More stories

  • in

    Author Correction: Mapping the forest disturbance regimes of Europe

    Affiliations

    Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Freising, Germany
    Cornelius Senf & Rupert Seidl

    Institute for Silviculture, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
    Cornelius Senf & Rupert Seidl

    Berchtesgaden National Park, Berchtesgaden, Germany
    Rupert Seidl

    Authors
    Cornelius Senf

    Rupert Seidl

    Corresponding author
    Correspondence to Cornelius Senf. More

  • in

    Big trees drive forest structure patterns across a lowland Amazon regrowth gradient

    1.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).
    ADS  CAS  Article  Google Scholar 
    2.
    Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730. https://doi.org/10.1111/btp.12381 (2016).
    Article  Google Scholar 

    3.
    Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456. https://doi.org/10.1126/science.aam5432 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Brancalion, P. H. S. et al. Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica 48, 856–867. https://doi.org/10.1111/btp.12383 (2016).
    Article  Google Scholar 

    5.
    Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32. https://doi.org/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2 (2007).
    Article  Google Scholar 

    6.
    Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10, 5803. https://doi.org/10.1038/s41598-020-62591-x (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Csillik, O., Kumar, P., Mascaro, J., O’Shea, T. & Asner, G. P. Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Sci. Rep. 9, 17831. https://doi.org/10.1038/s41598-019-54386-6 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Nunes, S. et al. Uncertainties in assessing the extent and legal compliance status of riparian forests in the eastern Brazilian Amazon. Land Use Policy 82, 37–47. https://doi.org/10.1016/j.landusepol.2018.11.051 (2019).
    Article  Google Scholar 

    9.
    Rocha, G. P. E., Vieira, D. L. M. & Simon, M. F. Fast natural regeneration in abandoned pastures in southern Amazonia. For. Ecol. Manag. 370, 93–101. https://doi.org/10.1016/j.foreco.2016.03.057 (2016).
    Article  Google Scholar 

    10.
    Rodrigues, S. B. et al. Direct seeded and colonizing species guarantee successful early restoration of South Amazon forests. For. Ecol. Manag. 451, 117559. https://doi.org/10.1016/j.foreco.2019.117559 (2019).
    Article  Google Scholar 

    11.
    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688. https://doi.org/10.1111/j.1523-1739.2005.00697.x (2005).
    Article  Google Scholar 

    12.
    Laurance, W. F. et al. Rain forest fragmentation and the proliferation of sucessional trees. Ecology 87, 469–482. https://doi.org/10.1890/05-0064 (2006).
    Article  PubMed  Google Scholar 

    13.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214. https://doi.org/10.1038/nature16512 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    14.
    Camargo, J. L. C., Ferraz, I. D. K. & Imakawa, A. M. Rehabilitation of degraded areas of central Amazonia using direct sowing of forest tree seeds. Restor. Ecol. 10, 636–644. https://doi.org/10.1046/j.1526-100X.2002.01044.x (2002).
    Article  Google Scholar 

    15.
    Guariguata, M. R. & Ostertag, R. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manag. 148, 185–206. https://doi.org/10.1016/S0378-1127(00)00535-1 (2001).
    Article  Google Scholar 

    16.
    Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666. https://doi.org/10.1038/ncomms11666 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x (2009).
    Article  PubMed  Google Scholar 

    18.
    Peres, C. A., Emilio, T., Schietti, J., Desmouliere, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. USA 113, 892–897. https://doi.org/10.1073/pnas.1516525113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    19.
    Pessoa, M. S. et al. Deforestation drives functional diversity and fruit quality changes in a tropical tree assemblage. Perspect. Plant Ecol. Evol. Syst. 28, 78–86. https://doi.org/10.1016/j.ppees.2017.09.001 (2017).
    Article  Google Scholar 

    20.
    Bowen, M. E., McAlpine, C. A., House, A. P. & Smith, G. C. Regrowth forests on abandoned agricultural land: a review of their habitat values for recovering forest fauna. Biol. Cons. 140, 273–296. https://doi.org/10.1016/j.biocon.2007.08.012 (2007).
    Article  Google Scholar 

    21.
    Chazdon, R. L. & Uriarte, M. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48, 709–715. https://doi.org/10.1111/btp.12409 (2016).
    Article  Google Scholar 

    22.
    Neuschulz, E. L., Mueller, T., Schleuning, M. & Böhning-Gaese, K. Pollination and seed dispersal are the most threatened processes of plant regeneration. Sci. Rep. 6, 29839. https://doi.org/10.1038/srep29839 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Stoner, K. E., Riba-Hernández, P., Vulinec, K. & Lambert, J. E. The role of mammals in creating and modifying seedshadows in tropical forests and some possible consequences of their elimination. Biotropica 39, 316–327. https://doi.org/10.1111/j.1744-7429.2007.00292.x (2007).
    Article  Google Scholar 

    24.
    Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc. R. Soc. B 283, 20161634. https://doi.org/10.1098/rspb.2016.1634 (2016).
    Article  PubMed  Google Scholar 

    25.
    Asquith, N. M. & Mejía-Chang, M. Mammals, edge effects, and the loss of tropical forest diversity. Ecology 86, 379–390. https://doi.org/10.1890/03-0575 (2005).
    Article  Google Scholar 

    26.
    Beck, H., Snodgrass, J. W. & Thebpanya, P. Long-term exclosure of large terrestrial vertebrates: Implications of defaunation for seedling demographics in the Amazon rainforest. Biol. Cons. 163, 115–121. https://doi.org/10.1016/j.biocon.2013.03.012 (2013).
    Article  Google Scholar 

    27.
    Paine, C. E., Beck, H. & Terborgh, J. How mammalian predation contributes to tropical tree community structure. Ecology 97, 3326–3336. https://doi.org/10.1002/ecy.1586 (2016).
    Article  PubMed  Google Scholar 

    28.
    Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676. https://doi.org/10.1038/s41559-017-0334-0 (2017).
    Article  PubMed  Google Scholar 

    29.
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818 (2007).
    Article  MATH  Google Scholar 

    30.
    Wunderle, J. M. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. For. Ecol. Manag. 99, 223–235. https://doi.org/10.1016/S0378-1127(97)00208-9 (1997).
    Article  Google Scholar 

    31.
    Fragoso, J. M. V. Tapir-generated seed shadows: scale-dependent patchiness in the Amazon Rain Forest. J. Ecol. 85, 519–529. https://doi.org/10.2307/2960574 (1997).
    Article  Google Scholar 

    32.
    Hibert, F. et al. Unveiling the diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study. PLoS ONE 8, e60799. https://doi.org/10.1371/journal.pone.0060799 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768. https://doi.org/10.1890/07-0479.1 (2008).
    Article  PubMed  Google Scholar 

    34.
    Wright, S. J. et al. The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39, 289–291. https://doi.org/10.1111/j.1744-7429.2007.00293.x (2007).
    Article  Google Scholar 

    35.
    Molto, Q. et al. Predicting tree heights for biomass estimates in tropical forests; a test from French Guiana. Biogeosciences 11, 3121–3130. https://doi.org/10.5194/bg-11-3121-2014 (2014).
    ADS  Article  Google Scholar 

    36.
    Letcher, S. G. & Chazdon, R. L. Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in Northeastern Costa Rica. Biotropica 41, 608–617. https://doi.org/10.1111/j.1744-7429.2009.00517.x (2009).
    Article  Google Scholar 

    37.
    Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574. https://doi.org/10.1016/j.tree.2007.09.006 (2007).
    Article  PubMed  Google Scholar 

    38.
    Beven, K. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24, 43–69. https://doi.org/10.1080/02626667909491834 (1979).
    Article  Google Scholar 

    39.
    Campling, P., Gobin, A. & Feyen, J. Logistic modeling to spatially predict the probability of soil drainage classes. Soil Sci. Soc. Am. J. 66, 1390–1401. https://doi.org/10.2136/sssaj2002.1390 (2002).
    ADS  CAS  Article  Google Scholar 

    40.
    Nobre, A. D. et al. Height above the nearest drainage: a hydrologically relevant new terrain model. J. Hydrol. 404, 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051 (2011).
    ADS  Article  Google Scholar 

    41.
    Schietti, J. et al. Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol. Diver. 7, 241–253. https://doi.org/10.1080/17550874.2013.783642 (2014).
    Article  Google Scholar 

    42.
    Gehring, C., Denich, M. & Vlek, P. L. G. Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. J. Trop. Ecol. 21, 519–527. https://doi.org/10.1017/S0266467405002543 (2005).
    Article  Google Scholar 

    43.
    Feldpausch, T. R., Riha, S. J., Fernandes, E. C. M. & Wandelli, E. V. Development of forest structure and leaf area in secondary forests regenerating on abandoned pastures in Central Amazônia. Earth Interact. 9, 1–22. https://doi.org/10.1175/EI140.1 (2005).
    Article  Google Scholar 

    44.
    Luskin, M. S., Ickes, K., Yao, T. L. & Davies, S. J. Wildlife differentially affect tree and liana regeneration in a tropical forest: an 18-year study of experimental terrestrial defaunation versus artificially abundant herbivores. J. Appl. Ecol. 56, 1379–1388. https://doi.org/10.1111/1365-2664.13378 (2019).
    Article  Google Scholar 

