1.
Leis, J. M. & McCormick, M. I. The biology, behavior, and ecology of the pelagic, larval stage of coral reef fishes. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 171–199 (Academic Press, Cambridge, 2002).
2.
Cowen, R. K. Oceanographic influences on larval dispersal and retention and their consequences for population connectivity. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 149–170 (Academic Press, Cambridge, 2002).
3.
Doherty, P. J. & Fowler, T. An empirical test of recruitment limitation in a coral reef fish. Science 263, 935–939 (1994).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Armsworth, P. R. Recruitment limitation, population regulation, and larval connectivity in reef fish metapopulations. Ecology 83, 1092–1104 (2002).
Article Google Scholar
5.
Houde, E. D. Patterns and trends in larval-stage growth and mortality of teleost fish. J. Fish Biol. 51, 52–83 (1997).
ADS Article Google Scholar
6.
Haury, L. R., McGowan, J. A. & Wiebe, P. H. Patterns and processes in the time-space scales of plankton distributions. In Spatial Pattern in Plankton Communities 34, 277–327 (Springer, Boston, 1978).
7.
Letcher, B. H., Rice, J. A., Crowder, L. B. & Rose, K. A. Variability in survival of larval fish: Disentangling components with a generalized individual-based model. Can. J. Fish. Aquat. Sci. 53, 787–801 (1996).
Article Google Scholar
8.
Shanks, A. L. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser. 13, 311–315 (1983).
ADS Article Google Scholar
9.
Pineda, J. Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res. 52, 427–458 (1994).
Article Google Scholar
10.
Shanks, A. L., Largier, J., Brink, L., Brubaker, J. & Hooff, R. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45, 230–236 (2000).
ADS Article Google Scholar
11.
Garland, E. D., Zimmer, C. A. & Lentz, S. J. Larval distributions in inner-shelf waters: The roles of wind-driven cross-shelf currents and diel vertical migrations. Limnol. Oceanogr. 47, 803–817 (2002).
ADS Article Google Scholar
12.
Sponaugle, S., Lee, T., Kourafalou, V. & Pinkard, D. Florida Current frontal eddies and the settlement of coral reef fishes. Limnol. Oceanogr. 50, 1033–1048 (2005).
ADS Article Google Scholar
13.
Greer, A. T., Cowen, R. K., Guigand, C. M., Hare, J. A. & Tang, D. The role of internal waves in larval fish interactions with potential predators and prey. Prog. Oceanogr. 127, 47–61 (2014).
ADS Article Google Scholar
14.
Shulzitski, K. et al. Close encounters with eddies: Oceanographic features increase growth of larval reef fishes during their journey to the reef. Biol. Lett. 11, 20140746 (2015).
PubMed PubMed Central Article Google Scholar
15.
Shulzitski, K., Sponaugle, S., Hauff, M., Walter, K. D. & Cowen, R. K. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes. Proc. Natl. Acad. Sci. U. S. A. 113, 6928–6933 (2016).
CAS PubMed PubMed Central Article Google Scholar
16.
Woodson, C. B. & Litvin, S. Y. Ocean fronts drive marine fishery production and biogeochemical cycling. Proc. Natl. Acad. Sci. U. S. A. 112, 1710–1715 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
17.
Apel, J. R., Byrne, H. M., Proni, J. R. & Charnell, R. L. Observations of oceanic internal and surface waves from the Earth Resources Technology Satellite. J. Geophys. Res. 80, 865–881 (1975).
ADS Article Google Scholar
18.
Kingsford, M. J. Linear oceanographic features: A focus for research on recruitment processes. Aust. J. Ecol. 15, 391–401 (1990).
Article Google Scholar
19.
Klymak, J. M. et al. The direct breaking of internal waves at steep topography. Oceanography 25(2), 150–159 (2012).
Article Google Scholar
20.
Engel, A. et al. The Ocean’s Vital Skin: Toward an integrated understanding of the sea surface microlayer. Front. Mar. Sci. 4, 269 (2017).
Article Google Scholar
21.
Jillett, J. B. & Zeldis, J. R. Aerial observations of surface patchiness of a planktonic crustacean. Bull. Mar. Sci. 37, 609–619 (1985).
Google Scholar
22.
Kingsford, M. J. & Choat, J. H. Influence of surface slicks on the distribution and onshore movements of small fish. Mar. Biol. 91, 161–171 (1986).
