Google Scholar 

    28.
    Lutjeharms, J. R. E. & Gordon, A. L. Shedding of an Agulhas Ring observed at sea. Nat. Lond. 325, 138–140 (1987).
    ADS  Article  Google Scholar 

    29.
    Duncombe Rae, C. M. Agulhas retroflection rings in the South Atlantic Ocean: An overview. S. Afr. J. Marine Sci. 11, 327–344 (1991).
    Article  Google Scholar 

    30.
    Lutjeharms, J. R. E. The exchange of water between the South Indian and the South Atlantic. In The South Atlantic: Present and Past Circulation (eds Wefer, G. et al.) 125–162 (Springer, Berlin, 1996).
    Google Scholar 

    31.
    Martin, A. P., Humphreys, R. & Palumbi, S. R. Population genetic-structure of the armorhead, Pseudopentaceros wheeleri, in the North Pacific Ocean: Application of the polymerase chain reaction to fisheries problems. Can. J. Fish. Aquat. Sci. 49, 2386–2391 (1992).
    CAS  Article  Google Scholar 

    32.
    Hoarau, G. & Borsa, P. Extensive gene flow within sibling species in the deep-sea fish Beryx splendens. CR Acad. Sci. III Vie 323, 315–325 (2000).
    CAS  Article  Google Scholar 

    33.
    Smith, P. J. et al. Genetic and meristic variation in black and smooth oreos in the New Zealand EEZ. Mol. Biol. Ecol. 36, 737–750 (2002).
    CAS  Google Scholar 

    34.
    Levy-Hartmann, L., Roussel, V., Letourneur, Y. & Sellos, D. Y. Global and New Caledonian patterns of population genetic variation in the deep-sea splendid alfonsino, Beryx splendens, inferred from mtDNA. Genetica 139, 1349–1365 (2011).
    PubMed  Article  Google Scholar 

    35.
    Catarino, D., Stefanni, S. & Menezes, G. M. Size distribution and genetic diversity of the offshore rockfish (Pontinus kuhlii) from three Atlantic archipelagos and seamounts. Deep-Sea Res. Pt. II(98), 160–169 (2013).
    Article  Google Scholar 

    36.
    Varela, A. I., Ritchie, P. A. & Smith, P. J. Global genetic population structure in the commercially exploited deep-sea teleost orange roughy (Hoplostethus atlanticus) based on microsatellite DNA analyses. Fish. Res. 140, 83–90 (2013).
    Article  Google Scholar 

    37.
    Aboim, M. A., Menezes, G. M., Schlitt, T. & Rogers, A. D. Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche, 1809) inferred from mtDNA sequence analysis. Mol. Ecol. 14, 1343–1354 (2005).
    CAS  PubMed  Article  Google Scholar 

    38.
    Stockley, B. M., Menezes, G., Pinho, M. R. & Rogers, A. D. Genetic population structure of the black-spot sea bream (Pagellus bogaraveo) from the NE Atlantic. Mar. Biol. 146, 793–804 (2005).
    CAS  Article  Google Scholar 

    39.
    Rogers, A. D., Morley, S., Fitzcharles, E., Jarvis, K. & Belchier, M. Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean sectors of the Southern Ocean. Mar. Biol. 149, 915–924 (2006).
    Article  Google Scholar 

    40.
    Hutchings, L. et al. The Benguela Current: An ecosystem of four components. Progr. Oceanogr. 83(1–4), 15–32. https://doi.org/10.1016/j.pocean.2009.07.046 (2009).
    ADS  Article  Google Scholar 

    41.
    Nepgen, C. S. Diet of predatory and reef fish in False Bay and possible effects of pelagic purse-seining on their food supply. Mol. Biol. Ecol. 16, 75–93 (1982).
    Google Scholar 

    42.
    Massias, A. & Becker, P. H. Nutritive value of food and growth in Common Tern Sterna hirundo chicks. Ornis Scand. 1, 187–194 (1990).
    Article  Google Scholar 

    43.
    Stearns, S. C. The Evolution of Life Histories 249 (Oxford University Press, New York, 1992).
    Google Scholar 

    44.
    Stearns, S. C. & Koella, J. C. The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution 40, 893–913 (1986).
    PubMed  Article  Google Scholar 

