More stories

  • in

    Comparisons of fall armyworm haplotypes between the Galápagos Islands and mainland Ecuador indicate limited migration to and between islands

    1.
    Luginbill, P. The fall armyworm. USDA Tech. Bull. 34, 1–91 (1928).
    Google Scholar 
    2.
    Chandrasena, D. I. et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F delta-endotoxin in Spodopterafrugiperda populations from Argentina. Pest Manag. Sci. 74, 746–754. https://doi.org/10.1002/ps.4776 (2018).
    CAS  Article  PubMed  Google Scholar 

    3.
    Farias, J. R. et al. Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 72, 2295–2302. https://doi.org/10.1002/ps.4274 (2016).
    CAS  Article  PubMed  Google Scholar 

    4.
    Farias, J. R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150–158 (2014).
    Article  ADS  Google Scholar 

    5.
    Huang, F. et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: Single gene versus pyramided Bt maize. PLoS ONE 9, e112958. https://doi.org/10.1371/journal.pone.0112958 (2014).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    6.
    Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038. https://doi.org/10.1603/Ec10040 (2010).
    Article  PubMed  Google Scholar 

    7.
    Ganiger, P. C. et al. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci. India 115, 621–623 (2018).
    CAS  Article  Google Scholar 

    8.
    Nagoshi, R. N. Evidence that a major subpopulation of fall armyworm found in the Western Hemisphere is rare or absent in Africa, which may limit the range of crops at risk of infestation. PLoS ONE 14, e0208966. https://doi.org/10.1371/journal.pone.0208966 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    10.
    Shylesha, A. N. et al. Studies on new invasive pest Spodopterafrugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. J. Biol. Control 32, 145–151. https://doi.org/10.18311/jbc/2018/21707 (2018).
    Article  Google Scholar 

    11.
    DPIRD, G. o. W. A. Fall armyworm in Western Australia. http://www.agric.wa.gov.au/plant-biosecurity/fall-armyworm-western-australia (2020).

    12.
    Pair, S. D. & Sparks, A. N. in Long-range migration of moths of agronomic importance to the United States and Canada: Specific examples of occurrence and synoptic weather patterns conducive to migration (ESA Symposium, 1982). Vol. ARS-43 (ed A. N. Sparks) 25–33 (USDA Miscellaneous Publication, 1986).

    13.
    Mitchell, E. R. et al. Seasonal periodicity of fall armyworm, (Lepidoptera, Noctuidae) in the Caribbean basin and northward to Canada. J. Entomol. Sci. 26, 39–50 (1991).
    Article  Google Scholar 

    14.
    Nagoshi, R. N., Meagher, R. L. & Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2, 1458–1467 (2012).
    Article  Google Scholar 

    15.
    Westbrook, J. K. Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr. Comp. Biol. 48, 99–106 (2008).
    Article  Google Scholar 

    16.
    16Danthanarayana, W. in Proceedings in life sciences (ed International Congress of Entomology) (Springer, Hamburg, 1986).

    17.
    Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).
    CAS  Article  ADS  Google Scholar 

    18.
    Pashley, D. P. The current status of fall armyworm host strains. Fla Entomol. 71, 227–234 (1988).
    Article  Google Scholar 

    19.
    19Pashley, D. P. in Electrophoretic Studies on Agricultural Pests (eds H. D. Loxdale & J. der Hollander) 103–114 (Oxford University Press, Oxford, 1989).

    20.
    Juárez, M. L. et al. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 105, 573–582. https://doi.org/10.1603/Ec11184 (2012).
    Article  PubMed  Google Scholar 

    21.
    Murúa, M. G. et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J. Econ. Entomol. 108, 2305–2315 (2015).
    Article  Google Scholar 

    22.
    Nagoshi, R. N., Silvie, P., Meagher, R. L., Lopez, J. & Machados, V. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Ann. Entomol. Soc. Am. 100, 394–402 (2007).
    CAS  Article  Google Scholar 

    23.
    Levy, H. C., Garcia-Maruniak, A. & Maruniak, J. E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Fla Entomol. 85, 186–190 (2002).
    CAS  Article  Google Scholar 

    24.
    Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292. https://doi.org/10.1603/An09046 (2010).
    CAS  Article  Google Scholar 

    25.
    Nagoshi, R. N., Silvie, P. & Meagher, R. L. Comparison of haplotype frequencies differentiate fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Florida and Brazil. J. Econ. Entomol. 100, 954–961 (2007).
    Article  Google Scholar 

    26.
    Nagoshi, R. N., Meagher, R. L. & Jenkins, D. A. Puerto Rico fall armyworm has only limited interactions with those from Brazil or Texas but could have substantial exchanges with Florida populations. J. Econ. Entomol. 103, 360–367 (2010).
    Article  Google Scholar 

    27.
    Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 14, e021775 (2019).
    Google Scholar 

    28.
    Nagoshi, R. N., Fleischer, S. & Meagher, R. L. Demonstration and quantification of restricted mating between fall armyworm host strains in field collections by SNP comparisons. J. Econ. Entomol. 110, 2568–2575 (2017).
    CAS  Article  Google Scholar 

    29.
    Nagoshi, R. N., Goergen, G., Du Plessis, H., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. UK 9, 8311 (2019).
    Article  ADS  Google Scholar 

    30.
    Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).
    CAS  Article  PubMed  Google Scholar 

    31.
    Meagher, R. L. & Nagoshi, R. N. Population dynamics and occurrence of Spodoptera frugiperda host strains in southern Florida. Ecol. Entomol. 29, 614–620 (2004).
    Article  Google Scholar 

    32.
    Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Lepidoptera: Noctuidae) host strains in Argentina. J. Econ. Entomol. 105, 418–428. https://doi.org/10.1603/Ec11332 (2012).
    CAS  Article  PubMed  Google Scholar 

    33.
    Meagher, R. L. & Nagoshi, R. N. Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann. Entomol. Soc. Am. 105, 462–470. https://doi.org/10.1603/An11158 (2012).
    Article  Google Scholar 

    34.
    Meagher, R. L., Nagoshi, R. N., Stuhl, C. & Mitchell, E. R. Larval development of fall armyworm (Lepidoptera: Noctuidae) on different cover crop plants. Fla Entomol. 87, 454–460 (2004).
    Article  Google Scholar 

    35.
    Prowell, D. P., McMichael, M. & Silvain, J. F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97, 1034–1044 (2004).
    CAS  Article  Google Scholar 

    36.
    Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Spodoptera frugiperda) in Ecuador and comparisons with regional populations identify likely migratory relationships. PLoS ONE 14, e0222332. https://doi.org/10.1371/journal.pone.0222332 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Nagoshi, R. N. et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 108, 135–144 (2015).
    CAS  Article  Google Scholar 

    38.
    Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743 (2017).
    CAS  Article  Google Scholar 

    39.
    Peck, S. B., Heraty, J., Landry, B. & Sinclair, B. J. Introduced insect fauna of an oceanic archipelago: The Galápagos Islands, Ecuador. Am. Entomol. 44, 218–237. https://doi.org/10.1093/ae/44.4.218 (1998).
    Article  Google Scholar 

    40.
    Zapata, F. & Granja, M. M. Optimizing marine transport of food products to Galapagos: advances in the implementation plan. http://www.galapagos.org/wp-content/uploads/2012/04/trans1-optimizing-marine-transport.pdf (2009–2010).

    41.
    Toral-Granda, M. V. et al. Alien species pathways to the Galapagos Islands, Ecuador. PLoS ONE 12, e0184379. https://doi.org/10.1371/journal.pone.0184379 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Nagoshi, R. N. et al. The genetic characterization of fall armyworm populations in Ecuador and its implications to migration and pest management in the northern regions of South America. PLoS ONE 15, e0236759. https://doi.org/10.1371/journal.pone.0236759 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    Article  Google Scholar 

    44.
    Saitou, N. & Nei, M. The neighbor-joining method—A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).
    CAS  PubMed  Google Scholar 

    45.
    Clements, M. J., Kleinschmidt, C. E., Maragos, C. M., Pataky, J. K. & White, D. G. Evaluation of inoculation techniques for fusarium ear rot and fumonisin contamination of corn. Plant Dis. 87, 147–153 (2003).
    CAS  Article  Google Scholar 

    46.
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    47.
    Murúa, G. M. et al. Fitness and mating compatibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from different host plant species and regions in Argentina. Ann. Entomol. Soc. Am. 101, 639–649 (2008).
    Article  Google Scholar 

    48.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  Article  Google Scholar 

    49.
    Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077. https://doi.org/10.1175/Bams-D-14-00110.1 (2015).
    Article  ADS  Google Scholar  More

  • in

    Descriptive multi-agent epidemiology via molecular screening on Atlantic salmon farms in the northeast Pacific Ocean