    45
    Lu, D., Mausel, P., Brondizio, E. & Moran, E. Classification of successional forest stages in the Brazilian Amazon basin. Forest Ecol. Manag. 181, 301–312. https://doi.org/10.1016/S0378-1127(03)00003-3 (2003).
    Article  Google Scholar 

    46.
    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances 3, e1701345. https://doi.org/10.1126/sciadv.1701345 (2017).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    47
    de Castilho, C. V. et al. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecol. Manag. 234, 85–96. https://doi.org/10.1016/j.foreco.2006.06.024 (2006).
    Article  Google Scholar 

    48.
    Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000. https://doi.org/10.1111/ele.12964 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Fortunel, C. et al. Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest. Ecology 99, 2272–2283. https://doi.org/10.1002/ecy.2441 (2018).
    Article  PubMed  Google Scholar 

    50.
    Tiessen, H., Chacon, P. & Cuevas, E. Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro. Oecologia 99, 145–150. https://doi.org/10.1007/BF00317095 (1994).
    ADS  CAS  Article  PubMed  Google Scholar 

    51.
    Paredes, O. S. L., Norris, D., Oliveira, T. G. D. & Michalski, F. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest. PLOS ONE 12, e0174049. https://doi.org/10.1371/journal.pone.0174049 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Michalski, L. J., Norris, D., de Oliveira, T. G. & Michalski, F. Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species. PLoS ONE 10, e0126114. https://doi.org/10.1371/journal.pone.0126114 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Mendes Pontes, A. R. Tree reproductive phenology determines the abundance of medium-sized and large mammalian assemblages in the Guyana shield of the Brazilian Amazonia. Anim. Biodiver. Conserv. 43(1), 9–26. https://doi.org/10.32800/abc.2020.43.0009 (2020).
    Article  Google Scholar 

    54.
    Arévalo-Sandi, A., Bobrowiec, P. E. D., Rodriguez Chuma, V. J. U. & Norris, D. Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient. PLoS ONE 13, e0193752. https://doi.org/10.1371/journal.pone.0193752 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55
    Arita, H. T., Robinson, J. G. & Redford, K. Rarity in Neotropical forest mammals and its ecological correlates. Conserv. Biol. 4, 181–192. https://doi.org/10.1111/j.1523-1739.1990.tb00107.x (1990).
    Article  Google Scholar 

    56.
    Peres, C. A. & Palacios, E. Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39, 304–315. https://doi.org/10.1111/j.1744-7429.2007.00272.x (2007).
    Article  Google Scholar 

    57.
    Emmons, L. H. & Feer, F. Neotropical Rainforest Mammals: A Field Guide (The University of Chicago Press, Chicago, 1997).
    Google Scholar 

    58.
    Michalski, F., Michalski, L. J. & Barnett, A. A. Environmental determinants and use of space by six Neotropical primates in the northern Brazilian Amazon. Stud. Neotrop. Fauna Environ. 52, 187–197. https://doi.org/10.1080/01650521.2017.1335276 (2017).
    Article  Google Scholar 

    59.
    Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618. https://doi.org/10.1046/j.1523-1739.2002.01025.x (2002).
    Article  Google Scholar 

    60.
    Norris, D., Peres, C. A., Michalski, F. & Hinchsliffe, K. Terrestrial mammal responses to edges in Amazonian forest patches: a study based on track stations. Mammalia 72, 15–23. https://doi.org/10.1515/mamm.2008.002 (2008).
    Article  Google Scholar 

    61.
    Martínez-Ramos, M. et al. Natural forest regeneration and ecological restoration in human-modified tropical landscapes. Biotropica 48, 745–757. https://doi.org/10.1111/btp.12382 (2016).
    Article  Google Scholar 

    62.
    Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L. & Lovejoy, T. E. Rainforest fragmentation kills big trees. Nature 404, 836–836. https://doi.org/10.1038/35009032 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661. https://doi.org/10.1111/j.1744-7429.2008.00454.x (2008).
    Article  Google Scholar 

    64.
    Santos, B. A. et al. Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol. Cons. 141, 249–260. https://doi.org/10.1016/j.biocon.2007.09.018 (2008).
    Article  Google Scholar 

    65.
    Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. & Tabarelli, M. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28, 462–468. https://doi.org/10.1016/j.tree.2013.01.001 (2013).
    Article  PubMed  Google Scholar 

    66
    Malhi, Y. et al. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 409–420. https://doi.org/10.1098/rstb.2003.1425 (2004).
    Article  Google Scholar 

    67.
    Keller, M., Palace, M. & Hurtt, G. Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties. For. Ecol. Manag. 154, 371–382. https://doi.org/10.1016/S0378-1127(01)00509-6 (2001).
    Article  Google Scholar 

    68.
    Arévalo-Sandi, A. R. & Norris, D. Short term patterns of germination in response to litter clearing and exclosure of large terrestrial vertebrates along an Amazon forest regrowth gradient. Glob. Ecol. Conserv. 13, e00371. https://doi.org/10.1016/j.gecco.2017.e00371 (2018).
    Article  Google Scholar 

    69.
    David, M. O. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 (2001).
    Article  Google Scholar 

    70
    ter Steege, H. et al. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J. Trop. Ecol. 16, 801–828 (2000).
    Article  Google Scholar 

    71.
    Batista, A. P. B. et al. Caracterização estrutural em uma floresta de terra firme no estado do Amapá, Brasil. Pesq. flor. bras 35, 21–33 (2015).
    Article  Google Scholar 

    72
    Eswaran, H., Ahrens, R., Rice, T. J. & Stewart, B. A. Soil Classification: A Global Desk Reference (CRC Press, Boca Raton, 2002).
    Google Scholar 

    73.
    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).
    Article  Google Scholar 

    74.
    ANA. Sistema de Monitoramento Hidrológico (Hydrological Monitoring System). Agência Nacional de Águas[[nl]]National Water Agency, Available at http://www.hidroweb.ana.gov.br, 2017).

    75
    Norris, D., Rodriguez Chuma, V. J. U., Arevalo-Sandi, A. R., Landazuri Paredes, O. S. & Peres, C. A. Too rare for non-timber resource harvest? Meso-scale composition and distribution of arborescent palms in an Amazonian sustainable-use forest. Forest Ecol. Manag. 377, 182–191. https://doi.org/10.1016/j.foreco.2016.07.008 (2016).
    Article  Google Scholar 

    76.
    Norris, D. & Michalski, F. Socio-economic and spatial determinants of anthropogenic predation on Yellow-spotted River Turtle, Podocnemis unifilis (Testudines: Pelomedusidae), nests in the Brazilian Amazon: Implications for sustainable conservation and management. Zoologia (Curitiba) 30, 482–490. https://doi.org/10.1590/S1984-46702013000500003 (2013).
    Article  Google Scholar 

    77
    Yirdaw, E., MongeMonge, A., Austin, D. & Toure, I. Recovery of floristic diversity, composition and structure of regrowth forests on fallow lands: implications for conservation and restoration of degraded forest lands in Laos. New Forests 50, 1007–1026. https://doi.org/10.1007/s11056-019-09711-2 (2019).
    Article  Google Scholar 

    78.
    McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: its definition and measurement. For. Ecol. Manag. 218, 1–24. https://doi.org/10.1016/j.foreco.2005.08.034 (2005).
    Article  Google Scholar 

    79.
    Sist, P., Mazzei, L., Blanc, L. & Rutishauser, E. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For. Ecol. Manag. 318, 103–109. https://doi.org/10.1016/j.foreco.2014.01.005 (2014).
    Article  Google Scholar 

    80.
    Phillips, O. L. et al. Species matter: wood density influences tropical forest biomass at multiple scales. Surv. Geophys. 40, 913–935. https://doi.org/10.1007/s10712-019-09540-0 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Bastin, J.-F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).
    Article  Google Scholar 

    82.
    TEAM Network. 69 (Tropical Ecology, Assessment and Monitoring Network, Center for Applied Biodiversity Science, Conservation International., Arlington, VA, USA., 2011).

    83.
    Hortal, J., Borges, P. A. & Gaspar, C. Evaluating the performance of species richness estimators: sensitivity to sample grain size. J. Anim. Ecol. 75, 274–287. https://doi.org/10.1111/j.1365-2656.2006.01048.x (2006).
    Article  PubMed  Google Scholar 

    84.
    Magurran, A. E. & McGill, B. J. in Biological diversity: frontiers in measurement and assessment (eds A. E. Magurran & B. J. McGill) Ch. 1, 1–7 (Oxford University Press, 2011).

    85.
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305. https://doi.org/10.1890/08-2244.1 (2010).
    Article  PubMed  Google Scholar 

    86.
    FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12 (2014).

    87.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach (Springer, Berlin, 2002).
    Google Scholar 

    88.
    Drasgow, F. in The Encyclopedia of Statistics Vol. 7 (eds S. Kotz & N. Johnson) 68–74 (Wiley, 1986).

    89.
    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. 3.6.3 (R Foundation for Statistical Computing, Vienna, 2020).
    Google Scholar 

    90.
    90vegan: Community Ecology Package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan (2016).