    45.
    Shuter, B. J. et al. Optimal life histories and food web position: Linkages among somatic growth, reproductive investment, and mortality. Can. J. Fish. Aquat. Sci. 62, 738–746 (2005).
    Article  Google Scholar 

    46.
    Jensen, A. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 53, 820–822 (1996).
    Article  Google Scholar 

    47.
    Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).
    Article  Google Scholar 

    48.
    Law, R. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57, 659–668 (2000).
    Article  Google Scholar 

    49.
    Heydorn, A. E. F. Research on the Vema Seamount. Afr. Ship. News Fish. Ind. Rev 12, 79–83 (1967).
    Google Scholar 

    50.
    Bergstad, Odd Aksel, Åge Sigurd Høines, Roberto Sarralde, G. Campanis, M. Gil, Fran Ramil, E. Maletzky, E. Mostarda, Larvika Singh, and M. A. António. “Bathymetry, substrate and fishing areas of Southeast Atlantic high-seas seamounts.” African J. of Marine Science 41, no. 1 (2019): 11–28.

    51.
    Hutchings, L. et al. Spawning on the edge: Spawning grounds and nursery areas around the southern African coastline. Mol. Biol. Ecol. 53, 307–318 (2002).
    Google Scholar 

    52.
    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).
    Google Scholar 

    53.
    Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990).
    Google Scholar 

    54.
    Palero, F., González-Candelas, F. & Pascual, M. MICROSATELIGHT—Pipeline to expedite microsatellite analysis. J. Hered. 102, 247–249 (2011).
    CAS  PubMed  Article  Google Scholar 

    55.
    Van Oosterhout, C., Hutchison, W. F., Shipley, P. & Wills, D. P. M. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    56.
    Belkhir, K., Borsa, P., Goudet, J., Chikhi, L. & Bonhomme, F. GENETIX, logiciel sous Window TM pour la génétique des populations. Laboratoire Génome et Populations, Montpellier, France. (2000) http://kimura.univ-montp2.fr/genetix/

    57.
    Goudet, J. FSTAT, a Program to estimate and test gene diversities and fixation indices version 2.9.3. (2001). http://www.unil.ch/izea/softwares/fstat.html

    58.
    Ryman, N. & Palm, S. POWSIM: A computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. 6, 600–602 (2006).
    Article  Google Scholar 

    59.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
    CAS  Google Scholar 

    60.
    Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–659 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
    PubMed  Article  Google Scholar 

    63.
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resourc. 11, 5–18 (2011).
    Article  Google Scholar 

    64.
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).
    PubMed  Article  Google Scholar 

    65.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Peakall, R. & Smouse, P. E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6, 288–295 (2006).
    Article  Google Scholar 

    67.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. (2013)

    70.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Bester-van der Merwe, A. E. et al. Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus): Intercontinental divergence and constrained gene flow at different geographical scales. PLoS ONE 12(9), e0184481 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361 (2012).
    Article  Google Scholar 

    73.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    74.
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Rosenberg, N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
    Article  Google Scholar 

    76.
    Froese, B. R. Cube law, condition factor and weight—length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 22, 241–253 (2006).
    Article  Google Scholar  More

  • in

    Mangrove tree (Avicennia marina): insight into chloroplast genome evolutionary divergence and its comparison with related species from family Acanthaceae

    1.
    Faridah-Hanum, I. et al. Development of a comprehensive mangrove quality index (MQI) in Matang Mangrove: assessing mangrove ecosystem health. Ecol. Ind. 102, 103–117 (2019).
    Article  Google Scholar 
    2.
    Spalding, M. World Atlas of Mangroves (Routledge, New York, 2010).
    Google Scholar 

    3.
    Himes-Cornell, A., Grose, S. O. & Pendleton, L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand?. Front. Mar. Sci. 5, 376 (2018).
    Article  Google Scholar 

    4.
    Wu, Y., Ricklefs, R. E., Huang, Z., Zan, Q. & Yu, S. Winter temperature structures mangrove species distributions and assemblage composition in China. Glob. Ecol. Biogeogr. 27, 1492–1506 (2018).
    Article  Google Scholar 

    5.
    Das, S. S., Das, S. & Ghosh, P. Phylogenetic relationships among the mangrove species of Acanthaceae found in Indian Sundarban, as revealed by RAPD analysis. Adv. Appl. Sci. Res 6, 179–184 (2015).
    CAS  Google Scholar 