    We used high-throughput qPCR to screen for 58 infective agents in four Atlantic salmon farm cohorts from British Columbia throughout their production cycles. We measured presence and copy number for target genetic sequences, characteristic of specific viral, bacterial, and eukaryotic agents, including several recently discovered viruses30,31, known or suspected to cause disease in salmon. These agents displayed various temporal patterns of prevalence and intensity, with several displaying elevated levels in dead and dying fish.
    The data and analyses we have presented provide a unique look into the epidemiology of farmed salmon populations, and wildlife/livestock diseases generally. No past studies have had access to multiple farmed-salmon cohorts, throughout their production cycles, with the capacity to molecularly screen for a large suite of infectious agents. Other work has reported agent data for dead-sampled fish collected in BC as part of Fisheries and Oceans Canada’s farm audit program40, but such analyses lack the time-series nature of the results we have presented. To our knowledge, no other studies have provided such detailed, comprehensive information for infective agents in domestic or wild populations over time. This study, therefore, presents a substantial step toward effectively monitoring shared wildlife/livestock diseases, made possible by cutting-edge technology, as predicted previously22.
    While our findings offer specific insight to salmon farmers, aquaculture managers, and those concerned with the disease ecology of sympatric wild salmon, we caution that results remain correlative, and relevant patterns (e.g. apparent mortality signatures) require further investigation. Unfortunately, a lack of regular testing of dead and dying fish (collection was opportunistic, at farms’ discretion) resulted in potential for associated patterns to be obscured. Due to this potential bias in the sampling design, we are unable to draw conclusions related to farm-level mortality rates, but several agents showed patterns of note, including elevated levels in dead and dying fish.
    Agent patterns
    Perhaps the clearest single-agent pattern—the elevated load of T. maritimum in dead and dying fish (Fig. 3B)—matches generally accepted patterns in aquaculture. Induced tenacibaculosis can be responsible for substantial on-farm mortality worldwide41, and mouthrot resulting from T. maritimum in the east Pacific causes substantial losses42. In our study, mouthrot was noted during veterinarians’ sample processing for cohorts one, three, and four in the months after ocean entry. We note that elevated levels in dead and dying fish could represent the bacterium’s acknowledged role as an opportunistic pathogen41, rather than a direct cause of mortality. We also note the positive correlations between T. maritimum load and that of a number of different agents (Fig. 5), consistent with the view that T. maritimum may facilitate co-infections43. Given its high overall prevalence in fish (Table 3), secondary factors—such as co-infections—might exacerbate infection with T. maritimum, playing a role in mortality.
    K. thyrsites intensity was elevated in dead and dying fish for cohorts three and four, around the time they were transferred to their final marine locations (Fig. S8). In both cases, the cohorts finished their production cycles in farms on the central east coast of Vancouver Island (Fig. 1), a region in which the risk of K. thyrsites infection is acknowledged to be high44. This myxozoan parasite is economically important due to post-mortem myoliquefaction seen in infected fish, but it is not considered a pathogen45, and it is unclear why higher gene-copy levels would be observed in dead/dying fish. K. thyrsites may merely replicate faster in stressed fish (in this case due to transport). Our surveillance of pathogens did not include skeletal muscle tissue, where K. thyrsites spores develop, but it did include heart, which can be infected by the parasite46. We note that K. thyrsites was correlated with PRV, with both agents known to infect muscle tissue (although red blood cells are the primary infective tissue for PRV). Follow-up histopathological investigation may provide some insight into K. thyrsites distribution and any associations with pathology or patterns of co-infection.
    PRV, which is the causative agent of Heart and Skeletal Muscle Inflammation (HSMI)47 and has recently generated controversy in BC28,29,48, shows several patterns of note. PRV prevalence increased to near ubiquity over time (Fig. 2D), concurrent with an increase, peak, slight decline, and then stabilisation of intensity (Fig. 3B). Although our perspective is limited to sampled fish, with a noted potential for bias, the observed PRV trends were consistent across all four cohorts, and the intensity patterns are consistent with previously reported dissemination, peak replication, and long-term persistence phases of the virus within hosts29,48. Past findings suggest that PRV may induce an antiviral response in hosts that can protect them against certain co-infections49,50. Perhaps counter to the generality of this claim, PRV and ASCV exhibited the strongest load correlation out of any we observed across our data set (Fig. 4). ASCV was originally isolated from salmon with HSMI, and was initially thought to play a role in the disease51. Other work has found no relationship between ASCV and PRV infections or HSMI52. In the case of a related baitfish calicivirus, however, there is evidence that viral co-infection is linked to disease manifestation53, so further work is needed to tease these relationships apart. In general, dead and dying Atlantic salmon in our study did not show elevated prevalence or intensity of PRV, except shortly after ocean entry in cohort one (Figs. 2D, 3B). This mortality signature corresponds to the onset of lesions diagnostic of HSMI in cohort one, which subsequently spread to affect the majority of that farm population for most of a year29.
    The gill chlamydia bacterium, C. Syngnamydia salmonis, showed a consistent trend towards elevated prevalence in dead and dying salmon (Fig. 2B). Observed intensity was low, however, often averaging approximately a single copy (Fig. S15). Sequencing has validated past detections of this agent on the Fluidigm BioMark™, and has also revealed SNP diversity within the primer-binding region, resulting in potential underdetection (Miller et al. unpublished). Given a putative mortality signature and the lack of prior epidemiological study of this recently discovered agent54,55, we would suggest further work on C. Syngnamydia salmonis.
    Ephemeral mortality signatures appeared for several agents. F. psychrophilum was clearly elevated in dead and dying fish in-hatchery, although we only had access to two hatchery cohorts and cannot draw general conclusions. Intensity of both the ASCV and CTV-2 were elevated in sampled dead and dying fish from at least one cohort shortly after ocean entry (Figs. 3A, S2). Both viruses were also present in-hatchery. The previously reported Cutthroat trout virus appears to be apathogenic56 in trout, and has been detected in Atlantic salmon57. Little is known about the novel variant for which we screened, although in situ hybridisation has revealed that infection can be systemic and extensive in the brain (Mordecai et al. 2020). As for the ASCV, associated pathology was found to be likely due to PRV contamination51. Extremely limited information about these two viruses, paired with our findings, warrants further investigation (e.g. with histopathology and in situ hybridisation) to determine if either virus is linked with pathology. As both these viruses were detected in Chinook salmon (Mordecai et al. 2020), and considering their high prevalence in Atlantic salmon farms, the potential risk they pose to wild Pacific salmon populations should be a priority for future research.
    Infectious agent levels overall, as measured by relative infectious burden, showed a clear trend in smolts coming out of freshwater hatcheries for cohorts three and four. There, infectious burden was much higher (in one case 10 000 times higher) in dead and dying fish than in live-sampled fish. While the effect dissipated once fish entered the marine environment, it is clear that hatchery fish are dying with—or of—elevated levels of infection. The patterns we observed likely reflect the transition from freshwater to saltwater, with a coincident shift in infective-agent communities58. Smoltification has also been associated with immune depression59, and elevated infectious burden around the time of ocean entry may reflect this. Where we had dead/dying hatchery samples, however, infectious burden was elevated weeks before ocean entry, hinting at the potential for problems in-hatchery.
    Across all agents, we observed apparent coinfection signals that clearly differed from random chance (Figs. 5, S21). We point out, however, that due to the longitudinal nature of our study and cursory investigation of agent correlations, the correlation results almost certainly indicate shared temporal trends that may or may not indicate underlying interactions. For example, Candidatus Branchiomonas cysticola and Flavobacterium psychrophilum were positively correlated with each other, but negatively correlated with a number of other agents. This could be due to both agents being common in-hatchery but not in the marine environment (Figs. S3, S6), counter to many other agents’ patterns. Alternatively, the correlation could be due to a biological relationship, perhaps in relation to gill health. We intend to follow up on a number of correlational patterns.
    Agent idiosyncrasies
    Several agents showed unexpected patterns, or patterns that may be connected to their particular biology.
    The putative Narna-like virus, a recently discovered agent31, showed elevated prevalence in dead and dying fish (Fig. S9). This pattern was mainly due to over-representation in dead-sampled fish, as we detected the agent in 13.2% of dead fish, 1.6% of moribund fish, and 0.4% of live-sampled fish in saltwater. Given that Narnaviridae, of which the putative Narna-like virus is a member, is thought mainly to infect fungi60, this virus may be associated with a fungal decomposer. This is speculative, however, and recent genomic evidence from across taxa suggests that the Narnaviridae may be much more widespread than previously thought61.
    Counter to the common trend, P. pseudobranchicola tended to be less common in dead and dying fish than in live-sampled fish (Fig. 2C), with dead fish, in particular, tending to exhibit the lowest levels (results not shown). P. pseudobranchicola primarily infects the pseudobranch62, a structure near the gills involved in oxygenating blood in the eye. Infection also occurs in tissue collected for this study, especially gill63, and we speculate that loads in dead fish could be reduced due to myxospore release or degradation of delicate gill tissue after host death. Given that we did not sample the pseudobranch, it is likely that our data underestimates the load of this organism.
    The sampling environments (freshwater or marine) of several detections were unexpected. In particular, we detected K. thyrsites and T. maritimum (Fig. 3C) in freshwater hatcheries, although these agents are considered marine species64,65. It is possible that these hatcheries introduced saltwater in the weeks before ocean transfer, to prepare smolts for release. We also detected F. psychrophilum, considered a freshwater bacterium66, in marine net pens (Fig. 2A). The bacterium is known to survive in brackish water67, however, and this is not the first time it has been detected in a marine setting40,68.
    Broader connections
    Not all infective agents cause disease, and even agents that do can be present long before—or long after—clinical symptoms. Our work presents only a piece of the puzzle in what is a multifaceted, complex scenario of shared wildlife/livestock disease in salmon aquaculture. The controversy surrounding PRV in BC, as an example, illustrates this complexity. While conventional lab challenges using PRV from BC sources have failed to reproduce in BC fish the extent of HSMI lesions observed on Norwegian farms48,69, work related to our study has been able to identify and shed light on HSMI, and related jaundice/anemia in Chinook salmon, in BC salmon farms28,29. While we saw a putative mortality signature in one cohort during this study, the normal course of PRV infection was not always associated with mortality (e.g. Figs. 2D, 3B). More work will be required to elucidate the nuances of PRV infection, factors that induce associated disease, and possible resultant mortality. A fruitful place to start would be to carry out sampling and diagnostics of dead and dying fish in farms and pens experiencing elevated mortality.
    Although we have shown putative mortality signatures for several infective agents in farmed Atlantic salmon, these are not necessarily the agents that pose the greatest risk to wild salmon. For one thing, a given agent need not produce the same effects in different species28,70. For another, contact between populations may not coincide with infection maxima. Depending on when farm smolts enter the marine environment, for example, PRV could be at low prevalence in the spring, when a number of wild Pacific salmon species migrate as juveniles15. Other times of year would be more relevant for interactions with other wild species, and there is much scope for transfer between farmed and wild environments. In addressing shared wildlife/livestock disease, we need to consider both wildlife and livestock as populations that serve as potential reservoirs of disease agents, and are susceptible to outbreaks71. In this context, surveillance and monitoring are essential facets of disease management23, providing raw material to develop understanding of disease and build effective management strategies. Parallel work is monitoring wild populations for the same agents we have investigated here, with the prospect of cross-referencing patterns and impacts72,73,74.
    The ubiquity of infectious agents on the farms leads naturally to discussion of potential control strategies, which present a variety of challenges in aquaculture. Vaccination has proven successful at times, but the salmon aquaculture industry has a somewhat chequered history with uptake, since vaccination can affect host growth, and thus the bottom line13. In addition, vaccines have only been developed for a handful of agents. Reducing translocations can be an effective control strategy on land20,78, but transmissive properties of the marine environment and highly mobile marine carrier hosts pose challenges to isolating host populations geographically (Krkosek 2015). Our findings provide circumstantial evidence that some agents (e.g. K. thyrsites) respond to translocations. The fact that two of our four focal cohorts moved substantial distances throughout their respective marine production may be cause for concern, considering the infective-agent populations we have shown those cohorts to have harboured. In general, aquaculture-associated disease and related management decisions have a history of generating political controversy75. Infective-agent monitoring and analyses are critical for designing, implementing, and evaluating effective disease-control measures, and for bridging divides in debate surrounding aquaculture.
    With respect to the aquaculture industry, the tools we employed in this study may prove useful for disease management and fish health. We have shown that for many agents, patterns of infection in dead and dying fish mirror those in live fish. By integrating high-throughput infectious-agent screening with existing monitoring of dead fish, farm vets and managers could access a wealth of otherwise unavailable or costly information. Combining such results with strategic sacrificial sampling of live fish during mortality peaks could allow additional insight into which agents may be driving mortality. Protecting the ‘herd’ (and its wild neighbours) may justify such mortal sampling. Furthermore, in other ongoing work, we have seen that much infective-agent information is accessible via nonlethal gill biopsy, which also enables high-throughput screening for gene expression patterns associated with various patterns of stress76 and disease77. Used appropriately, such a combination of tools could be very powerful.
    Disease monitoring is never complete, and detection always lags behind pathogen spread78, but new technologies—such as those we employed here – can facilitate efficient, lower-cost surveillance and monitoring. Surveillance for existing pathogens and identification of previously unknown pathogens is part of the integrative approach required to understand and control existing and emerging infectious diseases22. Here, we have further demonstrated the utility of high-throughput, modern genetic techniques for monitoring known infective agents and for generating information about previously under-studied agents26,29,30,31,37,38. Further work will target the risk of transfer between wild and farmed hosts and prioritize threats to salmon, farmed and wild. More

