The occurrence and ecology of microbial chain elongation of carboxylates in soils
1.
Barker HA, Taha SM. Clostridium kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol. J Bacteriol. 1942;43:347–63.
CAS PubMed PubMed Central Article Google Scholar
2.
Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, et al. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ Sci Technol. 2016;50:2796–810.
CAS PubMed Article PubMed Central Google Scholar
3.
Béchamp MA. Lettre de m. A. Béchamp a m. Dumas. Ann Chim Phys 1868;4:103–11.
Google Scholar
4.
Weimer PJ, Stevenson DM. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen. Appl Microbiol Biotechnol. 2012;94:461–6.
CAS PubMed Article PubMed Central Google Scholar
5.
Kenealy WR, Waselefsky DM. Studies on the substrate range of Clostridium kluyveri – the use of propanol and succinate. Arch Microbiol. 1985;141:187–94.
CAS Article Google Scholar
6.
Barker HA, Kamen MD, Bornstein BT. The synthesis of butyric and caproic acids from ethanol and acetic acid by Clostridium kluyveri. Proc Natl Acad Sci USA. 1945;31:373–81.
CAS PubMed Article PubMed Central Google Scholar
7.
Bornstein BT, Barker HA. The energy metabolism of Clostridium kluyveri and the synthesis of fatty acids. J Biol Chem. 1948;172:659–69.
CAS PubMed Article PubMed Central Google Scholar
8.
Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittimatter A, et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci USA. 2008;105:2128–33.
CAS PubMed Article PubMed Central Google Scholar
9.
Gonzalez-Cabaleiro R, Lema JM, Rodriguez J, Kleerebezem R. Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses. Energy Environ Sci. 2013;6:3780–9.
CAS Article Google Scholar
10.
Spirito CM, Richter H, Rabaey K, Stams AJM, Angenent LT. Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol. 2014;27:115–22.
CAS PubMed Article PubMed Central Google Scholar
11.
Rittmann BE & McCarty PL. Environmental Biotechnology: Principles and Applications. McGraw-Hill Book Education: New York; 2001.
12.
Thauer RK, Jungermann K, Henninger H, Wenning J, Decker K. The energy metabolism of Clostridium kluyveri. Eur J Biochem. 1968;4:173–80.
CAS PubMed Article PubMed Central Google Scholar
13.
Stadtman ER, Barker HA. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. I. Preparation of cell-free extracts that catalyze the conversion of ethanol and acetate to butyrate and caproate. J Biol Chem. 1949;180:1085–93.
CAS PubMed Article PubMed Central Google Scholar
14.
Stadtman ER, Barker HA. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. VI. Reactions of acyl phosphates. J Biol Chem. 1950;184:769–93.
CAS PubMed Article PubMed Central Google Scholar
15.
Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy Environ Sci. 2011;4:216–24.
CAS Article Google Scholar
16.
Agler MT, Spirito CM, Usack JG, Werner JJ, Angenent LT. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ Sci. 2012;5:8189–92.
CAS Article Google Scholar
17.
Cavalcante WD, Leitao RC, Gehring TA, Angenent LT, Santaella ST. Anaerobic fermentation for n-caproic acid production: A review. Process Biochem. 2017;54:106–19.
CAS Article Google Scholar
18.
De Groof V, Coma M, Arnot T, Leak DJ, Lanham AB. Medium chain carboxylic acids from complex organic feedstocks by mixed culture fermentation. Molecules 2019;24:398.
PubMed Central Article CAS Google Scholar
19.
Schievano A, Sciarria TP, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, et al. Electro-fermentation – merging electrochemistry with fermentation in industrial applications. Trends Biotechnol. 2016;34:866–78.
CAS PubMed Article PubMed Central Google Scholar
20.
Jourdin L, Raes SMT, Buisman CJN, Strik D. Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. Front Energy Res. 2018;6:7.
Article Google Scholar
21.
Candry P, Huang SL, Carvajal-Arroyo JM, Rabaey K, Ganigue R. Enrichment and characterisation of ethanol chain elongating communities from natural and engineered environments. Sci Rep. 2020;10:1–10.
Article CAS Google Scholar
22.
Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere 2020;30:25–39.
Article Google Scholar
23.
Rui JP, Peng JJ, Lu YH. Succession of bacterial populations during plant residue decomposition in rice field soil. Appl Environ Microbiol. 2009;75:4879–86.
CAS PubMed PubMed Central Article Google Scholar
24.
Tsutsuki K, Ponnamperuma FN. Behavior of anaerobic decomposition in submerged soils – effect of organic material amendment, soil properties, and temperature. Soil Sci Plant Nutr. 1987;33:13–33.
CAS Article Google Scholar
25.
Roy R, Kluber HD, Conrad R. Early initiation of methane production in anoxic rice soil despite the presence of oxidants. FEMS Microbiol Ecol. 1997;24:311–20.
CAS Article Google Scholar
26.
Adeleke R, Nwangburuka C, Oboirien B. Origins, roles and fate of organic acids in soils: a review. S Afr J Bot. 2017;108:393–406.