Article Google Scholar
23.
Shanks, A. & Wright, W. Internal-wave-mediated shoreward transport of cyprids, megalopae, and gammarids and correlated longshore differences in the settling rate of intertidal barnacles. J. Exp. Mar. Biol. Ecol. 114, 1–13 (1987).
Article Google Scholar
24.
Shanks, A. L. Further support for the hypothesis that internal waves can cause shoreward transport of larval invertebrates and fish. Fish. Bull. 86, 703–714 (1988).
Google Scholar
25.
Kingsford, M. J., Wolanski, E. & Choat, J. H. Influence of tidally induced fronts and Langmuir circulations on distribution and movements of presettlement fishes around a coral reef. Mar. Biol. 109, 167–180 (1991).
Article Google Scholar
26.
Weidberg, N., Lobón, C., López, E. & Flórez, L. G. Effect of nearshore surface slicks on meroplankton distribution: role of larval behaviour. Mar. Ecol. 506, 15–30 (2014).
Article Google Scholar
27.
Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).
Article Google Scholar
28.
Hughes, B. B., Levey, M. D., Brown, J. A. & Fountain, M. C. Nursery Functions of US West Coast Estuaries: The State of Knowledge for Juveniles of Focal Invertebrate and Fish Species (The Nature Conservancy, Arlington, 2014).
Google Scholar
29.
Sheridan, P. & Hays, C. Are mangroves nursery habitat for transient fishes and decapods?. Wetlands 23, 449–458 (2003).
Article Google Scholar
30.
Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 70, 105–122 (2006).
Article Google Scholar
31.
Logerwell, E. A. & Smith, P. E. Mesoscale eddies and survival of late stage Pacific sardine (Sardinops sagax) larvae. Fish. Oceanogr. 10, 13–25 (2001).
Article Google Scholar
32.
Govoni, J. J., Hare, J. A., Davenport, E. D., Chen, M. H. & Marancik, K. E. Mesoscale, cyclonic eddies as larval fish habitat along the southeast United States shelf: A Lagrangian description of the zooplankton community. ICES J. Mar. Sci. 67, 403–411 (2010).
Article Google Scholar
33.
Merrifield, M. A. & Holloway, P. E. Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res. Oceans 107, 5-1-5–12 (2002).
Google Scholar
34.
Gove, J. M., Whitney, J.L. et al. Prey-size plastics are invading larval fish nurseries. Proc. Natl. Acad. Sci. U. S. A. 53, 201907496 (2019).
Google Scholar
35.
Reid, S. B., Hirota, J., Young, R. E. & Hallacher, L. E. Mesopelagic-boundary community in Hawaii: Micronekton at the interface between neritic and oceanic ecosystems. Mar. Biol. 109, 427–440 (1991).
Article Google Scholar
36.
Mundy, B. C. Checklist of the fishes of the Hawaiian archipelago. Bishop Mus. Bull. Zool. 6, 1–706 (2005).
Google Scholar
37.
Smith, K., Whitney, J. L., Lecky, J., Gove, J. M., Copeland, A., Kobayashi, D. R. & McManus, M. A. Physical mechanisms driving biological accumulation in surface lines on coastal Hawaiian waters. (in review).
38.
Cheng, L. Notes on the ecology of the oceanic insect Halobates. Mar. Fish. Rev. 36(2), 1–7 (1974).
39.
Senta, T., Kimura, M. & Kanbara, T. Predation of fishes on open-ocean species of sea-skaters (Halobates spp.). Jpn. J. Ichthyol. 40, 193–198 (1993).
Google Scholar
40.
West, A. P. Aspects of the Early Life History of Billfish Off Kona, Hawaii. PhD Dissertation 1–202 (University of Technology, Sydney, 2004).
41.
Gove, J. M., Lecky, J., Walsh, W. J., Ingram, R. J., Leong, K., Polovina, J. J., Maynard, J. A., Whittier, R., Kramer, L., Schemmel, E. M., Hospital, J., Wongbusarakum, S., Conklin, E., Wiggins, C. & Williams, G. J. West Hawai‘i integrated ecosystem assessment ecosystem status report. Pacific Islands Fisheries Science Center, PIFSC Special Publication SP-19-001, 1–46 (2019).
42.
Friedlander, A.M. Status of Hawaii’s coastal fisheries in the new millennium, Revised 2004 edition, in: 2001 Fisheries Symposium. Presented at the 2001 Fisheries Symposium, American Fisheries Society, Hawaii Chapter (2004).
