Changes in the large carnivore community structure of the Judean Desert in connection to Holocene human settlement dynamics
1.
Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
PubMed Article CAS Google Scholar
2.
Dietl, G. P. et al. Conservation paleobiology: Leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).
ADS CAS Article Google Scholar
3.
Rick, T. C. & Lockwood, R. Integrating paleobiology, archeology, and history to inform biological conservation. Conserv. Biol. 27, 45–54 (2013).
PubMed Article Google Scholar
4.
Dietl, G. P. Brave new world of conservation paleobiology. Front. Ecol. Evol. 4, 21 (2016).
Article Google Scholar
5.
Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).
ADS PubMed Article CAS Google Scholar
6.
Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).
ADS PubMed Article CAS Google Scholar
7.
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).
ADS CAS PubMed Article Google Scholar
8.
Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).
Article Google Scholar
9.
Faurby, S., Silvestro, D., Werdelin, L. & Antonelli, A. Brain expansion in early hominins predicts carnivore extinctions in East Africa. Ecol. Lett. 23, 537–544 (2020).
PubMed PubMed Central Article Google Scholar
10.
Van Der Kaars, S. et al. Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat. Commun. 8, 1–7 (2017).
ADS Article CAS Google Scholar
11.
Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl. Acad. Sci. U. S. A. 111, 14472–14477 (2014).
ADS CAS PubMed PubMed Central Article Google Scholar
12.
Tsahar, E., Izhaki, I., Lev-Yadun, S. & Bar-Oz, G. Distribution and Extinction Of Ungulates During The Holocene of the Southern Levant. PLoS ONE 4, e5316 (2009).
ADS PubMed PubMed Central Article CAS Google Scholar
13.
Boivin, N. L. et al. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proc. Natl. Acad. Sci. U. S. A. 113, 6388–16396 (2016).
CAS PubMed PubMed Central Article Google Scholar
14.
Jęodrzejewska, B., Jęodrzejewski, W., Bunevich, A. N., Minkowski, L. & Okarma, H. Population dynamics of Wolves Canis lupus in Bialowieża Primeval Forest (Poland and Belarus) in relation to hunting by humans, 1847–1993. Mamm. Rev. 26, 103–126 (1996).
Article Google Scholar
15.
Orbach, M. & Yeshurun, R. The hunters or the hunters: Human and hyena prey choice divergence in the Late Pleistocene Levant. J. Hum. Evol. 102572 (2019).
16.
Werdelin, L. & Lewis, M. E. Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene carnivoran guild. PLoS ONE 8, e57944 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
17.
Albrecht, J. et al. Humans and climate change drove the Holocene decline of the brown bear. Sci. Rep. 7, 10399 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
18.
Dayan, T. Carnivore diversity in the late quaternary of Israel. Quat. Res. 41, 343–349 (1994).
Article Google Scholar
19.
Price, G. J., Louys, J., Faith, J. T., Lorenzen, E. & Westaway, M. C. Big data little help in megafauna mysteries. Nature 558, 23–25 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
20.
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
PubMed Article CAS PubMed Central Google Scholar
21.
Mittelbach, G. G. & McGill, B. J. Community Ecology (Oxford University Press, Oxford, 2019).
Google Scholar
22.
Hebblewhite, M. et al. Human activity mediates a trophic cascade caused by wolves. Ecology 86, 2135–2144 (2005).
Article Google Scholar
23.
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
24.
Hoeks, S. et al. Mechanistic insights into the role of large carnivores for ecosystem structure and functioning. Ecography 283, 3 (2020).
Google Scholar
25.
Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
Article Google Scholar
26.
Mendelssohn, H. & Yom-Tov, Y. Mammalia of Israel. 476 (Israel Academy of Sciences and Humanities, 1999).
27.
Hadas, G. Ancient agricultural irrigation systems in the oasis of Ein Gedi, Dead Sea, Israel. J. Arid Environ. 86, 75–81 (2012).
ADS Article Google Scholar
28.
Bar-Matthews, M., Ayalon, A., Kaufman, A. & Wasserburg, G. J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet. Sci. Lett. 166, 85–95 (1999).
ADS CAS Article Google Scholar
29.
Litt, T., Ohlwein, C., Neumann, F. H. & Hense, A. Holocene climate variability in the Levant from the Dead Sea pollen record. Quat. Sci. Rev. 49, 95–105 (2012).
ADS Article Google Scholar
30.