    91.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2009).
    Google Scholar 

    92.
    MuMIn: multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn (2016).

    93.
    Tweedie: Tweedie exponential family models. R package version 2.2.1. https://cran.r-project.org/web/packages/tweedie (2014). More

  • in

    Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain

    Characteristics of the NMs
    Commercially available spherical (10, 60, and 100 nm) and rod-shaped (10 × 45 nm and 50 × 100 nm) citrate-coated Au-NMs from Nanopartz (USA) were characterized in Milli-Q (MQ) water in terms of particle size and morphology using transmission electron microscopy (TEM) (Supplementary Fig. 1). The physicochemical properties of the Au-NMs in MQ water are summarized in Supplementary Table 1. A negative zeta potential (a measure of colloidal dispersion electrostatic stability) was observed for all Au-NMs and ranged from −21 to −25 mV in MQ water and from −17 to −19 mV in the algal exposure medium (without algae). The stability of the particles against dissolution and agglomeration in the algal exposure medium without algae was monitored throughout the exposure duration (72 h). The dissolved fraction of the Au-NMs was More

  • in

    Ancient mitogenomics elucidates diversity of extinct West Indian tortoises

    1.
    TTWG [Turtle Taxonomy Working Group; Rhodin, A. G. J. et al.] Turtles of the World. Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (8th Ed.) (Chelonian Research Foundation and Turtle Conservancy, Chelonian Research Monographs 7, 2017).
    2.
    TEWG [Turtle Extinctions Working Group; Rhodin, A. G. J. et al.] Turtles and Tortoises of the World During the Rise and Global Spread of Humanity: First Checklist and Review of Extinct Pleistocene and Holocene Chelonians (IUCN/SSC Tortoise and Freshwater Turtle Specialist Group, Chelonian Research Monographs 5, 2015).

    3.
    Clausen, C. J., Cohen, A. D., Emiliani, C., Holman, J. A. & Stipp, J. J. Little Salt Spring, Florida: A unique underwater site. Science 203, 609–614 (1979).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Holman, J. A. & Clausen, C. J. Fossil vertebrates associated with Paleo-Indian artifact at Little Salt Spring, Florida. J. Vertebr. Paleontol. 4, 146–154 (1984).
    Article  Google Scholar 

    5.
    Cantalamessa, G. et al. A new vertebrate fossiliferous site from the Late Quaternary at San José on the north coast of Ecuador: Preliminary note. J. South Am. Earth Sci. 14, 331–334 (2001).
    ADS  Article  Google Scholar 

    6.
    Aguilera Socorro, O. Tesoros paleontológicos de Venezuela. El Cuaternario del Estado Falcón (Ministerio de la Cultura, Instituto del Patrimonio Cultural, Caracas, 2006).
    Google Scholar 

    7.
    Zacarías, G. G., de la Fuente, M. S., Fernández, M. S. & Zurita, A. E. Nueva especie de tortuga terrestre gigante del género Chelonoidis Fitzinger, 1835 (Cryptodira: Testudinidae), del miembro inferior de la Formación Toropí/Yupoí (Pleistoceno tardío/Lujanense), Bella Vista, Corrientes, Argentina. Ameghiniana 50, 298–318 (2013).
    Article  Google Scholar 

    8.
    Zacarías, G. G., de la Fuente, M. S. & Zurita, A. E. Testudinoidea Fitzinger (Testudines: Cryptodira) de la Formación Toropí/Yupoí (ca. 58–28 ka) en la Provincia de Corrientes, Argentina: Taxonomía y aspectos paleoambientales. Rev. Bras. Paleontol. 17, 389–404 (2014).
    Article  Google Scholar 

    9.
    Torres Chiriboga, F. J. Histología ósea de una tortuga gigante del Pleistoceno (Testudinidae) de Ecuador continental, con comentarios del origen de las tortugas de Galápagos (Disertación previa, Pontificia Universidad Católica del Ecuador, Quito, 2016).
    Google Scholar 

    10.
    Cadena, E. A. & Román-Carrión, J. L. A review of the fossil record of Ecuador, with insights about its challenges and future development. Ameghiniana 55, 571–591 (2018).
    Article  Google Scholar 

    11.
    Franz, R., Albury, N. A. & Steadman, D. W. Extinct tortoises from the Turks and Caicos Islands. Florida Mus. Nat. Hist. Bull. 58, 1–38 (2020).
    Google Scholar 

    12.
    Williams, E. E. Testudo cubensis and the evolution of Western Hemisphere tortoises. Bull. Am. Mus. Nat. Hist. 95, 1–36 (1950).
    Google Scholar 

    13.
    Williams, E. E. A new fossil tortoise from Mona Island, West Indies, and a tentative arrangement of the tortoises of the world. Bull. Am. Mus. Nat. Hist. 99, 545–560 (1952).
    Google Scholar 

    14.
    Auffenberg, W. Notes on West Indian tortoises. Herpetologica 23, 34–44 (1967).
    Google Scholar 

    15.
    Franz, R. & Woods, C. A. A fossil tortoise from Hispaniola. J. Herpetol. 17, 79–81 (1983).
    Article  Google Scholar 

    16.
    Franz, R. & Franz, S. A new fossil land tortoise in the genus Chelonoidis (Testudines: Testudinidae) from the northern Bahamas, with an osteological assessment of other Neotropical tortoises. Florida Mus. Nat. Hist. Bull. 49, 1–44 (2009).
    Google Scholar 

    17.
    Steadman, D. W. et al. Exceptionally well preserved late Quaternary plant and vertebrate fossils from a blue hole on Abaco, The Bahamas. Proc. Natl. Acad. Sci. USA 104, 19897–19902 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Hastings, A. K., Krigbaum, J., Steadman, D. W. & Albury, N. A. Domination by reptiles in a terrestrial food web of the Bahamas prior to human occupation. J. Herpetol. 48, 380–388 (2014).
    Article  Google Scholar 

    19.
    Kehlmaier, C. et al. Tropical ancient DNA reveals relationships of the extinct Bahamian giant tortoise Chelonoidis alburyorum. Proc. R. Soc. B 284, 20162235 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    20.
    Steadman, D. W. et al. The paleoecology and extinction of endemic tortoises in the Bahamian Archipelago. Holocene 30, 420–427 (2020).
    ADS  Article  Google Scholar 

    21.
    Albury, N. A., Franz, R., Rimoli, P., Lehman, P. & Rosenberger, A. L. Fossil land tortoises (Testudines: Testudinidae) from the Dominican Republic, West Indies, with a description of a new species. Am. Mus. Novit. 3904, 1–28 (2018).
    Article  Google Scholar 

    22.
    Fulton, T. L. & Shapiro, B. Setting up an ancient DNA laboratory. In Ancient DNA: Methods and Protocols. Methods in Molecular Biology, Vol. 1963 (eds Shapiro, B. et al.), 1–13 (Humana Press, Totowa, 2019).
    Google Scholar 

    23.
    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110, 15758–15763 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    25.
    Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 58, 87–93 (2015).
    Google Scholar 

    26.
    Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One 5, e14004 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Horn, S. Target enrichment via DNA hybridization capture. In Ancient DNA: Methods and Protocols. Methods in Molecular Biology, Vol. 840 (eds Shapiro, B. & Hofreiter, M.), 177–188 (Springer, Berlin, 2012).
    Google Scholar 

    28.
    Jiang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 182 (2014).
    Article  Google Scholar 

    29.
    Bushnell, B., Rood, J. & Singer, E. BBMerge—accurate paired shotgun read merging via overlap. PLoS One 12, e0185056 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control [version 2; referees: 4 approved]. F1000Research 7, 1338 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 41, 1–9 (2013).
    Article  CAS  Google Scholar 

    32.
    Milne, I. et al. Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 14, 193–202 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Kehlmaier, C. et al. Ancient mitogenomics clarifies radiation of extinct Mascarene giant tortoises. Sci. Rep. 9, 17487 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Poulakakis, N. et al. Colonization history of Galapagos giant tortoises: Insights from mitogenomes support the progression rule. J. Zool. Syst. Evol. Res. 58, 1262–1275 (2020).
    Article  Google Scholar 

    36.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    38.
    Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).
    PubMed  Article  Google Scholar 

    39.
    Kumar, S., Stecher, G., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetic Analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 

    43.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 5, 901–904 (2018).
    Article  CAS  Google Scholar 

    44.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Woods, R. et al. Rapid size change associated with intra-island evolutionary radiation in extinct Caribbean “island shrews”. BMC Evol. Biol. 29, 106 (2020).
    Article  CAS  Google Scholar 

    46.
    Geist, D., Snell, H. L., Snell, H. M., Goddard, C. & Kurz, M. Paleogeography of the Galápagos Islands and biogeographical implications. In The Galápagos: A Natural Laboratory for the Earth Sciences, Vol. 204 (eds Harpp, K., Mittelstaedt, E., d’Ozouville, N. & Graham, D.) 145–166 (American Geophysical Union, New York, 2014).
    Google Scholar 