43.
Gaffney, R. Evaluation of the status of the recreational fishery for ulua in Hawai‘i, and recommendations for future management. Hawaii Department of Land and Natural Resources, Division of Aquatic Resources Technical Report 20–02, 1–42 (2004).
44.
Boehlert, G. W. & Mundy, B. C. Vertical distribution of larval fishes off Kahe Point, Oahu, a site for potential ocean thermal energy development. Final Report to National Ocean Service, Division of Ocean Minerals and Energy, NOAA 1–76 (1986).
45.
Boehlert, G. W., Watson, W. & Sun, L. C. Horizontal and vertical distributions of larval fishes around an isolated oceanic island in the tropical Pacific. Deep-Sea Res. Part I 39, 439–466 (1992).
ADS Article Google Scholar
46.
Randall, J. E. Reef and Shore Fishes of the Hawaiian Islands (University of Hawaii Press, Honolulu, Hawaii, 2007).
Google Scholar
47.
Hobson, E. S. Trophic relationships of fishes specialized to feed on zooplankters above coral reefs. In The Ecology of Fishes on Coral Reefs (ed. Sale, P. F.) 69–95 (1991).
48.
Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, 1–33 (2015).
Article Google Scholar
49.
Downie, R. A., Babcock, R. C., Thomson, D. P. & Vanderklift, M. A. Density of herbivorous fish and intensity of herbivory are influenced by proximity to coral reefs. Mar. Ecol. Prog. Ser. 482, 217–225 (2013).
ADS Article Google Scholar
50.
Parrish, J. D. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar. Ecol. Prog. Ser. 58, 143–160 (1989).
ADS Article Google Scholar
51.
Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science 364, 1189–1192 (2019).
Article PubMed PubMed Central Google Scholar
52.
Grimes, C. B. & Kingsford, M. J. How do riverine plumes of different sizes influence fish larvae: Do they enhance recruitment?. Mar. Freshw. Res. 47, 191–208 (1996).
Article Google Scholar
53.
Zenitani, H., Kono, N. & Tsukamoto, Y. Relationship between daily survival rates of larval Japanese anchovy (Engraulis japonicus) and concentrations of copepod nauplii in the Seto Inland Sea, Japan. Fish. Oceanogr. 16, 473–478 (2007).
Article Google Scholar
54.
Hunter, J. R. Feeding ecology and predation of marine fish larvae. In Marine Fish Larvae: Morphology, Ecology, and Relation to Fisheries (ed. Lasker, R.) 34–77 (Washington Sea Grant Program, 1981).
55.
Samprey, A., McKinnon, A. D., Meekan, M. G. & McCormick, M. I. Glimpse into guts: Overview of the feeding of larvae of tropical shorefishes. Mar. Ecol. Prog. Ser. 339, 1–15 (2007).
56.
Carassou, L. & Le borgne, R. & Ponton, D. Diet of pre-settlement larvae of coral-reef fishes: Selection of prey types and sizes. J. Fish. Biol. 75, 707–715 (2009).
CAS PubMed Article PubMed Central Google Scholar
57.
Østergaard, P., Munk, P. & Janekarn, V. Contrasting feeding patterns among species of fish larvae from the tropical Andaman Sea. Mar. Biol. 146, 595–606 (2005).
Article Google Scholar
58.
Yang, J. W. et al. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioninginterplay between nanoflagellates and bacterioplankton. ISME J. 12, 1532–1542 (2018).
PubMed PubMed Central Article Google Scholar
59.
Greer, A. T. et al. Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton. J. Plankton Res. 35, 939–956 (2013).
Article Google Scholar
60.
Benoit-Bird, K. J. & McManus, M. A. A critical time window for organismal interactions in a pelagic ecosystem. PLoS ONE 9, e97763 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
61.
Benoit-Bird, K., Shroyer, E. L. & McManus, M. A. A critical scale in plankton aggregations across coastal ecosystems. Geophys. Res. Lett. 40, 3968–3974 (2013).
ADS Article Google Scholar
62.
Sponaugle, S., Llopiz, J. K., Havel, L. N. & Rankin, T. L. Spatial variation in larval growth and gut fullness in a coral reef fish. Mar. Ecol. Prog. Ser. 383, 239–249 (2009).