  • in

    Possible interference of Bacillus thuringiensis in the survival and behavior of Africanized honey bees (Apis mellifera)

    1.
    Celli, G. & Maccagnani, B. Honey bees as bioindicators of environmental pollution. Bull. Insectol. 56, 1–3 (2003).
    Google Scholar 
    2.
    Quigley, T. P., Amdam, G. V. & Harwood, G. H. Honey bees as bioindicators of changing global agricultural landscapes. Curr. Opin. Insect Sci. 35, 132–137 (2019).
    PubMed  Article  Google Scholar 

    3.
    Hung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B Biol. Sci. 285, 20172140 (2018).
    Article  Google Scholar 

    4.
    Giannini, T. C., Cordeiro, G. D., Freitas, B. M., Saraiva, A. M. & Imperatriz-Fonseca, V. L. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Econ. Entomol. 108, 849–857 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351, 388–391 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Miñarro, M., García, D. & Martínez-Sastre, R. Los insectos polinizadores en la agricultura: importancia y gestión de su biodiversidad. Ecosistemas Rev. Científica Ecol. y Medio Ambient. 27, 81–90 (2018).
    Google Scholar 

    7.
    Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7, 24–28 (2012).
    Article  CAS  Google Scholar 

    8.
    Kaplan, J. K. Colony collapse disorder: an incomplete puzzle. Agric. Res. Mag. 60, 2489 (2012).
    Google Scholar 

    9.
    VanEngelsdorp, D. et al. Colony collapse disorder: a descriptive study. PLoS ONE 4, 1–17 (2009).
    Article  CAS  Google Scholar 

    10.
    Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: a risk assessment. PLoS ONE 9, e94482 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Sindiveg, S. N. da I. de P. para D. V. Mapeamento De Abelhas Participativo (MAP). Relatório 3 anos (2014-2017). Colmeia Viva (2017). 61p. https://www.colmeiaviva.com.br/wp-content/uploads/2019/10/RelatorioMAP.pdf

    12.
    Wolff, L. F. & Santos, R. S. S. Abelhas melíferas: bioindicadores de qualidade ambiental e de sustentabilidade da agricultura familiar de base ecológica. Embrapa Clima Temperado-Documentos https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/543990/1/documento244.pdf (2008).

    13.
    Amaro, P. & Godinho, J. Pesticidas e abelhas. Rev. Ciências Agrárias 35, 53–62 (2012).
    Google Scholar 

    14.
    Tosi, S. & Nieh, J. C. A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light. Sci. Rep. 7, 1–13 (2017).
    Article  CAS  Google Scholar 

    15.
    Catae, A. F. et al. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. Pest Manag. Sci. 75, 607–615 (2019).
    CAS  PubMed  Article  Google Scholar 

    16.
    Alves, S. Controle Microbiano de Insetos (FEALQ, Piracicaba, 1998).
    Google Scholar 

    17.
    Hajek, A. E. & Eilenberg, J. Natural Enemies: An Introduction to Biological Control (Cambridge University Press, Cambridge, 2018).
    Google Scholar 

    18.
    Lacey, L. A. et al. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).
    CAS  PubMed  Article  Google Scholar 

    19.
    Melo, A. L. D. A., Soccol, V. T. & Soccol, C. R. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit. Rev. Biotechnol. 36, 317–326 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    20.
    Eski, A., Demir, İ, Sezen, K. & Demirbağ, Z. A new biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J. Microbiol. Biotechnol. 33, 35 (2017).
    Article  CAS  Google Scholar 

    21.
    Göktürk, T. Pyrethrum ve Bacillus thuringiensis biyopestisitlerinin Pristiphora abietina (Christ, 1791) (Hymenoptera: Tenthredinidae) üzerindeki etkisi. Artvin Çoruh Üniversitesi Orman Fakültesi Derg. 18, 83–87 (2017).
    Article  Google Scholar 

    22.
    MAPA, M. da A. P. e A. Agrofit. MAPA http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (2019).

    23.
    Konecka, E., Kaznowski, A., Stachowiak, M. & Maciąg, M. Activity of spore-crystal mixtures of new Bacillus thuringiensis strains against Dendrolimus pini (Lepidoptera: Lasiocampidae) and Spodoptera exigua (Lepidoptera: Noctuidae). Folia For. Pol. Ser. A 60, 91–98 (2018).
    Google Scholar 

    24.
    Gupta, S. & Dikshit, A. K. Biopesticides: an ecofriendly approach for pest control. J. Biopestic. 3, 186–188 (2010).
    Google Scholar 

    25.
    Habid, M. E. M. & Andrade, C. F. S. Bactérias entomopatogênicas. in Controle microbiano de insetos (ed Alves, S. B.) 384–446 (FEALQ, Piracicaba, 1998).

    26.
    Bravo, A., Gill, S. S. & Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423–435 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Slessor, K. N., Winston, M. L. & Conte, Y. L. Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol. 31, 2731–2745 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Lugtenberg, B. Principles of Plant-Microbe Interactions (Springer, Berlin, 2015).
    Google Scholar 

    29.
    Palma, L. & Berry, C. Understanding the structure and function of Bacillus thuringiensis toxins. Toxicon 109, 1–3 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Malone, L. A. et al. Effects of ingestion of a Bacillus thuringiensis toxin and a trypsin inhibitor on honey bee flight activity and longevity. Apidologie 32, 57–68 (2001).
    CAS  Article  Google Scholar 

    31.
    Yi, D., Fang, Z. & Yang, L. Effects of Bt cabbage pollen on the honeybee Apis mellifera L. Sci. Rep. 8, 1–6 (2018).
    Article  CAS  Google Scholar 

    32.
    D’Urso, V. et al. Observations on midgut of Apis mellifera workers (Hymenoptera: Apoidea) under controlled acute exposures to a Bacillus thuringiensis-based biopesticide. Apidologie 48, 51–62 (2017).
    Article  CAS  Google Scholar 

    33.
    Libardoni, G. et al. Effect of different Bacillus thuringiensis strains on the longevity of Africanized honey bee. Semin. Agrar. 39, 329–338 (2018).
    Article  Google Scholar 

    34.
    Zhu, Y. C., Wang, Y., Portilla, M., Parys, K. & Li, W. Risk and toxicity assessment of a potential natural insecticide, methyl benzoate, in honey bees (Apis mellifera L.). Insects 10, 1–17 (2019).
    Google Scholar 

    35.
    Hesselbach, H., Seeger, J., Schilcher, F., Ankenbrand, M. & Scheiner, R. Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees Apis mellifera. J. Appl. Ecol. 57, 609–618 (2020).
    CAS  Article  Google Scholar 

    36.
    Gomes, I. N., Vieira, K. I. C., Gontijo, L. M. & Resende, H. C. Honeybee survival and flight capacity are compromised by insecticides used for controlling melon pests in Brazil. Ecotoxicology 29, 97–107 (2020).
    Article  CAS  Google Scholar 

    37.
    Alquisira-Ramírez, E. V., Paredes-Gonzalez, J. R., Hernández-Velázquez, V. M., Ramírez-Trujillo, J. A. & Peña-Chora, G. In vitro susceptibility of Varroa destructor and Apis mellifera to native strains of Bacillus thuringiensis. Apidologie 45, 707–718 (2014).
    Article  CAS  Google Scholar 

    38.
    Fagúndez, G. A., Blettler, D. C., Krumrick, C. G., Bertos, M. A. & Trujillo, C. G. Do agrochemicals used during soybean flowering affect the visits of Apis mellifera L.?. Span. J. Agric. Res. 14, 7 (2016).
    Article  Google Scholar 

