More stories

  • in

    Mucin O-glycans suppress quorum-sensing pathways and genetic transformation in Streptococcus mutans

    1.Hansson, G. C. Mucins and the microbiome. Annu. Rev. Biochem. 89, 769–793 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cross, B. W. & Ruhl, S. Glycan recognition at the saliva—oral microbiome interface. Cell. Immunol. 333, 19–33 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Tabak, L. A. In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu. Rev. Physiol. 57, 547–564 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Deng, L. et al. Oral streptococci utilize a Siglec-like domain of serine-rich repeat adhesins to preferentially target platelet sialoglycans in human blood. PLoS Pathog. 10, e1004540 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Shanker, E. & Federle, M. J. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes 8, 15 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Nakano, K., Nomura, R. & Ooshima, T. Streptococcus mutans and cardiovascular diseases. Jpn. Dent. Sci. Rev. 44, 29–37 (2008).Article 

    Google Scholar 
    7.Murchison, H. H., Barrett, J. F., Cardineau, G. A. & Curtiss, R. Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect. Immun. 54, 273–282 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Villedieu, A. et al. Prevalence of tetracycline resistance genes in oral bacteria. Antimicrob. Agents Chemother. 47, 878–882 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Chansley, P. E. & Kral, T. A. Transformation of fluoride resistance genes in Streptococcus mutans. Infect. Immun. 57, 1968–1970 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from one health and global health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Villedieu, A. et al. Genetic basis of erythromycin resistance in oral bacteria. Antimicrob. Agents Chemother. 48, 2298–2301 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Olsen, I., Tribble, G. D., Fiehn, N.-E. & Wang, B.-Y. Bacterial sex in dental plaque. J. Oral Microbiol. 5, 20736 (2013).Article 

    Google Scholar 
    13.Loesche, W. J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50, 353–380 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Loesche, W. J., Rowan, J., Straffon, L. H. & Loos, P. J. Association of Streptococcus mutans with human dental decay. Infect. Immun. 11, 1252–1260 (1975).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Mathews, S. A., Kurien, B. T. & Scofield, R. H. Oral manifestations of Sjögren’s syndrome. J. Dent. Res. 87, 308–318 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Pramanik, R., Osailan, S. M., Challacombe, S. J., Urquhart, D. & Proctor, G. B. Protein and mucin retention on oral mucosal surfaces in dry mouth patients. Eur. J. Oral. Sci. 118, 245–253 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Frenkel, E. S. & Ribbeck, K. Salivary mucins in host defense and disease prevention. J. Oral Microbiol. 7, 29759 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    18.Ahn, S.-J., Wen, Z. T. & Burne, R. A. Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect. Immun. 74, 1631–1642 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ahn, S.-J., Ahn, S.-J., Wen, Z. T., Brady, L. J. & Burne, R. A. Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect. Immun. 76, 4259–4268 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Duarte, S. et al. Influences of starch and sucrose on Streptococcus mutans biofilms. Oral Microbiol. Immunol. 23, 206–212 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Mitchell, T. J. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat. Rev. Microbiol. 1, 219–230 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Frenkel, E. S. & Ribbeck, K. Salivary mucins protect surfaces from colonization by cariogenic bacteria. Appl. Environ. Microbiol. 81, 332–338 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Frenkel, E. S. & Ribbeck, K. Salivary mucins promote the coexistence of competing oral bacterial species. ISME J. 11, 1286–1290 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Levine, M. Salivary proteins may be useful for determining caries susceptibility. J. Evid. Based Dent. Pract. 13, 91–93 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Thomsson, K. A., Schulz, B. L., Packer, N. H. & Karlsson, N. G. MUC5B glycosylation in human saliva reflects blood group and secretor status. Glycobiology 15, 791–804 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Ajdic, D. et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl Acad. Sci. USA 99, 14434–14439 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Paik, S., Brown, A., Munro, C. L., Cornelissen, C. N. & Kitten, T. The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J. Bacteriol. 185, 5967–5975 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Nicolas, G. G. Detection of putative new mutacins by bioinformatic analysis using available web tools. BioData Min. 4, 22 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Aframian, N. & Eldar, A. A bacterial tower of Babel: quorum-sensing signaling diversity and its evolution. Annu. Rev. Microbiol. 74, 587–606 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Merritt, J., Qi, F. & Shi, W. A unique nine-gene comY operon in Streptococcus mutans. Microbiology 151, 157–166 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Underhill, S. A. M. et al. Intracellular signaling by the comRS system in Streptococcus mutans genetic competence. mSphere 3, e00444-18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Dufour, D., Cordova, M., Cvitkovitch, D. G. & Lévesque, C. M. Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J. Bacteriol. 193, 6552–6559 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Hossain, M. S. & Biswas, I. Mutacins from Streptococcus mutans UA159 are active against multiple streptococcal species. Appl. Environ. Microbiol. 77, 2428–2434 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Merritt, J. & Qi, F. The mutacins of Streptococcus mutans: regulation and ecology. Mol. Oral. Microbiol 27, 57–69 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Son, M., Shields, R. C., Ahn, S. J., Burne, R. A. & Hagen, S. J. Bidirectional signaling in the competence regulatory pathway of Streptococcus mutans. FEMS Microbiol. Lett. 362, fnv159 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Reck, M., Tomasch, J. & Wagner-Döbler, I. The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet. 11, e1005353 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Perry, J. A., Cvitkovitch, D. G. & Lévesque, C. M. Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol. Lett. 299, 261–266 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Wenderska, I. B. et al. A novel function for the competence inducing peptide, XIP, as a cell death effector of Streptococcus mutans. FEMS Microbiol. Lett. 336, 104–112 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Perry, D. & Kuramitsu, H. K. Genetic transformation of Streptococcus mutans. Infect. Immun. 32, 1295–1297 (1981).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Desai, K., Mashburn-Warren, L., Federle, M. J. & Morrison, D. A. Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J. Bacteriol. 194, 3774–3780 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Khan, R. et al. Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J. Bacteriol. 194, 3781–3788 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Khan, R. et al. A positive feedback loop mediated by Sigma X enhances expression of the streptococcal regulator ComR. Sci. Rep. 7, 5984 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Nakano, K. et al. Streptococcus mutans clonal variation revealed by multilocus sequence typing. J. Clin. Microbiol. 45, 2616–2625 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0186-5 (2019).45.Visch, L. L., Gravenmade, E. J., Schaub, R. M., Van Putten, W. L. & Vissink, A. A double-blind crossover trial of CMC- and mucin-containing saliva substitutes. Int. J. Oral Max. Surg. 15, 395–400 (1986).CAS 
    Article 

