Optimizing livestock carrying capacity for wild ungulate-livestock coexistence in a Qinghai-Tibet Plateau grassland
1.
Chapin, F. S., Folke, C. & Kofinas, G. P. A framework for understanding change. In Principles of Ecosystem Stewardship (eds Folke, C. et al.) (Springer, Berlin, 2009).
Google Scholar
2.
Ellis, E. C. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).
Article Google Scholar
3.
Conover, M. R. Resolving Human–Wildlife Conflicts: The Science of Wildlife Damage Management (Lewis Publishers CRC Press, Boca Raton, 2002).
Google Scholar
4.
Madhusudan, M. D. Living amidst large wildlife: Livestock and crop depredation by large mammals in the interior villages of Bhadra Tiger Reserve, South India. Environ. Manag. 31, 0466–0475 (2003).
CAS Article Google Scholar
5.
Aryal, A., Brunton, D. H., Ji, W., Barraclough, R. K. & Raubenheimer, D. Human–carnivore conflict: Ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain. Sci. 9, 321–329 (2014).
Article Google Scholar
6.
Bhatnagar, Y. V., Wangchuk, R., Prins, H. H., Van Wieren, S. E. & Mishra, C. Perceived conflicts between pastoralism and conservation of the kiang Equus kiang in the Ladakh trans-Himalaya, India. Environ. Manag. 38, 934–941 (2006).
Article Google Scholar
7.
Hernández, F., Corcoran, D., Graells, G., Roos, C. & Downey, M. C. Rancher perspectives of a livestock-wildlife conflict in Southern Chile. Rangelands 39, 56–63 (2017).
Article Google Scholar
8.
Michalk, D. L. et al. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 30, 561–573 (2019).
Article Google Scholar
9.
Hilker, T., Natsagdorj, E., Waring, R. H., Lyapustin, A. & Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Change Biol. 20, 418–428 (2014).
ADS Article Google Scholar
10.
Zheng, Z., Feng, C., Ye, S., Diao, Z. & Lü, S. Ecological pressures on grassland ecosystems and their conservation strategies in Northern China. Chin. J. Popul. Resourc. Environ. 13, 87–91 (2015).
Article Google Scholar
11.
Wen, L. et al. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS ONE 8, e58432 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
12.
Krausman, P. R. et al. Livestock grazing, wildlife habitat, and rangeland values. Rangelands 31, 15–19 (2009).
Article Google Scholar
13.
Bestelmeyer, B. T., Estell, R. E. & Havstad, K. M. Big questions emerging from a century of rangeland science and management. Rangel. Ecol. Manag. 65, 543–544 (2012).
Article Google Scholar
14.
Galt, D., Molinar, F., Navarro, J., Joseph, J. & Holechek, J. L. Grazing capacity and stocking rate. Rangel. Arch. 22, 7–11 (2000).
Google Scholar
15.
Hobbs, N. T. & Swift, D. M. Estimates of habitat carrying capacity incorporating explicit nutritional constraints. J. Wildl. Manag. 49, 814–822 (1985).
Article Google Scholar
16.
Vallentine, J. F. Grazing Management 2nd edn. (Academic Press, New York, 2001).
Google Scholar
17.
Mckeon, G. M. et al. Climate change impacts on northern Australian rangeland livestock carrying capacity: A review of issues. Rangel. J. 31, 1–29 (2009).
Article Google Scholar
18.
Yu, L., Zhou, L., Liu, W. & Zhou, H. Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture, China. Pedosphere 20, 342–351 (2010).
Article Google Scholar
19.
Chen, J. Review of canceling herds and returning to grassland policy in Sanjiangyuan Region in Qinghai Province: Based on survey of Maduo County. Natl. Res. Qinghai 19, 110–115 (2008).
Google Scholar
20.
Qin, D. Ecological Protection and Sustainable Development of Three-River-Source Area (Science Press, London, 2014).
Google Scholar
21.
Zhao, L., Li, Q. & Zhao, X. Multi-functionality and management of grassland in the Sanjiangyuan region. Resour. Sci. 42, 78–86 (2020).
Google Scholar
22.
Olson, D. M. & Dinerstein, E. The Global 200: A representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv. Biol. 12, 502–515 (1998).
Article Google Scholar
23.
Li, J. et al. Global priority conservation areas in the face of 21st century climate change. PLoS ONE 8, 54839 (2013).
ADS Article CAS Google Scholar
24.
Zhou, H., Zhou, L., Liu, W., Zhao, X. & Lai, D. Causes of grassland degradation and sustainable development of animal husbandry in Maduo County, Qinghai Province. Grassl. China 25, 63–67 (2003).
Google Scholar
25.
Xu, J., Chen, J., Hu, Y. & Zhao, Z. Research on the status and the dynamic of grassland degradation in Maduo County Qinghai Province. Pratacult. Sci. 28, 359–364 (2011).
Google Scholar
26.
