1.
Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872. https://doi.org/10.1111/j.1365-2486.2007.01404.x (2007).
ADS Article Google Scholar
2.
Peñuelas, J. et al. Evidence of current impact of climate change on life: A walk from genes to the biosphere. Glob. Change Biol. 19, 2303–2338. https://doi.org/10.1111/gcb.12143 (2013).
ADS Article Google Scholar
3.
Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313. https://doi.org/10.1111/j.1365-2486.2010.02165.x (2010).
ADS Article Google Scholar
4.
Dapporto, L. et al. Rise and fall of island butterfly diversity: Understanding genetic differentiation and extinction in a highly diverse archipelago. Divers. Distrib. 23, 1169–1181. https://doi.org/10.1111/ddi.12610 (2017).
Article Google Scholar
5.
Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29. https://doi.org/10.1111/j.1365-294X.2007.03428.x (2008).
Article PubMed Google Scholar
6.
Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124. https://doi.org/10.1038/nclimate1347 (2012).
ADS Article Google Scholar
7.
Forister, M. L. & Shapiro, A. M. Climatic trends and advancing spring flight of butterflies in lowland California. Glob. Change Biol. 9, 1130–1135. https://doi.org/10.1046/j.1365-2486.2003.00643.x (2003).
ADS Article Google Scholar
8.
Altermatt, F. Tell me what you eat and I’ll tell you when you fly: Diet can predict phenological changes in response to climate change. Ecol. Lett. 13, 1475–1484. https://doi.org/10.1111/j.1461-0248.2010.01534.x (2010).
Article PubMed Google Scholar
9.
Stefanescu, C., Penuelas, J. & Filella, I. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob. Change Biol. 9, 1494–1506. https://doi.org/10.1046/j.1365-2486.2003.00682.x (2003).
ADS Article Google Scholar
10.
Roy, D. B. & Sparks, T. H. Phenology of British butterflies and climate change. Glob. Change Biol. 6, 407–416. https://doi.org/10.1046/j.1365-2486.2000.00322.x (2000).
ADS Article Google Scholar
11.
Diez, J. M. et al. Forecasting phenology: from species variability to community patterns. Ecol. Lett. 15, 545–553. https://doi.org/10.1111/j.1461-0248.2012.01765.x (2012).
Article PubMed Google Scholar
12.
Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479. https://doi.org/10.1890/07-1748.1 (2008).
Article PubMed Google Scholar
13.
Glazaczow, A., Orwin, D. & Bogdziewicz, M. Increased temperature delays the late-season phenology of multivoltine insect. Sci. Rep. https://doi.org/10.1038/srep38022 (2016).
Article PubMed PubMed Central Google Scholar
14.
van der Kolk, H.-J., WallisDeVries, M. F. & van Vliet, A. J. H. Using a phenological network to assess weather influences on first appearance of butterflies in the Netherlands. Ecol. Indicators 69, 205–212, https://doi.org/10.1016/j.ecolind.2016.04.028 (2016).
15.
Zografou, K. et al. Signals of climate change in butterfly communities in a mediterranean protected area. PLoS ONE 9, e87245. https://doi.org/10.1371/journal.pone.0087245 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
16.
Visser, M. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. Biol. Sci. R. Soc. 275, 649–659, https://doi.org/10.1098/rspb.2007.0997 (2008).
17.
Kharouba, H. M., Paquette, S. R., Kerr, J. T. & Vellend, M. Predicting the sensitivity of butterfly phenology to temperature over the past century. Glob. Change Biol. 20, 504–514. https://doi.org/10.1111/gcb.12429 (2014).
ADS Article Google Scholar
18.
Roy, D. B. et al. Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Glob. Change Biol. 21, 3313–3322. https://doi.org/10.1111/gcb.12920 (2015).
ADS Article Google Scholar
19.
Rapacciuolo, G. et al. Beyond a warming fingerprint: Individualistic biogeographic responses to heterogeneous climate change in California. Glob. Change Biol. 20, 2841–2855. https://doi.org/10.1111/gcb.12638 (2014).
ADS Article Google Scholar
20.
Fischer, K. & Fiedler, K. Life-history plasticity in the butterfly Lycaena hippothoe: Local adaptations and trade-offs. Biol. J. Lin. Soc. 75, 173–185. https://doi.org/10.1046/j.1095-8312.2002.00014.x (2002).
Article Google Scholar
21.
