More stories

  • in

    Fecundity determines the outcome of founding queen associations in ants

    In this study, we used the black garden ant Lasius niger to investigate the benefits and factors of pleometrosis, the transitory association between founding queens. The monitoring of colonies founded by one or two queens showed that pleometrosis increased and accelerated offspring production. Then, the experimental pairing of L. niger founding queens revealed that in pairs of queens of different fecundity but similar size, the most fecund queen was more likely to survive. Our experiment could not detect a similar effect of size when controlling for fecundity. Finally, we found that queens associated preferentially with less fecund queens.
    Our findings of pleometrosis benefiting offspring production are in line with the literature for this, and other ant species3,7,9,10,12,22,23. Interestingly, we only detected these benefits at the colony level, as pleometrosis had either no effect or a negative influence on the per capita offspring production9,12,22. However, colony-level measurements are more relevant in the case of pleometrosis, as the queen that survives the association inherits all the offspring produced during colony foundation. In the field, colonies with a faster, more efficient worker production would have a competitive advantage over neighbouring founding colonies3,4. This is especially true for L. niger, which shows high density of founding colonies that compete for limiting resources and raid the brood of other colonies10. Thus, the competitive advantage provided by pleometrosis likely enhances colony growth and survival.
    The increased and faster production of workers in colonies with two queens may stem from a nutritional boost for the larvae. L. niger founding queens do not forage, and produce the first cohort of workers from their own metabolic reserves. Larvae have been observed to cannibalize both viable and non-viable (trophic) eggs24. We found that colonies with two queens produced more eggs, but that this did not translate in them having more larvae. However, more of these larvae became pupae—and ultimately workers. In addition, while the time to produce the first egg and larva did not differ between colonies with one and two queens, the first pupa and worker were produced faster when two queens were present, consistent with a shorter larval stage. We propose that larvae in pleometrotic colonies developed faster and were more likely to reach pupation because they had more eggs that provided nutrients, boosting the development rate of the first workers.
    These benefits of pleometrosis are only inherited by the queens that survive, it is thus important to understand the factors that determine queen survival in pleometrotic associations. Although this question has been relatively well studied3,16,17,18,19,20,21, it has remained challenging to disentangle the effects of correlated factors. For example, we found that size, which has been reported to predict queen survival16,19, correlated with fecundity, which would itself be confounded with the parentage of workers in the first cohort produced. To address this issue, we disentangled size and fecundity experimentally, and used foreign workers that developed from pupae collected in field colonies to prevent any potential nepotistic behaviour.
    We found that fecundity, but not size, determined queen survival. The finding that, despite being of similar size, more fecund queens are more likely to survive indicates that the outcome of pleometrosis is not the mere consequence of physical dominance. The higher fecundity could reflect a better health condition, which may give the advantage to the more fecund queen in direct fights3,15, or if workers initiate the fights. Natural selection may have favoured workers that skew aggression toward the less fecund queen, both because this queen would be less efficient at building a colony, and because the workers would be more likely to be the offspring of the more fecund queen. The latter would not necessarily involve direct nepotistic behaviours (the workers would not behave according to parentage, but to fecundity), which have remained elusive in social insects in general25,26,27, and in pleometrotic associations in particular16,17,20. Despite regular behavioural observations, we did not observe who initiated aggression in our experiments, and it remains unclear whether the queens and/or the workers are responsible for the onset of fights. Consistently with previous studies16,23, we found that a certain proportion of queen death occurred before worker emergence, suggesting that worker presence is not required for queen execution. Finally, we cannot rule out that the least fecund queens were more likely to die because of a weaker health status, possibly combined with the stress of being associated with another, healthier queen.
    Although it has not been directly reported before, our finding that fecundity determines queen survival is consistent with previous reports of weight being associated with queen survival17, more fecund queens being more aggressive28, cuticular hydrocarbon profiles differing between surviving and culled queens21, and between more and less fecund queens28. We could not directly support previous reports of size correlating with survival16,19. This could be because in those studies, size could have been confounded with fecundity, and/or because we lacked the statistical power to detect such effect in our experiment.
    Pleometrosis provides clear benefits, but these benefits are only inherited by the surviving queens, and the losing queens pay the great cost of dying without contributing to the next generation. Natural selection should thus favour queens that decide whether or not to join a pleometrotic association based on the relative benefits compared to individual foundation—these may differ across ecological contexts29—and the likelihood of surviving the association. As fecundity appears to determine queen survival in L. niger, queens may have evolved the ability to choose among potential partners according to their fecundity. Our results are consistent with this hypothesis, as queens preferentially associated with partners that would later produce fewer eggs, possibly because they were less fecund, and therefore less healthy and easier to eliminate. This suggests that founding queens may assess the fecundity of potential partners, possibly via their cuticular hydrocarbon profile28. This result further supports our finding that fecundity plays an important role in pleometrotic associations. It is important to note that this difference in egg production could have alternative explanations. First, it could stem from more fecund queens having no interest in forming an association because they are able to start a competitive colony alone. Second, it could be a consequence, rather than a cause, of the outcome of the choice experiment. We cannot rule out that entering an association with another queen and/or leaving this association prematurely at the end of the choice experiment may have been stressful for the chosen queens, and affected their later production of eggs. We could not detect any difference between chosen and not chosen queens in the number of larvae and pupae produced, which are likely influenced by factors other than fecundity (e.g., brood care behaviour). Interestingly, we did not find that queens chose according to size, consistent with our finding that size may not affect which queen survives the pleometrotic association.
    Our study informs on the benefits and factors of pleometrosis, and highlights the role of fecundity in the decision to associate with another queen, and in determining which queen survives the association. As such, it contributes to a better understanding of the onset and outcome of pleometrosis, a classic case of cooperation between unrelated animals. More

  • in

    Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees

    1.
    Dharampal, P. S., Hetherington, M. C. & Steffan, S. A. Microbes make the meal: Oligolectic bees require microbes within their host pollen to thrive. Ecol. Entomol. https://doi.org/10.1111/een.12926 (2020).
    Article  Google Scholar 
    2.
    Sonnenburg, J. L. & Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Suzuki, T. A. Links between natural variation in the microbiome and host fitness in wild mammals. Integr. Comp. Biol. 57, 756–769 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Bo, T.-B. et al. Coprophagy prevention alters microbiome, metabolism, neurochemistry, and cognitive behavior in a small mammal. ISME J. https://doi.org/10.1038/s41396-020-0711-6 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    7.
    Sarkar, A. et al. The role of the microbiome in the neurobiology of social behaviour. Biol. Rev. 95, 12603 (2020).
    Article  Google Scholar 

    8.
    Vernier, C. L. et al. The gut microbiome defines social group membership in honey bee colonies. Sci. Adv. 6, 3431 (2020).
    ADS  Article  CAS  Google Scholar 

    9.
    Lemoine, M. M., Engl, T. & Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 39, 14–20 (2020).
    PubMed  Article  Google Scholar 

    10.
    Engel, P. et al. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. MBio. https://doi.org/10.1128/mBio.02164-15 (2006).
    Article  Google Scholar 

    11.
    Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: How systematic depletion of key symbionts erodes immunity. Trends Microbiol. https://doi.org/10.1016/j.tim.2020.06.006 (2020).
    Article  PubMed  Google Scholar 

    12.
    Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).
    CAS  PubMed  Article  Google Scholar 

    13.
    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. 114, 4775–4780 (2017).
    CAS  PubMed  Article  Google Scholar 

    14.
    Zheng, H. et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio. https://doi.org/10.1128/mBio.01326-16 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    15.
    Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4, 60–65 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17, 796–815 (2015).
    CAS  PubMed  Article  Google Scholar 

    17.
    Anderson, K. E. et al. Hive-stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol. Ecol. 23, 5904–5917 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Dharampal, P. S., Carlson, C., Currie, C. R. & Steffan, S. A. Pollen-borne microbes shape bee fitness. Proc. R. Soc. B Biol. Sci. 286, 20182894 (2019).
    CAS  Article  Google Scholar 

    19.
    Rothman, J. A., Leger, L., Graystock, P., Russell, K. & McFrederick, Q. S. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ. Microbiol. 21, 1462–2920. https://doi.org/10.1111/1462-2920.14641 (2019).
    CAS  Article  Google Scholar 

    20.
    Wu, Y. et al. Honey bee ( Apis mellifera ) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb. Biotechnol. 13, 1201–1212 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Praet, J. et al. Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ. Microbiol. 20, 214–227 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Forsgren, E., Olofsson, T. C., Vásquez, A. & Fries, I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41, 99–108 (2010).
    Article  Google Scholar 

    23.
    Cariveau, D. P., Elijah Powell, J., Koch, H., Winfree, R. & Moran, N. A. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J. 8, 2369–2379 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, e2001861 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Schwarz, R. S., Moran, N. A. & Evans, J. D. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc. Natl. Acad. Sci. 113, 9345–9350 (2016).
    CAS  PubMed  Article  Google Scholar 

    26.
    Maes, P. W., Rodrigues, A. P., Oliver, R., Mott, B. M. & Anderson, K. E. Diet related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honey bee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).
    CAS  PubMed  Article  Google Scholar 

    27.
    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. 108, 19288–19292 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Evans, J. D. & Lopez, D. L. Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 97, 752–756 (2004).
    CAS  PubMed  Article  Google Scholar 

    29.
    Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590 (2017).
    CAS  PubMed  Article  Google Scholar 

    30.
    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. 109, 11002–11007 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    31.
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Micro 14, 374–384 (2016).
    CAS  Article  Google Scholar 

    32.
    McFrederick, Q. S. & Rehan, S. M. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol. Ecol. 25, 2302–2311 (2016).
    CAS  PubMed  Article  Google Scholar 

    33.
    McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).
    PubMed  Article  Google Scholar 

    34.
    McFrederick, Q. S. et al. Environment or kin: whence do bees obtain acidophilic bacteria?. Mol. Ecol. 21, 1754–1768 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    McFrederick, Q. S., Wcislo, W. T., Hout, M. C. & Mueller, U. G. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees. FEMS Microbiol. Ecol. 88, 398–406 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Graystock, P., Rehan, S. M. & McFrederick, Q. S. Hunting for healthy microbiomes: Determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conserv. Genet. 18, 701–711 (2017).
    Article  Google Scholar 

    37.
    McFrederick, Q. S. et al. Specificity between lactobacilli and hymenopteran hosts is the exception rather than the rule. Appl. Environ. Microbiol. 79, 1803–1812 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, 1–17 (2017).
    Article  Google Scholar 

    40.
    Rothman, J. A., Andrikopoulos, C., Cox-Foster, D. & McFrederick, Q. S. Floral and foliar source affect the bee nest microbial community. Microb. Ecol. 78, 506–516 (2019).
    PubMed  Article  Google Scholar 

    41.
    Cohen, H., McFrederick, Q. S. & Philpott, S. M. Environment shapes the microbiome of the blue orchard bee, Osmia lignaria. Microb. Ecol. 80, 897–907 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Muñoz-Colmenero, M. et al. Differences in honey bee bacterial diversity and composition in agricultural and pristine environments—A field study. Apidologie. https://doi.org/10.1007/s13592-020-00779-w (2020).
    Article  Google Scholar 

    43.
    Kapheim, K. M. et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE 10, 1–14 (2015).
    Article  CAS  Google Scholar 

