Livestock-associated MRSA survival on house flies (Musca domestica) and stable flies (Stomoxys calcitrans) after removal from a Danish pig farm
1.
Anker, J. C. H. et al. Distance to pig farms as risk factor for community-onset livestock-associated MRSA CC398 infection in persons without known contact to pig farms: a nationwide study. Zoonoses Public Health 65, 352–360 (2018).
CAS PubMed PubMed Central Article Google Scholar
2.
Broens, E. M., Graat, E. A. M., Van Der Wolf, P. J., Van De Giessen, A. W. & De Jong, M. C. M. Prevalence and risk factor analysis of livestock associated MRSA-positive pig herds in The Netherlands. Prev. Vet. Med. 102, 41–49 (2011).
CAS PubMed Article PubMed Central Google Scholar
3.
Sørensen, A. I. V. Spread and control of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Danish pig herds. PhD Thesis, March 2018 Anna Irene Vedel Sørensen. (2018).
4.
Danish Veterinary and Food Administration. Results of screening for livestock-associated MRSA in pigs in 2016. Fødevarestyrelsen. www.foedevarestyrelsen.dk/Nyheder/Aktuelt/Documents/MRSA%20ekspertgruppe%20-%20resultatene%20forekomst%20af%20husdyr-MRSA%20i%20svin%202016.pdf (2017).
5.
Schulz, J., Boklund, A., Toft, N. & Halasa, T. Drivers for livestock-associated methicillin-resistant staphylococcus aureus spread among Danish pig herds: a simulation study. Sci. Rep. 8, 1–11 (2018).
Article CAS Google Scholar
6.
Borck Høg, B. et al. DANMAP 2016: use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Statens Serum Institut, National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark (2017).
7.
Borck Høg, B. et al. DANMAP 2017: use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Statens Serum Institut, National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark (2018).
8.
Larsen, J. et al. Emergence of livestock-associated methicillin-resistant staphylococcus aureus bloodstream infections in Denmark. Clin. Infect. Dis. 65, 1072–1076 (2017).
PubMed PubMed Central Article Google Scholar
9.
Gibbs, S. G., Green, C. F., Tarwater, P. M. & Scarpino, P. V. Airborne antibiotic resistant and nonresistant bacteria and fungi recovered from two swine herd confined animal feeding operations. J. Occup. Environ. Hyg. 1, 699–706 (2004).
PubMed Article PubMed Central Google Scholar
10.
Scarpino, P. V. & Quinn, H. Bioaerosol distribution patterns adjacent to two swine-growing-finishing housed confinement units in the American Midwest. J. Aerosol Sci. 29, 553–554 (1998).
ADS Article Google Scholar
11.
Baldacchino, F., Muenworn, V., Desquesnes, M., Desoli, F. & Charoenviriyaphap, T. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): a review. Parasite 20, 26 (2013).
PubMed PubMed Central Article Google Scholar
12.
Nayduch, D. & Burrus, R. G. Flourishing in filth: house fly-microbe interactions across life history. Ann. Entomol. Soc. Am. 110, 6–18 (2017).
CAS Article Google Scholar
13.
Bahrndorff, S., De Jonge, N., Skovgård, H. & Nielsen, J. L. Bacterial communities associated with houseflies (Musca domestica L.) sampled within and between farms. PLoS ONE 12, 1–15 (2017).
Article CAS Google Scholar
14.
Park, R. et al. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome 7, 1–12 (2019).
CAS Article Google Scholar
15.
Forsey, T. & Darougar, S. Transmission of chlamydiae by the housefly. Br. J. Ophthalmol. 65, 147–150 (1981).
CAS PubMed PubMed Central Article Google Scholar
16.
Skovgård, H., Kristensen, K. & Hald, B. Retention of Campylobacter (Campylobacterales: Campylobacteraceae) in the house fly (Diptera: Muscidae). J. Med. Entomol. 48, 1202–1209 (2011).
PubMed Article Google Scholar
17.
Mellor, P. S., Kitching, R. P. & Wilkinson, P. J. Mechanical transmission of capripox virus and African swine fever virus by Stomoxys calcitrans. Res. Vet. Sci. 43, 109–112 (1987).
CAS PubMed Article PubMed Central Google Scholar
18.
Nayduch, D., Cho, H. & Joyner, C. Staphylococcus aureus in the house fly: temporospatial fate of bacteria and expression of the antimicrobial peptide defensin. J. Med. Entomol. 50, 171–178 (2013).
PubMed PubMed Central Article Google Scholar
19.
Espinosa-Gongora, C., Dahl, J., Elvstrøm, A., van Wamel, W. J. & Guardabassi, L. Individual predisposition to Staphylococcus aureus colonization in pigs on the basis of quantification, carriage dynamics, and serological profiles. Appl. Environ. Microbiol. 81, 1251–1256 (2015).
CAS PubMed PubMed Central Article Google Scholar
20.
Friesen, K., Berkebile, D. R., Zhu, J. J. & Taylor, D. B. Laboratory rearing of stable flies and other Muscoid Diptera. J. Vis. Exp. 138, 1–7 (2018)
Google Scholar
21.
Liu, C. M. et al. Staphylococcus aureus and the ecology of the nasal microbiome. Sci. Adv. 1, 5 (2015).
Google Scholar
22.
Beresford, D. V. & Sutcliffe, J. F. Local infestation or long-distance migration? The seasonal recolonization of dairy farms by Stomoxys calcitrans (Diptera: Muscidae) in South Central Ontario, Canada. J. Econ. Entomol. 102, 788–798 (2009).