    Google Scholar 
    46.Silverman, H. S. et al. In vivo glycosylation of mucin tandem repeats. Glycobiology 11, 459–471 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Zalewska, A., Zwierz, K., Zółkowski, K. & Gindzieński, A. Structure and biosynthesis of human salivary mucins. Acta Biochim. Pol. 47, 1067–1079 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Wheeler, K. M. et al. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat. Microbiol. 4, 2146–2154 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Werlang, C., Cárcarmo-Oyarce, G. & Ribbeck, K. Engineering mucus to study and influence the microbiome. Nat. Rev. Mater. https://doi.org/10.1038/s41578-018-0079-7 (2019).50.Wang, B. X. et al. Mucin glycans signal through the sensor kinase RetS to inhibit virulence-associated traits in Pseudomonas aeruginosa. Curr. Biol. 31, 90–102 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Huang, Y., Mechref, Y. & Novotny, M. V. Microscale nonreductive release of O-Linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal. Chem. 73, 6063–6069 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Khan, R. et al. Comprehensive transcriptome profiles of Streptococcus mutans UA159 map core streptococcal competence genes. mSystems 1, e00038 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Rayment, S. A., Liu, B., Offner, G. D., Oppenheim, F. G. & Troxler, R. F. Immunoquantification of human salivary mucins MG1 and MG2 in stimulated whole saliva: factors influencing mucin levels. J. Dent. Res. 79, 1765–1772 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Son, M., Ahn, S.-J., Guo, Q., Burne, R. A. & Hagen, S. J. Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX. Mol. Microbiol. 86, 258–272 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Ricomini Filho, A. P., Khan, R., Åmdal, H. A. & Petersen, F. C. Conserved pheromone production, response and degradation by Streptococcus mutans. Front. Microbiol. 10, 2140 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Hagen, S. J. & Son, M. Origins of heterogeneity in Streptococcus mutans competence: interpreting an environment-sensitive signaling pathway. Phys. Biol. 14, 015001 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Hillman, J. D., Mo, J., McDonell, E., Cvitkovitch, D. & Hillman, C. H. Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J. Appl. Microbiol. 102, 1209–1219 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Singla, D., Sharma, A., Sachdev, V. & Chopra, R. Distribution of Streptococcus mutans and Streptococcus sobrinus in dental plaque of indian pre-school children using PCR and SB-20M agar medium. J. Clin. Diagn. Res. 10, ZC60–ZC63 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    59.Rodriguez, A. M. et al. Physiological and molecular characterization of genetic competence in Streptococcus sanguinis. Mol. Oral Microbiol. 26, 99–116 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Darch, S. E. et al. Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model. Proc. Natl Acad. Sci. USA 115, 4779–4784 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Wu, C. et al. Regulation of ciaXRH operon expression and identification of the CiaR regulon in Streptococcus mutans. J. Bacteriol. 192, 4669–4679 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Qi, F., Merritt, J., Lux, R. & Shi, W. Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect. Immun. 72, 4895–4899 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Biswas, S. & Biswas, I. Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans. Infect. Immun. 73, 6923–6934 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Senadheera, M. D. et al. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J. Bacteriol. 187, 4064–4076 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Domenech, A. et al. Proton motive force disruptors block bacterial competence and horizontal gene transfer. Cell Host Microbe 27, 544–555 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Merritt, J., Zheng, L., Shi, W. & Qi, F. Genetic characterization of the hdrRM operon: a novel high-cell-density-responsive regulator in Streptococcus mutans. Microbiology 153, 2765–2773 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Okinaga, T., Niu, G., Xie, Z., Qi, F. & Merritt, J. The hdrRM operon of Streptococcus mutans encodes a novel regulatory system for coordinated competence development and bacteriocin production. J. Bacteriol. 192, 1844–1852 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Alves, L. A. et al. PepO is a target of the two-component systems VicRK and CovR required for systemic virulence of Streptococcus mutans. Virulence 11, 521–536 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Underhill, S. A. M., Shields, R. C., Burne, R. A. & Hagen, S. J. Carbohydrate and PepO control bimodality in competence development by Streptococcus mutans. Mol. Microbiol. 112, 1388–1402 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Kaspar, J. R., Lee, K., Richard, B., Walker, A. R. & Burne, R. A. Direct interactions with commensal streptococci modify intercellular communication behaviors of Streptococcus mutans. ISME J. https://doi.org/10.1038/s41396-020-00789-7 (2020).71.Idone, V. et al. Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis. Infect. Immun. 71, 4351–4360 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Nagasawa, R., Sato, T. & Senpuku, H. Raffinose induces biofilm formation by Streptococcus mutans in low concentrations of sucrose by increasing production of extracellular DNA and fructan. Appl. Environ. Microbiol. 83, e00869 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Suzuki, Y., Nagasawa, R. & Senpuku, H. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans. J. Infect. Chemother. 23, 634–641 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Yoshida, A., Ansai, T., Takehara, T. & Kuramitsu, H. K. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl. Environ. Microbiol. 71, 2372–2380 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Son, M., Ghoreishi, D., Ahn, S.-J., Burne, R. A. & Hagen, S. J. Sharply tuned pH response of genetic competence regulation in Streptococcus mutans: a microfluidic study of the environmental sensitivity of comX. Appl. Environ. Microbiol. 81, 5622–5631 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Nielsen, S. S. in Food Analysis Laboratory Manual 137–141 (Springer, 2017).77.Aoki, K. et al. The diversity of O-linked glycans expressed during Drosophila melanogaster development reflects stage- and tissue-specific requirements for cell signaling. J. Biol. Chem. 283, 30385–30400 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Kumagai, T., Katoh, T., Nix, D. B., Tiemeyer, M. & Aoki, K. In-gel β-elimination and aqueous-organic partition for improved O- and sulfoglycomics. Anal. Chem. 85, 8692–8699 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Anumula, K. R. & Taylor, P. B. A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal. Biochem. 203, 101–108 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Liu, Y. et al. The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Glycobiology 27, 280–284 (2017).CAS 
    PubMed 

    Google Scholar 
    81.Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).Article 
    CAS 

    Google Scholar 
    83.Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).CAS 
    Article 

    Google Scholar 
    87.Thissen, D., Steinberg, L. & Kuang, D. Quick and easy implementation of the Benjamini–Hochberg procedure for controlling the false positive rate in multiple comparisons. J. Educ. Behav. Stat. 27, 77–83 (2002).Article 

    Google Scholar 
    88.Aymanns, S., Mauerer, S., Zandbergen, G., Wolz, C. & Spellerberg, B. High-level fluorescence labeling of Gram-positive pathogens. PLoS ONE 6, e19822 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Takehara, S., Yanagishita, M., Podyma-Inoue, K. A. & Kawaguchi, Y. Degradation of MUC7 and MUC5B in human saliva. PLoS ONE 8, e69059 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Author Correction: Short-range interactions govern the dynamics and functions of microbial communities

    AffiliationsDepartment of Environmental Systems Science, ETH Zurich, Zurich, SwitzerlandAlma Dal Co, Simon van Vliet, Daniel Johannes Kiviet, Susan Schlegel & Martin AckermannDepartment of Environmental Microbiology, Eawag, Duebendorf, SwitzerlandAlma Dal Co, Simon van Vliet, Daniel Johannes Kiviet, Susan Schlegel & Martin AckermannDepartment of Zoology, University of British Columbia, British Columbia, Vancouver, CanadaSimon van VlietAuthorsAlma Dal CoSimon van VlietDaniel Johannes KivietSusan SchlegelMartin AckermannCorresponding authorCorrespondence to
    Alma Dal Co. More

  • in

    Genomic signatures of drift and selection driven by predation and human pressure in an insular lizard

    1.Stuart, Y. E., Losos, J. B. & Algar, A. C. The island-mainland species turnover relationship. Proc. R. Soc. B Biol. Sci. 279, 4071–4077 (2012).Article 

    Google Scholar 
    2.Grant, P. R. Evolution on Islands (Oxford University Press, 1998).
    Google Scholar 
    3.Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443 (2007).Article 

    Google Scholar 
    4.Armstrong, C. et al. Genomic associations with bill length and disease reveal drift and selection across island bird populations. Evol. Lett. 2(1), 22–36 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Eldridge, M. D. B. et al. Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv. Biol. 13, 531–541 (1999).Article 

    Google Scholar 
    6.Wright, S. Isolation by distance under diverse systems of mating. Genetics 31, 39–59 (1946).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49(4), 725 (1964).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Luikart, G., England, P. R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: From genotyping to genome typing. Nat. Rev. Genet. 4(12), 981–994 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Nei, M., Suzuki, Y. & Nozawa, M. The neutral theory of molecular evolution in the genomic era. Annu. Rev. Genom. Hum. Genet. 11, 265–289 (2010).CAS 
    Article 

    Google Scholar 
    10.Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl. Acad. Sci. U.S.A. 110(38), 15307–15312 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    11.Huey, R. B., Gilchrist, G. W., Carlson, M. L., Berrigan, D. & Serra, L. Rapid evolution of a geographic cline in size in an introduced fly. Science 287(5451), 308–309 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    12.Prates, I., Angilleta, M. J., Wilson, R. S., Niehaus, A. C. & Navas, C. A. Dehydration hardly slows hopping toads (Rhinella granulosa) from xeric and mesic environments. Physiol. Biochem. Zool. 86(4), 451–457 (2013).PubMed 
    Article 

    Google Scholar 
    13.Prates, I., Penna, A., Trefaut, M. & Carnaval, A. C. Local adaptation in mainland anole lizards: Integrating population history and genome-environment associations. Ecol. Evol. 8, 11932–11944 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Funk, W. C. et al. Adaptive divergence despite strong genetic drift: Genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyonlittoralis). Mol. Ecol. 25(10), 2176–2194 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Friis, G. et al. Genome-wide signals of drift and local adaptation during rapid lineage divergence in a songbird. Mol. Ecol. 27(24), 5137–5153 (2018).PubMed 
    Article 

    Google Scholar 
    16.Bover, P., Quintana, J. & Alcover, J. A. Three islands, three worlds: Paleogeography and evolution of the vertebrate fauna from the Balearic Islands. Quatern. Int. 182, 135–144 (2008).Article 

