More stories

  • in

    Analysis of Himalayan marmot distribution and plague risk in Qinghai province of China using the “3S” technology

    Himalayan marmot habitat analysisThe environmental factors including temperature, vegetation and elevation are the key drivers for the wildlife in alpine ecosystems32. Specific landform attributes such as slope and elevation and vegetation cover affect the population and burrowing of rodents33. For example, rodent burrows in the Western Usambara Mountains in Tanzania were only found at an elevation of above 1600 m33. However, the Himalayan marmot seems to prefer to inhabit areas with low elevation and high land surface temperature34. In this study, the data showed that 76.25% of the Himalayan marmots were found in areas with elevation values of 3400–4600 m. The majority of marmots were found in areas with slopes of 5–20° and vegetation cover higher than 60%. Most marmots were found in alpine meadows, a few were found in temperate grasslands and alpine grasslands, and none were found in other grassland types.Preliminary statistical analysis of vegetation cover, grass type, vegetation type, and Himalayan marmot distribution sample sites obtained using spatial geographic information technology revealed that the meadow grassland areas with lush grass growth, more dominant plants, and abundant food had more marmots. When the vegetation cover reached 0.60–1.00, the number of marmot distribution sample sites was the highest. Dense grass is an ideal habitat and provides concealment for Himalayan marmots, and the abundant plant types provide sufficient food for marmots. In contrast, no marmots were distributed in the alpine scrub, coniferous forest, and alpine snow/ice covered areas where vegetation growth was poor, vegetation cover was low, and food was relatively scarce. Moreover, 70.24% of Himalayan marmots were found in alpine meadows with a wide variety of plant species, including Poaceae, Cyperaceae, and grasses. This finding indicated that alpine meadows are more suitable for Himalayan marmots and have more advantageous habitat conditions compared with other grassland types. The elevation of alpine meadows is 3236–5126 m, and the vegetation is mainly meadows with simple vegetation structure, substantial vegetation cover and dense vegetation growth, and a wide variety of plants, rich food, soft grass, and good palatability. Therefore, alpine meadows provide good natural habitats and foraging sites for marmots.Habitat selection of large rodents is influenced by a combination of vegetation cover availability, food availability, and population density35. Vegetation cover is an important parameter that describes vegetation communities and ecosystems and is closely related to vegetation quantity and productivity. The quality of habitat vegetation is an important factor that affects the spatial distribution of plateau rodents. Both feeding and concealment depend on vegetation, and the height and cover of edible plants and vegetation suitable for concealment determine the choice of vegetation type by marmots. Thus, vegetation cover becomes an important factor for habitat selection by marmots. Different grassland types determine different plant conditions, and selection of different vegetation conditions can increase the chances of survival and improve the reproductive success of marmots; therefore, grassland type is an important ecological factor in habitat selection by marmots. A study showed that the ecological factors affecting habitat selection of Himalayan marmots are mainly topography, anthropogenic disturbance, and vegetation8. Another study concluded that habitat selection by Himalayan marmots is closely related to elements such as topography, landform, temperature, precipitation, and vegetation24.The functions of burrows’ physical parameters is to protect the Himalayan marmots from natural enemies and bad weather36. There is clearly influence of slope on habitat selection by marmots. When the slope is large, wind is strong, and burrows are not well hidden; this makes them difficult to defend against enemies, unsafe for survival, and not conducive to hibernation during winter. In addition, Himalayan marmots prefer to burrow on sunny aspect, because the temperature is suitable and the vegetation is lush, which is suitable for marmots to breed. Therefore, the number of marmot burrows gradually decreases with increasing slope and ubac. Although flat and low-lying areas with small slopes are good for marmots to create dens, rainwater will easily flow into the dens during summer rainfall, which will kill marmots. Therefore, a suitable slope and sunny aspect are also very important for habitat selection by marmots.Application of the predictive spatial distribution map of Himalayan marmots in Qinghai provincePlague surveillance is the main measure used for plague prevention and control in China. Although we have made many improvements in plague surveillance, the traditional method of dragnet surveillance still consumes a lot of human and material resources, is inefficient. The pasture area of Qinghai province is approximately 380,000 km2, and the identified natural plague focus is approximately 180,000 km2; therefore, there is still 200,000 km2 of pasture where the distribution of Himalayan marmots and plague have not been identified. Currently, RS technology is widely used in the fields of mapping and ecological surveillance18,19,21,22,37.Applications of RS technology in areas such as malaria, dengue, schistosomiasis and plague have been previously reported27,37. Using GIS combined with remotely sensed data, Proches Hieronimo et al. found that the presence of small mammals was positively influenced by elevation, whereas the presence of fleas was clearly influenced by land management features, and thus these observations have positive implications for plague surveillance27. In this study, RS technology combined with field validations were used to determine the distribution and areas of different types of grasslands in Qinghai province, and the average density of Himalayan marmot distribution in different types of grasslands. The high-, low-, and very low-density areas of Himalayan marmot distribution were identified. The soil map, vegetation map, administrative map, and marmot density statistics were merged to form the spatial data and attribute data basis for the information system to map the distribution of Himalayan marmot and determine the area of Himalayan marmot distribution. Generally speaking, the occurrence of human plague epidemic is closely related to the local animal plague epidemic2. However, a large part of the high-density distribution of Himalayan marmots is located in uninhabited areas and the areas are generally sparsely populated, which also indicates that we should reasonably allocate plague prevention and control resources to areas where human plague is most likely to occur to prevent the occurrence of human plague epidemics.Field validation for verificationThrough field validation and information from local farmers and herdsmen, we confirmed that Himalayan marmots inhabited 68 sample sites in Tongde, Zeku, Guinan, Xunhua, Haiyan, Ulan, Qilian, Hualong, and Huzhu counties. Among them, Tongde, Zeku, Guinan, Xunhua, Haiyan, Ulan, and Qilian counties have all historically experienced marmot plague outbreaks and can be considered as reliable natural plague foci38. The data from this field validation are consistent with the previous survey data and the epidemic history of the counties in Qinghai province39.MAE can better reflect the actual number of errors in prediction values; the smaller the MAE value, the higher the prediction accuracy. The MAE derived from the field validation data was 0.1331 and the prediction accuracy was 0.8669. The accuracy of the predicted Himalayan marmot spatial distribution reached 87%, which indicated that the predicted probability map of the Himalayan marmot spatial distribution can better predict the potential marmot distribution.The predicted spatial distribution map of Himalayan marmot in Qinghai province was then compared with environmental information such as elevation, vegetation, grass type, slope, and aspect of 352 field survey sites. The obtained RS data showed that the prediction results were excellent, and the predicted spatial distribution map of Himalayan marmot in Qinghai province was drawn with high accuracy. The prediction map visually reflects the different density distribution of Himalayan marmots; this allows us to optimize the settings and reasonable spatial layout of animal plague surveillance sites and improve surveillance efficiency.Application of marmot information collection system V3.0Marmot information collection system V3.0 was developed based on the “3S” technology standardizing the collection of surveillance data, and makes the management and analysis of information more convenient and faster. This study revolutionized the traditional method of considering plague-stricken counties as the plague foci, and effectively reduces the work intensity of operators and improves the data collection efficiency. In 2016 and 2017, we applied this system to the animal plague surveillance tasks in the plague-stricken counties of Haidong, Hainan, and Haibei in Qinghai province, and standardized the collection of provincial geographic location data of animal plague surveillance (data not shown). In 2018, we also applied this system in Wulan County, which frequently experiences plague, and achieved a good application effect (data not shown).In the next step, we will expand the pilot areas (mainly national and provincial plague surveillance sites), collect surveillance data from each surveillance site, continuously optimize and update the system, improve the efficiency of data analysis and utilization, detect the plague epidemic in marmot in a timely and accurate manner, correctly determine the epidemic trend of plague in marmots, and attempt to strictly prevent the plague from spreading to humans. We plan to use a new model of drone surveillance to create a multidimensional, three-dimensional, real-time big data plague surveillance information reporting system to enhance early plague warnings and prediction in Qinghai province and even in the country, which will be of positive practical significance to serve and guarantee the Belt and Road Initiative. These approaches are expected to provide new technical means for plague investigation and research, and to provide references for setting up plague surveillance programs and prediction for the natural Himalayan marmot plague focus in Qinghai province and the QTP. More

  • in

    The temperature dependence of microbial community respiration is amplified by changes in species interactions

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).Article 
    CAS 

    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).Article 
    CAS 

    Google Scholar 
    Lopez-Urrutia, A., San Martin, E., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).Article 
    CAS 

    Google Scholar 
    Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).Article 
    CAS 

    Google Scholar 
    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).Article 
    CAS 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).Article 
    CAS 

    Google Scholar 
    Rivkin, R. B. & Legendre, L. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291, 2398–2400 (2001).Article 
    CAS 

    Google Scholar 
    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).Article 

    Google Scholar 
    Smith, T. P. et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat. Commun. 10, 5124 (2019).Article 

    Google Scholar 
    Antwis, R. E. et al. Fifty important research questions in microbial ecology. FEMS Microbiol. Ecol. 93, fix044 (2017).Bardgett, R. D., Freeman, C. & Ostle, N. J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2, 805–814 (2008).Article 
    CAS 

    Google Scholar 
    Enquist, B. J. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Adv. Ecol. Res. 52, 249–318 (2015).Article 

    Google Scholar 
    Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).Article 

    Google Scholar 
    Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M. & Brown, J. H. Metabolic theory predicts whole-ecosystem properties. Proc. Natl Acad. Sci. USA 112, 2617–2622 (2015).Article 
    CAS 

    Google Scholar 
    Alster, C. J., Koyama, A., Johnson, N. G., Wallenstein, M. D. & von Fischer, J. C. Temperature sensitivity of soil microbial communities: an application of macromolecular rate theory to microbial respiration. J. Geophys. Res. Biogeosci. 121, 1420–1433 (2016).Article 

    Google Scholar 
    Yvon-Durocher, G. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biol. 13, e1002324 (2015).Article 

    Google Scholar 
    Garzke, J., Connor, S. J., Sommer, U. & O’Connor, M. I. Trophic interactions modify the temperature dependence of community biomass and ecosystem function. PLoS Biol. 17, e2006806 (2019).Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).Article 
    CAS 

    Google Scholar 
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).Article 
    CAS 

    Google Scholar 
    Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).Article 

    Google Scholar 
    Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).Article 

    Google Scholar 
    Garcia-Martin, E. E., McNeill, S., Serret, P. & Leakey, R. J. G. Plankton metabolism and bacterial growth efficiency in offshore waters along a latitudinal transect between the UK and Svalbard. Deep Sea Res. I 92, 141–151 (2014).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Richardson, A. D., Savage, K. E. & Hollinger, D. Y. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Glob. Change Biol. 12, 230–239 (2006).Article 

    Google Scholar 
    Dutkiewicz, S., Follows, M. J. & Bragg, J. G. Modeling the coupling of ocean ecology and biogeochemistry. Glob. Biogeochem. Cycles 23, GB4017 (2009).Article 

    Google Scholar 
    Follows, M. J., Dutkiewicz, S., Ward, B. & Follett, C. in Microbial Ecology of the Oceans 3rd edn (eds Gasol, J. & Kirchman, D.) Ch. 12 (John Wiley, 2018).Letten, A. D. & Stouffer, D. B. The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol. Lett. 22, 423–436 (2019).Article 

    Google Scholar 
    Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).Article 
    CAS 

    Google Scholar 
    Maynard, D. S., Crowther, T. W. & Bradford, M. A. Competitive network determines the direction of the diversity–function relationship. Proc. Natl Acad. Sci. USA 114, 11464–11469 (2017).Article 
    CAS 

    Google Scholar 
    Fiegna, F., Moreno-Letelier, A., Bell, T. & Barraclough, T. G. Evolution of species interactions determines microbial community productivity in new environments. ISME J. 9, 1235–1245 (2015).Article 

    Google Scholar 
    Lawrence, D. et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 10, e1001330 (2012).Article 
    CAS 

    Google Scholar 
    Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl Acad. Sci. USA 115, 12000–12004 (2018).Article 
    CAS 

    Google Scholar 
    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).Article 
    CAS 

    Google Scholar 
    Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).Article 
    CAS 

    Google Scholar 
    Fox, J. W. & Harpole, W. S. Revealing how species loss affects ecosystem function: the trait-based price equation partition. Ecology 89, 269–279 (2008).Article 

    Google Scholar 
    Kontopoulos, D., Smith, T. P., Barraclough, T. G. & Pawar, S. Adaptive evolution shapes the present-day distribution of the thermal sensitivity of population growth rate. PLoS Biol. 18, e3000894 (2020).Article 
    CAS 

    Google Scholar 
    Wilson, W. G. & Lundberg, P. Biodiversity and the Lotka–Volterra theory of species interactions: open systems and the distribution of logarithmic densities. Proc. R. Soc. Lond. B 271, 1977–1984 (2004).Article 

    Google Scholar 
    Rossberg, A. G. in Food Webs and Biodiversity 181–191 (John Wiley & Sons, 2013).Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).Article 
    CAS 

    Google Scholar 
    Garcia, F. C., Bestion, E., Warfield, R. & Yvon-Durocher, G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 115, 10989–10999 (2018).Article 
    CAS 

    Google Scholar 
    Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: a new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 12, 1138–1143 (2021).Article 

    Google Scholar  More

  • in

    A high-resolution gridded grazing dataset of grassland ecosystem on the Qinghai–Tibet Plateau in 1982–2015

