1.
Csoma, H., Zakany, N., Capece, A., Romano, P. & Sipiczki, M. Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: Comparative genotypic and phenotypic analysis. Int. J. Food Microbiol. 140, 239–248. https://doi.org/10.1016/j.ijfoodmicro.2010.03.024 (2010).
CAS Article PubMed Google Scholar
2.
Di Maio, S. et al. Biodiversity of indigenous Saccharomyces populations from old wineries of South-Eastern Sicily (Italy): Preservation and economic potential. PLoS ONE 7, e30428. https://doi.org/10.1371/journal.pone.0030428 (2012).
CAS Article PubMed PubMed Central Google Scholar
3.
Bokulich, N. A., Ohta, M., Richardson, P. M. & Mills, D. A. Monitoring seasonal changes in winery-resident microbiota. PLoS ONE 8, e66437. https://doi.org/10.1371/journal.pone.0066437 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
4.
Mas, A., Padilla, B., Esteve-Zarzoso, B. & Beltran, G. Utilización de inóculos mixtos de levaduras autóctonas como herramienta para reproducir la huella microbiológica de la zona. Acenologica. http://www.acenologia.com/cienciaytecnologia/inoculos_mixtos_levaduras_autoctonas_cienc0715.htm (2013).
5.
Varela, C. & Borneman, A. R. Yeasts found in vineyards and wineries. Yeast 34, 111–128. https://doi.org/10.1002/yea.3219 (2017).
CAS Article PubMed Google Scholar
6.
Fleet, G. H. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86, 11–22. https://doi.org/10.1016/S0168-1605(03)00245-9 (2003).
CAS Article PubMed Google Scholar
7.
Mannazzu, I., Clementi, F. & Ciani, M. In Biodiversity and Biotechnology of Wine Yeasts 19–34 (2002).
8.
Martini, A., Ciani, M. & Scorzetti, G. Direct enumeration and isolation of wine yeasts from grape surfaces. Am. J. Enol. Vit. 47, 435 (1996).
Google Scholar
9.
Mortimer, R. & Polsinelli, M. On the origins of wine yeast. Res. Microbiol. 150, 199–204. https://doi.org/10.1016/S0923-2508(99)80036-9 (1999).
CAS Article PubMed Google Scholar
10.
Ciani, M., Comitini, F., Mannazzu, I. & Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res. 10, 123–133. https://doi.org/10.1111/j.1567-1364.2009.00579.x (2010).
CAS Article PubMed Google Scholar
11.
Ribéreau-Gayon, P., Dubourdieu, D., Donéche, B. & Lonvaud, A. The Microbiology of Wine and Vinifications 2nd edn, Vol. 1, 512 (2006).
12.
Charoenchai, C., Fleet, G. H., Henschke, P. A. & Todd, B. E. N. T. Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aus. J. Grape Wine Res. 3, 2–8. https://doi.org/10.1111/j.1755-0238.1997.tb00109.x (1997).
CAS Article Google Scholar
13.
Fernández, M. T., Ubeda, J. F. & Briones, A. I. Comparative study of non-Saccharomyces microflora of musts in fermentation, by physiological and molecular methods. FEMS Microbiol. Lett. 173, 223–229. https://doi.org/10.1111/j.1574-6968.1999.tb13506.x (1999).
Article Google Scholar
14.
Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A. & Masneuf-Pomarede, I. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int. J. Food Microbiol. 125, 197–203. https://doi.org/10.1016/j.ijfoodmicro.2008.04.001 (2008).
CAS Article PubMed Google Scholar
15.
Grangeteau, C. et al. Diversity of yeast strains of the genus Hanseniaspora in the winery environment: What is their involvement in grape must fermentation?. Food Microbiol. 50, 70–77. https://doi.org/10.1016/j.fm.2015.03.009 (2015).
ADS CAS Article PubMed Google Scholar
16.
Fleet, G. H. Wine yeasts for the future. FEMS Yeast Res. 8, 979–995. https://doi.org/10.1111/j.1567-1364.2008.00427.x (2008).
CAS Article PubMed Google Scholar
17.
Canonico, L., Comitini, F., Oro, L. & Ciani, M. Sequential fermentation with selected immobilized non-Saccharomyces yeast for reduction of ethanol content in wine. Front. Microbiol. 7, 278–278. https://doi.org/10.3389/fmicb.2016.00278 (2016).
Article PubMed PubMed Central Google Scholar
18.