CAS Article Google Scholar
27.
Mohana Rangan S, Mouti A, LaPat-Polasko L, Lowry GV, Krajmalnik-Brown R, Delgado A. Synergistic zero-valent iron (Fe0) and microbiological trichloroethene and perchlorate reductions are determined by the concentration and speciation of Fe. Environ Sci Technol. 2020;54:14422–31.
Article CAS Google Scholar
28.
Delgado AG, Kang D-W, Nelson KG, Fajardo-Williams D, Miceli JF, III, Done HY, et al. Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene. PLoS ONE. 2014;9:e100654.
PubMed PubMed Central Article CAS Google Scholar
29.
Delgado AG, Fajardo-Williams D, Popat SC, Torres CI, Krajmalnik-Brown R. Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures. Appl Microbiol Biotechnol. 2014;98:2729–37.
CAS PubMed Article PubMed Central Google Scholar
30.
Chen TF, Delgado AG, Yavuz BM, Maldonado J, Zuo Y, Kamath R, et al. Interpreting interactions between ozone and residual petroleum hydrocarbons in soil. Environ Sci Technol. 2017;51:506–13.
CAS PubMed Article PubMed Central Google Scholar
31.
Esquivel-Elizondo S, Miceli J, Torres CI, Krajmalnik-Brown R. Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation. Biotechnol Bioeng. 2018;115:341–50.
CAS PubMed Article PubMed Central Google Scholar
32.
Delgado AG, Fajardo-Williams D, Kegerreis KL, Parameswaran P, Krajmalnik-Brown R. Impact of ammonium on syntrophic organohalide-respiring and fermenting microbial communities. mSphere. 2016;1:e00053–16.
CAS PubMed PubMed Central Article Google Scholar
33.
Delgado AG, Fajardo-Williams D, Bondank E, Esquivel-Elizondo S, Krajmalnik-Brown R. Coupling bioflocculation of Dehalococcoides mccartyi to high-rate reductive dehalogenation of chlorinated ethenes. Environ Sci Technol. 2017;51:11297–307.
CAS PubMed Article PubMed Central Google Scholar
34.
Esquivel-Elizondo S, Delgado AG, Krajmalnik-Brown R. Evolution of microbial communities growing with carbon monoxide, hydrogen, and carbon dioxide. FEMS Microbiol Ecol. 2017;93:fix076.
Article CAS Google Scholar
35.
Xiaoyu Z, Yong T, Cheng L, Xiangzhen L, Na W, Wenjie Z, et al. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production. Sci Rep. 2015;5:14360.
Article CAS Google Scholar
36.
Caporaso JG, Christian LL, William AW, Donna B-L, James H, Noah F, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–24.
CAS PubMed PubMed Central Article Google Scholar
37.
Masella A, Bartram A, Truszkowski J, Brown D, Neufeld J. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform. 2012;13:31.
CAS Article Google Scholar
38.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–57.
CAS PubMed PubMed Central Article Google Scholar
39.
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
PubMed PubMed Central Article Google Scholar
40.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6.
CAS PubMed PubMed Central Article Google Scholar
41.
Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, et al. RESCRIPt: Reproducible sequence taxonomy reference database management for the masses. bioRxiv. 2020; https://doi.org/10.1101/2020.10.05.326504.
42.
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.
PubMed PubMed Central Article Google Scholar
43.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST plus: architecture and applications. BMC Bioinform. 2009;10:1.
Article CAS Google Scholar
44.
Kusel K, Drake HL. Acetate synthesis in soil from a Bavarian beech forest. Appl Environ Microbiol. 1994;60:1370–3.
CAS PubMed PubMed Central Article Google Scholar
45.
Kusel K, Drake HL. Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl Environ Microbiol. 1995;61:3667–75.
CAS PubMed PubMed Central Article Google Scholar
46.
Duddleston KN, Kinney MA, Kiene RP, Hines ME. Anaerobic microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic end product. Glob Biogeochem Cycles. 2002;16:11.1–9.
Article CAS Google Scholar
47.
Thebrath B, Mayer HP, Conrad R. Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. FEMS Microbiol Ecol. 1992;86:295–302.
CAS Article Google Scholar
48.
Delgado AG, Parameswaran P, Fajardo-Williams D, Halden RU, Krajmalnik-Brown R. Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb Cell Fact. 2012;11:128.
CAS PubMed PubMed Central Article Google Scholar
49.
Kucek LA, Spirito CM, Angenent LT. High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation. Energy Environ Sci. 2016;9:3482–94.
CAS Article Google Scholar
50.
Volker AR, Gogerty DS, Bartholomay C, Hennen-Bierwagen T, Zhu HL, Bobik TA. Fermentative production of short-chain fatty acids in Escherichia coli. Microbiology 2014;160:1513–22.
CAS PubMed Article PubMed Central Google Scholar
51.
Grootscholten TIM, Steinbusch KJJ, Hamelers HVM, Buisman CJN. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. Bioresour Technol. 2013;135:440–5.