    44.
    Elijah Powell, J., Eiri, D., Moran, N. A. & Rangel, J. Modulation of the honey bee queen microbiota: Effects of early social contact. PLoS ONE 13, 1–14 (2018).
    Google Scholar 

    45.
    Tarpy, D. R., Mattila, H. R. & Newton, I. L. G. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl. Environ. Microbiol. 81, 3182–3191 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Dong, Z. X. et al. Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different developmental stages. Microbiol. Res. 231, 126370 (2020).
    CAS  PubMed  Article  Google Scholar 

    47.
    D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).
    Article  CAS  Google Scholar 

    48.
    Huang, S. K. et al. Influence of feeding type and Nosema ceranae infection on the gut microbiota of Apis cerana workers. mSystems 3, 177–195 (2018).
    Article  Google Scholar 

    49.
    Rothman, J. A., Carroll, M. J., Meikle, W. G., Anderson, K. E. & McFrederick, Q. S. Longitudinal effects of supplemental forage on the Honey Bee (Apis mellifera) microbiota and inter- and intra-colony variability. Microb. Ecol. 76, 814–824 (2018).
    CAS  PubMed  Article  Google Scholar 

    50.
    Zhang, Y. et al. Nosema ceranae infection enhances Bifidobacterium spp. abundances in the honey bee hindgut. Apidologie 50, 353–362 (2019).
    Article  Google Scholar 

    51.
    Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees (Princeton University Press, Princeton, 2019).
    Google Scholar 

    52.
    Santos, P. K. F., Arias, M. C. & Kapheim, K. M. Loss of developmental diapause as prerequisite for social evolution in bees. Biol. Lett. 15, 20190398 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Harmon-Threatt, A. Influence of nesting characteristics on health of wild bee communities. Annu. Rev. Entomol. 65, 39–56 (2020).
    CAS  PubMed  Article  Google Scholar 

    54.
    Johansen, C., Mayer, D., Stanford, A. & Kious, C. Alkali Bees: Their Biology and Management for Alfalfa Seed Production in the Pacific Northwest (Publication, Pacific Northwest Cooperative Extension Service, Genesee, 1982).
    Google Scholar 

    55.
    Cane, J. H. A native ground-nesting bee (Nomia melanderi) sustainably managed to pollinate alfalfa across an intensively agricultural landscape. Apidologie 39, 315–323 (2008).
    Article  Google Scholar 

    56.
    Cane, J. H. Pollinating bees (Hymenoptera: Apiformes) of U.S. alfalfa compared for rates of pod and seed set. J. Econ. Entomol. 95, 22–27 (2002).
    PubMed  Article  Google Scholar 

    57.
    Batra, S. W. & Bohart, G. E. Alkali bees: Response of adults to pathogenic fungi in brood cells. Science 165, 607 (1969).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Galbraith, D. A. et al. Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci. Rep. 8, 1–11 (2018).
    CAS  Article  Google Scholar 

    59.
    Bohart, G. E., Stephen, W. P. & Eppley, E. K. The biology of Heterostylum robustum (Diptera: Bombyliidae), a parasite of the alkali bee. Ann. Entomol. Soc. Am. 53, 425–435 (1960).
    Article  Google Scholar 

    60.
    Johansen, C. A., Mayer, D. F. & Eves, J. D. Biology and management of the alkali bee, Nomia melanderi Cockrell (Hymenoptera: Halictidae).Melanderii Cockrell (Hymenoptera: Halictidae).Melanderi (Washington State Entomology, Pullman, 1978).
    Google Scholar 

    61.
    Johansen, C. A. & Mayer, D. F. Pollinator Protection: A Bee and Pesticide Handbook (Wicwas Press, Kalamazoo, 1990).
    Google Scholar 

    62.
    Stephen, W. P. Solitary bees in North American agriculture: A perspective. In For Nonnative Crops, Whence Pollinators of the Future? (eds Strickler, K. & Cane, J. H.) 41–66 (Entomological Society of America, Annapolis, 2003).
    Google Scholar 

    63.
    Kapheim, K. M. et al. Draft genome assembly and population genetics of an agricultural pollinator, the solitary alkali bee (Halictidae: Nomia melanderi). G3 9, 625–634 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Batra, S. W. T. Aggression, territoriality, mating and nest aggregation of some solitary bees (Hymenoptera: Halictidae, Megachilidae, Colletidae, Anthophoridae). J. Kansas Entomol. Soc. 51, 547–559 (1978).
    Google Scholar 

    65.
    Mayer, D. F. & Miliczky, E. R. Emergence, male behavior, and mating in the alkali bee, Nomia melanderi Cockerell (Hymenoptera: Halictidae). J. Kansas Entomol. Soc. 71, 61–68 (1998).
    Google Scholar 

    66.
    Kapheim, K. M. & Johnson, M. M. Juvenile hormone, but not nutrition or social cues, affects reproductive maturation in solitary alkali bees (Nomia melanderi). J. Exp. Biol. https://doi.org/10.1242/jeb.162255 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Koch, H. & Schmid-Hempel, P. Bacterial communities in central European bumble bees: Low diversity and high specificity. Microb. Ecol. 62, 121–133 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Martinson, V. G., Moy, J. & Moran, N. A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 78, 2830–2840 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    70.
    Kapheim, K. M. & Johnson, M. M. Support for the reproductive ground plan hypothesis in a solitary bee: Links between sucrose response and reproductive status. Proc. R. Soc. B Biol. Sci. 284, 20162406 (2017).
    Article  CAS  Google Scholar 

    71.
    R Core Team. R: A Language and Environment for Statistical Computing (2019).

    72.
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. BioRxiv. https://doi.org/10.1101/221499 (2017).
    Article  Google Scholar 

    74.
    Jari Oksanen, F. et al. vegan: Community Ecology Package (2019).

    75.
    McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    78.
    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means (2020).

    79.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    80.
    Lahti, L. & Shetty, S. Microbiome R Package (2012).

    81.
    Zheng, J. et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70, 2782–2858 (2020).
    CAS  PubMed  Article  Google Scholar 

    82.
    Rummel, P. S. et al. Maize root and shoot litter quality controls short-term emissions and bacterial community structure of arable soil. Biogeosciences 17, 1181–1198 (2020).
    ADS  CAS  Article  Google Scholar 

    83.
    McFrederick, Q. S., Vuong, H. Q. & Rothman, J. A. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers. Int. J. Syst. Evol. Microbiol. 68, 1879–1884 (2018).
    CAS  PubMed  Article  Google Scholar 

    84.
    Wittouck, S., Wuyts, S., Meehan, C. J., van Noort, V. & Lebeer, S. A genome-based species taxonomy of the Lactobacillus genus complex. mSystems. https://doi.org/10.1128/mSystems.00264-19 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    85.
    Engel, P. & Moran, N. A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
    CAS  PubMed  Article  Google Scholar 

    86.
    Cane, J. H., Dobson, H. E. M. & Boyer, B. Timing and size of daily pollen meals eaten by adult females of a solitary bee (Nomia melanderi) (Apiformes: Halictidae). Apidologie 48, 17–30 (2016).
    Article  CAS  Google Scholar 

    87.
    Engel, P., Bartlett, K. D. & Moran, N. A. The bacterium Frischella perrara causes scab formation in the gut of its honeybee host. MBio 6, 1–8 (2015).
    Article  CAS  Google Scholar 

    88.
    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).
    PubMed  Article  Google Scholar 

    89.
    Vásquez, A. & Olofsson, T. C. The lactic acid bacteria involved in the production of bee pollen and bee bread. J. Apic. Res. 48, 189–195 (2009).
    Article  Google Scholar 

    90.
    Vuong, H. Q. & McFrederick, Q. S. Comparative genomics of wild bee and flower isolated Lactobacillus reveals potential adaptation to the bee host. Genome Biol. Evol. 11, 2151–2161 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Demographic effects of interacting species: exploring stable coexistence under increased climatic variability in a semiarid shrub community

    1.
    Jongejans, E., de Kroon, H., Tuljapurkar, S. & Shea, K. Plant populations track rather than buffer climate fluctuations. Ecol. Lett. 13, 736–743 (2010).
    PubMed  Article  Google Scholar 
    2.
    Tenhumberg, B., Crone, E. E., Ramula, S. & Tyre, A. J. Time-lagged effects of weather on plant demography: Drought and Astragalus scaphoides. Ecology 99, 915–925 (2018).
    PubMed  Article  Google Scholar 

    3.
    Boyce, M. S., Haridas, C. V., Lee, C. T. & the NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Törang, P., Ehrlén, J. & Ågren, J. Linking environmental and demographic data to predict future population viability of a perennial herb. Oecologia 163, 99–109 (2010).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
    Article  Google Scholar 

    6.
    García-Cervigón, A. I., Camarero, J. J., Cueva, E., Espinosa, C. I. & Escudero, A. Climate seasonality and tree growth strategies in a tropical dry forest. J. Veg. Sci. 31, 266–280 (2020).
    Article  Google Scholar 

    7.
    Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl. Acad. Sci. U.S.A. 103, 12793–12798 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Wasonga, O., Gabiri, G., MacOpiyo, L., Mburu, J. & Majaliwa, J. G. M. Land cover and soil properties influence on forage quantity in a semiarid region in East Africa. Appl. Environ. Soil Sci. 2019, 6874268 (2019).
    Google Scholar 

    9.
    Zheng, X. X., Liu, G. H., Fu, B. J., Jin, T. T. & Liu, Z. F. Effects of biodiversity and plant community composition on productivity in semiarid grasslands of Hulunbeir, Inner Mongolia, China. Ann. N. Y. Acad. Sci. 1195, E52–E64 (2010).
    PubMed  Article  Google Scholar 

    10.
    Saiz, H. & Alados, C. L. Changes in semi-arid plant species associations along a livestock grazing gradient. PLoS ONE 9, e91478 (2012).
    Google Scholar 

    11.
    Chacón-Labella, J., de la Cruz, M., Pescador, D. S. & Escudero, A. Individual species affect plant traits structure in their surroundings: Evidence of functional mechanisms of assembly. Oecologia 180, 975–987 (2016).
    ADS  PubMed  Article  Google Scholar 

    12.
    Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).
    Article  Google Scholar 

    13.
    Nicolè, F., Dahlgren, J. P., Vivat, A., Till-Bottraud, I. & Ehrlén, J. Interdependent effects of habitat quality and climate on population growth of an endangered plant. J. Ecol. 99, 1211–1218 (2011).
    Article  Google Scholar 

    14.
    McIntire, E. J. B. & Fajardo, A. Facilitation as a ubiquitous driver of biodiversity. New Phytol. 201, 403–416 (2014).
    PubMed  Article  Google Scholar 

    15.
    Mihoč, M. A. K. et al. Soil under nurse plants is always better than outside: A survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 408, 31–41 (2016).
    Article  CAS  Google Scholar 

    16.
    Maestre, F. T., Valladares, F. & Reynolds, J. F. Is the change of plant–plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J. Ecol. 93, 748–757 (2005).
    Article  Google Scholar 

    17.
    Gustaffson, C. & Ehrlén, J. Effects of intraspecific and interspecific density on the demography of a perennial herb, Sanicula europaea. Oikos 100, 317–324 (2003).
    Article  Google Scholar 

