1.
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
PubMed PubMed Central Article CAS Google Scholar
2.
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Article Google Scholar
3.
van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).
ADS PubMed Article CAS PubMed Central Google Scholar
4.
Losey, E. J. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311 (2006).
Article Google Scholar
5.
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115, 6506–6511 (2018).
CAS PubMed Article PubMed Central Google Scholar
6.
Yang, L. H. & Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2, 26–32 (2014).
PubMed Article PubMed Central Google Scholar
7.
Hunter, M. D. Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric. For. Entomol. 3, 77–84 (2001).
Article Google Scholar
8.
Nichols, E. et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141, 1461–1474 (2008).
Article Google Scholar
9.
Lobry de Bruyn, L. A. & Conacher, A. J. The role of termites and ants in soil modification: a review. Aust. J. Soil Res. 28, 55–93 (1990).
Google Scholar
10.
Shukla, R. K., Singh, H., Rastogi, N. & Agarwal, V. M. Impact of abundant Pheidole ant species on soil nutrients in relation to the food biology of the species. Appl. Soil Ecol. 71, 15–23 (2013).
Article Google Scholar
11.
López-Hernández, D. Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco Llanos (Venezuela). Soil Biol. Biochem. 33, 747–753 (2001).
Article Google Scholar
12.
Nkem, J. N., Lobry de Bruyn, L. A., Grant, C. D. & Hulugalle, N. R. The impact of ant bioturbation and foraging activities on surrounding soil properties. Pedobiologia 44, 609–621 (2000).
Article Google Scholar
13.
Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47, 215–222 (2011).
Article Google Scholar
14.
Frost, C. J. & Hunter, M. D. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85, 3335–3347 (2004).
Article Google Scholar
15.
Calderon-Cortes, N. et al. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela. J. Insect Physiol. 84, 128–136 (2016).
CAS PubMed Article Google Scholar
16.
Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).
ADS PubMed Article Google Scholar
17.
Danell, K., Aux, D. B. & Bráthen, K. A. Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Artic 55, 389–392 (2002).
Google Scholar
18.
Melis, C. et al. Soil and vegetation nutrient response to bison carcasses in Bialowieza primeval forest Poland. Ecol. Res. 22, 807–813 (2007).
ADS CAS Article Google Scholar
19.
Bump, J. K., Peterson, R. O. & Vucetich, J. A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90, 3159–3167 (2009).
PubMed Article Google Scholar
20.
Benninger, L. A., Carter, D. O. & Forbes, S. L. The biochemical alteration of soil beneath a decomposing carcass. Forensic Sci. Int. 180, 70–75 (2008).
CAS PubMed Article Google Scholar
21.
Anderson, G. S. & VanLaerhoven, S. L. Initial studies on insect succession on carrion in Southwestern British Columbia. J. Forensic Sci. 41, 617–625 (1996).
Article Google Scholar
22.
Matuszewski, S., Bajerlein, D., Konwerski, S. & Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: succession of carrion fauna. Forensic Sci. Int. 207, 150–163 (2011).
PubMed Article Google Scholar
23.
Barton, P. S., Evans, M. J., Pechal, J. L. & Benbow, M. E. Necrophilous insect dynamics at small vertebrate carrion in a temperate eucalypt woodland. J. Med. Entomol. 54, 964–973 (2017).
PubMed Article Google Scholar
24.
Benbow, M. E., Lewis, A. J., Tomberlin, J. K. & Pechal, J. L. Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J. Med. Entomol. 50, 440–450 (2013).
CAS PubMed Article Google Scholar
25.
Payne, J. A. A summer carrion study of the baby pig Sus Scrofa Linnaeus. Ecology 46, 592–602 (1965).
Article Google Scholar
26.
Kočárek, P. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur. J. Soil Biol. 39, 31–45 (2003).
Article Google Scholar
27.
Bornemissza, G. F. An analysis of arthropod succession in carrion and the effects of its decomposition on the soil fauna. J. Zool. 5, 1–12 (1957).
Google Scholar
28.
Parmenter, R. R. & MacMahon, J. A. Carrion decomposition and nutrient cycling in a semiarid shrub–steppe ecosystem. Ecol. Monogr. 79, 637–661 (2009).
Article Google Scholar
29.
Pechal, J. L., Benbow, M. E., Crippen, T. L., Tarone, A. M. & Tomberlin, J. K. Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere 5, 1–21 (2014).
Article Google Scholar
30.
Pukowski, E. Ökologische untersuchungen an necrophorus. Z. Morphol. Oekol. 27, 518–586 (1933).
Article Google Scholar
31.
Scott, M. P. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43, 595–618 (1998).
