More stories

  • in

    Past landscape structure drives the functional assemblages of plants and birds

    1.
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biol. Rev. 87, 661–685 (2012).
    PubMed  Article  Google Scholar 
    2.
    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes: Heterogeneity and biodiversity. Ecol. Lett. 14, 101–112 (2011).
    PubMed  Article  Google Scholar 

    3.
    Rundlöf, M., Nilsson, H. & Smith, H. G. Interacting effects of farming practice and landscape context on bumble bees. Biol. Conserv. 141, 417–426 (2008).
    Article  Google Scholar 

    4.
    Wamser, S., Diekötter, T., Boldt, L., Wolters, V. & Dauber, J. Trait-specific effects of habitat isolation on carabid species richness and community composition in managed grasslands: Effects of habitat isolation on carabid beetles. Insect Conser. Divers. 5, 9–18 (2012).
    Article  Google Scholar 

    5.
    Sonnier, G., Jamoneau, A. & Decocq, G. Evidence for a direct negative effect of habitat fragmentation on forest herb functional diversity. Landsc. Ecol. 29, 857–866 (2014).
    Article  Google Scholar 

    6.
    Wilcove, D. S. & McLellan, C. H. Habitat fragmentation in the temperate zone. Conserv. Biol. 1, 237–256 (1986).
    Google Scholar 

    7.
    Wilcox, B. A. & Murphy, D. D. Conservation strategy: The effects of fragmentation on extinction. Am. Nat. 125, 879–887 (1985).
    Article  Google Scholar 

    8.
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology: The metacommunity concept. Ecol. Lett. 7, 601–613 (2004).
    Article  Google Scholar 

    9.
    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
    Article  Google Scholar 

    10.
    Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity?. Biol. Conserv. 226, 9–15 (2018).
    Article  Google Scholar 

    11.
    Fahrig, L. et al. Is habitat fragmentation bad for biodiversity?. Biol. Conserv. 230, 179–186 (2019).
    Article  Google Scholar 

    12.
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Perović, D. et al. Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J. Appl. Ecol. 52, 505–513 (2015).
    Article  Google Scholar 

    14.
    Concepción, E. D. et al. Contrasting trait assembly patterns in plant and bird communities along environmental and human-induced land-use gradients. Ecography 40, 753–763 (2017).
    Article  Google Scholar 

    15.
    Rocha-Santos, L. et al. The loss of functional diversity: A detrimental influence of landscape-scale deforestation on tree reproductive traits. J. Ecol. 108, 212–223 (2019).
    Article  Google Scholar 

    16.
    Provost, G. L. et al. Land-use history impacts functional diversity across multiple trophic groups. PNAS 117, 1573–1579 (2020).
    PubMed  Article  CAS  Google Scholar 

    17.
    Solé-Senan, X. O., Juárez-Escario, A., Robleño, I., Conesa, J. A. & Recasens, J. Using the response-effect trait framework to disentangle the effects of agricultural intensification on the provision of ecosystem services by Mediterranean arable plants. Agric. Ecosyst. Environ. 247, 255–264 (2017).
    Article  Google Scholar 

    18.
    Grime, J. P. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J. Veg. Sci. 17, 255–260 (2006).
    Article  Google Scholar 

    19.
    Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).
    Article  Google Scholar 

    20.
    de Bello, F. et al. Evidence for scale- and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. J. Ecol. 101, 1237–1244 (2013).
    Article  Google Scholar 

    21.
    Muscarella, R. & Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies?. Proc. R. Soc. B 283, 20152434 (2016).
    PubMed  Article  Google Scholar 

    22.
    de Bello, F. et al. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J. Veg. Sci. 20, 475–486 (2009).
    Article  Google Scholar 

    23.
    Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules: Functional diversity measures. Funct. Ecol. 24, 867–876 (2010).
    Article  Google Scholar 

    24.
    Shmida, A. & Wilson, M. V. Biological determinants of species diversity. J. Biogeogr. 12, 1–20 (1985).
    Article  Google Scholar 

    25.
    Baudry, J. & Papy, F. The role of landscape heterogeneity in the sustainability of cropping systems. In Crop Science: Progress and Prospects (eds Baudry, J. & Papy, F.) 243–249 (CABI Publishing, Oxfordshire, 2001).
    Google Scholar 

    26.
    Duflot, R., Georges, R., Ernoult, A., Aviron, S. & Burel, F. Landscape heterogeneity as an ecological filter of species traits. Acta Oecol. 56, 19–26 (2014).
    ADS  Article  Google Scholar 

    27.
    Cleland, E., Chuine, I., Menzel, A., Mooney, H. & Schwartz, M. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Hendrickx, F. et al. Pervasive effects of dispersal limitation on within- and among-community species richness in agricultural landscapes. Glob. Ecol. Biogeogr. 18, 607–616 (2009).
    Article  Google Scholar 

    29.
    Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169 (1992).
    Article  Google Scholar 

    30.
    Jonason, D. et al. Weak functional response to agricultural landscape homogenisation among plants, butterflies and birds. Ecography 40, 1221–1230 (2017).
    Article  Google Scholar 

    31.
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
    PubMed  Article  Google Scholar 

    32.
    Diamond, J. M. Biogeographic kinetics: estimation of relaxation times for avifaunas of Southwest Pacific Islands. Proc. Natl. Acad. Sci. 69, 3199–3203 (1972).
    ADS  CAS  PubMed  Article  Google Scholar 

    33.
    Hanski, I. & Ovaskainen, O. Extinction debt at extinction threshold. Conserv. Biol. 16, 666–673 (2002).
    Article  Google Scholar 

    34.
    Helm, A., Hanski, I. & Partel, M. Slow response of plant species richness to habitat loss and fragmentation. Ecol. Lett. 9, 72–77 (2005).
    Google Scholar 

    35.
    Sang, A., Teder, T., Helm, A. & Pärtel, M. Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biol. Conserv. 143, 1405–1413 (2010).
    Article  Google Scholar 

    36.
    Lindborg, R. Evaluating the distribution of plant life-history traits in relation to current and historical landscape configurations. J. Ecol. 95, 555–564 (2007).
    Article  Google Scholar 

    37.
    Saar, L., de Bello, F., Pärtel, M. & Helm, A. Trait assembly in grasslands depends on habitat history and spatial scale. Oecologia 184, 1–12 (2017).
    ADS  PubMed  Article  Google Scholar 

    38.
    Yamanaka, S., Akasaka, T., Yamaura, Y., Kaneko, M. & Nakamura, F. Time-lagged responses of indicator taxa to temporal landscape changes in agricultural landscapes. Ecol. Ind. 48, 593–598 (2015).
    Article  Google Scholar 

    39.
    Piqueray, J. et al. Plant species extinction debt in a temperate biodiversity hotspot: Community, species and functional traits approaches. Biol. Conserv. 144, 1619–1629 (2011).
    Article  Google Scholar 

    40.
    Barbaro, L. & van Halder, I. Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32, 321–333 (2009).
    Article  Google Scholar 

    41.
    Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
    Article  Google Scholar 

    42.
    Lortie, C. J. et al. Rethinking plant community theory. Oikos 107, 433–438 (2004).
    Article  Google Scholar 

    43.
    Turnbull, L. A., Rees, M. & Crawley, M. J. Seed mass and the competition/colonization trade-off: A sowing experiment. J. Ecol. 87, 899–912 (1999).
    Article  Google Scholar 

    44.
    van Kleunen, M., Fischer, M. & Schmid, B. Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos 94, 515–524 (2001).
    Article  Google Scholar 

    45.
    Zambrano, J. et al. The effects of habitat loss and fragmentation on plant functional traits and functional diversity: What do we know so far?. Oecologia 191, 505–518 (2019).
    ADS  PubMed  Article  Google Scholar 

    46.
    Atauri, J. A. & de Lucio, J. V. The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landsc. Ecol. 16, 147–159 (2001).
    Article  Google Scholar 

    47.
    Weibull, A.-C., Östman, Ö. & Granqvist, Å. Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers. Conserv. 12, 1335–1355 (2003).
    Article  Google Scholar 

    48.
    Smith, H. G., Dänhardt, J., Lindström, Å. & Rundlöf, M. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds. Oecologia 162, 1071–1079 (2010).
    ADS  PubMed  Article  Google Scholar 

    49.
    Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. PNAS 116, 16442–16447 (2019).
    CAS  PubMed  Article  Google Scholar 

    50.
    Redon, M., Bergès, L., Cordonnier, T. & Luque, S. Effects of increasing landscape heterogeneity on local plant species richness: How much is enough?. Landsc. Ecol. 29, 773–787 (2014).
    Article  Google Scholar 

    51.
    Fahrig, L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).
    Article  Google Scholar 

    52.
    MacDonald, Z. G., Anderson, I. D., Acorn, J. H. & Nielsen, S. E. The theory of island biogeography, the sample-area effect, and the habitat diversity hypothesis: Complementarity in a naturally fragmented landscape of lake islands. J. Biogeogr. 45, 2730–2743 (2018).
    Article  Google Scholar 

    53.
    Smart, S. M., Bunce, R. G. H., Firbank, L. G. & Coward, P. Do field boundaries act as refugia for grassland plant species diversity in intensively managed agricultural landscapes in Britain?. Agric. Ecosyst. Environ. 91, 73–87 (2002).
    Article  Google Scholar 

    54.
    Klimesova, J., Latzel, V., de Bello, F. & van Groenendael, J. M. Plant functional traits in studies of vegetation changes in response to grazing and mowing: Towards a use of more specific traits. Preslia 80, 245–253 (2008).
    Google Scholar 

    55.
    Fuller, R. J., Chamberlain, D. E., Burton, N. H. K. & Gough, S. J. Distributions of birds in lowland agricultural landscapes of England and Wales: How distinctive are bird communities of hedgerows and woodland?. Agric. Ecosyst. Environ. 84, 79–92 (2001).
    Article  Google Scholar 

    56.
    Hinsley, S. A. & Bellamy, P. E. The influence of hedge structure, management and landscape context on the value of hedgerows to birds: A review. J. Environ. Manage. 60, 33–49 (2000).
    Article  Google Scholar 

    57.
    Noh, J., Echeverría, C., Pauchard, A. & Cuenca, P. Extinction debt in a biodiversity hotspot: the case of the Chilean Winter Rainfall-Valdivian Forests. Landsc. Ecol. Eng. 15, 1–12 (2019).
    Article  Google Scholar 

    58.
    Saar, L., Takkis, K., Pärtel, M. & Helm, A. Which plant traits predict species loss in calcareous grasslands with extinction debt? Traits predicting extinctions in grasslands. Divers. Distrib. 18, 808–817 (2012).
    Article  Google Scholar 

    59.
    Figueiredo, L., Krauss, J., Steffan-Dewenter, I. & Cabral, J. S. Understanding extinction debts: Spatio–temporal scales, mechanisms and a roadmap for future research. Ecography 42, 1973–1990 (2019).
    Article  Google Scholar 

    60.
    Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels: Immediate and time-delayed biodiversity loss. Ecol. Lett. 13, 597–605 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    With, K. A. How fast do migratory songbirds have to adapt to keep pace with rapidly changing landscapes?. Landsc. Ecol 30, 1351–1361 (2015).
    Article  Google Scholar 

    62.
    Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. Oikos 71, 355–366 (1994).
    Article  Google Scholar 

    63.
    Kavelaars, M. M. et al. Breeding habitat loss reveals limited foraging flexibility and increases foraging effort in a colonial breeding seabird. Mov. Ecol. 8, 45 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    van Zanten, B. T. et al. European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agron. Sustain. Dev. 34, 309–325 (2014).
    Article  Google Scholar 

    65.
    Ramalho, C. E., Laliberté, E., Poot, P. & Hobbs, R. Effects of fragmentation on the plant functional composition and diversity of remnant woodlands in a young and rapidly expanding city. J. Veg. Sci. 29, 285–296 (2018).
    Article  Google Scholar 

    66.
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: Extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    67.
    Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).
    Article  Google Scholar 

    68.
    Damien, M. & Tougeron, K. Prey–predator phenological mismatch under climate change. Curr. Opin. Insect Sci. 35, 60–68 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Lalechère, E., Archaux, F. & Jabot, F. Relative importance of landscape and species characteristics on extinction debt, immigration credit and relaxation time after habitat turnover. Popul. Ecol. 61, 383–395 (2019).
    Article  Google Scholar 