    18.
    García-Cervigón, A. I., Iriondo, J. M., Linares, J. C. & Olano, J. M. Disentangling facilitation along the life cycle: Impacts of plant–plant interactions at vegetative and reproductive stages in a Mediterranean forb. Front. Plant Sci. 7, 129 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Miriti, M. N. Ontogenetic shift from facilitation to competition in a desert shrub. J. Ecol. 94, 973–979 (2006).
    Article  Google Scholar 

    20.
    Soliveres, S. L., DeSoto, L., Maestre, F. T. & Olano, J. M. Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation. Perspect. Plant Ecol. Evol. Syst. 12, 227–234 (2010).
    Article  Google Scholar 

    21.
    Dahlgren, J. P. & Ehrlén, J. Linking environmental variation to population dynamics of a forest herb. J. Ecol. 97, 666–674 (2009).
    Article  Google Scholar 

    22.
    Griffith, A. B. Positive effects of native shrubs on Bromus tectorum demography. Ecology 91, 141–154 (2010).
    PubMed  Article  Google Scholar 

    23.
    Tenhumberg, B., Suwa, T., Tyre, A. J., Russell, F. L. & Louda, S. M. Integral projection models show exotic thistle is more limited than native thistle by ambient competition and herbivory. Ecosphere 6, 69 (2015).
    Article  Google Scholar 

    24.
    García-Algarra, J., Galeano, J., Pastor, J. M., Iriondo, J. M. & Ramasco, J. J. Rethinking the logistic approach for population dynamics of mutualistic interactions. J. Theoret. Biol. 363, 332–343 (2014).
    MathSciNet  MATH  Article  Google Scholar 

    25.
    Adler, P. B., Dalgleish, H. J. & Ellner, S. P. Forecasting plant community impacts of climate variability and change: When do competitive interactions matter?. J. Ecol. 100, 478–487 (2012).
    Article  Google Scholar 

    26.
    Chu, C. & Adler, P. B. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecol. Monogr. 85, 373–392 (2015).
    Article  Google Scholar 

    27.
    Easterling, M. R., Ellner, S. P. & Dixon, P. M. Size-specific sensitivity: Applying a new structured population model. Ecology 81, 694–708 (2000).
    Article  Google Scholar 

    28.
    Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).
    PubMed  Article  Google Scholar 

    29.
    Rees, M. & Ellner, S. P. Integral projection models for populations in temporally varying environments. Ecol. Monogr. 79, 575–594 (2009).
    Article  Google Scholar 

    30.
    Williams, J. L., Jacquemyn, H., Ochocki, B. M., Brys, R. & Miller, T. E. X. Life history evolution under climate change and its influence on the population dynamics of a long-lived plant. J. Ecol. 103, 798–808 (2015).
    Article  Google Scholar 

    31.
    IPCC. Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).

    32.
    Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc. Natl. Acad. Sci. U.S.A. 95, 14839–14842 (1998).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Olano, J. M., Eugenio, M. & Escudero, A. Site effect is stronger than species identity in driving demographic responses of Helianthemum (Cistaceae) shrubs in gypsum environments. Am. J. Bot. 98, 1–8 (2011).
    Article  Google Scholar 

    34.
    Arroyo-Cosultchi, G., Golubov, J. & Mandujano, M. C. Pulse seedling recruitment on the population dynamics of a columnar cactus: Effect of an extreme rainfall event. Acta Oecol. 71, 52–60 (2016).
    ADS  Article  Google Scholar 

    35.
    Quintana-Ascencio, P. F., Caballero, I., Olano, J. M., Escudero, A. & Albert, M. J. Does habitat structure matter? Spatially explicit population modeling of an Iberian gypsum endemic. Popul. Ecol. 51, 317–328 (2009).
    Article  Google Scholar 

    36.
    Eugenio, M., Olano, J. M., Ferrandis, P., Martínez-Duro, E. & Escudero, A. Population structure of two dominant gypsophyte shrubs through a secondary plant succession. J. Arid Environ. 76, 30–35 (2012).
    ADS  Article  Google Scholar 

    37.
    Martínez, I. et al. Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Aust. J. Bot. 54, 339–348 (2006).
    Article  Google Scholar 

    38.
    Sánchez, A. M., Alonso-Valiente, P., Albert, M. J. & Escudero, A. How might edaphic specialists in gypsum islands respond to climate change? Reciprocal sowing experiment to infer local adaptation and phenotypic plasticity. Ann. Bot. 120, 135–146 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).
    ADS  PubMed  Article  Google Scholar 

    40.
    Escudero, A., Somolinos, R. C., Olano, J. M. & Rubio, A. Factors controlling the establishment of Helianthemum squamatum (L.) Dum., an endemic gypsophite of semi-arid Spain. J. Ecol. 87, 290–302 (1999).
    Article  Google Scholar 

    41.
    Escudero, A., Iriondo, J. M., Olano, J. M., Rubio, A. & Somolinos, R. Factors affecting establishment of a gypsophyte: The case of Lepidium subulatum (Brassicaceae). Am. J. Bot. 87, 861–871 (2000).
    CAS  PubMed  Article  Google Scholar 

    42.
    Aragón, C. F., Albert, M. J., Giménez-Benavides, L., Luzuriaga, A. L. & Escudero, A. Environmental scales on the reproduction of a gypsophyte: A hierarchical approach. Ann. Bot. 99, 519–527 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Caballero, I., Olano, J. M., Loidi, J. & Escudero, A. A model for small-scale seed bank and standing vegetation connection along time. Oikos 117, 1788–1795 (2008).
    Article  Google Scholar 

    44.
    de la Cruz, M., Romão, R. L., Escudero, A. & Maestre, F. T. Where do seedlings go? A spatio-temporal analysis of seedling mortality in a semi-arid gypsophyte. Ecography 31, 720–730 (2008).
    Article  Google Scholar 

    45.
    Tye, M. R. et al. Assessing seed and microsite limitation on population dynamics of a gypsophyte through experimental soil crust disturbance and seed addition. Plant Ecol. 218, 595–607 (2017).
    Article  Google Scholar 

    46.
    Olano, J. M., Caballero, I., Loidi, J. & Escudero, A. Prediction of plant cover from seed bank analysis in a semi-arid plant community on gypsum. J. Veg. Sci. 16, 215–222 (2005).
    Article  Google Scholar 

    47.
    Luzuriaga, A. L., Sánchez, A. M., Maestre, F. T. & Escudero, A. Assemblage of a semi-arid annual plant community: Abiotic and biotic filters act hierarchically. PLoS ONE 7, e41270 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Peralta, A. M. L., Sánchez, A. M., Luzuriaga, A. L., de Bello, F. & Escudero, A. Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach. J. Ecol. 107, 2772–2788 (2019).
    CAS  Article  Google Scholar 

    49.
    Wilcock, C. & Neiland, R. Pollination failure in plants: Why it happens and when it matters. Trends Plant Sci. 7, 270–277 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Watson, I. W., Westoby, M. & Holm, A. M. Continuous and episodic components of demographic change in arid zone shrubs: Models of two Eremophila species from Western Australia compared with published data on other species. J. Ecol. 85, 833–846 (1997).
    Article  Google Scholar 

    51.
    Schwinning, S., Sala, O. E., Loik, M. E. & Ehleringer, J. R. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141, 191–193 (2004).
    ADS  PubMed  Article  Google Scholar 

    52.
    Wiegand, K., Jeltsch, F. & Ward, D. Minimum recruitment frequency in plants with episodic recruitment. Oecologia 141, 363–372 (2004).
    ADS  PubMed  Article  Google Scholar 

    53.
    Caballero, I., Olano, J. M., Escudero, A. & Loidi, J. Seed bank structure along a semi-arid gypsum gradient in central Spain. J. Arid Environ. 55, 287–299 (2003).
    ADS  Article  Google Scholar 

    54.
    Olano, J. M., Caballero, I. & Escudero, A. Soil seed bank recovery occurs more rapidly than expected in semi-arid Mediterranean gypsum vegetation. Ann. Bot. 109, 299–307 (2012).
    CAS  PubMed  Article  Google Scholar 

    55.
    Holzapfel, C. & Mahall, B. E. Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 80, 1747–1761 (1999).
    Article  Google Scholar 

    56.
    Schöb, C., Prieto, I., Armas, C. & Pugnaire, F. I. Consequences of facilitation: One plant’s benefit is another plant’s cost. Funct. Ecol. 28, 500–508 (2014).
    Article  Google Scholar 

    57.
    Chesson, R. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Article  Google Scholar 

    58.
    Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
    PubMed  Article  Google Scholar 

    59.
    Shipley, B. et al. Reinforcing foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).
    ADS  PubMed  Article  Google Scholar 

    60.
    Lankau, R. A. & Strauss, S. Y. Newly rare or newly common: Evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evol. Appl. 4, 338–353 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Escavy, J. I., Herrero, M. J. & Arribas, M. E. Gypsum resources of Spain: Temporal and spatial distribution. Ore Geol. Rev. 49, 72–84 (2012).
    Article  Google Scholar 

    62.
    Monturiol, F. & Alcalá-del-Olmo, L. Mapa de Asociaciones de Suelos de la Comunidad de Madrid. Escala 1:200.000 (Consejo Superior de Investigaciones Científicas, Madrid, 1990).
    Google Scholar 

    63.
    Guerrero-Campo, J., Palacio, S., Pérez-Rontome, C. & Montserrat-Martí, G. Effect of root system morphology on root-sprouting and shoot-rooting abilities in 123 plant species from eroded lands in north-east Spain. Ann. Bot. 98, 439–447 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1–7. http://CRAN.R-project.org/package=lme4. Accessed June 2018 (2014).

    65.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–120. http://CRAN.R-project.org/package=nlme. Accessed June 2018 (2015).