    39.
    Alquisira-Ramírez, E. V. et al. Effects of Bacillus thuringiensis strains virulent to Varroa destructor on larvae and adults of Apis mellifera. Ecotoxicol. Environ. Saf. 142, 69–78 (2017).
    PubMed  Article  CAS  Google Scholar 

    40.
    Horta, A. B., Pannuti, L., Baldin, E. L. L. & Furtado, E. L. Toxinas inseticidas de Bacillus thuringiensis. In Biotecnologia Aplicada à Agro&Indústria (ed. Resende, R. R.) 737–773 (Blucher, Erkrath, 2017). https://doi.org/10.5151/9788521211150-21.
    Google Scholar 

    41.
    Malone, L. A., Burgess, E. P. J. & Stefanovic, D. Effects of a Bacillus thuringiensis toxin, two Bacillus thuringiensis biopesticide formulations, and a soybean trypsin inhibitor on honey bee (Apis mellifera L.) survival and food consumption. Apidologie 30, 465–473 (1999).
    CAS  Article  Google Scholar 

    42.
    Potrich, M. et al. Effect of entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae). Rev. Bras. Entomol. 22, 1–2. https://doi.org/10.1016/j.rbe.2017.12.002 (2018).
    ADS  Article  Google Scholar 

    43.
    Wang, Y. Y. et al. Toxicological, biochemical, and histopathological analyses demonstrating that Cry1C and Cry2A are not toxic to larvae of the honeybee Apis mellifera. J. Agric. Food Chem. 63, 6126–6132 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Renzi, M. T. et al. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fi pronil and Bacillus thuringiensis spores alone or combined. Ecotoxicol. Environ. Saf. 127, 205–213 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hendriksma, H. P. et al. Effect of stacked insecticidal cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS ONE 8, 1–11 (2013).
    Article  CAS  Google Scholar 

    46.
    Jia, H. R. et al. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae). Sci. Rep. 6, 1–8 (2016).
    Article  CAS  Google Scholar 

    47.
    Jia, H.-R. et al. No effect of Bt Cry1Ie toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae). Sci. Rep. 7, 1–10 (2017).
    Article  CAS  Google Scholar 

    48.
    Dai, P. et al. The effect of Bt Cry9Ee toxin on honey bee brood and adults reared in vitro, Apis mellifera (Hymenoptera: Apidae). Ecotoxicol. Environ. Saf. 181, 381–387 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Baptista, A. P. M., Carvalho, G. A., Carvalho, S. M., Carvalho, C. F. & de Bueno Filho, J. S. S. Toxicidade produtos fitossanitários utilizados em citros para Apis mellifera. Ciência Rural 39, 955–961 (2009).
    CAS  Article  Google Scholar 

    50.
    Tomé, H. V. V., Barbosa, W. F., Martins, G. F. & Guedes, R. N. C. Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide. Chemosphere 124, 103–109 (2015).
    ADS  PubMed  Article  CAS  Google Scholar 

    51.
    Kaplan, E. L. & Meier, P. Non parametric estimation from incomplete observation. J. Am. Stat. Assoc. 53, 457–481 (1958).
    MATH  Article  Google Scholar 

    52.
    Therneau, T. M. A Package for Survival Analysis in R. R package version 3.2-7. https://CRAN.R-project.org/package=survival (2020).

    53.
    Agresti, A. Categorical Data Analysis (Wiley, New York, 2002).
    Google Scholar 

    54.
    Christensen, R. H. B. Ordinal-Regression Models for Ordinal Data. R package version 2019.12-10. https://CRAN.R-project.org/package=ordina (2019).

    55.
    Russell, L. R Package ’emmeans’: Estimated Marginal Means, aka Least-Squares Means. https://github.com/rvlenth/emmeans (2020). More

  • in

    Hunting territories and land use overlap in sedentarised Baka Pygmy communities in southeastern Cameroon

    1.
    Henriksen, J. B. Case study 7. Key principles in implementing ILO convention no. 169. in Research on Best Practices for the Implementation of the Principles of ILO Convention No. 169 (Programme to Promote ILO Convention No. 169, 2008).
    2.
    MacKay, F. Addressing Past Wrongs: Indigenous Peoples and Protected Areas: The Right to Restitution of Lands and Resources. (Forest Peoples Programme, 2002).

    3.
    Hunter-gatherers of the Congo Basin: cultures, histories and biology of African Pygmies. (Transaction Publishers, 2014).

    4.
    Robillard, M. & Bahuchet, S. Les Pygmées et les autres: terminologie, catégorisation et politique. J. Afr. 82, 15–51 (2012).
    Google Scholar 

    5.
    Joiris, D. V. La chasse, la chance, le chant: aspect du systeme ritual des Baka du Cameroun. (Université Libre de Bruxelles, 1998).

    6.
    Rupp, S. Interethnic Relations in Southeastern Cameroon: Challenging the” Hunter-Gatherer”–” Farmer” Dichotomy. Afr. Study Monogr. 28, 37–56 (2003).
    Google Scholar 

    7.
    Bahuchet, S. Dans la Forêt D’Afrique Centrale: Les Pygmées Aka Et Baka. (PEETERS-SELAF, 1992).

    8.
    Yasuoka, H. Long-term foraging expeditions (Molongo) among the Baka Hunter-Gatherers in the Northwestern Congo Basin, with Special Reference to the “Wild Yam Question”. Hum. Ecol. 34, 275–296 (2006).
    Article  Google Scholar 

    9.
    Gallois, S. & Duda, R. Beyond productivity: The socio-cultural role of fishing among the Baka of southeastern Cameroon. Revue d’ethnoécologie [En ligne], (2016).

    10.
    Yasuoka, H. Snare hunting among Baka hunter-gatherers: Implications for sustainable wildlife management. Afr. Study Monogr. 49, 115–136 (2014).
    Google Scholar 

    11.
    Hayashi, K. Hunting activities in forest camps among the Baka hunter-gatherers of Southeastern Cameroon. Afr. Study Monogr. 29, 73–92 (2008).
    Google Scholar 

    12.
    Duda, R., Gallois, S. & Reyes-Garcia, V. Hunting techniques, wildlife offtake and market integration. A perspective from individual variations among the Baka (Cameroon). Afr. Study Monogr. 38, 97–118 (2017).

    13.
    Pemunta, N. V. Fortress conservation, wildlife legislation and the Baka Pygmies of southeast Cameroon. GeoJournal 84, 1035–1055 (2019).
    Article  Google Scholar 

    14.
    Dounias, E. & Leclerc, C. Spatial shifts and migration time scales among the Baka Pygmies of Cameroon and the Punan of Borneo. in The social ecology of tropical forest: Migration, populations and frontiers (eds. de Jong, W., Lye, T. P. & Ken-Chi, A.) 147–173 (University Press and Trans Pacific Press, 2006).

    15.
    Leclerc, C. L’adoption de l’agriculture chez les Pygmées Baka du Cameroun. (Editions Quae, 2012).

    16.
    Gallois, S. Dynamics of Local ecological knowledge among the Baka children from southeastern Cameroon. (Universitat Autònoma de Barcelona, 2015).

    17.
    Coquery-Vidrovitch, C. Le Congo au temps des grandes compagnies concessionnaires 1898–1930. (Mouton & Co, 2017).

    18.
    Pourtier, R. Le Gabon: etat et developpement. vol. Tome 2 (l’Harmattan, 1989).

    19.
    Jean, S. Les jachères en Afrique tropicale: interprétation technique et foncière. (Musée de l’Homme, 1975).

    20.
    Bailey, R. C., Bahuchet, S. & Hewlett, B. S. Development in the Central African rainforest: concern for forest peoples. in Conservation of West and Central African Rainforest (ed. Cleaver, K. M.) 202–211 (International Union for Conservation of Nature and Natural Resource, 1992).

    21.
    Bahuchet, S., McKey, D. & de Garine, I. Wild yams revisited: Is independence from agriculture possible for rain forest hunter-gatherers?. Hum. Ecol. 19, 213–243 (1991).
    Article  Google Scholar 

    22.
    Froment, A. Human biology and the health of African rainforest inhabitants. in Hunter-gatherers of the Congo basin 117–164 (Transaction Publishers, 2014).

    23.
    Althabe, G. Changements sociaux chez les Pygmées Baka de l’Est-Cameroun. Cahiers d’études africaines 561–592 (1965).

    24.
    Kitanishi, K. Cultivation by the Baka hunter-gatherers in the tropical rain forest of central Africa. Afr. Study Monogr. 28, 143–157 (2003).
    Google Scholar 

    25.
    Knight, J. Relocated to the roadside: preliminary observations on the forest Peoples of Gabon. Afr. Study Monogr. 28, 81–121 (2003).
    Google Scholar 

    26.
    Yasuoka, H. Fledging agriculturalists? Rethinking the adoption of cultivation by the Baka hunter-gatherers. Afr. Study Monogr. 43, 85–114 (2012).
    Google Scholar 

    27.
    Duda, R. Ethnoecology of hunting in an empty forest: practices, local perceptions and social change among the Baka (Cameroon). (Universitat Autonoma de Barcelona, 2017).

    28.
    Reyes-García, V. et al. Dietary transitions among three contemporary hunter-gatherers across the tropics. Food Secur. 11, 109–122 (2019).
    Article  Google Scholar 

    29.
    Gallois, S., Heger, T., van Andel, T., Sonké, B. & Henry, A. G. From bush mangoes to bouillon cubes: wild plants and diet among the Baka, forager-horticulturalists from Southeast Cameroon. Econ. Bot. https://doi.org/10.1007/s12231-020-09489-x (2020).
    Article  Google Scholar 

    30.
    Fa, J. E. et al. Differences between pygmy and non-pygmy hunting in Congo Basin Forests. PLoS ONE 11, e0161703 (2016).
    Article  Google Scholar 

    31.
    Dounias, E. & Froment, A. When forest-based hunter-gatherers become sedentary: consequences for diet and health. Unasylva 57, 8 (2006).
    Google Scholar 

    32.
    Hagino, I., Sato, H. & Yamauchi, T. The demographic characteristics and nutritional status for a hunter-gatherer society with social transitions in southeastern Cameroon. Afr. Study Monogr. 45–57 (2014).

