Improving prediction and assessment of global fires using multilayer neural networks
1.
Bowman, D. M. et al. Fire in the earth system. Science 324, 481–484. https://doi.org/10.1126/science.1163886 (2009).
ADS CAS Article PubMed Google Scholar
2.
Scott, A. C. The pre-quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329. https://doi.org/10.1016/s0031-0182(00)00192-9 (2000).
Article Google Scholar
3.
Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl. Acad. Sci. 108, 5209–5214. https://doi.org/10.1073/pnas.1018116108 (2011).
ADS Article PubMed Google Scholar
4.
Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int. J. Wildl. Fire 18, 483–507. https://doi.org/10.1071/wf08187 (2009).
Article Google Scholar
5.
Hantson, S., Pueyo, S. & Chuvieco, E. Global fire size distribution is driven by human impact and climate: Spatial trends in global fire size distribution. Glob. Ecol. Biogeogr. 24, 77–86. https://doi.org/10.1111/geb.12246 (2015).
Article Google Scholar
6.
Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).
CAS Article Google Scholar
7.
Lasslop, G., Brovkin, V., Reick, C. H., Bathiany, S. & Kloster, S. Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback. Geophys. Res. Lett. 43, 6324–6331. https://doi.org/10.1002/2016gl069365 (2016).
ADS Article Google Scholar
8.
Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4): ANALYSIS OF BURNED AREA. J. Geophys. Res. Biogeosci. 118, 317–328. https://doi.org/10.1002/jgrg.20042 (2013).
Article Google Scholar
9.
van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720. https://doi.org/10.5194/essd-9-697-2017 (2017).
ADS Article Google Scholar
10.
Loehman, R. A., Reinhardt, E. & Riley, K. L. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees-a cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. For. Ecol. Manag. 317, 9–19. https://doi.org/10.1016/j.foreco.2013.04.014 (2014).
Article Google Scholar
11.
Landry, J.-S. & Matthews, H. D. Non-deforestation fire vs. fossil fuel combustion: the source of CO(_{{2}}) emissions affects the global carbon cycle and climate responses. Biogeosciences 13, 2137–2149. https://doi.org/10.5194/bg-13-2137-2016 (2016).
ADS Article Google Scholar
12.
Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284. https://doi.org/10.1126/science.11638860 (2016).
Article Google Scholar
13.
Langmann, B., Duncan, B., Textor, C., Trentmann, J. & van der Werf, G. R. Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ. 43, 107–116. https://doi.org/10.1126/science.11638861 (2009).
ADS CAS Article Google Scholar
14.
Urbanski, S. Wildland fire emissions, carbon, and climate: Emission factors. For. Ecol. Manag. 317, 51–60. https://doi.org/10.1016/j.foreco.2013.05.045 (2014).
Article Google Scholar
15.
Veraverbeke, S., Verstraeten, W. W., Lhermitte, S., Van De Kerchove, R. & Goossens, R. Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire – burn severity using multitemporal MODIS imagery. Int. J. Wildl. Fire 21, 243. https://doi.org/10.1071/WF10075 (2012).
Article Google Scholar
16.
Bowman, D. M. J. S., Murphy, B. P., Williamson, G. J. & Cochrane, M. A. Pyrogeographic models, feedbacks and the future of global fire regimes: Correspondence. Glob. Ecol. Biogeogr. 23, 821–824. https://doi.org/10.1126/science.11638864 (2014).
Article Google Scholar
17.
Harris, R. M. B., Remenyi, T. A., Williamson, G. J., Bindoff, N. L. & Bowman, D. M. J. S. Climate-vegetation-fire interactions and feedbacks: Trivial detail or major barrier to projecting the future of the Earth system?: Climate-vegetation-fire interactions and feedbacks. Wiley Interdiscip. Rev. Clim. Change 7, 910–931. https://doi.org/10.1002/wcc.428 (2016).
Article Google Scholar
18.
Bradstock, R. A. A biogeographic model of fire regimes in Australia: Current and future implications: A biogeographic model of fire in Australia. Glob. Ecol. Biogeogr. 19, 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.x (2010).
Article Google Scholar
19.
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362. https://doi.org/10.1126/science.aal4108 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
20.
Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. 107, 19167–19170. https://doi.org/10.1073/pnas.1003669107 (2010).
ADS Article PubMed Google Scholar
21.
Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS One 4, e5102 (2009).
ADS Article Google Scholar
22.