Padilla, B., Gil, J. V. & Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 7, 411–411. https://doi.org/10.3389/fmicb.2016.00411 (2016).
Article PubMed PubMed Central Google Scholar
19.
Esteve-Zarzoso, B., Manzanares, P., Ramön, D. & Quero, A. The role of non-Saccharomyces yeasts in industrial winemaking. Int. Microbiol. 1, 143–148 (1998).
CAS PubMed Google Scholar
20.
Gonzalez, R., Quirós, M. & Morales, P. Yeast respiration of sugars by non-Saccharomyces yeast species: A promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci. Techol. 29, 55–61. https://doi.org/10.1016/j.tifs.2012.06.015 (2013).
CAS Article Google Scholar
21.
Quirós, M., Rojas, V., Gonzalez, R. & Morales, P. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int. J. Food Microbiol. 181, 85–91. https://doi.org/10.1016/j.ijfoodmicro.2014.04.024 (2014).
CAS Article PubMed Google Scholar
22.
Morales, P., Rojas, V., Quirós, M. & Gonzalez, R. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl. Microbiol. Biotechnol. 99, 3993–4003. https://doi.org/10.1007/s00253-014-6321-3 (2015).
CAS Article PubMed PubMed Central Google Scholar
23.
Varela, C. et al. Strategies for reducing alcohol concentration in wine. Aus. J. Grape Wine Res. 21, 670–679. https://doi.org/10.1111/ajgw.12187 (2015).
Article Google Scholar
24.
Roudil, L. et al. Non-Saccharomyces commercial starter cultures: Scientific trends, recent patents and innovation in the wine sector. Recent Patents Food Nutr. Agric. https://doi.org/10.2174/2212798410666190131103713 (2019).
Article Google Scholar
25.
Le Jeune, C., Erny, C., Demuyter, C. & Lollier, M. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiol. 23, 709–716. https://doi.org/10.1016/j.fm.2006.02.007 (2006).
CAS Article PubMed Google Scholar
26.
Versavaud, A., Courcoux, P., Roulland, C., Dulau, L. & Hallet, J. N. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl. Environ. Microbiol. 61, 3521 (1995).
CAS Article Google Scholar
27.
Pérez-Coello, M. S., Briones Pérez, A. I., Ubeda Iranzo, J. F. & Martin Alvarez, P. J. Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region. Food Microbiol. 16, 563–573. https://doi.org/10.1006/fmic.1999.0272 (1999).
CAS Article Google Scholar
28.
Torriani, S., Zapparoli, G. & Suzzi, G. Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine. Antonie Van Leeuwenhoek 75, 207–215. https://doi.org/10.1023/A:1001773916407 (1999).
CAS Article PubMed Google Scholar
29.
Naumov, G. I., Masneuf, I., Naumova, E. S., Aigle, M. & Dubourdieu, D. Association of Saccharomyces bayanus var. uvarum with some French wines: Genetic analysis of yeast populations. Res. Microbiol. 151, 683–691. https://doi.org/10.1016/s0923-2508(00)90131-1 (2000).
CAS Article PubMed Google Scholar
30.
Redžepović, S., Orlić, S., Sikora, S., Majdak, A. & Pretorius, I. S. Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Letts. Appl. Microbiol. 35, 305–310. https://doi.org/10.1046/j.1472-765X.2002.01181.x (2002).
Article Google Scholar
31.
Rementeria, A. et al. Yeast associated with spontaneous fermentations of white wines from the “Txakoli de Bizkaia” region (Basque Country, North Spain). Int. J. Food Microbiol. 86, 201–207. https://doi.org/10.1016/S0168-1605(03)00289-7 (2003).
CAS Article PubMed Google Scholar
32.
Cappello, M. S., Bleve, G., Grieco, F., Dellaglio, F. & Zacheo, G. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. J. Appl. Microbiol. 97, 1274–1280. https://doi.org/10.1111/j.1365-2672.2004.02412.x (2004).
CAS Article PubMed Google Scholar
33.
Fay, J. C. & Benavides, J. A. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1, e5. https://doi.org/10.1371/journal.pgen.0010005 (2005).
CAS Article PubMed Central Google Scholar
34.
Schuller, D., Alves, H., Dequin, S. & Casal, M. Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol. Ecol. 51, 167–177. https://doi.org/10.1016/j.femsec.2004.08.003 (2005).
CAS Article PubMed Google Scholar
35.