    6.
    Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 84–254 (2001).
    Google Scholar 

    7.
    Sannigrahi, S. et al. Responses of ecosystem services to natural and anthropogenic forcings: a spatial regression based assessment in the world’s largest mangrove ecosystem. Sci. Total Environ. 715, 137004 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    dos Santos, N. M. & Lana, P. Present and past uses of mangrove wood in the subtropical Bay of Paranaguá (Paraná, Brazil). Ocean Coast. Manag. 148, 97–103 (2017).
    Article  Google Scholar 

    9.
    Jusoff, K. Malaysian mangrove forests and their significance to the coastal marine environment. Pol. J. Environ. Stud. 22, 979–1005 (2013).
    Google Scholar 

    10.
    Duke, N. C., Lo, E. & Sun, M. Global distribution and genetic discontinuities of mangroves–emerging patterns in the evolution of Rhizophora. Trees 16, 65–79 (2002).
    Article  Google Scholar 

    11.
    Nagelkerken, I. et al. The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat. Bot. 89, 155–185 (2008).
    Article  Google Scholar 

    12.
    Tomlinson, P. B. The Botany of Mangroves (Cambridge University Press, Cambridge, 2016).
    Google Scholar 

    13.
    Dahdouh-Guebas, F. et al. How effective were mangroves as a defence against the recent tsunami?. Curr. Biol. 15, R443–R447 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Saenger, P. Mangrove Ecology, Silviculture and Conservation (Springer, Berlin, 2002).
    Google Scholar 

    15.
    Lakshmi, M., Parani, M. & Parida, A. Molecular phylogeny of mangroves IX: molecular marker assisted intra-specific variation and species relationships in the Indian mangrove tribe Rhizophoreae. Aquat. Bot. 74, 201–217 (2002).
    CAS  Article  Google Scholar 

    16.
    Grover, A. & Sharma, P. Development and use of molecular markers: past and present. Crit. Rev. Biotechnol. 36, 290–302 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Adsul, G. G., Chaurasia, A. K., Dhake, A. V. & Kothari, R. M. RAPD analysis of phylogenetic relationships and genetic variations in genus Allium. Biochem. Indian J. 3, 1–5 (2015).
    Google Scholar 

    18.
    Xu, K. et al. Identification of tuna species (Thunnini tribe) by PCR-RFLP analysis of mitochondrial DNA fragments. Food Agric. Immunol. 27, 301–313 (2016).
    CAS  Article  Google Scholar 

    19.
    Wambugu, P. W., Brozynska, M., Furtado, A., Waters, D. L. & Henry, R. J. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci. Rep. 5, 1–9 (2015).
    Article  Google Scholar 

    20.
    Middleton, C. P. et al. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 9, e85761 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Raman, G. & Park, S. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis, and phylogenetic relationships to other angiosperms. Front. Plant Sci. 7, 341 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Yang, J. B., Li, D. Z. & Li, H. T. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol. Ecol. Resour. 14, 1024–1031 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Su, H.-J., Hogenhout, S. A., Al-Sadi, A. M. & Kuo, C.-H. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the rosids. PLoS ONE 9, e113049 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Hu, S. Phylogeny and Chloroplast Evolution in BRASSICACEAE, University of Trento, (2016).

    25.
    Santos, C. G. Development of new tools for the identification of plants using chloroplast DNA sequences. (2018).

    26.
    Singh, B. P., Kumar, A., Kaur, H., Singh, H. & Nagpal, A. K. CpGDB: A comprehensive database of chloroplast genomes. Bioinformation 16, 171 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wu, Z. The new completed genome of purple willow (Salix purpurea) and conserved chloroplast genome structure of Salicaceae. J. Nat. Sci 1, e49 (2015).
    Google Scholar 

    28.
    Wu, Z. The whole chloroplast genome of shrub willows (Salix suchowensis). Mitochondrial DNA Part A 27, 2153–2154 (2016).
    CAS  Google Scholar 

    29.
    Egamberdiev, S. S. et al. Comparative assessment of genetic diversity in cytoplasmic and nuclear genome of upland cotton. Genetica 144, 289–306 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Williams, A. V., Miller, J. T., Small, I., Nevill, P. G. & Boykin, L. M. Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia. Mol. Phylogenet. Evol. 96, 1–8 (2016).
    CAS  PubMed  Article  Google Scholar 