    70.
    Ernoult, A. et al. Potential landscape drivers of biodiversity components in a flood plain: Past or present patterns?. Biol. Conserv. 127, 1–17 (2006).
    Article  Google Scholar 

    71.
    Meeus, J. H. A., Wijermans, M. P. & Vroom, M. J. Agricultural landscapes in Europe and their transformation. Landsc. Urban Plan. 18, 289–352 (1990).
    Article  Google Scholar 

    72.
    McGarigal, K., Cushman, S. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. (2012).

    73.
    Duflot, R., Aviron, S., Ernoult, A., Fahrig, L. & Burel, F. Reconsidering the role of ‘semi-natural habitat’ in agricultural landscape biodiversity: A case study. Ecol. Res. 30, 75–83 (2015).
    Article  Google Scholar 

    74.
    Bibby, C. J., Burgess, N. D., Hill, D. A. & Mustoe, S. Bird Census Techniques (Elsevier, Amsterdam, 2000).
    Google Scholar 

    75.
    Kühn, I., Durka, W. & Klotz, S. BiolFlor: A new plant-trait database as a tool for plant invasion ecology: BiolFlor: A plant-trait database. Divers. Distrib. 10, 363–365 (2004).
    Article  Google Scholar 

    76.
    Kleyer, M. et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. Ecol. 96, 1266–1274 (2008).
    Article  Google Scholar 

    77.
    Duquet, M. Tout sur les Oiseaux d’Europe (Delachaux, Colombes, 2015).
    Google Scholar 

    78.
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Article  Google Scholar 

    79.
    Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).
    Article  Google Scholar 

    80.
    Sonnier, G., Shipley, B. & Navas, M.-L. Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. J. Veg. Sci. 21, 1014–1024 (2010).
    Article  Google Scholar 

    81.
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, Vienna, 2020).
    Google Scholar 

    82.
    Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).
    PubMed  Article  Google Scholar 

    83.
    Blomberg, S. P. & Garland, T. Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods: Phylogenetic inertia. J. Evol. Biol. 15, 899–910 (2002).
    Article  Google Scholar 

    84.
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    85.
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    86.
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article  Google Scholar 

    87.
    de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot. 50, 349–357 (2015).
    Article  Google Scholar 

    88.
    Bernard-Verdier, M. et al. Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J. Ecol. 100, 1422–1433 (2012).
    Article  Google Scholar 

    89.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2002).
    Google Scholar 

    90.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).
    Google Scholar 

    91.
    Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
    Article  Google Scholar  More

  • in

    Carbon fractions in the world’s dead wood

    1.
    Pugh, T. A. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    4.
    Domke, G. M., Oswalt, S. N., Walters, B. F. & Morin, R. S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl Acad. Sci. USA 117, 24649–24651 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).
    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

    6.
    Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).
    ADS  Article  Google Scholar 

    7.
    Harmon, M. E. et al. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 15, 133–302 (1986).
    Article  Google Scholar 

    8.
    Weedon, J. T. et al. Global meta‐analysis of wood decomposition rates: a role for trait variation among tree species? Ecol. Lett. 12, 45–56 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    McGee, G. G. The contribution of beech bark disease-induced mortality to coarse woody debris loads in northern hardwood stands of Adirondack Park, New York, USA. Can. J. Res. 30, 1453–1462 (2000).
    Article  Google Scholar 

    10.
    Woodall, C. W. et al. Net carbon flux of dead wood in forests of the Eastern US. Oecologia 177, 861–874 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Campbell, J. L. et al. Estimating uncertainty in the volume and carbon storage of downed coarse woody debris. Ecol. Appl. 29, e01844 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Russell, M. B. et al. Quantifying carbon stores and decomposition in dead wood: a review. Ecol. Manag. 350, 107–128 (2015).
    Article  Google Scholar 

    13.
    Campbell, J., Alberti, G., Martin, J. & Law, B. E. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada. Ecol. Manag. 257, 453–463 (2009).
    Article  Google Scholar 

    14.
    Chambers, J. Q. et al. Response of tree biomass and wood litter to disturbance in a Central Amazon forest. Oecologia 141, 596–611 (2004).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Domke, G. M., Woodall, C. W. & Smith, J. E. Accounting for density reduction and structural loss in standing dead trees: implications for forest biomass and carbon stock estimates in the United States. Carbon Balance Manag. 6, 14 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Janisch, J. E. & Harmon, M. E. Successional changes in live and dead wood carbon stores: implications for net ecosystem productivity. Tree Physiol. 22, 77–89 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11635–11640 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 11, 915–922 (2018).
    ADS  CAS  Article  Google Scholar 

    19.
    Thomas, S. C. & Martin, A. R. Carbon content of tree tissues: a synthesis. Forests 3, 332–352 (2012).
    Article  Google Scholar 

    20.
    Martin, A. R. & Thomas, S. C. A reassessment of carbon content in tropical trees. PLoS ONE 6, e23533 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Weggler, K., Dobbertin, M., Jüngling, E., Kaufmann, E. & Thürig, E. Dead wood volume to dead wood carbon: the issue of conversion factors. Eur. J. Res. 131, 1423–1438 (2012).
    Article  Google Scholar 

    22.
    Gorgolewski, A., Rudz, P., Jones, T., Basiliko, N. & Caspersen, J. Assessing coarse woody debris nutrient dynamics in managed northern hardwood forests using a matrix transition model. Ecosystems 23, 541–554 (2019).
    Article  CAS  Google Scholar 

    23.
    Moreira, A. B., Gregoire, T. G. & do Couto, H. T. Z. Wood density and carbon concentration of coarse woody debris in native forests. Braz. Ecosyst. 6, 18 (2019).
    Article  Google Scholar 

    24.
    Sandström, F., Petersson, H., Kruys, N. & Ståhl, G. Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. Ecol. Manag. 243, 19–27 (2007).
    Article  Google Scholar 

    25.
    Cousins, S. J., Battles, J. J., Sanders, J. E. & York, R. A. Decay patterns and carbon density of standing dead trees in California mixed conifer forests. Ecol. Manag. 353, 136–147 (2015).
    Article  Google Scholar 

    26.
    Harmon, M. E., Fasth, B., Woodall, C. W. & Sexton, J. Carbon concentration of standing and downed woody detritus: effects of tree taxa, decay class, position, and tissue type. For. Ecol. Manag. 291, 259–267 (2013).

    27.
    Köster, K., Metslaid, M., Engelhart, J. & Köster, E. Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. Ecol. Manag. 354, 35–42 (2015).
    Article  Google Scholar 

    28.
    Clark, D. B., Clark, D. A., Brown, S., Oberbauer, S. F. & Veldkamp, E. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. Ecol. Manag. 164, 237–248 (2002).
    Article  Google Scholar 

    29.
    Yang, F. F. et al. Dynamics of coarse woody debris and decomposition rates in an old-growth forest in lower tropical China. Ecol. Manag. 259, 1666–1672 (2010).
    Article  Google Scholar 

    30.
    Chao, K. J. et al. Carbon concentration declines with decay class in tropical forest woody debris. Ecol. Manag. 391, 75–85 (2017).
    Article  Google Scholar 

    31.
    Guo, J., Chen, G., Xie, J., Yang, Z. & Yang, Y. Patterns of mass, carbon and nitrogen in coarse woody debris in five natural forests in southern China. Ann. Sci. 71, 585–594 (2014).
    Article  Google Scholar 

    32.
    Martin, A. R., Gezahegn, S. & Thomas, S. C. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Can. J. Res. 45, 744–757 (2015).
    CAS  Article  Google Scholar 

    33.
    Gao, B., Taylor, A. R., Chen, H. Y. & Wang, J. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. Ecol. Manag. 375, 191–199 (2016).
    Article  Google Scholar 

    34.
    Dossa, G. G. et al. The cover uncovered: bark control over wood decomposition. J. Ecol. 106, 2147–2160 (2018).
    Article  Google Scholar 

    35.
    Jones, D. A. & O’Hara, K. L. Variation in carbon fraction, density, and carbon density in conifer tree tissues. Forests 9, 430 (2018).
    Article  Google Scholar 

    36.
    Fukasawa, Y. The geographical gradient of pine log decomposition in Japan. For. Ecol. Manag. 349, 29–35 (2015).

    37.
    IPCC. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 4: Agriculture, Forestry and Other Land Use (eds Blain, D., Agus, F., Alfaro, M. A. & Vreuls, H.) 68 (IPCC, 2019).

    38.
    Jones, D. A. & O’Hara, K. L. The influence of preparation method on measured carbon fractions in tree tissues. Tree Physiol. 36, 1177–1189 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Beech, E., Rivers, M., Oldfield, S. & Smith, P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. 36, 454–489 (2017).
    Article  Google Scholar 

    40.
    Lamlom, S. H. & Savidge, R. A. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25, 381–388 (2003).
    CAS  Article  Google Scholar 

    41.
    Thomas, S. C. & Malczewski, G. Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction. J. Environ. Manag. 85, 659–662 (2007).
    CAS  Article  Google Scholar 

    42.
    Hafner, S. D., Groffman, P. M. & Mitchell, M. J. Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State. Biogeochemistry 74, 257–282 (2005).
    CAS  Article  Google Scholar 

    43.
    Hillis, W. Chemical aspects of heartwood formation. Wood Sci. Technol. 2, 241–259 (1968).
    CAS  Article  Google Scholar 

    44.
    Meerts, P. Mineral nutrient concentrations in sapwood and heartwood: a literature review. Ann. Sci. 59, 713–722 (2002).
    Article  Google Scholar 

    45.
    Bert, D. & Danjon, F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Ecol. Manag. 222, 279–295 (2006).
    Article  Google Scholar 

    46.
    Jones, D. A. & O’Hara, K. L. Carbon density in managed coast redwood stands: implications for forest carbon estimation. Forestry 85, 99–110 (2012).
    Article  Google Scholar 

    47.
    Ma, S. et al. Variations and determinants of carbon content in plants: a global synthesis. Biogeosciences 15, 693 (2018).
    ADS  CAS  Article  Google Scholar 

    48.
    Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18, 779–786 (2004).
    Article  Google Scholar 

    49.
    Ganjegunte, G. K., Condron, L. M., Clinton, P. W., Davis, M. R. & Mahieu, N. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Ecol. Manag. 187, 197–211 (2004).
    Article  Google Scholar 

    50.
    Pettersen, R. C. in The Chemistry of Solid Wood (ed. Rowell, R.) 57–126 (American Chemical Society, 1984).

    51.
    Berg, B., Ekbohm, G. & McClaugherty, C. Lignin and holocellulose relations during long-term decomposition of some forest litters. Long-term decomposition in a Scots pine forest. IV. Can. J. Bot. 62, 2540–2550 (1984).
    CAS  Article  Google Scholar 

    52.
    Schowalter, T. D., Zhang, Y. L. & Sabin, T. E. Decomposition and nutrient dynamics of oak Quercus spp. logs after five years of decomposition. Ecography 21, 3–10 (1998).
    Article  Google Scholar 

    53.
    Buxton, R. D. Termites and the turnover of dead wood in an arid tropical environment. Oecologia 51, 379–384 (1981).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Riley, R. et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl Acad. Sci. USA 111, 9923–9928 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Moore, T. R., Trofymow, J. A., Prescott, C. E., Titus, B. D. & Group, C. W. Can short-term litter-bag measurements predict long-term decomposition in northern forests? Plant Soil 416, 419–426 (2017).
    CAS  Article  Google Scholar 

    56.
    vandenEnden, L., Frey, S. D., Nadelhoffer, K. J., LeMoine, J. M., Lajtha, K. & Simpson, M. J. Molecular-level changes in soil organic matter composition after 10 years of litter, root and nitrogen manipulation in a temperate forest. Biogeochemistry 141, 183–197 (2018).
    CAS  Article  Google Scholar 

    57.
    Warner, D. L., Villarreal, S., McWilliams, K., Inamdar, S. & Vargas, R. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems 20, 1205–1216 (2017).
    CAS  Article  Google Scholar 

    58.
    Van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    59.
    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Brad, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinform. 14, 16 (2013).
    Article  Google Scholar 

    61.
    Krankina, O. N. & Harmon, M. E. Dynamics of the dead wood carbon pool in northwestern Russian boreal forests. Water Air Soil Pollut. 82, 227–238 (1995).
    ADS  CAS  Article  Google Scholar 

    62.
    Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
    ADS  Article  Google Scholar 

    63.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    64.
    Lenth, R. V. Least-squares means: the R Package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Article  Google Scholar 

    65.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

    66.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn (Sage, 2011).