    66.
    Metcalf, C. J. E., McMahon, S. M., Salguero-Gómez, R. & Jongejans, E. IPMpack: An R package for integral projection models. Methods Ecol. Evol. 4, 195–200 (2013).
    Article  Google Scholar 

    67.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed June 2018 (2015). More

  • in

    There is little evidence that spicy food in hot countries is an adaptation to reducing infection risk

    1.
    Sherman, P. W. & Billing, J. Darwinian gastronomy: why we use spices: spices taste good because they are good for us. BioScience 49, 453–463 (1999).
    Article  Google Scholar 
    2.
    Billing, J. & Sherman, P. W. Antimicrobial functions of spices: why some like it hot. Q. Rev. Biol. 73, 3–49 (1998).
    CAS  PubMed  Article  Google Scholar 

    3.
    Galton, F. Comment on ‘On a method of investigating the development of institutions; applied to laws of marriage and descent’ by E. B. Tylor. J. Anthropol. Inst. Gt Br. Irel. 18, 245–272 (1889).
    Google Scholar 

    4.
    Bromham, L., Hua, X., Cardillo, M., Schneemann, H. & Greenhill, S. J. Parasites and politics: why cross-cultural studies must control for relatedness, proximity and covariation. R. Soc. Open Sci. 5, 181100 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Mace, R. & Holden, C. J. A phylogenetic approach to cultural evolution. Trends Ecol. Evol. 20, 116–121 (2005).
    PubMed  Article  Google Scholar 

    6.
    Freckleton, R. P. & Jetz, W. Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proc. R. Soc. B 276, 21–30 (2008).
    Article  Google Scholar 

    7.
    Hua, X., Greenhill, S. J., Cardillo, M., Schneemann, H. & Bromham, L. The ecological drivers of variation in global language diversity. Nat. Commun. 10, 2047 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Ohtsubo, Y. Adaptive ingredients against food spoilage in Japanese cuisine. Int. J. Food Sci. Nutr. 60, 677–687 (2009).
    PubMed  Article  Google Scholar 

    9.
    Murray, D. R. & Schaller, M. Historical prevalence of infectious diseases within 230 geopolitical regions: a tool for investigating origins of culture. J. Cross Cult. Psychol. 41, 99–108 (2010).
    Article  Google Scholar 

    10.
    Sherman, P. W. & Hash, G. A. Why vegetable recipes are not very spicy. Evol. Hum. Behav. 22, 147–163 (2001).
    PubMed  Article  Google Scholar 

    11.
    Havelaar, A. H. et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12, e1001923 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Lewnard, J. A., Lo, N. C., Arinaminpathy, N., Frost, I. & Laxminarayan, R. Childhood vaccines and antibiotic use in low- and middle-income countries. Nature 581, 94–99 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    McMichael, A. J. & Beaglehole, R. The changing global context of public health. Lancet 356, 495–499 (2000).
    CAS  PubMed  Article  Google Scholar 

    14.
    Salomon, J. A. et al. Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 (2012).
    PubMed  Article  Google Scholar 

    15.
    Kummu, M. & Varis, O. The world by latitudes: a global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 31, 495–507 (2011).
    Article  Google Scholar 

    16.
    Johnell, O., Borgstrom, F., Jonsson, B. & Kanis, J. Latitude, socioeconomic prosperity, mobile phones and hip fracture risk. Osteoporos. Int. 18, 333–337 (2007).
    CAS  PubMed  Article  Google Scholar 

    17.
    Kanis, J. A. et al. Variations in latitude may or may not explain the worldwide variation in hip fracture incidence. Osteoporos. Int. 23, 2401–2402 (2012).
    Article  Google Scholar 

    18.
    Fisman, D. et al. Geographical variability in the likelihood of bloodstream infections due to Gram-negative bacteria: correlation with proximity to the equator and health care expenditure. PLoS ONE 9, e114548 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Coccia, M. The effect of country wealth on incidence of breast cancer. Breast Cancer Res. Treat. 141, 225–229 (2013).
    PubMed  Article  Google Scholar 

    20.
    Buchter, B., Dunkel, M. & Li, J. Multiple sclerosis: a disease of affluence? Neuroepidemiology 39, 51–56 (2012).
    PubMed  Article  Google Scholar 

    21.
    Roberts, S. & Winters, J. Linguistic diversity and traffic accidents: Lessons from statistical studies of cultural traits. PLoS ONE 8, e70902 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
    Article  Google Scholar 

    25.
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).
    CAS  PubMed  Article  Google Scholar 

    26.
    Dunn, R. R., Davies, T. J., Harris, N. C. & Gavin, M. C. Global drivers of human pathogen richness and prevalence. Proc. R. Soc. B 277, 2587–2595 (2010).
    PubMed  Article  Google Scholar 

    27.
    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645 (2007).
    PubMed  Article  Google Scholar 

    28.
    Collen, B. et al. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23, 40–51 (2014).
    PubMed  Article  Google Scholar 

    29.
    Just, M. G. et al. Global biogeographic regions in a human‐dominated world: the case of human diseases. Ecosphere 5, 1–21 (2014).
    Article  Google Scholar 

    30.
    Morand, S., Owers, K. & Bordes, F. in Confronting Emerging Zoonoses (eds Yamada, A. et al.) 27–41 (Springer, 2014).

    31.
    Turner, J. Spice: the History of a Temptation (Alfred A. Knopf, 2004).

    32.
    Kraft, K. H. et al. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl Acad. Sci. USA 111, 6165–6170 (2014).
    CAS  PubMed  Article  Google Scholar 

    33.
    Portnoy, S. in The SAGE Encyclopedia of Food Issues Vol. 1 (ed. Albala, K.) 84–86 (SAGE Publications, 2015).

    34.
    Jain, A., Rakhi, N. & Bagler, G. Analysis of food pairing in regional cuisines of India. PLoS ONE 10, e0139539 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Zhu, Y.-X. et al. Geography and similarity of regional cuisines in China. PLoS ONE 8, e79161 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Kline, M. A., Shamsudheen, R. & Broesch, T. Variation is the universal: making cultural evolution work in developmental psychology. Philos. Trans. R. Soc. B 373, 20170059 (2018).
    Article  Google Scholar 

    37.
    Bagler, G. CulinaryDB (Indraprastha Institute of Information Technology Delhi, 2017); https://cosylab.iiitd.edu.in/culinarydb/

    38.
    Iranshahy, M. & Iranshahi, M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—a review. J. Ethnopharmacol. 134, 1–10 (2011).
    CAS  PubMed  Article  Google Scholar 

    39.
    Nakamura, Y. et al. Comparison of the glucosinolate–myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties. J. Agric. Food Chem. 56, 2702–2707 (2008).
    CAS  PubMed  Article  Google Scholar 

    40.
    Gupta, S. & Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 12, 600–609 (2011).
    CAS  Article  Google Scholar 

    41.
    Devi, K. P., Suganthy, N., Kesika, P. & Pandian, S. K. Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement. Altern. Med. 8, 1 (2008).
    Article  CAS  Google Scholar 

    42.
    Cox, S., Abu-Ghannam, N. & Gupta, S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 17, 205–220 (2010).
    CAS  Google Scholar 

    43.
    Lipkin, A. et al. An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 66, 2426–2431 (2005).
    CAS  PubMed  Article  Google Scholar 

    44.
    Maiyo, Z., Ngure, R., Matasyoh, J. & Chepkorir, R. Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr. J. Biotechnol. 9, 3178–3182 (2010).
    Google Scholar 

    45.
    Dan, S. Antibacterial activity of paeonol in vitro. Her. Med. 9, 009 (2012).
    Google Scholar 

    46.
    Uddin, G., Sadat, A. & Siddiqui, B. S. Phytochemical screening, in vitro antioxidant and antimicrobial activities of the crude fractions of Paeonia emodi Wall. Ex Royle. Middle East J. Sci. Res. 17, 367–373 (2013).
    Google Scholar 

    47.
    Joung, Y.-M. et al. Antioxidative and antimicrobial activities of lilium species extracts prepared from different aerial parts. Korean J. Food Sci. Technol. 39, 452–457 (2007).
    Google Scholar 

    48.
    He, J., Chen, L., Heber, D., Shi, W. & Lu, Q.-Y. Antibacterial compounds from Glycyrrhiza uralensis. J. Nat. Prod. 69, 121–124 (2006).
    CAS  PubMed  Article  Google Scholar 

    49.
    Dhingra, V., Pakki, S. R. & Narasu, M. L. Antimicrobial activity of artemisinin and its precursors. Curr. Sci. 78, 709–713 (2000).
    CAS  Google Scholar 

    50.
    Gupta, V. K. et al. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol. 116, 377–380 (2008).
    PubMed  Article  Google Scholar 

    51.
    Chen, C. et al. Chemical composition and antimicrobial and DPPH scavenging activity of essential oil of Toona sinensis (A. Juss.) Roem from China. BioResources 9, 5262–5278 (2014).
    Google Scholar 

    52.
    Arzanlou, M. & Bohlooli, S. Introducing of green garlic plant as a new source of allicin. Food Chem. 120, 179–183 (2010).
    CAS  Article  Google Scholar 

    53.
    Shittu, L. et al. Antibacterial and antifungal activities of essential oils of crude extracts of Sesame radiatum against some common pathogenic micro-organisms. Iran. J. Pharmacol. Ther. 6, 165–170 (2008).
    Google Scholar 

    54.
    Medina, E., Romero, C., Brenes, M. & de Castro, A. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Prot. 70, 1194–1199 (2007).
    CAS  PubMed  Article  Google Scholar 

    55.
    South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).
    Article  Google Scholar 

    56.
    R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2016).

    57.
    GADM Maps and Data (GADM, 2012); https://www.gadm.org

    58.
    Bivand, R. et al. rgeos: interface to geometry engine—open source (GEOS) v.0.3-21 https://cran.r-project.org/package=rgeos (2016).

    59.
    Bromham, L. Curiously the same: swapping tools between linguistics and evolutionary biology. Biol. Philos. 32, 855–886 (2017).
    Article  Google Scholar 

    60.
    Mace, R. & Pagel, M. The comparative method in anthropology. Curr. Anthropol. 35, 549–564 (1994).
    Article  Google Scholar 

    61.
    Harvey, P. H. & Pagel, M. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, 1991).

    62.
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Article  Google Scholar 

    63.
    Miller, M. A. & Paige, J. C. Other food borne infections. Vet. Clin. North Am. Food Anim. Pract. 14, 71–89 (1998).
    CAS  PubMed  Article  Google Scholar 

    64.
    Fisman, D. N. & Laupland, K. Guess who’s coming to dinner? Emerging foodborne zoonoses. Can. J. Infect. Dis. Med. Microbiol. 21, 8–10 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Sookias, R. B., Passmore, S. & Atkinson, Q. D. Deep cultural ancestry and human development indicators across nation states. R. Soc. Open Sci. 5, 171411 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Johnson, P. C. D., Barry, S. J. E., Ferguson, H. M. & Muller, P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol. Evol. 6, 133–142 (2015).
    PubMed  Article  Google Scholar 

    67.
    O’Hagan, A. Kendall’s Advanced Theory Of Statistics Vol. 2B: Bayesian Inference (Halsted, 1994).

    68.
    Bonds, M. H., Keenan, D. C., Rohani, P. & Sachs, J. D. Poverty trap formed by the ecology of infectious diseases. Proc. R. Soc. B: 277, 1185–1192 (2010).
    Article  Google Scholar  More

  • in

    The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions

    1.
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
    CAS  PubMed  Article  Google Scholar 
    2.
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
    PubMed  Article  Google Scholar 

    4.
    Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. L. & Schäfer, P. Challenges and approaches in microbiome research: from fundamental to applied. Front. Plant Sci. 9, 1205 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Finzi, A. C. et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob. Change Biol. 21, 2082–2094 (2015).
    ADS  Article  Google Scholar 

    7.
    Haichar, F. Z., Santaella, C., Heulin, T. & Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).
    CAS  Article  Google Scholar 

    8.
    Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).
    CAS  Article  Google Scholar 

    9.
    Paterson, E., Gebbing, T., Abel, C., Sim, A. & Telfer, G. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol. 173, 600–610 (2007).
    CAS  PubMed  Article  Google Scholar 

    10.
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).
    CAS  PubMed  Article  Google Scholar 

    11.
    Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 156, 989–996 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Zhu, B. et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 76, 183–192 (2014).
    CAS  Article  Google Scholar 

    13.
    Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L. & Philippot, L. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 33, 540–552 (2019).
    Article  Google Scholar 

    14.
    Sharma, A., Johri, B. N., Sharma, A. K. & Glick, B. R. Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol. Biochem. 35, 887–894 (2003).
    CAS  Article  Google Scholar 

    15.
    Vaid, S. K., Kumar, B., Sharma, A., Shukla, A. K. & Srivastava, P. C. Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J. Soil Sci. Plant Nutr. 22 (2014).