ADS Article Google Scholar
63.
Castro, J., Santiago, J. & Santana-Ortega, A. A general theory on fish aggregation to floating objects: An alternative to the meeting point hypothesis. Rev. Fish. Biol. Fish. 11, 255–277 (2002).
64.
Kingsford, M. Biotic and abiotic structure in the pelagic environment: Importance to small fishes. Bull. Mar. Sci. 53, 393–415 (1993).
Google Scholar
65.
Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 0116 (2017).
Article Google Scholar
66.
Gregory, M. R. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 364, 2013–2025 (2009).
Article Google Scholar
67.
Carpenter, E. J., Anderson, G. R., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).
ADS CAS PubMed Article PubMed Central Google Scholar
68.
de Sá, L. C., Luís, L. G. & Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 196, 359–362 (2015).
Article CAS Google Scholar
69.
Franks, P. Sink or swim, accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 82, 1–12 (1992).
ADS Article Google Scholar
70.
Genin, A., Jaffe, J. S., Reef, R., Richter, C. & Franks, P. J. S. Swimming against the flow: A mechanism of zooplankton aggregation. Science 308, 860–862 (2005).
ADS CAS PubMed Article Google Scholar
71.
Young, M. & Adams, N. J. Plastic debris and seabird presence in the Hauraki Gulf, New Zealand. NZ J. Mar. Freshw. Res. 44, 167–175 (2010).
CAS Article Google Scholar
72.
Wolanski, E. & Hamner, W. M. Topographically controlled fronts in the ocean and their biological influence. Science 241, 177–181 (1988).
ADS CAS PubMed Article PubMed Central Google Scholar
73.
Morgan, S. G., Fisher, J. L. & Largier, J. L. Larval retention, entrainment, and accumulation in the lee of a small headland: Recruitment hotspots along windy coasts. Limnol. Oceanogr. 56, 161–178 (2011).
ADS Article Google Scholar
74.
Leis, J. M., Siebeck, U. & Dixson, D. L. How Nemo finds home: The neuroecology of dispersal and of population connectivity in larvae of marine fishes. Integr. Comp. Biol. 51, 826–843 (2011).
PubMed Article PubMed Central Google Scholar
75.
Woodson, C. B. et al. Coastal fronts set recruitment and connectivity patterns across multiple taxa. Limnol. Oceanogr. 57, 582–596 (2012).
ADS Article Google Scholar
76.
Woodson, C. B. & McManus, M. A. Foraging behavior can influence dispersal of marine organisms. Limnol. Oceanogr. 52, 2701–2709 (2007).
ADS Article Google Scholar
77.
Simpson, S. D., Radford, A. N., Tickle, E. J., Meekan, M. G. & Jeffs, A. G. Adaptive avoidance of reef noise. PLoS ONE 6, e16625 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
78.
Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268 (2006).
PubMed Article Google Scholar
79.
Rudershausen, P. J. et al. Feeding ecology of blue marlins, dolphinfish, yellowfin tuna, and wahoos from the North Atlantic Ocean and comparisons with other oceans. Trans. Am. Fish. Soc. 139, 1335–1359 (2011).
Article Google Scholar
80.
Harrison, C. S., Hilsa, T. S. & Seki, M. P. Hawaiian seabird feeding ecology. Wildl. Monogr. 85, 3–71 (1983).
81.
Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
82.
Pikitch, E. K. et al. The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish. 15, 43–64 (2014).
Article Google Scholar
83.
Greer, A. T. & Woodson, C. B. Application of a predator–prey overlap metric to determine the impact of sub-grid scale feeding dynamics on ecosystem productivity. ICES J. Mar. Sci. 73, 1051–1061 (2016).
Article Google Scholar
84.
Woodson, C. B. The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci. 10, 421–441 (2018).
ADS CAS Article Google Scholar
85.
Luiz, O. et al. Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc. Natl. Acad. Sci. U. S. A. 110, 16498–16502 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
86.
Stobutzki, I. C. & Bellwood, D. R. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35–41 (1997).
ADS Article Google Scholar
87.
Jones, G. P. et al. Larval retention and connectivity among populations of corals and reef fishes: History, advances and challenges. Coral Reefs 28, 307–325 (2009).
ADS Article Google Scholar
88.
Underwood, J. N. Ecologically relevant dispersal of corals on isolated reefs: Implications for managing resilience. Ecol. Appl. 19, 18–29 (2009).