    67.
    Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Martin, A. R. et al. Intraspecific trait variation across multiple scales: the leaf economics spectrum in coffee. Funct. Ecol. 31, 604–612 (2017).
    Article  Google Scholar 

    69.
    Pinheiro, J. et al. nlme: linear and nonlinear mixed effects models. R package version 3.1-131. https://CRAN.R-project.org/package=nlme (2017).

    70.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004). More

  • in

    Physiological and molecular responses of lobe coral indicate nearshore adaptations to anthropogenic stressors

    Physiological responses
    Small fragments from five source colonies from the two experimental sites (N- and O-sites) were used to conduct a reciprocal transplant experiment in Maunalua Bay, Hawaii (Fig. 1). The results revealed clear physiological response differences between the two populations. The transplantation resulted in a significant reduction in the average tissue layer thickness (TLT) in only one treatment: O-corals transplanted to N-site (O → N) (Tukey-HSD, P-adj  2 at FDR = 0.01. Proteins associated with key GO terms were colored in different colors, and the top 10 abundant proteins in each population are annotated. The bottom bars indicate the total numbers of significantly abundant proteins for each population.

    Full size image

    Response difference in transplant to the offshore site (N → O vs. O → O)
    A total of 3236 distinct coral proteins were identified at O-site: 2217 (68.5%) were shared between the two populations, 656 unique to N → O corals, and 363 to O → O corals (Fig. S1C). GO analysis identified 35 enriched terms specific to N → O, which involved amino acid biosynthetic process, ATP metabolic process, TCA cycles, fatty acid oxidation, and monosaccharide metabolic process. There were 15 specific GO terms in O → O corals, including nucleotide monophosphate biosynthetic process, intracellular protein transport, vesicle organization, and GTP binding (SI.2B).
    Quantitative analysis on protein abundances indicated a total of 665 proteins to be significantly differentially abundant at O-site: N → O corals had 155 abundant-proteins, and O → O corals had 510 abundant-proteins (Fig. 3B). GO analysis resulted in identifying 39 enriched terms from abundant proteins in O → O corals, while only one met the cutoff in N → O corals (SI.2B). Although the number of abundant-proteins and enriched terms identified in O → O corals were relatively high, the enriched terms predominantly consisted of cellular functions related to protein translation; organonitrogen biosynthetic process and organic acid metabolic process, both leading to single child terms for BP, CC, and MF (tRNA aminoacylation for protein translation, cytosolic large ribosomal subunit, and tRNA aminoacyl ligase activity). The enriched term in N → O corals was a non-specific term of ‘extracellular region’, indicating that despite the higher number of abundant-proteins, the main functional difference between N → O and O → O corals was an enhanced protein translation activity in O → O corals.
    Response comparisons to cross transplantation
    Effects of cross transplantation yielded a more diverse proteomic stress-response in O-corals as they moved nearshore than N-corals as they were moved offshore (Fig. S2). The total number of abundant-proteins between the sites was much higher for O-corals (440, O → N vs. O → O) than N-corals (135, N → N vs. N → O) (Table S1), and the number of unique GO terms identified between the sites was also higher in O-corals (69, SI.2C) than in N-corals (46, SI.2D). The number of overlapping proteins between the sites was lower in O-corals than in N-corals (70% vs. 79%), and log-fold changes of all identified proteins between the sites were significantly larger for O-corals than N-corals (Wilcoxon Rank-Sum test, P = 6.02 × 10–9), all emphasizing the larger metabolic reshuffling needed to respond to cross transplantation in O-corals. GO enrichment analysis indicated that N-corals responded to transplantation to O-site with increased abundance of proteins involved in amino acid biosynthesis, fatty acid beta oxidation, TCA cycle, chitin catabolism, coenzyme biosynthesis and translational initiation. O-corals responded to transplantation to N-site by increasing the abundance of proteins associated with detoxification, antioxidant activity, protein complex subunit organization, and multiple metabolic processes (amino acid, fatty acid, ATP, monosaccharide, and carbohydrate derivative) (SI.2E). The shared responses between the cross-transplanted corals (N → O and O → N corals) included increased proteins involved in fatty-acid beta oxidation, TCA cycle, carbohydrate derivative catabolic process, pyridoxal phosphate binding, and ‘oxidoreductase activity acting on the CH-CH group of donors with flavin as acceptor’, likely representing the effects of transplantation to a non-native environment.
    Proteome patterns across the four treatments
    Comparing enriched GO terms across all treatments (SI.2E) highlighted the unique state of O → N corals; O → N corals had a much higher number of uniquely enriched GO terms (n = 27) compared to those in the rests (4 in O → O, 5 in N → N, and 15 in N → O corals). The most notable difference among the treatments was enrichment of detoxification and antioxidant activity exclusively in O → N corals (Fig. 4). Also, lipid oxidation was highly enriched in O → N corals with four terms associated to this category identified (Fig. 4, SI.2E).
    Figure 4

    Enriched GO terms uniquely identified to specific treatment groups. Treatment groups are shown in the right column (e.g. N-coral = N-corals at both sites, N-site = N- and O-corals at N-site, CrossT = cross transplantation). The heat-map represents P-values for the associated GO terms. The GO terms are grouped by the parent–child terms with the most parent term in bold (for values, see SI-2E).

    Full size image

    Examining the relative abundance of individual proteins associated with detoxification (‘detox-proteins’) revealed the following interesting patterns. (1) Distinct sets of proteins were abundant in different treatments, rather than all detox-proteins to be elevated in one treatment, and the direction and magnitude of responses to transplantation were protein specific and varied between populations (Fig. S4A). (2) Two peroxiredoxin (Prx) proteins, Prx-1 (m.6147) and Prx-6 (m.9595), dominated the relative abundance of detox-proteins by having over an order of magnitude higher abundance values, and they were consistently more abundant in N-corals than O-corals (ave. 44%, Kruskal Test, P = 0.004–0.01) (Fig. S4B, SI.1B). (3) Some proteins with the same or similar annotations had contrasting responses between the populations. For example, Prx-4 (m.17739), which belongs to the same subfamily as Prx-1, was significantly more abundant in O-corals at both sites (Fig. S4B, SI.2F,G), while Prx-1 was more abundant in N-corals. Similarly, seven peroxidasin (PXDN) homologs were identified, of which m.17686 was significantly more abundant in O → N corals, while m.9432 was significantly more abundant in N → N corals (Fig. S4B, SI.2F), suggesting that the two populations potentially utilize different class/kind of enzymes as primary proteins in detoxification/antioxidant pathways. Of the seven PXDN homologs, two (m.1440, m.9432) were consistently higher in N-corals, two (m.10928, m.15200) were consistently higher in O-corals, and three (m.12572, m.17686, m.9657) increased abundance at N-site in both corals, but m.12572 and m.17686 being higher in O-corals, while m.9657 higher in N-corals (Fig. S3B).
    To ascertain that the proteins with the same annotations are indeed different proteins, sequences of matched peptides were assessed for those that showed contrasting responses. The pairwise comparison of Prx-1 and Prx-4 showed only seven of the total 65 peptides (11%) were identical between the two, revealing that these protein sequences are significantly different and they each have unique peptides that be detected and quantified accurately (SI.1C1). Similarly the majority of PXDN-like proteins identified had no overlapping peptides between the contrasting pairs (0–19%, median = 0, SI.1C2), indicating that corals possess multiple types of PXDN, and N- and O-corals respond to stressors with different sets of PXDN.
    In addition to lipid oxidation being significantly enriched in O → N corals, a single term (fatty acid beta-oxidation,) was also enriched in N → O corals, which suggests that cross-transplantation had an effect on lipid oxidation processes. However, the abundances of most proteins associated with lipid oxidation were higher in O-corals than N-corals at both sites (Fig. S4A). Statistically, three proteins (medium-chain sp acyl-CoA:m.22274, very-long-chain sp. acyl-CoA:m.17984, and trifunctional enzyme subunit alpha:m.6724) showed a difference in abundance between the two populations at N-site (Fig. S4C) and one (isovaleryl-CoA dehydrogenase:m.27714) at O-site, all of which were higher in O-corals than N-corals. More

  • in

    The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance

    1.
    Connell JH. Diversity in Tropical Rain Forests and Coral Reefs. Science. 1978;199:1302–10.
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Moreno-Mateos D, Barbier EB, Jones PC, Jones HP, Aronson J, López-López JA, et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat Commun. 2017;8:14163.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Rodil IF, Lohrer AM, Chiaroni LD, Hewitt JE, Thrush SF. Disturbance of sandflats by thin terrigenous sediment deposits: consequences for primary production and nutrient cycling. Ecol Appl. 2011;21:416–26.
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Carnell PE, Keough MJ. More severe disturbance regimes drive the shift of a kelp forest to a sea urchin barren in south-eastern Australia. Sci Rep. 2020;10:11272.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    McDowell NG, Michaletz ST, Bennett KE, Solander KC, Xu C, Maxwell RM, et al. Predicting Chronic Climate-Driven Disturbances and Their Mitigation. Trends Ecol Evol. 2018;33:15–27.
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Shade A, Peter H, Allison SD, Baho D, Berga M, Buergmann H, et al. Fundamentals of Microbial Community Resistance and Resilience. Front Microbiol. 2012;3:417.
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci. 2008;105:11512–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Shade A, Read JS, Welkie DG, Kratz TK, Wu CH, McMahon KD. Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance: Bacterial community recovery after lake mixing. Environ Microbiol. 2011;13:2752–67.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Shade A, Read JS, Youngblut ND, Fierer N, Knight R, Kratz TK, et al. Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME J. 2012;6:2153–67.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci. 2011;108:4554–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Heinsen F-A, Knecht H, Neulinger SC, Schmitz RA, Knecht C, Kühbacher T, et al. Dynamic changes of the luminal and mucosa-associated gut microbiota during and after antibiotic therapy with paromomycin. Gut Microbes. 2015;6:243–54.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Fukuyama J, Rumker L, Sankaran K, Jeganathan P, Dethlefsen L, Relman DA, et al. Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment. PLOS Comput Biol. 2017;13:e1005706.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510:417–21.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Antwis RE, Garcia G, Fidgett AL, Preziosi RF. Tagging Frogs with Passive Integrated Transponders Causes Disruption of the Cutaneous Bacterial Community and Proliferation of Opportunistic Fungi. Appl Environ Microbiol. 2014;80:4779–84.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Bates KA, Shelton JMG, Mercier VL, Hopkins KP, Harrison XA, Petrovan SO, et al. Captivity and Infection by the Fungal Pathogen Batrachochytrium salamandrivorans Perturb the Amphibian Skin Microbiome. Front Microbiol. 2019;10:1834.
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Gimblet C, Meisel JS, Loesche MA, Cole SD, Horwinski J, Novais FO, et al. Cutaneous Leishmaniasis Induces a Transmissible Dysbiotic Skin Microbiota that Promotes Skin Inflammation. Cell Host Microbe. 2017;22:13–24.e4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Jani AJ, Briggs CJ. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc Natl Acad Sci. 2014;111:E5049–E5058.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Longcore JE, Pessier AP, Nichols DK. Batrachochytrium Dendrobatidis gen. et sp. nov., a Chytrid Pathogenic to Amphibians. Mycologia. 1999;91:219–27.
    Article  Google Scholar 

    20.
    Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci. 1998;95:9031–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Crawford AJ, Lips KR, Bermingham E. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc Natl Acad Sci. 2010;107:13777–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA. 2006;103:3165–70.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci. 2010;107:9689–94.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KPC, et al. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett. 2013;16:807–20.
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Hardy BM, Pope KL, Piovia-Scott J, Brown RN, Foley JE. Itraconazole treatment reduces Batrachochytrium dendrobatidis prevalence and increases overwinter field survival in juvenile Cascades frogs. Dis Aquat Organ. 2015;112:243–50.
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, et al. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature. 2014;511:224–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 2009;3:818–24.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Muletz CR, Myers JM, Domangue RJ, Herrick JB, Harris RN. Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biol Conserv. 2012;152:119–26.
    Article  Google Scholar 

    29.
    Becker MH, Harris RN, Minbiole KPC, Schwantes CR, Rollins-Smith LA, Reinert LK, et al. Towards a Better Understanding of the Use of Probiotics for Preventing Chytridiomycosis in Panamanian Golden Frogs. Ecohealth. 2011;8:501–6.
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Woodhams DC, Geiger CC, Reinert LK, Rollins-Smith LA, Lam B, Harris RN, et al. Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Dis Aquat Organ. 2012;98:11–25.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Belden LK, Hughey MC, Rebollar EA, Umile TP, Loftus SC, Burzynski EA, et al. Panamanian frog species host unique skin bacterial communities. Front Microbiol. 2015; 6:1171.