    16.
    Goteti, P. K., Emmanuel, L. D. A., Desai, S. & Shaik, M. H. A. Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int. J. Microbiol. 2013, 1–7 (2013).
    Article  CAS  Google Scholar 

    17.
    Vacheron, J. et al. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4 (2013).

    18.
    Narendra Babu, A., Jogaiah, S., Ito, S., Kestur Nagaraj, A. & Tran, L.-S.P. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci. 231, 62–73 (2015).
    CAS  PubMed  Article  Google Scholar 

    19.
    Inderbitzin, P. et al. Soil Microbiomes associated with verticillium wilt-suppressive broccoli and chitin amendments are enriched with potential biocontrol agents. Phytopathology 108, 31–43 (2018).
    CAS  PubMed  Article  Google Scholar 

    20.
    Simpson, D. The Economic Importance of Strawberry Crops. In The Genomes of Rosaceous Berries and Their Wild Relatives (eds Hytönen, T. et al.) 1–7 (Springer, Berlin, 2018). https://doi.org/10.1007/978-3-319-76020-9_1.
    Google Scholar 

    21.
    Food and Agriculture Organization of the United Nations (FAO). FAO Global Statistical Yearbook. (2018).

    22.
    California Department of Food and Agriculture. California Agricultural Statistics Review 2017–2018. (2018).

    23.
    Holmes, G. J., Mansouripour, S. M. & Hewavitharana, S. Strawberries at the Crossroads: Management of Soilborne Diseases in California without Methyl Bromide. Phytopathology PHYTO-11-19-0406-IA (2020) https://doi.org/10.1094/PHYTO-11-19-0406-IA.

    24.
    Lloyd, M. Growing for the future: Collective action, land stewardship and soilborne pathogens in California strawberry production. Calif. Agric. 70, 101–103 (2016).
    Article  Google Scholar 

    25.
    Koike, S. T. Crown Rot of Strawberry Caused by Macrophomina phaseolina in California. Plant Dis. 92 (2018).

    26.
    Guthman, J. Land access and costs may drive strawberry growers’ increased use of fumigation. Calif. Agric. 71, 184–191 (2017).
    Article  Google Scholar 

    27.
    Shaw, D. V., Gubler, D. & Hansen, J. Field resistance of California strawberries to Verticilium dahliae at three conidial inoculum concentrations. HortScience 32, 711–713 (1997).
    Article  Google Scholar 

    28.
    Shaw, D. V., Gordon, T. R., Hansen, J. & Kirkpatrick, S. C. Relationship between the extent of colonization by Verticillium dahliae and symptom expression in strawberry (Fragaria × ananassa ) genotypes resistant to verticillium wilt. Plant Pathol. 59, 376–381 (2010).
    Article  Google Scholar 

    29.
    Antanaviciute, L. et al. Mapping QTL associated with Verticillium dahliae resistance in the cultivated strawberry (Fragaria × ananassa). Hortic. Res. 2, 15009 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Besbes, F., Habegger, R. & Schwab, W. Induction of PR-10 genes and metabolites in strawberry plants in response to Verticillium dahliae infection. BMC Plant Biol. 19, 128 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Sánchez, S., Henríquez, J. L., Urcola, L. A., Scott, A. & Gambardella, M. Susceptibility of strawberry cultivars to root and crown rot caused by Macrophomina phaseolina. J. Berry Res. 6, 345–354 (2016).
    Article  CAS  Google Scholar 

    32.
    Pastrana, A. M., Basallote-Ureba, M. J., Aguado, A. & Capote, N. Potential inoculum sources and incidence of strawberry soilborne pathogens in Spain. Plant Dis. 101, 751–760 (2017).
    CAS  PubMed  Article  Google Scholar 

    33.
    Viejobueno, J., Ramallo, A. C., Kirschbaum, D. S., Baino, O. M. & Salazar, S. M. Severe outbreaks of strawberry crown and root charcoal rot caused by Macrophomina phaseolina in Tucumán, Argentina. 5 (2017).

    34.
    Mendes, L. W., Raaijmakers, J. M., de Hollander, M., Mendes, R. & Tsai, S. M. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J. 12, 212–224 (2018).
    PubMed  Article  Google Scholar 

    35.
    Yao, H. & Wu, F. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt: Soil microbial community structure in cucumber rhizosphere. FEMS Microbiol. Ecol. 72, 456–463 (2010).
    CAS  PubMed  Article  Google Scholar 

    36.
    Kwak, M.-J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100–1109 (2018).
    CAS  Article  Google Scholar 

    37.
    Lee, S. A. et al. A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Sci. Rep. 9, 9300 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Edwards, K. R., Kaštovská, E., Borovec, J., Šantrůčková, H. & Picek, T. Species effects and seasonal trends on plant efflux quantity and quality in a spruce swamp forest. Plant Soil 426, 179–196 (2018).
    CAS  Article  Google Scholar 

    39.
    Brisson, V. L., Schmidt, J. E., Northen, T. R., Vogel, J. P. & Gaudin, A. C. M. Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil. Sci. Rep. 9, 15611 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. 115, 7368–7373 (2018).
    PubMed  Article  Google Scholar 

    42.
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Dennis, P. G., Miller, A. J. & Hirsch, P. R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? Root exudates and rhizosphere bacteria. FEMS Microbiol. Ecol. 72, 313–327 (2010).
    CAS  PubMed  Article  Google Scholar 

    44.
    Hinsinger, P., Plassard, C., Tang, C. & Jaillard, B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248, 43–59 (2003).
    CAS  Article  Google Scholar 

    45.
    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. 110, 6548–6553 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    46.
    Youseif, S. H. Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Ann. Agric. Sci. 63, 25–35 (2018).
    Article  Google Scholar 

    47.
    Rolli, E. et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait: Root bacteria protect plants from drought. Environ. Microbiol. 17, 316–331 (2015).
    PubMed  Article  Google Scholar 

    48.
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).
    CAS  PubMed  Article  Google Scholar 

    49.
    Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).
    CAS  PubMed  Article  Google Scholar 

    50.
    Chakraborty, U. & Chakraborty, B. N. Interaction of Rhizobium leguminosarum and Fusarium solani f.sp. pisi on pea affecting disease development and phytoalexin production. Can. J. Bot. 67, 1698–1701 (1989).
    CAS  Article  Google Scholar 

    51.
    Tonelli, M. L., Figueredo, M. S., Rodríguez, J., Fabra, A. & Ibañez, F. Induced systemic resistance -like responses elicited by rhizobia. Plant Soil https://doi.org/10.1007/s11104-020-04423-5 (2020).
    Article  Google Scholar 

    52.
    Alami, Y., Achouak, W., Marol, C. & Heulin, T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393–3398 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    García-Fraile, P. et al. Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 7, e38122 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Perin, L. et al. Diazotrophic burkholderia species associated with field-grown maize and sugarcane. Appl. Environ. Microbiol. 72, 3103–3110 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Caballero-Mellado, J., Onofre-Lemus, J., Estrada-de los Santos, P. & Martinez-Aguilar, L. The tomato rhizosphere, an environment rich in nitrogen-fixing burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73, 5308–5319 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Van Deynze, A. et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLOS Biol. 16, e2006352 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Nallanchakravarthula, S., Mahmood, S., Alström, S. & Finlay, R. D. Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry. PLoS ONE 9, e111455 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Gu, Y. et al. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol. Fertil. Soils 52, 997–1005 (2016).
    CAS  Article  Google Scholar 

    59.
    Dudenhöffer, J., Scheu, S. & Jousset, A. Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. J. Ecol. 104, 1566–1575 (2016).
    Article  CAS  Google Scholar 

    60.
    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0412-1 (2020).
    Article  PubMed  Google Scholar 

    62.
    Snelders, N. C. et al. A Plant Pathogen Utilizes Effector Proteins for Microbiome Manipulation. (2020). https://doi.org/10.1101/2020.01.30.926725.

    63.
    Franke-Whittle, I. H., Manici, L. M., Insam, H. & Stres, B. Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards. Plant Soil 395, 317–333 (2015).
    CAS  Article  Google Scholar 

    64.
    Fu, L. et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem. 104, 39–48 (2017).
    CAS  Article  Google Scholar 

    65.
    Morrissey, R. F., Dugan, E. P. & Koths, J. S. Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biol. Biochem. 8, 23–28 (1976).
    CAS  Article  Google Scholar 

    66.
    Zhao, F. et al. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil. Plant Soil 440, 491–505 (2019).
    CAS  Article  Google Scholar 

    67.
    Trivedi, P. et al. Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol. Biochem. 111, 10–14 (2017).
    CAS  Article  Google Scholar 

    68.
    Cha, J.-Y. et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10, 119–129 (2016).
    CAS  PubMed  Article  Google Scholar 

    69.
    Butterfield, E. J. Reassessment of soil assays for Verticillium dahliae. Phytopathology 77, 1073 (1977).
    Article  Google Scholar 

    70.
    Kabir, Z., Bhat, R. G. & Subbarao, K. V. Comparison of media for recovery of Verticillium dahliae from soil. Plant Dis. 88, 49–55 (2004).
    CAS  PubMed  Article  Google Scholar 

    71.
    Mihail, J. D. Macrophomina. In Methods for Research on Soilborne Phytopathogenic Fungi 134–136 (American Phytopathological Society, Saint Paul).

    72.
    U.S. EPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils (1996).

    73.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    74.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucl. Acids Res. 42, D633–D642 (2014).
    CAS  PubMed  Article  Google Scholar 

    76.
    Clarke, K. R. & Warwik, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-e Ltd, Plymouth, 2014).
    Google Scholar  More

  • in

    Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies

    1.
    Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: Selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Poinsot, D., Charlat, S. & Merçot, H. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: Confronting the models with the facts. BioEssays 25, 259–265 (2003).
    PubMed  Article  Google Scholar 

    3.
    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).
    CAS  PubMed  Article  Google Scholar 

    4.
    Vavre, F., Fleury, F., Lepetit, D., Fouillet, P. & Boulétreau, M. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol. Biol. Evol. 16, 1711–1723 (1999).
    CAS  PubMed  Article  Google Scholar 

    5.
    Sintupachee, S., Milne, J. R., Poonchaisri, S., Baimai, V. & Kittayapong, P. Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb. Ecol. 51, 294–301 (2006).
    CAS  PubMed  Article  Google Scholar 

    6.
    Li, S.-J. et al. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J. 11, 1019–1028 (2017).
    CAS  PubMed  Article  Google Scholar 

    7.
    Turelli, M. & Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353, 440 (1991).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Oliveira, D. C. S. G., Raychoudhury, R., Lavrov, D. V. & Werren, J. H. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol. Biol. Evol. 25, 2167–2180 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Raychoudhury, R. et al. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity 104, 318–326 (2010).
    CAS  PubMed  Article  Google Scholar 