    31.
    Fučíková, K. et al. New phylogenetic hypotheses for the core Chlorophyta based on chloroplast sequence data. Front. Ecol. Evol. 2, 63 (2014).
    Google Scholar 

    32.
    Friis, G. et al. A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina. bioRxiv (2020).

    33.
    Asaf, S. et al. Complete chloroplast genome of Nicotiana otophora and its comparison with related species. Front. Plant Sci. 7, 843 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Asaf, S., Khan, A. L., Khan, A. & Al-Harrasi, A. Unraveling the chloroplast genomes of two prosopis species to identify its genomic information, comparative analyses and phylogenetic relationship. Int. J. Mol. Sci. 21, 3280 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    35.
    Souladeth, P., Tagane, S., Zhang, M., Okabe, N. & Yahara, T. Flora of Nam Kading National Protected Area I: a new species of yellow-flowered Strobilanthes (Acanthaceae), S. namkadingensis. PhytoKeys 81, 11 (2017).
    Article  Google Scholar 

    36.
    Yang, L. et al. The complete chloroplast genome of Swertia tetraptera and phylogenetic analysis. Mitochondrial DNA Part B 5, 164–165 (2020).
    Article  Google Scholar 

    37.
    Biju, V. C. et al. The complete chloroplast genome of Trichopus zeylanicus, and phylogenetic analysis with dioscoreales. Plant Genome 12, 190032 (2019).
    CAS  Article  Google Scholar 

    38.
    Silva, S. R. et al. The chloroplast genome of Utricularia reniformis sheds light on the evolution of the ndh gene complex of terrestrial carnivorous plants from the Lentibulariaceae family. PLoS ONE 11, e0165176 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    39.
    Zuo, L.-H. et al. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis. PLoS ONE 12, e0171264 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Niu, Z., Huang, S., Deng, Y. & Chen, X. The complete chloroplast genome of Justicia leptostachya (Acanthaceae). Mitochondrial DNA Part B 4, 1114–1115 (2019).
    Article  Google Scholar 

    41.
    Chen, H. et al. Sequencing and analysis of Strobilanthes cusia (Nees) Kuntze chloroplast Genome revealed the rare simultaneous contraction and expansion of the inverted repeat region in Angiosperm. Front. Plant Sci. 9, 324 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Ding, P. et al. The complete chloroplast genome sequence of the medicinal plant Andrographis paniculata. Mitochondrial DNA Part A 27, 2347–2348 (2016).
    CAS  Article  Google Scholar 

    43.
    Yaradua, S. S., Alzahrani, D. A., Albokhary, E. J., Abba, A. & Bello, A. Complete chloroplast genome sequence of Justicia flava: genome comparative analysis and phylogenetic relationships among Acanthaceae. BioMed Res. Int. 2019, 4370258 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Huang, S., Deng, Y. & Ge, X. The complete chloroplast genome of Aphelandra knappiae (Acanthaceae). Mitochondrial DNA Part B 4, 273–274 (2019).
    Article  Google Scholar 

    45.
    Li, M.-N. et al. Complete plastome sequence of Clinacanthus nutans (Acanthaceae): a medicinal species in Southern China. Mitochondrial DNA Part B 4, 118–119 (2019).
    Article  Google Scholar 

    46.
    Jiang, M., Wang, J. & Zhang, H. Characterization and phylogenetic analysis of the complete chloroplast genome sequence of Disanthus cercidifolius subsp. longipes (Hamamelidaceae), a rare and endangered wild plant species in China. Mitochondrial DNA Part B 5, 1206–1207 (2020).
    CAS  PubMed  Article  Google Scholar 

    47.
    Steane, D. A. Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae). DNA Res. 12, 215–220 (2005).
    CAS  PubMed  Article  Google Scholar 

    48.
    Park, J., Kim, Y., Xi, H. & Heo, K.-I. The complete chloroplast genome of ornamental coffee tree, Coffea arabica L. (Rubiaceae). Mitochondrial DNA Part B 4, 1059–1060 (2019).
    Article  Google Scholar 

    49.
    Park, J. et al. The complete chloroplast genome of common camellia tree, Camellia japonica L. (Theaceae), adapted to cold environment in Korea. Mitochondrial DNA Part B 4, 1038–1040 (2019).
    Article  Google Scholar 