    32.
    Bletz MC, Goedbloed DJ, Sanchez E, Reinhardt T, Tebbe CC, Bhuju S, et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat Commun. 2016;7:13699.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Jani AJ, Briggs CJ. Host and Aquatic Environment Shape the Amphibian Skin Microbiome but Effects on Downstream Resistance to the Pathogen Batrachochytrium dendrobatidis Are Variable. Front Microbiol. 2018;9:487.
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ. The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol. 2014;23:1238–50.
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Kueneman JG, Bletz MC, McKenzie VJ, Becker CG, Joseph MB, Abarca JG, et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat Ecol Evol. 2019;3:381–9.
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Küng D, Bigler L, Davis LR, Gratwicke B, Griffith E, Woodhams DC. Stability of Microbiota Facilitated by Host Immune Regulation: Informing Probiotic Strategies to Manage Amphibian Disease. PLoS ONE. 2014;9:e87101.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J. 2012;6:588–96.
    CAS  Article  Google Scholar 

    38.
    Prest TL, Kimball AK, Kueneman JG, McKenzie VJ. Host-associated bacterial community succession during amphibian development. Mol Ecol. 2018;27:1992–2006.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Rebollar EA, Hughey MC, Medina D, Harris RN, Ibáñez R, Belden LK. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J. 2016;10:1682–95.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Harrison XA, Price SJ, Hopkins K, Leung WTM, Sergeant C, Garner TWJ. Diversity-Stability Dynamics of the Amphibian Skin Microbiome and Susceptibility to a Lethal Viral Pathogen. Front Microbiol. 2019;10:2883.
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Jani AJ, Knapp RA, Briggs CJ. Epidemic and endemic pathogen dynamics correspond to distinct host population microbiomes at a landscape scale. Proc R Soc B-Biol Sci. 2017;284:20170944.
    Article  Google Scholar 

    42.
    Walke JB, Becker MH, Loftus SC, House LL, Teotonio TL, Minbiole KPC, et al. Community Structure and Function of Amphibian Skin Microbes: an Experiment with Bullfrogs Exposed to a Chytrid Fungus. PLOS ONE. 2015;10:e0139848.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Knutie SA, Wilkinson CL, Kohl KD, Rohr JR. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat Commun. 2017;8:86.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Rachowicz LJ, Knapp RA, Morgan JA, Stice MJ, Vredenburg VT, Parker JM, et al. Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology. 2006;87:1671–83.
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Jones MEB, Paddock D, Bender L, Allen JL, Schrenzel MD, Pessier AP. Treatment of chytridiomycosis with reduced-dose itraconazole. Dis Aquat Organ. 2012;99:243–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Brannelly LA. Reduced Itraconazole Concentration and Durations Are Successful in Treating Batrachochytrium dendrobatidis Infection in Amphibians. JOVE-J Vis Exp. 2014;85:e51166.
    Google Scholar 

    47.
    Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Organ. 2007;73:175–92.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ. 2004;60:141–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl Environ Microbiol. 2013;79:5112–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1–e1.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Brunbjerg AK, Pietroni C, et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat Commun. 2017;8:1188.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Arisdakessian C, Cleveland SB, Belcaid M. MetaFlow|mics: Scalable and Reproducible Nextflow Pipelines for the Analysis of Microbiome Marker Data. Pract Exp Adv Res Comput. 2020. Association for Computing Machinery, New York, NY, USA, pp 120–4.

    56.
    Lozupone C, Knight R. UniFrac: a New Phylogenetic Method for Comparing Microbial Communities. Appl Environ Microbiol. 2005;71:8228–35.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 

    58.
    Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley statsref: statistics reference online. American Cancer Society;2017. p. 1–15.

    59.
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Joseph MB, Knapp RA. Disease and climate effects on individuals jointly drive post-reintroduction population dynamics of an endangered amphibian. bioRxiv. 2018; 332114.

    61.
    SanMiguel AJ, Meisel JS, Horwinski J, Zheng Q, Bradley CW, Grice EA. Antiseptic Agents Elicit Short-Term, Personalized, and Body Site–Specific Shifts in Resident Skin Bacterial Communities. J Investig Dermatol. 2018;138:2234–43.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Volkman J. Sterols in microorganisms. Appl Microbiol Biotechnol. 2003;60:495–506.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Niño DF, Cauvi DM, De Maio A. Itraconazole, a Commonly Used Antifungal, Inhibits Fcγ Receptor–Mediated Phagocytosis: Alteration of Fcγ Receptor Glycosylation and Gene Expression. Shock. 2014;42:52.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Tang C, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, et al. Inhibition of Dectin-1 Signaling Ameliorates Colitis by Inducing Lactobacillus-Mediated Regulatory T Cell Expansion in the Intestine. Cell Host Microbe. 2015;18:183–97.
    CAS  Article  Google Scholar 

    65.
    Zuo T, Wong SH, Cheung CP, Lam K, Lui R, Cheung K, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9:3663.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Zaneveld JR, McMinds R, Vega Thurber R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2:17121.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Wilber MQ, Jani AJ, Mihaljevic JR, Briggs CJ. Fungal infection alters the selection, dispersal and drift processes structuring the amphibian skin microbiome. Ecol Lett. 2019;23:88–98.
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, et al. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. 2013;8:830–40.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Santillan E, Constancias F, Wuertz S. Press Disturbance Alters Community Structure and Assembly Mechanisms of Bacterial Taxa and Functional Genes in Mesocosm-Scale Bioreactors. mSystems. 2020;5:e00471–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Rebollar EA, Gutiérrez-Preciado A, Noecker C, Eng A, Hughey MC, Medina D, et al. The Skin Microbiome of the Neotropical Frog Craugastor fitzingeri: inferring Potential Bacterial-Host-Pathogen Interactions From Metagenomic Data. Front Microbiol. 2018;9:466.
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Mountain Yellow-legged Frog Interagency Technical Team. Interagency Conservation Strategy for Mountain Yellow-legged Frogs in the Sierra Nevada (Rana sierrae and Rana muscosa). Version 1. California Department of Fish and Wildlife, National Park Service, U.S. Fish and Wildlife Service, U.S. Forest Service; 2018. More

  • in

    Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes

    1.
    Warren J, Topping CJ, James P. A unifying evolutionary theory for the biomass–diversity–fertility relationship. Theor Ecol. 2009;2:119–26.
    Article  Google Scholar 
    2.
    Al-Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. J Ecol. 1977;65:759–91.
    Article  Google Scholar 

    3.
    Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529:390–3.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75:3–35.
    Article  Google Scholar 

    5.
    Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature. 1996;379:718–20.
    CAS  Article  Google Scholar 

    6.
    Grace JB. The factors controlling species density in herbaceous plant communities: an assessment. Perspect Plant Ecol. 1999;2:1–28.
    Article  Google Scholar 

    7.
    Grime JP. Plant strategies and vegetation processes. Chichester-New York-Brisbane-Toronto: John Wiley & Sons, Ltd.; 1979.

    8.
    Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature. 2001;412:72–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Michalet R, Brooker RW, Cavieres LA, Kikvidze Z, Lortie CJ, Pugnaire FI, et al. Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol Lett. 2006;9:767–73.
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Rajaniemi TK. Explaining productivity-diversity relationships in plants. Oikos. 2003;101:449–57.
    Article  Google Scholar 

    11.
    Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, et al. Plant remobals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol Monogr. 1999;69:535–68.
    Article  Google Scholar 

    12.
    Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science. 2015;349:302–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, et al. Productivity is a poor predictor of plant species richness. Science. 2011;333:1750–3.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Bastida F, García C, Fierer N, Eldridge DJ, Bowker MA, Abades S, et al. Global ecological predictors of the soil priming effect. Nat Commun. 2019;10:3481.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 2017;15:579–90.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    20.
    Bardgett RD, Wardle DA. Herbivore-mediated linkages between aboveground and belowground communities. Ecology. 2003;84:2258–68.
    Article  Google Scholar 

    21.
    Wardle DA. Communities and ecosystems linking the aboveground and belowground components (MPB-34). Princeton (New Jersey): Princeton University Press; 2002.

    22.
    Geyer KM, Barrett JE. Unimodal productivity–diversity relationships among bacterial communities in a simple polar soil ecosystem. Environ Microbiol. 2019;21:2523–32.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Wardle DA. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev. 1992;67:321–58.
    Article  Google Scholar 

    25.
    Geyer KM, Altrichter AE, Van Horn DJ, Takacs-Vesbach CD, Gooseff MN, Barrett JE. Environmental controls over bacterial communities in polar desert soils. Ecosphere. 2013;4:art127.
    Article  Google Scholar 

    26.
    Langenheder S, Prosser JI. Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environ Microbiol. 2008;10:2245–56.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Hopkins FM, Torn MS, Trumbore SE. Warming accelerates decomposition of decades-old carbon in forest soils. Proc Natl Acad Sci USA. 2012;109:1753–61.
    Article  Google Scholar 

    28.
    Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Bertness MD, Callaway R. Positive interactions in communities. Trends Ecol Evol. 1994;9:191–3.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a microbial community. Proc Natl Acad Sci USA. 2019;116:15760.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Bastida F, Torres IF, Moreno JL, Baldrian P, Ondoño S, Ruiz-Navarro A, et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Mol Ecol. 2016;25:4660–73.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA. 2014;111:5266–70.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O, He Y, et al. Explicitly representing soil microbial processes in Earth system models. Glob Biogeochem Cycles. 2015;29:1782–1800.
    CAS  Article  Google Scholar 

    35.
    Glassman SI, Weihe C, Li J, Albright MBN, Looby CI, Martiny AC, et al. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci USA. 2018;115:11994–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Maestre FT, Quero J, Gotelli NJ, Escudero A, Ochoa V, Delgado-baquerizo M, et al. Plant species richness and ecosystem multifunctionality in global drylands. Science. 2012;335:214–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge DJ, et al. Changes in belowground biodiversity during ecosystem development. Proc Natl Acad Sci USA. 2019;116:6891–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Kettler TA, Doran JW, Gilbert TL. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Science Society of America journal. vol. 65. Lincoln, Nebraska: 2001. p. 849–52. Journal Series no. 13277 of the Agric Res Div, Univ Neb, Linc, Ne.

    39.
    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Buyer JS, Sasser M. High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol. 2012;61:127–30.
    Article  Google Scholar 

    41.
    Frostegård A, Bååth E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils. 1996;22:59–65.
    Article  Google Scholar 

    42.
    Rinnan R, Bååth E. Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Appl Environ Microbiol. 2009;75:3611–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Kaiser C, Frank A, Wild B, Koranda M, Richter A. Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biol Biochem. 2010;42:1650–2.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Frostegård A, Tunlid A, Bååth E. Use and misuse of PLFA measurements in soils. Soil Biol Biochem. 2011;43:1621–5.
    Article  CAS  Google Scholar 

    45.
    Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc R Soc B. 2014;281:20141988.
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Breiman L. Random forests. Mach Learn. 2001;45:5–32.
    Article  Google Scholar 

    50.
    Delgado-Baquerizo M, Giaramida L, Reich PB, Khachane AN, Hamonts K, Edwards C, et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J Ecol. 2016;104:936–46.
    Article  Google Scholar 

    51.
    Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2003.

    52.
    Grace JB. Structural equation modeling and natural systems. Cambridge: Cambridge University Press; 2006.

    53.
    Quinlan JR. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on International Conference on Machine Learning. Amherst, MA, USA: Morgan Kaufmann Publishers Inc.; 1993.

    54.
    Delgado-Baquerizo M. Obscure soil microbes and where to find them. ISME J. 2019;13:2120–4.
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Kuhn SW, Keefer C, Coulter N. Cubist: rule- and instance-based regression modeling. R package version 0.0.19; 2016.