    47.
    Hearty, P. J., Kindler, P., Cheng, H. & Edwards, R. A +20 m middle Pleistocene sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology 27, 375–378 (1999).
    ADS  Article  Google Scholar 

    48.
    Bowen, D. Sea level ∼400 000 years ago (MIS 11): Analogue for present and future sea-level? Clim. Past 6, 19–29 (2010).
    Article  Google Scholar 

    49.
    Steadman, D. W. & Franklin, J. Origin, paleoecology, and extirpation of bluebirds and crossbills in the Bahamas across the last glacial-interglacial transition. Proc. Natl. Acad. Sci. USA 114, 9924–9929 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Fritz, U., Široký, P., Kami, H. & Wink, M. Environmentally caused dwarfism or a valid species—Is Testudo weissingeri Bour, 1996 a distinct evolutionary lineage? New evidence from mitochondrial and nuclear genomic markers. Mol. Phylogenet. Evol. 37, 389–401 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Fritz, U. et al. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex; Testudines, Testudinidae). Amphibia-Reptilia 28, 97–121 (2007).
    Article  Google Scholar 

    52.
    Fritz, U. et al. Mitochondrial phylogeography and subspecies of the wide-ranging sub-Saharan leopard tortoise Stigmochelys pardalis (Testudines: Testudinidae)—a case study for the pitfalls of pseudogenes and GenBank sequences. J. Zool. Syst. Evol. Res. 48, 348–359 (2010).
    Article  Google Scholar 

    53.
    Fritz, U. et al. Northern genetic richness and southern purity, but just one species in the Chelonoidis chilensis complex. Zool. Scr. 41, 220–232 (2012).
    Article  Google Scholar 

    54.
    Carlson, L. A. & Keegan, W. F. Resource depletion in the prehistoric northern West Indies. In Voyages of Discovery (ed. Fitzpatrick, S. M.) 85–107 (Praeger, Westport, 2004).
    Google Scholar 

    55.
    Keegan, W. F. Taino Indian Myth and Practice: The Arrival of the Stranger King (University Press of Florida, Gainesville, 2007).
    Google Scholar 

    56.
    Oswald, J. A. et al. Ancient DNA and high-resolution chronometry reveal a long-term human role in the historical diversity and biogeography of the Bahamian hutia. Sci. Rep. 10, 1373 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Loire, E. & Galtier, N. Lacking conservation genomics in the giant Galápagos tortoise. bioRxiv 101980, 1–14 (2017).
    Google Scholar 

    58.
    Fontaine, M. C. A genomic perspective is needed for the re-evaluation of species boundaries, evolutionary trajectories, and conservation strategies of the Galápagos giant tortoises. PCI Evol. Biol. 100031, 1–3 (2017).
    Google Scholar 

    59.
    Vargas-Ramírez, M., Maran, J. & Fritz, U. Red- and yellow-footed tortoises (Chelonoidis carbonaria, C. denticulata) in South American savannahs and forests: Do their phylogeographies reflect distinct habitats? Org. Divers. Evol. 10, 161–172 (2010).
    Article  Google Scholar 

    60.
    Blake, S. et al. Seed dispersal by Galápagos tortoises. J. Biogeogr. 39, 1961–1972 (2012).
    Article  Google Scholar 

    61.
    Walton, R. et al. In the land of giants: Habitat use and selection of the Aldabra giant tortoise on Aldabra Atoll. Biodiv. Conserv. 28, 3183–3198 (2019).
    Article  Google Scholar  More

  • in

    Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika

    1.
    Alin SR, Johnson TC. Carbon cycling in large lakes of the world: a synthesis of production, burial, and lake-atmosphere exchange estimates. Glob Biogeochemical Cycles. 2007;21:GB3002.
    Google Scholar 
    2.
    Durisch-Kaiser E, Schmid M, Peeters F, Kipfer R, Dinkel C, Diem T, et al. What prevents outgassing of methane to the atmosphere in Lake Tanganyika? J Geophys Res. 2011;116:G02022.
    Google Scholar 

    3.
    Takahashi T, Koblmüller S. The adaptive radiation of Cichlid fish in Lake Tanganyika: a morphological perspective. Int J Evolut Biol. 2011;2011:1–14.
    Article  Google Scholar 

    4.
    Salzburger W. Understanding explosive diversification through Cichlid fish genomics. Nat Rev Genet. 2018;19:705–17.
    CAS  PubMed  Article  Google Scholar 

    5.
    Corman JR, McIntyre PB, Kuboja B, Mbemba W, Fink D, Wheeler CW, et al. Upwelling couples chemical and biological dynamics across the littoral and pelagic zones of Lake Tanganyika, East Africa. Limnol Oceanogr. 2010;55:214–24.
    CAS  Article  Google Scholar 

    6.
    Cabello-Yeves PJ, Zemskaya TI, Rosselli R, Coutinho FH, Zakharenko AS, Blinov VV, et al. Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl Environ Microbiol. 2017;84:e02132–17.
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Cabello‐Yeves PJ, Zemskaya TI, Zakharenko AS, Sakirko MV, Ivanov VG, Ghai R, et al. Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr. 2019;65:1471–88.
    Article  CAS  Google Scholar 

    8.
    De Wever A. Spatio-temporal dynamics in the microbial food web in Lake Tanganyika. University of Gent; 2006. p. 1–169.

    9.
    Pirlot S, Unrein F, Descy J-P, Servais P. Fate of heterotrophic bacteria in Lake Tanganyika (East Africa): fate of bacteria in Lake Tanganyika. FEMS Microbiol Ecol. 2007;62:354–64.
    CAS  PubMed  Article  Google Scholar 

    10.
    Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MMM. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol. 2006;8:1857–63.
    CAS  PubMed  Article  Google Scholar 

    11.
    Shade A, Kent AD, Jones SE, Newton RJ, Triplett EW, McMahon KD. Interannual dynamics and phenology of bacterial communities in a eutrophic lake. Limnol Oceanogr. 2007;52:487–94.
    CAS  Article  Google Scholar 

    12.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.
    CAS  PubMed  Article  Google Scholar 

    16.
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–68.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    The Genome Standards Consortium, Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
    Article  CAS  Google Scholar 

    20.
    Bushnell B. BBMAP. https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/. 2014.

    21.
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.
    Article  CAS  Google Scholar 

    22.
    Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:13219.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:1–6.
    Article  CAS  Google Scholar 

    25.
    Brown AMV, Howe DK, Wasala SK, Peetz AB, Zasada IA, Denver DR. Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis. Genome Biol Evol. 2015;7:2727–46.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Miller MA, Pfeiffer W, Schwartz Terri. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop. New Orleans, LA; 2010. p. 1–8.

    28.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;1:14.
    Article  CAS  Google Scholar 

    30.
    Rohwer RR, Hamilton JJ, Newton RJ, McMahon KD. TaxAss: leveraging a custom freshwater database achieves fine-scale taxonomic resolution. mSphere. 2018;3:e00327–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science. 2017;355:1436–40.
    CAS  PubMed  Article  Google Scholar 

    32.
    Linz AM, He S, Stevens SLR, Anantharaman K, Rohwer RR, Malmstrom RR, et al. Freshwater carbon and nutrient cycles revealed through reconstructed population genomes. PeerJ. 2018;6:e6075.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Bendall ML, Stevens SL, Chan L-K, Malfatti S, Schwientek P, Tremblay J, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601.
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ, Dennis PG, et al. An expanded genomic representation of the phylum cyanobacteria. Genome Biol Evolution. 2014;6:1031–45.
    Article  Google Scholar 

    36.
    Zhou Z, Tran P, Liu Y, Kieft K, Anantharaman K. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. bioRxiv. 2019;761643.

    37.
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Katta HY, Mojica A, et al. Genomes OnLine database (GOLD) v.7: updates and new features. Nucleic Acids Res. 2019;47:D649–59.
    CAS  PubMed  Article  Google Scholar 

    39.
    Edmond JM, Stallard RF, Craig H, Craig V, Weiss RF, Coulter GW. Nutrient chemistry of the water column of Lake Tanganyika. Limnol Oceanogr. 1993;38:725–38.
    CAS  Article  Google Scholar 

    40.
    Verburga P, Hecky RE. The physics of the warming of Lake Tanganyika by climate change. Limnol Oceanogr. 2009;54:2418–30.
    Article  Google Scholar 

    41.
    Järvinen M, Salonen K, Sarvala J, Vuorio K, Virtanen A. The stoichiometry of particulate nutrients in Lake Tanganyika—implications for nutrient limitation of phytoplankton. Hydrobiologia. 1999;407:81–8.
    Article  Google Scholar 

    42.
    Ehrenfels B, Bartosiewicz M, Mbonde AS, Baumann KBL, Dinkel C, Junker J, et al. Thermocline depth and euphotic zone thickness regulate the abundance of diazotrophic cyanobacteria in Lake Tanganyika. Preprint at https://doi.org/10.5194/bg-2020-214 (2020).