    Study areaThe Qinghai–Tibet Plateau (26°00′-39°47′N, 73°19′-104°47′E), one of the most important pastoral areas in the world, straddles the southwest regions of China, and it includes 244 counties, which belong to six provinces: Tibet, Qinghai, Xinjiang, Gansu, Sichuan, and Yunnan. It is characterized by rich natural grassland resources, including desert steppes, alpine steppes, and alpine meadows (Fig. 1a). The grassland areas account for over 56% of this region34. The grassland plays a vital role in providing regional and national animal husbandry products and fodder35, which enables the local herders to obtain almost all of the resources required for survival36. The grazing density distribution is extremely unbalanced (Fig. 1a) owing to the high spatial heterogeneity of economic development (Fig. 1b-1) and grassland production (Fig. 1b-2), resulting from the differences in resources and environmental factors37. Over the past few decades, there has been a significant change in the number of livestock animals, and the number of sheep exceeded 160 million by 2020. Therefore, it is urgent to obtain a high-resolution gridded grazing dataset for its evaluating spatiotemporal changes and coordinating the relationship between human beings and the grassland ecosystem.Fig. 1Location of the Qinghai–Tibet Plateau: (a) grassland type and distribution, and grazing density (GD) in 244 counties; (b) spatial heterogeneity of economic development (ED) and grassland production (GP) in 244 counties. GD, ED, and GP are represented by sheep unit per grassland area per county (SU/hm2), human footprint index per pixel (HF/pixel) per county, and net primary production per grassland area per county (gC/m2), respectively.Full size imageFig. 2Methodological framework for grazing spatialization.Full size imageMethodological frameworkWe developed a methodological framework for high-resolution gridded grazing dataset mapping. The framework mainly includes four parts: (i) identifying features affecting grazing, (ii) extracting theoretical suitable grazing areas, (iii) building grazing spatialization model, and (iv) correcting the grazing spatialization dataset. Each step is explained in more detail below (Fig. 2).Step 1: Identifying features affecting grazingGrazing activities are affected by the spatial heterogeneity of resources and environmental factors, regulated by the grazing behavior of herders and the foraging behavior of herds, and restricted by ecological protection policies. Therefore, the specific implications of the 14 influencing factors from the above four aspects are presented in Table 1. These factors are necessary for spatializing the county-level grazing data.Table 1 The identified features affecting grazing.Full size tableStep 2: Extracting theoretical suitable grazing areasThe decision tree approach38 was adopted to extract the theoretical suitable grazing areas for further grazing spatialization (step 2 in Fig. 2). First, the potential grazing area was identified according to the boundary of the grassland ecosystem, because grazing behavior only occurs in the grassland. Then, the unsuitable areas for grazing, i.e., extremely-high-altitude areas and areas adjacent to towns, were removed from the potential grazing area stepwise. The areas strictly prohibited for grazing, i.e., the core areas of national nature reserves39 within grassland areas, were also deemed unsuitable for grazing. Finally, the extracted areas were the theoretically suitable grazing areas.Step 3: Building grazing spatialization model(i) Extracting cross-scale feature (CSFs)In the traditional method, the spatial resolution of the training data (i.e., the average value at the administrative level) differs from that of the predicting data (i.e., the value at the pixel level), and the trained model can only capture the characteristics within the training data. However, the extreme value of the predicting data inevitably exceeds the range of the training data, which can result in underestimation in these parts40. To reduce these mismatches, we built an improved method for CSFs extraction (Fig. 2, first part of step 3).First, the census grazing data are simply distributed from county level to pixel level using the weight of the absolute disturbance (AD) index as Eq. (1). The AD index is measured by Mahalanobis distance using Eq. (2), which is calculated according to the deviation between the potential and observed normalized difference vegetation index (NDVI) values22. Second, the distributed grazing data are graded via the hierarchical clustering method, and the optimal number of the group can be determined using the Davies–Bouldin index (DBI)41 as Eq. (3), an index for evaluating the quality of clustering algorithm. The smaller the DBI, the smaller the distance within each group. Therefore, the DBI can be used to select the best similar values to minimize the deviation within each group. Finally, we can obtain the scope of the groups within each county using the above two steps and obtain the average value of all independent variables and the dependent variable accordingly. As expected, we can decompose the average value at the county level (traditional features in Fig. 2) into the average value at the group level (improved features in Fig. 2).$$S{U}_{i}=S{U}_{j}^{C}frac{{w}_{A{D}_{i}}}{{w}_{A{D}_{j}}}$$
    (1)
    where SUi and (S{U}_{j}^{C}) are the grazing value for pixel i and the census grazing value for county j; ({w}_{A{D}_{i}}) is the weight of the AD index for pixel i and ({w}_{A{D}_{j}}) represents the summed weight of the AD index values for all pixels in county j.$$begin{array}{cll}A{D}_{i} & = & sqrt{{({D}_{i}-u)}^{T}co{v}^{-1}({D}_{i}-u)}\ {D}_{i} & = & NDV{I}_{i}^{T}-NDV{I}_{i}^{P}end{array}$$
    (2)
    where ADi is the AD index for pixel i; the vector composed of its observed NDVI (left(NDV{I}_{i}^{T}right)) and potential NDVI (left(NDV{I}_{i}^{P}right)) time-series data could be considered as two points in the feature space for pixel i, and Di and u are the difference and the mean value of the vector, respectively; cov is the covariance matrix.$$DB{I}_{k}=frac{1}{k}{sum }_{x=1}^{k}ma{x}_{yne x}left(frac{overline{{a}_{x}}+overline{{a}_{y}}}{left|{delta }_{x}-{delta }_{y}right|}right)$$
    (3)
    where DBIk is the DBI coefficient when the cluster number is k; (overline{{a}_{x}}) and (overline{{a}_{y}}) are the average distances of the group xth and the group yth, respectively; δx and δy are the center distance of the group xth and the group yth, respectively.Different from the traditional method, our method can decompose features into multiple features using the grading AD index. The differences among counties will not be easily averaged out. Moreover, our method is less affected by scale mismatch and can be transferred to cross-scale modeling26.(ii) Building RF model with partitioningA single model cannot accurately obtain the variation information of the Qinghai–Tibet Plateau with high spatial heterogeneity. The partition model, a widely used method for estimating population distribution and others42,43, can be incorporated into the proposed model to improve its performance. The thresholds (0.43, 0.35 and 0.21 SU/hm2), determined according to the theoretical livestock carrying capacity (equation S1), were calculated and used to separate independent variables and dependent variable for each grassland types: alpine meadow, alpine steppe and alpine desert steppe (see Section 6.1 for details). Then, the RF models were established, and the training and testing samples were randomly divided in the proportion of 3:1. It is notable that transforming the response variable using natural log prior to RF model fitting is necessary to achieve higher prediction accuracies44. Finally, the independent variables at the pixel level were inputted into the two trained RF models, and the corresponding grid grazing dataset was output by combining the two results (Fig. 2, second part of step 3).(iii) Validating the accuracy of the methodsThe performance of the grazing spatialization model was evaluated through a comparison of the predicted value with census value26. Accuracy validation indexes, including coefficients of determination (R2), root mean square error (RMSE), and mean absolute error (MAE), were used to evaluate the performances of the proposed RF-based models (Table 2), as presented in Eq. (4).$$begin{array}{ccc}{R}^{2} & = & 1-frac{{sum }_{j=1}^{N}{left(S{U}_{j}^{C}-S{U}_{j}^{P}right)}^{2}}{{sum }_{j=1}^{N}{left(S{U}_{j}^{C}-overline{S{U}^{C}}right)}^{2}}\ RMSE & = & sqrt{frac{{sum }_{j=1}^{N}{left(S{U}_{j}^{C}-S{U}_{j}^{P}right)}^{2}}{N}}\ MAE & = & frac{{sum }_{j=1}^{N}| S{U}_{j}^{C}-S{U}_{j}^{P}| }{N}end{array}$$
    (4)
    where (S{U}_{j}^{C}) and (S{U}_{j}^{P}) are the census grazing value and the predicted grazing value for county j, respectively; (overline{S{U}^{C}}) is the average census data for all counties; and N is the number of all counties.Table 2 The proposed methods and their descriptions.Full size tableStep 4: Correcting grazing spatialization dataset(i) Correcting residuals of datasetCorrecting residuals is necessary to obtain datasets with higher accuracy45,46, because propagating the cross-scale relationship in the RF models will inevitably generate errors47. The residuals, calculated by the difference between the average census grazing and predicted grazing values at the administrative level, were used to calibrate the errors related to all pixels within this county. The revised dataset after residual correction is the final product provided in this study. The residual correction method is expressed by Eq. (5), and the process is shown in the fourth step in Fig. 2.$$S{U}_{i}^{RP}=S{U}_{i}^{P}+{R}_{j}$$
    (5)
    where (S{U}_{i}^{RP}) denotes the predicted grazing value revised by the residuals for pixel i, (S{U}_{i}^{P}) denotes the predicted grazing for pixel i, and Rj denotes the residuals calculated from the difference between census grazing and predicted grazing data for county j.(ii) Validating the accuracy of datasetTwo goodness-of-fit indexes were used to validate the consistency of spatial distribution and the temporal trend between predicted grazing data and census grazing data. Generally, the coefficient of determination (R2), defined in Eq. (4), is used to verify the consistency of spatial distribution, and the Nash–Sutcliffe efficiency (NSE, Eq. (6)) is used to verify the consistency of temporal trend. An index value closer to 1 corresponds to a more accurate dataset. Meanwhile, we also collected field grazing data from 56 sites to further validate the spatial accuracy of the dataset, and it measured using the R2 in Eq. (4).$$NSE=1-frac{{sum }_{t=1}^{T}{left(S{U}_{t}^{RP}-S{U}_{t}^{C}right)}^{2}}{{sum }_{t=1}^{T}{left(S{U}_{t}^{C}-overline{S{U}^{{C}^{{prime} }}}right)}^{2}}$$
    (6)
    where (S{U}_{t}^{RP}) and (S{U}_{t}^{C}) are the predicted grazing value revised by residuals and the census grazing value of all counties in year t, respectively; (overline{S{U}^{{C}^{{prime} }}}) is the average census grazing value of all years; and T is the number of time steps.(iii) Identifying uncertainties associated with datasetThe uncertainties associated with the dataset originate from the following two aspects: First, the unreasonableness of our method, owing to the errors related to cross-scale modeling or the inappropriate selection of influencing factors, is an important source of uncertainties. Second, the incompleteness of auxiliary variables also introduces uncertainties. In this instance, grassland-free areas are not accurately identified in some counties, but livestock animals are raised in these counties. These counties have no effective value for livestock density prediction. Overall, the uncertainties can be identified in terms of the mean relative error (MRE) in Eq. (7).$$MRE=frac{{sum }_{j=1}^{N}left|frac{S{U}_{j}^{C}-S{U}_{j}^{RP}}{S{U}_{j}^{C}}right|}{N}ast 100 % $$
    (7)
    where (S{U}_{j}^{C}) is the census grazing value for county j, (S{U}_{j}^{RP}) is the predicted grazing value revised by residuals for county j, and N is the number of counties.Data sourceCensus grazing data at county levelEight types of livestock, namely cattle, yaks, horses, donkeys, mules, camels, goats, and sheep, were considered according to the regional characteristics, and livestock stocking quantity at the end of year for each county can be determined from statistical yearbooks. However, the numbers of livestock at the county level for some years between 1982 and 2015 were not recorded. The missing data were indirectly approximated from city- or provincial-level data (e.g., interpolation using their temporal trends). Each type of livestock stocking quantity was converted into standard sheep unit (SU) according to the national standards using Eq. (8)48, namely the calculation of rangeland carrying capacity (NY/T 635-2015). Of the 244 counties of the Qinghai–Tibet Plateau, only 242 counties were considered, as the census grazing data for the other 2 counties were unavailable. The unit of grazing statistics data at the county level is defined as SU per county per year (SU·county−1·year−1).$$begin{array}{l}SU={N}_{sheep}+0.8times {N}_{goats}+5times {N}_{cattle}+5times {N}_{yaks+}+\ 6times {N}_{horses}+3times {N}_{donkeys}+6times {N}_{mules}+7times {N}_{camels}end{array}$$
    (8)
    where Nsheep, Ngoats, Ncattle, Nyaks, Nhorses, Ndonkeys, Nmules, Ncamels are the number of sheep, goats, cattle, yaks, horses, donkeys, mules, and camels at the year-end, respectively. SU denotes the standard sheep unit (SU·county−1·year−1).Data of grazing influencing factors at pixel levelThe types of features affecting grazing were obtained from the first step described in Methods, and the detailed information, such as original spatiotemporal resolution, format, and source, is shown in Table 3. The format (i.e., GeoTIFF), spatial resolution (i.e., 0.083°), and the number of rows and columns of the gridded features were leveraged to further produce a high-resolution grazing dataset.Table 3 Data source of grazing influence factors.Full size table More

  • in

    Heterogeneity of interaction strengths and its consequences on ecological systems