    Google Scholar 
    17.Pérez-Mellado, V. Les sargantanes de les Balears (Edicions Quaderns de Natura de les Balears, Documenta Balear, 2009).
    Google Scholar 
    18.Pérez-Mellado, V. et al. Population density in Podarcis lilfordi (Squamata, Lacertidae), a lizard species endemic to small islets in the Balearic Islands (Spain). Amphibia-Reptilia 29(1), 49–60 (2008).Article 

    Google Scholar 
    19.Brown, R. P. et al. Bayesian estimation of post-Messinian divergence times in Balearic Island lizards. Mol. Phylogenet. Evol. 48(1), 350–358 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    20.Terrasa, B. et al. Foundations for conservation of intraspecific genetic diversity revealed by analysis of phylogeographical structure in the endangered endemic lizard Podarcis lilfordi. Divers. Distrib. 15(2), 207–221 (2009).Article 

    Google Scholar 
    21.Terrasa, B. et al. Use of NCPA to understanding genetic sub-structuring of Podarcis lilfordi from the Balearic archipelago. Amphibia-Reptilia 30(4), 505–514 (2009).Article 

    Google Scholar 
    22.Emig, C. C. & Geistdoerfer, P. The Mediterranean deep-sea fauna: Historical evolution, bathymetric variations and geographical changes. Carnets Geol. https://doi.org/10.4267/2042/3230 (2004).Article 

    Google Scholar 
    23.Pérez-Cembranos, A. et al. Morphological and genetic diversity of the Balearic lizard, Podarcis lilfordi (Günther, 1874): Is it relevant to its conservation?. Divers. Distrib. 26, 1122–1141 (2020).Article 

    Google Scholar 
    24.Palumbi, S. R. The Evolution Explosion: How Humans Cause Rapid Evolutionary Change (W. W. Norton & Company, 2002).
    Google Scholar 
    25.Ashley, M. V. et al. Evolutionary enlightened management. Biol. Conserv. 111, 115–123 (2003).Article 

    Google Scholar 
    26.Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).Article 

    Google Scholar 
    27.Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10), e3376 (2008).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    28.Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5), e37135 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    29.Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17(2), 81 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Brown, R. P., Paterson, S. & Risse, J. Genomic signatures of historical allopatry and ecological divergence in an island lizard. Genome Biol. Evol. 8(11), 3618–3626 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jin, Y. & Brown, R. P. Morphological species and discordant mtDNA: A genomic analysis of Phrynocephalus lizard lineages on the Qinghai-Tibetan Plateau. Mol. Phylogenet. Evol. 139, 106523 (2019).PubMed 
    Article 

    Google Scholar 
    32.Yang, W. et al. Spatial variation in gene flow across a hybrid zone reveals causes of reproductive isolation and asymmetric introgression in wall lizards. Evolution 74(7), 1289–1300 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Li, Y. L., Xue, D. X., Zhang, B. D. & Liu, J. X. Population genomic signatures of genetic structure and environmental selection in the catadromous roughskin sculpin Trachidermus fasciatus. Genome Biol. Evol. 11(7), 1751–1764 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Hedrick, P. W. & Kalinowski, S. T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst. 31(1), 139–162 (2000).Article 

    Google Scholar 
    35.Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).Article 

    Google Scholar 
    36.Perrier, C., Ferchaud, A. L., Sirois, P., Thibault, I. & Bernatchez, L. Do genetic drift and accumulation of deleterious mutations preclude adaptation? Empirical investigation using RAD seq in a northern lacustrine fish. Mol. Ecol. 26(22), 6317–6335 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Sovic, M., Fries, A., Martin, S. A. & Lisle Gibbs, H. Genetic signatures of small effective population sizes and demographic declines in an endangered rattlesnake, Sistrurus catenatus. Evol. Appl. 12(4), 664–678 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Cao, R. et al. Genetic structure and diversity of Australian freshwater crocodiles (Crocodylus johnstoni) from the Kimberley, Western Australia. Conserv. Genet. 21, 421–429 (2020).Article 

    Google Scholar 
    39.Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity?. Mol. Ecol. 19(15), 3038–3051 (2010).PubMed 
    Article 

    Google Scholar 
    40.Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11(2), e12412 (2018).Article 

    Google Scholar 
    41.Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25(20), 5073–5092 (2016).PubMed 
    Article 

    Google Scholar 
    42.Campbell-Staton, S. C., Edwards, S. V. & Losos, J. B. Climate mediated adaptation after mainland colonization of an ancestrally subtropical island lizard, Anolis carolinensis. J. Evol. Biol. 29(11), 2168–2180 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Rodríguez, A. et al. Genomic and phenotypic signatures of climate adaptation in an Anolis lizard. Ecol. Evol. 7(16), 6390–6403 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Cooper, W. E., Hawlena, D. & Pérez-Mellado, V. Islet tameness: Escape behavior and refuge use in populations of the Balearic lizard (Podarcis lilfordi) exposed to differing predation pressure. Can. J. Zool. 87(10), 912–919 (2009).Article 

    Google Scholar 
    45.Cooper, W. E., Hawlena, D. & Pérez-Mellado, V. Influence of risk on hiding time by Balearic lizards (Podarcis lilfordi): Predator approach speed, directness, persistence, and proximity. Herpetologica 66(2), 131–141 (2010).Article 

    Google Scholar 
    46.Cooper, W. E. & Pérez-Mellado, V. Island tameness: Reduced escape responses and morphological and physiological antipredatory adaptations related to escape in lizards. In Islands and Evolution (eds Pérez-Mellado, V. & Ramon, M. M.) 231–253 (Institut Menorquí d’Estudis, 2010).
    Google Scholar 
    47.Cooper, W. E. & Pérez-Mellado, V. Historical influence of predation pressure on escape by Podarcis lizards in the Balearic Islands. Biol. J. Linn. Soc. 107, 254–268 (2012).Article 

    Google Scholar 
    48.Mayr, E. Animal Species and Evolution (The Belknap Press, Harvard University Press, 1963).
    Google Scholar 
    49.Bover, P. et al. Late Miocene/Early Pliocene vertebrate fauna from Mallorca (Balearic Islands, Western Mediterranean): An update. Integr. Zool. 9, 183–196 (2014).PubMed 
    Article 

    Google Scholar 
    50.Vervust, B., Grbac, I. & Van Damme, R. Differences in morphology, performance and behaviour between recently diverged populations of Podarcissicula mirror differences in predation pressure. Oikos 116(8), 1343–1352 (2007).Article 

    Google Scholar 
    51.Marques, D. A., Jones, F. C., Di Palma, F., Kingsley, D. M. & Reimchen, T. E. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2(7), 1128–1138 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021–1036 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Stockwell, C. A. & Ashley, M. V. Rapid adaptation and conservation. Conserv. Biol. 18, 272–273 (2004).Article 

    Google Scholar 
    54.Truong, H. T. et al. Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS ONE 7(5), e37565 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    55.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22(11), 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Goudet, J. & Jombart, T. hierfstat: Estimation and tests of hierarchical F-statistics. R package version 0.5-7. Available from http://github.com/jgx65/hierfstat (2015).58.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19(9), 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jombart, T. & Ahmed, I. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).CAS 
    Article 

    Google Scholar 
    61.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14(1), 209–214 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6(11), 3461–3475 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4(8), 782–788 (2013).Article 

    Google Scholar 
    64.Nei, M. The Theory and Estimation of Genetic Distance. Genetic Structure of Populations 45–54 (University of Hawaii Press, 1973).
    Google Scholar 
    65.Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180(2), 977–993 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30(7), 1687–1699 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24(17), 4348–4370 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27(9), 2215–2233 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Jin, L., Yu, J. P., Yang, Z. J., Merilä, J. & Liao, W. B. Modulation of gene expression in liver of hibernating Asiatic Toads (Bufo gargarizans). Int. J. Mol. Sci. 19(8), 2363 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Secor, S. M. & Carey, H. V. Integrative physiology of fasting. Compr. Physiol. 6(2), 773–825 (2011).
    Google Scholar 
    71.Bahudhanapati, H., Bhattacharya, S. & Wei, S. Evolution of vertebrate adam genes; duplication of testicular adams from ancient adam9/9-like loci. PLoS ONE 10(8), e0136281 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Alibardi, L. Immunolocalization of matrix metalloproteinases in regenerating lizard tail suggests that an intense remodelling activity allows for apical tail growth. Acta Zool. 101(2), 124–132 (2020).Article 

    Google Scholar 
    73.The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).Article 
    CAS 

