More stories

  • in

    Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes

    1.
    Warren J, Topping CJ, James P. A unifying evolutionary theory for the biomass–diversity–fertility relationship. Theor Ecol. 2009;2:119–26.
    Article  Google Scholar 
    2.
    Al-Mufti MM, Sydes CL, Furness SB, Grime JP, Band SR. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. J Ecol. 1977;65:759–91.
    Article  Google Scholar 

    3.
    Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529:390–3.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75:3–35.
    Article  Google Scholar 

    5.
    Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature. 1996;379:718–20.
    CAS  Article  Google Scholar 

    6.
    Grace JB. The factors controlling species density in herbaceous plant communities: an assessment. Perspect Plant Ecol. 1999;2:1–28.
    Article  Google Scholar 

    7.
    Grime JP. Plant strategies and vegetation processes. Chichester-New York-Brisbane-Toronto: John Wiley & Sons, Ltd.; 1979.

    8.
    Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature. 2001;412:72–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Michalet R, Brooker RW, Cavieres LA, Kikvidze Z, Lortie CJ, Pugnaire FI, et al. Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol Lett. 2006;9:767–73.
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Rajaniemi TK. Explaining productivity-diversity relationships in plants. Oikos. 2003;101:449–57.
    Article  Google Scholar 

    11.
    Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, et al. Plant remobals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol Monogr. 1999;69:535–68.
    Article  Google Scholar 

    12.
    Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, et al. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science. 2015;349:302–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, et al. Productivity is a poor predictor of plant species richness. Science. 2011;333:1750–3.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Bastida F, García C, Fierer N, Eldridge DJ, Bowker MA, Abades S, et al. Global ecological predictors of the soil priming effect. Nat Commun. 2019;10:3481.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 2017;15:579–90.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    20.
    Bardgett RD, Wardle DA. Herbivore-mediated linkages between aboveground and belowground communities. Ecology. 2003;84:2258–68.
    Article  Google Scholar 

    21.
    Wardle DA. Communities and ecosystems linking the aboveground and belowground components (MPB-34). Princeton (New Jersey): Princeton University Press; 2002.

    22.
    Geyer KM, Barrett JE. Unimodal productivity–diversity relationships among bacterial communities in a simple polar soil ecosystem. Environ Microbiol. 2019;21:2523–32.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Wardle DA. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev. 1992;67:321–58.
    Article  Google Scholar 

    25.
    Geyer KM, Altrichter AE, Van Horn DJ, Takacs-Vesbach CD, Gooseff MN, Barrett JE. Environmental controls over bacterial communities in polar desert soils. Ecosphere. 2013;4:art127.
    Article  Google Scholar 

    26.
    Langenheder S, Prosser JI. Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environ Microbiol. 2008;10:2245–56.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Hopkins FM, Torn MS, Trumbore SE. Warming accelerates decomposition of decades-old carbon in forest soils. Proc Natl Acad Sci USA. 2012;109:1753–61.
    Article  Google Scholar 

    28.
    Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Bertness MD, Callaway R. Positive interactions in communities. Trends Ecol Evol. 1994;9:191–3.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Hammarlund SP, Harcombe WR. Refining the stress gradient hypothesis in a microbial community. Proc Natl Acad Sci USA. 2019;116:15760.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Bastida F, Torres IF, Moreno JL, Baldrian P, Ondoño S, Ruiz-Navarro A, et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Mol Ecol. 2016;25:4660–73.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA. 2014;111:5266–70.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O, He Y, et al. Explicitly representing soil microbial processes in Earth system models. Glob Biogeochem Cycles. 2015;29:1782–1800.
    CAS  Article  Google Scholar 

    35.
    Glassman SI, Weihe C, Li J, Albright MBN, Looby CI, Martiny AC, et al. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci USA. 2018;115:11994–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Maestre FT, Quero J, Gotelli NJ, Escudero A, Ochoa V, Delgado-baquerizo M, et al. Plant species richness and ecosystem multifunctionality in global drylands. Science. 2012;335:214–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge DJ, et al. Changes in belowground biodiversity during ecosystem development. Proc Natl Acad Sci USA. 2019;116:6891–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Kettler TA, Doran JW, Gilbert TL. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Science Society of America journal. vol. 65. Lincoln, Nebraska: 2001. p. 849–52. Journal Series no. 13277 of the Agric Res Div, Univ Neb, Linc, Ne.

    39.
    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Buyer JS, Sasser M. High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol. 2012;61:127–30.
    Article  Google Scholar 

    41.
    Frostegård A, Bååth E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils. 1996;22:59–65.
    Article  Google Scholar 

    42.
    Rinnan R, Bååth E. Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Appl Environ Microbiol. 2009;75:3611–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Kaiser C, Frank A, Wild B, Koranda M, Richter A. Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biol Biochem. 2010;42:1650–2.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Frostegård A, Tunlid A, Bååth E. Use and misuse of PLFA measurements in soils. Soil Biol Biochem. 2011;43:1621–5.
    Article  CAS  Google Scholar 

    45.
    Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc R Soc B. 2014;281:20141988.
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Breiman L. Random forests. Mach Learn. 2001;45:5–32.
    Article  Google Scholar 

    50.
    Delgado-Baquerizo M, Giaramida L, Reich PB, Khachane AN, Hamonts K, Edwards C, et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J Ecol. 2016;104:936–46.
    Article  Google Scholar 

    51.
    Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2003.

    52.
    Grace JB. Structural equation modeling and natural systems. Cambridge: Cambridge University Press; 2006.

    53.
    Quinlan JR. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on International Conference on Machine Learning. Amherst, MA, USA: Morgan Kaufmann Publishers Inc.; 1993.

    54.
    Delgado-Baquerizo M. Obscure soil microbes and where to find them. ISME J. 2019;13:2120–4.
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Kuhn SW, Keefer C, Coulter N. Cubist: rule- and instance-based regression modeling. R package version 0.0.19; 2016.

    56.
    Bailey VL, Peacock AD, Smith JL, Bolton H. Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipid fatty acid analysis. Soil Biol Biochem. 2002;34:1385–9.
    CAS  Article  Google Scholar 

    57.
    Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol Lett. 2009;12:1238–49.
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Xu X, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr. 2013;22:737–49.
    Article  Google Scholar 

    59.
    Six J, Frey SD, Thiet RK, Batten KM. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J. 2006;70:555–69.
    CAS  Article  Google Scholar 

    60.
    Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;348:1–11.
    Google Scholar 

    61.
    Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 2006;103:626–31.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci USA. 2015;112:15684–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Delgado-Baquerizo M, Eldridge DJ. Cross-biome drivers of soil bacterial alpha diversity on a worldwide scale. Ecosystems. 2019;22:1220–31.
    Article  Google Scholar 

    65.
    Větrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun. 2019;10:5142.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Gaston KJ. Global patterns in biodiversity. Nature. 2000;405:220–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Srivastava DS, Lawton JH. Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Naturalist. 1998;152:510–29.
    CAS  Article  Google Scholar 

    68.
    Storch D, Bohdalková E, Okie J. The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol Lett. 2018;21:920–37.
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Paquette A, Messier C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr. 2011;20:170–80.
    Article  Google Scholar 

    70.
    Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature. 2009;460:616–9.
    CAS  Article  Google Scholar 

    71.
    Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, et al. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA. 2011;108:9508–12.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418:671–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Navarrete AA, Tsai SM, Mendes LW, Faust K, de Hollander M, Cassman NA, et al. Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol. 2015;24:2433–48.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus EdC, Paula FS, et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci USA. 2013;110:988–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Bastida F, García C, von Bergen M, Moreno JL, Richnow HH, Jehmlich N. Deforestation fosters bacterial diversity and the cyanobacterial community responsible for carbon fixation processes under semiarid climate: a metaproteomics study. Appl Soil Ecol. 2015;93:65–7.
    Article  Google Scholar 

    77.
    Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Change. 2016;6:166–71.
    Article  Google Scholar 

    78.
    Maron PA, Sarr A, Kaisermann A, Léveque J, Mathieu O, Guigue J, et al. High microbial diversity promotes soil ecosystem functioning. Appl Environ Microbiol. 2018;84:e02738–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Chen C, Chen HYH, Chen X, Huang Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun. 2019;10:1332.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    80.
    Delgado-Baquerizo M, Grinyer J, Reich PB, Singh BK. Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment. Funct Ecol. 2016;30:1862–73.
    Article  Google Scholar 

    81.
    Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006;15:259–63.
    Article  Google Scholar  More

  • in

    Nickel excess affects phenology and reproductive attributes of Asterella wallichiana and Plagiochasma appendiculatum growing in natural habitats

    1.
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Cardinale, B. J., Gonzalez, A., Allington, G. R. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 219, 175–183 (2018).
    Article  Google Scholar 

    3.
    Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Tovar-Sánchez, E., Hernández-Plata, I., Martínez, M. S., Valencia-Cuevas, L. & Galante, P. M. Heavy metal pollution as a biodiversity threat. Heavy Met. 383 (2018).

    5.
    Das, K. K., Das, S. N. & Dhundasi, S. A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res. 128, 412 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Fabiano, C., Tezotto, T., Favarin, J. L., Polacco, J. C. & Mazzafera, P. Essentiality of nickel in plants: A role in plant stresses. Front. Plant Sci. 6, 754 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Sreekanth, T.V.M., Nagajyothi, P. C., Lee, K. D. & Prasad, T.N.V.K.V. Occurrence, physiological responses and toxicity of nickel in plants. Int.J.Environ.Sci.Technol.10(5), 1129–1140 (2013).