CAS PubMed Article Google Scholar
23.
Bailey, D. L., Whitfield, T. L. & Smittle, B. J. Flight and dispersal of the stable fly. J. Econ. Entomol. 66, 410–411 (1973).
Article Google Scholar
24.
Hogsette, J. A. & Ruff, J. P. Stable fly (Diptera: Muscidae) migration in northwest Florida. Environ. Entomol. 14, 170–175 (1985).
Article Google Scholar
25.
SPF-system. Landbrug and Fødevarer: Sundhedsstyringen. http://spfsus.dk/en (2020).
26.
Hansen, J. E. et al. LA-MRSA CC398 in dairy cattle and veal calf farms indicates spillover from pig production. Front. Microbiol. 10, 2733 (2019).
PubMed PubMed Central Article Google Scholar
27.
Singhal, N., Kumar, M., Kanaujia, P. K. & Virdi, J. S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol. 6, 1–16 (2015).
Article Google Scholar
28.
IBM Corp. IBM SPSS Statistics for Windows v 25.0. Armonk, NY: IBM Corp. (2017).
29.
Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404 (1934).
MATH Article Google Scholar
30.
Therneau, T. A Package for Survival Analysis in R. R package version 3. 1–11. https://cran.r-project.org/package=survival. (2020).
31.
Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, New York, 2000).
Google Scholar
32.
R Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (2020).
33.
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
34.
Anonymous Kort and Matrikelstyrelsen. Beregnede adressekoordinater v 1.0 (2001).
35.
Dahlem, G. A. House fly: (musca domestica) in Encyclopedia of insects. In Encyclopedia Insects (eds Resh, V. H. & Cardé, R. T.) 469–470 (Elsevier, Amsterdam, 2009).
Google Scholar
36.
Skovgård, H. & Nachman, G. Population dynamics of stable flies Stomoxys Calcitrans (Diptera: Muscidae) at an organic dairy farm in Denmark based on mark-recapture with destructive sub-sampling. Environ. Entomol. 41, 20–29 (2012).
PubMed Article PubMed Central Google Scholar
37.
Taylor, D. B. et al. Dispersal of stable flies (Diptera: Muscidae) from Larval development sites in a Nebraska landscape. Environ. Entomol. 39, 1101–1110 (2010).
CAS PubMed Article Google Scholar
38.
Quarterman, K., Kilpatrick, J. & Mathis, W. Fly dispersal in a rural area near Savannah, Georgia. J. Econ. Entomol. 47, 413–419 (1954).
Article Google Scholar
39.
Schoof, H. F., Siverly, R. E. & Jensen, J. A. House fly dispersion studies in metropolitan areas. J. Econ. Entomol. 45, 675–683 (1952).
CAS Article Google Scholar
40.
Chakrabarti, S., Kambhampati, S. & Zurek, L. Assessment of house fly dispersal between rural and urban habitats in Kansas, USA. J. Kansas Entomol. Soc. 83, 172–188 (2010).
Article Google Scholar
41.
Gill, C., Bahrndorff, S. & Lowenberger, C. Campylobacter jejuni in Musca domestica: an examination of survival and transmission potential in light of the innate immune responses of the house flies. Insect Sci. 24, 584–598 (2017).
CAS PubMed Article Google Scholar
42.
Nayduch, D., Noblet, G. P. & Stutzenberger, F. J. Vector potential of houseflies for the bacterium Aeromonas caviae. Med. Vet. Entomol. 16, 193–198 (2002).
CAS PubMed Article Google Scholar
43.
Fasanella, A. et al. Evaluation of the house fly Musca domestica as a mechanical vector for an Anthrax. PLoS ONE 5, 4–8 (2010).
Article CAS Google Scholar
44.
Baleba, S. B. S., Torto, B., Masiga, D., Weldon, C. W. & Getahun, M. N. Egg-laying decisions based on olfactory cues enhance offspring fitness in Stomoxys calcitrans L. (Diptera: Muscidae). Sci. Rep. 9, 1–13 (2019).
CAS Article Google Scholar
45.
Zhu, J. J., Zhang, Q. H., Taylor, D. B. & Friesen, K. A. Visual and olfactory enhancement of stable fly trapping. Pest Manag. Sci. 72, 1765–1771 (2016).
CAS PubMed Article Google Scholar
46.
Rosen, K., Roesler, U., Merle, R. & Friese, A. Persistent and transient airborne MRSA colonization of piglets in a newly established animal model. Front. Microbiol. 9, 1–12 (2018).
Article Google Scholar
47.
Angen, Ø., Feld, L., Larsen, J., Rostgaard, K. & Skov, R. Transmission of methicillin-resistant staphylococcus aureus to human volunteers visiting a swine farm. Appl. Environ. Microbiol. 83, 1–10 (2017).
CAS Article Google Scholar
48.
Feld, L., Bay, H., Angen, Ø., Larsen, A. R. & Madsen, A. M. Survival of LA-MRSA in dust from swine farms. Ann. Work Expo. Heal. 62, 147–156 (2018).
CAS Article Google Scholar
49.
Madsen, A. M., Markouch, A., Frederiksen, M. W. & Tendal, K. Measurement of dust-borne MRSA in pig farms using different approaches. J. Appl. Microbiol. 126, 1580–1593 (2019).
CAS PubMed Article Google Scholar
50.
Hald, B., Sommer, H. M. & Skovgård, H. Use of fly screens to reduce Campylobacter spp. introduction in broiler houses. Emerg. Infect. Dis. 13, 1951–1953 (2007).
PubMed PubMed Central Article Google Scholar More