    Google Scholar 
    74.Tosini, G., Baba, K., Hwang, C. K. & Iuvone, P. M. Melatonin: An underappreciated player in retinal physiology and pathophysiology. Exp. Eye Res. 103, 82–89 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Voronin, D. A. & Kiseleva, E. V. Functional role of proteins containing ankyrin repeats. Tsitologiia 49(12), 989–999 (2007).CAS 
    PubMed 

    Google Scholar 
    76.Yang, L. et al. Transcriptome analysis and identification of genes associated with chicken sperm storage duration. Poult. Sci. 99(2), 1199–1208 (2020).PubMed 
    Article 

    Google Scholar 
    77.Geng, X. et al. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). J. Proteomics 119, 196–208 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Subramaniam, N., Petrik, J. J. & Vickaryous, M. K. VEGF, FGF-2 and TGF β expression in the normal and regenerating epidermis of geckos: Implications for epidermal homeostasis and wound healing in reptiles. J. Anat. 232(5), 768–782 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Pillai, A., Desai, I. & Balakrishnan, S. Pharmacological inhibition of FGFR1 signaling attenuates the progression of tail regeneration in the northern house gecko Hemidactylus flaviviridis. Int. J. Life Sci. Biotechnol. Pharma Res. 2, 263–278 (2013).
    Google Scholar 
    80.Schoettl, T., Fischer, I. P. & Ussar, S. Heterogeneity of adipose tissue in development and metabolic function. J. Exp. Biol. 221, jeb162958 (2018).PubMed 
    Article 

    Google Scholar 
    81.Wang, X. et al. Identification of a novel 43-bp insertion in the heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene and its associations with growth and carcass traits in chickens. Anim. Biotechnol. 30(3), 252–259 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Sun, C. et al. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genomics 16(1), 565 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Ng, C. S. et al. Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genomics 16(1), 756 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Qu, Y. et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat. Commun. 4(1), 1–9 (2013).
    Google Scholar 
    85.Fischer, I., Kosik, K. S. & Sapirstein, V. S. Heterogeneity of microtubule-associated protein (MAP2) in vertebrate brains. Brain Res. 436(1), 39–48 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Singchat, W. et al. Chromosome map of the Siamese cobra: Did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?. BMC Genomics 19(1), 939 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360(6391), 881–888 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    88.Vitulo, N., Dalla Valle, L., Skobo, T., Valle, G. & Alibardi, L. Transcriptome analysis of the regenerating tail vs. the scarring limb in lizard reveals pathways leading to successful vs. unsuccessful organ regeneration in amniotes. Dev. Dyn. 246(2), 116–134 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Carobbio, S., Guénantin, A. C., Samuelson, I., Bahri, M. & Vidal-Puig, A. Brown and beige fat: From molecules to physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864(1), 37–50 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Effect of earthworms on mycorrhization, root morphology and biomass of silver fir seedlings inoculated with black summer truffle (Tuber aestivum Vittad.)

    1.Castellano, M. A., Trappe, J. M. & Luoma, D. L. Sequestrate fungi. in Biodiversity of Fungi (ed. Mueller, G.M., Bills, G.F., Foster, M.S.) 197–213 (Elsevier, 2004). https://doi.org/10.1016/B978-012509551-8/50013-1.2.Benucci, G. M. N., Bonito, G., Falini, L. B. & Bencivenga, M. Mycorrhization of Pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad. Mycorrhiza 22, 383–392 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bonito, G. M., Gryganskyi, A. P., Trappe, J. M. & Vilgalys, R. A global meta-analysis of Tuber ITS rDNA sequences: Species diversity, host associations and long-distance dispersal. Mol. Ecol. 19, 4994–5008 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Kirk, P. M., Cannon, P. F., Stalpers, J. & Minter, D. W. Dictionary of the Fungi 10th ed. 1–784 (CABI, 2008).5.Splivallo, R., Novero, M., Bertea, C. M., Bossi, S. & Bonfante, P. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.02141.x (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Benucci, G. M. N., Bonito, G., Falini, L. B., Bencivenga, M. & Donnini, D. Truffles, timber, food, and fuel: Sustainable approaches for multi-cropping truffles and economically important plants. In Edible Ectomycorrhizal Mushrooms. Soil Biology Vol. 34 (eds Zambonelli, A. & Bonito, G.) 265–280 (Springer, 2012). https://doi.org/10.1007/978-3-642-33823-6_15.
    Google Scholar 
    7.Strojnik, L., Grebenc, T. & Ogrinc, N. Species and geographic variability in truffle aromas. Food Chem. Toxicol. https://doi.org/10.1016/j.fct.2020.111434 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Bonet, J. A. et al. Cultivation methods of the Black Truffle, the most profitable Mediterranean non-wood forest product; a state of the artreview. EFI Proc. 57, 57–71 (2009).
    Google Scholar 
    9.Rinaldi, A. C., Comandini, O. & Kuyper, T. W. Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Divers. 33, 1–45 (2008).
    Google Scholar 
    10.Ori, F. et al. Synthesis and ultrastructural observation of arbutoid mycorrhizae of black truffles (Tuber melanosporum and T. aestivum). Mycorrhiza 30(6), 715–723 (2020). https://doi.org/10.1007/s00572-020-00985-5.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Schneider-Maunoury, L. et al. Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. New Phytol. 225, 2542–2556 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Mello, A., Murat, C., Vizzini, A., Gavazza, V. & Bonfante, P. Tuber magnatum Pico, a species of limited geographical distribution: Its genetic diversity inside and outside a truffle ground. Environ. Microbiol. 7, 55–65 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hall, I., Brown, G. T. & Zambonelli, A. Taming the Truffle (The History, Lore, and Science of the Ultimate Mushroom) (Timber Press, 2007).
    Google Scholar 
    14.Shamekh, S., Grebenc, T., Leisola, M. & Turunen, O. The cultivation of oak seedlings inoculated with Tuber aestivum Vittad. in the boreal region of Finland. Mycol. Prog. 13, 373–380 (2014).Article 

    Google Scholar 
    15.Kinoshita, A., Obase, K. & Yamanaka, T. Ectomycorrhizae formed by three Japanese truffle species (Tuber japonicum, T. longispinosum, and T. himalayense) on indigenous oak and pine species. Mycorrhiza 28, 679–690 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sulzbacher, M. A. et al. Fungos ectomicorrízicos em plantações de nogueira-pecã e o potencial da truficultura no Brasil. Ciência Florest. 29, 975 (2019).Article 

    Google Scholar 
    17.Grupe, A. C. et al. Tuber brennemanii and Tuber floridanum: Two new Tuber species are among the most commonly detected ectomycorrhizal taxa within commercial pecan (Carya illinoinensis) orchards. Mycologia 110, 780–790 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Chevalier, G. & Frochot, H. La Truffe de Bourgogne (Tuber unicatum Chatin) (Editions Petrarque, 2002). https://doi.org/10.4267/2042/5669.
    Google Scholar 
    19.Donnini, D., Benucci, G. M. N., Bencivenga, M. & Baciarelli-Falini, L. Quality assessment of truffle-inoculated seedlings in Italy: proposing revised parameters for certification. For. Syst. 23, 385 (2014).
    Google Scholar 
    20.Reyna, S. & Garcia-Barreda, S. Black truffle cultivation: A global reality. For. Syst. 23, 317 (2014).
    Google Scholar 
    21.Wedén, C., Pettersson, L. & Danell, E. Truffle cultivation in Sweden: Results from Quercus robur and Corylus avellana field trials on the island of Gotland. Scand. J. For. Res. 24, 37–53 (2009).Article 

    Google Scholar 
    22.Iotti, M. et al. Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiol. 12, 93 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Freiberg, J.A., Sulzbacher, M.A., Santana, N.A., Fronza, D., Giachini, A., Grebenc, T., Jacques, R., A. Z. Mycorrhization of pecans with European truffles (Tuber spp., Tuberaceae) under southern subtropical conditions. Appl. Soil Ecol. (2021).24.Paolocci, F., Rubini, A., Riccioni, C. & Arcioni, S. Reevaluation of the life cycle of Tuber magnatum. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.72.4.2390-2393.2006 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Healy, R. A. et al. High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Mol. Ecol. 22(6), 1717–1732. https://doi.org/10.1111/mec.12135 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Pattinson, G. S., Smith, S. E. & Doube, B. M. Earthworm Aporrectodea trapezoides had no effect on the dispersal of a vesicular-arbuscular mycorrhizal fungi, Glomus intraradices. Soil Biol. Biochem. 29, 1079–1088 (1997).CAS 
    Article 