    50.
    Arif Khan, S. A. et al. First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: Myrrh producing trees. PLoS ONE 14, e0225469 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Xu, J. et al. The first intron of rice EPSP synthase enhances expression of foreign gene. Sci. China Ser. C Life Sci. 46, 561 (2003).
    CAS  Article  Google Scholar 

    52.
    Kelchner, S. A. The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann. Missouri Bot. Gard. 87, 482–498 (2000).
    Article  Google Scholar 

    53.
    Khan, A. et al. Complete chloroplast genomes of medicinally important Teucrium species and comparative analyses with related species from Lamiaceae. PeerJ 7, e7260 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Asaf, S., Khan, A., Khan, A. L., Al-Harrasi, A. & Al-Rawahi, A. Complete chloroplast genomes of Vachellia nilotica and Senegalia senegal: comparative genomics and phylogenomic placement in a new generic system. PLoS ONE 14, e0225469 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Su, Y., He, Z., Wang, Z., Hong, Y. & Wang, T. Characterization of the complete chloroplast genome of Leptochilus decurrens (Polypodiaceae), a least concern folk medicinal fern. Mitochondrial DNA Part B 4, 3346–3347 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Kumar, S. & Shanker, A. In silico comparative analysis of simple sequence repeats in chloroplast genomes of genus nymphaea. J. Sci. Res. 64, 186–192 (2020).
    Google Scholar 

    57.
    Asaf, S. et al. The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species. Front. Plant Sci. 8, 304 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Asaf, S. et al. Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. PLoS ONE 13, e0192966 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Khan, A. L. et al. The first chloroplast genome sequence of Boswellia sacra, a resin-producing plant in Oman. PLoS ONE 12, e0169794 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Asaf, S. et al. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species. PLoS ONE 12, e0182281 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Qian, J. et al. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE 8, e57607 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Wang, W. & Messing, J. High-throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA. PLoS ONE 6, e24670 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Shen, X. et al. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 22, 1330 (2017).
    ADS  PubMed Central  Article  CAS  Google Scholar 

    64.
    Liu, M. et al. The complete chloroplast genome sequence of Tartary Buckwheat Cultivar Miqiao 1 (Fagopyrum tataricum Gaertn.). Mitochondrial DNA Part B 1, 577–578 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Fu, P.-C., Zhang, Y.-Z., Geng, H.-M. & Chen, S.-L. The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae) and comparative analysis with its congeneric species. PeerJ 4, e2540 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Choi, K. S., Chung, M. G. & Park, S. The complete chloroplast genome sequences of three Veroniceae species (Plantaginaceae): comparative analysis and highly divergent regions. Front. Plant Sci. 7, 355 (2016).
    PubMed  PubMed Central  Google Scholar 

    67.
    Cheon, K.-S., Kim, K.-A., Kwak, M., Lee, B. & Yoo, K.-O. The complete chloroplast genome sequences of four Viola species (Violaceae) and comparative analyses with its congeneric species. PLoS ONE 14, e0214162 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Munyao, J. N. et al. Complete chloroplast genomes of chlorophytum comosum and chlorophytum gallabatense: genome structures, comparative and phylogenetic analysis. Plants 9, 296 (2020).
    CAS  PubMed Central  Article  Google Scholar 

    69.
    Yu, T., Huang, B.-H., Zhang, Y., Liao, P.-C. & Li, J.-Q. Chloroplast genome of an extremely endangered conifer Thuja sutchuenensis Franch.: gene organization, comparative and phylogenetic analysis. Physiol. Mol. Biol. Plants 1–10 (2020).

    70.
    Sabri, D. M., El-Hussieny, S. A. & Elnwishy, N. Genotypic Variations of Mangrove (Avicennia marina) in Nabq Protectorate, South Sinai Egypt. Int. J. Agric. Biol. 20, 637–646 (2018).
    Article  Google Scholar 

    71.
    71Basyuni, M., Baba, S. & Oku, H. in IOP Conference Series: Materials Science and Engineering. 012247 (IOP Publishing).