Zografou, K. Who flies first?—Habitat-specific phenological shifts of butterflies and orthopterans in the light of climate change: A case study from the south-east Mediterranean Lepidoptera and Orthoptera phenology change. Ecol. Entomol. 40, 562–574. https://doi.org/10.1111/een.12220 (2015).
Article Google Scholar
22.
Suggitt Andrew, J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8, https://doi.org/10.1111/j.1600-0706.2010.18270.x (2010).
23.
Dell, D., Sparks, T. & Dennis, R. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). Eur. J. Entomol. 102, 161–167. https://doi.org/10.14411/eje.2005.026 (2005).
Article Google Scholar
24.
Zipf, L., Williams, E. H., Primack, R. B. & Stichter, S. Climate effects on late-season flight times of Massachusetts butterflies. Int. J. Biometeorol. 61, 1667–1673. https://doi.org/10.1007/s00484-017-1347-8 (2017).
ADS CAS Article PubMed Google Scholar
25.
Diamond, S. E., Frame, A. M., Martin, R. A. & Buckley, L. B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92, 1005–1012. https://doi.org/10.1890/i0012-9658-92-5-1005 (2011).
Article PubMed Google Scholar
26.
Melero, Y., Stefanescu, C. & Pino, J. General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biol. Cons. 201, 336–342. https://doi.org/10.1016/j.biocon.2016.07.029 (2016).
Article Google Scholar
27.
Stefanescu, C., Peñuelas, J. & Filella, I. Butterflies highlight the conservation value of hay meadows highly threatened by land-use changes in a protected Mediterranean area. Biol. Cons. 126, 234–246. https://doi.org/10.1016/j.biocon.2005.05.010 (2005).
Article Google Scholar
28.
Sparks, T. H., Huber, K. & Dennis, R. L. H. Complex phenological responses to climate warming trends? Lessons from history. Eur. J. Entomol. 103, 379–386 (2006).
Article Google Scholar
29.
Wong, M. K. L., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022. https://doi.org/10.1111/brv.12488 (2019).
Article PubMed Google Scholar
30.
Gutiérrez, D. & Wilson, R. J. Intra- and interspecific variation in the responses of insect phenology to climate. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13348 (2020).
Article PubMed Google Scholar
31.
Zografou, K. et al. Butterfly phenology in Mediterranean mountains using space-for-time substitution. Ecol. Evolut. 10, 928–939. https://doi.org/10.1002/ece3.5951 (2020).
Article Google Scholar
32.
Steltzer, H. & Post, E. Seasons and life cycles. Science 324, 886–887. https://doi.org/10.1126/science.1171542 (2009).
Article PubMed Google Scholar
33.
Hale, R., Morrongiello, J. R. & Swearer, S. E. Evolutionary traps and range shifts in a rapidly changing world. Biol. Let. 12, 20160003. https://doi.org/10.1098/rsbl.2016.0003 (2016).
Article Google Scholar
34.
Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407. https://doi.org/10.1111/j.1365-2435.2007.01283.x (2007).
Article Google Scholar
35.
Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 4455. https://doi.org/10.1038/s41467-019-12479-w (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
36.
Pau, S. et al. Predicting phenology by integrating ecology, evolution and climate science. Glob. Change Biol. 17, 3633–3643. https://doi.org/10.1111/j.1365-2486.2011.02515.x (2011).
ADS Article Google Scholar
37.
Sherry, R. A. et al. Divergence of reproductive phenology under climate warming. Proc. Natl. Acad. Sci. 104, 198. https://doi.org/10.1073/pnas.0605642104 (2007).
ADS CAS Article PubMed Google Scholar
38.
Wilson, R. J. & Fox, R. Insect responses to global change offer signposts for biodiversity and conservation. Ecol. Entomol. https://doi.org/10.1111/een.12970 (2020).
Article Google Scholar
39.
Brooks, S. J. et al. The influence of life history traits on the phenological response of British butterflies to climate variability since the late-19th century. Ecography 40, 1152–1165. https://doi.org/10.1111/ecog.02658 (2017).
Article Google Scholar
40.
Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species?. Ecology 96, 1473–1479. https://doi.org/10.1890/15-0131.1 (2015).
Article Google Scholar
41.
Stocker, T. F. et al. Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 3–29 (2013).
42.
Swengel, A. B. Effects of fire and hay management on abundance of prairie butterflies. Biol. Cons. 76, 73–85 (1996).
Article Google Scholar
43.
Zografou, K. et al. Severe decline and partial recovery of a rare butterfly on an active military training area. Biol. Cons. 216, 43–50. https://doi.org/10.1016/j.biocon.2017.09.026 (2017).