    Now consider a generalized model in which the species interactions are heterogeneous. A natural way of introducing heterogeneity in the system is by having a species diversify into subpopulations with different interaction strengths12,13,14,15. This way of modeling heterogeneity is useful as it can describe different kinds of heterogeneity. For example, the subpopulations could represent polymorphic traits that are genetically determined or result from plastic response to heterogeneous environments. A population could also be divided into local subpopulations in different spatial patches, which can migrate between patches and may face different local predators. We can also model different behavioral modes as subpopulations that, for instance, spend more time foraging for food or hiding from predators. We study several kinds of heterogeneity after we introduce a common mathematical framework. By studying these different scenarios using variants of the model, we show that our main results are not sensitive to the details of the model.We focus on the simple case where only the prey species splits into two types, (C_1) and (C_2), as illustrated in Fig. 1b. The situation is interesting when predator A consumes (C_1) more readily than predator B and B consumes (C_2) more readily than A (i.e., (a_1 / a_0 > b_1 / b_0) and (b_2 / b_0 > a_2 / a_0), which is equivalent to the condition that the nullclines of A and B cross, see section “Resources competition and nullcline analysis”). The arrows between (C_1) and (C_2) in Fig. 1b represent the exchange of individuals between the two subpopulations, which can happen by various mechanisms considered below. Such exchange as well as intraspecific competition between (C_1) and (C_2) result from the fact that the two prey types remain a single species.The system is now described by an enlarged Lotka-Volterra system with four variables, A, B, (C_1), and (C_2): $$begin{aligned} dot{A}&= varepsilon _A ,alpha _{A1} , A , C_1 + alpha _{A2} , A , C_2 – beta _A , A end{aligned}$$
    (3a)
    $$begin{aligned} dot{B}&= varepsilon _B , alpha _{B1} , B , C_1 + alpha _{B2} , B , C_2 – beta _B , B end{aligned}$$
    (3b)
    $$begin{aligned} dot{C_1}&= C_1 , (beta _C – alpha _{CC} , C)-alpha _{A1} , C_1 A-alpha _{B1} , C_1 B – sigma _1 , C_1 + sigma _2 , C_2 end{aligned}$$
    (3c)
    $$begin{aligned} dot{C_2}&= C_2 , (beta _C – alpha _{CC} , C) -alpha _{A2} , C_2 A -alpha _{B2} , C_2 B + sigma _1 , C_1 – sigma _2 , C_2 end{aligned}$$
    (3d)
    The parameters in these equations and their meanings are listed in Table 1. Here we assume that the prey types (C_1) and (C_2) have the same birth rate and intraspecific competition strength, but different interaction strengths with A and B. Note that (C_1) and (C_2) are connected by the (sigma _i) terms, which represent the exchange of individuals between these subpopulations through mechanisms studied below; these terms indicate a major difference between our model of a prey with intraspecific heterogeneity and other models of two prey species. For the convenience of analysis, we transform the variables (C_1) and (C_2) to another pair of variables C and (lambda), where (C equiv C_1 + C_2) is the total population of C as before, and (lambda equiv C_2 / (C_1 + C_2)) represents the composition of the population (Fig. 1c). After this transformation and rescaling of variables (described in “Methods”), the new dynamical system can be written as: $$begin{aligned} dot{A}&= A , big ( C , (a_1 (1-lambda ) + a_2 lambda ) – a_0 big ) end{aligned}$$
    (4a)
    $$begin{aligned} dot{B}&= B , big ( C , (b_1 (1-lambda ) + b_2 lambda ) – b_0 big ) end{aligned}$$
    (4b)
    $$begin{aligned} dot{C}&= C , big ( 1 – C – A (a_1 (1-lambda ) + a_2 lambda ) – B (b_1 (1-lambda ) + b_2 lambda ) big ) end{aligned}$$
    (4c)
    $$begin{aligned} dot{lambda }&= lambda (1-lambda ) , big ( A (a_1 – a_2) + B (b_1 – b_2) big ) + eta _1 (1-lambda ) – eta _2 lambda end{aligned}$$
    (4d)
    Here, (a_i) and (b_i) are the (rescaled) feeding rates of the predators on the prey type (C_i); (a_0) and (b_0) are the death rates of the predators as before; (eta _1) and (eta _2) are the exchange rates of the prey types (Table 1). The latter can be functions of other variables, representing different kinds of heterogeneous interactions that we study below. Notice that Eqs. (4a–4c) are equivalent to the homogeneous Eqs. (2a–2c) but with effective interaction strengths (a_text {eff} = (1-lambda ) , a_1 + lambda , a_2) and (b_text {eff} = (1-lambda ) , b_1 + lambda , b_2) that both depend on the prey composition (lambda) (Fig. 1c).Table 1 Model parameters (before/after rescaling) and their meanings.Full size tableThe variable (lambda) can be considered an internal degree of freedom within the C population. In all of the models we study below, (lambda) dynamically stabilizes to a special value (lambda ^*) (a bifurcation point), as shown in Fig. 3a. Accordingly, a new equilibrium point (P_N) appears (on the line (mathscr {L}) in Fig. 2), at which all three species coexist. For comparison, Fig. 3b shows the equilibrium points if (lambda) is held fixed at any other values, which all result in the exclusion of one of the predators. Thus, heterogeneous interactions give rise to a new coexistence phase (see Fig. 4 below) by bringing the prey composition (lambda) to the value (lambda ^*), instead of having to fine-tune the interaction strengths. The exact conditions for this new equilibrium to be stable are detailed in “Methods”.Figure 3(a) Time series of (lambda) for systems with each kind of heterogeneity. All three systems stabilize at the same (lambda ^*) value, which is the bifurcation point in panel (b). (b) Equilibrium population of each species (X = A), B, or C, with (lambda) held fixed at different values. Solid curves represent stable equilibria and dashed curves represent unstable equilibria (see Eq. (9) in “Methods”). The vertical dashed line is where (lambda = lambda ^*), which is also the bifurcation point. Notice that the equilibrium population of C is maximized at this point (for (a_1 > a_2) and (b_2 > b_1)). Parameters used here are ((a_0, a_1, a_2, b_0, b_1, b_2, rho , eta _1, eta _2, kappa ) = (0.25, 0.5, 0.2, 0.4, 0.2, 0.6, 0.5, 0.05, 0.05, 50)).Full size imageInherent heterogeneityWe first consider a scenario where individuals of the prey species are born as one of two types with a fixed ratio, such that a fraction (rho) of the newborns are (C_2) and ((1-rho )) are (C_1). This could describe dimorphic traits, such as the winged and wingless morphs in aphids12 or the horned and hornless morphs in beetles13. We call this “inherent” heterogeneity, because individuals are born with a certain type and cannot change in later stages of life. The prey type given at birth determines the individual’s interaction strength with the predators. This kind of heterogeneity can be described by Eq. (4d) with (eta _1 = rho (1-C)) and (eta _2 = (1-rho ) (1-C)) (see “Methods”).Figure 4Phase diagrams showing regions of parameter space identified by the stable equilibrium points. Yellow region represents (P_C) (predators A, B both extinct), red represents (P_A) (A excludes B), blue represents (P_B) (B excludes A), and green represents (P_N) (A, B coexist). The middle point (black dot) is where the preferences of the two predators are identical, (a_2/a_0=b_2/b_0) and (b_1/b_0=a_1/a_0). The coexistence phase appears in all three kinds of heterogeneity modeled here. (a–d) Inherent heterogeneity: Individuals of the prey population are born in two types with a fixed composition (rho). In the extreme cases of (rho = 0) and 1, the prey is homogeneous and there is no coexistence of the predators. (e–h) Reversible heterogeneity: Individual prey can switch types with fixed switching rates (eta _1) and (eta _2). As the switching rates increase, the coexistence region shrinks because the prey population becomes effectively homogeneous (the occasional green spots are numerical artifacts because the time to reach the equilibrium becomes long in this limit). (i–l) Adaptive heterogeneity: The switching rates (eta _i) dynamically adapt to the predator densities, so as to maximize the growth rate of the prey. As the sharpness (kappa) of the sigmoidal decision function is increased, the prey adapts more optimally and the region of coexistence expands. Parameters used here are ((a_0, a_1, b_0, b_2) = (0.3, 0.5, 0.4, 0.6)).Full size imageThe stable equilibrium of the system can be represented by phase diagrams that show the identities of the species at equilibrium. We plot these phase diagrams by varying the parameters (a_2) and (b_1) while keeping (a_1) and (b_2) constant. As shown in Fig. 4a–d, the equilibrium state depends on the parameter (rho). In the limit (rho = 0) or 1, we recover the homogeneous case because only one type of C is produced. The corresponding phase diagrams (Fig. 4a, d) contain only two phases where either of the predators is excluded, illustrating the competitive exclusion principle. For intermediate values of (rho), however, there is a new phase of coexistence that separates the two exclusion phases (Fig. 4b, c). There are two such regions of coexistence, which touch at a middle point and open toward the bottom left and upper right, respectively. The middle point is at ((a_2/a_0 = b_2/b_0, b_1/b_0 = a_1/a_0)), where the feeding preferences of the two predators are identical (hence their niches fully overlap). Towards the origin and the far upper right, the predators consume one type of C each (hence their niches separate). The coexistence region in the bottom left is where the feeding rates of the predators are the lowest overall. There can be a region (yellow) where both predators go extinct, if their primary prey type alone is not enough to sustain each predator. Increasing the productivity of the system by increasing the birth rate ((beta _C)) of the prey eliminates this extinction region, whereas lowering productivity causes the extinction region to take over the lower coexistence region. Because the existence and identity of the phases is determined by the configuration of the equilibrium points (Fig. 2, see also section “Mathematical methods”), the qualitative shape of the phase diagram is not sensitive to changes of parameter values.The new equilibrium is not only where the predators A and B can coexist, but also where the prey species C grows to a larger density than what is possible for a homogeneous population. This is illustrated in Fig. 3b, which shows the equilibrium population of C if we hold (lambda) fixed at different values. The point (lambda = lambda ^*) is where the system with a dynamic (lambda) is stable, and also where the population of C is maximized (when A and B prefer different prey types). That means the population automatically stabilizes at the optimal composition of prey types. Moreover, the value of (C^*) at this coexistence point can even be larger than the equilibrium population of C when there is only one predator A or B. This is discussed further in section “Multiple-predator effects and emergent promotion of prey”. These results suggest that heterogeneity in interaction strengths can potentially be a strategy for the prey population to leverage the effects of multiple predators against each other to improve survival.Reversible heterogeneityWe next consider a scenario where individual prey can switch their types. This kind of heterogeneity can model reversible changes of phenotypes, i.e., trait changes that affect the prey’s interaction with predators but are not permanent. For example, changes in coat color or camouflage14,16,17, physiological changes such as defense15, and biomass allocation among tissues18,19. One could also think of the prey types as subpopulations within different spatial patches, if each predator hunts at a preferred patch and the prey migrate between the patches20,21. With some generalization, one could even consider heterogeneity in resources, such as nutrients located in different places, that can be reached by primary consumers, such as swimming phytoplankton22. We can model this “reversible” kind of heterogeneity by introducing switching rates from one prey type to the other. In Eq. (4d), (eta _1) and (eta _2) now represent the switching rates per capita from (C_1) to (C_2) and from (C_2) to (C_1), respectively. Here we study the simplest case where both rates are fixed.In the absence of the predators, the natural composition of the prey species given by the switching rates would be (rho equiv eta _1 / (eta _1 + eta _2)), and the rate at which (lambda) relaxes to this natural composition is (gamma equiv eta _1 + eta _2). Compared to the previous scenario where we had only one parameter (rho), here we have an additional parameter (gamma) that modifies the behavior of the system. Fig. 4e–h shows phase diagrams for the system as (rho) is fixed and (gamma) varies. We again find the new equilibrium (P_N) where all three species coexist. When (gamma) is small, the system has a large region of coexistence. As (gamma) is increased, this region is squeezed into a border between the two regions of exclusion, where the slope of the border is given by (eta _1/eta _2) as determined by the parameter (rho). However, this is different from the exclusion we see in the case of inherent heterogeneity, which happens only for (rho rightarrow 0) or 1, where the borders are horizontal or vertical (Fig. 4a,d). Here the predators exclude each other despite having a mixture of prey types in the population.This special limit can be understood as follows. For a large (gamma), (lambda) is effectively set to a constant value equal to (rho), because it has a very fast relaxation rate. In other words, the prey types exchange so often that the population always maintains a constant composition. In this limit, the system behaves as if it were a homogeneous system with effective interaction strengths (a_text {eff} = (1-rho ) , a_1 + rho , a_2) and (b_text {eff} = (1-rho ) , b_1 + rho , b_2). As in a homogeneous system, there is competitive exclusion between the predators instead of coexistence. This demonstrates that having a constant level of heterogeneity is not sufficient to cause coexistence. The overall composition of the population must be able to change dynamically as a result of population growth and consumption by predators.An interesting behavior is seen when we examine a point inside the shrinking coexistence region as (gamma) is increased. Typical trajectories of the system for such parameter values are shown in Fig. 5. As (gamma) increases, the system relaxes to the line (mathscr {L}) quickly, then slowly crawls along it towards the final equilibrium point (P_N). This is because increasing (gamma) increases the speed that (lambda) relaxes to (lambda ^*), and when (lambda rightarrow lambda ^*), (mathscr {L}) becomes marginally stable. Therefore, the attraction to (mathscr {L}) in the perpendicular direction is strong, but the attraction towards the equilibrium point along (mathscr {L}) is weak. This leads to a long transient behavior that makes the system appear to reach no equilibrium in a limited time23,24. It is especially true when there is noise in the dynamics, which causes the system to diffuse along (mathscr {L}) with only a weak drift towards the final equilibrium (Fig. 5). Thus, the introduction of a fast timescale (quick relaxation of (lambda) due to a large (gamma)) actually results in a long transient.Figure 5Trajectories of the system projected in the A-B plane, with parameters inside the coexistence region (by holding the position of (P_N) fixed). As (gamma) increases, the system tends to approach the line (mathscr {L}) quickly and then crawl along it. The grey trajectory is with independent Gaussian white noise ((sim mathscr {N}(0,0.5))) added to each variable’s dynamics. Noise causes the system to diffuse along (mathscr {L}) for a long transient period before coming to the equilibrium point (P_N). Parameters used here are ((a_0, a_1, a_2, b_0, b_1, b_2) = (0.2, 0.8, 0.5, 0.2, 0.6, 0.9)), chosen to place (P_N) away from the middle of (mathscr {L}) to show the trajectory drifting toward the equilibrium.Full size imageAdaptive heterogeneityA third kind of heterogeneity we consider is the change of interactions in time. By this we mean an individual can actively change its interaction strength with others in response to certain conditions. This kind of response is often invoked in models of adaptive foraging behavior, where individuals choose appropriate actions to maximize some form of fitness25,26. For example, we may consider two behaviors, resting and foraging, as our prey types. Different predators may prefer to strike when the prey is doing different things. In response, the prey may choose to do one thing or the other depending on the current abundances of different predators. Such behavioral modulation is seen, for example, in systems of predatory spiders and grasshoppers27. Phenotypic plasticity is also seen in plant tissues in response to consumers28,29,30.This kind of “adaptive” heterogeneity can be modeled by having switching rates (eta _1) and (eta _2) that are time-dependent. Let us assume that the prey species tries to maximize its population growth rate by switching to the more favorable type. From Eq. (4c), we see that the growth rate of C depends linearly on the composition (lambda) with a coefficient (u(A,B) equiv (a_1 – a_2) A + (b_1 – b_2) B). Therefore, when this coefficient is positive, it is favorable for C to increase (lambda) by switching to type (C_2). This can be achieved by having a positive switching rate (eta _2) whenever (u(A,B) > 0). Similarly, whenever (u(A,B) < 0), it is favorable for C to switch to type (C_1) by having a positive (eta _1). In this way, the heterogeneity of the prey population constantly adapts to the predator densities. We model such adaptive switching by making (eta _1) and (eta _2) functions of the coefficient u(A, B), e.g., (eta _1(u) = 1/(1+mathrm {e}^{kappa u})) and (eta _2(u) = 1/(1+mathrm {e}^{-kappa u})). The sigmoidal form of the functions means that the switching rate in the favorable direction for C is turned on quickly, while the other direction is turned off. The parameter (kappa) controls the sharpness of this transition.Phase diagrams for the system with different values of (kappa) are shown in Fig. 4i–l. A larger (kappa) means the prey adapts its composition faster and more optimally, which causes the coexistence region to expand. In the extreme limit, the system changes its dynamics instantaneously whenever it crosses the boundary where (u(A,B) = 0), like in a hybrid system31. Such a system can still reach a stable equilibrium that lies on the boundary, if the flow on each side of the boundary points towards the other side32. This is what happens in our system and, interestingly, the equilibrium is the same three-species coexistence point (P_N) as in the previous scenarios. The region of coexistence turns out to be largest in this limit (Fig. 4l).Our results suggest that the coexistence of the predators can be viewed as a by-product of the prey’s strategy to maximize its own benefit. The time-dependent case studied here represents a strategy that involves the prey evaluating the risk posed by different predators. This is in contrast to the scenarios studied above, where the prey population passively creates phenotypic heterogeneity regardless of the presence of the predators. These two types of behavior are analogous to the two strategies studied for adaptation in varying environments, i.e., sensing and bet-hedging33,34. The former requires accessing information about the current environment to make optimal decisions, whereas the latter relies on maintaining a diverse population to reduce detrimental effects caused by environmental changes. Here the varying abundances of the predators play a similar role as the varying environment. From this point of view, the heterogeneous interactions studied here can be a strategy of the prey species that is evolutionarily favorable. More

  • in

    Understanding the role of natural and anthropogenic forcings in structuring the periphytic algal assemblages in a regulated river ecosystem

    Ren, W. et al. Changes of periphyton abundance and biomass driven by factors specific to flooding inflow in a river inlet area in Erhai Lake, China. Front. Environ. Sci. 9, 680718. https://doi.org/10.3389/fenvs.2021.680718 (2021).Article 

    Google Scholar 
    Woodruff, S. L. et al. The effects of a developing biofilm on chemical changes across the sediment-water interface in a freshwater environment. Int. Rev. Hydrobiol. 84(5), 509–532 (1999).CAS 

    Google Scholar 
    Muñoz, I., Real, M., Guasch, H., Navarro, E. & Sabater, S. Effects of atrazine on periphyton under grazing pressure. Aquat. Toxicol. 55(3–4), 239–249 (2001).
    Google Scholar 
    Hoagland, K. D., Roemer, S. C. & Rosowski, J. R. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am. J. Bot. 69, 188–213. https://doi.org/10.2307/2443006 (1982).Article 