    33.
    Mertens, B. & Lambin, E. F. Spatial modelling of deforestation in southern Cameroon: spatial disaggregation of diverse deforestation processes. Appl. Geogr. 17, 143–162 (1997).
    Article  Google Scholar 

    34.
    Mertens, B. & Lambin, E. F. Land-cover-change trajectories in Southern Cameroon. Ann. Assoc. Am. Geogr. 90, 467–494 (2000).
    Article  Google Scholar 

    35.
    Ndoye, O. & Kaimowitz, D. Macro-economics, markets and the humid forests of Cameroon, 1967–1997. J. Mod. Afr. Stud. 38, 225–253 (2000).
    Article  Google Scholar 

    36.
    Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52, 143 (2002).
    Article  Google Scholar 

    37.
    Messerli, P., Giger, M., Dwyer, M. B., Breu, T. & Eckert, S. The geography of large-scale land acquisitions: Analysing socio-ecological patterns of target contexts in the global South. Appl. Geogr. 53, 449–459 (2014).
    Article  Google Scholar 

    38.
    Seaquist, J. W., Li Johansson, E. & Nicholas, K. A. Architecture of the global land acquisition system: Applying the tools of network science to identify key vulnerabilities. Environ. Res. Lett. 9, 114006 (2014).
    ADS  Article  Google Scholar 

    39.
    Yasuoka, H. et al. Changes in the composition of hunting catches in southeastern Cameroon: a promising approach for collaborative wildlife management between ecologists and local hunters. E&S 20, art25 (2015).

    40.
    Ohl-Schacherer, J. et al. The Sustainability of subsistence hunting by Matsigenka native communities in Manu National Park Peru. Conserv. Biol. 21, 1174–1185 (2007).
    Article  Google Scholar 

    41.
    Parry, L., Barlow, J. & Peres, C. A. Hunting for sustainability in tropical secondary forests. Conserv. Biol. 23, 1270–1280 (2009).
    Article  Google Scholar 

    42.
    Kümpel, N. F., Milner-Gulland, E. J., Rowcliffe, J. M. & Cowlishaw, G. Impact of gun-hunting on diurnal primates in continental Equatorial Guinea. Int. J. Primatol. 29, 1065–1082 (2008).
    Article  Google Scholar 

    43.
    Coad, L. et al. Social and ecological change over a decade in a village hunting system, central Gabon. Conserv. Biol. 27, 270–280 (2013).
    CAS  Article  Google Scholar 

    44.
    Walters, G., Schleicher, J., Hymas, O. & Coad, L. Evolving hunting practices in Gabon: Lessons for community-based conservation interventions. E&S 20, art31 (2015).

    45.
    Zerca y Lejos. Soberanía alimentaria y medios de vida (Baka food security). https://zercaylejos.org/proyectos/soberania-alimentaria/ (2020).

    46.
    Zerca y Lejos. Educación. https://zercaylejos.org/proyectos/educacion/ (2020).

    47.
    Ávila Martin, E. et al. Wild meat hunting and use by sedentarised Baka Pygmies in southeastern Cameroon. PeerJ 8, e9906 (2020).
    Article  Google Scholar 

    48.
    Ndameau, B. Case Study 7: Cameroon – Boumba Bek – Protected areas and indigenous peoples: The paradox of conservation and survival of the Baka in Moloundou region (south-east Cameroon). in Indigenous Peoples and Protected Areas in Africa: From Principles to Practice (eds. Nelson, J. & Hossack, L.) 215–241 (Forest Peoples Programme, 2001).

    49.
    Egbe, S. E. et al. The Law, Communities and Wildlife Management in Cameroon. in Cameroon Rural Development Forestry Network. Network Paper (Overseas Development Institute, 2001).

    50.
    World Weather Online. Djoum Monthly Climate Averages. https://www.worldweatheronline.com/djoum-weather-averages/sud/cm.aspx (2020).

    51.
    Letouzey, R. Notice phytogéographique du Cameroun au 1:500000. (1985).

    52.
    Global Forest Watch. An overview of logging in Cameroon. (World Resources Institute (WRI), 2000).

    53.
    Morgan, D. et al. Impacts of selective logging and associated anthropogenic disturbance on intact forest landscapes and apes of Northern Congo. Front. For. Glob. Change 2, 28 (2019).
    Article  Google Scholar 

    54.
    Ichikawa, M. Problems in the conservation of rainforests in Cameroon. Afr. Study Monogr. 33, 3–20 (2006).
    Google Scholar 

    55.
    Ichikawa, M. Forest Conservation and Indigenous Peoples in The Congo Basin: New Trends toward Reconciliation between Global Issues and Local Interest. in Hunter-gatherers of the Congo Basin: cultures, histories and biology of African Pygmies (ed. Hewlett, B. S.) 321–342 (Transaction Publishers, 2014).

    56.
    Hattori, S. Current issues facing the forest people in southeastern Cameroon: the dynamics of Baka life and their ethnic relationship with farmers. Afr. Study Monogr. 47, 97–119 (2014).
    Google Scholar 

    57.
    United Nations. Free, Prior and Informed Consent of Indigenous Peoples. https://www.ohchr.org/Documents/Issues/ipeoples/freepriorandinformedconsent.pdf (2013).

    58.
    Darwin Initiative. Project 24029: Enabling Baka attain food security, improved health and sustain biodiversity. (2020).

    59.
    Remote Pixel. Remote Pixel—Satellite Imagery Search. https://remotepixel.ca/ (2018).

    60.
    European Space Agency. Sentinel online. https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (2020).

    61.
    System for Automated Geoscientific Analyses (SAGA). SAGA – System for Automated Geoscientific Analyses. http://www.saga-gis.org/en/index.html (2020).

    62.
    Global Forest Watch. Cameroon forest management units (last updated 2018). https://data.globalforestwatch.org/datasets/cameroon-forest-management-units (2020).

    63.
    Global Forest Watch. Cameroon community forests (last updated 2018). http://data.globalforestwatch.org/datasets/cameroon-community-forests?geometry=6.430%2C5.125%2C17.724%2C8.941 (2020).

    64.
    Calenge, C. & Fortmann-Roe, S. Package ‘adehabitatHR’. (2020).

    65.
    Benhamou, S. & Cornélis, D. Incorporating movement behavior and barriers to improve kernel home range space use estimates. J. Wildl. Manag. 74, 1353–1360 (2010).
    Article  Google Scholar 

    66.
    Benhamou, S. & Riotte-Lambert, L. Beyond the Utilization Distribution: Identifying home range areas that are intensively exploited or repeatedly visited. Ecol. Model. 227, 112–116 (2012).
    Article  Google Scholar 

    67.
    Lechowicz, M. J. The sampling characteristics of electivity indices. Oecologia 52, 22–30 (1982).
    ADS  Article  Google Scholar 

    68.
    R Foundation for Statistical Computing. R. (2018).

    69.
    Jarque, C. M. & Bera, A. K. A test for normality of observations and regression residuals. Int. Stat. Rev. 55, 163 (1987).
    MathSciNet  Article  Google Scholar 

    70.
    Gavrilov, I. & Pusev, R. Package ‘normtest’. (2015).

    71.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Soft. 82, (2017).

    72.
    Gockowski, J. et al. The forest margins of Cameroon. in Slash-and-burn Agriculture: The Search for Alternatives (eds. Palm, C. A., Vosti, A. S., Sanchez, A. P. & Polly, J. E.) 305–331 (Columbia University Press, 2005).

    73.
    Nounamo, L. & Yemefack, M. Shifting cultivation practices and sustainable forestland use in the evergreen forest of Cameroon. in Seminar proceedings ‘Sustainable management of African rain forest’, held inKribi, Cameroon, November 1999. Part II. (eds. Jonkers, W. B. J., Foahom, B. & Schmidt, P.) (The Tropenbos Foundation, 2001).

    74.
    Chapin, M., Lamb, Z. & Threlkeld, B. Mapping indigenous lands. Annu. Rev. Anthropol. 34, 619–638 (2005).
    Article  Google Scholar 

    75.
    Rainforest Foundation UK. Mapping for rights: Putting communities on the map. Mapping for rights. https://www.mappingforrights.org/index (2020).

    76.
    Fisher, R., Heckbert, S., León Villalobos, J. M. & Sutton, S. Augmenting physical 3D models with projected information to support environmental knowledge exchange. Appl. Geogr. 112, 102095 (2019).
    Article  Google Scholar 

    77.
    Njounan Tegomo, O., Defo, L. & Usongo, L. Mapping of resource use area by the Baka Pygmies inside and around Boumba-Bek National Park in Southeast Cameroon, with special reference to Baka’s customary rights. Afr. Study Monogr. 43, 45–59 (2012).

    78.
    Bobo, K. S., Kamgaing, T. O. W., Kamdoum, E. C. & Dzefack, Z. C. B. Bushmeat hunting in southeastern Cameroon: magnitude and impact on duikers (Cephalophus spp.). African Study Monographs Suppl. 51, 119–141 (2015).

    79.
    Constantino, P. de A. L. Dynamics of hunting territories and prey distribution in Amazonian Indigenous Lands. Appl. Geogr. 56, 222–231 (2015).

    80.
    Read, J. M. et al. Space, place, and hunting patterns among Indigenous Peoples of the Guyanese Rupununi region. Journal of Latin American Geography 9, 213–243 (2010).
    Article  Google Scholar 

    81.
    Smith, D. A. The spatial patterns of indigenous wildlife use in western Panama: Implications for conservation management. Biol. Cons. 141, 925–937 (2008).
    Article  Google Scholar 

    82.
    Pangau-Adam, M., Noske, R. & Muehlenberg, M. Wildmeat or bushmeat? Subsistence hunting and commercial harvesting in Papua (West New Guinea) Indonesia. Hum. Ecol. 40, 611–621 (2012).
    Article  Google Scholar 

    83.
    Kümpel, N. F. Incentives for sustainable hunting of bushmeat in Río Muni, Equatorial Guinea. (Imperial college London, 2006).