    8.
    Pietrini, F. et al. Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content. Environ. Sci. Pollut.22, 482–494 (2015).

    9.
    Georgiadou, E. C. et al. Influence of heavy metals (Ni, Cu and Zn) on nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.) plants. Front. Plant Sci.9, 862 (2018).

    10.
    Shahid, M. et al. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 325, 36–58 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Shen, Z. J., Chen, Y. S. & Zhang, Z. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area. China. Ecotoxicol. Environ. Saf. 143, 19–27 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Xun, E., Zhang, Y., Zhao, J. & Guo, J. Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness. Ecotox. Environ. Safe. 145, 235–243 (2017).
    CAS  Article  Google Scholar 

    13.
    Meindl, G. A. & Ashman, T. L. Effects of soil metals on pollen germination, fruit production, and seeds per fruit differ between a Ni hyperaccumulator and a congeneric nonaccumulator. Plant Soil. 420, 493–503 (2017).
    CAS  Article  Google Scholar 

    14.
    Temizer, İK., Güder, A., Temel, F. A. & Esin, A. V. C. I. A comparison of the antioxidant activities and biomonitoring of heavy metals by pollen in the urban environments. Environ. Monit. Assess. 190, 462 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Baumann, H. A., Morrison, L. & Stengel, D. B. Metal accumulation and toxicity measured by PAM—Chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol. Environ. Saf. 72, 1063–1075 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Liang, S. et al. How Chlorella sorokiniana and its high tolerance to Pb might be a potential Pb biosorbent. Pol. J. Environ. Stud. 26, 1139–1146 (2017).
    CAS  Article  Google Scholar 

    17.
    Ares, A., Itouga, M., Kato, Y. & Sakakibara, H. Differential Metal Tolerance and Accumulation Patterns of Cd, Cu, Pb and Zn in the Liverwort Marchantia polymorpha L. B. Environ. Contam. Tox. 100, 444–450 (2018).
    CAS  Article  Google Scholar 

    18.
    Stanković, J. D., Sabovljević, A. D. & Sabovljević, M. S. Bryophytes and heavy metals: A review. Acta Bot. Croat. 77, 109–118 (2018).
    Article  Google Scholar 

    19.
    Wang, S., Zhang, Z. & Wang, Z. Bryophyte communities as biomonitors of environmental factors in the Goujiang karst bauxite, southwestern China. Sci. Total Environ. 538, 270–278 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Vanderpoorten, A. et al. To what extent are bryophytes efficient dispersers?. J. Ecol. 107, 2149–2154 (2019).
    Article  Google Scholar 

    21.
    Carginale, V. et al. Accumulation, localisation, and toxic effects of cadmium in the liverwort Lunularia cruciata. Protoplasma. 223, 53–61 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Yan, Y., Zhang, Q., Wang, G. G. & Fang, Y. M. Atmospheric deposition of heavy metals in Wuxi, China: Estimation based on native moss analysis. Ecotox. Environ. Safe. 188, 360 (2016).
    Google Scholar 

    23.
    Gupta, R. & Asthana, A. K. Diversity and distribution of liverworts across habitats and altitudinal gradient at Pachmarhi Biosphere Reserve (India). Plant Sci. Today 3, 354–359 (2016).
    Article  Google Scholar 

    24.
    Gao, S., Yu, H. N., Xu, R. X., Cheng, A. X. & Lou, H. X. Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum. Phytochemistry 111, 48–58 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Wu, Y. F. et al. A bHLH Transcription factor regulates bisbibenzyl biosynthesis in the liverwort Plagiochasma appendiculatum. Plant Cell Physiol. 59, 1187–1199 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Venugopal, M. & Nair, M. C. Bryophyte diversity of Thamarassery pass (Wayanad pass) in the Western Ghats of Kerala. Plant Sci. Today 4, 41–48 (2017).
    Article  Google Scholar 

    27.
    Pant, G. & Tewari, S. D. Bryophytes as Biogeoindicators: Bryophytic Associations of Mineral-Enriched Substrates in Kumaon Himalaya. Topics in Bryology 165–184 (Allied Publishers Ltd., New Delhi, 1998).
    Google Scholar 

    28.
    Ghate, S. & Chaphekar, S. B. Plagiochasma appendiculatum as a biotest for water quality assessment. Environ. Pollut. 108, 173–181 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Choudhary, S.P., Kanwar, M., Bhardwaj, R., Yu, J.Q. & Tran, L.S.P. Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One. 7(3) (2012).

    30.
    Bai, C., Liu, L. & Wood, B. W. Nickel affects xylem Sap RNase a and converts RNase A to a urease. BMC Plant Biol. 13, 207 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Bai, C., Reilly, C. C. & Wood, B. W. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol. 140, 433–443 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils. 6, 68–72 (1988).
    CAS  Article  Google Scholar 

    33.
    Poonkothai, M. V. B. S. & Vijayavathi, B. S. Nickel as an essential element and a toxicant. Int. J. Environ. Sci. 1, 285–288 (2012).
    Google Scholar 

    34.
    Freitas, D. S. et al.Hidden nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes. Front. Plant Sci.9(2018).

    35.
    Rout, G. R. & Das, P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. in Sustainable Agriculture (pp. 873–884). (Springer, Dordrecht, 2009).

    36.
    Myking, T. et al.Effects of Air Pollution from a Nickel-Copper Industrial Complex on Boreal Forest Vegetation in the Joint Russian-Norwegian-Finnish Border Area (2009).

    37.
    Kowalska, J. B., Mazurek, R., Gąsiorek, M. & Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health. 1–26 (2018).

    38.
    Awadh, S. M., Al-Kilabi, J. A. & Khaleefah, N. H. Comparison the geochemical background, threshold and anomaly with pollution indices in the assessment of soil pollution: Al-Hawija, north of Iraq case study. Int. J. Sci. Res. 4, 2357–2363 (2015).
    Google Scholar 

    39.
    Dung, T. T. T., Cappuyns, V., Swennen, R. & Phung, N. K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotechnol. 12, 335–353 (2013).
    CAS  Article  Google Scholar 

    40.
    Mazurek, R. et al. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 168, 839–850 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Čecháková, K., Motyka, O., Válová, E., Macečková, B. & Stalmachová, B. Investigation of the influence of nickel in precipitation through the surface properties of moss Pleurozium schreberi Carpath. J. Earth Environ. 9, 153–158 (2014).
    Google Scholar 

    42.
    Marchiol, L., Assolari, S., Sacco, P. & Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multiexcess soil. Environ. Pollut. 132, 21–27 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Tuna, A. L., Burun, B., Yokas, I. & Coban, E. The effects of heavy metals on pollen germination and pollen tube length in the tobacco plant. Turk. J. Biol. 26, 109–113 (2002).
    CAS  Google Scholar 

    44.
    Mostofa, M. G., Hossain, M. A., Fujita, M. & Tran, L. S. P. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci. Rep. 5, 11433 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Choudhury, S. & Panda, S. K. Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under lead and arsenic phytotoxicity. Curr. Sci. 342–348 (2004).

    46.
    Choudhury, S. & Panda, S. K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut.167, 73–90 (2005).

    47.
    Penny, C., Dickinson, N. M. & Lepp, N. W. The effect of heavy metal contamination on the pigment profiles of Torreya sp. in Remediation and Management of Degraded Lands. (2018).

    48.
    Rau, S., Miersch, J., Neumann, D., Weber, E. & Krauss, G. J. Biochemical responses of the aquatic moss Fontinalis antipyretica to Cd, Cu, Pb and Zn determined by chlorophyll fluorescence and protein levels. Environ. Exp. Bot. 59, 299–306 (2007).
    CAS  Article  Google Scholar 

    49.
    Foyer, C. H. & Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 155, 2–18 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Hasanuzzaman, M., Nahar, K., Anee, T. I. & Fujita, M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants. 23, 249–268 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Yadav, N. S., Shukla, P. S., Jha, A., Agarwal, P. K. & Jha, B. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol. 12, 188 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Subbiah, B. V. & Asija, G. L. A rapid procedure for estimation of available nitrogen in soils. Curr Sci. 25, 259–260 (1956).
    CAS  Google Scholar 

    53.
    Olsen, S.R., Cole, C,V., Watanabe, F.S. & Dean, L. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. U.S.D.A. Circ. 939. (U.S. Govt. Printing Office: Washington, DC) (1954).

    54.
    Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W. & Liqiang, Y. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J. China Univ. Geosci. 19, 230–241 (2008).
    Article  Google Scholar 

    55.
    Choudhary, S. P., Kanwar, M., Bhardwaj, R., Gupta, B. D. & Gupta, R. K. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84, 592–600 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Lacy, R.C., P.S. Miller & Traylor-Holzer, K. Vortex 10 User’s Manual. 1 June 2018 update. IUCN SSC Conservation Breeding Specialist Group, and Chicago Zoological Society, Apple Valley, Minnesota, USA (2018).