    Google Scholar 
    Steinman, A. D. & McIntire, C. D. Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. J. Phycol. 22, 352–361. https://doi.org/10.1111/J.1529-8817.1986.TB00035.X (1986).Article 

    Google Scholar 
    Tonkin, J. D., Death, R. G. & Barquín, J. Periphyton control on stream invertebrate diversity: Is periphyton architecture more important than biomass?. Mar. Freshw. Res. 65(9), 818–829 (2014).
    Google Scholar 
    Beck, W. S., Markman, D. W., Oleksy, I. A., Lafferty, M. H. & Poff, N. L. Seasonal shifts in the importance of bottom-up and top-down factors on stream periphyton community structure. Oikos 128, 680–691. https://doi.org/10.1111/oik.05844 (2018).Article 
    CAS 

    Google Scholar 
    Hogsden, K. L. & Harding, J. S. Consequences of acid mine drainage for the structure and function of benthic stream communities: A review. Freshw. Sci. 31, 108–120. https://doi.org/10.1899/11-091.1 (2012).Article 

    Google Scholar 
    Sofi, M. S., Bhat, S. U., Rashid, I. & Kuniyal, J. C. The natural flow regime: A master variable for maintaining river ecosystem health. Ecohydrology 13(8), e2247. https://doi.org/10.1002/eco.2247 (2020).Article 

    Google Scholar 
    Biggs, B. J. F. Eutrophication of streams and rivers: Dissolved nutrient-chlorophyllrelationship for benthic algae. J. N. Am. Benthol. Soc. 19, 17–31 (2000).
    Google Scholar 
    Ormerod, S. J., Dobson, M., Hildrew, A. G. & Townsend, C. Multiple stressors in freshwater ecosystems. Freshw. Biol. 55, 1–4 (2010).
    Google Scholar 
    Poff, et al. The natural flow regime: A paradigm for river conservation and restoration. Bioscience 47, 769–784 (1997).
    Google Scholar 
    Naiman, R. J., Décamps, H., & McClain, M. E. Riparia: Ecology, Conservation and Management of Streamside Communities, (Elsevier/Academic Press, 2005).Gleick, P. H. Water use. Annu. Rev. Environ. Resour. 28, 275–314 (2003).
    Google Scholar 
    Jenkins, K. M. & Boulton, A. J. Connectivity in a dryland river: Short-term aquatic macroinvertebrate recruitment following floodplain inundation. Ecology 84(10), 2708–2723 (2003).
    Google Scholar 
    Biggs, B. J. F. Patterns in benthic algae of streams. In Algal Ecology in Freshwater Benthic Ecosystems (eds. Stevenson, R. J., Bothwell, M. L., & Lowe, R. L.) 31–56 (Academic Press, 1996).Smolar-Žvanut, N. & Mikoš, M. The impact of flow regulation by hydropower dams on the periphyton community in the Soča River, Slovenia. Hydrol. Sci. J. 59(5), 1032–1045. https://doi.org/10.1080/02626667.2013.834339 (2014).Article 
    CAS 

    Google Scholar 
    Curry, C. J. & Baird, D. J. Habitat type and dispersal ability influence spatial structuring of larval Odonata and Trichoptera assemblages. Freshw. Biol. 60, 2142–2152 (2015).
    Google Scholar 
    Wu, N., Cai, Q. & Fohrer, N. Contribution of microspatial factors to benthic diatom communities. Hydrobiologia 732, 49–60. https://doi.org/10.1007/s10750-014-1843-3 (2014).Article 
    CAS 

    Google Scholar 
    Mueller, M., Pander, J. & Geist, J. The effects of weirs on structural stream habitat and biological communities. J. Appl. Ecol 48(6), 1450–1461. https://doi.org/10.1111/j.1365-2664.2011.02035.x (2011).Article 

    Google Scholar 
    Davies, P. M. et al. Flow–ecology relationships: closing the loop on effective environmental flows. Mar. Freshw. Res. 65(2), 133–141 (2013).
    Google Scholar 
    Jun, Y. C. et al. Spatial distribution of benthic macroinvertebrate assemblages in relation to environmental variables in Korean nationwide streams. Water 8(1), 27. https://doi.org/10.3390/w8010027 (2016).Article 

    Google Scholar 
    Biggs, B. J. F. & Close, M. E. Periphyton biomass dynamics in gravel bed rivers: The relative effects of flows and nutrients. Freshw. Biol. 22, 209–231 (1989).CAS 

    Google Scholar 
    Jowett, I. & Biggs, B. J. F. Flood and velocity effects on periphyton and silt accumulation in two New Zealand rivers. N. Zeal. J. Mar. Freshw. Res. 31, 287–300 (1997).
    Google Scholar 
    Biggs, B. J. F., Goring, D. G. & Nikora, V. I. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J. Phycol. 34, 598–607 (1998).
    Google Scholar 
    Malmqvist, B. & Englund, G. Effects of hydropower-induced flow perturbations on mayfly (Ephemeroptera) richness and abundance in north Swedish river rapids. Hydrobiologia 341(2), 145–158 (1996).
    Google Scholar 
    Poff, N. L. & Ward, J. V. Herbivory under different flow regimes: A field experiment and test of a model with a benthic stream insect. Oikos 72, 179–188 (1995).
    Google Scholar 
    Poff, L. N., Wellnitz, T. & Monroe, J. B. Redundancy among three herbivorous insects across an experimental current velocity gradient. Oecologia 134, 262–269. https://doi.org/10.1007/s00442-002-1086-2 (2003).Article 

    Google Scholar 
    Vaughn, C. C. The role of periphyton abundance and quality in the microdistribution of a stream grazer, Helicopsyche borealis (Trichoptera: Helicopsychidae). Freshw. Biol. 16, 485–493 (1986).
    Google Scholar 
    Francoeur, S. N. Meta-analysis of lotic nutrient amendment experiments: Detecting and quantifying subtle responses. J. N. Am. Benthol. Soc. 20, 358–368 (2001).
    Google Scholar 
    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).
    Google Scholar 
    Hillebrand, H. Meta-analysis of grazer control of periphyton biomass across aquatic ecosystems. J. Phycol. 45, 798–806 (2009).
    Google Scholar 
    Lamberti, G. A. The role of periphyton in benthic food webs. In Algal Ecology—Freshwater Benthic Ecosystems, 533–572 (eds. Stevenson, R. J., Bothwell, M. L. & Lowe, R. L.) (Academic Press, 1996).Lamberti, G. A. et al. Influence of grazer type and abundance on plant–herbivore interactions in streams. Hydrobiologia 306, 179–188 (1995).
    Google Scholar 
    Gregory, S. V. Plant–herbivore interactions in stream systems. In Stream Ecology (eds. Barnes, J. R. & Minshall, G. W.) 157–189 (Plenum, 1983).Lamberti, G. A. & Moore, J. W. Aquatic insects as primary consumers. In The Ecology of Aquatic Insects (eds Resh, V. H. & Rosenberg, D. M.) 164–195 (Praeger, 1984).
    Google Scholar 
    Sterner, R. W., Elser, J. J. & Hessen, D. O. Stoichiometric relationships among producers, consumers and nutrient cycling in pelagic ecosystems. Biogeochemistry 17, 49–67 (1992).CAS 

    Google Scholar 
    Kahlert, M. & Baunsgaard, M. T. Nutrient recycling—A strategy of a grazer community to overcome nutrient limitation. J. N. Am. Benthol. Soc. 18, 363–369 (1999).
    Google Scholar 
    Burkholder, J. M., Wetzel, R. G. & Klomparens, K. L. Direct comparison of phosphate uptake by adnate and loosely attached microalgae within and intact biofilm matrix. Appl. Environ. Microbiol. 56, 2882–2890 (1990).CAS 

    Google Scholar 
    Steinman, A. D. Effects of grazers on freshwater benthic algae. In Algal Ecology: Freshwater Benthic Ecosystems (eds. Stevenson, R. J., Bothwell & Lowe, R. L.) 341–366 (Academic Press, 1996).Smucker, N. J. & Vis, M. L. Spatial factors contribute to benthic diatom structure in streams across spatial scales: Considerations for biomonitoring. Ecol. Indic. 11, 1191–1203 (2011).
    Google Scholar 
    Myers, et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    CAS 

    Google Scholar 
    Wang, J., Pan, F., Soininen, J., Heino, J. & Shen, J. Nutrient enrichment modifies temperature-biodiversity relationship in large scale field experiments. Nat. Commun. 7, 13 (2016).
    Google Scholar 
    Wu, et al. Flow regimes filter species traits of benthic diatom communities and modify the functional features of lowland streams-a nationwide scale study. Sci. Total Environ. 651, 357–366 (2019).CAS 

    Google Scholar 
    Nisar, M. A. Geospatial approach to study environmental characterization of a Kashmir wetland (Anchar) catchment with special reference to land use/land cover and changing climate. Ph.D Thesis, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir. Weblink. http://krishikosh.egranth.ac.in/handle/1/91309 (2012).Bhat, S. U., Sofi, A. H., Yaseen, T., Pandit, A. K. & Yousuf, A. R. Macro invertebrate community from Sonamarg streams of Kashmir Himalaya. Pak. J. Biol. Sci. 14(3), 182–194. https://doi.org/10.3923/pjbs.2011.182.194 (2011).Article 
    CAS 

    Google Scholar 
    Baba, A. I., Sofi, A. H., Bhat, S. U., & Pandit, A. K. Periphytic algae of river Sindh in the Sonamarg area of Kashmir valley. J. Phytol. 3(6) (2011).Sofi, M. S., Rautela, K. S., Bhat, S. U., Rashid, I. & Kuniyal, J. C. Application of geomorphometric approach for the estimation of hydro-sedimentological flows and cation weathering rate: Towards understanding the sustainable land use policy for the Sindh Basin, Kashmir Himalaya. Water Air Soil Pollut. 232(7), 1–11. https://doi.org/10.1007/s11270-021-05217-w (2021).Article 
    CAS 

    Google Scholar 
    Romshoo, S. A., & Fayaz, M. Use of high resolution remote sensing for improving environmental Friendly tourism master planning in the Alpine Himalaya: A case study of Sonamarg tourist resort, Kashmir. J. Himalayan Ecol. Sustain. Dev. 14 (2019).Biggs, B. J. F. & Kilroy, C. Stream periphyton monitoring manual. Published by NIWA for Ministry for the Environment, 226 Christchurch, New Zealand: NIWA (2000).APHA. Standard Methods for Examination of Water and Wastewater, 22nd edn. (American Public Health Association, 2012).Cox, E. J. Identification of Freshwater Diatoms from Live Material. (Chapman and Hall, 1996). https://doi.org/10.1017/S0025315400041023.Krammer, K., & Lange-Bertalot, H. Bacillariophyceae, Part 5. English and French Translation of the Keys. (VEB Gustav Fisher Verlag, 2000).Reichardt, E. A remarkable association of diatoms in a spring habitat in the Grazer Bergland, Austria. In Iconographia Diatomologica (ed. Lange-Bertalot, H.) 419–479 (2004).Żelazna-Wieczorek, J. Diatom flora in springs of Lódz Hills (Central Poland). Biodiversity, taxonomy and temporal changes of epipsammic diatom assemblages in springs affected by human impact, 419. Volume 13 of Diatom monographs. Gantner. https://books.google.co.in/books?id=bdxeewAACAAJ (2011).Stark, J. D., Boothroyd, I. K. G., Harding, J. S., Maxted, J. R. & Scarsbrook, M. R. Protocols for sampling macroinvertebrates in wadeable streams. In New Zealand Macroinvertebrate Working Group Report no. 1. Prepared for the Ministry for the Environment. Sustainable Management Fund Project, 5103 (2001).Winterbourn, M. J. Sampling stream invertebrates. In Biological Monitoring of Freshwaters. Proceedings of the Seminar. Water and Soil Miscellaneous Publication No. 83 (eds. Pridmore, R. D., Cooper, A. B.) 241–258. (National Water and Soil Conservation Authority, 1985).Barbour, M. T., Gerritsen, J., Snyder, B. D., Stribling, J. B. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 339. (United States Environmental Protection Agency, Office of Water, 1999).Malmqvist, B. & Hoffsten, P. O. Macroinvertebrate taxonomic richness, community structure and nestedness in Swedish streams. Fundam. Appl. Limnol. 150(1), 29–54. https://doi.org/10.1127/archiv-hydrobiol/150/2000/29 (2000).Article 

    Google Scholar 
    Ilmonen, J. & Paasivirta, L. Benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics: Patterns in abundance and diversity. Hydrobiologia 533(1–3), 99–113. https://doi.org/10.1007/s10750-004-2399-4 (2005).Article 

    Google Scholar 
    Munasinghe, D. S. N., Najim, M. M. M., Quadroni, S. & Musthafa, M. M. Impacts of streamflow alteration on benthic macroinvertebrates by mini-hydro diversion in Sri Lanka. Sci. Rep. 11(1), 546. https://doi.org/10.1038/s41598-020-79576-5 (2021).Article 
    CAS 

    Google Scholar 
    Edmondson, W. T. Fresh-Water Biology, 2nd ed. 1050–1056 (Wiley, 1959).Pennak, R. W. Freshwater Invertebrates of United States. (Wiley, 1978).McCafferty, W. P., Provonsha, A. V. Aquatic entomology: The fishermen’s and ecologists’ Illustrated Guide to Insects and their Relatives. (Jones and Bartlett Publishers, 1983).Borror, D., Triplehorn, C., Johnson, N. An Introduction to the Study of Insects, 6th ed. (Saunders College Publishing, 1989).Ward, J. V. Aquatic Insect Ecology, Biology and Habitat. (Wiley, 1992).Engblom, E. & Lingdell, P.E. Analyses of Benthic Invertebrates (ed. Nyman, L.) (1999).Bouchard, R. W. Guide to Aquatic Invertebrates of the Upper Midwest: Identification Manual for Students (University of Minnesota, 2004).
    Google Scholar 
    Subramanian, K. A. & Sivaramakrishnan, K. G. Aquatic Insects for Biomonitoring Freshwater Ecosystems—A Methodology Manual. (Ashoka Trust for Ecology and Environment (ATREE), 2007).Thorp, J. H., & Covich, A. P. (eds.) Ecology and Classification of North American Freshwater Invertebrates. (Academic Press, 2009).Allan, J. D. & Castillo, M.M. An introduction to fluvial ecosystems. In Stream Ecology: Structure and Function of Running Waters, 1–12 (2007).Oksanen, et al. Vegan: Community ecology package. In: R package version 2.4-3.McCune, B. & Grace, B. Analysis of Ecological Communities (MjM Software Design, 2016).Clarke, K. R. & Gorley, R. N. Primer v6 Permanova+ (Primer-E Ltd., 2006).
    Google Scholar 
    Salazar, G. EcolUtils: Utilities for Community Ecology Analysis. R package version 0.1 software (2018).Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9(6), 683–693 (2006).
    Google Scholar 
    Gardener, M. Community Ecology: Analytical Methods in Using R and Excel. (Pelagic Publishing, 2014).Chao, A. & Bunge, J. Estimating the number of species in a stochastic abundance model. Biometrics 58, 531–539. https://doi.org/10.1111/j.0006-341X.2002.00531.x (2002).Article 
    MATH 