    84.
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).
    ADS  Article  Google Scholar 

    85.
    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis. Biol. Cons. 143, 1307–1316 (2010).
    Article  Google Scholar 

    86.
    World Land Trust. Area converter. https://www.worldlandtrust.org/get-involved/educational-resources/area-converter/ (2020).

    87.
    Billong Fils, P. E. et al. Ethnobotanical survey of wild edible plants used by Baka People in southeastern Cameroon. J. Ethnobiol. Ethnomed. 16 (2020).

    88.
    Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
    Article  Google Scholar 

    89.
    Bruce, T. et al. Faunal Inventory of the Dja Faunal Reserve, Cameroon—2018. 62 (2018). More

  • in

    Genetic structure of a remnant Acropora cervicornis population

    1.
    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 1–8 (2016).
    Article  CAS  Google Scholar 
    2.
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Mumby, P. J. Stratifying herbivore fisheries by habitat to avoid ecosystem overfishing of coral reefs. Fish Fish. 17, 266–278 (2016).
    Article  Google Scholar 

    5.
    Silbiger, N. J. et al. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc. R. Soc. B Biol. Sci. 285, 1–9 (2018).
    Google Scholar 

    6.
    Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a caribbean coral reef. Science (80-. ). 265, 1547–1551 (1994).

    7.
    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Spalding, M. D. & Brown, B. E. Warm-water coral reefs and climate change. Science (80-. ). 350, 769–771 (2015).

    9.
    Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2017).
    Article  Google Scholar 

    10.
    Weijerman, M. et al. Evaluating management strategies to optimise coral reef ecosystem services. J. Appl. Ecol. 55, 1823–1833 (2017).
    Article  Google Scholar 

    11.
    Jackson, J., Donovan, M., Cramer, K., Lam, V. & (editors). Status and Trends of Caribbean Coral Reefs: 1970–2012. (2014).

    12.
    Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in caribbean corals. Science (80-. ). 301, 958–961 (2003).

    13.
    Aronson, R., Bruckner, A., Moore, J., Precht, B. & Weil, E. Acropora palmata: The IUCN Red List of Threatened Species 2008: e.T133006A3536699. (2008). https://doi.org/10.2305/IUCN.UK.2008.RLTS.T133006A3536699.en.

    14.
    Aronson, R., Bruckner, A., Moore, J., Precht, B. & Weil, E. Acropora cervicornis. The IUCN Red List of Threatened Species 2008: e.T133381A3716457. (2008). https://doi.org/10.2305/IUCN.UK.2008.RLTS.T133381A3716457.en.

    15.
    Porto-Hannes, I. et al. Population structure of the corals Orbicella faveolata and Acropora palmata in the Mesoamerican Barrier Reef System with comparisons over Caribbean basin-wide spatial scale. Mar. Biol. 162, 81–98 (2015).
    CAS  Article  Google Scholar 

    16.
    Keck, J., Houston, R. S., Purkis, S. & Riegl, B. M. Unexpectedly high cover of Acropora cervicornis on offshore reefs in Roatan (Honduras). Coral Reefs 24, 509 (2005).
    ADS  Article  Google Scholar 

    17.
    Japaud, A., Bouchon, C., Manceau, J.-L. & Fauvelot, C. High clonality in Acropora palmata and Acropora cervicornis populations of Guadeloupe French Lesser Antilles. Mar. Freshw. Res. 66(847), 851 (2015).
    Google Scholar 

    18.
    Baums, I. B., Miller, M. W. & Hellberg, M. E. Regionally isolated populations of an imperiled Caribbean coral Acropora palmata. Mol. Ecol. 14(1377), 1390 (2005).
    Google Scholar 

    19.
    Lasker, H. R. & Coffroth, M. A. Responses of clonal reef taxa to environmental change. Am. Zool. 39, 92–103 (1999).
    Article  Google Scholar 

    20.
    Honnay, O. & Bossuyt, B. Prolonged clonal growth: escape route or route to extinction?. Oikos 108, 427–432 (2005).
    Article  Google Scholar 

    21.
    Teo, A. & Todd, P. A. Simulating the effects of colony density and intercolonial distance on fertilisation success in broadcast spawning scleractinian corals. Coral Reefs 37, 891–900 (2018).
    ADS  Article  Google Scholar 

    22.
    Baums, I. B., Miller, M. W. & Hellberg, M. E. Geographic variation in clonal structure in a reef-building Caribbean coral Acropora palmata. Ecol. Monogr. 76(503), 519 (2006).
    Google Scholar 

    23.
    Drury, C., Paris, C. B., Vassiliki, H. K. & Lirman, D. Dispersal capacity and genetic relatedness in Acropora cervicornis on the Florida Reef Tract. Coral Reefs 37, 585–596 (2018).
    ADS  Article  Google Scholar 

    24.
    Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. USA 102, 2826–2831 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Booth, R. E. & Grime, J. P. Effects of genetic impoverishment on plant community diversity. J. Ecol. 91, 721–730 (2003).
    Article  Google Scholar 

    26.
    Drury, C., Greer, J. B., Baums, I., Gintert, B. & Lirman, D. Clonal diversity impacts coral cover in Acropora cervicornis thickets: Potential relationships between density, growth, and polymorphisms. Ecol. Evol. 9, 4518–4531 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Neigel, J. E. & Avise, J. C. Clonal diversity and population structure in a reef-building coral, acropora cervicornis: self-recognition analysis and demographic interpretation. Evolution (N. Y). 37, 437–453 (1983).

    28.
    Hughes, T. P. et al. Coral reefs in the anthropocene. Nature 546, 82–90 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Evensen, N., Doropoulos, C., Morrow, K., Motti, C. & Mumby, P. Inhibition of coral settlement at multiple spatial scales by a pervasive algal competitor. Mar. Ecol. Prog. Ser. 612, 29–42 (2019).
    ADS  CAS  Article  Google Scholar 

    30.
    Goreau, T. J. & Hilbertz, W. Marine ecosystems restoration: costs and benefits for coral reefs. World Resour. Rev. 17, 375–409 (2005).
    Google Scholar 

    31.
    Vollmer, S. V. & Kline, D. I. Natural disease resistance in threatened staghorn corals. PLoS ONE 3, 1–5 (2008).
    Article  CAS  Google Scholar 

    32.
    Baums, I. B. A restoration genetics guide for coral reef conservation. Mol. Ecol. 17, 2796–2811 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Schopmeyer, S. A. et al. In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event. Restor. Ecol. 20, 696–703 (2011).
    Article  Google Scholar 

    34.
    Young, C. N., Schopmeyer, S. A. & Lirman, D. A review of reef restoration and coral propogation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).
    Article  Google Scholar 

    35.
    ICF. Instituto de Conservacion Forestal. Declaracion de Banco Cordelia Sitio de Importancia para la Vida Silvestre. Gaceta No. 32,816, 10 Mayo Del 2012. Acuerdo No. 021–2012. (2012).

    36.
    Riegl, B., Purkis, S. J., Keck, J. & Rowlands, G. P. Monitored and modeled coral population dynamics and the refuge concept. Mar. Pollut. Bull. 58, 24–38 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2020). https://www.R-project.org/.

    38.
    Soong, K. & Lang, J. C. Reproductive integration in reef corals. Biol. Bull. 183, 418–431 (1992).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Baums, I. B., Hughes, C. R. & Hellberg, M. E. Mendelian microsatellite loci for the Caribbean coral Acropora palmata. Mar. Ecol. Ser. 288, 115–127 (2005).
    CAS  Article  Google Scholar 

    40.
    Baums, I. B., Devlin-Durante, K., Brown, L. & Pinzon, J. H. Nine novel, ploymorphic microsatellite markers for the study of threatened caribbean acroporid corals. Mol. Ecol. Resour. 9, 1155–1158 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Alberto, F. MsatAllele-1.0: An R package to visualize the binning of microsatellite alleles. J. Hered. 100, 394–397 (2009).

    42.
    Meirmans, P. G. & Van Tienderen, P. H. GENOTYPE and GENODIVE: Two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794 (2004).
    Article  Google Scholar 

    43.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).

    44.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    46.
    Oksanen, J. et al. The Vegan Package. (2007).

    47.
    Vollmer, S. V. & Palumbi, S. R. Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J. Hered. 98, 40–50 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Van Woesik, R., Lacharmoise, F. & Köksal, S. Annual cycles of solar insolation predict spawning times of Caribbean corals. Ecol. Lett. 9, 390–398 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Fogarty, N. D., Vollmer, S. V. & Levitan, D. R. Weak prezygotic isolating mechanisms in threatened caribbean Acropora corals. PLoS One 7, (2012).

    50.
    Rodríguez-Martínez, R. E., Banaszak, A. T., McField, M. D., Beltrán-Torres, A. U. & Álvarez-Filip, L. Assessment of Acropora palmata in the mesoamerican reef system. PLoS ONE 9, 1–7 (2014).
    Google Scholar 

    51.
    Aronson, J. & Alexander, S. Ecosystem restoration is now a global priority: time to roll up our sleeves. Restor. Ecol. 21, 293–296 (2013).
    Article  Google Scholar 

    52.
    Perring, M. P. et al. Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6, 480–493 (2015).
    Article  Google Scholar 

    53.
    Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 4, e2597 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, 1–24 (2020).
    Article  CAS  Google Scholar 

    55.
    Mijangos, J. L., Pacioni, C., Spencer, P. B. S. & Craig, M. D. Contribution of genetics to ecological restoration. Mol. Ecol. 24, 22–37 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Ladd, M. C., Miller, M. W., Hunt, J. H., Sharp, W. C. & Burkepile, D. E. Harnessing ecological processes to facilitate coral restoration. Front. Ecol. Environ. 16, 239–247 (2018).
    Article  Google Scholar 

    57.
    Granado, R., Neta, L. C. P., Nunes-Freitas, A. F., Voloch, C. M. & Lira, C. F. Assessing genetic diversity after mangrove restoration in Brazil: Why is it so important? Diversity 10, (2018).

    58.
    Johnson, M. E. et al. Caribbean Acropora Restoration Guide: Best Practices for Propagation and Population Enhancement. (2011).