    56.
    Bailey VL, Peacock AD, Smith JL, Bolton H. Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biol Biochem. 2002;34:1385–9.
    CAS  Article  Google Scholar 

    57.
    Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol Lett. 2009;12:1238–49.
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Xu X, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr. 2013;22:737–49.
    Article  Google Scholar 

    59.
    Six J, Frey SD, Thiet RK, Batten KM. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J. 2006;70:555–69.
    CAS  Article  Google Scholar 

    60.
    Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;348:1–11.
    Google Scholar 

    61.
    Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 2006;103:626–31.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci USA. 2015;112:15684–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Delgado-Baquerizo M, Eldridge DJ. Cross-biome drivers of soil bacterial alpha diversity on a worldwide scale. Ecosystems. 2019;22:1220–31.
    Article  Google Scholar 

    65.
    Větrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun. 2019;10:5142.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Gaston KJ. Global patterns in biodiversity. Nature. 2000;405:220–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Srivastava DS, Lawton JH. Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Naturalist. 1998;152:510–29.
    CAS  Article  Google Scholar 

    68.
    Storch D, Bohdalková E, Okie J. The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol Lett. 2018;21:920–37.
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Paquette A, Messier C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr. 2011;20:170–80.
    Article  Google Scholar 

    70.
    Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature. 2009;460:616–9.
    CAS  Article  Google Scholar 

    71.
    Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, et al. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA. 2011;108:9508–12.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418:671–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Navarrete AA, Tsai SM, Mendes LW, Faust K, de Hollander M, Cassman NA, et al. Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol. 2015;24:2433–48.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus EdC, Paula FS, et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci USA. 2013;110:988–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Bastida F, García C, von Bergen M, Moreno JL, Richnow HH, Jehmlich N. Deforestation fosters bacterial diversity and the cyanobacterial community responsible for carbon fixation processes under semiarid climate: a metaproteomics study. Appl Soil Ecol. 2015;93:65–7.
    Article  Google Scholar 

    77.
    Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Change. 2016;6:166–71.
    Article  Google Scholar 

    78.
    Maron PA, Sarr A, Kaisermann A, Léveque J, Mathieu O, Guigue J, et al. High microbial diversity promotes soil ecosystem functioning. Appl Environ Microbiol. 2018;84:e02738–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Chen C, Chen HYH, Chen X, Huang Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun. 2019;10:1332.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    80.
    Delgado-Baquerizo M, Grinyer J, Reich PB, Singh BK. Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Funct Ecol. 2016;30:1862–73.
    Article  Google Scholar 

    81.
    Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006;15:259–63.
    Article  Google Scholar  More

  • in

    Nickel excess affects phenology and reproductive attributes of Asterella wallichiana and Plagiochasma appendiculatum growing in natural habitats

    1.
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Cardinale, B. J., Gonzalez, A., Allington, G. R. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).
    Article  Google Scholar 

    3.
    Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Tovar-Sánchez, E., Hernández-Plata, I., Martínez, M. S., Valencia-Cuevas, L. & Galante, P. M. Heavy metal pollution as a biodiversity threat. Heavy Met. 383 (2018).

    5.
    Das, K. K., Das, S. N. & Dhundasi, S. A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res. 128, 412 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Fabiano, C., Tezotto, T., Favarin, J. L., Polacco, J. C. & Mazzafera, P. Essentiality of nickel in plants: A role in plant stresses. Front. Plant Sci. 6, 754 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Sreekanth, T.V.M., Nagajyothi, P. C., Lee, K. D. & Prasad, T.N.V.K.V. Occurrence, physiological responses and toxicity of nickel in plants. Int.J.Environ.Sci.Technol.10(5), 1129–1140 (2013).

    8.
    Pietrini, F. et al. Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content. Environ. Sci. Pollut.22, 482–494 (2015).

    9.
    Georgiadou, E. C. et al. Influence of heavy metals (Ni, Cu and Zn) on nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.) plants. Front. Plant Sci.9, 862 (2018).

    10.
    Shahid, M. et al. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 325, 36–58 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Shen, Z. J., Chen, Y. S. & Zhang, Z. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area. China. Ecotoxicol. Environ. Saf. 143, 19–27 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Xun, E., Zhang, Y., Zhao, J. & Guo, J. Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness. Ecotox. Environ. Safe. 145, 235–243 (2017).
    CAS  Article  Google Scholar 

    13.
    Meindl, G. A. & Ashman, T. L. Effects of soil metals on pollen germination, fruit production, and seeds per fruit differ between a Ni hyperaccumulator and a congeneric nonaccumulator. Plant Soil. 420, 493–503 (2017).
    CAS  Article  Google Scholar 

    14.
    Temizer, İK., Güder, A., Temel, F. A. & Esin, A. V. C. I. A comparison of the antioxidant activities and biomonitoring of heavy metals by pollen in the urban environments. Environ. Monit. Assess. 190, 462 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Baumann, H. A., Morrison, L. & Stengel, D. B. Metal accumulation and toxicity measured by PAM—Chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol. Environ. Saf. 72, 1063–1075 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Liang, S. et al. How Chlorella sorokiniana and its high tolerance to Pb might be a potential Pb biosorbent. Pol. J. Environ. Stud. 26, 1139–1146 (2017).
    CAS  Article  Google Scholar 

    17.
    Ares, A., Itouga, M., Kato, Y. & Sakakibara, H. Differential Metal Tolerance and Accumulation Patterns of Cd, Cu, Pb and Zn in the Liverwort Marchantia polymorpha L. B. Environ. Contam. Tox. 100, 444–450 (2018).
    CAS  Article  Google Scholar 

    18.
    Stanković, J. D., Sabovljević, A. D. & Sabovljević, M. S. Bryophytes and heavy metals: A review. Acta Bot. Croat. 77, 109–118 (2018).
    Article  Google Scholar 

    19.
    Wang, S., Zhang, Z. & Wang, Z. Bryophyte communities as biomonitors of environmental factors in the Goujiang karst bauxite, southwestern China. Sci. Total Environ. 538, 270–278 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Vanderpoorten, A. et al. To what extent are bryophytes efficient dispersers?. J. Ecol. 107, 2149–2154 (2019).
    Article  Google Scholar 

    21.
    Carginale, V. et al. Accumulation, localisation, and toxic effects of cadmium in the liverwort Lunularia cruciata. Protoplasma. 223, 53–61 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Yan, Y., Zhang, Q., Wang, G. G. & Fang, Y. M. Atmospheric deposition of heavy metals in Wuxi, China: Estimation based on native moss analysis. Ecotox. Environ. Safe. 188, 360 (2016).
    Google Scholar 

    23.
    Gupta, R. & Asthana, A. K. Diversity and distribution of liverworts across habitats and altitudinal gradient at Pachmarhi Biosphere Reserve (India). Plant Sci. Today 3, 354–359 (2016).
    Article  Google Scholar 

    24.
    Gao, S., Yu, H. N., Xu, R. X., Cheng, A. X. & Lou, H. X. Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum. Phytochemistry 111, 48–58 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Wu, Y. F. et al. A bHLH Transcription factor regulates bisbibenzyl biosynthesis in the liverwort Plagiochasma appendiculatum. Plant Cell Physiol. 59, 1187–1199 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Venugopal, M. & Nair, M. C. Bryophyte diversity of Thamarassery pass (Wayanad pass) in the Western Ghats of Kerala. Plant Sci. Today 4, 41–48 (2017).
    Article  Google Scholar 

    27.
    Pant, G. & Tewari, S. D. Bryophytes as Biogeoindicators: Bryophytic Associations of Mineral-Enriched Substrates in Kumaon Himalaya. Topics in Bryology 165–184 (Allied Publishers Ltd., New Delhi, 1998).
    Google Scholar 

    28.
    Ghate, S. & Chaphekar, S. B. Plagiochasma appendiculatum as a biotest for water quality assessment. Environ. Pollut. 108, 173–181 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Choudhary, S.P., Kanwar, M., Bhardwaj, R., Yu, J.Q. & Tran, L.S.P. Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One. 7(3) (2012).

    30.
    Bai, C., Liu, L. & Wood, B. W. Nickel affects xylem Sap RNase a and converts RNase A to a urease. BMC Plant Biol. 13, 207 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Bai, C., Reilly, C. C. & Wood, B. W. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol. 140, 433–443 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils. 6, 68–72 (1988).
    CAS  Article  Google Scholar 

    33.
    Poonkothai, M. V. B. S. & Vijayavathi, B. S. Nickel as an essential element and a toxicant. Int. J. Environ. Sci. 1, 285–288 (2012).
    Google Scholar 

    34.
    Freitas, D. S. et al.Hidden nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes. Front. Plant Sci.9(2018).

    35.
    Rout, G. R. & Das, P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. in Sustainable Agriculture (pp. 873–884). (Springer, Dordrecht, 2009).

    36.
    Myking, T. et al.Effects of Air Pollution from a Nickel-Copper Industrial Complex on Boreal Forest Vegetation in the Joint Russian-Norwegian-Finnish Border Area (2009).

    37.
    Kowalska, J. B., Mazurek, R., Gąsiorek, M. & Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health. 1–26 (2018).

    38.
    Awadh, S. M., Al-Kilabi, J. A. & Khaleefah, N. H. Comparison the geochemical background, threshold and anomaly with pollution indices in the assessment of soil pollution: Al-Hawija, north of Iraq case study. Int. J. Sci. Res. 4, 2357–2363 (2015).
    Google Scholar 

    39.
    Dung, T. T. T., Cappuyns, V., Swennen, R. & Phung, N. K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotechnol. 12, 335–353 (2013).
    CAS  Article  Google Scholar 

    40.
    Mazurek, R. et al. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 168, 839–850 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Čecháková, K., Motyka, O., Válová, E., Macečková, B. & Stalmachová, B. Investigation of the influence of nickel in precipitation through the surface properties of moss Pleurozium schreberi Carpath. J. Earth Environ. 9, 153–158 (2014).
    Google Scholar 

    42.
    Marchiol, L., Assolari, S., Sacco, P. & Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multiexcess soil. Environ. Pollut. 132, 21–27 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Tuna, A. L., Burun, B., Yokas, I. & Coban, E. The effects of heavy metals on pollen germination and pollen tube length in the tobacco plant. Turk. J. Biol. 26, 109–113 (2002).
    CAS  Google Scholar 

    44.
    Mostofa, M. G., Hossain, M. A., Fujita, M. & Tran, L. S. P. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci. Rep. 5, 11433 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Choudhury, S. & Panda, S. K. Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under lead and arsenic phytotoxicity. Curr. Sci. 342–348 (2004).

    46.
    Choudhury, S. & Panda, S. K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut.167, 73–90 (2005).

    47.
    Penny, C., Dickinson, N. M. & Lepp, N. W. The effect of heavy metal contamination on the pigment profiles of Torreya sp. in Remediation and Management of Degraded Lands. (2018).

    48.
    Rau, S., Miersch, J., Neumann, D., Weber, E. & Krauss, G. J. Biochemical responses of the aquatic moss Fontinalis antipyretica to Cd, Cu, Pb and Zn determined by chlorophyll fluorescence and protein levels. Environ. Exp. Bot. 59, 299–306 (2007).
    CAS  Article  Google Scholar 

    49.
    Foyer, C. H. & Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 155, 2–18 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Hasanuzzaman, M., Nahar, K., Anee, T. I. & Fujita, M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants. 23, 249–268 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Yadav, N. S., Shukla, P. S., Jha, A., Agarwal, P. K. & Jha, B. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol. 12, 188 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Subbiah, B. V. & Asija, G. L. A rapid procedure for estimation of available nitrogen in soils. Curr Sci. 25, 259–260 (1956).
    CAS  Google Scholar 

    53.
    Olsen, S.R., Cole, C,V., Watanabe, F.S. & Dean, L. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. U.S.D.A. Circ. 939. (U.S. Govt. Printing Office: Washington, DC) (1954).

    54.
    Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W. & Liqiang, Y. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J. China Univ. Geosci. 19, 230–241 (2008).
    Article  Google Scholar 

    55.
    Choudhary, S. P., Kanwar, M., Bhardwaj, R., Gupta, B. D. & Gupta, R. K. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84, 592–600 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Lacy, R.C., P.S. Miller & Traylor-Holzer, K. Vortex 10 User’s Manual. 1 June 2018 update. IUCN SSC Conservation Breeding Specialist Group, and Chicago Zoological Society, Apple Valley, Minnesota, USA (2018).