CAS PubMed Article PubMed Central Google Scholar
52.
Reddy MV, Mohan SV, Chang YC. Medium-chain fatty acids (MCFA) production through anaerobic fermentation using Clostridium kluyveri: effect of ethanol and acetate. Appl Biochem Biotechnol. 2018;185:594–605.
CAS PubMed Article PubMed Central Google Scholar
53.
Scarborough MJ, Lawson CE, Hamilton JJ, Donohue TJ, Noguera DR. Metatranscriptomic and thermodynamic insights into medium-chain fatty acid production using an anaerobic microbiome. mSystems 2018;3:6.
Article Google Scholar
54.
Bao S, Wang QY, Zhang PY, Zhang Q, Wu Y, Li F, et al. Effect of acid/ethanol ratio on medium chain carboxylate production with different VFAs as the electron acceptor: insight into carbon balance and microbial community. Energies 2019;12:3720.
CAS Article Google Scholar
55.
Spirito CM, Marzilli AM, Angenent LT. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-caprylate in a bioreactor with product extraction. Environ Sci Technol. 2018;52:13438–47.
CAS PubMed Article PubMed Central Google Scholar
56.
Coma M, Vilchez-Vargas R, Roume H, Jauregui R, Pieper DH, Rabaey K. Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation. Environ Sci Technol. 2016;50:6467–76.
CAS PubMed Article PubMed Central Google Scholar
57.
Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72:1719–28.
CAS PubMed PubMed Central Article Google Scholar
58.
Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J 2009;3:992–1000.
CAS PubMed Article PubMed Central Google Scholar
59.
Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.
PubMed PubMed Central Article CAS Google Scholar
60.
Hollister EB, Forrest AK, Wilkinson HH, Ebbole DJ, Malfatti SA, Tringe SG, et al. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production. Appl Microbiol Biotechnol. 2010;88:389–99.
CAS PubMed Article PubMed Central Google Scholar
61.
Mackie RI, Aminov RI, Hu WP, Klieve AV, Ouwerkerk D, Sundset MA, et al. Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol. 2003;69:6808–15.
CAS PubMed PubMed Central Article Google Scholar
62.
Ye TR, Cai HY, Liu X, Jiang HL. Dominance of Oscillospira and Bacteroides in the bacterial community associated with the degradation of high-concentration dimethyl sulfide under iron-reducing condition. Ann Microbiol. 2016;66:1199–206.
CAS Article Google Scholar
63.
Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016;24:523–4.
CAS PubMed Article PubMed Central Google Scholar
64.
Clarke RTJ. Niche in pasture-fed ruminants for the large rumen bacteria Oscillospira, Lampropedia, and Quin’s and Eadie’s ovals. Appl Environ Microbiol. 1979;37:654–7.
CAS PubMed PubMed Central Article Google Scholar
65.
Lee GH, Rhee MS, Chang DH, Lee J, Kim S, Yoon MH, et al. Oscillibacter ruminantium sp nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol. 2013;63:1942–6.
CAS PubMed Article PubMed Central Google Scholar
66.
Iino T, Mori K, Tanaka K, Suzuki KI, Harayama S. Oscillibacter valericigenes gen. nov., sp nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol. 2007;57:1840–5.
PubMed Article PubMed Central Google Scholar
67.
Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria – From metagenomic species to metabolic features. Environ Microbiol. 2017;19:835–41.
CAS PubMed Article PubMed Central Google Scholar
68.
Wang H-J, Dai K, Wang Y-Q, Wang H-F, Zhang F, Zeng RJ. Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors. Bioresour Technol. 2018;267:650–6.
CAS PubMed Article PubMed Central Google Scholar
69.
Fraj B, Ben Hania W, Postec A, Hamdi M, Ollivier B, Fardeau ML. Fonticella tunisiensis gen. nov., sp nov., isolated from a hot spring. Int J Syst Evol Microbiol. 2013;63:1947–50.
CAS PubMed Article PubMed Central Google Scholar
70.
Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandezgarayzabal J, Garcia P, et al. The phylogeny of the genus Clostridium – Proposal of 5 new genera and 11 new species combinations. Int J Syst Bacteriol. 1994;44:812–26.
CAS PubMed Article PubMed Central Google Scholar
71.
BS Jeon, Kim BC, Um Y, et al. BI. Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1. Appl Microbiol Biotechnol. 2010;88:1161–7.
Article CAS Google Scholar
72.
Zhu XY, Zhou Y, Wang Y, Wu TT, Li XZ, Li DP, et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol Biofuels. 2017;10:102.
PubMed PubMed Central Article CAS Google Scholar
73.
Robertson WJ, Bowman JP, Franzmann PD, Mee BJ. Desulfosporosinus meridiei sp nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol. 2001;51:133–40.
CAS PubMed Article PubMed Central Google Scholar
74.
Lee YJ, Romanek CS, Wiegel J. Desulfosporosinus youngiae sp nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage. Int J Syst Evol Microbiol. 2009;59:2743–6.
CAS PubMed Article PubMed Central Google Scholar More