CAS PubMed Article Google Scholar
32.
Milne, L. J. & Milne, M. The social behavior of burying beetles. Sci. Am. 235, 84–89 (1976).
Article Google Scholar
33.
Müller, J. K. & Eggert, A. K. Paternity assurance by ‘helpful’ males: adaptations to sperm competition in burying beetles. Behav. Ecol. Sociobiol. 24, 245–249 (1989).
Article Google Scholar
34.
House, C. M. et al. The evolution of repeated mating in the burying beetle Nicorphorus vespilloides. Evolution 62, 2004–2014 (2008).
PubMed Article Google Scholar
35.
Pettinger, A. M., Steiger, S., Müller, J. K., Sakaluk, S. K. & Eggert, A. K. Dominance status and carcass availability affect the outcome of sperm competition in burying beetles. Behav. Ecol. 22, 1079–1087 (2011).
Article Google Scholar
36.
Rozen, D. E., Engelmoer, D. J. P. & Smiseth, P. T. Antimicrobial strategies in burying beetles breeding on carrion. Proc. Natl. Acad. Sci. USA 105, 17890–17895 (2008).
ADS CAS PubMed Article Google Scholar
37.
Arce, A. N., Johnston, P. R., Smiseth, P. T. & Rozen, D. E. Mechanisms and fitness effects of antibacterial defences in a carrion beetle. J. Evol. Biol. 25, 930–937 (2012).
CAS PubMed Article Google Scholar
38.
Hall, C. L. et al. Inhibition of microorganisms on a carrion breeding resource: the antimicrobial peptide activity of burying beetle (Coleoptera: Silphidae) oral and anal secretions. Environ. Entomol. 40, 669–678 (2011).
PubMed Article Google Scholar
39.
Duarte, A., Welch, M., Swannack, C., Wagner, J. & Kilner, R. M. Strategies for managing rival bacterial communities: lessons from burying beetles. J. Anim. Ecol. 87, 414–427 (2018).
PubMed Article Google Scholar
40.
Trumbo, S. T. Reproductive benefits and the duration of paternal care in a biparental burying beetle Necrophorus orbicollis. Behaviour 117, 82–105 (1991).
Article Google Scholar
41.
Trumbo, S. T. Fate of mouse carcasses in a Northern Woodland. Ecol. Entomol. 41, 737–740 (2016).
Article Google Scholar
42.
Hoback, W. W., Freeman, L., Payton, M. & Peterson, B. C. Burying beetle (Coleoptera: Silphidae: Nicrophorus fabricius) brooding improves soil fertility. Coleopt. Bull. 74, 427–433 (2020).
Article Google Scholar
43.
Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, 1–26 (2018).
Google Scholar
44.
Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94, 12–24 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
45.
Carter, D. O., Yellowlees, D. & Tibbett, M. Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl. Soil Ecol. 40, 129–137 (2008).
Article Google Scholar
46.
Meyer, J., Anderson, B. & Carter, D. O. Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (Dfa) climate. J. Forensic Sci. 58, 1175–1182 (2013).
PubMed Article PubMed Central Google Scholar
47.
Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar
48.
Chen, Y. A., Forschler, B. T. & Nielsen, U. Elemental concentrations in the frass of saproxylic insects suggest a role in micronutrient cycling. Ecosphere 7, 1–13 (2016).
Google Scholar
49.
Couture, J. J. & Lindroth, R. L. Atmospheric change alters frass quality of forest canopy herbivores. Arthropod. Plant. Interact. 8, 33–47 (2014).
Article Google Scholar
50.
Metcalf, J. L. et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. Elife 2013, 1–19 (2013).
Google Scholar
51.
Xu, S., Liu, L. L. & Sayer, E. J. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences 10, 7423–7433 (2013).
ADS Article CAS Google Scholar
52.
Wilson, W. A. et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol. Rev. 34, 952–985 (2010).
CAS PubMed PubMed Central Article Google Scholar
53.
Achbergerová, L. & Nahálka, J. Polyphosphate—an ancient energy source and active metabolic regulator. Microb. Cell Fact. 10, 1–14 (2011).
Article CAS Google Scholar
54.
Kornberg, A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J. Bacteriol. 177, 491–496 (1995).
CAS PubMed PubMed Central Article Google Scholar
55.
Wilkinson, J. F. Carbon and energy storage in bacteria. J. Gen. Microbiol. 32, 171–176 (1963).
CAS PubMed Article Google Scholar
56.
Paul, E. A. Soil Microbiology, Ecology and Biochemistry (Academic Press, Cambridge, 2014).
Google Scholar
57.
DeVault, T. L., Brisbin, I. L. Jr. & Rhodes, O. E. Jr. Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can. J. Zool. 82, 502–509 (2004).