Vaks, A., Bar-Matthews, M., Ayalon, A. & Matthews, A. Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth Planet. Sci. Lett. 249, 384–399 (2006).
ADS CAS Article Google Scholar
31.
Frumkin, A. & Elitzur, Y. Historic Dead Sea level fluctuations calibrated with geological and archaeological evidence. Quat. Res. 57, 334–342 (2002).
Article Google Scholar
32.
Lisker, S. et al. Late Quaternary environmental and human events at En Gedi, reflected by the geology and archaeology of the Moringa Cave (Dead Sea area, Israel). Quat. Res. 68, 203–212 (2007).
Article Google Scholar
33.
Frumkin, A., Langford, B. & Porat, R. The Judean Desert—The major hypogene cave region of the Southern Levant. In Hypogene Karst Regions and Caves of the World (eds Klimchouk, A. et al.) 463–477 (Springer, Berlin, 2017).
Google Scholar
34.
Frumkin, A., Zaidner, Y., Na’aman, I., Tsatskin, A. & Porat, N. Sagging and collapse sinkholes over hypogenic hydrothermal karst in a carbonate terrain. Geomorphology 229, 45–57 (2015).
ADS Article Google Scholar
35.
Davidovich, U. The Chalcolithic—Early bronze age transition: A view from the Judean Desert Caves, Southern Levant. Paléorient 39, 125–138 (2013).
Article Google Scholar
36.
Rick, J. W. Dates as data: An examination of the Peruvian preceramic radiocarbon record. Am. Antiq. 52, 55–73 (1987).
Article Google Scholar
37.
Jacobson, A. P. et al. Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4, e1974 (2016).
PubMed PubMed Central Article CAS Google Scholar
38.
Shamoon, H. & Shapira, I. Limiting factors of Striped Hyaena, Hyaena hyaena, distribution and densities across climatic and geographical gradients (Mammalia: Carnivora). Zool. Middle East 65, 189–200 (2019).
Article Google Scholar
39.
Yirga, G. et al. Spotted hyena (Crocuta crocuta) concentrate around urban waste dumps across Tigray, northern Ethiopia. Wildl. Res. 42, 563–569 (2016).
Article Google Scholar
40.
Davidovich, U. The Judean Desert during the Chalcolithic, Bronze and Iron Ages (Sixth-First Millennia BC): Desert and Sown Relations in light of Activity Patterns in a Defined Desert Environment (The Hebrew University, Jerusalem, 2014).
Google Scholar
41.
Geffen, E., Hefner, R., MacDonald, D. W. & Ucko, M. Diet and Foraging Behavior of Blanford’s Foxes, Vulpes cana, Israel. J. Mammal. 73, 395–402 (1992).
Article Google Scholar
42.
Tchernov, E. The Middle Paleolithic mammalian sequence and its bearing on the origin of Homo sapiens in the southern Levant. in Investigations in South Levantine Prehistory (eds. Bar-Yosef, 0. & Vandermeersch, B.) 25–42 (BAR, International Series 497, 1989).
43.
Garfinkel, Y. et al. Pottery Neolithic Site in the Southern Coastal Plain of Israel, A final report. J. Israel Prehist. Soc. 32, 73–145 (2002).
Google Scholar
44.
Tichon, J., Rotem, G. & Ward, P. Estimating abundance of striped hyenas (Hyaena hyaena) in the Negev Desert of Israel using camera traps and closed capture–recapture models. Eur. J. Wildl. Res. 63, 5 (2016).
Article Google Scholar
45.
Perez, I., Geffen, E. & Mokady, O. Critically Endangered Arabian leopards Panthera pardus nimr in Israel: estimating population parameters using molecular scatology. Oryx 40, 295–301 (2006).
Article Google Scholar
46.
Avner, U. et al. Carnivore traps in the Negev and Judaean deserts (Israel): function, location and chronology. in Prédateurs dans tous leurs états: évolution, biodiversité, interactions, mythes, symboles. Actes des XXXIe rencontres internationales d’archéologie et d’histoire d’Antibes, 21–23 octobre 2010 (eds. Brugal, J. P., Gardeisen, A. & Zucker, A.) 253–268 (2011).
47.
Hadas, G. Hunting Traps around the Oasis of ʿEn Gedi. Israel Explor. J. 61, 2–11 (2011).
Google Scholar
48.
Torfstein, A., Goldstein, S. L., Stein, M. & Enzel, Y. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quat. Sci. Rev. 69, 1–7 (2013).
ADS Article Google Scholar
49.