    Google Scholar 
    27.Gange, A. C. Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol. Biochem. 25, 1021–1026 (1993).Article 

    Google Scholar 
    28.Milleret, R., Le Bayon, R. C. & Gobat, J. M. Root, mycorrhiza and earthworm interactions: Their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass. Plant Soil https://doi.org/10.1007/s11104-008-9753-7 (2009).Article 

    Google Scholar 
    29.Gormsen, D., Olsson, P. A. & Hedlund, K. The influence of collembolans and earthworms on AM fungal mycelium. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2004.06.001 (2004).Article 

    Google Scholar 
    30.Wurst, S., Dugassa-Gobena, D., Langel, R., Bonkowski, M. & Scheu, S. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol. https://doi.org/10.1111/j.1469-8137.2004.01106.x (2004).Article 

    Google Scholar 
    31.Eisenhauer, N. et al. Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2008.12.017 (2009).Article 

    Google Scholar 
    32.Stobbe, U. et al. Potential and limitations of Burgundy truffle cultivation. Appl. Microbiol. Biotechnol. 97, 5215–5224 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Jeandroz, S., Murat, C., Wang, Y., Bonfante, P. & Le Tacon, F. Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J. Biogeogr. 35, 815–829 (2008).Article 

    Google Scholar 
    34.Gardin, L. I tartufi minori in Toscana. Gli ambienti di crescita dei tartufi marzuolo e scorze (ARSIA, 2005).
    Google Scholar 
    35.Pampanini, R., Marchini, A. & Diotallevi, F. Il mercato del tartufo fresco in Italia tra performance commerciali e vincoli allo sviluppo: il contributo delle regioni italiane. Econ. Agro-Alimentare 18, 11–28 (2012).
    Google Scholar 
    36.Wolf, H. EUFORGEN technical guidelines for genetic conservation and use for silver fir (Abies alba). Int. Plant Genet. Resour. Inst. Rome Italy https://doi.org/10.1016/j.jaci.2010.08.025 (2003).Article 

    Google Scholar 
    37.Comandini, O., Pacioni, G. & Rinaldi, A. C. Fungi in ectomycorrhizal associations of silver fir (Abies alba Miller) in Central Italy. Mycorrhiza 7, 323–328 (1998).Article 

    Google Scholar 
    38.Ważny, R. Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Ann. For. Sci. 71, 801–810 (2014).Article 

    Google Scholar 
    39.Ważny, R. & Kowalski, S. Ectomycorrhizal fungal communities of silver-fir seedlings regenerating in fir stands and larch forecrops. Trees Struct. Funct. 31, 929–939 (2017).Article 
    CAS 

    Google Scholar 
    40.Rudawska, M., Pietras, M., Smutek, I., Strzeliński, P. & Leski, T. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza 26, 57–65 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Iotti, M., Piattoni, F. & Zambonelli, A. Techniques for host plant inoculation with truffles and other edible ectomycorrhizal mushrooms. in Edible Ectomycorrhizal Mushrooms (eds. Zambonelli, A., Bonito, G.M.) 145–161 (Springer, 2012). https://doi.org/10.1007/978-3-642-33823-6_942.Finér, L. et al. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 141, 394–405 (2007).
    Google Scholar 
    43.Železnik, P. et al. CASIROZ: Root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes. Plant Biol. 9, 298–308 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Agerer, R. Colour Atlas of Ectomycorrhizae (Einhorn-Verlag, 1987).
    Google Scholar 
    45.Agerer, R. Characterization of ectomycorrhiza. Methods Microbiol. https://doi.org/10.1016/S0580-9517(08)70172-7 (1991).Article 

    Google Scholar 
    46.Agerer, R. & Rambold, G. 2004–2018 [first posted on 2004–06–01; most recent update: 2011-01-10]. DEEMY—An Information System for Characterization and Determination of Ectomycorrhizae. München, Germany (2004).47.Fischer, C. & Colinas, C. Methology for certification of Quercus ilex seedlings inoculated with Tuber melanosporum for commercial application. in First International Conference on Mycorrhiza (1996).48.Reyna, S., Boronat, J. & Palomar, E. Quality control of plants mycorrhized with Tuber melanosporum Vitt. edible mycorrhizal mushrooms and their cultivation. Proc. Second Int. Conf. Edible Mycorrhizal Mushrooms, Crop Food Res. Christchurch 1–9 (eds. Wang Y., Danell, E., Zambonelli, A.) CD-ROM (New Zealand Institute for Crop & Food Research Limited, Christchurch, 2002).49.White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M.A., Gelfond, D.H., Sninsky, J.J., White, T.J.) 315–322 (Academic Press, Inc., 1990). https://doi.org/10.1016/B978-0-12-372180-8.50042-1.50.Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Bertini, L. A new pair of primers designed for amplification of the ITS region in Tuber species. FEMS Microbiol. Lett. 173, 239–245 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Grebenc, T. & Kraigher, H. Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biol. 9, 279–287 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Team, R. C. R: A language and environment for statistical computing. (2016).55.KothariI, S. K., Marschner, H. & George, E. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol. https://doi.org/10.1111/j.1469-8137.1990.tb04718.x (1990).Article 

    Google Scholar 
    56.Ludwig-Müller, J. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. Arbuscular Mycorrhizas Physiol. Funct. https://doi.org/10.1007/978-90-481-9489-6_8 (2010).Article 

    Google Scholar 
    57.Hanlon, M. T. & Coenen, C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytol. 189, 701–709 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Sukumar, P. et al. Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant. Cell Environ. 36, 909–919 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Maherali, H. Is there an association between root architecture and mycorrhizal growth response?. New Phytol. https://doi.org/10.1111/nph.12927 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. 113, 8741–8746 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Syers, J. K. & Springett, J. A. Earthworms and soil fertility. Plant Soil 76, 93–104 (1984).CAS 
    Article 

    Google Scholar 
    62.Mamoun, M. & Oliver, J. M. Mycorrhizal inoculation of cloned hazels by Tuber melanosporum: Effect of soil disinfestation and co-culture with Festuca ovina. Plant Soil 188, 221–262 (1997).CAS 
    Article 

    Google Scholar 
    63.Santelices, R. & Palfner, G. Controlled rhizogenesis and mycorrhization of hazelnut (Corylus avellana L.) cuttings with Black truffle (Tuber melanosporum Vitt.). Chil. J. Agric. Res. 70, 204–212 (2010).Article 

    Google Scholar 
    64.Martin, F. M. & Hilbert, J. L. Morphological, biochemical and molecular changes during ectomycorrhiza development. Experientia 47, 321–331 (1991).CAS 
    Article 

    Google Scholar 
    65.Zaller, J. G. et al. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. PLoS ONE 6, e29293 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Robakowski, P., Wyka, T., Samardakiewicz, S. & Kierzkowski, D. Growth, photosynthesis, and needle structure of silver fir (Abies alba Mill.) seedlings under different canopies. For. Ecol. Manage. 201, 211–227 (2004).Article 

    Google Scholar 
    67.Mrak, T. & Gričar, J. Atlas of Woody Plant Roots: Morphology and Anatomy with Special Emphasis on Fine Roots (Slovenian Forestry Institute, The Silva Slovenica Publishing Centre, 2016). https://doi.org/10.20315/SFS.147.
    Google Scholar 
    68.Montecchi, A. & Sarasini, M. Funghi ipogei d’Europa. Vicenza: Fondazione Centro Studi (Micologica dell” A.M.B., 2000).
    Google Scholar 
    69.Benucci, G. M. N. et al. Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: Composition, host influence and species replacement. FEMS Microbiol. Ecol. 76, 170–184 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Marjanović, Ž, Grebenc, T., Marković, M., Glišić, A. & Milenković, M. Ecological specificities and molecular diversity of truffles (genus Tuber) originating from mid-west of the Balkan Peninsula. Sydowia 1, 273–291 (2010).
    Google Scholar 
    71.Grebenc, T., Bajc, M. & Kraigher, H. Post-glacial migrations of mycorrhizal plants and ectomycorrhizal partners: An example of the genus Tuber. Les 62, 149–154 (2010).
    Google Scholar 
    72.Chavdarova, S., Kajevska, I. K. R., Grebenc, T. & Karadelev, M. Distribution and ecology of hypogenous fungi (excluding Tuber) in the Republic of Macedonia. Biol. Maced. 62, 37–48 (2011).
    Google Scholar 
    73.Milenković, M., Grebenc, T., Marković, M. & Ivančević, B. Tuber petrophilum, a new truffle species from Serbia. Mycotaxon 130, 1141–1152 (2016).Article 