    57.
    Brown, P. H., Welch, R. M. & Cary, E. E. Nickel: A micronutrient essential for higher plants. Plant Physiol. 85, 801–803 (1987).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Seregin, I. V., Kozhevnikova, A. D., Kazyumina, E. M. & Ivanov, V. B. Nickel toxicity and distribution in maize roots. Russ. J. Plant Physiol. 50, 711–717 (2003).
    CAS  Article  Google Scholar 

    59.
    Shin, R., Berg, R. H. & Schachtman, D. P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46, 1350–1357 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Saeed, A. I. et al. TM4a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Dogs display owner-specific expectations based on olfaction

    1.
    Kaminski, J. & Marshall-Pescini, S. The Social Dog: Behaviour and Cognition (Elsevier publishers, Dordrecht, 2014).
    Google Scholar 
    2.
    Brown, D. S. & Johnston, R. E. in Chemical Signals in Vertebrates 3 (ed D Müller-Schwartze) 343–346 (Plenum Press, 1983).

    3.
    Cafazzo, S., Natoli, E. & Valsecchi, P. Scent-marking behaviour in a pack of free-ranging domestic dogs. Ethology 118, 955–966. https://doi.org/10.1111/j.1439-0310.2012.02088.x (2012).
    Article  Google Scholar 

    4.
    Lisberg, A. E. & Snowdon, C. T. The effects of sex, gonadectomy and status on investigation patterns of unfamiliar conspecific urine in domestic dogs, Canis familiaris. Anim. Behav. 77, 1147–1154 (2009).
    Article  Google Scholar 

    5.
    Walker, D. B. et al. Naturalistic quantification of canine olfactory sensitivity. Appl. Anim. Behav. Sci. 97, 241–254. https://doi.org/10.1016/j.applanim.2005.07.009 (2006).
    Article  Google Scholar 

    6.
    Miklosi, A. Dog Behaviour, Evolution, and Cognition 1st edn, Vol. 304 (Oxford University Press, Oxford, 2007).
    Google Scholar 

    7.
    Hall, N., Glenn, K., Smith, D. & Wynne, C. Performance of Pugs, German Shepherds, and Greyhounds (Canis lupus familiaris) on an odor-discrimination task. J. Comp. Psychol. 129, 237–246 (2015).
    Article  Google Scholar 

    8.
    Williams, M. & Johnston, J. M. Training and maintaining the performance of dogs (Canis familiaris) on an increasing number of odor discriminations in a controlled setting. Appl. Anim. Behav. Sci. 78, 55–65. https://doi.org/10.1016/s0168-1591(02)00081-3 (2002).
    Article  Google Scholar 

    9.
    Alasaad, S. et al. Sarcoptic-mange detector dogs used to identify infected animals during outbreaks in wildlife. Vet. Res. 8, 33 (2012).
    Google Scholar 

    10.
    Browne, C., Stafford, K. & Fordham, R. The use of scent-detection dogs. Ir. Vet. J. 59, 97–102 (2006).
    Google Scholar 

    11.
    Dalziel, D. J., Uthman, B. M., McGorray, S. P. & Reep, R. L. Seizure-alert dogs: a review and preliminary study. Seizure-Eur. J. Epilepsy 12, 115–120. https://doi.org/10.1016/s1059-1311(02)00225-x (2003).
    Article  Google Scholar 

    12.
    Furton, K. G. & Myers, L. J. The Scientific Foundation And Efficacy Of The Use Of Canines And Chemical Detectors For Explosives. Talanta 43, 487–500 (2001).
    Article  Google Scholar 

    13.
    Gazit, I., Goldblatt, A. & Terkel, J. The role of context specificity in learning: the effects of training context on explosives detection in dogs. Anim. Cogn. 8, 143–150. https://doi.org/10.1007/s10071-004-0236-9 (2005).
    Article  PubMed  Google Scholar 

    14.
    Lim, K., Fisher, M. & Burns-Cox, C. J. Type 1 diabetics and their pets. Diabet. Med. 9, S3–S4 (1992).
    Google Scholar 

    15.
    Lippi, G. & Cervellin, G. Canine olfactory detection of cancer versus laboratory testing: myth or opportunity?. Clin. Chem. Lab. Med. 50, 435–439 (2012).
    CAS  PubMed  Google Scholar 

    16.
    Marchal, S., Bregeras, O., Puaux, D., Gervais, R. & Ferry, B. Rigorous training of dogs leads to high accuracy in human scent matching-to-sample performance. PLoS ONE 11, e0146963 (2016).
    Article  Google Scholar 

    17.
    Brisbin, I. L. J. & Austad, S. N. Testing the individual odor theory of canine olfaction. Anim. Behav. 42, 63–70. https://doi.org/10.1016/s0003-3472(05)80606-2 (1991).
    Article  Google Scholar 

    18.
    Schoon, G. A. A. Scent identification lineups by dogs (Canis familiaris): Experimental design and forensic application. Appl. Anim. Behav. Sci. 49, 257–267. https://doi.org/10.1016/0168-1591(95)00656-7 (1996).
    Article  Google Scholar 

    19.
    Bräuer, J., Hanus, D., Pika, S., Gray, R. & Uomini, N. Old and new approaches to animal cognition: there is not “One Cognition”. J. Intell. 8, 28. https://doi.org/10.3390/jintelligence8030028 (2020).
    Article  PubMed Central  Google Scholar 

    20.
    Prato Previde, E. & Valsecchi, P. in The Social Dog (eds Juliane Kaminski & S Marshall-Pescini) Ch. 6, 165–190 (Elsevier Publishers, 2014).

    21.
    Gacsi, M. et al. Species-specific differences and similarities in the behavior of hand-raised dog and wolf pups in social situations with humans. Dev. Psychobiol. 47, 111–122 (2005).
    Article  Google Scholar 

    22.
    Miklosi, A., Kubinyi, E., Gacsi, M., Viranyi, Z. & Csanyi, V. A simple reason for a big difference: wolves do not look back at humans but dogs do. Curr. Biol. 13, 763–766 (2003).
    CAS  Article  Google Scholar 

    23.
    Marshall-Pescini, S., Rao, A., Virányi, Z. & Range, F. The role of domestication and experience in ‘looking back’ towards humans in an unsolvable task. Sci. Rep. 7, 46636. https://doi.org/10.1038/srep46636 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Miklosi, A., Polgardi, T. J. & J. & Csányi, V. Intentional behavior in dog-human communication: an experimental analysis of “showing’’ behaviour in the dog”. Anim. Cognit. 3, 159–166 (2000).
    Article  Google Scholar 

    25.
    Heberlein, M. T. E., Turner, D. C., Range, F. & Virányi, Z. A comparison between wolves, Canis lupus, and dogs, Canis familiaris, in showing behaviour towards humans. Anim. Behav. 122, 59–66. https://doi.org/10.1016/j.anbehav.2016.09.023 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Henschel, M., Winters, J., Müller, T. F. & Bräuer, J. Effect of shared information and owner behavior on showing in dogs (Canis familiaris). Anim. Cogn. https://doi.org/10.1007/s10071-020-01409-9 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Kaminski, J., Neumann, M., Bräuer, J., Call, J. & Tomasello, M. Domestic dogs communicate to request and not to inform. Anim. Behav. 82, 651–658 (2011).
    Article  Google Scholar 

    28.
    Piotti, P. & Kaminski, J. Do dogs provide information helpfully?. PLoS ONE 11, e0159797. https://doi.org/10.1371/journal.pone.0159797 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Topal, J. et al. Attachment to humans: a comparative study on hand-reared wolves and differently socialized dog puppies. Anim. Behav. 70, 1367–1375 (2005).
    Article  Google Scholar 

    30.
    Gacsi, M., Topal, J., Miklosi, A., Doka, A. & Csanyi, V. Attachment behavior of adult dogs (Canis familiaris) living at rescue centers: forming new bonds. J. Comp. Psychol. 115, 423–431 (2001).
    Article  Google Scholar 

    31.
    Hare, B. & Tomasello, M. Human-like social skills in dogs?. Trends Cognit. Sci. 9, 439–444 (2005).
    Article  Google Scholar 

    32.
    Nagasawa, M. et al. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science 348, 333–336. https://doi.org/10.1126/science.1261022 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    33.
    Bräuer, J. & Belger, J. A ball is not a Kong: odor representation and search behavior in domestic dogs (Canis familiaris) of different education. J. Comp. Psychol. 132, 189–199. https://doi.org/10.1037/com0000115 (2018).
    Article  PubMed  Google Scholar 

    34.
    Hepper, P. G. & Wells, D. L. How many footsteps do dogs need to determine the direction of an odour trail. Chem. Senses 30, 291–298 (2005).
    Article  Google Scholar 

    35.
    Wells, D. L. & Hepper, P. G. Directional tracking in the domestic dog, Canis familiaris. Appl. Anim. Behav. Sci. 84, 297–305. https://doi.org/10.1016/j.applanim.2003.08.009 (2003).
    Article  Google Scholar 

    36.
    Polgár, Z., Miklósi, Á. & Gácsi, M. Strategies used by pet dogs for solving olfaction-based problems at various distances. PLoS ONE 10, e0131610. https://doi.org/10.1371/journal.pone.0131610.pmid:26176609 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Phillips, C. J., Coppinger, R. P. & Schimel, D. S. Hyperthermia in running sled dogs. J. Appl. Physiol. 51, 135–142. https://doi.org/10.1152/jappl.1981.51.1.135 (1981).
    CAS  Article  PubMed  Google Scholar 

    38.
    Köhler, F. Vergleichende Untersuchungen zur Belastung von Lawinen- und Rettungshunden bei der Lauf- und der Sucharbeit Ph.D. thesis, Ludwig-Maximilians-Universität München (2004).

    39.
    Snovak, A. E. Guide to search and rescue dogs (Hauppauge, New York, 2004).
    Google Scholar 

    40.
    Pearsall, M. D. & Verbruggen, H. Scent—Training to Track, Search and Rescue (Alpine Publications, Crawford, 1982).
    Google Scholar 

    41.
    Syrotuck, W. G. Scent and the Scenting Dog (Barkleigh Productions, Mechanicsburg, 2000).
    Google Scholar 

    42.
    Judah, J. C. Building a Basic Foundation for Search and Rescue Dog Training (Lulu Publishing, Morrisville, 2007).
    Google Scholar 

    43.
    Jones, K. E., Dashfield, K., Downend, A. B. & Otto, C. M. Search-and-rescue dogs: an overview for veterinarians. J. Am. Vet. Med. Assoc. 225, 854–860. https://doi.org/10.2460/javma.2004.225.854 (2004).
    Article  PubMed  Google Scholar 

    44.
    Wright, G. A. & Thomson, M. G. A. in Chemical Ecology and Phytochemistry of Forest Ecosys-tems (ed J Romeo) 191–226 (Elsevier, 2005).