    72.
    Sahu, S. K., Singh, R. & Kathiresan, K. Multi-gene phylogenetic analysis reveals the multiple origin and evolution of mangrove physiological traits through exaptation. Estuar. Coast. Shelf Sci. 183, 41–51 (2016).
    ADS  Article  Google Scholar 

    73.
    Khan, A. et al. First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: Myrrh producing trees. PLoS ONE 14, e0208511 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Arif, M. F., Aristya, G. R., Subositi, D., Sari, A. N. & Kasiamdari, R. S. rbcL and matK chloroplast DNA composition of green chireta (Andrographis paniculata) from Indonesia. Biodivers. J. Biol. Divers. 20, 3575–3583 (2019).
    Google Scholar 

    75.
    Langdon, W. B. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 8, 1 (2015).
    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Gan, H. M., Schultz, M. B. & Austin, C. M. Integrated shotgun sequencing and bioinformatics pipeline allows ultra-fast mitogenome recovery and confirms substantial gene rearrangements in Australian freshwater crayfishes. BMC Evol. Biol. 14, 19 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Feng, G., Yang, J. & Peng, F.-R. Characterization of complete chloroplast genome of artificial hybrid passion fruit ‘Ziyan’, Passiflora edulis Sims× P. edulis f. edulis Sims (Passifloraceae). Mitochondrial DNA Part B 5, 1720–1721 (2020).
    Article  Google Scholar 

    79.
    Brown, J., Pirrung, M. & McCue, L. A. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 33, 3137–3139 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Wyman, S. K., Jansen, R. K. & Boore, J. L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252–3255 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Lohse, M., Drechsel, O. & Bock, R. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52, 267–274 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    85.
    Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Kurtz, S. et al. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633–4642 (2001).
    MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583–2585 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Wirawan, A., Kwoh, C. K., Hsu, L. Y. & Koh, T. H. in International Conference on Computational Systems-Biology and Bioinformatics. 151–164 (Springer).

    89.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Srivathsan, A. & Meier, R. On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28, 190–194 (2012).
    Article  Google Scholar 

    91.
    Kumar, S., Nei, M., Dudley, J. & Tamura, K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinf. 9, 299–306 (2008).
    CAS  Article  Google Scholar 

    92.
    Swofford, D. L. Paup*: Phylogenetic analysis using parsimony (and other methods) 4.0. B5. (2001).

    93.
    Wu, Z., Tembrock, L. R. & Ge, S. Are differences in genomic data sets due to true biological variants or errors in genome assembly: an example from two chloroplast genomes. PLoS ONE 10, e0118019 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    A forest loss report card for the world’s protected areas

    1.
    Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    De Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).
    Article  Google Scholar 

    3.
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Protected Planet Report 2016 (UNEP-WCMC and IUCN, 2016).

    5.
    Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).
    Article  Google Scholar 

    8.
    The State of the World’s Forests 2020 (FAO and UNEP, 2020).

    9.
    Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Coetzee, B. W., Gaston, K. J. & Chown, S. L. Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS ONE 9, e105824 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    CAS  Article  Google Scholar 

    14.
    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Spracklen, B., Kalamandeen, M., Galbraith, D., Gloor, E. & Spracklen, D. V. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10, e0143886 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Ewers, R. M. & Rodrigues, A. S. Estimates of reserve effectiveness are confounded by leakage. Trends Ecol. Evol. 23, 113–116 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Fuller, C., Ondei, S., Brook, B. W. & Buettel, J. C. First, do no harm: a systematic review of deforestation spillovers from protected areas. Glob. Ecol. Conserv. 18, e00591 (2019).
    Article  Google Scholar 

    20.
    Stolton, S. et al. in Protected Area Governance and Management (eds Worboys, G. L. et al.) 145–168 (ANU Press, 2015).

    21.
    Scharlemann, J. P. et al. Securing tropical forest carbon: the contribution of protected areas to REDD. Oryx 44, 352–357 (2010).
    Article  Google Scholar 

    22.
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).
    Article  Google Scholar 

    24.
    Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Leader-Williams, N. & Albon, S. Allocation of resources for conservation. Nature 336, 533–535 (1988).
    Article  Google Scholar 

    26.
    Jachmann, H. Monitoring law-enforcement performance in nine protected areas in Ghana. Biol. Conserv. 141, 89–99 (2008).
    Article  Google Scholar 