    43.
    Tran P, Ramachandran A, Khawasik O, Beisner BE, Rautio M, Huot Y, et al. Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice‐covered Lakes. Environ Microbiol. 2018;20:2568–84.
    CAS  PubMed  Article  Google Scholar 

    44.
    Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG, Reitenga KG, et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS ONE. 2012;7:1–11.
    Google Scholar 

    45.
    Damrow R, Maldener I, Zilliges Y. The multiple functions of common microbial carbon polymers, glycogen and PHB, during stress responses in the non-diazotrophic Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol. 2016;7:966.
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Paerl HW, Otten TG. Duelling ‘CyanoHABs’: unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2-fixing harmful cyanobacteria. Environ Microbiol. 2016;18:316–24.
    CAS  PubMed  Article  Google Scholar 

    47.
    Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21:541–54.
    CAS  PubMed  Article  Google Scholar 

    48.
    Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol. 2003;154:157–64.
    CAS  PubMed  Article  Google Scholar 

    49.
    Cabello-Yeves PJ, Ghai R, Mehrshad M, Picazo A, Camacho A, Rodriguez-valera F. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front Microbiol. 2017;8:2131.
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Hansel CM, Fendorf S, Jardine PM, Francis CA. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol. 2008;74:1620–33.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Edlund A, Hårdeman F, Jansson JK, Sjöling S. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment. Environ Microbiol. 2008;10:2051–63.
    PubMed  Article  CAS  Google Scholar 

    52.
    Beman JM, Carolan MT. Deoxygenation alters bacterial diversity and community composition in the ocean’s largest oxygen minimum zone. Nat Commun. 2013;4:2705.
    PubMed  Article  CAS  Google Scholar 

    53.
    Schoell M, Tietze K, Schoberth SM. Origin of methane in Lake Kivu (East-Central Africa). Chem Geol. 1988;71:257–65.
    CAS  Article  Google Scholar 

    54.
    Bogard MJ, del Giorgio PA, Boutet L, Chaves MCG, Prairie YT, Merante A, et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun. 2014;5:5350.
    CAS  PubMed  Article  Google Scholar 

    55.
    Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol. 2016;1:16170.
    CAS  PubMed  Article  Google Scholar 

    56.
    Gao Q, Chen S, Kimirei IA, Zhang L, Mgana H, Mziray P, et al. Wet deposition of atmospheric nitrogen contributes to nitrogen loading in the surface waters of Lake Tanganyika, East Africa: a case study of the Kigoma region. Environ Sci Pollut Res. 2018;25:11646–60.
    CAS  Article  Google Scholar 

    57.
    Chale FMM. Inorganic nutrient concentrations and chlorophyll in the euphotic zone of Lake Tanganyika. Hydrobiologia. 2004;523:189–97.
    CAS  Article  Google Scholar 

    58.
    Higgins SN, Hecky RE, Taylor WD. Epilithic nitrogen fixation in the rocky littoral zones of Lake Malawi, Africa. Limnol Oceanogr. 2001;46:976–82.
    CAS  Article  Google Scholar 

    59.
    Brion N, Nzeyimana E, Goeyens L, Nahimana D, Tungaraza C, Baeyens W. Inorganic nitrogen uptake and river inputs in northern Lake Tanganyika. J Gt Lakes Res. 2006;32:553–64.
    CAS  Article  Google Scholar 

    60.
    Norici A, Hell R, Giordano M. Sulfur and primary production in aquatic environments: an ecological perspective. Photosynth Res. 2005;86:409–17.
    CAS  PubMed  Article  Google Scholar 

    61.
    Botz RW, Stoffers P. Light hydrocarbon gases in Lake Tanganyika hydrothermal fluids (East-Central Africa). Chem Geol. 1993;104:217–24.
    CAS  Article  Google Scholar 

    62.
    Tiercelin J-J, Pflumio C, Castrec M, Boulégue J, Gente P, Rolet J, et al. Hydrothermal vents in Lake Tanganyika, East African, Rift system. Geology. 1993;21:499–502.
    CAS  Article  Google Scholar 

    63.
    Elsgaard L, Prieur D. Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth. J Gt Lakes Res. 2011;37:203–6.
    CAS  Article  Google Scholar 

    64.
    Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J. 2007;1:341–53.
    CAS  PubMed  Article  Google Scholar 

    65.
    McAllister SM, Moore RM, Gartman A, Luther GW, Emerson D, Chan CS. The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol Ecol. 2019;95:fiz015.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Carpenter SR. Phosphorus control is critical to mitigating eutrophication. Proc Natl Acad Sci. 2008;105:11039–40.
    CAS  PubMed  Article  Google Scholar 

    67.
    Lewis WM, Jr. Causes for the high frequency of nitrogen limitation in tropical lakes. SIL Proceedings. vol. 28. 2002; p. 210–3.

    68.
    De Keyzer ELR, Masilya Mulungula P, Alunga Lufungula G, Amisi Manala C, Andema Muniali A, Bashengezi Cibuhira P, et al. Local perceptions on the state of the pelagic fisheries and fisheries management in Uvira, Lake Tanganyika, DR Congo. J Great Lakes Res. 2020;46:1740–53.
    Article  Google Scholar 

    69.
    Mölsä, H. Management of fisheries on Lake Tanganyika challenges for research and the community. University of Kuopio; 2008.

    70.
    Foley B, Jones ID, Maberly SC, Rippey B. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshw Biol. 2012;57:278–89.
    CAS  Article  Google Scholar  More

  • in

    Food and nutrition of Gaur (Bos gaurus C.H. Smith, 1827) at the edge of Khao Yai National Park, Thailand

    1.
    Guerbois, C., Chapanda, E. & Fritz, H. Combining multi-scale socio-ecological approaches to understand the susceptibility of subsistence farmers to elephant crop raiding on the edge of a protected area. J. Appl. Ecol. 49, 1149–1158 (2012).
    Article  Google Scholar 
    2.
    Felton, A. M. et al. Protein content of diets dictates the daily energy intake of a free-ranging primate. Behav. Ecol. 20, 685–690 (2009).
    Article  Google Scholar 

    3.
    Rode, K. D., Chiyo, P. I., Chapman, C. A. & McDowell, L. R. Nutritional ecology of elephants in Kibale National Park, Uganda, and its relationship with crop-raiding behaviour. J. Trop. Ecol. 22, 441–449 (2006).
    Article  Google Scholar 

    4.
    Duckworth, J. W., Sankar, K., Williams, A. C., Kumar, N. S. & Timmins, R. J. Bos gaurus. The IUCN Red List of Threatened Species 2016, e.T2891A46363646 (2016).

    5.
    Royal Thai Government Gazette. Wildlife Preservation and Protection Act, B.E.2562 (2019) of Thailand. www.ratchakitcha.soc.go.th (2019, in Thai).

    6.
    Srikosamatara, S. & Suteethorn, V. Populations of gaur and banteng and their management in Thailand. Nat. His. Bull. Siam Soc. 43(1), 55–83 (1995).
    Google Scholar 

    7.
    Laichanthuek, P., Sukmasuang, R. & Duengkae, P. Population and habitat use of gaur (Bos gaurus) around Khao Phaeng Ma Non-hunting Area, Nakhon Ratchasima Province. J. Wildl. Thailand 24, 83–95 (2017).
    Google Scholar 

    8.
    Chetri, M. Diet analysis of gaur, Bos gaurus gaurus (Smith, 1827) by micro-histological analysis of fecal samples in Parsa Wildlife Reserve, Nepal. Our Nat. 4, 20–28 (2006).
    Article  Google Scholar 

    9.
    Bell, R. H. V. The use of the herb layer by grazing ungulates in Serangeti. In Watson, A. (Ed.). Animal Population in Relation to Their Food Resources. (Blackwell Scientific Publication 1970).

    10.
    Jarman, P. J. The social organization of antelope in relation to their ecology. Behaviour 48, 215–266 (1974).
    Article  Google Scholar 

    11.
    Bhumpakphan, N. & McShea, W. J. Ecology of gaur and banteng in the seasonally dry forests of Thailand. In: McShea, W. J., Davies, S. J. & Bhumpakphan, N. (Eds.). The Ecology and Conservation of Seasonally Dry Forests in Asia. (Rowman and Littlefield Publishers, Inc. and Smithsonian Institution Scholarly Press 2011).

    12.
    Steinmetz, R. Gaur (Bos gaurus) and banteng (Bos javanicus) in the lowland forest mosaic of Xe Pian Protection Area, Lao PDR: Abundance, habitat use and conservation. Mammalia 68, 141–157 (2004).
    Article  Google Scholar 

    13.
    Karanth, K. U. & Sunquist, M. E. Population structure, density and biomass of large herbivores in the tropical forests of Nagarahole, India. J. Trop. Ecol. 8, 21–35 (1992).
    Article  Google Scholar 

    14.
    Steinmetz, R. Ecological surveys, monitoring, and the role of local people in protected areas of Lao PDR. (International Institute for Environment and Development 2000).