Article Google Scholar
44.
Gillingham, P. K., Huntley, B., Kunin, W. E. & Thomas, C. D. The effect of spatial resolution on projected responses to climate warming. Divers. Distrib. 18, 990–1000. https://doi.org/10.1111/j.1472-4642.2012.00933.x (2012).
Article Google Scholar
45.
Roy David, B. et al. Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Global Change Biol. 21, 3313–3322, https://doi.org/10.1111/gcb.12920 (2015).
46.
Lemoine, N. P. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of asclepias host plants. PLoS ONE 10, e0118614. https://doi.org/10.1371/journal.pone.0118614 (2015).
CAS Article PubMed PubMed Central Google Scholar
47.
Slansky, F. Phagism relationships among butterflies. J. N. Y. Entomol. Soc. 84, 91–105 (1976).
Google Scholar
48.
Morin, X., Roy, J., Sonié, L. & Chuine, I. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol. 186, 900–910. https://doi.org/10.1111/j.1469-8137.2010.03252.x (2010).
Article PubMed Google Scholar
49.
Chuine, I., Morin, X. & Bugmann, H. Warming. Photoperiods Tree Phenol. 329, 277–278. https://doi.org/10.1126/science.329.5989.277-e%JScience (2010).
Article Google Scholar
50.
Luedeling, E., Girvetz, E. H., Semenov, M. A. & Brown, P. H. Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE 6, e20155. https://doi.org/10.1371/journal.pone.0020155 (2011).
ADS CAS Article PubMed PubMed Central Google Scholar
51.
Fu, Y. S. H. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl. Acad. USA 111, 7355–7360. https://doi.org/10.1073/pnas.1321727111%JProceedingsoftheNationalAcademyofSciences (2014).
ADS CAS Article Google Scholar
52.
Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182. https://doi.org/10.1146/annurev-ecolsys-110617-062535 (2018).
Article Google Scholar
53.
Barton, K. E., Edwards, K. F. & Koricheva, J. Shifts in woody plant defence syndromes during leaf development. Funct. Ecol. 33, 2095–2104. https://doi.org/10.1111/1365-2435.13435 (2019).
Article Google Scholar
54.
Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228. https://doi.org/10.1038/s41558-018-0067-3 (2018).
ADS Article Google Scholar
55.
Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B Biol. Sci. 277, 1281–1287. https://doi.org/10.1098/rspb.2009.1910 (2010).
Article Google Scholar
56.
Illán, J. G., Gutiérrez, D., Díez, S. B. & Wilson, R. J. Elevational trends in butterfly phenology: Implications for species responses to climate change. Ecol. Entomol. 37, 134–144. https://doi.org/10.1111/j.1365-2311.2012.01345.x (2012).
Article Google Scholar
57.
Nufio, C. R., McGuire, C. R., Bowers, M. D. & Guralnick, R. P. Grasshopper community response to climatic change: Variation along an elevational gradient. PLoS ONE 5, e12977. https://doi.org/10.1371/journal.pone.0012977 (2010).
ADS CAS Article PubMed PubMed Central Google Scholar
58.
Van Dyck, H., Bonte, D., Puls, R., Gotthard, K. & Maes, D. The lost generation hypothesis: Could climate change drive ectotherms into a developmental trap?. Oikos 124, 54–61. https://doi.org/10.1111/oik.02066 (2015).
Article Google Scholar
59.
Scott, J. A. The Butterflies of North America: A Natural History and Field Guide. (Stanford University Press, 1992).
60.
Division, E. Final Integrated Natural Resources Management Plan 17003–25002 (The Pennsylvania Department of Military and Veterans Affairs, Annville, 2002).
Google Scholar
61.
Shuey, J. et al. Landscape-scale response to local habitat restoration in the regal fritillary butterfly (Speyeria idalia) (Lepidoptera: Nymphalidae). J. Insect Cons. 20, 773–780. https://doi.org/10.1007/s10841-016-9908-4 (2016).
Article Google Scholar
62.
Metzler, E., Shuey, J., Ferge, L., Henderson, R. & Goldstein, P. Contributions to the understanding of tallgrass prairie-dependent butterflies and moths (Lepidoptera) and their biogeography in the United States. Ohio Biol. Surv. Bull. New Ser. 15, 1–143 (2005).
Google Scholar
63.
PNHP. PNHP Species Lists. Pennsylvania Natural Heritage Program. http://www.naturalheritage.state.pa.us/Species.aspx (2019).