Pausas, J. G. & Keeley, J. E. Abrupt climate-independent fire regime changes. Ecosystems 17, 1109–1120. https://doi.org/10.1007/s10021-014-9773-5 (2014).
CAS Article Google Scholar
23.
Pausas, J. G. & Ribeiro, E. The global fire-productivity relationship: Fire and productivity. Glob. Ecol. Biogeogr. 22, 728–736. https://doi.org/10.1016/s0031-0182(00)00192-90 (2013).
Article Google Scholar
24.
Mondal, N. & Sukumar, R. Fires in seasonally dry tropical forest: Testing the varying constraints hypothesis across a regional rainfall gradient. PLoS One 11, e0159691. https://doi.org/10.1371/journal.pone.0159691 (2016).
CAS Article PubMed PubMed Central Google Scholar
25.
Foley, J. A. et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles 10, 603–628. https://doi.org/10.1029/96gb02692 (1996).
ADS CAS Article Google Scholar
26.
Thonicke, K., Venevsky, S., Sitch, S. & Cramer, W. The role of fire disturbance for global vegetation dynamics: Coupling fire into a dynamic global vegetation model. Glob. Ecol. Biogeogr. 10, 661–677. https://doi.org/10.1046/j.1466-822x.2001.00175.x (2001).
Article Google Scholar
27.
Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991. https://doi.org/10.1016/s0031-0182(00)00192-94 (2010).
ADS CAS Article Google Scholar
28.
Rabin, S. S. et al. The fire modeling intercomparison project (FireMIP), phase 1: Experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197. https://doi.org/10.5194/gmd-10-1175-2017 (2017).
ADS CAS Article Google Scholar
29.
Li, F., Zeng, X. & Levis, S. A process-based fire parameterization of intermediate complexity in a dynamic global vegetation model. Biogeosciences 9, 2761–2780. https://doi.org/10.1016/s0031-0182(00)00192-96 (2012).
ADS Article Google Scholar
30.
Li, F., Levis, S. & Ward, D. Quantifying the role of fire in the earth system-part 1: Improved global fire modeling in the community earth system model (cesm1). Biogeosciences 10, 2293 (2013).
ADS CAS Article Google Scholar
31.
Hantson, S. et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. 13, 3299–3318. https://doi.org/10.5194/gmd-13-3299-2020 (2020).
ADS Article Google Scholar
32.
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537. https://doi.org/10.1038/ncomms8537 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
33.
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 24, 5164–5175. https://doi.org/10.1016/s0031-0182(00)00192-98 (2018).
ADS Article Google Scholar
34.
Archibald, S., Roy, D. P., van Wilgen, B. W. & Scholes, R. J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Change Biol. 15, 613–630. https://doi.org/10.1111/j.1365-2486.2008.01754.x (2009).
ADS Article Google Scholar
35.
Aldersley, A., Murray, S. J. & Cornell, S. E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 409, 3472–3481. https://doi.org/10.1016/s0031-0182(00)00192-99 (2011).
ADS CAS Article PubMed Google Scholar
36.
Yang, L., Dawson, C. W., Brown, M. R. & Gell, M. Neural network and GA approaches for dwelling fire occurrence prediction. Knowl. Based Syst. 19, 213–219. https://doi.org/10.1016/j.knosys.2005.11.021 (2006).
Article Google Scholar
37.
Dutta, R., Aryal, J., Das, A. & Kirkpatrick, J. B. Deep cognitive imaging systems enable estimation of continental-scale fire incidence from climate data. Sci. Rep. 3, 3188. https://doi.org/10.1038/srep03188 (2013).
ADS Article PubMed PubMed Central Google Scholar
38.
Satir, O., Berberoglu, S. & Donmez, C. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Hazards Risk 7, 1645–1658. https://doi.org/10.1080/19475705.2015.1084541 (2016).
Article Google Scholar
39.
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the cru ts3. 10 dataset. Int. J. Climatol. 34, 623–642 (2014).
Article Google Scholar
40.
Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 4, 1147–1167 (2003).
ADS Article Google Scholar
41.
Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176. https://doi.org/10.1073/pnas.10181161083 (2005).
ADS Article Google Scholar
42.
Freire, S. & Pesaresi, M. Ghs population grid, derived from gpw4, multitemporal (1975, 1990, 2000, 2015).European Commission Joint Research Centre (JRC) (2015).
43.
Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).
ADS Article Google Scholar
44.