    57.
    Brown, P. H., Welch, R. M. & Cary, E. E. Nickel: A micronutrient essential for higher plants. Plant Physiol. 85, 801–803 (1987).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Seregin, I. V., Kozhevnikova, A. D., Kazyumina, E. M. & Ivanov, V. B. Nickel toxicity and distribution in maize roots. Russ. J. Plant Physiol. 50, 711–717 (2003).
    CAS  Article  Google Scholar 

    59.
    Shin, R., Berg, R. H. & Schachtman, D. P. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46, 1350–1357 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Saeed, A. I. et al. TM4a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean

    1.
    Da Silva, J. F. & Williams, R. J. P. The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press (2001).
    2.
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).
    ADS  CAS  Article  Google Scholar 

    3.
    Bruland, K. W., Orians, K. J. & Cowen, J. P. Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. 58, 3171–3182 (1994).
    ADS  CAS  Article  Google Scholar 

    4.
    van Hulten, M. et al. Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese. Biogeosciences 14, 1123–1152 (2017).
    ADS  Article  CAS  Google Scholar 

    5.
    Baker, A. R. et al. Trace element and isotope deposition across the air–sea inter- face: progress and research needs. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374, 2081 (2016).
    Article  CAS  Google Scholar 

    6.
    Sunda, W. G., Huntsman, S. A. & Harvey, G. R. Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature 301, 234–236 (1983).
    ADS  CAS  Article  Google Scholar 

    7.
    Sunda, W. G. & Huntsman, S. A. Photoreduction of manganese oxides in seawater. Mar. Chem. 46, 133–152 (1994).
    CAS  Article  Google Scholar 

    8.
    Sunda, W. G. & Huntsman, S. Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea. Deep-Sea Res. Pt. A 35, 1297–1317 (1988).
    ADS  CAS  Article  Google Scholar 

    9.
    Wagener, T., Guieu, C., Losno, R., Bonnet, S. & Mahowald, N. Revisiting atmospheric dust export to the Southern Hemisphere ocean: Biogeochemical implications. Glob. Biogeochem. Cycles 22, GB2006 (2008).
    ADS  Article  CAS  Google Scholar 

    10.
    Tamsitt, V. et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun. 8, 172 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Boyd, P. W. Environmental factors controlling phytoplankton processes in the Southern Ocean. J. Phycol. 38, 844–861 (2002).
    Article  Google Scholar 

    12.
    Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).
    Article  Google Scholar 

    13.
    Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Iron in Antarctic waters. Nature 345, 156–158 (1990).
    ADS  CAS  Article  Google Scholar 

    14.
    Sedwick, P. N., Edwards, P. R., Mackey, D. J., Griffiths, F. B. & Parslow, J. S. Iron and manganese in surface waters of the Australian subantarctic region. Deep Sea Res. Pt. I 44, 1239–1253 (1997).
    CAS  Article  Google Scholar 

    15.
    Hatta, M., Measures, C. I., Selph, K. E., Zhou, M. & Hiscock, W. T. Iron fluxes from the shelf regions near the South Shetland Islands in the Drake Passage during the austral-winter 2006. Deep Sea Res. Pt. II 90, 89–101 (2013).
    ADS  CAS  Article  Google Scholar 

    16.
    Middag, R., De Baar, H. J. W., Laan, P. & Huhn, O. The effects of continental margins and water mass circulation on the distribution of dissolved aluminum and manganese in Drake Passage. J. Geophys. Res. 117, C01019 (2012).
    ADS  Google Scholar 

    17.
    Middag, R., de Baar, H. J., Klunder, M. B. & Laan, P. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co‐limitation. Limnol. Oceanogr. 58, 287–300 (2013).
    ADS  CAS  Article  Google Scholar 

    18.
    Browning, T. J. et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys. Res. Lett. 41, 2851–2857 (2014).
    ADS  CAS  Article  Google Scholar 

    19.
    Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63, 813–839 (2005).
    CAS  Article  Google Scholar 

    20.
    Kohfeld, K. E. and Ridgwell, A., 2009. Glacial-interglacial variability in atmospheric CO2. Surface Ocean-Lower Atmosphere Processes (Am. Geophys. Union, Washington DC), pp 251– 286 (2009).

    21.
    Petit, J. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).
    ADS  CAS  Article  Google Scholar 

    22.
    Lamy, F. et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science 343, 403–407 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Martin, J. H. Glacial‐interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).
    ADS  Article  Google Scholar 

    24.
    Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W. & Law, C. S. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730–CO733 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Khatiwala, S., Schmittner, A. & Muglia, J. Air-sea disequilibrium enhances ocean carbon storage during glacial periods. Sci. Adv. 5, eaaw4981 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).
    ADS  CAS  Article  Google Scholar 

    28.
    Chance, R., Jickells, T. D. & Baker, A. R. Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Mar. Chem. 177, 45–56 (2015).
    CAS  Article  Google Scholar 

    29.
    Gaiero, D. M., Probst, J. L., Depetris, P. J., Bidart, S. M. & Leleyter, L. Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim. Cosmochim. Acta 67, 3603–3623 (2003).
    ADS  CAS  Article  Google Scholar 

    30.
    Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Peers, G. & Price, N. M. A role for manganese in superoxide dismutases and growth of iron‐deficient diatoms. Limnol. Oceanogr. 49, 1774–1783 (2004).
    ADS  CAS  Article  Google Scholar 

    32.
    Wu, M. et al. Manganese and iron deficiency in Southern Ocean Phaeocystis antarctica populations revealed through taxon-specific protein indicators. Nat. Commun. 10, 1–10 (2019).
    ADS  Article  CAS  Google Scholar 

    33.
    Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. In IPCC special report on the ocean and cryosphere in a changing climate (2019).

    34.
    Buma, A. G., De Baar, H. J., Nolting, R. F. & Van Bennekom, A. J. Metal enrichment experiments in the Weddell‐Scotia Seas: effects of iron and manganese on various plankton communities. Limnol. Oceanogr. 36, 1865–1878 (1991).
    ADS  CAS  Article  Google Scholar 

    35.
    Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep Sea Res. Pt. II 44, 209–227 (1997).
    ADS  CAS  Article  Google Scholar 

    36.
    Sedwick, P. N., DiTullio, G. R. & Mackey, D. J. Iron and manganese in the Ross Sea, Antarctica: seasonal iron limitation in Antarctic shelf waters. J. Geophys. Res. 105, 11321–11336 (2000).
    ADS  CAS  Article  Google Scholar 

    37.
    Saito, M. A., Goepfert, T. J. & Ritt, J. T. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol. Oceanogr. 53, 276–290 (2008).
    ADS  CAS  Article  Google Scholar 

    38.
    Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si: N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).
    ADS  CAS  Article  Google Scholar 

    39.
    Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).
    ADS  CAS  Article  Google Scholar 

    40.
    Klunder, M. B. et al. Dissolved Fe across the Weddell Sea and Drake passage: impact of DFe on nutrient uptake. Biogeosciences 11, 651–669 (2014).
    ADS  Article  Google Scholar 

    41.
    Thomalla, S. J., Fauchereau, N., Swart, S. & Monteiro, P. M. S. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean. Biogeosciences 8, 2849–2866 (2011).
    ADS  CAS  Article  Google Scholar 

    42.
    Moore, C. M. Diagnosing oceanic nutrient deficiency. Philos. Tran. R. Soc. A 374, 20150290 (2016).
    ADS  Article  CAS  Google Scholar 

    43.
    Middag, R. D., De Baar, H. J. W., Laan, P., Cai, P. V. & Van Ooijen, J. C. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep Sea Res. Pt. II 58, 2661–2677 (2011).
    ADS  CAS  Article  Google Scholar 

    44.
    Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W. & Van Ooijen, J. C. Dissolved iron in the Southern Ocean (Atlantic sector). Deep Sea Res. Pt. II 58, 2678–2694 (2011).
    ADS  CAS  Article  Google Scholar 

    45.
    Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science 315, 612–617 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Parekh, P., Follows, M. J. & Boyle, E. A. Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19, GB2020 (2005).
    ADS  Article  CAS  Google Scholar 

    47.
    Measures, C. I. et al. The influence of shelf processes in delivering dissolved iron to the HNLC waters of the Drake Passage, Antarctica. Deep Sea Res. Pt. I 90, 77–88 (2013).
    ADS  CAS  Article  Google Scholar 

    48.
    Dulaiova, H., Ardelan, M. V., Henderson, P. B. & Charette, M. A. Shelf‐derived iron inputs drive biological productivity in the southern Drake Passage. Glob. Biogeochem. Cycles 23, GB4014 (2009).
    ADS  Article  CAS  Google Scholar 

    49.
    Jiang, M. et al. Fe sources and transport from the Antarctic Peninsula shelf to the southern Scotia Sea. Deep Sea Res. Pt. I 150, 103060 (2019).
    CAS  Article  Google Scholar 

    50.
    Anderson, T. R., Gentleman, W. C. & Yool, A. EMPOWER-1.0: an efficient model of planktonic ecosystems written in R. Geosci. Mod. Dev. 8, 2231–2262 (2015).
    Article  Google Scholar 

    51.
    Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Bertrand, E. M. et al. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol. Oceanogr. 52, 1079–1093 (2007).
    ADS  CAS  Article  Google Scholar 

    53.
    Le Quéré, C. et al. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences 13, 4111–4133 (2016).
    ADS  Article  CAS  Google Scholar 