Article Google Scholar
58.
DeVault, T. L., Rhodes, O. E. Jr. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).
Article Google Scholar
59.
DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. 47, 185–192 (2002).
Article Google Scholar
60.
Smith, J. B., Laatsch, L. J. & Beasley, J. C. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition. Sci. Rep. 7, 1–8 (2017).
Article CAS Google Scholar
61.
Wilson, D. S. & Fudge, J. Burying beetles: intraspecific interactions and reproductive success in the field. Ecol. Entomol. 9, 195–203 (1984).
Article Google Scholar
62.
Keller, M. L., Howard, D. R. & Hall, C. L. Spatiotemporal niche partitioning in a specious silphid community (Coleoptera: Silphidae Nicrophorus). Sci. Nat. 106, 1–12 (2019).
ADS Article CAS Google Scholar
63.
Owings, C. G. & Picard, C. J. Temporal survey of a carrion beetle (Coleoptera:Silphidae) community in Indiana. Proc. Indiana Acad. Sci. 124, 124–128 (2015).
Google Scholar
64.
Snyder, D. P. Survival rates, longevity, and population fluctuations in the white-footed mouse, Peromyscus leucopus Southeastern Michigan. Museum Zool. Universty Michigan 95, 1–33 (1956).
Google Scholar
65.
Stephens, R. B., Hocking, D. J., Yamasaki, M. & Rowe, R. J. Synchrony in small mammal community dynamics across a forested landscape. Ecography 40, 1198–1209 (2017).
Article Google Scholar
66.
Leasure, D. R., Rupe, D. M., Phillips, E. A., Opine, D. R. & Huxel, G. R. Efficient new above-ground bucket traps produce comparable data to that of standard transects for the endangered American Burying Beetle, Nicrophorus americanus Olivier (Coleoptera: Silphidae). Coleopt. Bull. 66, 209–218 (2012).
Article Google Scholar
67.
Bedick, J. C., Ratcliffe, B. C. & Higley, L. G. A new sampling protocol for the endangered American Burying Beetle, Nicrophorus americanus Olivier (Coleoptera: Silphidae). Coleopt. Bull. 58, 57–70 (2004).
Article Google Scholar
68.
Trumbo, S. T. Reproductive success, phenology and biogeography of burying beetles (Silphidae, Nicrophorus). Am. Midl. Nat. 124, 1–11 (1990).
Article Google Scholar
69.
Trumbo, S. T. Nesting failure in burying beetles and the origin of communal associations. Evol. Ecol. 9, 125–130 (1995).
Article Google Scholar
70.
Braman, R. S. & Hendrix, S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715–2718 (1989).
CAS PubMed Article Google Scholar
71.
Sims, G. K., Ellsworth, T. R. & Mulvaney, R. L. Microscale determination of inorganic nitrogen in water and soil extracts. Commun. Soil Sci. Plant Anal. 26, 303–316 (1995).
CAS Article Google Scholar
72.
Contosta, A. R., Frey, S. D. & Cooper, A. B. Seasonal dynamics of soil respiration and N mineralization in chronically warmed and fertilized soils. Ecosphere 2, 1–21 (2011).
Article Google Scholar
73.
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).
CAS Article Google Scholar
74.
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
CAS Article Google Scholar
75.
Brookes, P. D. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
CAS Article Google Scholar
76.
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
CAS PubMed Article Google Scholar
77.
White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40, 51–62 (1979).
ADS CAS PubMed Article Google Scholar
78.
Guckert, J. B., Antworth, C. P., Nichols, P. D. & White, D. C. Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol. Lett. 31, 147–158 (1985).
CAS Article Google Scholar
79.
Bardgett, R. D., Hobbs, P. J. & Frostegårde, A. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22, 261–264 (1996).
Article Google Scholar
80.
Bååth, E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb. Ecol. 45, 373–383 (2003).
PubMed Article CAS Google Scholar
81.
Ekelund, F., Olsson, S. & Johansen, A. Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Biol. Biochem. 35, 1507–1516 (2003).
CAS Article Google Scholar
82.
Leckie, S. E., Prescott, C. E., Grayston, S. J., Neufeld, J. D. & Mohn, W. W. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability. Microb. Ecol. 48, 29–40 (2004).
CAS PubMed Article Google Scholar
83.
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
CAS PubMed Article Google Scholar
84.
Oksanen, J. et al. Vegan: community ecology package (2019). http://cran.r-project.org/.
85.
Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics version 0.9-75 from CRAN. R package version 0.9-75 (2020).
86.
Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications Inc, Thousand Oaks, 2018).
Google Scholar More