    Google Scholar 
    74.Brown, G. G., Edwards, C. A. & Brussaard, L. How earthworms affect plant growth: Burrowing into the mechanisms. in Earthworm Ecology (ed. Edwards, C.A.) 13–49 (Boca Raton : CRC Press, 2004). https://doi.org/10.1201/9781420039719.75.Pattinson, G. S. Trapezoides had no effect on the dispersal of a Vesicular-Arbuscular Mycorrhizal fungi. Can. J. Bot. 29, 1079–1088 (1997).CAS 

    Google Scholar 
    76.Lawrence, B., Fisk, M. C., Fahey, T. J. & Suarez, E. R. Influence of nonnative earthworms on mycorrhizal colonization of sugar maple (Acer saccharum). New Phytol. 157, 145–153 (2003).Article 

    Google Scholar 
    77.Ortiz-Ceballos, A. I., Peña-Cabriales, J. J., Fragoso, C. & Brown, G. G. Mycorrhizal colonization and nitrogen uptake by maize: Combined effect of tropical earthworms and velvetbean mulch. Biol. Fertil. Soils 44, 181–186 (2007).Article 

    Google Scholar 
    78.Reddell, P. & Spain, A. V. Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol. Biochem. 23, 767–774 (1991).Article 

    Google Scholar  More

  • in

    Ant social foraging strategies along a Neotropical gradient of urbanization

    1.Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 16, 265–280 (2007).Article 

    Google Scholar 
    2.McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    3.McDonnell, M. J. & MacGregor-Fors, I. The ecological future of cities. Science 352, 936–938 (2016).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    4.McKinney, M. L. Urbanizartion, biodiversity, and conservation. Bioscience 52, 883–890 (2002).Article 

    Google Scholar 
    5.Santos, M. N. Research on urban ants: Approaches and gaps. Insectes Soc. 63, 359–371 (2016).Article 
    ADS 

    Google Scholar 
    6.Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Harvard, 1990).
    Google Scholar 
    7.Angilletta, M. J. et al. Urban physiology: City ants possess high heat yolerance. PLoS ONE 2, e258 (2007).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).Article 

    Google Scholar 
    9.McIntyre, N. E., Rango, J., Fagan, W. F. & Faeth, S. H. Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plan. 52, 257–274 (2001).Article 

    Google Scholar 
    10.Lessard, J. P. & Buddle, C. M. The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve Quebec. Can. Entomol. 137, 215–225 (2005).Article 

    Google Scholar 
    11.Buczkowski, G. & Richmond, D. S. The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS ONE 7, e41729 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    12.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    13.Morini, M. S. C., Munhae, C. B., Leung, R., Candiani, D. F. & Voltolini, J. C. Comunidades de formigas (Hymenoptera, Formicidae) em fragmentos de Mata Atlântica situados em áreas urbanizadas. Iheringia 97, 246–252 (2007).Article 

    Google Scholar 
    14.MacGregor-Fors, I. & Schondube, J. E. Gray vs. green urbanization: Relative importance of urban features for urban bird communities. Basic Appl. Ecol. 12, 372–381 (2011).Article 

    Google Scholar 
    15.Uno, S., Cotton, J. & Philpott, S. M. Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst. 13, 425–441 (2010).Article 

    Google Scholar 
    16.Rocha-Ortega, M. & Castaño-Meneses, G. Effects of urbanization on the diversity of ant assemblages in tropical dry forests, Mexico. Urban Ecosyst. 18, 1373–1388 (2015).Article 

    Google Scholar 
    17.Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112 (2013).Article 

    Google Scholar 
    18.Fellers, J. H. Interference and exploitation in a guild of woodland ants. Ecology 68, 1466–1478 (1987).Article 

    Google Scholar 
    19.Parr, C. L. & Gibb, H. The discovery–dominance trade-off is the exception, rather than the rule. J. Anim. Ecol. 81, 233–241 (2012).PubMed 
    Article 

    Google Scholar 
    20.Davidson, D. W. Resource discovery versus resource domination in ants: A functional mechanism for breaking the trade-off. Ecol. Entomol. 23, 484–490 (1998).Article 

    Google Scholar 
    21.Camarota, F., Vasconcelos, H. L., Koch, E. B. & Powell, S. Discovery and defense define the social foraging strategy of Neotropical arboreal ants. Behav. Ecol. Sociobiol. 72, id110 (2018).Article 

    Google Scholar 
    22.Parr, C. L. & Gibb, H. Competition and the role of dominant ants. In Book: Ant Ecology (eds Lach, L. et al.) 77–96 (Oxford University Press, Oxford, 2010).
    Google Scholar 
    23.Instituto Nacional de Estadística, Geografía e Informática (INEGI). Compendio de Información Geográfica Municipal. http://www.inegi.org.mx/geo/contenidos/topografia/compendio.aspx. (2009).24.Falfán, I., Muñoz-Robles, C. A., Bonilla-Moheno, M. & MacGregor-Fors, I. Can you really see ‘green’? Assessing physical and self-reported measurements of urban greenery. Urban For. Urban Green. 36, 13–21 (2018).Article 

    Google Scholar 
    25.Davidson, D. W. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol. J. Linn. Soc. 61, 153–181 (1997).Article 

    Google Scholar 
    26.Flores-Flores, R. V. et al. Food source quality and ant dominance hierarchy influence the outcomes of ant-plant interactions in an arid environment. Acta Oecol. 87, 13–19 (2018).Article 
    ADS 

    Google Scholar 
    27.Wittman, S. E., O’Dowd, D. J. & Green, P. T. Carbohydrate supply drives colony size, aggression, and impacts of an invasive ant. Ecosphere 9, e02403 (2018).Article 

    Google Scholar 
    28.O’Dowd, D. J., Green, P. T. & Lake, P. S. Invasional ‘meltdown’ on an oceanic island. Ecol. Lett. 6, 812–817 (2003).Article 

    Google Scholar 
    29.Abbott, K. L. & Green, P. T. Collapse of an ant–scale mutualism in a rainforest on Christmas Island. Oikos 116, 1238–1246 (2007).Article 

    Google Scholar 
    30.Dáttilo, W. et al. Mexico ants: Incidence and abundance along the Nearctic-Neotropical interface. Ecology 101, e02944 (2020).PubMed 
    Article 

    Google Scholar 
    31.MacGregor-Fors, I. Misconceptions or misunderstandings? On the standardization of basic terms and definitions in urban ecology. Landsc. Urban Plan. 100, 347–349 (2011).Article 

    Google Scholar 
    32.Oksanen, J. et al. Vegan: Community Ecology Package. (2017).33.Dáttilo, W., Díaz-Castelazo, C. & Rico-Gray, V. Ant dominance hierarchy determines the nested pattern in ant–plant networks. Biol. J. Linn. Soc. 113, 405–414 (2014).Article 

    Google Scholar 
    34.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).35.Yamaguchi, T. Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan I. Analysis of ant species richness. Ecol. Res. 19, 209–216 (2004).36.Pacheco, R. & Vasconcelos, H. L. Invertebrate conservation in urban areas: Ants in the Brazilian Cerrado. Landsc. Urban Plan. 81, 193–199 (2007).Article 

    Google Scholar 
    37.Dáttilo, W., Sibinel, N., Falcão, J. C. F. & Nunes, R. V. Mirmecofauna em um fragmento de Floresta Atlântica urbana no município de Marília, Brasil. Biosci. J. 27, 494–504 (2011).
    Google Scholar 
    38.Thompson, B. & McLachlan, S. The effects of urbanization on ant communities and myrmecochory in Manitoba, Canada. Urban Ecosyst. 10, 43–52 (2007).Article 

    Google Scholar 
    39.Ribeiro, F. M., Sibinel, N., Ciocheti, G. & Campos, A. E. C. Analysis of ant communities comparing two methods for sampling ants in an urban park in the city of São Paulo, Brazil. Sociobiology 59, 971–984 (2012).
    Google Scholar 
    40.Sanford, M. P., Manley, P. N. & Murphy, D. D. Effects of urban development on ant communities: Implications for ecosystem services and management. Conserv. Biol. 23, 131–141 (2009).PubMed 
    Article 