Friedl, M. A. et al. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182. https://doi.org/10.1073/pnas.10181161084 (2010).
ADS Article Google Scholar
45.
Channan, S., Collins, K. & Emanuel, W. Global Mosaics of the Standard Modis Land Cover Type Data Vol. 30 (University of Maryland and the Pacific Northwest National Laboratory, College Park, 2014).
Google Scholar
46.
Lay, E. H. et al. Wwll global lightning detection system: Regional validation study in brazil. Geophys. Res. Lett. 31, 20 (2004).
Google Scholar
47.
Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in north American boreal forests. Nat. Clim. Change 7, 529–534 (2017).
ADS Article Google Scholar
48.
Chen, Y. et al. A pan-tropical cascade of fire driven by el niño/southern oscillation. Nat. Clim. Change 7, 906. https://doi.org/10.1038/s41558-017-0014-8 (2017).
ADS CAS Article Google Scholar
49.
Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of amazon deforestation carbon emissions. Nat. Commun. 9, 536. https://doi.org/10.1038/s41467-017-02771-y (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
50.
Yin, Y. et al. Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño: FIRE CARBON EMISSIONS IN EQUATORIAL ASIA. Geophys. Res. Lett. 43, 10472–10479. https://doi.org/10.1073/pnas.10181161087 (2016).
ADS CAS Article Google Scholar
51.
Verdon, D. C., Kiem, A. S. & Franks, S. W. Multi-decadal variability of forest fire risk-eastern Australia. Int. J. Wildl. Fire 13, 165–171. https://doi.org/10.1071/WF03034 (2004).
Article Google Scholar
52.
Mariani, M., Fletcher, M.-S., Holz, A. & Nyman, P. Enso controls interannual fire activity in southeast Australia: Enso and fire activity in SE Australia. Geophys. Res. Lett. 43, 10891–10900. https://doi.org/10.1002/2016GL070572 (2016).
ADS Article Google Scholar
53.
Li, L.-M., Song, W.-G., Ma, J. & Satoh, K. Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk. Int. J. Wildl. Fire 18, 640–647. https://doi.org/10.1071/WF07136 (2009).
Article Google Scholar
54.
Vasilakos, C., Kalabokidis, K., Hatzopoulos, J. & Matsinos, I. Identifying wildland fire ignition factors through sensitivity analysis of a neural network. Nat. Hazards 50, 125–143. https://doi.org/10.1071/wf081871 (2009).
Article Google Scholar
55.
Whitman, E., Parisien, M.-A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 9, 18796. https://doi.org/10.1038/s41598-019-55036-7 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
56.
Hawbaker, T. J. et al. Human and biophysical influences on fire occurrence in the united states. Ecol. Appl. 23, 565–582 (2013).
Article Google Scholar
57.
Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058. https://doi.org/10.1038/s41559-016-0058 (2017).
Article Google Scholar
58.
Andela, N. & van der Werf, G. R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Change 4, 791–795. https://doi.org/10.1038/nclimate2313 (2014).
ADS Article Google Scholar
59.
Walker, X. J. et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Changehttps://doi.org/10.1038/s41558-020-00920-8 (2020).
Article Google Scholar
60.
Zubkova, M., Boschetti, L., Abatzoglou, J. T. & Giglio, L. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophys. Res. Lett. 46, 7643–7653. https://doi.org/10.1029/2019GL083469 (2019).
ADS Article PubMed PubMed Central Google Scholar
61.
Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 1–22 (2012).
Article Google Scholar
62.
Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69. https://doi.org/10.1016/j.gloplacha.2016.12.017 (2017).
ADS Article Google Scholar
63.
Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735. https://doi.org/10.1071/wf081877 (2010).
ADS CAS Article Google Scholar
64.
Archibald, S. et al. Biological and geophysical feedbacks with fire in the earth system. Environ. Res. Lett. 13, 033003. https://doi.org/10.1071/wf081878 (2018).
ADS Article Google Scholar
65.
Ponomarev, E., Kharuk, V. & Ranson, K. Wildfires dynamics in Siberian larch forests. Forests 7, 125. https://doi.org/10.3390/f7060125 (2016).
Article Google Scholar
66.
van der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N. & Dolman, A. J. Climate controls on the variability of fires in the tropics and subtropics: Climate controls on fires. Glob. Biogeochem. Cycleshttps://doi.org/10.1029/2007GB003122 (2008).
Article Google Scholar More