    15.
    Choudhury, A. Distribution and conservation of gaur Bos gaurus in the Indian Subcontinent. Mammal. Rev. 12, 199–226 (2002).
    Article  Google Scholar 

    16.
    Gad, S. D. & Shyama, S. K. Diet composition and quality in Indian bison (Bos gaurus) based on fecal analysis. Zool. Sci. 28(4), 264–267 (2011).
    Article  Google Scholar 

    17.
    Velho, N., Srinivasan, U., Singh, P. & Laurance, W. F. Large mammal use of protected and community-managed lands in a biodiversity hotspot. Anim. Conserv. https://doi.org/10.1111/acv.12234 (2015).
    Article  Google Scholar 

    18.
    Bidayabha, T. Ecology and behavior of gaur (Bos gaurus) in a degraded area at Khao Phaeng-Ma, the Northestern Edge of Khao Yai National Park. (Faculty of Biology, Mahidol University 2001).

    19.
    Panusittikorn, P. & Prato, T. Conservation of protected areas in Thailand: the case of Khao Yai National Park, protected areas in East Asia. George Wright Forum 18(2), 66–76 (2001).
    Google Scholar 

    20.
    Sorensen, A. A., van Beest, F. M. & Brook, R. K. Quantifying overlap in crop selection patterns among three sympatric ungulates in an agricultural landscape. Basic App. Ecol. 16, 601–609 (2015).
    Article  Google Scholar 

    21.
    Todorov, N. A. Cereals, pulses and oilseeds. Livestock Produc. Sci. 19, 47–95 (1988).
    Article  Google Scholar 

    22.
    Curzer, H. J., Wallace, M. C., Perry, G., Muhlberger, P. J. & Perry, D. The ethics of wildlife research: a nine R theory. ILAR J. 54(1), 52–57 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Department of National Parks, Wildlife and Plant Conservation (DNP). Management plan for Dong Phayayen-Khao Yai Forest Complex. (Department of National Parks, Wildlife, and Plant Conservation 2006).

    24.
    Kao-mim, N. Use of Hyperspectral Imaging System Data from HJ – 1A Satellite for Forest Types Classification in Khao Yai National Park. (MS thesis, Kasetsart University 2018, in Thai).

    25.
    Ngoprasert, D. & Gale, G. A. Tiger density, dhole occupancy, and prey occupancy in the human disturbed Dong Phayayen – Khao Yai Forest Complex, Thailand. Mamm. Biol. 95, 51–58 (2019).
    Article  Google Scholar 

    26.
    Lashley, M. A., Chitwood, M. C., Street, G. M., Moorman, C. E. & DePerno, C. S. Do indirect bite count surveys accurately represent diet selection of white-tailed deer in a forested environment?. Wildl. Res. 43, 254–260 (2016).
    CAS  Article  Google Scholar 

    27.
    Lashley, M. A., Chitwood, M. C., Harper, C. A., Moorman, C. E. & DePerno, C. S. Collection, handling and analysis of forages for concentrate selectors. Wildl. Biol. Prac. 10(1), 6–15 (2014).
    Google Scholar 

    28.
    Shafer, E. L. Jr. The twig-count method for measuring hardwood deer browse. J. Wildl. Manag. 27(3), 428–437 (1963).
    Article  Google Scholar 

    29.
    Ivlev, V. S. Experimental Ecology of the Feeding of Fishes. (Yale University Press 1961).

    30.
    Association of Official Analytical Chemists (AOAC). Guidelines for collaborative study procedure to validate characteristics of a method of analysis. J. Assoc. Off. Anal. Chem. 71, 161–171 (1988).

    31.
    Petterson, D. S., Harris, D. J., Rayner, C. J., Blakeney, A. B. & Choct, M. Methods for the analysis of premium livestock grains. Aus. J Agric. Res. 50, 775–787 (1999).
    Article  Google Scholar 

    32.
    Midkiff, V. A century of analytical excellence. The history of feed analysis, as chronicled in the development of AOAC official methods, 1884–1984. J. Assoc. Off. Anal. Chem. 67, 851–860 (1984).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Brown, R. H. & Mueller-Harvey, I. Evaluation of the novel Soxflo technique for rapid extraction of crude fat in foods and animal feeds. J. AOAC Int. 82, 1369–1374 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Leopold, B. D. & Krausman, P. R. Diurnal activity patterns of desert mule deer in relation to temperature. Texas J. Sci. 39, 49–53 (1987).
    Google Scholar 

    35.
    Holechek, J. L., Vavra, M. & Pieper, R. D. Botanical composition determination of range herbivore diets: a review. J. Range Manag. 35(3), 309–315 (1982).
    Article  Google Scholar 

    36.
    Jayson, E. A. Assessment of Human-Wildlife Conflict and Mitigation Measures in Northern Kerala: Final Report of the Research Project KFRI/653/12. (Kerala Forest Research Institute 2016).

    37.
    Prayong, N. & Srikosamatara, S. Cutting trees in a secondary forest to increase gaur Bos gaurus numbers in Khao Phaeng Ma Reforestation area, Nakhon Ratchasima Province, Thailand. Conserv. Evid. 14, 5–9 (2017).
    Google Scholar 

    38.
    Cervasio, F., Argenti, G., Genghini, M. & Ponzetta, M. P. Agronomic methods for mountain grassland habitat restoration for faunistic purposes in a protected area of the northern Apennines (Italy). iForest 9, 490–496 (2016).
    Article  Google Scholar 

    39.
    Argenti, G., Racanelli, V., Bartolozzi, S., Staglianò, N. & Guerri, F. S. Evaluation of wild animals browsing preferences in forage resources. Ital. J. Agron. 12, 884 (2017).
    Google Scholar 

    40.
    Freschi, P. et al. Diet composition of the Italian roe deer (Capreolus capreolus italicus) (Mammalia: Cervidae) from two protected areas. Eur. Zool. J. 84, 34–42 (2017).
    Article  CAS  Google Scholar 

    41.
    Robbins, C. T., Spalinger, D. E. & van Hoven, W. Adaptation of ruminants to browse and grass diets: are anatomical-based browser-grazer interpretations valid?. Oecologia 103, 208–213 (1995).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Ahrestani, F. S., Heitkönig, I. M. A., Matsubayashi, H. & Prins, H. H. T. 2016. Grazing and browsing by large herbivores in South and Southeast Asia. In: Ahrestani, F. S. & Sankaran, M. (Eds). The ecology of large herbivores in South and Southeast Asia. Ecol. Stud. 225 (2016).

    43.
    Krishnan, M. An ecological survey of the large mammals of Peninsular India. J. Bombay Nat. His. Soc. 69, 297–315 (1972).
    Google Scholar 

    44.
    Ahrestani, F. S. et al. Estimating densities of large herbivores in tropical forests: rigorous evaluation of a dung-based method. Ecol. Evol. 8, 7312–7322 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Ahrestani, F. S. Bos gaurus (Artiodactyla: Bovidae). Mamm. Species 50, 34–50 (2018).
    Article  Google Scholar 

    46.
    Nayak, B. K. & Patra, A. K. Food and feeding habits of Indian bison, Bos gaurus (Smith, 1827) in Kuldiha Wildlife Sanctuary, Balasore, Odisha, India and its conservation. Int. Res. J. Biol. Sci. 4(5), 73–79 (2015).
    Google Scholar 

    47.
    Gad, S. D. & Shyama, S. K. Studies on the food and feeding habits of gaur Bos gaurus H Smith (Mammalia: Artiodactyla: Bovidae) in two protected areas of Goa. J. Threat. Taxa 1, 128–130 (2009).
    Article  Google Scholar 

    48.
    Fresehi, P., Riccioli, F., Argenti, G. & Ponzetta, M. P. The sustainability of wildlife in agroforestry land. Agric. Agric. Sci. Proc. 8, 148–157 (2016).
    Google Scholar 

    49.
    Moser, B., Schutz, M. & Hindenlang, K. E. Resource selection by roe deer: Are wind throw gaps attractive feeding places?. For. Ecol. Manag. 255, 1179–1185 (2008).
    Article  Google Scholar 

    50.
    Wilsey, B. J. & Martin, L. M. Top-down control of rare species abundances by native ungulates in a grassland restoration. Restor. Ecol. 23, 465–472 (2015).
    Article  Google Scholar 

    51.
    Kouch, T., Preston, T. R. & Ly, J. Studies on utilization of trees and shrubs as the sole feedstuff by growing goats; foliage preferences and nutrient utilization. Livestock Res. Rural Dev. 15(7), http://www.lrrd.org/irrd15/7/kouc157.htm (2003).