    Google Scholar 
    41.Holway, D. A. & Suarez, A. V. Homogenization of ant communities in mediterranean California: The effects of urbanization and invasion. Biol. Conserv. 127, 319–326 (2006).Article 

    Google Scholar 
    42.Albrecht, M. & Gotelli, N. J. Spatial and temporal niche partitioning in grassland ants. Oecologia 126, 134–141 (2001).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    43.Campos, R. B. & Schoereder, J. H. Dominance and resource temporal partitioning in pasture ants (Hymenoptera: Formicidae). Sociobiology 38, 539–550 (2001).
    Google Scholar 
    44.Santini, G., Tucci, L., Ottonetti, L. & Frizzi, F. Competition trade-offs in the organisation of a Mediterranean ant assemblage. Ecol. Entomol. 32, 319–326 (2007).Article 

    Google Scholar 
    45.MacGregor-Fors, I. et al. Multi-taxonomic diversity patterns in a neotropical green city: A rapid biological assessment. Urban Ecosyst. 18, 633–647 (2015).Article 

    Google Scholar 
    46.Wetterer, J. K. Worldwide spread of the longhorn crazy ant, Paratrechina longicornis (Hymenoptera: Formicidae). Myrmecol. News 11, 137–149 (2008).
    Google Scholar 
    47.Wetterer, J. K. Worldwide spread of the tropical fire ant, Solenopsis geminata (Hymenoptera: Formicidae). Myrmecol. News 14, 21–35 (2011).
    Google Scholar  More

  • in

    Author Correction: Genomic evidence of past and future climate-linked loss in a migratory Arctic fish

    Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, CanadaK. K. S. Layton & P. V. R. SnelgroveFisheries and Oceans Canada, St. John’s, Newfoundland and Labrador, CanadaK. K. S. Layton, J. B. Dempson, T. Kess, S. J. Lehnert, S. J. Duffy, A. M. Messmer, R. R. E. Stanley, C. DiBacco & I. R. BradburyUniversity of Aberdeen, Aberdeen, UKK. K. S. LaytonDalhousie University, Halifax, Nova Scotia, CanadaP. Bentzen, S. J. Salisbury & D. E. RuzzanteUniversity of Guelph, Guelph, Ontario, CanadaC. M. Nugent & M. M. FergusonUniversity of Victoria, Victoria, British Columbia, CanadaJ. S. Leong & B. F. Koop More

  • in

    Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations

    The polysaccharide xylan limits the growth of C. crescentus cells compared to the monomer xylose in well-mixed environmentsWe first tested our hypothesis that in well-mixed conditions the polymer xylan would limit the productivity of microbial populations relative to the monomer xylose. To determine if this was the case, we grew C. crescentus cells in the same concentration (weight/volume) of either the polymer xylan or its monomeric constituent xylose, both provided as the sole carbon source (Fig. 1a). We then compared the maximum growth rate and the maximal population size over the course of a 54 h growth cycle (Fig. 1b). In line with expectations, populations growing on the monomer xylose achieved higher growth rates and a higher maximum population size (Fig. 1b–d). This was true for all concentrations (0.01–0.1%) of monomer and polymer tested (Supplementary Fig. 2). These findings suggest that in well-mixed environments of equal carbon concentration, the complexity of the growth substrate governs the growth of C. crescentus populations.Cells engage in colonial behaviors on xylan whereas they exhibit solitary behaviors on xyloseGroup formation could be a key mechanism through which cells could overcome polymer-induced growth limitations that exist in well-mixed environments. Collective behavior would allow cells to increase their local cell density, which leads to higher local concentrations of the monomeric products of polymer degradation. To test this prediction, we tested whether xylose and xylan elicit different behavioral responses in C. crescentus. We used microfluidic growth chambers in which cells were forced to grow as a monolayer. Our expectation was that growth within these devices would provide the spatial structure to overcome the growth limitations observed in well-mixed conditions (Supplementary Fig. 1). We tracked and quantified movement, and growth of individual cells using time-lapse microscopy and image analysis. Chambers were constantly replenished with minimal medium containing either xylose or xylan through a main nutrient feeding channel, as described elsewhere [20, 23, 24].We found that C. crescentus displayed strikingly disparate behaviors in xylan and xylose: cells formed microcolonies on the polymer xylan (Fig. 2a, Supplementary Video 1), whereas on the monomer xylose they did not (Fig. 2b, Supplementary Video 2). We analyzed the temporal dynamics of cell growth and movement in the two carbon sources by following individual cells using cell segmentation and tracking. Mapping the lineages based on division events for all the cells in a chamber revealed that the microcolonies on the polymer xylan originated from a single progenitor cell (Fig. 2d, Supplementary Fig. 3a–c; Supplementary Video 3). This finding indicates that microcolonies were a result of swarmer cells not dispersing after division, rather than a product of secondary aggregation by planktonic cells. In contrast, in the monomer xylose only the stalked cells remained in the same position after cell division, whereas the presumably flagellated swarmer cells moved away (Fig. 2e, Supplementary Fig. 4a–c). As a consequence of this difference in behavior, the number of sessile cells increased much more rapidly in xylan. The number of cells in a growth chamber doubled on average every 3.6 ± 0.54 h in xylan (mean ± 95% CI, Fig. 2c) but took 15.50 ± 7.55 h to double in xylose (mean ± 95% CI, Fig. 2c). These differences occurred despite a similar propensity to produce offspring per sessile cell in the two substrates (Supplementary Fig. 5), and thus were driven by the reduced rate at which cells dispersed in xylan.Fig. 2: Cells display solitary behavior on xylose and aggregative behavior on xylan.Representative images of C. crescentus CB15 cells (labeled with constitutively expressed mKate2, false colored as magenta) at different time points within the microfluidic growth chambers supplied with either xylan (a) or xylose (b) as the sole source of carbon. c On xylan (yellow), the number of sessile cells in the growth chamber increases with time, whereas on xylose (blue) it remains nearly constant. Squares indicate the number of cells present at a given time point in each chamber (nchambers = 9), with a linear or exponential regression line for each chamber (xylose, linear regression model, R2 = 0.69–0.92, slope = 1.22–3.27, P  More

  • in

    African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning

    A 2-scale ensemble machine learningPredictions of soil nutrients are based on a fully automated and fully optimized 2-scale Ensemble Machine Learning (EML) framework as implemented in the mlr package for Machine Learning (https://mlr.mlr-org.com/). The entire process can be summarized in the following eight steps (Fig. 7):

    1.

    Prepare point data, quality control all values and remove any artifacts or types.

    2.

    Upload to Google Earth Engine, overlay the point data with the key covariates of interest and test fitting random forest or similar to get an initial estimate of relative variable importance and pre-select features of interest.

    3.

    Decide on a final list of all covariates to use in predictions, prepare covariates for predictive modeling—either using Amazon AWS or similar. Quality control all 250 m and 30 m resolution covariates and prepare Analysis-Ready data in a tiling system to speed up overlay and prediction.

    4.

    Run spatial overlay using 250 m and 30 m resolution covariates and generate regression matrices.

    5.

    Fit 250 m and 30 m resolution Ensemble Machine Learning models independently per soil property using spatial blocks of 30–100 km. Run sequentially: model fine-tuning, feature selection and stacking. Generate summary accuracy assessment, variable importance, and revise if necessary.

    6.

    Predict 250 m and 30 m resolution tiles independently using the optimized models. Downscale the 250 m predictions to 30 m resolution using Cubicsplines (GDAL).

    7.

    Combine predictions using Eq. (3) and generate pooled variance/s.d. using Eq. (4).

    8.

    Generate all final predictions as Cloud-Optimized GeoTIFFs. Upload to the server and share through API/Geoserver.