Viel, A. et al. The geographic distribution of Saccharomyces cerevisiae isolates within three Italian neighboring winemaking regions reveals strong differences in yeast abundance, genetic diversity and industrial strain dissemination. Front. Microbiol. 8, 1595–1595. https://doi.org/10.3389/fmicb.2017.01595 (2017).
Article PubMed PubMed Central Google Scholar
36.
Sun, Y. et al. Evaluation of Chinese Saccharomyces cerevisiae wine strains from different geographical origins. Am. J. Enol. Vit. 68, 73. https://doi.org/10.5344/ajev.2016.16059 (2017).
Article Google Scholar
37.
da Silva, G. A. D., Agustini, B. C., de Mello, L. M. R. & Tonietto, J. Autochthonous yeast populations from different Brazilian geographic indications. BIO Web Conf. 7 (2016).
38.
Crosato, G. et al. Genetic variability and physiological traits of Saccharomyces cerevisiae strains isolated from “Vale dos Vinhedos” vineyards reflect agricultural practices and history of this Brazilian wet subtropical area. World J. Microbiol. Biotechnol. 34, 105. https://doi.org/10.1007/s11274-018-2490-z (2018).
CAS Article PubMed Google Scholar
39.
Chavan, P. et al. Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiol. 26, 801–808. https://doi.org/10.1016/j.fm.2009.05.005 (2009).
CAS Article PubMed Google Scholar
40.
Kachalkin, A. V., Abdullabekova, D. A., Magomedova, E. S., Magomedov, G. G. & Chernov, I. Y. Yeasts of the vineyards in Dagestan and other regions. Microbiology 84, 425–432. https://doi.org/10.1134/S002626171503008X (2015).
CAS Article Google Scholar
41.
Cordero-Bueso, G., Arroyo, T., Serrano, A. & Valero, E. Remanence and survival of commercial yeast in different ecological niches of the vineyard. FEMS Microbiol. Ecol. 77, 429–437. https://doi.org/10.1111/j.1574-6941.2011.01124.x (2011).
CAS Article PubMed Google Scholar
42.
Valero, E., Schuller, D., Cambon, B., Casal, M. & Dequin, S. Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study. FEMS Yeast Res. 5, 959–969. https://doi.org/10.1016/j.femsyr.2005.04.007 (2005).
CAS Article PubMed Google Scholar
43.
Valero, E., Cambon, B., Schuller, D., Casal, M. & Dequin, S. Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res. 7, 317–329. https://doi.org/10.1111/j.1567-1364.2006.00161.x (2007).
CAS Article PubMed Google Scholar
44.
Blanco, P., Mirás-Avalos, J. M. & Orriols, I. Effect of must characteristics on the diversity of Saccharomyces strains and their prevalence in spontaneous fermentations. J. Appl. Microbiol. 112, 936–944. https://doi.org/10.1111/j.1365-2672.2012.05278.x (2012).
CAS Article PubMed Google Scholar
45.
Garofalo, C., Tristezza, M., Grieco, F., Spano, G. & Capozzi, V. From grape berries to wine: Population dynamics of cultivable yeasts associated to “Nero di Troia” autochthonous grape cultivar. World J. Microbiol. Biotechnol. 32, 59. https://doi.org/10.1007/s11274-016-2017-4 (2016).
CAS Article PubMed Google Scholar
46.
Schuller, D. et al. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS ONE 7, e32507. https://doi.org/10.1371/journal.pone.00325 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
47.
Martinez, M. C. & Perez, J. E. The forgotten vineyard of the Asturias Princedom (north of Spain) and ampelographic description of its grapevine cultivars (Vitis vinifera L.). Am. J. Enol. Vit. 51, 370–378 (2000).
Google Scholar
48.
Yuste, J. et al. Identification of autochthonous grapevine varieties in the germplasm collection at the ITA of “Castilla y León” in Zamadueñas Station, Valladolid. Spain. Spanish J. Agric. Res. https://doi.org/10.5424/sjar/2006041-175 (2006).
Article Google Scholar
49.
Cabello, F., Saiz, R. & Muñoz, G. Estudio de variedades españolas minoritarias de vid. Acenologica. http://www.acenologia.com/cienciaytecnologia/variedades_minoritarias_cienc0213.htm (2013).
50.
Balda, P. & de Toda, F. M. Variedades minoritarias de vid en La Rioja. Consejería de Agricultura, Ganadería y Medio Ambiente. (2017).
51.