    52.
    Kaitho, R. J. et al. Palatability of multipurpose tree species: effect of species and length of study on intake and relative palatability by sheep. Agrofor. Syst. 33, 249–261 (1996).
    Article  Google Scholar 

    53.
    Kaitho, R. J. et al. Palatability of wilted and dried multipurpose tree species fed to sheep and goats. Anim. Feed Sci. Technol. 65, 151–163 (1997).
    Article  Google Scholar 

    54.
    Provenza, M. P., Cervasio, F., Crocetti, C., Messeri, A. & Argenti, G. Habitat improvements with wildlife purposes in a grazed area on the Apennine mountains. Ital. J. Agron. 5, 233–238 (2003).
    Google Scholar 

    55.
    Lucas, J. R. Role of foraging time constraints and variable prey encounter in optimal diet choice. Am. Nat. 122(2), 191–209 (1983).
    Article  Google Scholar 

    56.
    Poapongsakorn, N., Ruhs, M. & Tangjitwisuth, S. Problems and outlook of agriculture in Thailand. TDRI Quar. Rev. 13(2), 3–14 (1998).
    Google Scholar 

    57.
    Retamosa, M. I., Humberg, L. A., Beasley, J. C. & Rhodes, O. E. Jr. Modeling wildlife damage to crops in northern Indiana. Human-Wild. Conf. 2(2), 225–239 (2008).
    Google Scholar 

    58.
    Su, K., Ren, J., Yang, J., Hou, Y. & Wen, Y. Human-Elephant conflicts and villagers’ attitudes and knowledge in the Xishuangbanna Nature Reserve, China. Inter. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph17238910 (2020).
    Article  Google Scholar  More

  • in

    Assessing the influence of climate on wintertime SARS-CoV-2 outbreaks

    Wintertime outbreaks in the northern hemisphere
    In Fig. 1a we use case data (see “Methods”) to estimate the effective reproductive number of infection for New York City from the start of 2020 to the present (July 2020)14. Estimated values of Reffective peak early in the outbreak and then settle close to 1 in the summer months as NPIs act to lower transmission. We assume the Reffective values approximate R0 and compare them to the predicted seasonal R0, derived from our climate-driven SIRS model. The model assumes the climate sensitivity of betacoronavirus HKU1 and that seasonal variations in transmission are driven by specific humidity. Current rates (average over second and third weeks of July) of Reffective in New York city are found to be approximately 35% below the R0 levels predicted by our climate-driven model. We assume this 35% decline is due to the efficacy of NPIs. To project future scenarios we assume that R0 remains at either the current levels (constant) or a relative 35% decrease in our climate-driven R0, which means R0 oscillates with specific humidity (Fig. 1a, top plot).
    Fig. 1: Wintertime outbreaks in New York City.

    Estimated and projected R0 values (top plot) assuming a 35% and b 15% reduction in R0 due to NPIs. Corresponding time series show the simulated outbreaks in the climate (blue) or constant (black/dashed) scenarios, with middle row plots assuming a 10% reporting rate and bottom row plots assuming a 3% reporting rate. Corresponding susceptible time series are shown in orange (susceptibles = S/population = N). Case data from New York City are shown in gray. Surface plots (top) show the peak wintertime proportion infected (infected = I/population = N) in the scenarios with c the constant R0 and d the climate-driven R0. e shows the difference between the climate and constant R0 scenario. The timing of peak incidence in years from July is shown for the f constant and g climate scenarios. The difference between climate and constant scenario is shown in h. Points in c–h show the scenarios is a, b. Dashed line shows estimated susceptibility in New York based on ref. 24.

    Full size image

    In Fig. 1a (lower plots) we show the proportion infected over time using the climate-driven and constant R0 values. We also vary the reporting rate of observed cases relative to modeled cases; while this accounts for under-reporting it also allows us to vary the proportion susceptible over a feasible range (see “Methods”). In the middle figure, the reporting rate is 10% (estimates for US reporting rates are  1 for both the climate and constant scenario and case numbers begin to grow exponentially. With a 10% reporting rate a large secondary outbreak is observed in both the constant and climate scenarios (Fig. 1b, middle plot). With a 3% reporting rate, meaning a larger depletion of susceptibles, the secondary outbreak appears much larger in the climate scenario: this supports the hypothesis that the disease will become more sensitive to climate as the susceptible proportion declines, much like the seasonal endemic diseases.
    In Fig. 1c–h we simulate model outcomes across a broad range of parameter space varying the proportion susceptible (in July) and the reduction in R0 due to NPIs. The proportion susceptible is varied by initializing the epidemic with different sizes of the infected population (initializing with a large number results in a relatively larger outbreak and initializing with a small number results in a smaller outbreak). We vary this starting number over a feasible range given the case data, i.e., such that observed cases never exceed modeled cases or that the reporting rate never drops below 1%. Over this range, the model plausibly tracks the observed case data.
    Figure 1e shows the change in winter peak size (max proportion infected between September–March) due to climate. Peak size results for the constant and climate scenarios are shown in Fig. 1c and d, respectively. When the susceptible proportion is high and the effect of NPIs are minimal (relative R0 given NPI = 1), large outbreaks are possible in both the climate and constant R0 scenarios meaning the relative effect of climate on peak size and timing is close to 0 (top right Fig. 1e). As the proportion susceptible declines (moving left along the x-axis of Fig. 1e), case trajectories become more sensitive to the wintertime weather resulting in larger peaks in the climate scenario. However, sufficiently strong NPIs, in combination with low susceptibility, reduce incidence to zero in both the climate and control scenarios (bottom left Fig. 1e). NPIs are not as effective at reducing cases when susceptibility is higher (bottom right Fig. 1e).
    We also consider the effect of climate on secondary peak timing. Figure 1f, g shows the peak timing in years (relative to July 2020) in the constant and climate scenarios, respectively. In the climate scenario, peak timing for New York is clustered in the winter months (Fig. 1a, b). In the constant R0 scenario, secondary peaks can occur at a wide range of times over the next 1.5 years. As in the peak size results, high susceptibility and limited NPIs reduce the effect of climate and peak timing is matched for both the climate and control scenarios (top right Fig. 1h). Gray areas represent regions where there is no secondary peak in either the climate or control scenario.
    Climate effects on global risk
    We next consider the relative effect of climate on peak size for nine global locations (Fig. 2b). In this case, as opposed to using estimated Reffective values (given case data are not available for several of the global cities), we simulate the epidemic from July 2020 using a fixed number of infecteds and vary the starting proportion of susceptibles (example results from select global locations, using estimated Reffective, are shown in Supplementary Figs. 1–3). Results from the New York surface in Fig. 2b qualitatively match our tailored simulation in Fig. 1. Locations in the southern hemisphere are expected to be close to their maximum wintertime R0 values in mid-2020 (Fig. 2a), meaning that secondary peaks in the climate scenario are lower than the constant R0 scenario for these locations (Fig. 2b). Tropical locations experience minimal difference in the climate versus constant R0 scenario given the relatively mild seasonal variations in specific humidity in the tropics. Broadly, the results across hemisphere track the earlier results from New York: high susceptibility and a lack of NPIs lead to a limited role of climate, but an increase in NPI efficacy or a reduction in susceptibility may increase climate effects. This result is more striking in regions with a large seasonality in specific humidity (e.g. New York, Delhi and Johannesburg).
    Fig. 2: Climate sensitivity of outbreaks across global locations.

    a The climate effect on R0 assuming a 35% reduction due to NPIs shown for August and December. b The effect of climate, changing susceptibility, and NPIs on peak proportion infected (infected = I/population = N), post July 2020, for nine global locations.

    Full size image

    Drivers of variability in secondary outbreak size
    Our results suggest that climate may play an increasing role in determining the future course of the SARS-CoV-2 pandemic, depending on levels of susceptibility and NPIs. We next evaluate the extent to which interannual variability in specific humidity could influence peak size. We simulate separate New York pandemic trajectories using 11 years (2008–2018) of specific humidity data. Figure 3a shows the variability in R0 and secondary peak size based on these runs (with 35% reduction in R0 due to NPIs and 10% reporting rate—the same as Fig. 1a). While a relatively large peak occurs in all years, the largest peak (0.038 proportion infected) is almost double the smallest peak year (0.020 proportion infected). In Fig. 3b we calculate the coefficient of variation of the peak size for different susceptible proportions and NPI intensities. These results qualitatively track Fig. 1e. Sensitivity to interannual variation appears most important when the susceptible population has been reduced by at least 20% and minimal controls are in place.
    Fig. 3: Climate variability and wintertime cases in New York.

    a Climate-driven R0 and corresponding infected time series (infected = I/population = N) based on the last 10 years of specific humidity data for New York, assuming a 35% reduction due to NPIs. b The effect of changing susceptibility and NPIs on the coefficient of variation of peak incidence for simulations using specific humidity data from 2008 to 2018. Dashed line shows estimated susceptibility in New York based on ref. 24.

    Full size image

    Many factors, including weather variability, determine the size of a possible secondary outbreak. Another factor that may play an important role is the length of immunity to the disease. While the length of immunity may not affect the dynamics in the early stage of the pandemic, it could have complex and uncertain outcomes for future trajectories16. In our main results, we assume a length of immunity equal to betacoronvirus HKU1, based on prior estimates1. We also assume a climate sensitivity based on estimates for HKU1. However parameters for SARS-CoV-2, such as immunity length and climate sensitivity, are still fundamentally uncertain.
    We consider the possible contribution of uncertainty in parameters to the variance in the wintertime peak size following the method developed by Yip et al.17 (see “Methods”). We run our simulation for New York while varying parameter values for the efficacy of NPIs, the length of immunity to the disease, the reporting rate of prior cases (which defines susceptibility in July), the climate sensitivity of the pathogen (in terms of the strength of the relationship with specific humidity), and the weather variability (interannual variability determined by historic weather observations from a particular year, 2009–2018). We then perform an analysis of variance (ANOVA) on the determinants of wintertime peak size.
    Figure 4 shows contribution to variance in wintertime peak size of these five parameters: NPIs efficacy, immunity length, reporting rate, climate sensitivity of the virus, and interannual weather variability. We find that climate sensitivity is an important factor but secondary to the efficacy of NPIs and immunity length in determining peak transmission. Uncertainty in immunity length and reporting together influence susceptibility and collectively account for the second largest portion of total uncertainty. Uncertainty in interannual variability, i.e. weather, has a smaller impact on peak size. NPIs contribute the largest proportion to total variance in peak size. It is important to note that while other parameters are external features of either the virus, climate, or disease trajectories to date, the efficacy of NPIs is determined directly by policy interventions and therefore the size of future outbreaks is largely under human control.
    Fig. 4: Contribution to uncertainty in New York wintertime 20/21 peak size.