    10.
    Telschow, A., Gadau, J., Werren, J. H. & Kobayashi, Y. Genetic incompatibilities between mitochondria and nuclear genes: Effect on gene flow and speciation. Front. Genet. 10, 62 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Kodandaramaiah, U., Simonsen, T. J., Bromilow, S., Wahlberg, N. & Sperling, F. Deceptive single-locus taxonomy and phylogeography: Wolbachia-associated divergence in mitochondrial DNA is not reflected in morphology and nuclear markers in a butterfly species. Ecol. Evol. 3, 5167–5176 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Ritter, S. et al. Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae). PLoS ONE 8, e78107 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Whitworth, T. L., Dawson, R. D., Magalon, H. & Baudry, E. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proc. R. Soc. B Biol. Sci. 274, 1731–1739 (2007).
    CAS  Article  Google Scholar 

    14.
    Barton, N. & Bengtsson, B. O. The barrier to genetic exchange between hybridising populations. Heredity 57, 357–376 (1986).
    PubMed  Article  Google Scholar 

    15.
    Vavre, F., Fleury, F., Varaldi, J., Fouillet, P. & Boulétreau, M. Infection polymorphism and cytoplasmic incompatibility in Hymenoptera-Wolbachia associations. Heredity 88, 361–365 (2002).
    CAS  PubMed  Article  Google Scholar 

    16.
    Jaenike, J., Dyer, K. A., Cornish, C. & Minhas, M. S. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol. 4, e325 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Telschow, A., Flor, M., Kobayashi, Y., Hammerstein, P. & Werren, J. H. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: Mainland-island model. PLoS ONE 2, e701 (2007).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Flor, M., Hammerstein, P. & Telschow, A. Wolbachia-induced unidirectional cytoplasmic incompatibility and the stability of infection polymorphism in parapatric host populations. J. Evol. Biol. 20, 696–706 (2007).
    CAS  PubMed  Article  Google Scholar 

    19.
    Graham, R. I. & Wilson, K. Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect. BMC Evol. Biol. 12, 204 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Ahmed, M. Z., Breinholt, J. W. & Kawahara, A. Y. Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol. Biol. 16, 118 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Salunkhe, R. C., Narkhede, K. P. & Shouche, Y. S. Distribution and evolutionary impact of Wolbachia on butterfly hosts. Indian J. Microbiol. 54, 249 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Talavera, G., Lukhtanov, V. A., Pierce, N. E. & Vila, R. Establishing criteria for higher-level classification using molecular data: The systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics 29, 166–192 (2013).
    Article  Google Scholar 

    23.
    Espeland, M. et al. A Comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770-778.e5 (2018).
    CAS  PubMed  Article  Google Scholar 

    24.
    Dincă, V., Lee, K. M., Vila, R. & Mutanen, M. The conundrum of species delimitation: A genomic perspective on a mitogenetically super-variable butterfly. Proc. R. Soc. B Biol. Sci. 286, 20191311 (2019).
    Article  CAS  Google Scholar 

    25.
    Gaunet, A. et al. Two consecutive Wolbachia-mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae). Zool. Scr. 48, 507–519 (2019).
    Article  Google Scholar 

    26.
    Dinca, V., Zakharov, E. V., Hebert, P. D. N. & Vila, R. Complete DNA barcode reference library for a country’s butterfly fauna reveals high performance for temperate Europe. Proc. R. Soc. B Biol. Sci. 278, 347–355 (2011).
    Article  Google Scholar 

    27.
    Ugelvig, L. V., Vila, R., Pierce, N. E. & Nash, D. R. A phylogenetic revision of the Glaucopsyche section (Lepidoptera: Lycaenidae), with special focus on the Phengaris-Maculinea clade. Mol. Phylogenet. Evol. 61, 237–243 (2011).
    CAS  PubMed  Article  Google Scholar 

    28.
    Sañudo-Restrepo, C. P., Dincă, V., Talavera, G. & Vila, R. Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Mol. Phylogenet. Evol. 66, 369–379 (2013).
    PubMed  Article  Google Scholar 

    29.
    Todisco, V. et al. Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zool. 3, 4 (2018).
    Article  Google Scholar 

    30.
    Sucháčková Bartoňová, A., Beneš, J., Fric, Z. F. & Konvička, M. Genetic confirmation of Aricia artaxerxes (Fabricius, 1793) (Lepidoptera, Lycaenidae) in the Czech Republic, its conservation significance and biogeographic context. Nota Lepidopterol. 42(2), 163–176 (2019).
    Article  Google Scholar 

    31.
    Kames, P. Die Aufklärung des Differenzierungsgrades und der Phylogenese der beiden Aricia-Arten agestis Den. et Schiff. und artaxerxes Fabr. (allous G.-Hb.) mit Hilfe von Eizuchten und Kreuzungsversuchen (Lep., Lycaenidae). Mitt. Entomol. Ges. Basel, N. F. 26, 7–13, 29–64 (1976).

    32.
    Korb, S., Faltynek Fric, Z. & Bartonova, A. On the status of Aricia cf. scythissa (Nekrutenko, 1985) (Lepidoptera: Lycaenidae) based on molecular investigations. Euroasian Entomol. J. 14, 237–240 (2015).
    Google Scholar 

    33.
    Wiemers, M., Chazot, N., Wheat, C. W., Schweiger, O. & Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938, 97–124 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Settele, J., Steiner, R., Reinhardt, R., Feldmann, R. & Hermann, G. Schmetterlinge: Die Tagfalter Deutschlands (Ulmer Eugen Verlag, Stuttgart, 2015).
    Google Scholar 

    35.
    Monteiro, A. & Pierce, N. E. Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1alpha gene sequences. Mol. Phylogenet. Evol. 18, 264–281 (2001).
    CAS  PubMed  Article  Google Scholar 

    36.
    Wahlberg, N. & Wheat, C. W. Genomic outposts serve the phylogenomic pioneers: Designing novel nuclear markers for genomic DNA extractions of lepidoptera. Syst. Biol. 57, 231–242 (2008).
    CAS  PubMed  Article  Google Scholar 

    37.
    Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Sahoo, R. K. et al. Evolution of Hypolimnas butterflies (Nymphalidae): Out-of-Africa origin and Wolbachia-mediated introgression. Mol. Phylogenet. Evol. 123, 50–58 (2018).
    PubMed  Article  Google Scholar 

    39.
    Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Kearse, M. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Kajtoch, Ł et al. Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. Sci. Rep. 9, 847 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    Ratnasingham, S. & Hebert, P. D. N. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).

    43.
    Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).
    CAS  PubMed  Article  Google Scholar 

    44.
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    45.
    Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3 (2018).

    47.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2019).

    48.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  Article  Google Scholar 

    49.
    Dellicour, S. & Mardulyn, P. SPADS 1.0: A toolbox to perform spatial analyses on DNA sequence data sets. Mol. Ecol. Resour. 14, 647–651 (2014).
    PubMed  Article  Google Scholar 

    50.
    Watson, D. F. & Philip, G. M. A Refinement of inverse distance weighted interpolation. Geoprocessing 2, 315–327 (1985).
    Google Scholar 

    51.
    Manni, F., Guérard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s algorithm. Hum. Biol. 76, 173–190 (2004).
    PubMed  Article  Google Scholar 

    52.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 016 (2018).
    Article  Google Scholar 

    53.
    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).
    CAS  PubMed  Article  Google Scholar 

    54.
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/. (2014).

    55.
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).
    CAS  PubMed  Article  Google Scholar 

    56.
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).

    57.
    Aagaard, K. et al. Phylogenetic relationships in brown argus butterflies (Lepidoptera: Lycaenidae: Aricia) from northwestern Europe. Biol. J. Linn. Soc. 75, 27–37 (2002).
    Article  Google Scholar 

    58.
    Hernández-Roldán, J. L. et al. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies. Mol. Ecol. 25, 4267–4284 (2016).
    PubMed  Article  Google Scholar 

    59.
    Jiang, W. et al. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae). Infect. Genet. Evol. 27, 202–211 (2014).
    PubMed  Article  Google Scholar 

    60.
    Mallet, J., Wynne, I. R. & Thomas, C. D. Hybridisation and climate change: Brown argus butterflies in Britain (Polyommatus subgenus Aricia). Insect Conserv. Divers. 4, 192–199 (2011).
    Article  Google Scholar 

    61.
    Gutzwiller, F., Dedeine, F., Kaiser, W., Giron, D. & Lopez-Vaamonde, C. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol. Evol. 5, 4049–4062 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Mascarenhas, R. O., Prezotto, L. F., Perondini, A. L. P., Marino, C. L. & Selivon, D. Wolbachia in guilds of Anastrepha fruit flies (Tephritidae) and parasitoid wasps (Braconidae). Genet. Mol. Biol. 39, 600–610 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Sucháčková Bartoňová, A. et al. Recently lost connectivity in the Western Palaearctic steppes: The case of a scarce specialist butterfly. Conserv. Genet. 21, 561–575 (2020).
    Article  Google Scholar 

    64.
    Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: The rule and not the exception?. Front. Zool. 9, 1–12 (2012).
    Article  Google Scholar 

    65.
    de Lattin, G. Grundriss der Zoogeographie (VEB Gustav Fischer Verlag, Jena, 1967).
    Google Scholar 

    66.
    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).
    Article  Google Scholar 

    67.
    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467 (2005).
    PubMed  Article  Google Scholar 

    69.
    Heiser, M., Dapporto, L. & Schmitt, T. Coupling impoverishment analysis and partitioning of beta diversity allows a comprehensive description of Odonata biogeography in the Western Mediterranean. Org. Divers. Evol. 14, 203–214 (2014).
    Article  Google Scholar 

    70.
    Vodă, R. et al. Historical and contemporary factors generate unique butterfly communities on islands. Sci. Rep. 6, 28828 (2016).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Scalercio, S. et al. How long is 3 km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. J. Anim. Ecol. 89, 2013–2026 (2020).
    PubMed  Article  Google Scholar 

    72.
    Descimon, H. & Mallet, J. Bad species. in Ecology and Evolution of European Butterflies (Oxford University Press, Oxford, 2009).