    59.
    Bland, L. M. et al. Using multiple lines of evidence to assess the risk of ecosystem collapse. Proc. R. Soc. B Biol. Sci. 284, 1–10 (2017).
    Google Scholar 

    60.
    ICF. Plan de Gestión para el Manejo del Sitio de Importancia para la Vida Silvestre Banco Cordelia el Parque nacional Marino de Islas de la Bahia. Inst. Nac. Conserv. y Desarro. For. Areas Protegidas y Vida Silv. 111 (2013).

    61.
    Mcleod, E. et al. The future of resilience-based management in coral reef ecosystems. J. Environ. Manage. 233, 291–301 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, 1–8 (2017).
    Article  Google Scholar  More

  • in

    Author Correction: Mapping the forest disturbance regimes of Europe

    Affiliations

    Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Freising, Germany
    Cornelius Senf & Rupert Seidl

    Institute for Silviculture, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
    Cornelius Senf & Rupert Seidl

    Berchtesgaden National Park, Berchtesgaden, Germany
    Rupert Seidl

    Authors
    Cornelius Senf

    Rupert Seidl

    Corresponding author
    Correspondence to Cornelius Senf. More

  • in

    Big trees drive forest structure patterns across a lowland Amazon regrowth gradient

    1.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).
    ADS  CAS  Article  Google Scholar 
    2.
    Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730. https://doi.org/10.1111/btp.12381 (2016).
    Article  Google Scholar 

    3.
    Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456. https://doi.org/10.1126/science.aam5432 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Brancalion, P. H. S. et al. Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica 48, 856–867. https://doi.org/10.1111/btp.12383 (2016).
    Article  Google Scholar 

    5.
    Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32. https://doi.org/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2 (2007).
    Article  Google Scholar 

    6.
    Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10, 5803. https://doi.org/10.1038/s41598-020-62591-x (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Csillik, O., Kumar, P., Mascaro, J., O’Shea, T. & Asner, G. P. Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Sci. Rep. 9, 17831. https://doi.org/10.1038/s41598-019-54386-6 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Nunes, S. et al. Uncertainties in assessing the extent and legal compliance status of riparian forests in the eastern Brazilian Amazon. Land Use Policy 82, 37–47. https://doi.org/10.1016/j.landusepol.2018.11.051 (2019).
    Article  Google Scholar 

    9.
    Rocha, G. P. E., Vieira, D. L. M. & Simon, M. F. Fast natural regeneration in abandoned pastures in southern Amazonia. For. Ecol. Manag. 370, 93–101. https://doi.org/10.1016/j.foreco.2016.03.057 (2016).
    Article  Google Scholar 

    10.
    Rodrigues, S. B. et al. Direct seeded and colonizing species guarantee successful early restoration of South Amazon forests. For. Ecol. Manag. 451, 117559. https://doi.org/10.1016/j.foreco.2019.117559 (2019).
    Article  Google Scholar 

    11.
    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688. https://doi.org/10.1111/j.1523-1739.2005.00697.x (2005).
    Article  Google Scholar 

    12.
    Laurance, W. F. et al. Rain forest fragmentation and the proliferation of sucessional trees. Ecology 87, 469–482. https://doi.org/10.1890/05-0064 (2006).
    Article  PubMed  Google Scholar 

    13.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214. https://doi.org/10.1038/nature16512 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    14.
    Camargo, J. L. C., Ferraz, I. D. K. & Imakawa, A. M. Rehabilitation of degraded areas of central Amazonia using direct sowing of forest tree seeds. Restor. Ecol. 10, 636–644. https://doi.org/10.1046/j.1526-100X.2002.01044.x (2002).
    Article  Google Scholar 

    15.
    Guariguata, M. R. & Ostertag, R. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manag. 148, 185–206. https://doi.org/10.1016/S0378-1127(00)00535-1 (2001).
    Article  Google Scholar 

    16.
    Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666. https://doi.org/10.1038/ncomms11666 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x (2009).
    Article  PubMed  Google Scholar 

    18.
    Peres, C. A., Emilio, T., Schietti, J., Desmouliere, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. USA 113, 892–897. https://doi.org/10.1073/pnas.1516525113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    19.
    Pessoa, M. S. et al. Deforestation drives functional diversity and fruit quality changes in a tropical tree assemblage. Perspect. Plant Ecol. Evol. Syst. 28, 78–86. https://doi.org/10.1016/j.ppees.2017.09.001 (2017).
    Article  Google Scholar 

    20.
    Bowen, M. E., McAlpine, C. A., House, A. P. & Smith, G. C. Regrowth forests on abandoned agricultural land: a review of their habitat values for recovering forest fauna. Biol. Cons. 140, 273–296. https://doi.org/10.1016/j.biocon.2007.08.012 (2007).
    Article  Google Scholar 

    21.
    Chazdon, R. L. & Uriarte, M. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48, 709–715. https://doi.org/10.1111/btp.12409 (2016).
    Article  Google Scholar 

    22.
    Neuschulz, E. L., Mueller, T., Schleuning, M. & Böhning-Gaese, K. Pollination and seed dispersal are the most threatened processes of plant regeneration. Sci. Rep. 6, 29839. https://doi.org/10.1038/srep29839 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Stoner, K. E., Riba-Hernández, P., Vulinec, K. & Lambert, J. E. The role of mammals in creating and modifying seedshadows in tropical forests and some possible consequences of their elimination. Biotropica 39, 316–327. https://doi.org/10.1111/j.1744-7429.2007.00292.x (2007).
    Article  Google Scholar 

    24.
    Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc. R. Soc. B 283, 20161634. https://doi.org/10.1098/rspb.2016.1634 (2016).
    Article  PubMed  Google Scholar 

    25.
    Asquith, N. M. & Mejía-Chang, M. Mammals, edge effects, and the loss of tropical forest diversity. Ecology 86, 379–390. https://doi.org/10.1890/03-0575 (2005).
    Article  Google Scholar 

    26.
    Beck, H., Snodgrass, J. W. & Thebpanya, P. Long-term exclosure of large terrestrial vertebrates: Implications of defaunation for seedling demographics in the Amazon rainforest. Biol. Cons. 163, 115–121. https://doi.org/10.1016/j.biocon.2013.03.012 (2013).
    Article  Google Scholar 

    27.
    Paine, C. E., Beck, H. & Terborgh, J. How mammalian predation contributes to tropical tree community structure. Ecology 97, 3326–3336. https://doi.org/10.1002/ecy.1586 (2016).
    Article  PubMed  Google Scholar 

    28.
    Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676. https://doi.org/10.1038/s41559-017-0334-0 (2017).
    Article  PubMed  Google Scholar 

    29.
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818 (2007).
    Article  MATH  Google Scholar 

    30.
    Wunderle, J. M. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. For. Ecol. Manag. 99, 223–235. https://doi.org/10.1016/S0378-1127(97)00208-9 (1997).
    Article  Google Scholar 

    31.
    Fragoso, J. M. V. Tapir-generated seed shadows: scale-dependent patchiness in the Amazon Rain Forest. J. Ecol. 85, 519–529. https://doi.org/10.2307/2960574 (1997).
    Article  Google Scholar 

    32.
    Hibert, F. et al. Unveiling the diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study. PLoS ONE 8, e60799. https://doi.org/10.1371/journal.pone.0060799 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768. https://doi.org/10.1890/07-0479.1 (2008).
    Article  PubMed  Google Scholar 

    34.
    Wright, S. J. et al. The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39, 289–291. https://doi.org/10.1111/j.1744-7429.2007.00293.x (2007).
    Article  Google Scholar 

    35.
    Molto, Q. et al. Predicting tree heights for biomass estimates in tropical forests; a test from French Guiana. Biogeosciences 11, 3121–3130. https://doi.org/10.5194/bg-11-3121-2014 (2014).
    ADS  Article  Google Scholar 

    36.
    Letcher, S. G. & Chazdon, R. L. Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in Northeastern Costa Rica. Biotropica 41, 608–617. https://doi.org/10.1111/j.1744-7429.2009.00517.x (2009).
    Article  Google Scholar 

    37.
    Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574. https://doi.org/10.1016/j.tree.2007.09.006 (2007).
    Article  PubMed  Google Scholar 

    38.
    Beven, K. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24, 43–69. https://doi.org/10.1080/02626667909491834 (1979).
    Article  Google Scholar 

    39.
    Campling, P., Gobin, A. & Feyen, J. Logistic modeling to spatially predict the probability of soil drainage classes. Soil Sci. Soc. Am. J. 66, 1390–1401. https://doi.org/10.2136/sssaj2002.1390 (2002).
    ADS  CAS  Article  Google Scholar 

    40.
    Nobre, A. D. et al. Height above the nearest drainage: a hydrologically relevant new terrain model. J. Hydrol. 404, 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051 (2011).
    ADS  Article  Google Scholar 

    41.
    Schietti, J. et al. Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol. Diver. 7, 241–253. https://doi.org/10.1080/17550874.2013.783642 (2014).
    Article  Google Scholar 

    42.
    Gehring, C., Denich, M. & Vlek, P. L. G. Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. J. Trop. Ecol. 21, 519–527. https://doi.org/10.1017/S0266467405002543 (2005).
    Article  Google Scholar 

    43.
    Feldpausch, T. R., Riha, S. J., Fernandes, E. C. M. & Wandelli, E. V. Development of forest structure and leaf area in secondary forests regenerating on abandoned pastures in Central Amazônia. Earth Interact. 9, 1–22. https://doi.org/10.1175/EI140.1 (2005).
    Article  Google Scholar 

    44.
    Luskin, M. S., Ickes, K., Yao, T. L. & Davies, S. J. Wildlife differentially affect tree and liana regeneration in a tropical forest: an 18-year study of experimental terrestrial defaunation versus artificially abundant herbivores. J. Appl. Ecol. 56, 1379–1388. https://doi.org/10.1111/1365-2664.13378 (2019).
    Article  Google Scholar 