Torfstein, A. et al. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth Planet. Sci. Lett. 412, 235–244 (2015).
ADS CAS Article Google Scholar
50.
Lisker, S., Vaks, A., Bar-Matthews, M., Porat, R. & Frumkin, A. Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites. Quat. Sci. Rev. 29, 1201–1211 (2010).
Article Google Scholar
51.
Frumkin, A. & Comay, O. The last glacial cycle of the southern Levant: Paleoenvironment and chronology of modern humans. J. Hum. Evol. https://doi.org/10.1016/j.jhevol.2019.04.007 (2019).
Article PubMed PubMed Central Google Scholar
52.
Orland, I. J. et al. Seasonal resolution of Eastern Mediterranean climate change since 34ka from a Soreq Cave speleothem. Geochim. Cosmochim. Acta 89, 240–255 (2012).
ADS CAS Article Google Scholar
53.
Bar-Matthews, M. & Ayalon, A. Speleothems as palaeoclimate indicators, a case study from Soreq Cave located in the Eastern Mediterranean Region, Israel. In Past Climate Variability Through Europe and Africa (eds Battarbee, R. W. et al.) 363–391 (Springer, Berlin, 2004).
Google Scholar
54.
Frumkin, A., Kadan, G., Enzel, Y. & Eyal, Y. Radiocarbon chronology of the Holocene Dead Sea: Attempting a regional correlation. Radiocarbon 43, 1179–1189 (2001).
CAS Article Google Scholar
55.
Morin, E., Ryb, T., Gavrieli, I. & Enzel, Y. Mean, variance, and trends of Levant precipitation over the past 4500 years from reconstructed Dead Sea levels and stochastic modeling. Quat. Res. 91, 751–767 (2019).
CAS Article Google Scholar
56.
Enzel, Y. et al. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat. Res. 60, 263–273 (2003).
Article Google Scholar
57.
Bookman, R., Enzel, Y., Agnon, A. & Stein, M. Late Holocene lake levels of the Dead Sea. GSA Bull. 116, 555–571 (2004).
Article Google Scholar
58.
Kagan, E. J., Langgut, D., Boaretto, E., Neumann, F. H. & Stein, M. Dead Sea levels during the Bronze and Iron ages. Radiocarbon 57, 237–252 (2015).
Article Google Scholar
59.
Vaks, A. et al. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quat. Res. 59, 182–193 (2003).
CAS Article Google Scholar
60.
Frumkin, A., Ford, D. C. & Schwarcz, H. P. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quat. Res. 51, 317–327 (1999).
CAS Article Google Scholar
61.
Kolodny, Y., Stein, M. & Machlus, M. Sea-rain-lake relation in the Last Glacial East Mediterranean revealed by δ18O-δ13C in Lake Lisan aragonites. Geochim. Cosmochim. Acta 69, 4045–4060 (2005).
ADS CAS Article Google Scholar
62.
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003).
ADS CAS Article Google Scholar
63.
Greenbaum, N., Ben-Zvi, A., Haviv, I. & Enzel, Y. The hydrology and paleohydrology of the Dead Sea tributaries. Geol. Soc. Am. Spec. Publ. 401, 63–93 (2006).
Google Scholar
64.
Enzel, Y. et al. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Glob. Planet. Change 60, 165–192 (2008).
ADS Article Google Scholar
65.
Petraglia, M. D., Groucutt, H. S., Guagnin, M., Breeze, P. S. & Boivin, N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl. Acad. Sci. U. S. A. 117, 8263–8270 (2020).
CAS PubMed PubMed Central Article Google Scholar
66.
Frumkin, A. Holy Land Atlas: Judean Desert Caves (Magnes Press, Jerusalem, 2015).
Google Scholar
67.
Klein, E., Davidovich Uri, Porat, R., Ganor, A. & Ullman, M. In the Cave of the Skulls-Again. Biblic. Archaeol. Rev. 43, 18–19 and 57 (2017).
68.
Cherkinsky, A. Can we get a good radiocarbon age from “bad bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon 51, 647–655 (2009).
CAS Article Google Scholar
69.
Zazzo, A. & Saliège, J. F. Radiocarbon dating of biological apatites: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 52–61 (2011).
Article Google Scholar
70.
Ramsey, C. B. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).
ADS Article Google Scholar
71.
Bevan, A., Crema, E. & Silva, F. rcarbon: Calibration and Analysis of Radiocarbon Dates. R package version 1 (2017). More