    45.
    Woidtke, L., Dreßler, J. & Hädrich-Babian, C. Individual human scent as a forensic identifier using mantrailing. Forensic Sci. Int. 282, 111–121. https://doi.org/10.1016/j.forsciint.2017.11.021 (2017).
    CAS  Article  PubMed  Google Scholar 

    46.
    Goss, K.-U. Comment on “Individual human scent as a forensic identifier using mantrailing”. Forensic Sci. Int. 297, e19. https://doi.org/10.1016/j.forsciint.2019.02.024 (2019).
    CAS  Article  PubMed  Google Scholar 

    47.
    Courts, C., Euteneuer, J. & Gosch, A. There is no evidence that dogs can smell DNA—Comment on “Individual human scent as a forensic identifier using mantrailing”. Forensic Sci. Int. 297, e14–e15 (2019).
    CAS  Article  Google Scholar 

    48.
    Jezierski, T., Ensminger, J. & Papet, L. Canine Olfaction Science and Law (CRC Press, Boca Raton, 2016).
    Google Scholar 

    49.
    Laing, D. G. Natural sniffing gives optimum odour perception for humans. Perception 12, 99–117. https://doi.org/10.1068/p120099 (1983).
    CAS  Article  PubMed  Google Scholar 

    50.
    Gadbois, S. & Reeve, C. Canine olfaction: scent, sign, and situation. In Domestic Dog Cognition and Behavior: The Scientific Study of Canis familiaris (ed. Horowitz, A.) 3–29 (Springer, Berlin, 2014).
    Google Scholar 

    51.
    Neuhaus, V. W. The importance of sniffing to the olfaction of the dog. Zeitschrift für Säugetierkunde 46, 301–310 (1981).
    Google Scholar 

    52.
    Craven, B. A., Paterson, E. G. & Settles, G. S. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. J. R. Soc. Interface 7, 933–943. https://doi.org/10.1098/rsif.2009.0490 (2010).
    Article  PubMed  Google Scholar 

    53.
    Lawson, M. J., Craven, B. A., Paterson, E. G. & Settles, G. S. A Computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction. Chem. Senses 37, 553–566. https://doi.org/10.1093/chemse/bjs039 (2012).
    CAS  Article  PubMed  Google Scholar 

    54.
    Gazit, I. & Terkel, J. Domination of olfaction over vision in explosives detection by dogs. Appl. Anim. Behav. Sci. 82, 65–73. https://doi.org/10.1016/S0168-1591(03)00051-0 (2003).
    Article  Google Scholar 

    55.
    Schmidt-Nielsen, K., Bretz, W. L. & Taylor, C. R. Panting in dogs: unidirectional air flow over evaporative surfaces. Science 169, 1102. https://doi.org/10.1126/science.169.3950.1102 (1970).
    ADS  CAS  Article  PubMed  Google Scholar 

    56.
    Goldberg, M. B., Langman, V. A. & Taylor, C. R. Panting in dogs: paths of air flow in response to heat and exercise. Respir. Physiol. 43, 327–338. https://doi.org/10.1016/0034-5687(81)90113-4 (1981).
    CAS  Article  PubMed  Google Scholar 

    57.
    Greatbatch, I., Gosling, R. J. & Allen, S. Quantifying search dog effectiveness in a terrestrial search and rescue environment. Wilderness Environ. Med. 26, 327–334. https://doi.org/10.1016/j.wem.2015.02.009 (2015).
    Article  PubMed  Google Scholar 

    58.
    Scandurra, A., Alterisio, A., Di Cosmo, A. & D’Aniello, B. Behavioral and Perceptual Differences between Sexes in Dogs: An Overview. Animals (Basel) 8, 151. https://doi.org/10.3390/ani8090151 (2018).
    Article  Google Scholar 

    59.
    Persson, M. E., Roth, L. S., Johnsson, M., Wright, D. & Jensen, P. Human-directed social behaviour in dogs shows significant heritability. Genes Brain Behav. 14, 337–344. https://doi.org/10.1111/gbb.12194 (2015).
    CAS  Article  PubMed  Google Scholar 

    60.
    Hamilton, J. & Vonk, J. Do dogs (Canis lupus familiaris) prefer family?. Behav. Proc. 119, 123–134 (2015).
    Article  Google Scholar 

    61.
    Topál, J. in The Social Dog: behaviour and cognition (eds Juliane Kaminski & Sarah Mashall-Pescini) 319–346 (Elsevier publishers, 2014).

    62.
    Polgár, Z., Kinnunen, M., Újváry, D., Miklósi, Á. & Gácsi, M. A test of canine olfactory capacity: comparing various dog breeds and wolves in a natural detection task. PLoS ONE 11, e0154087. https://doi.org/10.1371/journal.pone.0154087 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    63.
    Jezierski, T. et al. Efficacy of drug detection by fully-trained police dogs varies by breed, training level, type of drug and search environment. Forensic Sci. Int. 237, 112–118. https://doi.org/10.1016/j.forsciint.2014.01.013.pmid:24631776 (2014).
    CAS  Article  PubMed  Google Scholar 

    64.
    Siniscalchi, M. et al. Sniffing with the right nostril: lateralization of response to odour stimuli by dogs. Anim. Behav. 82, 399–404. https://doi.org/10.1016/j.anbehav.2011.05.020 (2011).
    Article  Google Scholar  More

  • in

    Meta-analysis cum machine learning approaches address the structure and biogeochemical potential of marine copepod associated bacteriobiomes