    Figure 7Scheme: a two-scale framework for Predictive Soil Mapping based on Ensemble Machine Learning (as implemented in the mlr and mlr3 frameworks for Machine Learning28 and based on the SuperLearner algorithm). This process is applied for a bulk of soil samples, the individual models per soil variable are then fitted using automated fine-tuning, feature selection and stacking. The map is showing distribution of training points used in this work. Part of the training points that are publicly available are available for use from https://gitlab.com/openlandmap/compiled-ess-point-data-sets/.Full size imageFor the majority of soil properties, excluding depth to bedrock, we also use soil depth as one of the covariates so that the final models for the two scales are in the form5:$$begin{aligned} y(phi ,theta ,d) = d + x_1 (phi ,theta ) + x_2 (phi ,theta ) + cdots + X_p (phi ,theta ) end{aligned}$$
    (1)
    where y is the target variable, d is the soil sampling depth, (phi theta) are geographical coordinates (northing and easting), and (X_p) are the covariates. Adding soil depth as a covariate allows for directly producing 3D predictions35, which is our preferred approach as prediction can be then produced at any depth within the standard depth interval (e.g. 0–50 cm).Ensemble machine learningEnsembles are predictive models that combine predictions from two or more learners36. We implement ensembling within the mlr package by fitting a ‘meta-learner’ i.e. a learner that combines all individual learners. mlr has extensive functionality, especially for model ‘stacking’ i.e. to generate ensemble predictions, and also incorporates spatial Cross-Validation37. It also provides wrapper functions to automate hyper-parameter fine-tuning and feature selection, which can all be combined into fully-automated functions to fit and optimize models and produce predictions. Parallelisation can be initiated by using the parallelMap package, which automatically determines available resources and cleans-up all temporary sessions38.For stacking multiple base learners we use the SuperLearner method39, which is the most computational method but allows for an independent assessment of all individual learners through k-fold cross validation with refitting. To speed up computing we typically use a linear model (predict.lm) as the meta-learner, so that in fact the final formula to derive the final ensemble prediction can be directly interpreted by printing the model summary.The predictions in the Ensemble models described in Fig. 7 are in principle based on using the following five Machine Learning libraries common for many soil mapping projects5.

    1.

    Ranger: fully scalable implementation of Random Forest23.

    2.

    XGboost: extreme gradient boosting40.

    3.

    Deepnet: the Open Source implementation of deep learning26.

    4.

    Cubist: the Open Source implementation of Cubist regression trees41.

    5.

    Glmnet: GLM with Lasso or Elasticnet Regularization24.

    These Open source libraries, with the exception of the Cubist, are available through a variety of programming environments including R, Python and also as standalone C++ libraries.Merging coarse and fine-scale predictionsThe idea of modeling soil spatial variation at different scales can be traced back to the work of McBratney42. In a multiscale model, soil variation can be considered a composite signal (Fig. 8):$$begin{aligned} y({mathbf{s}}_{mathtt {B}}) = S_4({mathbf{s}}_{mathtt {B}}) + S_3({mathbf{s}}_{mathtt {B}}) + S_2({mathbf{s}}_{mathtt {B}}) + S_1({mathbf{s}}_{mathtt {B}}) + varepsilon end{aligned}$$
    (2)
    where (S_4) is the value of the target variable estimated at the coarsest scale, (S_3), (S_2) and (S_1) are the higher order components, ({mathbf{s}}_{mathtt {B}}) is the location or block of land, and (varepsilon) is the residual soil variation i.e. pure noise.Figure 8Decomposition of a signal of spatial variation into four components plus noise. Based on McBratney42. See also Fig. 13 in Hengl et al.21.Full size imageIn this work we used a somewhat simplified version of Eq. (2) with only two scale-components: coarse ((S_2); 250 m) and fine ((S_1); 30 m). We produce the coarse-scale and fine-scale predictions independently, then merge using a weighted average43:$$begin{aligned} {hat{y}}({mathbf{s}}_{mathtt {B}}) = frac{sum _{i=1}^{2}{ w_i cdot S_i({mathbf{s}}_{mathtt {B}})}}{sum _{i=1}^{2}{ w_i }}, ; ; w_i = frac{1}{sigma _{i,mathrm{CV}}^2} end{aligned}$$
    (3)
    where ({hat{y}}({mathbf{s}}_{mathtt {B}})) is the ensemble prediction, (w_i) is the model weight and (sigma _{i,mathrm{CV}}^2) is the model squared prediction error obtained using cross-validation. This is an example of Ensemble Models fitted for coarse-scale model for soil pH:and the fine-scale model for soil pH:Note that in this case the coarse-scale model is somewhat more accurate with (mathrm {RMSE}=0.463), while the 30 m covariates achieve at best (mathrm {RMSE}=0.661), hence the weights for 250 m model are about 2(times) higher than for the 30 m resolution models. A step-by-step procedure explaining in detail how the 2-scale predictions are derived and merged is available at https://gitlab.com/openlandmap/spatial-predictions-using-eml. An R package landmap44 that implements the procedure in a few lines of code is also available.Transformation of log-normally distributed nutrients and propertiesFor the majority of log-normal distributed (right-skewed) variables we model and predict the ln-transformed values ((log _e(x+1))), then provide back-transformed predictions ((e^{x}-1)) to users via iSDAsoil. Note that also pH is a log-transformed variable of the hydrogen ion concentrations.Although ln-transformation is not required for non-linear models such as Random Forest or Gradient Boosting, we decided to apply it to give proportionally higher weights to lower values. This is, in principle, a biased decision by us the modelers as our interest is in improving predictions of critical values for agriculture i.e. producing maps of nutrient deficiencies and similar (hence focus on smaller values). If the objective of mapping was to produce soil organic carbon of peatlands or similar, then the ln-transformation could have decreased the overall accuracy, although with Machine Learning models sometimes it is impossible to predict effects as they are highly non-linear.Derivation of prediction errorsWe also provide per-pixel uncertainty in terms of prediction errors or prediction intervals (e.g. 50%, 68% and/or 90% probability intervals)45. Because stacking of learners is based on repeated resampling, the prediction errors (per pixel) can be determined using either:

    1.

    Quantile Regression Random Forest46, in our case by using the 4–5 base learners,

    2.

    Simplified procedure using Bootstraping, then deriving prediction errors as standard deviation from multiple independently fitted learners1.

    Both are non-parametric techniques and the prediction errors do not require any assumptions or initial parameters, but come at a cost of extra computing. By default, we provide prediction errors with a probability of 67%, which is the 1 standard deviation upper and lower prediction interval. Prediction errors indicate extrapolation areas and should help users minimize risks of taking decisions.For derivation of prediction interval via either Quantile Regression RF or bootstrapping, it is important to note that the individual learners must be derived using randomized subsets of data (e.g. fivefold) which are spatially separated using block Cross-Validation or similar, otherwise the results might be over-optimistic and prediction errors too narrow.Figure 9Schematic example of the derivation of a pooled variance ((sigma _{mathtt {250m+30m}})) using the 250 m and 30 m predictions and predictions errors with (a) larger and (b) smaller differences in independent predictions.Full size imageFurther, the pooled variance (({hat{sigma }}_E)) from the two independent models (250 m and 100 m scales in Fig. 7) can be derived using47:$$begin{aligned} {hat{sigma }}_E = sqrt{sum _{j=1}^{s}{w_j cdot (hat{sigma }_j^2+{hat{mu }}_j^2 )} – left( sum _{j=1}^{s}{w_j cdot {hat{mu }}_j} right) ^2 }, ; ; sum _{j=1}^{s}{w_j} = 1 end{aligned}$$
    (4)
    where (sigma _j^2) is the prediction error for the independent components, ({hat{mu }}_j) is the predicted value, and w are the weights per predicted component (need to sum up to 1). If the two independent models (250 m and 30 m) produce very similar predictions so that ({hat{mu }}_{mathtt {250}} approx {hat{mu }}_{mathtt {30}}), then the pooled variance approaches the geometric mean of the two variances; if the independent predictions are different (({hat{mu }}_{mathtt {250}} – {hat{mu }}_{mathtt {30}} > 0)) than the pooled variances increase proportionally to this additional difference (Fig. 9).Accuracy assessment of final mapsWe report overall average accuracy in Table 1 and Fig. 4 using spatial fivefold Cross-Validation with model refitting1,48. For each variable we then compute the following three metrics: (1) Root Mean Square Error, (2) R-square from the meta-learner, and (3) Concordance Correlation Coefficient (Fig. 4), which is derived using49:$$begin{aligned} rho _c = frac{2 cdot rho cdot sigma _{{{hat{y}}}} cdot sigma _y }{ sigma _{{{hat{y}}}}^2 + sigma _y^2 + (mu _{{{hat{y}}}} – mu _y)^2} end{aligned}$$
    (5)
    where ({{hat{y}}}) are the predicted values and y are actual values at cross-validation points, (mu _{{{hat{y}}}}) and (mu _y) are predicted and observed means and (rho) is the correlation coefficient between predicted and observed values. CCC is the most appropriate performance criteria when it comes to measuring agreement between predictions and observations.For Cross-validation we use the spatial tile ID produced in the equal-area projection system for Africa (Lambert Azimuthal EPSG:42106) as the blocking parameter in the training function in mlr. This ensures that points falling in close proximity ( More