    54.
    Calvo, E., Pelejero, C., Logan, G. A. & De Deckker, P. Dust‐induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography 19, PA2020 (2004).
    ADS  Article  Google Scholar 

    55.
    Sigman, D. M., Altabet, M. A., Francois, R., McCorkle, D. C. & Gaillard, J. F. The isotopic composition of diatom‐bound nitrogen in Southern Ocean sediments. Paleoceanography 14, 118–134 (1999).
    ADS  Article  Google Scholar 

    56.
    De La Rocha, C. L., Brzezinski, M. A., DeNiro, M. J. & Shemesh, A. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680–683 (1998).
    ADS  Article  CAS  Google Scholar 

    57.
    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Venables, H. & Moore, C. M. Phytoplankton and light limitation in the Southern Ocean: learning from high‐nutrient, high‐chlorophyll areas. J. Geophys. Res. Oceans 115, C02015 (2010).
    ADS  Article  CAS  Google Scholar 

    59.
    Van Heukelem, L. & Thomas, C. S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 910, 31–49 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283 (1996).
    ADS  CAS  Article  Google Scholar 

    61.
    Gibberd, M. J., Kean, E., Barlow, R., Thomalla, S. & Lucas, M. Phytoplankton chemotaxonomy in the Atlantic sector of the Southern Ocean during late summer 2009. Deep Sea Res. Pt. I 78, 70–78 (2013).
    CAS  Article  Google Scholar 

    62.
    Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. & Achterberg, E. P. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Anal. Chim. Acta 976, 1–13 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Wilson, S. T. et al. Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean. Science 365, 1040–1044 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Wuttig, K. et al. Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta 197, 653–668 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. Pt. A 34, 267–285 (1987).
    ADS  CAS  Article  Google Scholar 

    66.
    Buck, K. N., Sohst, B. & Sedwick, P. N. The organic complexation of dissolved iron along the US GEOTRACES (GA03) North Atlantic Section. Deep Sea Res. Pt. II 116, 152–165 (2015).
    CAS  Article  Google Scholar 

    67.
    Parekh, P., Follows, M. J. & Boyle, E. Modeling the global ocean iron cycle. Glob. Biogeochem. Cycles 18, GB1002 (2004).
    ADS  Article  CAS  Google Scholar 

    68.
    Dutkiewicz, S., Follows, M. J. & Parekh, P. Interactions of the iron and phosphorus cycles: a three‐dimensional model study. Glob. Biogeochem. Cycles 19, GB1012 (2005).
    ADS  Article  CAS  Google Scholar 

    69.
    Glockzin, M., Pollehne, F. & Dellwig, O. Stationary sinking velocity of authigenic manganese oxides at pelagic redoxclines. Mar. Chem. 160, 67–74 (2014).
    CAS  Article  Google Scholar 

    70.
    Buesseler, K. O., McDonnell, A. M., Schofield, O. M., Steinberg, D. K. & Ducklow, H. W. High particle export over the continental shelf of the west Antarctic Peninsula. Geophys. Res. Lett. 37, L22606 (2010).
    ADS  Article  CAS  Google Scholar 

    71.
    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology. J. Geophys. Res. 109, C12003 (2004).
    ADS  Article  Google Scholar 

    72.
    Mahowald, N. et al. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. Atmospheres 104, 15895–15916 (1999).
    ADS  Article  Google Scholar  More

  • in

    North Pacific warming shifts the juvenile range of a marine apex predator

    1.
    Fuentes, M. M. et al. Adaptive management of marine mega-fauna in a changing climate. Mitig. Adapt. Strat. Glob. Change 21, 209–224 (2016).
    Article  Google Scholar 
    2.
    Grose, S. O., Pendleton, L., Leathers, A., Cornish, A. & Waitai, S. Climate change will re-draw the map for marine megafauna and the people who depend on them. Front. Mar. Sci. 7, 547 (2020).
    Article  Google Scholar 

    3.
    Halley, J. M., Van Houtan, K. S. & Mantua, N. How survival curves affect populations’ vulnerability to climate change. PLoS ONE 13, e0203124 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Zacharias, M. A. & Roff, J. C. Use of focal species in marine conservation and management: a review and critique. Aquat. Conserv. Mar. Freshw. Ecosyst. 11, 59–76 (2001).
    Article  Google Scholar 

    5.
    Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221–240 (2012).
    ADS  Article  Google Scholar 

    6.
    Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Change 3, 234–238 (2013).
    ADS  Article  Google Scholar 

    7.
    Jorgensen, S. J. et al. Killer whales redistribute white shark foraging pressure on seals. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-39356-2 (2019).
    CAS  Article  Google Scholar 

    8.
    Domeier, M. L. Global perspectives on the biology and life history of the white shark (CRC Press, Boca Raton, 2012).
    Google Scholar 

    9.
    Bruce, B. D. & Bradford, R. W. Habitat use and spatial dynamics of juvenile white sharks, Carcharodon carcharias, in eastern Australia. Global perspectives on the biology and life history of the white shark, 225–254 (2012).

    10.
    Lowe, C. G. et al. Historic fishery interactions with white sharks in the Southern California Bight. Global Perspectives on the Biology and Life History of the White Shark’.(Ed. ML Domeier.) pp, 169–186 (2012).

    11.
    Villafaña, J. A. et al. First evidence of a palaeo-nursery area of the great white shark. Sci. Rep. 10, 1–8 (2020).
    Article  CAS  Google Scholar 

    12.
    Oñate-González, E. C. et al. Importance of Bahia Sebastian Vizcaino as a nursery area for white sharks (Carcharodon carcharias) in the Northeastern Pacific: a fishery dependent analysis. Fish. Res. 188, 125–137 (2017).
    Article  Google Scholar 

    13.
    Klimley, A. P. The areal distribution and autoecology of the white shark, Carcharodon carcharias, off the west coast of North America. Mem. Southern Calif. Acad Sci 9, 15–40 (1985).
    Google Scholar 

    14.
    Weng, K. C. et al. Movements, behavior and habitat preferences of juvenile white sharks Carcharodon carcharias in the eastern Pacific. Mar. Ecol. Prog. Ser. 338, 211–224 (2007).
    ADS  Article  Google Scholar 

    15.
    White, C. F. et al. Quantifying habitat selection and variability in habitat suitability for juvenile white sharks. PLoS ONE 14, e0214642. https://doi.org/10.1371/journal.pone.0214642 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).
    ADS  Article  Google Scholar 

    17.
    Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res.: Oceans 122, 7267–7290 (2017).
    ADS  Article  Google Scholar 

    18.
    Thompson, A. et al. State of the California current: a new anchovy regime and Marine Heatwave? California Cooperative Oceanic Fisheries Investigations Reports. Calif. Cooper. Ocean. Fish. Investig. 60, 1–61 (2019).
    Google Scholar 

    19.
    Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).
    ADS  Article  Google Scholar 

    20.
    Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 9, 1–14 (2019).
    ADS  Article  CAS  Google Scholar 

    21.
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 1–9 (2019).
    Article  CAS  Google Scholar 

    22.
    Kohl, W. T., McClure, T. I. & Miner, B. G. Decreased temperature facilitates short-term sea star wasting disease survival in the keystone intertidal sea star Pisaster ochraceus. PLoS ONE 11, e0153670 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Laake, J. L., Lowry, M. S., DeLong, R. L., Melin, S. R. & Carretta, J. V. Population growth and status of California sea lions. J. Wildl. Manag. 82, 583–595 (2018).
    Article  Google Scholar 

    24.
    Jones, T. et al. Unusual mortality of Tufted puffins (Fratercula cirrhata) in the eastern Bering Sea. PLoS ONE 14, e0216532 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Savage, K. Alaska and British Columbia large whale unusual mortality event summary report. (2017).

    26.
    Gravem, S. A. & Morgan, S. G. Shifts in intertidal zonation and refuge use by prey after mass mortalities of two predators. Ecology 98, 1006–1015 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Cheung, W. W. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 1–10 (2020).
    Article  CAS  Google Scholar 

    28.
    Kanive, P. E. et al. Size-specific apparent survival rate estimates of white sharks using mark–recapture models. Can. J. Fish. Aquat. Sci. 76, 2027–2034 (2019).
    Article  Google Scholar 

    29.
    California_State_Senate. Budget Act of 2018. Senate Bill 840 2017–2018 (2018).

    30.
    Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290 (2012).
    Article  Google Scholar 

    31.
    Vianna, G. M., Meekan, M. G., Bornovski, T. H. & Meeuwig, J. J. Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs. PLoS ONE 9, e95565 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Klimley, A. P., Anderson, S. D., Pyle, P. & Henderson, R. Spatiotemporal patterns of white shark (Carcharodon carcharias) predation at the South Farallon Islands, California. Copeia, 680–690 (1992).