    CAB diversity between the copepod genera
    Calanus spp. are filter feeders and mostly herbivores, but do feed on ciliates and other heterotrophic protists during reproduction and energy shortfall38,39. This may be the reason for their high H index. Most of the gene sequences used for this meta-analysis were from Calanus finmarchicus; however, Centropages sp. feeds on different sources, from microalgae to fish larvae40. Acartia spp. are primarily omnivorous (with a high degree of carnivore behaviour), feeding on phytoplankton, rotifers, and occasionally ciliates41, whereas Temora spp. frequently switches its feeding behaviour, i.e., from omnivore to herbivore, based on season and on food availability42. The bacterial alpha diversity analysis in the Temora spp. revealed a significantly lower Shannon diversity. However, in an earlier study, no difference was reported in alpha diversity between the Temora sp. and Acartia sp.37. This can be explained based on the source of copepods involved for the study by Wega et al.37, which was based only on a single source, i.e., the central Baltic sea; however, in our case the CAB sequences for Acartia spp. were from the central Baltic sea37 as well as the Gulf of Maine10. The occurrence of high Faith’s_PD in Pleuromamma spp. may be due to their range distribution in the water column, and few species within Pleuromamma spp. are known to migrate vertically11,43, or possibly due to their food uptake, which includes phytoplankton, microzooplankton (ciliates and flagellates) and detritus11,44.
    The consensus phylogram revealed that, at the genera level, Calanus spp. was phylogenetically closer to Pleuromamma spp. and formed two distinct clusters in the PCoA plot. Furthermore, the difference in dissimilarity percentage of CAB between Pleuromamma spp. and Calanus spp. may be attributed to the difference in vertical migration, life stages and feeding behaviour between the two copepod genera. Pleuromamma spp., an omnivorous feeder11,44, can migrate vertically up to 1000 m11,43 whereas Calanus sp., mostly herbivores but occasional omnivores36,37, can migrate up to 600 m45,46. This may also be due to the difference in the life stage of Calanus sp. (the microbial communities varied between diapausing and active feeding)2.
    ANCOM
    In an early report, bacterial members belonging to the Gammaproteobacteria were observed to be dominant in Calanus finmarchicus, followed by members of Alphaproteobacteria10. However, in the present ANCOM, the presence of Gamma and Alphaproteobacteria were equal (three genera each) in Calanus spp. (Fig. 3). Similar to our results, the unclassified genus of Rhodobacteraceae was reported to be abundant in Acartia longiremis10. Colwelliaceae was reported to be abundant in Calanus finmarchicus10; however, in the present analysis, family Colwelliaceae was found in a high percentage in Centropages sp.. An abundance of Flavobacteriaceae was observed, along with phytoplankton and diatoms in the gut of Calanus finmarchicus containing food2, whereas Sedinimicola sp. (Flavobacteriaceae) was observed to be dominant in Acartia longiremis, Calanus finmarchicus and Centropages hamatus10. In addition, Dorosz et al.47 reported that Flavobacterium was more dominant in Temora longicornis than in Acartia tonsa, whereas, in our case, Flavobacteriaceae was found in a high percentage in Calanus spp.. Upon comparison of the present ANCOM and previous reports, Pseudoalteromonas sp. appeared in high percentage not only within Centropages sp.10 but also in consistent and abundant bacteria in Acartia sp., and Calanus sp. The prevalence of Pseudomonas has been observed in Pleuromamma sp.11, whereas this was not the case in our analysis (Fig. 3). Similarly, Cregeen11 analysed the bacteriobiome of Pleuromamma sp. and observed the dominance of Alteromonas, but, from our meta-analysis, a higher abundance of Alteromonas was observed in Centropages sp. compared to five other genera, including Pleuromamma spp. (Fig. 3).
    From our analysis, Nitrosopumilus was observed contain a high amount of Temora spp., but the abundance of Nitrosopumilus was reported to show no difference between the particle-associated in the water column and within Temora sp.37; thus, the high percentage observed in our analysis may be due to the exchange of Nitrosopumilus from seawater. Vibrionales was identified as a core member in the gut of Pleuromamma spp.1, similar to the present analysis, wherein Vibiro percentage was found to be high in the CAB of Pleuromamma spp.. The copepods were reported to have a selective niche of Vibrio capable of degrading chitin1,48. In the present analysis, seven bacterial taxa were found to be in high percentages in Centropages sp. and, among those seven, four taxa belong to the Gammaproteobacteria. A high proportion of Gammaproteobacteria in Centropages sp. was also reported previously10.
    Machine learning-based prediction
    The masking effect of the abundant bacterial community associated with the copepod diet and ambient water column should not hinder the detection of core OTUs, as evidenced by previous studies1,2. QIIME2 core_abundance algorithms used in the present study did not predict single bacterial s-OTUs (data not presented). Hence, we used machine learning approaches to detect important core s-OTUs specific to copepod genera.
    From our SML classifier results, the important s-OTUs predicted in Calanus spp. and Pleuromamma spp. were found to have high prediction accuracy (area under the curve (AUC) = 1.00). Therefore, we discuss the important s-OTUs predicted for these two copepod genera (Calanus spp. and Pleuromamma spp.). To begin with, among the important s-OTUs predicted in Calanus spp. from the present analysis (both SML models: RFC and GBC), Gammaproteobacteria was a dominant member (15 and 9 s-OTUs from RFC and GBC, respectively) followed by Alphaproteobacteria, which represents 6 and 3 s-OTUs from RFC and GBC, respectively. This observation was similar to that in an earlier study, where Gammaproteobacteria and Alphaproteobacteria were reported as core OTUs in Calanus finmarchicus2. In addition, within the Gammaproteobacteria, seven (RFC) and five (GBC) s-OTUs representing the Acinetobacter (Moraxellaceae) were predicted as important s-OTUs in the present study, similar to an earlier study in which Moraxellaceae was reported to be closely associated with Calanus finmarchicus10. Moreover, four s-OTUs of Acinetobacter (Moraxellaceae) were also reported as core OTUs in Calanus finmarchicus2. In addition to the present analysis, three s-OTUs from both SML classifiers (RFC and GBC) belonging to Vibrio shilonii were predicted as important s-OTUs in Calanus spp.. Comparably, four OTUs of Vibrionaceae (three OTUs of Vibrio sp. and one similar to Vibrio harveyi) were observed in Calanus finmarchicus2.
    In the present SML analysis, one genus Bradyrhizobium (order Rhizobiales), was predicted as an important s-OTU in Pleuromamma spp. by GBC classifiers. Moreover, in the present ANCOM, Bradyrhizobium was found in a high percentage within Pleuromamma spp.. This Bradyrhizobium is also known to contain nifH gene, as they usually occur in seawater49 and SML-GBC also predicted this genus as an important s-OTU in Calanus spp.. Bradyrhizobiaceae was also found to be the most abundant OTU, contained in 79 of the total 137 sequences in the negative control in a similar analysis1. Thus, in the case of Bradyrhizobium, a further investigation is required in order to come to a meaningful conclusion.
    Moreover, in a previous study, order Vibrionales was also predicted as a core member (based on presence/absence) in Pleuromamma spp.1. The genus Pseudoalteromonas was also already reported as occurring in high abundance in Pleuromamma sp.11. However, in the present analysis, GBC predicted five s-OTUs of Pseudoalteromonas as important s-OTUs in Pleuromamma spp., whereas RFC predicted two s-OTUs of Pseudoalteromonas as important s-OTUs in Acartia spp., Calanus spp., and Centropages sp. (Fig. 4e). This is similar to Pseudoalteromonas, which is reported as a constant and stable OTU in Acartia sp.37, Calanus sp.2 and Centropages sp.10. Thus, it is unwise to consider Pseudoaltermonas as being specific to one copepod genera.
    In the present study, the GBC model predicted three s-OTUs of Alteromonas and two s-OTUs of Marinobacter as important ones in Pleuromamma spp., and ANCOM also showed that the genus Marinobacter proportion was high in Pleuromamma spp.. Comparably, both Alteromonas and Marinobacter were reported as common in Pleuromamma sp.11. Though the abundance of genus Sphingomonas was low, it was reported to appear consistently in Pleuromamma sp.11, and our analysis predicted this genus as an important s-OTU of Pleuromamma spp. (from GBC) (Fig. 4f).
    In the present study, the GBC model predicted Limnobacter as an important s-OTU in Pleuromamma spp., and ANCOM also showed that the proportion of genus Limnobacter was high in Pleuromamma spp.. Moreover, in a previous study, Limnobacter was reported to occur in high abundance in, as well as being unique to, copepods (Pleuromamma spp.)11. Also, the genera Methyloversatilis was reported to be low in abundance in Pleuromamma spp., whereas the SML-GBC model in this study predicted this genus to be an important s-OTU in Pleuromamma spp. (Fig. 4f). The order Pseudomonadales was reported as a core member in Pleuromamma spp.1; however, our GBC model predicted the bacterial genera Enhydrobacter (Pseudomonadales) as an important s-OTU in Pleuromamma spp. (Fig. 4f). In addition, from ANCOM, this genus Enhydrobacter was found in high percentage in Pleuromamma spp., but was also reported to be high in proportion in calanoid copepods6. One another important s-OTU predicted in Pleuromamma spp. by our GBC model was Desulfovibrio, and ANCOM also showed that the proportion of genus Desulfovibrio was found to be high in Pleuromamma spp..
    HTCC2207 (Gammaproteobacteria) was predicted as an important s-OTU in Calanus spp. by both SML models. Also, from ANCOM, HTCC2207 was found in a high percentage in Calanus spp.. HTCC2207 is usually more abundant in seawater, and has been reported as present in Acartia longiremis., Calanus finmarchicus and Centropages hamatus with a full gut10. Due to their known proteorhodopsin gene and being free water—living bacteria50, the probability of detecting this bacterium in the copepod gut may be determined by food ingestion.
    Sediminibacterium (Chitinophagaceae) was reported to be in low abundance but regularly present in Pleuromamma sp.11. However, in the present analysis, the RFC model predicted Sediminibacterium as important s-OTUs in Acartia spp., Calanus spp. and Temora spp. (Fig. 4e,f), whereas the GBC model predicted Sediminibacterium as important s-OTUs in Acartia spp. and Temora spp. (Fig. 4). Chitinophagaceae was reported to be associated with calanoid copepods in the North Atlantic Ocean6. Earlier studies showed that the genus Photobacterium (Phylum: Proteobacteria) was abundant in Pleuromamma sp.11, Centropages sp.10, and Calanus finmarchicus2. Herein, Photobacterium was detected as an important s-OTU in Calanus spp. by the RFC model only. Furthermore, in the present analysis, Nitrosopumilus was predicted as an important s-OTU in Acartia spp. and Temora spp. by both the SML models, and this genus was also reported to be in high percentage in Acartia sp. and Temora sp.37.
    Furthermore, RFC predicts Pelomonas as an important s-OTU in Acartia spp., Centropages sp. and Calanus spp.. However, in a previous study, Pelomonas was ruled out as a core OTU in Calanus spp.2. The GBC predicted two s-OTUs of RS62 and one s-OTUs of Planctomyces as important ones in Acartia spp., and Temora spp.. RS62 belongs to the order Burkholderiales, and though this order was reported to be abundant, abundance varied between individual copepods (Acartia sp. and Temora sp.)37. Burkholderiales was also reported as a main copepod-associated community9. However, in the present study, the genus Comamonas belonging to Burkholderiales was predicted as an important s-OTU in Acartia spp., and Temora spp. by both SML models.
    Approximately 25 taxa detected by the RFC approach were also found in high percentages from ANCOM. Among them, five s-OTUs, viz., Anaerospora, Micrococcus, Micrococcus luteus, Vibrio shilonii and Methylobacteriaceae, were predicted as important s-OTUs in Calanus spp. in our report, for the first time (Fig. 4e). From the 28 taxa detected by the GBC model, four s-OTUs, viz., Phaeobacter, Acinetobacter johnsonii, Vibrio shilonii, and Piscirickettsiaceae, were predicted as important s-OTUs in Calanus spp. in our report, for the first time (Fig. 4f). In addition, eight s-OTUs, viz., Marinobacter, Limnobacter. Methyloversatilis, Desulfovibrio, Enhydrobacter, Sphingomonas, Alteromonas and Coriobacteriaceae, were predicted as important s-OTUs in Pleuromamma spp. in the GBC model, for the first time.
    Potential biogeochemical genes of CAB and their variation and abundance
    Bacterial communities exploit copepods as microhabitat by colonising copepods’ internal and external surfaces, and mediate marine biogeochemical processes9. CABs also metabolise organic compounds, such as chitin, taurine, and other complex molecules in and around the copepod, which may be a hotspot for the biogeochemical process9. In an earlier analysis, potential functional genes in the water column of the Southern Ocean were processed using Parallel-Meta3 software51; herein, we have used a more advanced PICRUSt2 analysis to screen for the potential functional genes.
    Methanogenesis
    In the present analysis, the bacterial taxa involved in methane production, viz. methanogenesis, methylphosphonate, DMSP and DMSO, were observed in all copepod genera but relative proportion varied between genera. A similar observation in Acartia sp. and Temora sp. has been reported37.
    In the present analysis, we found that CAB has a complete set of aerobic methanogenesis genes (PhnL, M, J, H and G) which convert methylphosphonate (MPn) to methane (CH4)52. Some copepods, like Acartia sp. and Temora sp., were reported to associate with bacteria involved in CH4 production from MPn37. De Corte et al.9 suggested that different copepod species have different CAB, and only some copepods have the specific CAB for methanogenesis and other biogeochemical cycles.
    A previous study (with 14 C-labelled experiments) observed high methane production in Temora longicornis compared to Acartia spp.53. In addition, the methanogenic archeae i.e., Methanobacterium bryantii-like sequences, Methanogenium organophilum, Methanolobus vulcani-like sequences and Methanogenium organophilum were noted in Acartia clausi and Temora longicornis faecal pellets54. In the present study, we observed that Pleuromamma spp. has a high proportion of the mcrA gene (Fig. S2).
    T. longicornis fed with a high content of TMA-/DMA-rich phytoplankton produced the maximum amount of CH4, suggesting that this production may be due to the micro-niches inside the copepods55. However, in our analysis, CAB of Pleuromamma spp. was found to have a high proportion of the dmd-tmd gene.
    In our meta-analysis, Acartia spp. was found to have a high proportion of the dmdA gene. The taxa detected in the present study, such as Pelagibacteraceae, some Alpha and Gammaproteobacteria, are known to have dmdA genes56.
    Copepods feeding on phytoplankton liberate DMSP, which, in turn, is utilised by the DMSP-consuming bacteria in the gut (Acartia tonsa), leading to methane production57. Moreover, the methane enrichment in the Central Baltic Sea is due to the dominant zooplankton Temora longicornis feeding on the DMSP-/DMSO-rich Dinophyceae, resulting in methane release53.
    Instead of analysing faecal pellets57 and anaerobic incubation experiments58, further research should also consider CAB-mediated aerobic methanogenesis as one factor with which to solve the ‘ocean methane paradox’.
    Methanotrophic potential of CAB
    The present analysis showed that the CABs of Pleuromamma spp. and Centropages sp. were had a high proportion of methanol dehydrogenase genes (mxaF and mxaI) (Fig. S2). This may be due to the presence of Proteobacteria that involves methane oxidation, viz., Beijerinckiaceae, Methylococcaceae, Methylocystaceae and Verrucomicrobia (Supplementary File Table S3)59.
    Assimilatory sulphate reduction
    A relative abundance of taxa such as Synechococcus and the Deltaproteobacterial family (unclassified genera in Desulfovibrionaceae), Rhodobacteraceae and Flavobacterium (Supplementary File Table S3) were observed in the CAB of Temora spp., which may be responsible for the ASR pathway, as these taxa are known to have ferredoxin-sulphite reductase activity (Supplementary File Table S3).
    Nitrogen fixation
    A high abundance of nifH gene was reported in copepods collected from the coastal waters of Denmark (Øresund) (mostly contributed by Acartia spp.), with Vibrio spp. as dominant members16. However, in the present study, the nifH gene was found to be high in the CAB of Pleuromamma spp. (Fig. S4), and one should note that this may be due to the high abundance of genus Vibrio in the CAB of Pleuromamma spp. (Supplementary File Table S3). Vibrio attached to the exoskeleton and gut lining of copepods60 using chitin as both a carbon and energy source was previously reported10. Furthermore, copepods are reported to be a hotspot for nitrogen fixation at a rate of 12.9–71.9 μmol N dm−3 copepod biomass per day16. The abundance of nifH gene in the CAB of Pleuromamma spp. may be due to the presence of genera including Synechococcus, Prochlorococcus, Bradyrhizobium, Microcystis, and Trichodesmium (Supplementary File S3).
    Denitrification
    In our analysis, the CAB of Temora spp. were found to have the highest proportion of napA and napB genes (Fig. S4), followed by Pleuromamma spp., whereas an abundance of napA and narG genes were reported in North Atlantic copepods contributed by Calanus sp. and Paraeuchaeate sp.9. However, in the present analysis, the CAB of Temora spp. was found to have a high proportion of narG (Fig. S4). Bacterial genera including Pseudoalteromonas, Actinobacterium and Shewanella also contain the nirS gene, as reported in both live and dead Calanus finmarchicus14. Likewise, from our analysis, both Pseudoalteromonas and Actinobacteria were found in Calanus spp.. A metagenome analysis of copepod-associated microbial community reported them having genes responsible for denitrification and DNRA9.
    Anaerobic nitric oxide reduction
    Families including Aeromonadaceae and Enterobacteriaceae were observed in the CAB of Pleuromamma spp. and Calanus spp., in relatively higher proportion than in other copepods. The genera Aeromonas (family Aeromonadaceae)61 and Escherichia coli (family Enterobacteriaceae)62 are known to contain norV genes. The presence of these bacterial taxa in Pleuromamma spp. may be due to feeding of ciliates, flagellates, and detritus particles11,44. This may be one reason for a high proportion of norV and norW genes in these copepods (Fig. S4).
    Carbon processes
    Bacterial taxa like Colwelliaceae10,63Flavobacterium, Arthrobacter, Serratia, Bacillus, Enterobacter, Vibrio64, Pseudoalteromonas63 and Achromobacter65 produce chitinase. The presence of chitinase gene in CAB is unsurprising, as their foregut and hindgut are both made up of chitin11. The overall outline of CAB-mediated biogeochemical pathways is represented in Fig. 6.
    Figure 6

    Overall representation of the potential functional genes of CAB involved in biogeochemical cycles. The circle and colour represent the copepod genera contained in high proportion for that particular biogeochemical process.

    Full size image

    Role of CAB in iron remineralization
    Pleuromamma spp. carries a similar proportion of ferric iron reductase (fhuF) and ferrous iron transport protein A (feoA) genes (Fig. S6a,b). The presence of a high proportion of ferric iron reductase gene fhuF in Pleuromamma spp. requires detailed investigation. It was reported that acidic and low-oxygen conditions in the copepod gut may assist iron dissolution and remineralisation, forming soluble Fe(II)13,66. This increases the iron bioavailability in the surroundings, promoting phytoplankton growth66. In addition, bacterial community associated with the zooplankton, such as Bacteroidetes, Alphaproteobacteria and Gammaproteobacteria, are known to carry genes involved in iron metabolism9.
    In an early study on Thalassiosira pseudonana fed to Acartia tonsa, iron was found in the faecal pellets67. However, in the present analysis, Acartia spp. was found to have a lower proportion of the feoA gene compared to Temora spp. and Pleuromamma spp.. Moreover, genes involved in iron metabolism were reported to be high in zooplankton-associated microbiome9.
    The differential iron contributions of different copepod genera were unknown until now. For organisms that must combat oxygen limitation for their survival (Pleuromamma spp.), pathways for the uptake of ferrous iron are essential. Nevertheless, the meta-analysis performed here showed that Pleuromamma spp. may be a significant contributor to both iron bioavailability and nitrogen fixation.
    CAB as a source of cyanocobalamin-synthesising prokaryotes
    Organisms within all domains of life require the cofactor cobalamin (vitamin B12), which is usually produced only by a subset of bacteria and archaea68. Previous studies reported that the cobalamin in ocean surface water is due to de novo synthesis by Thaumarchaeota. Moreover, few members of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes genomes were reported to contain the cobalamin-synthesising gene68. In our analysis, the CAB of Temora spp. was found to have a high proportion of Thaumarchaeota, whereas Alpha-gammaproteobacteria content was found to be high in the CAB of Acartia spp., Calanus spp. and Pleuromamma spp.. In this regard, further studies on CAB diversity from different ocean realms would shine a light on the actual potential of CAB in global biogeochemical cycles. More