    Google Scholar 
    Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).
    Google Scholar 
    Meng, X. L. et al. Responses of macroinvertebrates and local environment to short-term commercial sand dredging practices in a flood-plain lake. Sci. Total Environ. 631, 1350–1359 (2018).
    Google Scholar 
    Core Team, R. R: A Language and Environmental for Statistical Computing. (R Foundation for Statistical Computing, 2017).Wood, P. J. & Armitage, P. D. Biological effects of fine sediment in the lotic environment. Environ. Manag. 21, 203–217 (1997).CAS 

    Google Scholar 
    Marchant, R. Changes in the benthic invertebrate communities of the Thomson River, southeastern Australia, after dam construction. Regul. Rivers Res. Manag. 4, 71–89 (1989).
    Google Scholar 
    Gray, L. J. & Ward, J. V. Effects of sediment releases from a reservoir on stream macroinvertebrates. Hydrobiologia 96, 177–184 (1982).
    Google Scholar 
    Sand-Jensen, K., Moller, J. & Olesen, B. H. Biomass regulation of microbenthic algae in Danish lowland streams. Oikos 53, 332–340 (1988).
    Google Scholar 
    Lewis, M. A., Weber, D. E., Stanley, R. S. & Moore, J. C. Dredging impact on an urbanized Florida bayou: Effects on benthos and algal-periphyton. Environ. Pollut. 115(2), 161–171 (2001).CAS 

    Google Scholar 
    Biggs, B. J. Algal ecology in freshwater benthic ecosystems geology and landuse to the habitat template of periphyton in stream ecosystems. Freshw. Biol. 33, 419–438 (1995).
    Google Scholar 
    Taylor, et al. Can diatom-based pollution indices be used for biomonitoring in South Africa? A case study of the Crocodile West and Marico water management area. Hydrobiologia 592, 455–464 (2007).
    Google Scholar 
    Porter, et al. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters. Freshw. Biol. 53, 1036–1054 (2008).
    Google Scholar 
    Wetzel, R. G. & Likens, G. E. Limnological analyses, 3rd ed. In Nitrogen, Phosphorus, and Other Nutrients, 85–113. (Springer, 2000). https://doi.org/10.1007/978-1-4757-3250-4.Wetzel, R. G. Attached algal-substrata interactions: Fact or myth, and when and how? vol. 17. In Periphyton of Freshwater Ecosystems (ed. Wetzel, R.) 207–215 (Springer, 1983). https://doi.org/10.1007/978-94-009-7293-3_28.Krajenbrink, H. J. et al. Diatoms as indicators of the effects of river impoundment at multiple spatial scales. PeerJ 7, e8092. https://doi.org/10.7717/peerj.8092 (2019).Article 

    Google Scholar 
    Poff, N. L., Voelz, N. J., Ward, J. V. & Lee, R. E. Algal colonization under four experimentally-controlled current regimes in a high mountain stream. J. N. Am. Benthol. Soc. 9, 303–318 (1990).
    Google Scholar 
    Dodds, W. K. & Marra, J. L. Behaviors of the midge, Cricotopus (Diptera; Chironomidae) related to mutualism with Nostoc parmeloides (Cyanobacteria). Aquat. Insects 11, 201–208 (1989).
    Google Scholar 
    Tang, T., Niu, S. Q. & Dudgeon, D. Responses of epibenthic algal assemblages to water abstraction in Hong Kong streams. Hydrobiologia 703(1), 225–237. https://doi.org/10.1007/s10750-012-1362-z (2013).Article 
    CAS 

    Google Scholar 
    Maheshwari, K., Vashistha, J., Paulose, P. V. & Agarwal, T. Seasonal changes in phytoplankton community of lake Ramgarh, India. Int. J. Curr. Microbiol. Appl. Sci. 4(11), 318–330 (2015).CAS 

    Google Scholar 
    Luttenton, M. R., & Baisden, C. The relationships among disturbance, substratum size and periphyton community structure. In Advances in Algal Biology: A Commemoration of the Work of Rex Lowe 111–117. (Springer, 2006).Uehlinger, U. Spatial and temporal variability of periphyton biomass in a prealpine river (Necker, Switzerland). Arch. Fur. Hydrobiol. 123, 219–237 (1991).
    Google Scholar 
    Hill, W. R. Effects of light. In Algal Ecology in Freshwater Benthic Ecosystems. 121–148 (eds. Stevenson, R. J., Bothwell, M. L., Lowe, R. L.) (Academic Press, 1996).DeNichola, D. M. Periphyton responses to temperature at different ecological levels. In Algal Ecology in Freshwater Benthic Ecosystems. (eds. Stevenson, R. J., Bothwell, M. L., Lowe, R. L.) 149–181 (Academic Press, 1996).O’Reilly, C. M. Seasonal dynamics of periphyton in a large tropical lake. Hydrobiologia 553, 293–301. https://doi.org/10.1007/s10750-005-0878-x (2006).Article 

    Google Scholar 
    Borduqui, M. & Ferragut, C. Factors determining periphytic algae succession in a tropical hypereutrophic reservoir. Hydrobiologia 683, 109–122. https://doi.org/10.1007/s10750-011-0943-6 (2012).Article 
    CAS 

    Google Scholar 
    De Souza, M. L., Pellegrini, B. G. & Ferragut, C. Periphytic algal community structure in relation to seasonal variation and macrophyte richness in a shallow tropical reservoir. Hydrobiologia 755, 183–196. https://doi.org/10.1007/s10750-015-2232-2 (2015).Article 

    Google Scholar 
    Prowse, T. D. River-ice hydrology. In Encyclopedia of Hydrological Sciences, vol. 4 (ed. Anderson, M. G.). (Wiley, 2005).Rusanov, A. G., Stanislavskaya, E. V. & Ács, É. Periphytic algal assemblages along environmental gradients in the rivers of the Lake Ladoga basin, Northwestern Russia: Implication for the water quality assessment. Hydrobiologia 695(1), 305–327 (2012).CAS 

    Google Scholar 
    Sofi, M. S., Hamid, A., Bhat, S. U., Rashid, I. & Kuniyal, J. C. Impact evaluation of the run-of-river hydropower projects on the water quality dynamics of the Sindh River in the Northwestern Himalayas. Environ. Monit. Assess. 194(9), 1–6 (2022).
    Google Scholar 
    MCCormick, P. V. Resource competition and species coexistence in freshwater algal assemblages. In Algal ecology—Freshwater Benthic Ecosystems (eds. Stevenson, R. J., Bothwell, M. L., Lowe, R. L.) 229–252 (Academic, 1996).Hillebrand, H., Worm, B. & Lotze, H. K. Marine microbenthic community structure regulated by nitrogen loading and grazing pressure. Mar. Ecol. Prog. Ser. 204, 27–38 (2000).CAS 

    Google Scholar  More

  • in

    Life history strategies among soil bacteria—dichotomy for few, continuum for many

    Data were analyzed from samples collected, processed, and published previously [21, 25, 29] and have been summarized here. The present analysis, which consisted of sequence data processing, the calculation of taxon-specific isotopic signatures, and subsequent analyses, reflects original work.Sample collection and isotope incubationTo generate experimental data, three replicate soil samples were collected from the top 10 cm of plant-free patches in four ecosystems along the C. Hart Merriam elevation gradient in Northern Arizona. From low to high elevation, these sites are located in the following environments: desert grassland (GL; 1760 m), piñon-pine juniper woodland (PJ; 2020 m), ponderosa pine forest (PP; 2344 m), and mixed conifer forest (MC; 2620 m). Soil samples were air-dried for 24 h at room temperature, homogenized, and passed through a 2 mm sieve before being stored at 4 °C for another 24 h. This produced three distinct but homogenous soil samples from each of the four ecosystems that were subject to experimental treatments. Three treatments were applied to bring soils to 70% water-holding capacity: water alone (control), water with glucose (C treatment; 1000 µg C g−1 dry soil), or water with glucose and a nitrogen source (CN treatment; [NH4]2SO4 at 100 µg N g−1 dry soil). To track growth through isotope assimilation, both 18O-enriched water (97 atom %) and 13C-enriched glucose (99 atom %) were used. In all treatments isotopically heavy samples were paired with matching “light” samples that received water with a natural abundance isotope signatures. For 18O incubations, this design resulted in three soil samples per ecosystem per treatment (across four ecosystems and three treatments, n = 36) while 13C incubations were limited to only C and CN treatments (n = 24). Previous analyses suggest that three replicates is sufficient to detect growth of 10 atom % 18O in microbial DNA with a power of 0.6 and a growth of 5 atom % 18O with a power of 0.3 (12 and 6 atom % respectively for 13C) [30]. All soils were incubated in the dark for one week. Following incubation, soils were frozen at −80 °C for one week prior to DNA extraction.Quantitative stable isotope probingThe procedure of qSIP (quantitative stable isotope probing) is described here but has been applied to these samples as previously published [17, 21, 25]. DNA extraction was performed on soils using a DNeasy PowerSoil HTP 96 Kit (MoBio Laboratories, Carlsbad, CA, USA) and following manufacturer’s protocol. Briefly, 0.25 g of soils from each sample were carefully added to deep, 96-well plates containing zirconium dioxide beads and a cell lysis solution with sodium dodecyl sulfate (SDS) and shaken for 20 min. Following cell lysis, supernatant was collected and centrifuged three times in fresh 96-well plates with reagents separating DNA from non-DNA organic and inorganic materials. Lastly, DNA samples were collected on silica filter plates, rinsed with ethanol and eluted into 100 µL of a 10 mM Tris buffer in clean 96-well plates. To quantify the degree of 18O or 13C isotope incorporation into bacterial DNA (excess atom fraction or EAF), the qSIP protocol [31] was used, though modified slightly as reported previously [21, 24, 32]. Briefly, microbial growth was quantified as the change in DNA buoyant density due to incorporation of the 18O or 13C isotopes through the method of density fractionation by adding 1 µg of DNA to 2.6 mL of saturated CsCl solution in combination with a gradient buffer (200 mM Tris, 200 mM KCL, 2 mM EDTA) in a 3.3 mL OptiSeal ultracentrifuge tube (Beckman Coulter, Fullerton, CA, USA). The solution was centrifuged to produce a gradient of increasingly labeled (heavier) DNA in an Optima Max bench top ultracentrifuge (Beckman Coulter, Brea, CA, USA) with a Beckman TLN-100 rotor (127,000 × g for 72 h) at 18 °C. Each post-incubation sample was thus converted from a continuous gradient into approximately 20 fractions (150 µL) using a modified fraction recovery system (Beckman Coulter). The density of each fraction was measured with a Reichart AR200 digital refractometer (Reichert Analytical Instruments, Depew, NY, USA). Fractions with densities between 1.640 and 1.735 g cm−3 were retained as densities outside this range generally did not contain DNA. In all retained fractions, DNA was cleaned and purified using isopropanol precipitation and the abundance of bacterial 16S rRNA gene copies was quantified with qPCR using primers specific to bacterial 16S rRNA genes (Eub 515F: AAT GAT ACG GCG ACC ACC GAG TGC CAG CMG CCG CGG TAA, 806R: CAA GCA GAA GAC GGC ATA CGA GGA CTA CVS GGG TAT CTA AT). Triplicate reactions were 8 µL consisting of 0.2 mM of each primer, 0.01 U µL−1 Phusion HotStart II Polymerase (Thermo Fisher Scientific, Waltham, MA), 1× Phusion HF buffer (Thermo Fisher Scientific), 3.0 mM MgCl2, 6% glycerol, and 200 µL of dNTPs. Reactions were performed on a CFX384 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) under the following cycling conditions: 95 °C at 1 min and 44 cycles at 95 °C (30 s), 64.5 °C (30 s), and 72 °C (1 min). Separate from qPCR, retained sample-fractions were subject to a similar amplification step of the 16S rRNA gene V4 region (515F: GTG YCA GCM GCC GCG GTA A, 806R: GGA CTA CNV GGG TWT CTA AT) in preparation for sequencing with the same reaction mix but differing cycle conditions – 95 °C for 2 min followed by 15 cycles at 95 °C (30 s), 55 °C (30 s), and 60 °C (4 min). The resulting 16S rRNA gene V4 amplicons were sequenced on a MiSeq sequencing platform (Illumina, Inc., San Diego, CA, USA). DNA sequence data and sample metadata have been deposited in the NCBI Sequence Read Archive under the project ID PRJNA521534.Sequence processing and qSIP analysisIndependently from previous publications, we processed raw sequence data of forward and reverse reads (FASTQ) within the QIIME2 environment [33] (release 2018.6) and denoised sequences within QIIME2 using the DADA2 pipeline [34]. We clustered the remaining sequences into amplicon sequence variants (ASVs, at 100% sequence identity) against the SILVA 138 database [35] using a pre-trained open-reference Naïve Bayes feature classifier [36]. We removed samples with less than 3000 sequence reads, non-bacterial lineages, and global singletons and doubletons. We converted ASV sequencing abundances in each fraction to the number of 16S rRNA gene copies per gram dry soil based on qPCR abundances and the known amount of dry soil equivalent added to the initial extraction. This allowed us to express absolute population densities, rather than relative abundances. Across all replicates, we identified 114 543 unique bacterial ASVs.We calculated the 18O and 13C excess atom fraction (EAF) for each bacterial ASV using R version 4.0.3 [37] and data.table [38] with custom scripts available at https://www.github.com/bramstone/. Negative enrichment values were corrected using previously published methods [17]. ASVs that appeared in less than two of the three replicates of an ecosystem-treatment combination (n = 3) and less than three density fractions within those two replicates were removed to avoid assigning spurious estimates of isotope enrichment to infrequent taxa. Any ASVs filtered out of one ecosystem-treatment group were allowed to be present in another if they met the frequency threshold. Applying these filtering criteria, we limited our analysis towards 3759 unique bacterial ASVs which accounted for a small proportion of the total diversity but represented 68.0% of all sequence reads, and encompassed most major bacterial groups (Supplementary Fig. 1).Analysis of life history strategies and nutrient responseAll statistical tests were conducted in R version 4.0.3 [37]. We assessed the ability of phylum-level assignment of life history strategy to predict growth in response to C and N addition, as proxied by the incorporation of heavy isotope during DNA replication [39, 40]. Phylum-level assignments (Table 1) were based on the most frequently observed behavior of lineages with a representative phylum (or subphylum) as compiled previously [23]. We averaged 18O EAF values of bacterial taxa for each treatment and ecosystem and then subtracted the values in control soils from values in C-amended soils to determine C response (∆18O EAFC) and from the 18O EAF of bacteria in CN-amended soils to determine C and N response (Δ18O EAFCN). Because an ASV must have a measurable EAF in both the control and treatment for a valid Δ18O EAF to be calculated, we were only able to resolve the nutrient response for 2044 bacterial ASVs – 1906 in response to C addition and 1427 in response to CN addition.We used Gaussian finite mixture modeling, as implemented by the mclust R package [41], to demarcate plausible multi-isotopic signatures for oligotrophs and copiotrophs. For each treatment, we calculated average per-taxon 13C and 18O EAF values. To compare both isotopes directly, we divided 18O EAF values by 0.6 based on the estimate that this value (designated as µ) represents the fraction of oxygen atoms in DNA derived from the 18O-water, rather than from 16O within available C sources [42]. Two mixture components, corresponding to oligotrophic and copiotrophic growth modes, were defined using the Mclust function using ellipsoids of equal volume and shape. We observed several microorganisms with high 18O enrichment but comparatively low 13C enrichment, potentially indicating growth following the depletion of the added glucose, and that were reasonably clustered as oligotrophs in our mixture model.We tested how frequently mixture model clustering of each microorganism’s growth (based on average 18O–13C EAF in a treatment) could predict its growth across replicates (n = 12 in each treatment—although individual). We applied the treatment-level mixture models defined above to the per-taxon isotope values in each replicate, recording when a microorganism’s life history strategy in a replicate agreed with the treatment-level cluster, and when it didn’t. We used exact binomial tests to test whether the number of “successes” (defined as a microorganism being grouped in the same life history category as its treatment-level cluster) was statistically significant. To account for type I error across all individual tests (one per ASV per treatment), we adjusted P values in each treatment using the false-discovery rate (FDR) method [43].To determine the extent that life history categorizations may be appropriately applied at finer levels of taxonomic resolution, we constructed several hierarchical linear models using the lmer function in the nlme package version 3.1-149 [44]. To condense growth information from both isotopes into a single analysis, 18O and 13C EAF values were combined into a single variable using principal components analysis separately for each treatment. Across the C and CN treatments, the first principal component (PC1) was able to explain – respectively – 86% and 91% of joint variation of 18O and 13C EAF values. In all cases, we applied PC1 as the response variable and treated taxonomy and ecosystem as random model terms to limit the potential of pseudo-replication to bias significance values. We used likelihood ratio analysis and Akaike information criterion (AIC) values to compare models where life history strategy was determined based on observed nutrient responses at different taxonomic levels (Eq. 1) against a model with the same random terms but without any life history strategy data (Eq. 2). Separate models were applied to each treatment. To reduce model overfitting, we removed families represented by fewer than three bacterial ASVs as well as phyla represented by only one order. In addition, we removed bacterial ASVs with unknown taxonomic assignments (following Morrissey et al. [21]). This limited our analysis to 1 049 ASVs in the C amendment and 984 in the CN amendment.$${{{{{rm{PC}}}}}}{1}_{{18{{{{{rm{O}}}}}} – 13{{{{{rm{C}}}}}}}}sim {{{{{rm{strategy}}}}}} + 1|{{{{{rm{phylum}}}}}}/{{{{{rm{class}}}}}}/{{{{{rm{order}}}}}}/{{{{{rm{family}}}}}}/{{{{{rm{genus}}}}}}/{{{{{rm{eco}}}}}}$$
    (1)
    $${{{{{rm{PC}}}}}}{1}_{{18{{{{{rm{O}}}}}} – 13{{{{{rm{C}}}}}}}}sim 1 + 1|{{{{{rm{phylum}}}}}}/{{{{{rm{class}}}}}}/{{{{{rm{order}}}}}}/{{{{{rm{family}}}}}}/{{{{{rm{genus}}}}}}/{{{{{rm{eco}}}}}}$$
    (2)
    Here, life history strategy was defined at each taxonomic level using the mixture models above and based on the mean 18O and 13C EAF values of each bacterial lineage (Supplemental Fig. 2). We compared these models with the no-strategy model (Eq. 2) directly using likelihood ratio testing. More