    The relative importance of NPI efficacy [0–35%], immunity length (10–60 weeks), reporting (1–100%), climate sensitivity of the virus [−32.5 to −227.5], and interannual weather variability [10 years] in determining wintertime peak size. Immunity length and reporting rate collectively determine susceptibility, S.

    Full size image More

  • in

    High probability of yield gain through conservation agriculture in dry regions for major staple crops

    1.
    Pittelkow, C. M. et al. When does no-till yield more? A global meta-analysis. Field Crops Res. 183, 156–168 (2015).
    Article  Google Scholar 
    2.
    Food and Agriculture Organization of the United Nations (FAO). Save and Grow: A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production (2013). http://www.fao.org/3/a-i2215e.pdf.

    3.
    Michler, J. D., Baylis, K., Arends-Kuenning, M. & Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econom. Manage. 93, 148–169 (2019).
    Article  Google Scholar 

    4.
    Page, K. L., Dang, Y. P. & Dalal, R. C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2020.00031 (2020).
    Article  Google Scholar 

    5.
    Farooq, M. & Siddique, K. H. M. Conservation Agriculture (Springer, Berlin, 2015).
    Google Scholar 

    6.
    Holland, J. M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosyst. Environ. 103, 1–25 (2004).
    Article  Google Scholar 

    7.
    Govaerts, B. et al. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Tillage Res. 94, 209–219 (2007).
    Article  Google Scholar 

    8.
    Zhang, W., Zheng, C., Song, Z., Deng, A. & He, Z. Farming systems in China: Innovations for sustainable crop production. In Crop Physiology (eds Zhang, W. et al.) 43–64 (Elsevier, Amsterdam, 2015).
    Google Scholar 

    9.
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).
    ADS  CAS  Article  Google Scholar 

    10.
    Scopel, E. et al. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron. Sustain. Dev. 33, 113–130 (2013).
    Article  Google Scholar 

    11.
    Steward, P. R. et al. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields. Agric. Ecosyst. Environ. 251, 194–202 (2018).
    Article  Google Scholar 

    12.
    Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 1–9 (2018).
    CAS  Article  Google Scholar 

    13.
    Laborde, J. P., Wortmann, C. S., Blanco-Canqui, H., Baigorria, G. A. & Lindquist, J. L. Identifying the drivers and predicting the outcome of conservation agriculture globally. Agric. Syst. 177, 102692. https://doi.org/10.1016/j.agsy.2019.102692 (2020).
    Article  Google Scholar 

    14.
    Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage practice. Figshare. https://doi.org/10.6084/m9.figshare.12155553 (2020).
    Article  Google Scholar 

    15.
    Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. Sci. Data 8, 33. https://doi.org/10.1038/s41597-021-00817-x (2021).
    Article  PubMed  Google Scholar 

    16.
    Food and Agriculture Organization of the United Nations (FAO). Conservation Agriculture (2020). http://www.fao.org/conservation-agriculture/en/.

    17.
    Ho, T. K. Random decision forests. In Proc. 3rd International Conference on Document Analysis and Recognition, 278–282 (1995).

    18.
    Meinshausen, N. Quantile regression forests. J. Mach. Learn. Res. 7, 983–999 (2006).
    MathSciNet  MATH  Google Scholar 

    19.
    University of Wisconsin-Madison. Crop Calendar Dataset: netCDF 5 Degree (2020). https://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/netCDF0-5degree.php.

    20.
    Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).
    Google Scholar 

    21.
    University of Tokyo. Soil Texture Map (2020). http://hydro.iis.u-tokyo.ac.jp/~sujan/research/gswp3/soil-texture-map.html.

    22.
    NOAA/OAR/ESRL PSL. University of Delaware Air Temperature & Precipitation (2020). https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html.

    23.
    Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).
    ADS  Article  Google Scholar 

    24.
    Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).
    ADS  Article  Google Scholar 

    25.
    NOAA/OAR/ESRL PSL. CPC Global Daily Temperature (2020). https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html.

    26.
    Mandelkern, M. et al. Setting confidence intervals for bounded parameters. Stat. Sci. 17, 149–172 (2002).
    MathSciNet  Article  Google Scholar 

    27.
    Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2008GB003435 (2010).
    Article  Google Scholar 

    28.
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).
    MathSciNet  Article  Google Scholar 

    29.
    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, New York, 2009).
    Google Scholar 

    30.
    Zuazo, V. H. D. & Pleguezuelo, C. R. R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 28, 65–86 (2008).
    Article  Google Scholar 

    31.
    Shaxson, F. & Barber, R. Optimizing Soil Moisture for Plant Production, the Significance of Soil Porosity (FAO, 2003).

    32.
    Swanepoel, C. M. et al. The benefits of conservation agriculture on soil organic carbon and yield in southern Africa are site-specific. Soil Tillage Res. 183, 72–82 (2018).
    Article  Google Scholar 

    33.
    Derpsch, R. Controle da Erosão no Paraná, Brasil: Sistemas de Cobertura do Solo, Plantio Direto e Preparo Conservacionista do Solo (GTZ/Curitiba, 1991).

    34.
    Scopel, E., da Silva, F. A. M., Corbeels, M., Affholder, F. & Maraux, F. Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24, 383–395 (2004).
    Article  Google Scholar 

    35.
    Thierfelder, C. & Wall, P. C. Investigating conservation agriculture (CA) systems in Zambia and Zimbabwe to mitigate future effects of climate change. J. Crop Improve. 24, 113–121 (2010).
    Article  Google Scholar 

    36.
    Lal, R. The role of residues management in sustainable agricultural systems. J. Sustain. Agric. 5, 51–78 (1995).
    Article  Google Scholar 

    37.
    Shen, Y., McLaughlin, N., Zhang, X., Xu, M. & Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 8, 4500 (2018).
    ADS  Article  Google Scholar 

    38.
    Muñoz-Romero, V., Lopez-Bellido, L. & Lopez-Bellido, R. J. Effect of tillage system on soil temperature in a rainfed Mediterranean Vertisol. Int. Agrophys. 29, 467–473 (2015).
    Article  Google Scholar 

    39.
    Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extr. 10, 4–10 (2015).
    Article  Google Scholar 

    40.
    Ramakrishna, A., Tam, H. M., Wani, S. P. & Long, T. D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 95, 115–125 (2006).
    Article  Google Scholar 

    41.
    Kumar, S. & Dey, P. Effects of different mulches and irrigation methods on root growth, nutrient uptake, water-use efficiency and yield of strawberry. Sci. Hortic. 127, 318–324 (2011).
    ADS  Article  Google Scholar 

    42.
    van Wijk, W. R., Larson, W. E. & Burrows, W. C. Soil Temperature and the early growth of corn from mulched and unmulched soil. Soil Sci. Soc. Am. J. 23, 428 (1959).
    Article  Google Scholar 

    43.
    Kodzwa, J. J., Gotosa, J. & Nyamangara, J. Mulching is the most important of the three conservation agriculture principles in increasing crop yield in the short term, under sub humid tropical conditions in Zimbabwe. Soil Tillage Res. 197, 104515 (2020).
    Article  Google Scholar 

    44.
    Giller, K. E., Witter, E., Corbeels, M. & Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Res. 114, 23–34 (2009).
    Article  Google Scholar 

    45.
    Andersson, J. A. & D’Souza, S. From adoption claims to understanding farmers and contexts: A literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agric. Ecosyst. Environ. 187, 116–132 (2014).
    Article  Google Scholar 

    46.
    Mashingaidze, N., Madakadze, C., Twomlow, S., Nyamangara, J. & Hove, L. Crop yield and weed growth under conservation agriculture in semi-arid Zimbabwe. Soil Tillage Res. 124, 102–110 (2012).
    Article  Google Scholar 

    47.
    Watt, M. S., Whitehead, D., Mason, E. G., Richardson, B. & Kimberley, M. O. The influence of weed competition for light and water on growth and dry matter partitioning of young Pinus radiata, at a dryland site. For. Ecol. Manage. 183, 363–376 (2003).
    Article  Google Scholar 

    48.
    Abouziena, H., El-Saeid, M., Ahmed, A. & Amin, E.-S. Water loss by weeds: A review. Int. J. ChemTech Res. 7, 974–4290 (2014).
    Google Scholar 

    49.
    Food and Agriculture Organization of the United Nations (FAO). The Economics of Conservation Agriculture (2001).

    50.
    Olsson, L. et al. Land Degradation. In Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019). More