    27.
    Critchlow, R. et al. Improving law-enforcement effectiveness and efficiency in protected areas using ranger-collected monitoring data. Conserv. Lett. 10, 572–580 (2017).
    Article  Google Scholar 

    28.
    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).
    Article  Google Scholar 

    29.
    Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Watson, J. E., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Bruner, A. G., Gullison, R. E. & Balmford, A. Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. BioScience 54, 1119–1126 (2004).
    Article  Google Scholar 

    32.
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    33.
    Report of the Conference of the Parties on its Sixteenth Session, held in Cancun from 29 November to 10 December 2010. Addendum. Part Two: Action Taken by the Conference of the Parties at its Sixteenth Session Report FCCC/CP/2010/7/Add.1 (UNFCCC, 2011).

    34.
    Fletcher, R., Dressler, W., Büscher, B. & Anderson, Z. R. Questioning REDD+ and the future of market-based conservation. Conserv. Biol. 30, 673–675 (2016).
    PubMed  Article  Google Scholar 

    35.
    Ministerio de Ambiente y Desarrollo Sostenible, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Política Nacional para la Gestión Integral de la Biodiversidad y Sus Servicios Ecosistémicos (MADS, 2012).

    36.
    Sims, K. R. E. & Alix-Garcia, J. M. Parks versus PES: evaluating direct and incentive-based land conservation in Mexico. J. Environ. Econ. Manag. 86, 8–28 (2017).
    Article  Google Scholar 

    37.
    James, A. N., Green, M. J. B. & Paine, J. R. A Global Review of Protected Area Budgets and Staff WCMC Biodiversity Series No.10 (World Conservation Press, 1999).

    38.
    Walker, S., Price, R., Rutledge, D., Stephens, R. T. & Lee, W. G. Recent loss of indigenous cover in New Zealand. New Zeal. J. Ecol. 30, 169–177 (2006).
    Google Scholar 

    39.
    Ewers, R. M. et al. Past and future trajectories of forest loss in New Zealand. Biol. Conserv. 133, 312–325 (2006).
    Article  Google Scholar 

    40.
    Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).
    Article  Google Scholar 

    41.
    Grossman, G. M. & Krueger, A. B. Environmental Impacts of a North American Free Trade Agreement (National Bureau of Economic Research, 1991).

    42.
    Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. 6, 1080–1082 (2019).
    Article  Google Scholar 

    43.
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Walker, N., Patel, S., Davies, F., Milledge, S. & Hulse, J. Demand-Side Interventions to Reduce Deforestation and Forest Degradation (International Institute for Environment and Development, 2013).

    45.
    Marie-Vivien, D., Garcia, C. A., Kushalappa, C. G. & Vaast, P. Trademarks, geographical indications and environmental labelling to promote biodiversity: the case of agroforestry coffee in India. Dev. Policy Rev. 32, 379–398 (2014).
    Google Scholar 

    46.
    Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Glob. Change Biol. 22, 656–665 (2016).
    Article  Google Scholar 

    47.
    Adams, W. M. et al. Biodiversity conservation and the eradication of poverty. Science 306, 1146–1149 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Belle, E. et al. Protected Planet Report 2018 (UNEP-WCMC, IUCN and NGS, 2018).

    49.
    Geldmann, J. et al. Essential indicators for measuring area-based conservation effectiveness in the post-2020 global biodiversity framework. Preprint at https://doi.org/10.20944/preprints202003.0370.v1 (2020).

    50.
    Protected Areas Management Effectiveness Methodologies (Protected Planet 2020); http://go.nature.com/3ptIPHA

    51.
    Ervin, J. Rapid assessment of protected area management effectiveness in four countries. BioScience 53, 833–841 (2003).
    Article  Google Scholar 

    52.
    Conservancy, N. Conservation Action Planning: Developing Strategies, Taking Action, and Measuring Success at any Scale: Overview of Basic Practices (Nature Conservancy, 2007).

    53.
    Hockings, M. et al. The World Heritage Management Effectiveness Workbook: 2007 Edition: How to Build Monitoring, Assessment and Reporting Systems to Improve the Management Effectiveness of Natural World Heritage Sites 3rd draft (Univ. Queensland, 2007).

    54.
    Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).
    Article  Google Scholar 

    55.
    Stolton, S., Hockings, M., Dudley, N., MacKinnon, K. & Whitten, T. Reporting Progress in Protected Areas: A Site-Level Management Effectiveness Tracking Tool (World Bank/WWF Alliance for Forest Conservation and Sustainable Use, 2003).