    33.
    Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S. D. & Halpern, B. S. Cold range edges of marine fishes track climate change better than warm edges. Glob. Change Biol. 26, 2908–2922 (2020).
    ADS  Article  Google Scholar 

    34.
    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Mcclure, M. M. et al. Incorporating climate science in applications of the US Endangered Species Act for aquatic species. Conserv. Biol. 27, 1222–1233 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).
    Article  Google Scholar 

    37.
    Cao, J., Thorson, J. T., Punt, A. E. & Szuwalski, C. A novel spatiotemporal stock assessment framework to better address fine-scale species distributions: Development and simulation testing. Fish Fish. 21, 350–367. https://doi.org/10.1111/faf.12433 (2020).
    Article  Google Scholar 

    38.
    Dewar, H., Domeier, M. & Nasby-Lucas, N. Insights into young of the year white shark, Carcharodon carcharias, behavior in the Southern California Bight. Environ. Biol. Fishes 70, 133–143 (2004).
    Article  Google Scholar 

    39.
    Moxley, J. H., Nicholson, T. E., Van Houtan, K. S. & Jorgensen, S. J. Non-trophic impacts from white sharks complicate population recovery for sea otters. Ecol. Evol. 9, 6378–6388. https://doi.org/10.1002/ece3.5209 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Cury, P. et al. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).
    Article  Google Scholar 

    41.
    Nicholson, T. E. et al. Gaps in kelp cover may threaten the recovery of California sea otters. Ecography 41, 1751–1762 (2018).
    Article  Google Scholar 

    42.
    Kenyon, K. W. The sea otter in the eastern Pacific Ocean. (US Bureau of Sport Fisheries and Wildlife, 1969).

    43.
    Tinker, M. T., Hatfield, B. B., Harris, M. D. & Ames, J. A. Dramatic increase in sea otter mortality from white sharks in California. Mar. Mammal Sci. 32, 309–326 (2016).
    Article  Google Scholar 

    44.
    Miller, M. A. et al. Predators, disease, and environmental change in the nearshore ecosystem: mortality in Southern Sea Otters (Enhydra lutris nereis) From 1998–2012. Front. Mar. Sci. 7, 582 (2020).
    Article  Google Scholar 

    45.
    Estes, J. A. & Palmisano, J. F. Sea otters: their role in structuring nearshore communities. Science 185, 1058–1060 (1974).
    ADS  CAS  PubMed  Article  Google Scholar 

    46.
    Hughes, B. B. et al. Recovery of a top predator mediates negative eutrophic effects on seagrass. Proc. Natl. Acad. Sci. USA 110, 15313–15318. https://doi.org/10.1073/pnas.1302805110 (2013).
    ADS  Article  PubMed  Google Scholar 

    47.
    Becker, S. L., Nicholson, T. E., Mayer, K. A., Murray, M. J. & Van Houtan, K. S. Environmental Factors May Drive the Post-release Movements of Surrogate-Reared Sea Otters. Frontiers in Marine Science 7, doi:https://doi.org/10.3389/fmars.2020.539904 (2020).

    48.
    Mayer, K. A. et al. Surrogate rearing a keystone species to enhance population and ecosystem restoration. Oryx, 1–11 (2019).

    49.
    Jorgensen, S. J. et al. Philopatry and migration of Pacific white sharks. Proc. R. Soc. B: Biol. Sci. 277, 679–688 (2010).
    Article  Google Scholar 

    50.
    Breaker, L. & Broenkow, W. W. The circulation of Monterey Bay and related processes. Moss Land. Mar. Lab. Tech. Publ. 89, 114 (1989).
    Google Scholar 

    51.
    Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536. https://doi.org/10.1038/s41467-019-14215-w (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heimbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl. Acad. Sci. 116, 1126–1131 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Gaines, S. D. & Denny, M. W. The largest, smallest, highest, lowest, longest, and shortest: extremes in ecology. Ecology 74, 1677–1692 (1993).
    Article  Google Scholar 

    54.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
    ADS  Article  Google Scholar 

    55.
    Oliver, E. C. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).
    CAS  Article  Google Scholar 

    56.
    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).
    Article  Google Scholar 

    57.
    McCauley, D. J., DeSalles, P. A., Young, H. S., Gardner, J. P. & Micheli, F. Use of high-resolution acoustic cameras to study reef shark behavioral ecology. J. Exp. Mar. Biol. Ecol. 482, 128–133 (2016).
    Article  Google Scholar 

    58.
    Ward-Paige, C. A. & Worm, B. Global evaluation of shark sanctuaries. Global Environ. Change 47, 174–189 (2017).
    Article  Google Scholar 

    59.
    Van Houtan, K. S. et al. Coastal sharks supply the global shark fin trade. Biol. Let. 16, 20200609 (2020).
    Article  CAS  Google Scholar 

    60.
    Benson, J. F. et al. Juvenile survival, competing risks, and spatial variation in mortality risk of a marine apex predator. J. Appl. Ecol. 55, 2888–2897 (2018).
    Article  Google Scholar 

    61.
    Cleveland, W. S. & Devlin, S. J. Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988).
    MATH  Article  Google Scholar 

    62.
    Beck, J., Ballesteros-Mejia, L., Nagel, P. & Kitching, I. J. Online solutions and the ‘W allacean shortfall’: what does GBIF contribute to our knowledge of species’ ranges?. Divers. Distrib. 19, 1043–1050 (2013).
    Article  Google Scholar 

    63.
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
    Article  Google Scholar 

    64.
    Van Horn, G. et al. in Proceedings of the IEEE conference on computer vision and pattern recognition. 8769–8778.

    65.
    Teo, S. L. et al. Validation of geolocation estimates based on light level and sea surface temperature from electronic tags. Mar. Ecol. Prog. Ser. 283, 81–98 (2004).
    ADS  Article  Google Scholar 

    66.
    Handcock, M. S. Package ‘reldist’. (2016).

    67.
    Reynolds, R. & Banzon, V. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2. NOAA National Centers for Environmental Information. 10, V5SQ8XB5 (2008).

    68.
    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. (2016).

    69.
    Lyons, K. et al. The degree and result of gillnet fishery interactions with juvenile white sharks in southern California assessed by fishery-independent and-dependent methods. Fish. Res. 147, 370–380 (2013).
    ADS  Article  Google Scholar 

    70.
    Mayer, L. et al. The Nippon Foundation—GEBCO seabed 2030 project: The quest to see the world’s oceans completely mapped by 2030. Geosciences 8, 63 (2018).
    ADS  Article  Google Scholar 

    71.
    Tanaka, K. R. et al. Mesoscale climatic impacts on the distribution of Homarus americanus in the US inshore Gulf of Maine. Can. J. Fish. Aquat. Sci. 76, 608–625 (2019).
    Article  Google Scholar 

    72.
    R_Core_Team. (Vienna, Austria, 2019). More

  • in

    Author Correction: Mapping the forest disturbance regimes of Europe

    Affiliations

    Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Freising, Germany
    Cornelius Senf & Rupert Seidl

    Institute for Silviculture, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
    Cornelius Senf & Rupert Seidl

    Berchtesgaden National Park, Berchtesgaden, Germany
    Rupert Seidl

    Authors
    Cornelius Senf

    Rupert Seidl

    Corresponding author
    Correspondence to Cornelius Senf. More

  • in

    Big trees drive forest structure patterns across a lowland Amazon regrowth gradient

    1.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).
    ADS  CAS  Article  Google Scholar 
    2.
    Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730. https://doi.org/10.1111/btp.12381 (2016).
    Article  Google Scholar 

    3.
    Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456. https://doi.org/10.1126/science.aam5432 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Brancalion, P. H. S. et al. Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica 48, 856–867. https://doi.org/10.1111/btp.12383 (2016).
    Article  Google Scholar 

    5.
    Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32. https://doi.org/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2 (2007).
    Article  Google Scholar 

    6.
    Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10, 5803. https://doi.org/10.1038/s41598-020-62591-x (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Csillik, O., Kumar, P., Mascaro, J., O’Shea, T. & Asner, G. P. Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Sci. Rep. 9, 17831. https://doi.org/10.1038/s41598-019-54386-6 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Nunes, S. et al. Uncertainties in assessing the extent and legal compliance status of riparian forests in the eastern Brazilian Amazon. Land Use Policy 82, 37–47. https://doi.org/10.1016/j.landusepol.2018.11.051 (2019).
    Article  Google Scholar 

    9.
    Rocha, G. P. E., Vieira, D. L. M. & Simon, M. F. Fast natural regeneration in abandoned pastures in southern Amazonia. For. Ecol. Manag. 370, 93–101. https://doi.org/10.1016/j.foreco.2016.03.057 (2016).
    Article  Google Scholar 

    10.
    Rodrigues, S. B. et al. Direct seeded and colonizing species guarantee successful early restoration of South Amazon forests. For. Ecol. Manag. 451, 117559. https://doi.org/10.1016/j.foreco.2019.117559 (2019).
    Article  Google Scholar 

    11.
    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688. https://doi.org/10.1111/j.1523-1739.2005.00697.x (2005).
    Article  Google Scholar 

    12.
    Laurance, W. F. et al. Rain forest fragmentation and the proliferation of sucessional trees. Ecology 87, 469–482. https://doi.org/10.1890/05-0064 (2006).
    Article  PubMed  Google Scholar 

    13.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214. https://doi.org/10.1038/nature16512 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    14.
    Camargo, J. L. C., Ferraz, I. D. K. & Imakawa, A. M. Rehabilitation of degraded areas of central Amazonia using direct sowing of forest tree seeds. Restor. Ecol. 10, 636–644. https://doi.org/10.1046/j.1526-100X.2002.01044.x (2002).
    Article  Google Scholar 