Martínez de Toda, F. Veinte nuevas variedades de vid, rescatadas de la desaparición, en la viticultura española y nuevos vinos. Acenologica. http://www.acenologia.com/dossier/dossier135.htm (2013).
52.
Arranz, C. et al. Variedades de vid cultivadas en la Sierra de Francia. Importancia, identificación, sinonimias y homonimias. La Semana Vitivinícola 3223, 1414–1420 (2008).
Google Scholar
53.
Ibáñez, J., Carreño, J., Yuste, J. & Martínez-Zapater, J. M. In Grapevine Breeding Programs for the Wine Industry (ed Reynolds, A.) 183–209 (Woodhead Publishing, 2015).
54.
Arranz Hernández, C., Barajas Tola, E., Yuste Bombín, J. & Rubio Cano, J. A. 45–58 (Comunidad de Madrid (España): Ministerio de Agricultura, Alimentación y Medio Ambiente, 2016).
55.
Esteve-Zarzoso, B., Belloch, C., Uruburu, F. & Querol, A. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bact. 49, 329–337. https://doi.org/10.1099/00207713-49-1-329 (1999).
CAS Article Google Scholar
56.
Madden, T. L., Tatusov, R. L. & Zhang, J. Methods in Enzymology Vol. 266, 131–141 (Academic Press, London, 1996).
Google Scholar
57.
Legras, J.-L. & Karst, F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol. Lett. 221, 249–255. https://doi.org/10.1016/S0378-1097(03)00205-2 (2003).
CAS Article PubMed Google Scholar
58.
Ness, F., Lavallée, F., Dubourdieu, D., Aigle, M. & Dulau, L. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62, 89–94. https://doi.org/10.1002/jsfa.2740620113 (1993).
CAS Article Google Scholar
59.
Lebart, L., Morineau, A. & Piron, M. Statistique Exploratoire Multidimensionnelle (Dunod Publishers, Paris, 1995).
Google Scholar
60.
Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L. & Maggio, R. M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 72, 83–90. https://doi.org/10.1016/j.tifs.2017.12.006 (2018).
CAS Article Google Scholar
61.
Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M. & Perona, I. An extensive comparative study of cluster validity indices. Pattern Recogn. 46, 243–256. https://doi.org/10.1016/j.patcog.2012.07.021 (2013).
Article Google Scholar
62.
Orlić, S. et al. Diversity and oenological characterization of indigenous Saccharomyces cerevisiae associated with Žilavka grapes. World J. Microbiol. Biotechnol. 26, 1483–1489. https://doi.org/10.1007/s11274-010-0323-9 (2010).
Article Google Scholar
63.
Tristezza, M. et al. Molecular and technological characterization of Saccharomyces cerevisiae strains isolated from natural fermentation of Susumaniello grape must in Apulia, Southern Italy. Int. J. Microbiol. 897428–897428, 2014. https://doi.org/10.1155/2014/897428 (2014).
CAS Article Google Scholar
64.
SchvarczovÁ, E. V. A., ŠtefáNiková, J., Jankura, E. & Kolek, E. Selection of autochthonous Saccharomyces cerevisiae strains for production of typical Pinot Gris wines. J. Food Nutr. Res. 56, 389–397 (2017).
Google Scholar
65.
Tristezza, M. et al. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 36, 335–342. https://doi.org/10.1016/j.fm.2013.07.001 (2013).
CAS Article PubMed Google Scholar
66.
Sabate, J., Cano, J., Querol, A. & Guillamon, J. M. Diversity of Saccharomyces strains in wine fermentations: Analysis for two consecutive years. Lett. Appl. Microbiol. 26, 452–455. https://doi.org/10.1046/j.1472-765X.1998.00369.x (1998).
CAS Article PubMed Google Scholar
67.
Bougreau, M., Ascencio, K., Bugarel, M., Nightingale, K. & Loneragan, G. Yeast species isolated from Texas High Plains vineyards and dynamics during spontaneous fermentations of Tempranillo grapes. PLoS ONE 14, e0216246–e0216246. https://doi.org/10.1371/journal.pone.0216246 (2019).
Article PubMed PubMed Central Google Scholar
68.
Martiniuk, J. T. et al. Impact of commercial strain use on Saccharomyces cerevisiae population structure and dynamics in Pinot Noir vineyards and spontaneous fermentations of a Canadian winery. PLoS ONE 11, e0160259. https://doi.org/10.1371/journal.pone.0160259 (2016).