64.
Pollard, E. & Yates, T. J. Monitoring Butterflies for Ecology and Conservation (1993).
65.
Nufio, C. R., McGuire, C. R., Bowers, M. D. & Guralnick, R. P. Grasshopper community response to climatic change: Variation along an elevational gradient. PLoS ONE https://doi.org/10.1371/journal.pone.0012977 (2010).
Article PubMed PubMed Central Google Scholar
66.
Glassberg, J. Butterflies through binoculars, the East. A field guide to the butterflies of Eastern North America, 242. (Oxford University Press, Inc., 1999).
67.
Brock, J. P. & Kaufman, K. Field Guide to Butterflies of North America., 391 (Hillstar Editions L.C, 2003).
68.
Brakefield, P. M. Geographical variability in, and temperature effects on, the phenology of Maniola jurtina and Pyronia tithonus (Lepidoptera, Satyrinae) in England and Wales. Ecol. Entomol. 12, 139–148. https://doi.org/10.1111/j.1365-2311.1987.tb00993.x (1987).
Article Google Scholar
69.
de Arce Crespo, J. I. & Gutiérrez, D. Altitudinal trends in the phenology of butterflies in a mountainous area in central Spain. Eur. J. Entomol. 108, 651–658 (2011).
70.
Moussus, J.-P., Julliard, R. & Jiguet, F. Featuring 10 phenological estimators using simulated data. Methods Ecol. Evol. 1, 140–150. https://doi.org/10.1111/j.2041-210X.2010.00020.x (2010).
Article Google Scholar
71.
Penny, D. The comparative method in evolutionary biology. J. Classif. 9, 169–172. https://doi.org/10.1007/BF02618482 (1992).
MathSciNet Article Google Scholar
72.
Earl, C., Belitz, M. et al. Spatial phylogenetics of butterflies in relation to environmental drivers and angiosperm diversity across North America. BioRxiv:2020.2007.2022.216119, https://doi.org/10.1101/2020.07.22.216119 (2020).
73.
PRISM. Climate Group, Parameter-elevation Regressions on Independent Slopes Model. Oregon State University, http://prism.oregonstate.edu. Accessed 24 July 2018.
74.
Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064. https://doi.org/10.1002/joc.1688 (2008).
Article Google Scholar
75.
Peñuelas, J. et al. Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: Reductions in primary productivity in the heat and drought year of 2003. Glob. Change Biol. 13, 2563–2581. https://doi.org/10.1111/j.1365-2486.2007.01464.x (2007).
ADS Article Google Scholar
76.
McMaster, G. S. & Wilhelm, W. W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 87, 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0 (1997).
ADS Article Google Scholar
77.
Walters, E. J., Morrell, C. H. & Auer, R. E. An investigation of the median-median method of linear regression. J. Stat. Educ. https://doi.org/10.1080/10691898.2006.11910582 (2006).
Article Google Scholar
78.
Theil, H. in Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology (eds Baldev Raj & Johan Koerts) 345–381 (Springer Netherlands, 1992).
79.
Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389. https://doi.org/10.2307/2285891 (1968).
MathSciNet Article MATH Google Scholar
80.
Siegel, A. F. Robust regression using repeated medians. Biometrika 69, 242–244. https://doi.org/10.2307/2335877 (1982).
Article MATH Google Scholar
81.
Schneider, G., Chicken, E. & Becvarik, R. NSM3: Functions and Datasets to Accompany Hollander, Wolfe, and Chicken – Nonparametric Statistical Methods, Third Edition. R Package Version 1.15. https://CRAN.R-project.org/package=NSM3. (2020).
82.
Patrick Bogaart, Loo, M. v. d. & Pannekoek, J. rtrim: Trends and Indices for Monitoring Data. R Package Version 2.1.1. https://CRAN.R-project.org/package=rtrim. (2020).
83.
Zografou, K. et al. Stable generalist species anchor a dynamic pollination network. Ecosphere 11, e03225. https://doi.org/10.1002/ecs2.3225 (2020).
Article Google Scholar
84.
Pinheiro J, Bates D, DebRoy S & D, S. nlme: Linear and Nonlinear Mixed Effects Models. R Package v. 3.1‐117. (www document). https://CRAN.R-project.org/package=nlme. (2015).
85.
Felsenstein, J. Phylogenies and quantitative characters. Annu. Rev. Ecol. Syst. 19, 445–471. https://doi.org/10.1146/annurev.es.19.110188.002305 (1988).
Article Google Scholar More