    15.
    Guariguata, M. R. & Ostertag, R. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manag. 148, 185–206. https://doi.org/10.1016/S0378-1127(00)00535-1 (2001).
    Article  Google Scholar 

    16.
    Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666. https://doi.org/10.1038/ncomms11666 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x (2009).
    Article  PubMed  Google Scholar 

    18.
    Peres, C. A., Emilio, T., Schietti, J., Desmouliere, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. USA 113, 892–897. https://doi.org/10.1073/pnas.1516525113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    19.
    Pessoa, M. S. et al. Deforestation drives functional diversity and fruit quality changes in a tropical tree assemblage. Perspect. Plant Ecol. Evol. Syst. 28, 78–86. https://doi.org/10.1016/j.ppees.2017.09.001 (2017).
    Article  Google Scholar 

    20.
    Bowen, M. E., McAlpine, C. A., House, A. P. & Smith, G. C. Regrowth forests on abandoned agricultural land: a review of their habitat values for recovering forest fauna. Biol. Cons. 140, 273–296. https://doi.org/10.1016/j.biocon.2007.08.012 (2007).
    Article  Google Scholar 

    21.
    Chazdon, R. L. & Uriarte, M. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48, 709–715. https://doi.org/10.1111/btp.12409 (2016).
    Article  Google Scholar 

    22.
    Neuschulz, E. L., Mueller, T., Schleuning, M. & Böhning-Gaese, K. Pollination and seed dispersal are the most threatened processes of plant regeneration. Sci. Rep. 6, 29839. https://doi.org/10.1038/srep29839 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Stoner, K. E., Riba-Hernández, P., Vulinec, K. & Lambert, J. E. The role of mammals in creating and modifying seedshadows in tropical forests and some possible consequences of their elimination. Biotropica 39, 316–327. https://doi.org/10.1111/j.1744-7429.2007.00292.x (2007).
    Article  Google Scholar 

    24.
    Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc. R. Soc. B 283, 20161634. https://doi.org/10.1098/rspb.2016.1634 (2016).
    Article  PubMed  Google Scholar 

    25.
    Asquith, N. M. & Mejía-Chang, M. Mammals, edge effects, and the loss of tropical forest diversity. Ecology 86, 379–390. https://doi.org/10.1890/03-0575 (2005).
    Article  Google Scholar 

    26.
    Beck, H., Snodgrass, J. W. & Thebpanya, P. Long-term exclosure of large terrestrial vertebrates: Implications of defaunation for seedling demographics in the Amazon rainforest. Biol. Cons. 163, 115–121. https://doi.org/10.1016/j.biocon.2013.03.012 (2013).
    Article  Google Scholar 

    27.
    Paine, C. E., Beck, H. & Terborgh, J. How mammalian predation contributes to tropical tree community structure. Ecology 97, 3326–3336. https://doi.org/10.1002/ecy.1586 (2016).
    Article  PubMed  Google Scholar 

    28.
    Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676. https://doi.org/10.1038/s41559-017-0334-0 (2017).
    Article  PubMed  Google Scholar 

    29.
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818 (2007).
    Article  MATH  Google Scholar 

    30.
    Wunderle, J. M. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. For. Ecol. Manag. 99, 223–235. https://doi.org/10.1016/S0378-1127(97)00208-9 (1997).
    Article  Google Scholar 

    31.
    Fragoso, J. M. V. Tapir-generated seed shadows: scale-dependent patchiness in the Amazon Rain Forest. J. Ecol. 85, 519–529. https://doi.org/10.2307/2960574 (1997).
    Article  Google Scholar 

    32.
    Hibert, F. et al. Unveiling the diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study. PLoS ONE 8, e60799. https://doi.org/10.1371/journal.pone.0060799 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768. https://doi.org/10.1890/07-0479.1 (2008).
    Article  PubMed  Google Scholar 

    34.
    Wright, S. J. et al. The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39, 289–291. https://doi.org/10.1111/j.1744-7429.2007.00293.x (2007).
    Article  Google Scholar 

    35.
    Molto, Q. et al. Predicting tree heights for biomass estimates in tropical forests; a test from French Guiana. Biogeosciences 11, 3121–3130. https://doi.org/10.5194/bg-11-3121-2014 (2014).
    ADS  Article  Google Scholar 

    36.
    Letcher, S. G. & Chazdon, R. L. Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in Northeastern Costa Rica. Biotropica 41, 608–617. https://doi.org/10.1111/j.1744-7429.2009.00517.x (2009).
    Article  Google Scholar 

    37.
    Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574. https://doi.org/10.1016/j.tree.2007.09.006 (2007).
    Article  PubMed  Google Scholar 

    38.
    Beven, K. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24, 43–69. https://doi.org/10.1080/02626667909491834 (1979).
    Article  Google Scholar 

    39.
    Campling, P., Gobin, A. & Feyen, J. Logistic modeling to spatially predict the probability of soil drainage classes. Soil Sci. Soc. Am. J. 66, 1390–1401. https://doi.org/10.2136/sssaj2002.1390 (2002).
    ADS  CAS  Article  Google Scholar 

    40.
    Nobre, A. D. et al. Height above the nearest drainage: a hydrologically relevant new terrain model. J. Hydrol. 404, 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051 (2011).
    ADS  Article  Google Scholar 

    41.
    Schietti, J. et al. Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol. Diver. 7, 241–253. https://doi.org/10.1080/17550874.2013.783642 (2014).
    Article  Google Scholar 

    42.
    Gehring, C., Denich, M. & Vlek, P. L. G. Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. J. Trop. Ecol. 21, 519–527. https://doi.org/10.1017/S0266467405002543 (2005).
    Article  Google Scholar 

    43.
    Feldpausch, T. R., Riha, S. J., Fernandes, E. C. M. & Wandelli, E. V. Development of forest structure and leaf area in secondary forests regenerating on abandoned pastures in Central Amazônia. Earth Interact. 9, 1–22. https://doi.org/10.1175/EI140.1 (2005).
    Article  Google Scholar 

    44.
    Luskin, M. S., Ickes, K., Yao, T. L. & Davies, S. J. Wildlife differentially affect tree and liana regeneration in a tropical forest: an 18-year study of experimental terrestrial defaunation versus artificially abundant herbivores. J. Appl. Ecol. 56, 1379–1388. https://doi.org/10.1111/1365-2664.13378 (2019).
    Article  Google Scholar 

    45
    Lu, D., Mausel, P., Brondizio, E. & Moran, E. Classification of successional forest stages in the Brazilian Amazon basin. Forest Ecol. Manag. 181, 301–312. https://doi.org/10.1016/S0378-1127(03)00003-3 (2003).
    Article  Google Scholar 

    46.
    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances 3, e1701345. https://doi.org/10.1126/sciadv.1701345 (2017).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    47
    de Castilho, C. V. et al. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecol. Manag. 234, 85–96. https://doi.org/10.1016/j.foreco.2006.06.024 (2006).
    Article  Google Scholar 

    48.
    Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000. https://doi.org/10.1111/ele.12964 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Fortunel, C. et al. Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest. Ecology 99, 2272–2283. https://doi.org/10.1002/ecy.2441 (2018).
    Article  PubMed  Google Scholar 

    50.
    Tiessen, H., Chacon, P. & Cuevas, E. Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro. Oecologia 99, 145–150. https://doi.org/10.1007/BF00317095 (1994).
    ADS  CAS  Article  PubMed  Google Scholar 

    51.
    Paredes, O. S. L., Norris, D., Oliveira, T. G. D. & Michalski, F. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest. PLOS ONE 12, e0174049. https://doi.org/10.1371/journal.pone.0174049 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Michalski, L. J., Norris, D., de Oliveira, T. G. & Michalski, F. Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species. PLoS ONE 10, e0126114. https://doi.org/10.1371/journal.pone.0126114 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Mendes Pontes, A. R. Tree reproductive phenology determines the abundance of medium-sized and large mammalian assemblages in the Guyana shield of the Brazilian Amazonia. Anim. Biodiver. Conserv. 43(1), 9–26. https://doi.org/10.32800/abc.2020.43.0009 (2020).
    Article  Google Scholar 

    54.
    Arévalo-Sandi, A., Bobrowiec, P. E. D., Rodriguez Chuma, V. J. U. & Norris, D. Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient. PLoS ONE 13, e0193752. https://doi.org/10.1371/journal.pone.0193752 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55
    Arita, H. T., Robinson, J. G. & Redford, K. Rarity in Neotropical forest mammals and its ecological correlates. Conserv. Biol. 4, 181–192. https://doi.org/10.1111/j.1523-1739.1990.tb00107.x (1990).
    Article  Google Scholar 

    56.
    Peres, C. A. & Palacios, E. Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39, 304–315. https://doi.org/10.1111/j.1744-7429.2007.00272.x (2007).
    Article  Google Scholar 

    57.
    Emmons, L. H. & Feer, F. Neotropical Rainforest Mammals: A Field Guide (The University of Chicago Press, Chicago, 1997).
    Google Scholar 

    58.
    Michalski, F., Michalski, L. J. & Barnett, A. A. Environmental determinants and use of space by six Neotropical primates in the northern Brazilian Amazon. Stud. Neotrop. Fauna Environ. 52, 187–197. https://doi.org/10.1080/01650521.2017.1335276 (2017).
    Article  Google Scholar 