    56.
    Hockings, M. et al. The IUCN green list of protected and conserved areas: setting the standard for effective area-based conservation. Parks 25, 57–66 (2019).
    Google Scholar 

    57.
    Locke, H. Nature needs half: a necessary and hopeful new agenda for protected areas. Nat. N. South Wales 58, 7–17 (2014).
    Google Scholar 

    58.
    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).

    59.
    The World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, accessed 1 January 2020); https://www.protectedplanet.net/

    60.
    Iacus, S. M., King, G. & Porro, G. Causal inference without balance checking: coarsened exact matching. Polit. Anal. 20, 1–24 (2012).
    Article  Google Scholar 

    61.
    Stuart, E. A. Matching methods for causal inference: a review and a look forward. Stat. Sci. 25, 1–21 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 (Columbia Univ. Center for International Earth Science Information Network, 2018).

    65.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
    Article  Google Scholar 

    66.
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Bode, M., Tulloch, A. I., Mills, M., Venter, O. & Ando, W. A. A conservation planning approach to mitigate the impacts of leakage from protected area networks. Conserv. Biol. 29, 765–774 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Carranza, T., Balmford, A., Kapos, V. & Manica, A. Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: the Brazilian Cerrado. Conserv. Lett. 7, 216–223 (2014).
    Article  Google Scholar 

    69.
    Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. New Dir. Eval. 2009, 75–84 (2009).
    Article  Google Scholar 

    70.
    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B 278, 1633–1638 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Iacus, S. M., King, G. & Porro, G. CEM: software for coarsened exact matching. J. Stat. Softw. 30, 1–27 (2009).
    Article  Google Scholar 

    72.
    Rosenbaum, P. R. Sensitivity analysis for m-estimates, tests, and confidence intervals in matched observational studies. Biometrics 63, 456–464 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Keele, L. An Overview of rbounds: an R Package for Rosenbaum Bounds Sensitivity Analysis with Matched Data White Paper, Columbus 1–15 (2010); https://go.nature.com/2M5DKXM

    74.
    Keele, L. J. rbounds: Perform Rosenbaum Bounds Sensitivity Tests for Matched and Unmatched Data. R Package (2014); https://cran.r-project.org/package=rbounds

    75.
    World Development Indicators 2018 (World Bank, 2018).

    76.
    Conner, M. M., Saunders, W. C., Bouwes, N. & Jordan, C. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration. Environ. Monit. Assess. 188, 555 (2016).
    PubMed Central  Article  Google Scholar 

    77.
    Murakami, D. spmoran (ver. 0.2.0): an R package for Moran eigenvector-based scalable spatial additive mixed modeling. Preprint at https://arxiv.org/abs/1703.04467v9 (2017).

    78.
    Murakami, D. & Griffith, D. A. Spatially varying coefficient modeling for large datasets: eliminating N from spatial regressions. Spat. Stat. 30, 39–64 (2019).
    Article  Google Scholar 

    79.
    Murakami, D. & Griffith, D. A. Balancing spatial and non-spatial variation in varying coefficient modeling: a remedy for spurious correlation. Preprint at https://arxiv.org/abs/2005.09981 (2020).

    80.
    Walker, W. et al. Forest carbon in Amazonia: the unrecognized contribution of Indigenous territories and protected natural areas. Carbon Manag. 5, 479–485 (2014).
    CAS  Article  Google Scholar 

    81.
    Robinson, E. J., Albers, H. J. & Busby, G. M. The impact of buffer zone size and management on illegal extraction, park protection, and enforcement. Ecol. Econ. 92, 96–103 (2013).
    Article  Google Scholar 

    82.
    Koop, G. & Tole, L. Is there an environmental Kuznets curve for deforestation? J. Dev. Econ. 58, 231–244 (1999).
    Article  Google Scholar 

    83.
    Barnes, M. D., Craigie, I. D., Dudley, N. & Hockings, M. Understanding local-scale drivers of biodiversity outcomes in terrestrial protected areas. Ann. NY Acad. Sci. 1399, 42–60 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    84.
    Chamberlin, T. C. The method of multiple working hypotheses. Science 15, 92–96 (1890).
    Google Scholar  More