    45
    Lu, D., Mausel, P., Brondizio, E. & Moran, E. Classification of successional forest stages in the Brazilian Amazon basin. Forest Ecol. Manag. 181, 301–312. https://doi.org/10.1016/S0378-1127(03)00003-3 (2003).
    Article  Google Scholar 

    46.
    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances 3, e1701345. https://doi.org/10.1126/sciadv.1701345 (2017).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    47
    de Castilho, C. V. et al. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecol. Manag. 234, 85–96. https://doi.org/10.1016/j.foreco.2006.06.024 (2006).
    Article  Google Scholar 

    48.
    Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000. https://doi.org/10.1111/ele.12964 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Fortunel, C. et al. Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest. Ecology 99, 2272–2283. https://doi.org/10.1002/ecy.2441 (2018).
    Article  PubMed  Google Scholar 

    50.
    Tiessen, H., Chacon, P. & Cuevas, E. Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro. Oecologia 99, 145–150. https://doi.org/10.1007/BF00317095 (1994).
    ADS  CAS  Article  PubMed  Google Scholar 

    51.
    Paredes, O. S. L., Norris, D., Oliveira, T. G. D. & Michalski, F. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest. PLOS ONE 12, e0174049. https://doi.org/10.1371/journal.pone.0174049 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Michalski, L. J., Norris, D., de Oliveira, T. G. & Michalski, F. Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species. PLoS ONE 10, e0126114. https://doi.org/10.1371/journal.pone.0126114 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Mendes Pontes, A. R. Tree reproductive phenology determines the abundance of medium-sized and large mammalian assemblages in the Guyana shield of the Brazilian Amazonia. Anim. Biodiver. Conserv. 43(1), 9–26. https://doi.org/10.32800/abc.2020.43.0009 (2020).
    Article  Google Scholar 

    54.
    Arévalo-Sandi, A., Bobrowiec, P. E. D., Rodriguez Chuma, V. J. U. & Norris, D. Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient. PLoS ONE 13, e0193752. https://doi.org/10.1371/journal.pone.0193752 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55
    Arita, H. T., Robinson, J. G. & Redford, K. Rarity in Neotropical forest mammals and its ecological correlates. Conserv. Biol. 4, 181–192. https://doi.org/10.1111/j.1523-1739.1990.tb00107.x (1990).
    Article  Google Scholar 

    56.
    Peres, C. A. & Palacios, E. Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39, 304–315. https://doi.org/10.1111/j.1744-7429.2007.00272.x (2007).
    Article  Google Scholar 

    57.
    Emmons, L. H. & Feer, F. Neotropical Rainforest Mammals: A Field Guide (The University of Chicago Press, Chicago, 1997).
    Google Scholar 

    58.
    Michalski, F., Michalski, L. J. & Barnett, A. A. Environmental determinants and use of space by six Neotropical primates in the northern Brazilian Amazon. Stud. Neotrop. Fauna Environ. 52, 187–197. https://doi.org/10.1080/01650521.2017.1335276 (2017).
    Article  Google Scholar 

    59.
    Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618. https://doi.org/10.1046/j.1523-1739.2002.01025.x (2002).
    Article  Google Scholar 

    60.
    Norris, D., Peres, C. A., Michalski, F. & Hinchsliffe, K. Terrestrial mammal responses to edges in Amazonian forest patches: a study based on track stations. Mammalia 72, 15–23. https://doi.org/10.1515/mamm.2008.002 (2008).
    Article  Google Scholar 

    61.
    Martínez-Ramos, M. et al. Natural forest regeneration and ecological restoration in human-modified tropical landscapes. Biotropica 48, 745–757. https://doi.org/10.1111/btp.12382 (2016).
    Article  Google Scholar 

    62.
    Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L. & Lovejoy, T. E. Rainforest fragmentation kills big trees. Nature 404, 836–836. https://doi.org/10.1038/35009032 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661. https://doi.org/10.1111/j.1744-7429.2008.00454.x (2008).
    Article  Google Scholar 

    64.
    Santos, B. A. et al. Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol. Cons. 141, 249–260. https://doi.org/10.1016/j.biocon.2007.09.018 (2008).
    Article  Google Scholar 

    65.
    Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. & Tabarelli, M. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28, 462–468. https://doi.org/10.1016/j.tree.2013.01.001 (2013).
    Article  PubMed  Google Scholar 

    66
    Malhi, Y. et al. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 409–420. https://doi.org/10.1098/rstb.2003.1425 (2004).
    Article  Google Scholar 

    67.
    Keller, M., Palace, M. & Hurtt, G. Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties. For. Ecol. Manag. 154, 371–382. https://doi.org/10.1016/S0378-1127(01)00509-6 (2001).
    Article  Google Scholar 

    68.
    Arévalo-Sandi, A. R. & Norris, D. Short term patterns of germination in response to litter clearing and exclosure of large terrestrial vertebrates along an Amazon forest regrowth gradient. Glob. Ecol. Conserv. 13, e00371. https://doi.org/10.1016/j.gecco.2017.e00371 (2018).
    Article  Google Scholar 

    69.
    David, M. O. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 (2001).
    Article  Google Scholar 

    70
    ter Steege, H. et al. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J. Trop. Ecol. 16, 801–828 (2000).
    Article  Google Scholar 

    71.
    Batista, A. P. B. et al. Caracterização estrutural em uma floresta de terra firme no estado do Amapá, Brasil. Pesq. flor. bras 35, 21–33 (2015).
    Article  Google Scholar 

    72
    Eswaran, H., Ahrens, R., Rice, T. J. & Stewart, B. A. Soil Classification: A Global Desk Reference (CRC Press, Boca Raton, 2002).
    Google Scholar 

    73.
    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).
    Article  Google Scholar 

    74.
    ANA. Sistema de Monitoramento Hidrológico (Hydrological Monitoring System). Agência Nacional de Águas[[nl]]National Water Agency, Available at http://www.hidroweb.ana.gov.br, 2017).

    75
    Norris, D., Rodriguez Chuma, V. J. U., Arevalo-Sandi, A. R., Landazuri Paredes, O. S. & Peres, C. A. Too rare for non-timber resource harvest? Meso-scale composition and distribution of arborescent palms in an Amazonian sustainable-use forest. Forest Ecol. Manag. 377, 182–191. https://doi.org/10.1016/j.foreco.2016.07.008 (2016).
    Article  Google Scholar 

    76.
    Norris, D. & Michalski, F. Socio-economic and spatial determinants of anthropogenic predation on Yellow-spotted River Turtle, Podocnemis unifilis (Testudines: Pelomedusidae), nests in the Brazilian Amazon: Implications for sustainable conservation and management. Zoologia (Curitiba) 30, 482–490. https://doi.org/10.1590/S1984-46702013000500003 (2013).
    Article  Google Scholar 

    77
    Yirdaw, E., MongeMonge, A., Austin, D. & Toure, I. Recovery of floristic diversity, composition and structure of regrowth forests on fallow lands: implications for conservation and restoration of degraded forest lands in Laos. New Forests 50, 1007–1026. https://doi.org/10.1007/s11056-019-09711-2 (2019).
    Article  Google Scholar 

    78.
    McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: its definition and measurement. For. Ecol. Manag. 218, 1–24. https://doi.org/10.1016/j.foreco.2005.08.034 (2005).
    Article  Google Scholar 

    79.
    Sist, P., Mazzei, L., Blanc, L. & Rutishauser, E. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For. Ecol. Manag. 318, 103–109. https://doi.org/10.1016/j.foreco.2014.01.005 (2014).
    Article  Google Scholar 

    80.
    Phillips, O. L. et al. Species matter: wood density influences tropical forest biomass at multiple scales. Surv. Geophys. 40, 913–935. https://doi.org/10.1007/s10712-019-09540-0 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Bastin, J.-F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).
    Article  Google Scholar 

    82.
    TEAM Network. 69 (Tropical Ecology, Assessment and Monitoring Network, Center for Applied Biodiversity Science, Conservation International., Arlington, VA, USA., 2011).

    83.
    Hortal, J., Borges, P. A. & Gaspar, C. Evaluating the performance of species richness estimators: sensitivity to sample grain size. J. Anim. Ecol. 75, 274–287. https://doi.org/10.1111/j.1365-2656.2006.01048.x (2006).
    Article  PubMed  Google Scholar 

    84.
    Magurran, A. E. & McGill, B. J. in Biological diversity: frontiers in measurement and assessment (eds A. E. Magurran & B. J. McGill) Ch. 1, 1–7 (Oxford University Press, 2011).

    85.
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305. https://doi.org/10.1890/08-2244.1 (2010).
    Article  PubMed  Google Scholar 

    86.
    FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12 (2014).

    87.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach (Springer, Berlin, 2002).
    Google Scholar 

    88.
    Drasgow, F. in The Encyclopedia of Statistics Vol. 7 (eds S. Kotz & N. Johnson) 68–74 (Wiley, 1986).

    89.
    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. 3.6.3 (R Foundation for Statistical Computing, Vienna, 2020).
    Google Scholar 

    90.
    90vegan: Community Ecology Package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan (2016).

    91.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2009).
    Google Scholar 

    92.
    MuMIn: multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn (2016).

    93.
    Tweedie: Tweedie exponential family models. R package version 2.2.1. https://cran.r-project.org/web/packages/tweedie (2014). More

  • in

    Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain

    Characteristics of the NMs
    Commercially available spherical (10, 60, and 100 nm) and rod-shaped (10 × 45 nm and 50 × 100 nm) citrate-coated Au-NMs from Nanopartz (USA) were characterized in Milli-Q (MQ) water in terms of particle size and morphology using transmission electron microscopy (TEM) (Supplementary Fig. 1). The physicochemical properties of the Au-NMs in MQ water are summarized in Supplementary Table 1. A negative zeta potential (a measure of colloidal dispersion electrostatic stability) was observed for all Au-NMs and ranged from −21 to −25 mV in MQ water and from −17 to −19 mV in the algal exposure medium (without algae). The stability of the particles against dissolution and agglomeration in the algal exposure medium without algae was monitored throughout the exposure duration (72 h). The dissolved fraction of the Au-NMs was More