  • in

    Monitoring and modelling marine zooplankton in a changing climate

    Pitois, S. G., Lynam, C. P., Jansen, T., Halliday, N. & Edwards, M. Bottom-up effects of climate on fish populations: data from the Continuous Plankton Recorder. Mar. Ecol. Prog. Ser. 456, 169–186 (2012).ADS 

    Google Scholar 
    Ruzicka, J. J. et al. Interannual variability in the Northern California Current food web structure: changes in energy flow pathways and the role of forage fish, euphausiids, and jellyfish. Prog. Oceanogr. 102, 19–41 (2012).ADS 

    Google Scholar 
    Lauria, V., Attrill, M. J., Brown, A., Edwards, M. & Votier, S. C. Regional variation in the impact of climate change: evidence that bottom-up regulation from plankton to seabirds is weak in parts of the Northeast Atlantic. Mar. Ecol. Prog. Ser. 488, 11–22 (2013).ADS 

    Google Scholar 
    Heneghan, R. F., Everett, J. D., Blanchard, J. L. & Richardson, A. J. Zooplankton are not fish: improving zooplankton realism in size-spectrum models mediates energy transfer in food webs. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00201 (2016).Lehette, P., Tovar-Sánchez, A., Duarte, C. M. & Hernández-León, S. Krill excretion and its effect on primary production. Mar. Ecol. Prog. Ser. 459, 29–38 (2012).ADS 
    CAS 

    Google Scholar 
    Arístegui, J., Duarte, C. M., Reche, I. & Gómez-Pinchetti, J. L. Krill excretion boosts microbial activity in the Southern Ocean. PLoS ONE 9, e89391 (2014).ADS 

    Google Scholar 
    Tovar-Sánchez, A., Duarte, C. M., Hernández-León, S. & Sañudo-Wilhelmy, S. A. Krill as a central node for iron cycling in the Southern Ocean. Geophys. Res. Lett. 34, 1–4 (2007).Schmidt, K. et al. Seabed foraging by Antarctic krill: Implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnol. Oceanogr. 56, 1411–1428 (2011).ADS 
    CAS 

    Google Scholar 
    Cavan, E. L. et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 10, 4742 (2019). This Review demonstrates how the dominant grazer in Antarctica plays a critical role in biogeochemical cycles.ADS 
    CAS 

    Google Scholar 
    Ratnarajah, L., Nicol, S. & Bowie, A. R. Pelagic iron recycling in the southern ocean: exploring the contribution of marine animals. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00109 (2018).Halfter, S., Cavan, E. L., Swadling, K. M., Eriksen, R. S. & Boyd, P. W. The role of zooplankton in establishing carbon export regimes in the southern ocean – a comparison of two representative case studies in the subantarctic region. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.567917 (2020).Schmidt, K. et al. Zooplankton gut passage mobilizes lithogenic iron for ocean productivity. Curr. Biol. 26, 2667–2673 (2016).CAS 

    Google Scholar 
    Brun, P. et al. Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Nat. Ecol. Evol. 3, 416–423 (2019).
    Google Scholar 
    Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 241–253 (2014).
    Google Scholar 
    Batten, S. D. & Walne, A. W. Variability in northwards extension of warm water copepods in the NE Pacific. J. Plankton Res. 33, 1643–1653 (2011).
    Google Scholar 
    Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).ADS 

    Google Scholar 
    Tagliabue, A. et al. Persistent uncertainties in ocean net primary production climate change projections at regional scales raise challenges for assessing impacts on ecosystem services. Front. Clim. https://doi.org/10.3389/fclim.2021.738224 (2021).Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).ADS 
    CAS 

    Google Scholar 
    Mackas, D. L. et al. Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology. Prog. Oceanogr. 97-100, 31–62 (2012).ADS 

    Google Scholar 
    Freer, J. J., Daase, M. & Tarling, G. A. Modelling the biogeographic boundary shift of Calanus finmarchicus reveals drivers of Arctic Atlantification by subarctic zooplankton. Glob. Change Biol. 28, 429–440 (2021).
    Google Scholar 
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).ADS 
    CAS 

    Google Scholar 
    Brandão, M. C. et al. Macroscale patterns of oceanic zooplankton composition and size structure. Sci. Rep. 11, 15714 (2021). This study showed that zooplankton abundance and median size decreased towards warmer and less productive environments due to changes in copepod composition, but some groups displayed the opposite relationships potentially due to alternative feeding strategies.ADS 

    Google Scholar 
    Campbell, M. D. et al. Testing Bermann’s rule in marine copepods. Ecography 44, 1283–1295 (2021). This global study found that temperature better predicted copepod size than did latitude or oxygen, with body size decreasing by 43.9% across the temperature range (−1.7 to 30 °C).
    Google Scholar 
    Barange, M. et al. Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation, and Mitigation Options. (FAO, 2018).Atkinson, A. et al. Questioning the role of phenology shifts and trophic mismatching in a planktonic food web. Prog. Oceanogr. 137, 498–512 (2015).ADS 

    Google Scholar 
    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 

    Google Scholar 
    Sasaki, M. & Dam, H. G. Global patterns in copepod thermal tolerance. J. Plankton Res. 43, 598–609 (2021).
    Google Scholar 
    Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).ADS 

    Google Scholar 
    Cooley, S. et al. Ocean and Coastal Ecosystems and their Services. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2022). This IPCC report synthesizes changes in zooplankton phenology compared to other marine life.Mackas, D. L., Goldblatt, R. & Lewis, A. G. Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic North Pacific. Can. J. Fish. Aquat. Sci. 55, 1878–1893 (1998).
    Google Scholar 
    Edwards, M. et al. Ecological Status Report: results from the CPR survey 2007/2008. 1-12 (2009).Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).
    Google Scholar 
    Costello, J. H., Sullivan, B. K. & Gifford, D. J. A physical–biological interaction underlying variable phenological responses to climate change by coastal zooplankton. J. Plankton Res. 28, 1099–1105 (2006).
    Google Scholar 
    Chevillot, X. et al. Toward a phenological mismatch in estuarine pelagic food web? PLoS ONE 12, e0173752 (2017).
    Google Scholar 
    Ji, R., Edwards, M., Mackas, D. L., Runge, J. A. & Thomas, A. C. Marine plankton phenology and life history in a changing climate: current research and future directions. J. Plankton Res. 32, 1355–1368 (2010).
    Google Scholar 
    Thibodeau, P. S. et al. Long-term observations of pteropod phenology along the Western Antarctic Peninsula. Deep Sea Res. Part I: Oceanogr. Res. Pap. 166, 103363 (2020).
    Google Scholar 
    Beaugrand, G., Reid Philip, C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).ADS 
    CAS 

    Google Scholar 
    Edwards, M. et al. North Atlantic warming over six decades drives decreases in krill abundance with no associated range shift. Commun. Biol. 4, 644 (2021). This regional study showed that ocean warming is causing a decrease in krill abundance but no poleward movement in range.
    Google Scholar 
    Chivers, W. J., Walne, A. W. & Hays, G. C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 8, 14434 (2017).ADS 
    CAS 

    Google Scholar 
    Lindley, J. A. & Daykin, S. Variations in the distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the north-eastern Atlantic Ocean and western European shelf waters. ICES J. Mar. Sci. 62, 869–877 (2005).
    Google Scholar 
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019). This regional study shows that the dominant grazer in Antarctic waters, Antarctic krill is moving southward due to regional warming.ADS 

    Google Scholar 
    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).ADS 
    CAS 

    Google Scholar 
    Pakhomov, E. A., Froneman, P. W., Wassmann, P., Ratkova, T. & Arashkevich, E. Contribution of algal sinking and zooplankton grazing to downward flux in the Lazarev Sea (Southern Ocean) during the onset of phytoplankton bloom: a lagrangian study. Mar. Ecol. Prog. Ser. 233, 73–88 (2002).ADS 

    Google Scholar 
    Tarling, G. A., Ward, P. & Thorpe, S. E. Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming. Glob. Change Biol. 24, 132–142 (2017). This study shows that 16 mesozooplankton taxa in the in the southwest Atlantic sector of the Southern Ocean are resilient to ocean warming.ADS 

    Google Scholar 
    Atkinson, A. et al. Stepping stones towards Antarctica: switch to southern spawning grounds explains an abrupt range shift in krill. Glob. Change Biol. 28, 1359–1375 (2021).
    Google Scholar 
    Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–377 (2019).ADS 
    CAS 

    Google Scholar 
    Yebra, L. et al. Spatio-temporal variability of the zooplankton community in the SW Mediterranean 1992–2020: Linkages with environmental drivers. Prog. Oceanogr. 209, 1–10 (2022).Cowen, T. et al. Report on the status and trends of the Southern Ocean zooplankton based on the SCAR Southern Ocean Continuous Plankton Recorder (SO-CPR) survey. (2020).Corona, S., Hirst, A., Atkinson, D. & Atkinson, A. Density-dependent modulation of copepod body size and temperature–size responses in a shelf sea. Limnol. Oceanogr. 66, 3916–3927 (2021).ADS 

    Google Scholar 
    Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiørboe, T. A global synthesis of seasonal temperature–size responses in copepods. Glob. Ecol. Biogeogr. 25, 988–999 (2016).
    Google Scholar 
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00212 (2019).Lavaniegos, B. E., Jiménez-Herrera, M. & Ambriz-Arreola, I. Unusually low euphausiid biomass during the warm years of 2014–2016 in the transition zone of the California Current. Deep Sea Res. Part II: Top. Stud. Oceanogr. 169-170, 104638 (2019).
    Google Scholar 
    Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res.: Oceans 122, 7267–7290 (2017).ADS 

    Google Scholar 
    O’ Loughlin, J. H. O. et al. Implications of Pyrosoma atlanticum range expansion on phytoplankton standing stocks in the Northern California Current. Prog. Oceanogr. 188, 1–9 (2020).Robertson, R. R. & Bjorkstedt, E. P. Climate-driven variability in Euphausia pacifica size distributions off northern California. Prog. Oceanogr. 188, 102412 (2020).
    Google Scholar 
    Stephens, J. A., Jordan, M. B., Taylor, A. H. & Proctor, R. The effects of fluctuations in North Sea flows on zooplankton abundance. J. Plankton Res. 20, 943–956 (1998).
    Google Scholar 
    Greene, C. H. & Pershing, A. J. The response of Calanus finmarchicus populations to climate variability in the Northwest Atlantic: basin-scale forcing associated with the North Atlantic Oscillation. ICES J. Mar. Sci. 57, 1536–1544 (2000).
    Google Scholar 
    Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318 (2014).ADS 
    CAS 

    Google Scholar 
    Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. Part I: Oceanogr. Res. Pap. 101, 54–70 (2015).ADS 

    Google Scholar 
    Steinke, K. B., Bernard, K. S., Ross, R. M. & B, Q. L. Environmental drivers of the physiological condition of mature female Antarctic krill during the spawning season: implications for krill recruitment. Mar. Ecol. Prog. Ser. 669, 65–82 (2021).ADS 

    Google Scholar 
    Brodeur, R. D. et al. Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Prog. Oceanogr. 77, 103–111 (2008).ADS 

    Google Scholar 
    Quiñones, J. et al. Climate-driven population size fluctuations of jellyfish (Chrysaora plocamia) off Peru. Mar. Biol. 162, 2339–2350 (2015).
    Google Scholar 
    Lynam, C. P., Attrill, M. J. & Skogen, M. D. Climatic and oceanic influences on the abundance of gelatinous zooplankton in the North Sea. J. Mar. Biol. Assoc. UK 90, 1153–1159 (2009).
    Google Scholar 
    Schmidt, K. et al. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. Glob. Change Biol. 26, 5574–5587 (2020).ADS 