    59.
    Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618. https://doi.org/10.1046/j.1523-1739.2002.01025.x (2002).
    Article  Google Scholar 

    60.
    Norris, D., Peres, C. A., Michalski, F. & Hinchsliffe, K. Terrestrial mammal responses to edges in Amazonian forest patches: a study based on track stations. Mammalia 72, 15–23. https://doi.org/10.1515/mamm.2008.002 (2008).
    Article  Google Scholar 

    61.
    Martínez-Ramos, M. et al. Natural forest regeneration and ecological restoration in human-modified tropical landscapes. Biotropica 48, 745–757. https://doi.org/10.1111/btp.12382 (2016).
    Article  Google Scholar 

    62.
    Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L. & Lovejoy, T. E. Rainforest fragmentation kills big trees. Nature 404, 836–836. https://doi.org/10.1038/35009032 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661. https://doi.org/10.1111/j.1744-7429.2008.00454.x (2008).
    Article  Google Scholar 

    64.
    Santos, B. A. et al. Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol. Cons. 141, 249–260. https://doi.org/10.1016/j.biocon.2007.09.018 (2008).
    Article  Google Scholar 

    65.
    Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. & Tabarelli, M. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28, 462–468. https://doi.org/10.1016/j.tree.2013.01.001 (2013).
    Article  PubMed  Google Scholar 

    66
    Malhi, Y. et al. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 409–420. https://doi.org/10.1098/rstb.2003.1425 (2004).
    Article  Google Scholar 

    67.
    Keller, M., Palace, M. & Hurtt, G. Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties. For. Ecol. Manag. 154, 371–382. https://doi.org/10.1016/S0378-1127(01)00509-6 (2001).
    Article  Google Scholar 

    68.
    Arévalo-Sandi, A. R. & Norris, D. Short term patterns of germination in response to litter clearing and exclosure of large terrestrial vertebrates along an Amazon forest regrowth gradient. Glob. Ecol. Conserv. 13, e00371. https://doi.org/10.1016/j.gecco.2017.e00371 (2018).
    Article  Google Scholar 

    69.
    David, M. O. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 (2001).
    Article  Google Scholar 

    70
    ter Steege, H. et al. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J. Trop. Ecol. 16, 801–828 (2000).
    Article  Google Scholar 

    71.
    Batista, A. P. B. et al. Caracterização estrutural em uma floresta de terra firme no estado do Amapá, Brasil. Pesq. flor. bras 35, 21–33 (2015).
    Article  Google Scholar 

    72
    Eswaran, H., Ahrens, R., Rice, T. J. & Stewart, B. A. Soil Classification: A Global Desk Reference (CRC Press, Boca Raton, 2002).
    Google Scholar 

    73.
    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).
    Article  Google Scholar 

    74.
    ANA. Sistema de Monitoramento Hidrológico (Hydrological Monitoring System). Agência Nacional de Águas[[nl]]National Water Agency, Available at http://www.hidroweb.ana.gov.br, 2017).

    75
    Norris, D., Rodriguez Chuma, V. J. U., Arevalo-Sandi, A. R., Landazuri Paredes, O. S. & Peres, C. A. Too rare for non-timber resource harvest? Meso-scale composition and distribution of arborescent palms in an Amazonian sustainable-use forest. Forest Ecol. Manag. 377, 182–191. https://doi.org/10.1016/j.foreco.2016.07.008 (2016).
    Article  Google Scholar 

    76.
    Norris, D. & Michalski, F. Socio-economic and spatial determinants of anthropogenic predation on Yellow-spotted River Turtle, Podocnemis unifilis (Testudines: Pelomedusidae), nests in the Brazilian Amazon: Implications for sustainable conservation and management. Zoologia (Curitiba) 30, 482–490. https://doi.org/10.1590/S1984-46702013000500003 (2013).
    Article  Google Scholar 

    77
    Yirdaw, E., MongeMonge, A., Austin, D. & Toure, I. Recovery of floristic diversity, composition and structure of regrowth forests on fallow lands: implications for conservation and restoration of degraded forest lands in Laos. New Forests 50, 1007–1026. https://doi.org/10.1007/s11056-019-09711-2 (2019).
    Article  Google Scholar 

    78.
    McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: its definition and measurement. For. Ecol. Manag. 218, 1–24. https://doi.org/10.1016/j.foreco.2005.08.034 (2005).
    Article  Google Scholar 

    79.
    Sist, P., Mazzei, L., Blanc, L. & Rutishauser, E. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For. Ecol. Manag. 318, 103–109. https://doi.org/10.1016/j.foreco.2014.01.005 (2014).
    Article  Google Scholar 

    80.
    Phillips, O. L. et al. Species matter: wood density influences tropical forest biomass at multiple scales. Surv. Geophys. 40, 913–935. https://doi.org/10.1007/s10712-019-09540-0 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Bastin, J.-F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).
    Article  Google Scholar 

    82.
    TEAM Network. 69 (Tropical Ecology, Assessment and Monitoring Network, Center for Applied Biodiversity Science, Conservation International., Arlington, VA, USA., 2011).

    83.
    Hortal, J., Borges, P. A. & Gaspar, C. Evaluating the performance of species richness estimators: sensitivity to sample grain size. J. Anim. Ecol. 75, 274–287. https://doi.org/10.1111/j.1365-2656.2006.01048.x (2006).
    Article  PubMed  Google Scholar 

    84.
    Magurran, A. E. & McGill, B. J. in Biological diversity: frontiers in measurement and assessment (eds A. E. Magurran & B. J. McGill) Ch. 1, 1–7 (Oxford University Press, 2011).

    85.
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305. https://doi.org/10.1890/08-2244.1 (2010).
    Article  PubMed  Google Scholar 

    86.
    FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12 (2014).

    87.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach (Springer, Berlin, 2002).
    Google Scholar 

    88.
    Drasgow, F. in The Encyclopedia of Statistics Vol. 7 (eds S. Kotz & N. Johnson) 68–74 (Wiley, 1986).

    89.
    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. 3.6.3 (R Foundation for Statistical Computing, Vienna, 2020).
    Google Scholar 

    90.
    90vegan: Community Ecology Package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan (2016).

    91.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2009).
    Google Scholar 

    92.
    MuMIn: multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn (2016).

    93.
    Tweedie: Tweedie exponential family models. R package version 2.2.1. https://cran.r-project.org/web/packages/tweedie (2014). More

  • in

    Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain

    Characteristics of the NMs
    Commercially available spherical (10, 60, and 100 nm) and rod-shaped (10 × 45 nm and 50 × 100 nm) citrate-coated Au-NMs from Nanopartz (USA) were characterized in Milli-Q (MQ) water in terms of particle size and morphology using transmission electron microscopy (TEM) (Supplementary Fig. 1). The physicochemical properties of the Au-NMs in MQ water are summarized in Supplementary Table 1. A negative zeta potential (a measure of colloidal dispersion electrostatic stability) was observed for all Au-NMs and ranged from −21 to −25 mV in MQ water and from −17 to −19 mV in the algal exposure medium (without algae). The stability of the particles against dissolution and agglomeration in the algal exposure medium without algae was monitored throughout the exposure duration (72 h). The dissolved fraction of the Au-NMs was More

  • in

    Ancient mitogenomics elucidates diversity of extinct West Indian tortoises

    1.
    TTWG [Turtle Taxonomy Working Group; Rhodin, A. G. J. et al.] Turtles of the World. Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (8th Ed.) (Chelonian Research Foundation and Turtle Conservancy, Chelonian Research Monographs 7, 2017).
    2.
    TEWG [Turtle Extinctions Working Group; Rhodin, A. G. J. et al.] Turtles and Tortoises of the World During the Rise and Global Spread of Humanity: First Checklist and Review of Extinct Pleistocene and Holocene Chelonians (IUCN/SSC Tortoise and Freshwater Turtle Specialist Group, Chelonian Research Monographs 5, 2015).