    73.
    Habel, J. C., Schmitt, T. & Müller, P. The fourth paradigm pattern of post-glacial range expansion of European terrestrial species: The phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). J. Biogeogr. 32, 1489–1497 (2005).
    Article  Google Scholar 

    74.
    Varga, Z. Das Prinzip der areal-analytischen Methode in der Zoogeographie und die Faunenelement-Einteilung der europäischen Tagschmetterlinge (Lepidoptera: Diurna). Acta Biol. Debrecina 14, 223–285 (1977).
    Google Scholar 

    75.
    Schmitt, T. & Zimmermann, M. To hybridize or not to hybridize: What separates two genetic lineages of the Chalk-hill Blue Polyommatus coridon (Lycaenidae, Lepidoptera) along their secondary contact zone throughout eastern Central Europe?. J. Zool. Syst. Evol. Res. 50, 106–115 (2012).
    Article  Google Scholar 

    76.
    Janoušek, V. et al. Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between Musmusculus musculus and M. m. domesticus. Mol. Ecol. 21, 3032–3047 (2012).
    PubMed  Article  Google Scholar 

    77.
    Nürnberger, B., Lohse, K., Fijarczyk, A., Szymura, J. M. & Blaxter, M. L. Para-allopatry in hybridizing fire-bellied toads (Bombinabombina and B. variegata): Inference from transcriptome-wide coalescence analyses. Evolution 70, 1803–1818 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Vitali, F. & Schmitt, T. Ecological patterns strongly impact the biogeography of western Palaearctic longhorn beetles (Coleoptera: Cerambycoidea). Org. Divers. Evol. 17, 163–180 (2017).
    Article  Google Scholar 

    79.
    Narita, S., Nomura, M., Kato, Y. & Fukatsu, T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: Evolutionary and biogeographical implications. Mol. Ecol. 15, 1095–1108 (2006).
    CAS  PubMed  Article  Google Scholar 

    80.
    Kageyama, S. et al. Feminizing Wolbachia endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species. Evol. Lett. 1, 232–244 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Nosil, P., Harmon, L. J. & Seehausen, O. Ecological explanations for (incomplete) speciation. Trends Ecol. Evol. (Amst.) 24, 145–156 (2009).
    Article  Google Scholar 

    82.
    Talavera, G., Lukhtanov, V. A., Rieppel, L., Pierce, N. E. & Vila, R. In the shadow of phylogenetic uncertainty: The recent diversification of Lysandra butterflies through chromosomal change. Mol. Phylogenet. Evol. 69, 469–478 (2013).
    PubMed  Article  Google Scholar 

    83.
    Kühne, G., Kosuch, J., Hochkirch, A. & Schmitt, T. Extra-Mediterranean glacial refugia in a Mediterranean faunal element: The phylogeography of the chalk-hill blue Polyommatus coridon (Lepidoptera, Lycaenidae). Sci. Rep. 7, srep43533 (2017).
    ADS  Article  Google Scholar 

    84.
    Wiemers, M., Keller, A. & Wolf, M. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus). BMC Evol. Biol. 9, 300 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    85.
    Duron, O. & Hurst, G. D. Arthropods and inherited bacteria: From counting the symbionts to understanding how symbionts count. BMC Biol. 11, 45 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Bailly-Bechet, M. et al. How long does Wolbachia remain on board?. Mol. Biol. Evol. 34, 1183–1193 (2017).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Surface slicks are pelagic nurseries for diverse ocean fauna

    1.
    Leis, J. M. & McCormick, M. I. The biology, behavior, and ecology of the pelagic, larval stage of coral reef fishes. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 171–199 (Academic Press, Cambridge, 2002).
    2.
    Cowen, R. K. Oceanographic influences on larval dispersal and retention and their consequences for population connectivity. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 149–170 (Academic Press, Cambridge, 2002).

    3.
    Doherty, P. J. & Fowler, T. An empirical test of recruitment limitation in a coral reef fish. Science 263, 935–939 (1994).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Armsworth, P. R. Recruitment limitation, population regulation, and larval connectivity in reef fish metapopulations. Ecology 83, 1092–1104 (2002).
    Article  Google Scholar 

    5.
    Houde, E. D. Patterns and trends in larval-stage growth and mortality of teleost fish. J. Fish Biol. 51, 52–83 (1997).
    ADS  Article  Google Scholar 

    6.
    Haury, L. R., McGowan, J. A. & Wiebe, P. H. Patterns and processes in the time-space scales of plankton distributions. In Spatial Pattern in Plankton Communities 34, 277–327 (Springer, Boston, 1978).

    7.
    Letcher, B. H., Rice, J. A., Crowder, L. B. & Rose, K. A. Variability in survival of larval fish: Disentangling components with a generalized individual-based model. Can. J. Fish. Aquat. Sci. 53, 787–801 (1996).
    Article  Google Scholar 

    8.
    Shanks, A. L. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser. 13, 311–315 (1983).
    ADS  Article  Google Scholar 

    9.
    Pineda, J. Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res. 52, 427–458 (1994).
    Article  Google Scholar 

    10.
    Shanks, A. L., Largier, J., Brink, L., Brubaker, J. & Hooff, R. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45, 230–236 (2000).
    ADS  Article  Google Scholar 

    11.
    Garland, E. D., Zimmer, C. A. & Lentz, S. J. Larval distributions in inner-shelf waters: The roles of wind-driven cross-shelf currents and diel vertical migrations. Limnol. Oceanogr. 47, 803–817 (2002).
    ADS  Article  Google Scholar 

    12.
    Sponaugle, S., Lee, T., Kourafalou, V. & Pinkard, D. Florida Current frontal eddies and the settlement of coral reef fishes. Limnol. Oceanogr. 50, 1033–1048 (2005).
    ADS  Article  Google Scholar 

    13.
    Greer, A. T., Cowen, R. K., Guigand, C. M., Hare, J. A. & Tang, D. The role of internal waves in larval fish interactions with potential predators and prey. Prog. Oceanogr. 127, 47–61 (2014).
    ADS  Article  Google Scholar 

    14.
    Shulzitski, K. et al. Close encounters with eddies: Oceanographic features increase growth of larval reef fishes during their journey to the reef. Biol. Lett. 11, 20140746 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Shulzitski, K., Sponaugle, S., Hauff, M., Walter, K. D. & Cowen, R. K. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes. Proc. Natl. Acad. Sci. U. S. A. 113, 6928–6933 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Woodson, C. B. & Litvin, S. Y. Ocean fronts drive marine fishery production and biogeochemical cycling. Proc. Natl. Acad. Sci. U. S. A. 112, 1710–1715 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Apel, J. R., Byrne, H. M., Proni, J. R. & Charnell, R. L. Observations of oceanic internal and surface waves from the Earth Resources Technology Satellite. J. Geophys. Res. 80, 865–881 (1975).
    ADS  Article  Google Scholar 

    18.
    Kingsford, M. J. Linear oceanographic features: A focus for research on recruitment processes. Aust. J. Ecol. 15, 391–401 (1990).
    Article  Google Scholar 

    19.
    Klymak, J. M. et al. The direct breaking of internal waves at steep topography. Oceanography 25(2), 150–159 (2012).
    Article  Google Scholar 

    20.
    Engel, A. et al. The Ocean’s Vital Skin: Toward an integrated understanding of the sea surface microlayer. Front. Mar. Sci. 4, 269 (2017).
    Article  Google Scholar 

    21.
    Jillett, J. B. & Zeldis, J. R. Aerial observations of surface patchiness of a planktonic crustacean. Bull. Mar. Sci. 37, 609–619 (1985).
    Google Scholar 

    22.
    Kingsford, M. J. & Choat, J. H. Influence of surface slicks on the distribution and onshore movements of small fish. Mar. Biol. 91, 161–171 (1986).
    Article  Google Scholar 

    23.
    Shanks, A. & Wright, W. Internal-wave-mediated shoreward transport of cyprids, megalopae, and gammarids and correlated longshore differences in the settling rate of intertidal barnacles. J. Exp. Mar. Biol. Ecol. 114, 1–13 (1987).
    Article  Google Scholar 

    24.
    Shanks, A. L. Further support for the hypothesis that internal waves can cause shoreward transport of larval invertebrates and fish. Fish. Bull. 86, 703–714 (1988).
    Google Scholar 

    25.
    Kingsford, M. J., Wolanski, E. & Choat, J. H. Influence of tidally induced fronts and Langmuir circulations on distribution and movements of presettlement fishes around a coral reef. Mar. Biol. 109, 167–180 (1991).
    Article  Google Scholar 

    26.
    Weidberg, N., Lobón, C., López, E. & Flórez, L. G. Effect of nearshore surface slicks on meroplankton distribution: role of larval behaviour. Mar. Ecol. 506, 15–30 (2014).
    Article  Google Scholar 

    27.
    Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).
    Article  Google Scholar 

    28.
    Hughes, B. B., Levey, M. D., Brown, J. A. & Fountain, M. C. Nursery Functions of US West Coast Estuaries: The State of Knowledge for Juveniles of Focal Invertebrate and Fish Species (The Nature Conservancy, Arlington, 2014).
    Google Scholar 

    29.
    Sheridan, P. & Hays, C. Are mangroves nursery habitat for transient fishes and decapods?. Wetlands 23, 449–458 (2003).
    Article  Google Scholar 

    30.
    Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 70, 105–122 (2006).
    Article  Google Scholar 

    31.
    Logerwell, E. A. & Smith, P. E. Mesoscale eddies and survival of late stage Pacific sardine (Sardinops sagax) larvae. Fish. Oceanogr. 10, 13–25 (2001).
    Article  Google Scholar 

    32.
    Govoni, J. J., Hare, J. A., Davenport, E. D., Chen, M. H. & Marancik, K. E. Mesoscale, cyclonic eddies as larval fish habitat along the southeast United States shelf: A Lagrangian description of the zooplankton community. ICES J. Mar. Sci. 67, 403–411 (2010).
    Article  Google Scholar 

    33.
    Merrifield, M. A. & Holloway, P. E. Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res. Oceans 107, 5-1-5–12 (2002).
    Google Scholar 

    34.
    Gove, J. M., Whitney, J.L. et al. Prey-size plastics are invading larval fish nurseries. Proc. Natl. Acad. Sci. U. S. A. 53, 201907496 (2019).
    Google Scholar 

    35.
    Reid, S. B., Hirota, J., Young, R. E. & Hallacher, L. E. Mesopelagic-boundary community in Hawaii: Micronekton at the interface between neritic and oceanic ecosystems. Mar. Biol. 109, 427–440 (1991).
    Article  Google Scholar 

    36.
    Mundy, B. C. Checklist of the fishes of the Hawaiian archipelago. Bishop Mus. Bull. Zool. 6, 1–706 (2005).
    Google Scholar 

    37.
    Smith, K., Whitney, J. L., Lecky, J., Gove, J. M., Copeland, A., Kobayashi, D. R. & McManus, M. A. Physical mechanisms driving biological accumulation in surface lines on coastal Hawaiian waters. (in review).

    38.
    Cheng, L. Notes on the ecology of the oceanic insect Halobates. Mar. Fish. Rev. 36(2), 1–7 (1974).

    39.
    Senta, T., Kimura, M. & Kanbara, T. Predation of fishes on open-ocean species of sea-skaters (Halobates spp.). Jpn. J. Ichthyol. 40, 193–198 (1993).
    Google Scholar 

    40.
    West, A. P. Aspects of the Early Life History of Billfish Off Kona, Hawaii. PhD Dissertation 1–202 (University of Technology, Sydney, 2004).

    41.
    Gove, J. M., Lecky, J., Walsh, W. J., Ingram, R. J., Leong, K., Polovina, J. J., Maynard, J. A., Whittier, R., Kramer, L., Schemmel, E. M., Hospital, J., Wongbusarakum, S., Conklin, E., Wiggins, C. & Williams, G. J. West Hawai‘i integrated ecosystem assessment ecosystem status report. Pacific Islands Fisheries Science Center, PIFSC Special Publication SP-19-001, 1–46 (2019).

    42.
    Friedlander, A.M. Status of Hawaii’s coastal fisheries in the new millennium, Revised 2004 edition, in: 2001 Fisheries Symposium. Presented at the 2001 Fisheries Symposium, American Fisheries Society, Hawaii Chapter (2004).

    43.
    Gaffney, R. Evaluation of the status of the recreational fishery for ulua in Hawai‘i, and recommendations for future management. Hawaii Department of Land and Natural Resources, Division of Aquatic Resources Technical Report 20–02, 1–42 (2004).