    Google Scholar 
    Laglera, L. M. et al. Iron partitioning during LOHAFEX: Copepod grazing as a major driver for iron recycling in the Southern Ocean. Mar. Chem. 196, 148–161 (2017).CAS 

    Google Scholar 
    Cavan, E. L., Henson, S. A., Belcher, A. & Sanders, R. Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences 14, 177–186 (2017).ADS 
    CAS 

    Google Scholar 
    Valdés, V. et al. Nitrogen and phosphorus recycling mediated by copepods and response of bacterioplankton community from three contrasting areas in the western tropical South Pacific (20° S). Biogeosciences 15, 6019–6032 (2018).ADS 

    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the Ocean Carbon Cycle. Annu. Rev. Mar. Sci. 9, 413–444 (2017). This Review synthesizes the role of zooplankton within the ocean carbon cycle.ADS 

    Google Scholar 
    Ratnarajah, L. et al. Understanding the variability in the iron concentration of Antarctic krill. Limnol. Oceanogr. 61, 1651–1660 (2016).ADS 

    Google Scholar 
    Bernard, K. S., Steinberg, D. K. & Schofield, O. M. Summertime grazing impact of the dominant macrozooplankton off the Western Antarctic Peninsula. Deep Sea Res. Part I: Oceanogr. Res. Pap. 62, 111–122 (2012).ADS 

    Google Scholar 
    Böckmann, S. et al. Salp fecal pellets release more bioavailable iron to Southern Ocean phytoplankton than krill fecal pellets. Curr. Biol. 31, 2737–2746.e2733 (2021).
    Google Scholar 
    Cabanes, D. J. E. et al. First Evaluation of the Role of Salp Fecal Pellets on Iron Biogeochemistry. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00289 (2017).Ratnarajah, L. Regenerated iron: how important are different zooplankton groups to oceanic productivity. Curr. Biol. 31, R848–R850 (2021).CAS 

    Google Scholar 
    Giering, S. L., Steigenberger, S., Achterberg, E. P., Sanders, R. & Mayor, D. J. Elevated iron to nitrogen recycling by mesozooplankton in the Northeast Atlantic Ocean. Geophys. Res. Lett. 39, 1–5 (2012).Svensen, C. et al. Zooplankton communities associated with new and regenerated primary production in the Atlantic inflow North of Svalbard. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00293 (2019).Darnis, G. & Fortier, L. Zooplankton respiration and the export of carbon at depth in the Amundsen Gulf (Arctic Ocean). J. Geophys. Res. Oceans 117, 1–12 (2012).Miquel, J.-C. et al. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the role of zooplankton. Biogeosciences 12, 5103–5117 (2015).ADS 

    Google Scholar 
    Hernández-León, S. et al. Carbon export through zooplankton active flux in the Canary Current. J. Mar. Syst. 189, 12–21 (2019).
    Google Scholar 
    Gorgues, T., Aumont, O. & Memery, L. Simulated changes in the particulate carbon export efficiency due to diel vertical migration of zooplankton in the North Atlantic. Geophys. Res. Lett. 46, 5387–5395 (2019).ADS 
    CAS 

    Google Scholar 
    Steinberg, D. K. et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Res. Part I: Oceanogr. Res. Pap. 47, 137–158 (2000).ADS 
    CAS 

    Google Scholar 
    Lebrato, M., Molinero, J.-C., Mychek-Londer, J. G., Gonzalez, E. M. & Jones, D. O. B. Gelatinous carbon impacts benthic megafaunal communities in a continental margin. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.902674 (2022).Lebrato, M. & Jones, D. O. B. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol. Oceanogr. 54, 1197–1209 (2009).ADS 
    CAS 

    Google Scholar 
    Kobari, T. et al. Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean. Deep Sea Res. Part II: Top. Stud. Oceanogr. 55, 1648–1660 (2008).ADS 

    Google Scholar 
    Wilson, S. E., Steinberg, D. K. & Buesseler, K. O. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep Sea Res. Part II: Top. Stud. Oceanogr. 55, 1636–1647 (2008).ADS 

    Google Scholar 
    Laurenceau-Cornec, E. et al. The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: insights from free-drifting sediment trap deployments in naturally iron-fertilised waters near the Kerguelen Plateau. Biogeosciences 12, 1007–1027 (2015).ADS 

    Google Scholar 
    Manno, C., Stowasser, G., Enderlein, P., Fielding, S. & Tarling, G. The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean). Biogeosciences 12, 1955–1965 (2015).ADS 

    Google Scholar 
    Cavan, E. et al. Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett. 42, 821–830 (2015).ADS 
    CAS 

    Google Scholar 
    Lebrato, M. et al. Jelly biomass sinking speed reveals a fast carbon export mechanism. Limnol. Oceanogr. 58, 1113–1122 (2013).ADS 

    Google Scholar 
    Ducklow, H. W., Steinberg, D. K. & Buesseler, K. O. Upper ocean carbon export and the biological pump. Oceanography 14, 50–58 (2001).
    Google Scholar 
    Yebra, L. et al. Zooplankton production and carbon export flux in the western Alboran Sea gyre (SW Mediterranean). Prog. Oceanogr. 167, 64–77 (2018).ADS 

    Google Scholar 
    Yebra, L. et al. Mesoscale physical variability affects zooplankton production in the Labrador Sea. Deep Sea Res. Part I: Oceanogr. Res. Pap. 56, 703–715 (2009).ADS 
    CAS 

    Google Scholar 
    Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning, and carbon cycles. Proc. Natl Acad. Sci. USA 107, 10120–10124 (2010).ADS 
    CAS 

    Google Scholar 
    Benson, A. J. & Trites, A. W. Ecological effects of regime shifts in the Bering Sea and eastern North Pacific Ocean. Fish. Fish. 3, 95–113 (2002).
    Google Scholar 
    Coyle, K. O. & Pinchuk, A. I. Climate-related differences in zooplankton density and growth on the inner shelf of the southeastern Bering Sea. Prog. Oceanogr. 55, 177–194 (2002).ADS 

    Google Scholar 
    Duffy-Anderson, J. T. et al. Return of warm conditions in the southeastern Bering Sea: Phytoplankton – Fish. PLoS ONE 12, e0178955 (2017).
    Google Scholar 
    Odebrecht, C., Secchi, E. R., Abreu, P. C., Muelbert, J. H. & Uiblein, F. Biota of the Patos Lagoon estuary and adjacent marine coast: long-term changes induced by natural and human-related factors. Mar. Biol. Res. 13, 3–8 (2017).
    Google Scholar 
    Eisner, L. B. et al. Seasonal, interannual, and spatial patterns of community composition over the eastern Bering Sea shelf in cold years. Part I: zooplankton. ICES J. Mar. Sci. 75, 72–86 (2018).
    Google Scholar 
    Trueblood, L. A. Salp metabolism: temperature and oxygen partial pressure effect on the physiology of Salpa fusiformis from the California Current. J. Plankton Res. 41, 281–291 (2019).CAS 

    Google Scholar 
    Hernández-León, S. & Ikeda, T. in Respiration in aquatic ecosystems. p. 57-82 (Oxford University Press, 2005).Lewandowska, A. M. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614–623 (2014).
    Google Scholar 
    O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).
    Google Scholar 
    Chen, B., Landry, M. R., Huang, B. & Liu, H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 57, 519–526 (2012).ADS 
    CAS 

    Google Scholar 
    Paul, C., Matthiessen, B. & Sommer, U. Warming, but not enhanced CO2 concentration, quantitatively and qualitatively affects phytoplankton biomass. Mar. Ecol. Prog. Ser. 528, 39–51 (2015).ADS 
    CAS 

    Google Scholar 
    Sommer, U. & Lewandowska, A. Climate change and the phytoplankton spring bloom: warming and overwintering zooplankton have similar effects on phytoplankton. Glob. Change Biol. 17, 154–162 (2010).ADS 

    Google Scholar 
    Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).ADS 

    Google Scholar 
    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).Matsumoto, K., Tanioka, T. & Rickaby, R. Linkages between dynamic phytoplankton C:N:P and the ocean carbon cycle under climate change. Oceanography 33, 44–52 (2020).
    Google Scholar 
    Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137 (2010).CAS 

    Google Scholar 
    Bank, T. W. Blue Economy. https://www.worldbank.org/en/topic/oceans-fisheries-and-coastal-economies#1 (2021).Burthe, S. et al. Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Mar. Ecol. Prog. Ser. 454, 119–133 (2012).ADS 

    Google Scholar 
    Durant, J. M. et al. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Sci. Rep. 9, 15213 (2019).ADS 

    Google Scholar 
    Otero, J. et al. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob. Change Biol. 20, 61–75 (2014).ADS 

    Google Scholar 
    Kovach, R. P., Ellison, S. C., Pyare, S. & Tallmon, D. A. Temporal patterns in adult salmon migration timing across southeast Alaska. Glob. Change Biol. 21, 1821–1833 (2014).ADS 

    Google Scholar 
    Chust, G. et al. Earlier migration and distribution changes of albacore in the Northeast Atlantic. Fish. Oceanogr. 28, 505–516 (2019).
    Google Scholar 
    McQueen, K. & Marshall, C. T. Shifts in spawning phenology of cod linked to rising sea temperatures. ICES J. Mar. Sci. 74, 1561–1573 (2017).
    Google Scholar 
    Kanamori, Y., Takasuka, A., Nishijima, S. & Okamura, H. Climate change shifts the spawning ground northward and extends the spawning period of chub mackerel in the western North Pacific. Mar. Ecol. Prog. Ser. 624, 155–166 (2019).ADS 

    Google Scholar 
    Henderson, M. E., Mills, K. E., Thomas, A. C., Pershing, A. J. & Nye, J. A. Effects of spring onset and summer duration on fish species distribution and biomass along the Northeast United States continental shelf. Rev. Fish. Biol. Fish. 27, 411–424 (2017).
    Google Scholar 
    Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).ADS 
    CAS 

    Google Scholar 
    Kang, Y. S., Kim, J. Y., Kim, H. G. & Park, J. H. Long-term changes in zooplankton and its relationship with squid, Todarodes pacificus, catch in Japan/East Sea. Fish. Oceanogr. 11, 337–346 (2002).
    Google Scholar 
    Mackas, D. et al. Zooplankton time series from the Strait of Georgia: results from year-round sampling at deep water locations, 1990–2010. Prog. Oceanogr. 115, 129–159 (2013).ADS 

    Google Scholar 
    Daly, E. A., Brodeur, R. D. & Auth, T. D. Anomalous ocean conditions in 2015: impacts on spring Chinook salmon and their prey field. Mar. Ecol. Prog. Ser. 566, 169–182 (2017).ADS 

    Google Scholar 
    Feuilloley, G. et al. Concomitant changes in the environment and small pelagic fish community of the Gulf of Lions. Prog. Oceanogr. 186, 102375 (2020).
    Google Scholar 
    Yebra, L. et al. Molecular identification of the diet of Sardina pilchardus larvae in the SW Mediterranean Sea. Mar. Ecol. Prog. Ser. 617-618, 41–52 (2019).ADS 
    CAS 

    Google Scholar 
    Record, N. et al. Copepod diapause and the biogeography of the marine lipidscape. J. Biogeogr. 45, 2238–2251 (2018).
    Google Scholar 
    Yebra, L. et al. Zooplankton biomass depletion event reveals the importance of small pelagic fish top-down control in the Western Mediterranean Coastal Waters. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.608690 (2020).Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).ADS 
    CAS 

    Google Scholar 
    Piatt, J. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014-2016. PLOS ONE 15, e0226087 (2020).Meyer-Gutbrod, E., Greene, C., Davies, K. & Johns, D. G. Ocean regime shift is driving collapse of the North Atlantic Right Whale Population. Oceanography 34, 22–31 (2021).
    Google Scholar 
    Beltran, R. S. et al. Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proc. R. Soc. B 288, 1–9 (2021).Everett, J. D. et al. Modeling what we sample and sampling what we model: challenges for zooplankton model assessment. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00077 (2017). This article synthesizes key information required for better parameterize zooplankton in various models.Gibbs Samantha, J. et al. Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness. Sci. Adv. 6, eabc9123 (2020).Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 

    Google Scholar 
    Mitra, A. et al. Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Prog. Oceanogr. 129, 176–199 (2014).ADS 

    Google Scholar 
    Gentleman, W., Leising, A., Frost, B., Strom, S. & Murray, J. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep Sea Res. Part II: Top. Stud. Oceanogr. 50, 2847–2875 (2003).ADS 
    CAS 

    Google Scholar 
    Chenillat, F., Rivière, P. & Ohman, M. D. On the sensitivity of plankton ecosystem models to the formulation of zooplankton grazing. PLOS ONE 16, e0252033 (2021).CAS 

    Google Scholar 
    Stemmann, L. & Boss, E. Plankton and particle size and packaging: from determining optical properties to driving the biological pump. Annu. Rev. Mar. Sci. 4, 263–290 (2012).ADS 
    CAS 

    Google Scholar 
    Kiørboe, T., Saiz, E., Tiselius, P. & Andersen, K. H. Adaptive feeding behavior and functional responses in zooplankton. Limnol. Oceanogr. 63, 308–321 (2017).ADS 

    Google Scholar 
    Grigor, J. J. et al. Non-carnivorous feeding in Arctic chaetognaths. Prog. Oceanogr. 186, 102388 (2020).
    Google Scholar 
    Yeh, H. D., Questel, J. M., Maas, K. R. & Bucklin, A. Metabarcoding analysis of regional variation in gut contents of the copepod Calanus finmarchicus in the North Atlantic Ocean. Deep Sea Res. Part II: Top. Stud. Oceanogr. 180, 104738 (2020).
    Google Scholar 
    Novotny, A., Zamora-Terol, S. & Winder, M. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species. Proc. R. Soc. B 288, 1–10 (2021).Käse, L. et al. Metabarcoding analysis suggests that flexible food web interactions in the eukaryotic plankton community are more common than specific predator–prey relationships at Helgoland Roads, North Sea. ICES J. Mar. Sci. 78, 3372–3386 (2021).
    Google Scholar 
    Greco, M., Morard, R. & Kucera, M. Single-cell metabarcoding reveals biotic interactions of the Arctic calcifier Neogloboquadrina pachyderma with the eukaryotic pelagic community. J. Plankton Res. 43, 113–125 (2021).CAS 

    Google Scholar 
    Serra-Pompei, C., Soudijn, F., Visser, A. W., Kiørboe, T. & Andersen, K. H. A general size- and trait-based model of plankton communities. Prog. Oceanogr. 189, 102473 (2020).
    Google Scholar 
    Heneghan, R. F. et al. A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition. Ecol. Model. 435, 109265 (2020).CAS 

    Google Scholar 
    Ward, B. A. et al. EcoGEnIE 1.0: plankton ecology in the cGEnIE Earth system model. Geosci. Model Dev. 11, 4241–4267 (2018).ADS 
    CAS 