NDRCC. Three-River-Source National Park Master Plan. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201801/t20180117_962245.html. (National Development and Reform Commission of China, 2018).
27.
Fu, M. et al. Functional zoning and space management of three-river-source national park. J. Geog. Sci. 29, 2069–2084 (2019).
Article Google Scholar
28.
Sun, J. et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 65, 1405–1414 (2020).
Article Google Scholar
29.
Tuanmu, M. et al. Effects of payments for ecosystem services on wildlife habitat recovery. Conserv. Biol. 30, 827–835 (2016).
PubMed Article PubMed Central Google Scholar
30.
Watzold, F. & Drechsler, M. Spatially uniform versus spatially heterogeneous compensation payments for biodiversity-enhancing land-use measures. Environ. Resour. Econ. 31, 73–93 (2005).
Article Google Scholar
31.
Hu, Z., Kong, D. & Jin, L. Grassland eco-compensation: Rate differentiations of “reward for balanced grazing” and its reasons. China Popul. Resour. Environ. 25, 152–159 (2015).
Google Scholar
32.
Lu, C., Xie, G. & Xiao, Y. Ecological Compensation and the cost of wildlife conservation: Chang Tang Grasslands, Tibet. J. Resour. Ecol. 3, 20–25 (2012).
Article Google Scholar
33.
Sitters, J. et al. Herded cattle and wild grazers partition water but share forage resources during dry years in East African savannas. Biol. Cons. 142, 738–750 (2009).
Article Google Scholar
34.
Stokely, T. D. & Betts, M. G. Deer-mediated ecosystem service versus disservice depends on forest management intensity. J. Appl. Ecol. 57, 31–42 (2019).
Article Google Scholar
35.
Östman, Ö. et al. Estimating competition between wildlife and humans—a case of cormorants and coastal fisheries in the Baltic Sea. PLoS ONE 8, e83763 (2013).
ADS PubMed PubMed Central Article CAS Google Scholar
36.
Guerra, A. S. Wolves of the Sea: Managing human-wildlife conflict in an increasingly tense ocean. Marine Policy 99, 369–373 (2018).
Article Google Scholar
37.
Xin, Y. et al. The evaluation of carrying capacity of grassland in Qinghai. Qinghai Pratacult. 20, 13–22 (2011).
Google Scholar
38.
Du, J., Wang, G. & Li, Y. Rate and causes of degradation of alpine grassland in the source regions of the Yangtze and Yellow River during the last 45 years. Acta Pratacult. Sin. 24, 5–15 (2015).
Google Scholar
39.
Yu, L. et al. Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture, China. Pedosphere 20, 342–351 (2010).
Article Google Scholar
40.
Lü, X. et al. Spatio-temporal changes of grassland production based on MODIS NPP in the Three-River Source Region from 2006 to 2015. J. Nat. Resour. 32, 1857–1868 (2017).
Google Scholar
41.
Knapp, A. K. et al. Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc. Natl. Acad. Sci. 117, 22249–22255 (2020).
CAS PubMed Article PubMed Central Google Scholar
42.
Wu, X. et al. Predicting the shift of threatened ungulates’ habitats with climate change in Altun Mountain National Nature Reserve of the Northwestern Qinghai-Tibetan Plateau. Clim. Change 142, 331–344 (2017).
Article Google Scholar
43.
Maduo County Local Records Compilation Committee. Maduo County Local Record (Qinghai Ethnic Publishing House, Qinghai, 2011).
Google Scholar
44.
Kondoh, H., Koizumi, T. & Ikeda, K. A geostatistical approach to spatial density distributions of sika deer (Cervus nippon). J. For. Res. 18, 93–100 (2013).
Article Google Scholar
45.
Norris, D. et al. How to not inflate population estimates? Spatial density distribution of white-lipped peccaries in a continuous Atlantic forest. Anim. Conserv. 14, 492–501 (2011).
Article Google Scholar
46.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Article Google Scholar
47.
Field, C. B., Randerson, J. T. & Malmström, C. M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 51, 74–88 (1995).
ADS Article Google Scholar
48.
Ali, I., Cawkwell, F., Dwyer, E., Barrett, B. & Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 9, 649–671 (2016).
Article Google Scholar
49.
Chen, A. et al. Moisture availability mediates the relationship between terrestrial gross primary production and solar-induced chlorophyll fluorescence: Insights from global-scale variations. Glob. Change Biol. 2, 15373 (2020).
Article Google Scholar
50.
Department of Animal Husbandry. Calculation of reasonable rangeland carrying capacity of natural grassland (NY/T635–2015). (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2015).
51.
Zhao, F., Lin, G. & Zhao, Z. The analysis of relationship between grassland and livestock based on MODIS vegetation index in Madoi in Qinghai. Heilongjiang Anim. Sci. Vet. Med. 1, 75–77 (2012).
Google Scholar
52.
Yang, L. et al. Tick-defense grooming patterns of two sympatric Tibetan ungulates. J. Zool. 307, 242–248 (2019).
Article Google Scholar More