CAS Article PubMed PubMed Central Google Scholar
69.
Mercado, L., Jubany, S., Gaggero, C., Masuelli, R. W. & Combina, M. Molecular relationships between Saccharomyces cerevisiae strains involved in winemaking from Mendoza, Argentina. Curr. Microbiol. 61, 506–514. https://doi.org/10.1007/s00284-010-9645-y (2010).
CAS Article PubMed Google Scholar
70.
de Celis, M. et al. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards. Lett. Appl. Microbiol. 68, 580–588. https://doi.org/10.1111/lam.13155 (2019).
Article PubMed Google Scholar
71.
Knight, S., Klaere, S., Fedrizzi, B. & Goddard, M. R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 5, 14233. https://doi.org/10.1038/srep14233 (2015).
ADS CAS Article PubMed PubMed Central Google Scholar
72.
Álvarez-Pérez, J. M., Garzón-Jimeno, E. & Coque, J. J. R. Population of indigenous yeast strains from Prieto Picudo grapes in different growing areas of Denomination of Origin “Tierra de León”. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 72, 17–26. https://doi.org/10.15835/buasvmcn-hort:11013 (2015).
Article Google Scholar
73.
Sabate, J., Cano, J., Esteve-Zarzoso, B. & Guillamón, J. M. Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol. Res. 157, 267–274. https://doi.org/10.1078/0944-5013-00163 (2002).
CAS Article PubMed Google Scholar
74.
Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259. https://doi.org/10.1016/j.ijfoodmicro.2011.11.025 (2012).
CAS Article PubMed Google Scholar
75.
Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS 111, E139–E148. https://doi.org/10.1073/pnas.1317377110 (2014).
ADS CAS Article PubMed Google Scholar
76.
Russo, P. et al. Pesticide residues and stuck fermentation in Wine: New evidences indicate the urgent need of tailored regulations. Fermentation 5, 23. https://doi.org/10.3390/fermentation5010023 (2019).
CAS Article Google Scholar
77.
Agarbati, A., Canonico, L., Ciani, M. & Comitini, F. The impact of fungicide treatments on yeast biota of Verdicchio and Montepulciano grape varieties. PLoS ONE 14, e0217385. https://doi.org/10.1371/journal.pone.0217385 (2019).
CAS Article PubMed PubMed Central Google Scholar
78.
Kosel, J., Raspor, P. & Čadež, N. Maximum residue limit of fungicides inhibits the viability and growth of desirable non-Saccharomyces wine yeasts. Aust. J. Grape Wine Res. 25, 43–52. https://doi.org/10.1111/ajgw.12364 (2019).
CAS Article Google Scholar
79.
Čadež, N., Zupan, J. & Raspor, P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10, 619–630. https://doi.org/10.1111/j.1567-1364.2010.00635.x (2010).
CAS Article PubMed Google Scholar
80.
Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).
CAS Article Google Scholar
81.
Killham, K., Lindley, N. D. & Wainwright, M. Inorganic sulfur oxidation by Aureobasidium pullulans. Appl. Environ. Microbiol. 42, 629–631 (1981).
CAS Article Google Scholar
82.
Gadd, G. M. & de Rome, L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29, 610–617. https://doi.org/10.1007/BF00260993 (1988).
CAS Article Google Scholar
83.
Belda, I. et al. Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Front. Microbiol. 7, 12–12. https://doi.org/10.3389/fmicb.2016.00012 (2016).
Article PubMed PubMed Central Google Scholar
84.
Lin, M.M.-H. et al. Evaluation of indigenous non-Saccharomyces yeasts isolated from a South Australian vineyard for their potential as wine starter cultures. Int. J. Food Microbiol. 312, 108373. https://doi.org/10.1016/j.ijfoodmicro.2019.108373 (2020).
CAS Article PubMed Google Scholar
85.
Hranilovic, A., Bely, M., Masneuf-Pomarede, I., Jiranek, V. & Albertin, W. The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems. PLoS ONE 12, e0184652. https://doi.org/10.1371/journal.pone.0184652 (2017).
CAS Article PubMed PubMed Central Google Scholar
86.
Hranilovic, A. et al. Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation. Sci. Rep. 8, 14812. https://doi.org/10.1038/s41598-018-33105-7 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
87.
Hu, K., Jin, G.-J., Mei, W.-C., Li, T. & Tao, Y.-S. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem. 239, 495–501. https://doi.org/10.1016/j.foodchem.2017.06.151 (2018).