PubMed Article PubMed Central Google Scholar
89.
Walsh, W. J. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ. Biol. Fish. 18, 257–276 (1987).
Article Google Scholar
90.
Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Comms. 7, 1–8 (2016).
Article CAS Google Scholar
91.
Brown, D. M. & Cheng, L. New net for sampling the ocean surface. Mar. Ecol. Prog. Ser. 5, 225–227 (1981).
ADS Article Google Scholar
92.
Isaacs, J. E. & Kidd, L. W. Isaacs-Kidd Midwater Trawl. University of California Scripps Institute of Oceanography Final Report 1, SIO Ref.53-3 (1953).
93.
Mann, K. H. & Lazier, J. R. N. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. (Wiley-Blackwell, Hoboken, 2006).
94.
Tejada-Martínez, A. E., Akkerman, I. & Bazilevs, Y. Large-eddy simulation of shallow water langmuir turbulence using isogeometric analysis and the residual-based variational multiscale method. J. Appl. Mech. 79, 1–12 (2011).
Google Scholar
95.
Miller, J. M., Leis, J. M. & Watson, W. An Atlas of Common Nearshore Marine Fish Larvae of the Hawaiian Islands (University of Hawaii Sea Grant College Program, Honolulu, 1979).
Google Scholar
96.
Moser, H. G., Richards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W. & Richardson, S. L. Ontogeny and Systematics of Fishes. (American Society of Ichthyologists and Herpetologists Special Publication Number 1, Allen Press, Lawrence, Kansas, 1984).
97.
Ozawa, T. Studies on the Oceanic Ichthyoplankton in the Western North Pacific (Kyushu University Press, Japan, 1986).
Google Scholar
98.
Moser, H. G. The early stages of fishes in the California current region. Calif. Cooper. Ocean. Fish. Investig. Atlas No. 33, 1–1517 (1996).
99.
Leis, J. M. & Carson-Ewart, B. M. The Larvae of Indo-Pacific Coastal Fishes: An Identification Guide to Marine Fish Larvae. (Australia Museum, 2006).
100.
Okiyama, M. An Atlas of the Early Stage Fishes in Japan. vols. 1 & 2, 2nd Ed., 1–1639 (Tokai University Press, Kanagawa, Japan, 2014).
101.
Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. 51, 57–141 (2006).
PubMed Article PubMed Central Google Scholar
102.
Kingsford, M. J. & Milicich, M. J. Presettlement phase of Parika scaber (Pisces: Monacanthidae): A temperate reef fish. Mar. Ecol. Prog. Ser. 36, 65–79 (1987).
ADS Article Google Scholar
103.
Andersen, N. M. & Cheng, L. The marine insect Halobates (Heteroptera: Gerridae): Biology, adaptations, distribution, and phylogeny. Oceanogr. Mar. Biol. Annu. Rev. 42, 119–180 (2004).
Google Scholar
104.
Froese, R. & Pauly, D. FishBase. www.fishbase.org (2018).
105.
Hajibabaei, M. et al. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci. 360, 1959–1967 (2005).
CAS Article Google Scholar
106.
Noren, F. Small plastic particles in Swedish West Coast waters. N-Research Consultants Report 1–12 (2008).
107.
Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
108.
Hedges, L. V., Gurevitch, J. & Curtis, P. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Article Google Scholar
109.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., OHara, R. B., Simpson, G. L., Solymos, P., Stevens, M. & Wagner, H. vegan: community ecology package. R. package. version 2.2-1. http://CRAN.R-project.org/packagepvegan. (2015). at http://CRAN.R-project.org/packagepvegan.
110.
Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).
111.
Legendre, P. & Legendre, L. Numerical Ecology, Third Edition. (Elsevier, Amsterdam, 2012).
112.
Harrell, F. E., Jr. Package ‘Hmisc’—Harrell Miscellaneous. 1–363 (http://cran.r-project.org/web/packages/Hmisc, 2012).
113.
Wei, T. Package ‘corrplot’—Visualization of a correlation matrix v0.60. 1–16 (https://CRAN.R-project.org/package=corrplot, 2012).
114.
Zeileis, A., Cribari-Neto, F., Gruen, B. & Kosmidis, I. Beta Regression in R. J. Stat. Softw. 34, 1–24 (2010).
Article Google Scholar
115.
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2017). https://www.R-project.org/. More