Assessing biophysical and socio-economic impacts of climate change on regional avian biodiversity
1.
Díaz, S. et al. (eds) IPBES: Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, Bonn, 2019).
Google Scholar
2.
Struebig, M. J. et al. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Curr. Biol. 25, 372–378 (2015).
CAS PubMed Article Google Scholar
3.
McMichael, A. J., Woodruff, R. E. & Hales, S. Climate change and human health: present and future risks. Lancet 367, 859–869 (2006).
PubMed Article Google Scholar
4.
Roson, R. & Sartori, M. Estimation of climate change damage functions for 140 regions in the GTAP 9 database. J. Glob. Econ. Anal. 1, 78–115 (2016).
Article Google Scholar
5.
Tol, R. S. J. Who Benefits and Who Loses from Climate Change? In Handbook of Climate Change Mitigation and Adaptation (eds Chen, W.-Y. et al.) 1–12 (Springer, New York, 2014).
Google Scholar
6.
Veldkamp, A. & Fresco, L. O. CLUE: a conceptual model to study the conversion of land use and its effects. Ecol. Model. 85, 253–270 (1996).
Article Google Scholar
7.
Verburg, P. H. & Overmars, K. P. Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 24, 1167–1181 (2009).
Article Google Scholar
8.
Mantyka-pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
Article Google Scholar
9.
Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5, 317–335 (2014).
Article Google Scholar
10.
Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).
PubMed Article Google Scholar
11.
Brodie, J. F. Synergistic effects of climate change and agricultural land use on mammals. Front. Ecol. Environ. 14, 20–26 (2016).
Article Google Scholar
12.
Brambilla, M., Pedrini, P., Rolando, A. & Chamberlain, D. E. Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. J. Biogeogr. 43, 2299–2309 (2016).
Article Google Scholar
13.
Ferrier, S. et al. (eds) IPBES. Summary for Policymakers of the Methodological Assessment of Scenarios and Models of Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, Bonn, 2016).
Google Scholar
14.
Leclere, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).
ADS CAS PubMed Google Scholar
15.
Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).
Article Google Scholar
16.
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
ADS Article Google Scholar
17.
Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).
PubMed PubMed Central Article Google Scholar
18.
Ha, P. V., Kompas, T., Thi, H., Nguyen, M. & Hoang, C. Building a better trade model to determine local effects : a regional and intertemporal GTAP model. Econ. Model. 67, 102–113 (2016).
Google Scholar
19.
Van Ha, P. & Kompas, T. Solving intertemporal CGE models in parallel using a singly bordered block diagonal ordering technique. Econ. Model. 52, 3–12 (2016).
Article Google Scholar
20.
Fuchs, R., Herold, M., Verburg, P. H. & Clevers, J. G. P. W. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 10, 1543–1559 (2013).
ADS Article Google Scholar
21.
Lawson, C. R., Hodgson, J. A., Wilson, R. J. & Richards, S. A. Prevalence, thresholds and the performance of presence-absence models. Methods Ecol. Evol. 5, 54–64 (2014).
Article Google Scholar
22.
Wintle, B. A., Elith, J. & Potts, J. M. Fauna habitat modelling and mapping: a review and case study in the lower hunter central coast region of NSW. Austral. Ecol. 30, 719–738 (2005).
Article Google Scholar
23.
Wintle, B. A. et al. Ecological–economic optimization of biodiversity conservation under climate change. Nat. Clim. Change 1, 355–359 (2011).
ADS Article Google Scholar
24.
Thomas, C. D. Climate change and extinction risk. Nature 430, 25 (2004).
ADS Article CAS Google Scholar
25.
Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507 (2012).
Article Google Scholar
26.
Baldwin, R. Use of maximum entropy modeling in wildlife research. Entropy 11, 854–866 (2009).
ADS Article Google Scholar
27.
R Development Core Team. R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing. https://www.R-project.org/ (2020). Accessed 3 September 2018.
28.
Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistics Database (2017).
29.
IUCN. The IUCN Red List of Threatened Species. Version 2018-2 (2018).
30.
Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
PubMed Article Google Scholar
31.
Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
ADS CAS PubMed Article Google Scholar
32.
Gillings, S., Balmer, D. E. & Fuller, R. J. Directionality of recent bird distribution shifts and climate change in Great Britain. Glob. Change Biol. 21, 2155–2168 (2015).
ADS Article Google Scholar
33.
Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).
ADS CAS PubMed Article Google Scholar
34.
van Vuuren, D. P. & Carter, T. R. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim. Change 122, 415–429 (2014).
ADS Article Google Scholar
35.
Bryan, B. A. et al. Land-use and sustainability under intersecting global change and domestic policy scenarios: trajectories for Australia to 2050. Glob. Environ. Change 38, 130–152 (2016).
Article Google Scholar
36.
van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).
Article Google Scholar
37.
Hernandez, P. A., Graham, C., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).
Article Google Scholar
38.
Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).
Article Google Scholar
39.
Guisan, A. et al. Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20, 501–511 (2006).
PubMed Article Google Scholar
40.
Taylor, P. D., Fahrig, L., Henein, K. & Merriam, G. Connectivity Is a vital element of landscape structure. Oikos 68, 571 (1993).
Article Google Scholar
41.
Gordon, A. et al. The use of dynamic landscape metapopulation models for forest management: a case study of the red-backed salamander. Can. J. For. Res. 42, 1091–1106 (2012).
Article Google Scholar
42.