    3.
    Clausen, C. J., Cohen, A. D., Emiliani, C., Holman, J. A. & Stipp, J. J. Little Salt Spring, Florida: A unique underwater site. Science 203, 609–614 (1979).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Holman, J. A. & Clausen, C. J. Fossil vertebrates associated with Paleo-Indian artifact at Little Salt Spring, Florida. J. Vertebr. Paleontol. 4, 146–154 (1984).
    Article  Google Scholar 

    5.
    Cantalamessa, G. et al. A new vertebrate fossiliferous site from the Late Quaternary at San José on the north coast of Ecuador: Preliminary note. J. South Am. Earth Sci. 14, 331–334 (2001).
    ADS  Article  Google Scholar 

    6.
    Aguilera Socorro, O. Tesoros paleontológicos de Venezuela. El Cuaternario del Estado Falcón (Ministerio de la Cultura, Instituto del Patrimonio Cultural, Caracas, 2006).
    Google Scholar 

    7.
    Zacarías, G. G., de la Fuente, M. S., Fernández, M. S. & Zurita, A. E. Nueva especie de tortuga terrestre gigante del género Chelonoidis Fitzinger, 1835 (Cryptodira: Testudinidae), del miembro inferior de la Formación Toropí/Yupoí (Pleistoceno tardío/Lujanense), Bella Vista, Corrientes, Argentina. Ameghiniana 50, 298–318 (2013).
    Article  Google Scholar 

    8.
    Zacarías, G. G., de la Fuente, M. S. & Zurita, A. E. Testudinoidea Fitzinger (Testudines: Cryptodira) de la Formación Toropí/Yupoí (ca. 58–28 ka) en la Provincia de Corrientes, Argentina: Taxonomía y aspectos paleoambientales. Rev. Bras. Paleontol. 17, 389–404 (2014).
    Article  Google Scholar 

    9.
    Torres Chiriboga, F. J. Histología ósea de una tortuga gigante del Pleistoceno (Testudinidae) de Ecuador continental, con comentarios del origen de las tortugas de Galápagos (Disertación previa, Pontificia Universidad Católica del Ecuador, Quito, 2016).
    Google Scholar 

    10.
    Cadena, E. A. & Román-Carrión, J. L. A review of the fossil record of Ecuador, with insights about its challenges and future development. Ameghiniana 55, 571–591 (2018).
    Article  Google Scholar 

    11.
    Franz, R., Albury, N. A. & Steadman, D. W. Extinct tortoises from the Turks and Caicos Islands. Florida Mus. Nat. Hist. Bull. 58, 1–38 (2020).
    Google Scholar 

    12.
    Williams, E. E. Testudo cubensis and the evolution of Western Hemisphere tortoises. Bull. Am. Mus. Nat. Hist. 95, 1–36 (1950).
    Google Scholar 

    13.
    Williams, E. E. A new fossil tortoise from Mona Island, West Indies, and a tentative arrangement of the tortoises of the world. Bull. Am. Mus. Nat. Hist. 99, 545–560 (1952).
    Google Scholar 

    14.
    Auffenberg, W. Notes on West Indian tortoises. Herpetologica 23, 34–44 (1967).
    Google Scholar 

    15.
    Franz, R. & Woods, C. A. A fossil tortoise from Hispaniola. J. Herpetol. 17, 79–81 (1983).
    Article  Google Scholar 

    16.
    Franz, R. & Franz, S. A new fossil land tortoise in the genus Chelonoidis (Testudines: Testudinidae) from the northern Bahamas, with an osteological assessment of other Neotropical tortoises. Florida Mus. Nat. Hist. Bull. 49, 1–44 (2009).
    Google Scholar 

    17.
    Steadman, D. W. et al. Exceptionally well preserved late Quaternary plant and vertebrate fossils from a blue hole on Abaco, The Bahamas. Proc. Natl. Acad. Sci. USA 104, 19897–19902 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Hastings, A. K., Krigbaum, J., Steadman, D. W. & Albury, N. A. Domination by reptiles in a terrestrial food web of the Bahamas prior to human occupation. J. Herpetol. 48, 380–388 (2014).
    Article  Google Scholar 

    19.
    Kehlmaier, C. et al. Tropical ancient DNA reveals relationships of the extinct Bahamian giant tortoise Chelonoidis alburyorum. Proc. R. Soc. B 284, 20162235 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    20.
    Steadman, D. W. et al. The paleoecology and extinction of endemic tortoises in the Bahamian Archipelago. Holocene 30, 420–427 (2020).
    ADS  Article  Google Scholar 

    21.
    Albury, N. A., Franz, R., Rimoli, P., Lehman, P. & Rosenberger, A. L. Fossil land tortoises (Testudines: Testudinidae) from the Dominican Republic, West Indies, with a description of a new species. Am. Mus. Novit. 3904, 1–28 (2018).
    Article  Google Scholar 

    22.
    Fulton, T. L. & Shapiro, B. Setting up an ancient DNA laboratory. In Ancient DNA: Methods and Protocols. Methods in Molecular Biology, Vol. 1963 (eds Shapiro, B. et al.), 1–13 (Humana Press, Totowa, 2019).
    Google Scholar 

    23.
    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA 110, 15758–15763 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    25.
    Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 58, 87–93 (2015).
    Google Scholar 

    26.
    Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One 5, e14004 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Horn, S. Target enrichment via DNA hybridization capture. In Ancient DNA: Methods and Protocols. Methods in Molecular Biology, Vol. 840 (eds Shapiro, B. & Hofreiter, M.), 177–188 (Springer, Berlin, 2012).
    Google Scholar 

    28.
    Jiang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 182 (2014).
    Article  Google Scholar 

    29.
    Bushnell, B., Rood, J. & Singer, E. BBMerge—accurate paired shotgun read merging via overlap. PLoS One 12, e0185056 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control [version 2; referees: 4 approved]. F1000Research 7, 1338 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 41, 1–9 (2013).
    Article  CAS  Google Scholar 

    32.
    Milne, I. et al. Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 14, 193–202 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Kehlmaier, C. et al. Ancient mitogenomics clarifies radiation of extinct Mascarene giant tortoises. Sci. Rep. 9, 17487 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Poulakakis, N. et al. Colonization history of Galapagos giant tortoises: Insights from mitogenomes support the progression rule. J. Zool. Syst. Evol. Res. 58, 1262–1275 (2020).
    Article  Google Scholar 

    36.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    38.
    Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).
    PubMed  Article  Google Scholar 

    39.
    Kumar, S., Stecher, G., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetic Analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 

    43.
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 5, 901–904 (2018).
    Article  CAS  Google Scholar 

    44.
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Woods, R. et al. Rapid size change associated with intra-island evolutionary radiation in extinct Caribbean “island shrews”. BMC Evol. Biol. 29, 106 (2020).
    Article  CAS  Google Scholar 

    46.
    Geist, D., Snell, H. L., Snell, H. M., Goddard, C. & Kurz, M. Paleogeography of the Galápagos Islands and biogeographical implications. In The Galápagos: A Natural Laboratory for the Earth Sciences, Vol. 204 (eds Harpp, K., Mittelstaedt, E., d’Ozouville, N. & Graham, D.) 145–166 (American Geophysical Union, New York, 2014).
    Google Scholar 

    47.
    Hearty, P. J., Kindler, P., Cheng, H. & Edwards, R. A +20 m middle Pleistocene sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology 27, 375–378 (1999).
    ADS  Article  Google Scholar 

    48.
    Bowen, D. Sea level ∼400 000 years ago (MIS 11): Analogue for present and future sea-level? Clim. Past 6, 19–29 (2010).
    Article  Google Scholar 

    49.
    Steadman, D. W. & Franklin, J. Origin, paleoecology, and extirpation of bluebirds and crossbills in the Bahamas across the last glacial-interglacial transition. Proc. Natl. Acad. Sci. USA 114, 9924–9929 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Fritz, U., Široký, P., Kami, H. & Wink, M. Environmentally caused dwarfism or a valid species—Is Testudo weissingeri Bour, 1996 a distinct evolutionary lineage? New evidence from mitochondrial and nuclear genomic markers. Mol. Phylogenet. Evol. 37, 389–401 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Fritz, U. et al. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex; Testudines, Testudinidae). Amphibia-Reptilia 28, 97–121 (2007).
    Article  Google Scholar 

    52.
    Fritz, U. et al. Mitochondrial phylogeography and subspecies of the wide-ranging sub-Saharan leopard tortoise Stigmochelys pardalis (Testudines: Testudinidae)—a case study for the pitfalls of pseudogenes and GenBank sequences. J. Zool. Syst. Evol. Res. 48, 348–359 (2010).
    Article  Google Scholar 

    53.
    Fritz, U. et al. Northern genetic richness and southern purity, but just one species in the Chelonoidis chilensis complex. Zool. Scr. 41, 220–232 (2012).
    Article  Google Scholar 

    54.
    Carlson, L. A. & Keegan, W. F. Resource depletion in the prehistoric northern West Indies. In Voyages of Discovery (ed. Fitzpatrick, S. M.) 85–107 (Praeger, Westport, 2004).
    Google Scholar 

    55.
    Keegan, W. F. Taino Indian Myth and Practice: The Arrival of the Stranger King (University Press of Florida, Gainesville, 2007).
    Google Scholar 

    56.
    Oswald, J. A. et al. Ancient DNA and high-resolution chronometry reveal a long-term human role in the historical diversity and biogeography of the Bahamian hutia. Sci. Rep. 10, 1373 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Loire, E. & Galtier, N. Lacking conservation genomics in the giant Galápagos tortoise. bioRxiv 101980, 1–14 (2017).
    Google Scholar 

    58.
    Fontaine, M. C. A genomic perspective is needed for the re-evaluation of species boundaries, evolutionary trajectories, and conservation strategies of the Galápagos giant tortoises. PCI Evol. Biol. 100031, 1–3 (2017).
    Google Scholar 

    59.
    Vargas-Ramírez, M., Maran, J. & Fritz, U. Red- and yellow-footed tortoises (Chelonoidis carbonaria, C. denticulata) in South American savannahs and forests: Do their phylogeographies reflect distinct habitats? Org. Divers. Evol. 10, 161–172 (2010).
    Article  Google Scholar 

    60.
    Blake, S. et al. Seed dispersal by Galápagos tortoises. J. Biogeogr. 39, 1961–1972 (2012).
    Article  Google Scholar 

    61.
    Walton, R. et al. In the land of giants: Habitat use and selection of the Aldabra giant tortoise on Aldabra Atoll. Biodiv. Conserv. 28, 3183–3198 (2019).
    Article  Google Scholar  More