CAS Article PubMed Google Scholar
88.
Oro, L., Ciani, M. & Comitini, F. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J. Appl. Microbiol. 116, 1209–1217. https://doi.org/10.1111/jam.12446 (2014).
CAS Article PubMed Google Scholar
89.
Contreras, A., Curtin, C. & Varela, C. Yeast population dynamics reveal a potential ‘collaboration’ between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl. Microbiol. Biotechnol. 99, 1885–1895. https://doi.org/10.1007/s00253-014-6193-6 (2015).
CAS Article PubMed Google Scholar
90.
Benito, S. The impacts of Lachancea thermotolerans yeast strains on winemaking. Appl. Microbiol. Biotechnol. 102, 6775–6790. https://doi.org/10.1007/s00253-018-9117-z (2018).
CAS Article PubMed Google Scholar
91.
Morata, A. et al. Lachancea thermotolerans applications in wine technology. Fermentation https://doi.org/10.3390/fermentation4030053 (2018).
Article Google Scholar
92.
Belda, I. et al. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Int. J. Food Microbiol. 223, 1–8. https://doi.org/10.1016/j.ijfoodmicro.2016.02.003 (2016).
CAS Article PubMed Google Scholar
93.
Jolly, N., Augustyn, O. & Pretorius, I. The role and use of non-Saccharomyces yeasts in wine production. J. Enol. Vitic. 27. https://doi.org/10.21548/27-1-1475 (2006).
94.
Capozzi, V., Fragasso, M. & Russo, P. Microbiological safety and the management of microbial resources in artisanal foods and beverages: The need for a transdisciplinary assessment to conciliate actual trends and risks avoidance. Microorganisms 8, 306. https://doi.org/10.3390/microorganisms (2020).
Article PubMed Central Google Scholar
95.
Benito, S. The impact of Torulaspora delbrueckii yeast in winemaking. Appl. Microbiol. Biotechnol. 102, 3081–3094. https://doi.org/10.1007/s00253-018-8849-0 (2018).
CAS Article PubMed Google Scholar
96.
Attila, K., Ján, M., Eva, I., Margarita, T. & Miroslava, K. Microorganisms of grape berries. In Proc. Latvian Acad. Sciences. Section B. Natural, Exact & Appl. Sci. Vol. 71, 502–508, https://doi.org/10.1515/prolas-2017-0087 (2017).
97.
Pretorius, I. S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 16, 675–729. https://doi.org/10.1002/1097-0061(20000615)16:8%3c675::AID-YEA585%3e3.0.CO;2-B (2000).
CAS Article PubMed Google Scholar
98.
Clavijo, A., Calderón, I. L. & Paneque, P. Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serranía de Ronda (Spain) vine-growing region. Int. J. Food Microbiol. 143, 241–245. https://doi.org/10.1016/j.ijfoodmicro.2010.08.010 (2010).
CAS Article PubMed Google Scholar
99.
Capece, A. et al. Diversity of Saccharomyces cerevisiae strains isolated from two Italian wine-producing regions. Front Microbiol. 7, 1018. https://doi.org/10.3389/fmicb (2016).
Article PubMed PubMed Central Google Scholar
100.
Santamaría, P. et al. Biodiversity of Saccharomyces cerevisiae yeasts in spontaneous alcoholic fermentations: Typical cellar or zone strains? Advances in Grape and Wine Biotechnology. (ed. Morata, A. & Loira, I.) 1–15 (Intech Open, 2019). https://doi.org/10.5772/intechopen.84870
101.
Kurtzman, C., P., & Fell, J. W. The Yeasts, A Taxonomic Study. 4th edn, (Elsevier Science Publishers, 1998).
102.
Lõoke, M., Kristjuhan, K. & Kristjuhan, A. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50, 325–328. https://doi.org/10.2144/000113672 (2011).
CAS Article PubMed PubMed Central Google Scholar
103.
Liu, Y., Wang, C., Joseph, C. M. L. & Bisson, L. F. Comparison of two PCR-based genetic fingerprinting methods for assessment of genetic diversity in Saccharomyces strains. Am. J. Enol. Vit. 65, 109. https://doi.org/10.5344/ajev.2013.13056 (2014).
Article Google Scholar
104.
Dazy, F. & Le Barzic, J.-F. L’analyse des donnees evolutives: Methodes et applications (Technip Publishers, 1996). More