Cadenhead, N. C. R., Kearney, M. R., Moore, D., Mcalpin, S. & Wintle, B. A. Climate and fire scenario uncertainty dominate the evaluation of options for conserving the great desert skink. Conserv. Lett. 9, 181–190 (2015).
Article Google Scholar
43.
UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. https://www.refworld.org/docid/57b6e3e44.html (2015). Accessed 22 November 2018.
44.
BirdLife International. Country profile: Vietnam. http://www.birdlife.org/datazone/country/vietnam (2018). Accessed 21 October 2018.
45.
BirdLife International. Country Profile: Australia. http://www.birdlife.org/datazone/country/australia (2018). Accessed 21 October 2018.
46.
van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).
ADS Article Google Scholar
47.
Hijmans, R., Cameron, S., Parra, J., Jones, P. & Jarvis, A. WORLDCLIM—A Set of Global Climate Layers (Climate Grids), Version 1.4.
48.
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
ADS Article Google Scholar
49.
Hertel, T. Global Trade Analysis: Modeling and Applications (Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, West Lafayette, 1997).
Google Scholar
50.
Aguiar, A., Narayanan, B. & McDougall, R. An overview of the GTAP 9 data base. J. Glob. Econ. Anal. 1, 181–208 (2016).
Article Google Scholar
51.
Van Ha, P., Kompas, T., Nguyen, H. T. M. & Long, C. H. Building a better trade model to determine local effects: a regional and intertemporal GTAP model. Econ. Model. 67, 102–113 (2017).
Article Google Scholar
52.
Kompas, T., Pham, V. H. & Che, T. N. The effects of climate change on GDP by country and the global economic gains from complying with the Paris climate accord. Earth’s Future 6, 1153–1173 (2018).
ADS Article Google Scholar
53.
Horridge, J. M., Jerie, M., Mustakinov, D. & Schiffmann, F. GEMPACK manual, GEMPACK Software, ISBN 978-1–921654-34-3 (2018).
54.
Pearson, K. R. Solving Nonlinear Economic Models Accurately Via a Linear Representation. Working paper No. IP-55. Victoria University, Centre of Policy Studies (1991).
55.
Kompas, T. & Ha, P. V. The ‘curse of dimensionality’ resolved: the effects of climate change and trade barriers in large dimensional modelling. Econ. Model. 80, 103–110 (2018).
Article Google Scholar
56.
Balay, S. et al. PETSc users manual, Technical Report ANL-95/11—Revision 3.11. (2019).
57.
Balay, S. et al. PETSc Web page. http://www.mcs.anl.gov/petsc (2019). Accessed 23 September 2018.
58.
Balay, S., Gropp, W. D., McInnes, L. C. & Smith, B. F. Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing (eds Arge, E. et al.) (Birkhaeuser Press, Boston, 1997).
Google Scholar
59.
HSL. A collection of fortran codes for large scale scientific computation. The HSL Mathematical Software Library (2013).
60.
World Bank Group. Population Estimates and Projections. http://data.worldbank.org/data-catalog/population-projection-tables (2016). Accessed 3 May 2018.
61.
Moulds, S., Buytaert, W. & Mijic, A. An open and extensible framework for spatially explicit land use change modelling: the lulcc R package. Geosci. Model Dev. 8, 3215–3229 (2015).
ADS Article Google Scholar
62.
Verburg, P. H. et al. Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ. Manag. 30, 391–405 (2002).
ADS Article Google Scholar
63.
Verburg, P. H., Veldkamp, T. & Bouma, J. Land use change under conditions of high population pressure: the case of Java. Glob. Environ. Change 9, 303–312 (1999).
Article Google Scholar
64.
Verburg, P. H., Schulp, C. J. E., Witte, N. & Veldkamp, A. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agr. Ecosyst. Environ. 114, 39–56 (2006).
Article Google Scholar
65.
Verburg, P. H., De Koning, G. H. J., Kok, K., Veldkamp, A. & Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model. 116, 45–61 (1999).
Article Google Scholar
66.
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Soft. 33, 1–22 (2010).
Article Google Scholar
67.
Steven J. P., Miroslav D., Robert E. S. [Internet] Maxent software for modeling species niches and distributions (Version 3.3.3k). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 12 December 2018.
68.
GBIF. GBIF data portal. http://www.gbif.net/ (2016). Accessed 22 May 2018.
69.
Goetz, S. J., Sun, M., Zolkos, S., Hansen, A. & Dubayah, R. The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness. Environ. Res. Lett. 9, 034013 (2014).
ADS Article Google Scholar
70.
Maggini, R. et al. Assessing species vulnerability to climate and land use change: the case of the Swiss breeding birds. Divers. Distrib. 20, 708–719 (2014).
Article Google Scholar
71.
Coxen, C. L., Frey, J. K., Carleton, S. A. & Collins, D. P. Species distribution models for a migratory bird based on citizen science and satellite tracking data. Glob. Ecol. Conserv. 11, 298–311 (2017).
Article Google Scholar
72.
Stolar, J. & Nielsen, S. E. Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers. Distrib. 21, 595–608 (2015).
Article Google Scholar
73.
Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
PubMed Article Google Scholar
74.
Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).
PubMed Article Google Scholar
75.
Morán-Ordóñez, A., Lahoz-Monfort, J. J., Elith, J. & Wintle, B. A. Evaluating 318 continental-scale species distribution models over a 60-year prediction horizon: what factors influence the reliability of predictions?. Glob. Ecol. Biogeogr. 26, 1–14 (2016).
Google Scholar
76.
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’. http://cran.r-project.org/web/packages/dismo/index.html (2011). Accessed 6 July 2017. More