    Google Scholar 
    Sosik, H. M. & Olson, R. J. Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr. Methods 5, 204–216 (2007).
    Google Scholar 
    Lombard, F. et al. Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00196 (2019).Pitois, S. G. et al. A first approach to build and test the Copepod Mean Size and Total Abundance (CMSTA) ecological indicator using in-situ size measurements from the Plankton Imager (PI). Ecol. Indic. 123, 107307 (2021).Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L. & Stemmann, L. Machine learning for the study of plankton and marine snow from images. Annu. Rev. Mar. Sci. 14, 277–301 (2022).ADS 

    Google Scholar 
    Cornils, A. et al. Testing the usefulness of optical data for zooplankton long-term monitoring: Taxonomic composition, abundance, biomass and size spectra from ZooScan image analysis. Limnol. Oceanogr. Methods 20, 428–450 (2022).Henson, S. A., C, B. & R, L. Observing climate change trends in ocean biogeochemistry: when and where. Glob. Change Biol. 22, 1561–1571 (2016).ADS 

    Google Scholar 
    García-Comas, C. et al. Zooplankton long-term changes in the NW Mediterranean Sea: Decadal periodicity forced by winter hydrographic conditions related to large-scale atmospheric changes? J. Mar. Syst. 87, 216–226 (2011).
    Google Scholar 
    Vucetich, J. A., Nelson, M. P. & Bruskotter, J. T. What drives declining support for long-term ecological research? BioScience 70, 168–173 (2020).
    Google Scholar 
    Lindenmayer, D. B. et al. Value of long-term ecological studies. Austral Ecol. 37, 745–757 (2012).
    Google Scholar 
    Giron-Nava, A. et al. Quantitative argument for long-term ecological monitoring. Mar. Ecol. Prog. Ser. 572, 269–274 (2017).ADS 

    Google Scholar 
    Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. BioScience 67, 271–281 (2017).
    Google Scholar 
    Berline, L., Siokou-Frangou, I. & Marasovic, I. Intercomparison of six Mediterranean zooplankton time series. Prog. Oceanogr. 97-100, 76–91 (2012).ADS 

    Google Scholar 
    Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philos. Trans. R. Soc. B: Biol. Sci. 370, 20130272 (2015).
    Google Scholar 
    Mackas, D. L. & Beaugrand, G. Comparisons of zooplankton time series. J. Mar. Syst. 79, 286–304 (2010).
    Google Scholar 
    O’Brien, T. D., Lorenzoni, L., Isensee, K. & Valdés, L. What are Marine Ecological Time Series Telling Us About The Ocean? A Status Report. (2017).Ratnarajah, L. Map of BioEco Observing networks/capability (https://eurosea.eu/download/eurosea-d1-2-bioeco-observing-networks/?wpdmdl=3580&refresh=637b1a59bb2011669012057, 2021).Wright, R. M., Le Quéré, C., Buitenhuis, E. T., Pitois, S. & Gibbons, M. J. Role of jellyfish in the plankton ecosystem revealed using a global ocean biogeochemical model. Biogeosciences 18, 1291–1320 (2021).ADS 
    CAS 

    Google Scholar 
    Buitenhuis, E. T. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).ADS 

    Google Scholar 
    O’Brien, T. D. COPEPOD: The Global Plankton Database. An overview of the 2014 database contents, processing methods, and access interface. U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-F/ST-37, 29p. (2014).Pitois, S. G., Bouch, P., Creach, V. & van der Kooij, J. Comparison of zooplankton data collected by a continuous semi-automatic sampler (CALPS) and a traditional vertical ring net. J. Plankton Res. 38, 931–943 (2016).
    Google Scholar 
    Wiebe, P. H. & Benfield, M. C. From the Hensen net toward four-dimensional biological oceanography. Prog. Oceanogr. 56, 7–136 (2003).ADS 

    Google Scholar 
    Boss, E. et al. Recommendations for plankton measurements on oceansites moorings with relevance to other observing sites. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.929436 (2022).Pollina, T. et al. PlanktoScope: affordable modular quantitative imaging platform for citizen oceanography. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.949428 (2022).Pitois, S. G. et al. Comparison of a cost-effective integrated plankton sampling and imaging instrument with traditional systems for mesozooplankton sampling in the Celtic Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00005 (2018).Ohman, M. D. et al. Zooglider: an autonomous vehicle for optical and acoustic sensing of zooplankton. Limnol. Oceanogr.: Methods 17, 69–86 (2018).
    Google Scholar 
    Picheral, M. et al. The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for autonomous and cabled platforms. Limnol. Oceanogr. Methods 20, 115–129 (2021).
    Google Scholar 
    Picheral, M. et al. The Underwater Vision Profiler 5: an advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods 8, 462–473 (2010).
    Google Scholar 
    Richardson, A. et al. in Guidelines for the study of climate change effects on HABs Vol. 88 23 (UNESCO-IOC/SCOR, 2022).Drago, L. et al. Global distribution of zooplankton biomass estimated by in situ imaging and machine learning. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.894372 (2022).Forest, A. et al. Ecosystem function and particle flux dynamics across the Mackenzie Shelf (Beaufort Sea, Arctic Ocean): an integrative analysis of spatial variability and biophysical forcings. Biogeosciences 10, 2833–2866 (2013).ADS 

    Google Scholar 
    Haëntjens, N. et al. Detecting mesopelagic organisms using biogeochemical-argo floats. Geophys. Res. Lett. 47, 1–10 (2020).Clayton, S. et al. Bio-GO-SHIP: the time is right to establish global repeat sections of ocean biology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.767443 (2022).Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).ADS 

    Google Scholar 
    McPhaden, M. J., Santoso, A. & Cai, W. El Niño Southern Oscillation in a Changing Climate: Glossary (John Wiley & Sons, Inc, 2021). More

  • in

    Urban agriculture in walkable neighborhoods bore fruit for health and food system resilience during the COVID-19 pandemic

    During the COVID-19 pandemic, behavioral restrictions were imposed, after which various health problems were reported in many countries45,46. The pandemic has also increased food insecurity worldwide; consequently, panic buying has been observed in many countries, including Japan47. However, even in such situations, we found that diversity in local food access, ranging from self-cultivation to direct-to-consumer sales, was significantly associated with health and food security variables. Specifically, our results revealed the following five key discussion points.Urban agriculture in walkable neighborhoods bore fruit for health and food system resilience. However, the magnitude of its contribution differed depending on the type of urban agricultureThe results of this study showed that those who grew food by themselves at allotment farms and home gardens had significantly better subjective well-being and physical activity levels than those who did not. This result is in line with previous studies conducted during times free from the impact of infectious disease pandemics38,39,40. The use of direct sales was not related to subjective well-being but was significantly associated with physical activity. The reason might be that farm stand users tend to live in areas with farmland and travel to purchase fruits and vegetables at farm stands on foot or by bicycle. This result is consistent with that of a previous study demonstrating that the food environment in neighborhoods is an important component in promoting physical activity17.Our results also showed that those who grew food by themselves at allotment farms and those who purchased local foods at farm stands were significantly less anxious about the availability of fresh food both during the state of emergency and in the future than their counterparts. In contrast, home garden users showed significant differences only for the state of emergency. This result might be due to the differences in the size and yield of cultivation at allotment farms and home gardens. One lot in allotment farms in Tokyo can produce as much as or more than the average annual vegetable consumption per household in Japan48. However, home gardens are generally smaller and produce limited fresh foods for consumption, which may have influenced food security concerns.As in other countries, Japan imports much food from overseas and is deeply integrated into the large-scale global food system. However, as shown in this study, urban agriculture in Japanese suburbs forms small-scale, decentralized, and community-based local food systems. This multilayered food system can complement the disruptions and shortages of the global system when various problems occur for climatic, sociopolitical, or other reasons, such as pandemics. In fact, our empirical evidence suggests that urban agriculture in walkable neighborhoods, particularly allotment farms and direct-to-consumer sales at farm stands, contributed to the mitigation of food security concerns in neighborhood communities. This means that urban agriculture could enhance the resilience of the urban food system at a time when the global food system has been disrupted due to a pandemic. This validates recent discussions about the potential of urban agriculture to facilitate food system resilience10. Furthermore, our findings imply that the types of urban agriculture employed matter in determining the degree of contribution to food system resilience.To summarize the overall results, urban agriculture in walkable neighborhoods bore fruit for health and food system resilience during the COVID-19 pandemic. However, different types of urban agriculture exhibited varying associations with health and resilience. Allotment farms were positively related to all of the following: subjective well-being, physical activity, and food security concerns, both during the state of emergency and in the future. Home gardens were positively related to subjective well-being, physical activity, and food security concerns only during the state of emergency. Farm stands were positively related to physical activity and food security concerns both during the state of emergency and in the future.These differences may be due to the characteristics of the respective spaces. It is suggested that this diversity of urban agriculture has led to different types of people benefiting from various kinds of urban agriculture. Allotment farms were found to be associated with high subjective well-being, physical activity, and food security, but they may not be feasible for those who do not have enough physical strength because users are responsible for cultivating their lots, which measure 10–30 square meters40. In contrast, home gardens can be created even by those who are not confident in their physical strength. In fact, our study showed that women and older people engaged in home gardening more than men and younger people. In addition, direct-to-consumer sales at farm stands are the easiest way to obtain local fresh foods for those who do not have the time and space for allotment farms and home gardens. The need for urban agriculture has been argued in many countries2,3. However, little attention has been paid to its scale, accessibility, and diversity. Our study suggests that it is worthwhile to create diverse food production spaces within walkable neighborhoods while considering the diversity of people who access these spaces.Compared to other urban greenery and food retailers, the benefits of urban agriculture on subjective well-being and food security could be greaterCompared to the use of other urban green spaces, including urban parks, our results indicated that self-cultivation at allotment farms and home gardens was more strongly associated with subjective well-being. Previous studies have offered limited perspectives on the differences among various types of urban green spaces33. Our study further suggests that urban parks, allotment farms, and home gardens are differently associated with human health. However, as the reason was not determined, further research is needed.Furthermore, compared to other food retailers, such as supermarkets, convenience stores, and co-op deliveries, allotment farms and farm stands were more strongly associated with less anxiety about fresh food availability in the future. The availability of local fresh foods within walkable neighborhoods might have mitigated food security concerns because residents could grow food by themselves or directly observe farmers’ production processes, which may have made the difference from purchasing at places where the food systems were not visible.Flexibility in work style might promote urban agriculture in walkable neighborhoodsThere was an association between work style—working from home—and access to local food. According to the Ministry of Health, Labor and Welfare (https://www.mhlw.go.jp/english), 52% of Tokyo office workers worked from home during the first emergency declaration. Long commute times and high train congestion rates have been a problem in Tokyo suburbs, but remote workers have gained more time at and around their homes by reducing their commute times, increasing their opportunities to access local food in their walkable neighborhoods. Those who worked from home sought outdoor activities for refreshment and exercise and used a variety of urban green spaces during the pandemic49. Allotment farms and home gardens might be used as such urban green spaces. This result is consistent with previous studies assessing the characteristics of Canadian gardeners during the COVID-19 pandemic28,30.Until now, urban planners and policymakers have rarely taken work style into account. However, the flexibility of work styles and work hours may bring new insights; for example, those who work from home may become important players in urban agriculture. It has been pointed out that cities have a large hidden potential for urban agriculture by cultivating underused lands50. Our study suggests that such underused lands could be converted into productive urban landscapes for remote workers to engage in farming or gardening in between jobs as a hobby or as a side business.Food equity might be improved by urban agriculture in walkable neighborhoodsLocal fresh food is generally considered more expensive than junk food in high-income countries, creating social issues of food inequity. Therefore, past discussions on urban agriculture and food security have focused primarily on low-income households in socioeconomically disadvantaged areas24,25,26.In contrast, our study covered people from all income groups and found no statistically significant relationship between access to local food and income. This finding might be due to two urban cultural backgrounds regarding local food in Tokyo, that is, accessibility and affordability. First, residential segregation by income levels is not noteworthy in Tokyo and people from various income brackets live mixed in the same neighborhoods51. Therefore, most urban residents living in the suburbs have geographically equitable opportunities to access local foods. Second, local foods sold at farm stands are affordable. Prices are almost the same or cheaper than buying food at food retailers. While prices increase because of middleman margins related to shipping in the wholesale market, such increases are unnecessary when selling directly to consumers at farm stands. In addition, the allotment farm lots are not expensive to rent, particularly those operated by local municipalities (Supplementary Note 1).These two backgrounds make local fresh food physically and economically accessible to consumers of all income levels, resulting in food equity. This is particularly important because the concept of food system resilience includes the equitability perspective27.The integration of urban agriculture into walkable neighborhoods is a fruitful wayWhile the current discussion on walkable neighborhoods does not emphasize urban agriculture, our evidence indicated its effectiveness. The concept of walkable neighborhoods (e.g., the 15-min city model) stresses the decarbonization benefit of limiting vehicle travel, as well as the health benefits of promoting walking and cycling13,14,15,16. In addition, our research indicated that urban agriculture in walkable neighborhoods benefited health and well-being by increasing recreational outdoor opportunities to neighborhood communities, including remote workers. It also contributed to food system resilience by providing local foods to all people, including low-income households, when the global food system was disrupted due to the pandemic. Furthermore, recent studies on urban agriculture reported the decarbonization benefit of reducing carbon footprints in food production and distribution7,8. Small-scale and community-based urban agriculture in walkable neighborhoods might especially bring this benefit because neighborhood communities travel to farms on foot or by bicycle, which means almost no emission by distribution. While urban green spaces have various health benefits32,33,34,35, urban agriculture also contributes to food system resilience as well as carbon emission reduction, which makes it unique.Urban agriculture was once considered a failure of urban planning in Japan because it symbolized uncontrolled sprawl. This is analogous to the Western view, as urban agriculture was once considered the ultimate oxymoron1. However, our empirical evidence suggests that the urban‒rural mixture at neighborhood scales is a reasonable urban form that contributes to the resilience of the urban food system and to the health and well-being of neighborhood communities. It is no longer a failure of urban planning but a legacy of urban sprawl in the current urban context.Our study showed that integrating urban agriculture into walkable neighborhoods is a fruitful way of creating healthier cities and developing more resilient urban food systems during times of uncertainty. In cities where there is no farmland in intraurban areas, it would be considered effective to utilize underused spaces such as vacant lots and rooftops as productive urban landscapes. In growing cities where urban areas are still expanding, it would be advantageous to conserve agricultural landscapes within their urban fabrics. Our study could provide referential insights and robust evidence for urban policy to integrate urban agriculture into walkable neighborhoods.This study has potential limitations, including the timing of the survey and the measurement method that was utilized. We conducted the survey between June 4 and 8, 2020, just after the end of the first declaration of a state of emergency by the Japanese government. During this period, the main cultivation activities were planting and growing, and the harvest was just beginning. This seasonal constraint may have influenced the results. Because the survey was conducted during the pandemic, we used subjective methods to measure health and well-being status. However, the results might be different using objective methods52, thus further research is necessary. In addition, a longitudinal study is needed to determine whether the trends observed in this study were specific to the emergency period or whether they will persist after the COVID-19 pandemic. More