    44.
    Boehlert, G. W. & Mundy, B. C. Vertical distribution of larval fishes off Kahe Point, Oahu, a site for potential ocean thermal energy development. Final Report to National Ocean Service, Division of Ocean Minerals and Energy, NOAA 1–76 (1986).

    45.
    Boehlert, G. W., Watson, W. & Sun, L. C. Horizontal and vertical distributions of larval fishes around an isolated oceanic island in the tropical Pacific. Deep-Sea Res. Part I 39, 439–466 (1992).
    ADS  Article  Google Scholar 

    46.
    Randall, J. E. Reef and Shore Fishes of the Hawaiian Islands (University of Hawaii Press, Honolulu, Hawaii, 2007).
    Google Scholar 

    47.
    Hobson, E. S. Trophic relationships of fishes specialized to feed on zooplankters above coral reefs. In The Ecology of Fishes on Coral Reefs (ed. Sale, P. F.) 69–95 (1991).

    48.
    Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, 1–33 (2015).
    Article  Google Scholar 

    49.
    Downie, R. A., Babcock, R. C., Thomson, D. P. & Vanderklift, M. A. Density of herbivorous fish and intensity of herbivory are influenced by proximity to coral reefs. Mar. Ecol. Prog. Ser. 482, 217–225 (2013).
    ADS  Article  Google Scholar 

    50.
    Parrish, J. D. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar. Ecol. Prog. Ser. 58, 143–160 (1989).
    ADS  Article  Google Scholar 

    51.
    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science 364, 1189–1192 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    52.
    Grimes, C. B. & Kingsford, M. J. How do riverine plumes of different sizes influence fish larvae: Do they enhance recruitment?. Mar. Freshw. Res. 47, 191–208 (1996).
    Article  Google Scholar 

    53.
    Zenitani, H., Kono, N. & Tsukamoto, Y. Relationship between daily survival rates of larval Japanese anchovy (Engraulis japonicus) and concentrations of copepod nauplii in the Seto Inland Sea, Japan. Fish. Oceanogr. 16, 473–478 (2007).
    Article  Google Scholar 

    54.
    Hunter, J. R. Feeding ecology and predation of marine fish larvae. In Marine Fish Larvae: Morphology, Ecology, and Relation to Fisheries (ed. Lasker, R.) 34–77 (Washington Sea Grant Program, 1981).

    55.
    Samprey, A., McKinnon, A. D., Meekan, M. G. & McCormick, M. I. Glimpse into guts: Overview of the feeding of larvae of tropical shorefishes. Mar. Ecol. Prog. Ser. 339, 1–15 (2007).

    56.
    Carassou, L. & Le borgne, R. & Ponton, D. Diet of pre-settlement larvae of coral-reef fishes: Selection of prey types and sizes. J. Fish. Biol. 75, 707–715 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Østergaard, P., Munk, P. & Janekarn, V. Contrasting feeding patterns among species of fish larvae from the tropical Andaman Sea. Mar. Biol. 146, 595–606 (2005).
    Article  Google Scholar 

    58.
    Yang, J. W. et al. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioninginterplay between nanoflagellates and bacterioplankton. ISME J. 12, 1532–1542 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Greer, A. T. et al. Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton. J. Plankton Res. 35, 939–956 (2013).
    Article  Google Scholar 

    60.
    Benoit-Bird, K. J. & McManus, M. A. A critical time window for organismal interactions in a pelagic ecosystem. PLoS ONE 9, e97763 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Benoit-Bird, K., Shroyer, E. L. & McManus, M. A. A critical scale in plankton aggregations across coastal ecosystems. Geophys. Res. Lett. 40, 3968–3974 (2013).
    ADS  Article  Google Scholar 

    62.
    Sponaugle, S., Llopiz, J. K., Havel, L. N. & Rankin, T. L. Spatial variation in larval growth and gut fullness in a coral reef fish. Mar. Ecol. Prog. Ser. 383, 239–249 (2009).
    ADS  Article  Google Scholar 

    63.
    Castro, J., Santiago, J. & Santana-Ortega, A. A general theory on fish aggregation to floating objects: An alternative to the meeting point hypothesis. Rev. Fish. Biol. Fish. 11, 255–277 (2002).

    64.
    Kingsford, M. Biotic and abiotic structure in the pelagic environment: Importance to small fishes. Bull. Mar. Sci. 53, 393–415 (1993).
    Google Scholar 

    65.
    Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 0116 (2017).
    Article  Google Scholar 

    66.
    Gregory, M. R. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 364, 2013–2025 (2009).
    Article  Google Scholar 

    67.
    Carpenter, E. J., Anderson, G. R., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    de Sá, L. C., Luís, L. G. & Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 196, 359–362 (2015).
    Article  CAS  Google Scholar 

    69.
    Franks, P. Sink or swim, accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 82, 1–12 (1992).
    ADS  Article  Google Scholar 

    70.
    Genin, A., Jaffe, J. S., Reef, R., Richter, C. & Franks, P. J. S. Swimming against the flow: A mechanism of zooplankton aggregation. Science 308, 860–862 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    71.
    Young, M. & Adams, N. J. Plastic debris and seabird presence in the Hauraki Gulf, New Zealand. NZ J. Mar. Freshw. Res. 44, 167–175 (2010).
    CAS  Article  Google Scholar 

    72.
    Wolanski, E. & Hamner, W. M. Topographically controlled fronts in the ocean and their biological influence. Science 241, 177–181 (1988).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Morgan, S. G., Fisher, J. L. & Largier, J. L. Larval retention, entrainment, and accumulation in the lee of a small headland: Recruitment hotspots along windy coasts. Limnol. Oceanogr. 56, 161–178 (2011).
    ADS  Article  Google Scholar 

    74.
    Leis, J. M., Siebeck, U. & Dixson, D. L. How Nemo finds home: The neuroecology of dispersal and of population connectivity in larvae of marine fishes. Integr. Comp. Biol. 51, 826–843 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    75.
    Woodson, C. B. et al. Coastal fronts set recruitment and connectivity patterns across multiple taxa. Limnol. Oceanogr. 57, 582–596 (2012).
    ADS  Article  Google Scholar 

    76.
    Woodson, C. B. & McManus, M. A. Foraging behavior can influence dispersal of marine organisms. Limnol. Oceanogr. 52, 2701–2709 (2007).
    ADS  Article  Google Scholar 

    77.
    Simpson, S. D., Radford, A. N., Tickle, E. J., Meekan, M. G. & Jeffs, A. G. Adaptive avoidance of reef noise. PLoS ONE 6, e16625 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268 (2006).
    PubMed  Article  Google Scholar 

    79.
    Rudershausen, P. J. et al. Feeding ecology of blue marlins, dolphinfish, yellowfin tuna, and wahoos from the North Atlantic Ocean and comparisons with other oceans. Trans. Am. Fish. Soc. 139, 1335–1359 (2011).
    Article  Google Scholar 

    80.
    Harrison, C. S., Hilsa, T. S. & Seki, M. P. Hawaiian seabird feeding ecology. Wildl. Monogr. 85, 3–71 (1983).

    81.
    Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Pikitch, E. K. et al. The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish. 15, 43–64 (2014).
    Article  Google Scholar 

    83.
    Greer, A. T. & Woodson, C. B. Application of a predator–prey overlap metric to determine the impact of sub-grid scale feeding dynamics on ecosystem productivity. ICES J. Mar. Sci. 73, 1051–1061 (2016).
    Article  Google Scholar 

    84.
    Woodson, C. B. The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci. 10, 421–441 (2018).
    ADS  CAS  Article  Google Scholar 

    85.
    Luiz, O. et al. Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc. Natl. Acad. Sci. U. S. A. 110, 16498–16502 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Stobutzki, I. C. & Bellwood, D. R. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35–41 (1997).
    ADS  Article  Google Scholar 

    87.
    Jones, G. P. et al. Larval retention and connectivity among populations of corals and reef fishes: History, advances and challenges. Coral Reefs 28, 307–325 (2009).
    ADS  Article  Google Scholar 

    88.
    Underwood, J. N. Ecologically relevant dispersal of corals on isolated reefs: Implications for managing resilience. Ecol. Appl. 19, 18–29 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    89.
    Walsh, W. J. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ. Biol. Fish. 18, 257–276 (1987).
    Article  Google Scholar 

    90.
    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Comms. 7, 1–8 (2016).
    Article  CAS  Google Scholar 

    91.
    Brown, D. M. & Cheng, L. New net for sampling the ocean surface. Mar. Ecol. Prog. Ser. 5, 225–227 (1981).
    ADS  Article  Google Scholar 

    92.
    Isaacs, J. E. & Kidd, L. W. Isaacs-Kidd Midwater Trawl. University of California Scripps Institute of Oceanography Final Report 1, SIO Ref.53-3 (1953).

    93.
    Mann, K. H. & Lazier, J. R. N. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. (Wiley-Blackwell, Hoboken, 2006).

    94.
    Tejada-Martínez, A. E., Akkerman, I. & Bazilevs, Y. Large-eddy simulation of shallow water langmuir turbulence using isogeometric analysis and the residual-based variational multiscale method. J. Appl. Mech. 79, 1–12 (2011).
    Google Scholar 

    95.
    Miller, J. M., Leis, J. M. & Watson, W. An Atlas of Common Nearshore Marine Fish Larvae of the Hawaiian Islands (University of Hawaii Sea Grant College Program, Honolulu, 1979).
    Google Scholar 

    96.
    Moser, H. G., Richards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W. & Richardson, S. L. Ontogeny and Systematics of Fishes. (American Society of Ichthyologists and Herpetologists Special Publication Number 1, Allen Press, Lawrence, Kansas, 1984).

    97.
    Ozawa, T. Studies on the Oceanic Ichthyoplankton in the Western North Pacific (Kyushu University Press, Japan, 1986).
    Google Scholar 

    98.
    Moser, H. G. The early stages of fishes in the California current region. Calif. Cooper. Ocean. Fish. Investig. Atlas No. 33, 1–1517 (1996).

    99.
    Leis, J. M. & Carson-Ewart, B. M. The Larvae of Indo-Pacific Coastal Fishes: An Identification Guide to Marine Fish Larvae. (Australia Museum, 2006).

    100.
    Okiyama, M. An Atlas of the Early Stage Fishes in Japan. vols. 1 & 2, 2nd Ed., 1–1639 (Tokai University Press, Kanagawa, Japan, 2014).

    101.
    Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. 51, 57–141 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    102.
    Kingsford, M. J. & Milicich, M. J. Presettlement phase of Parika scaber (Pisces: Monacanthidae): A temperate reef fish. Mar. Ecol. Prog. Ser. 36, 65–79 (1987).
    ADS  Article  Google Scholar 

    103.
    Andersen, N. M. & Cheng, L. The marine insect Halobates (Heteroptera: Gerridae): Biology, adaptations, distribution, and phylogeny. Oceanogr. Mar. Biol. Annu. Rev. 42, 119–180 (2004).
    Google Scholar 

    104.
    Froese, R. & Pauly, D. FishBase. www.fishbase.org (2018).

    105.
    Hajibabaei, M. et al. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci. 360, 1959–1967 (2005).
    CAS  Article  Google Scholar 

    106.
    Noren, F. Small plastic particles in Swedish West Coast waters. N-Research Consultants Report 1–12 (2008).

    107.
    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Hedges, L. V., Gurevitch, J. & Curtis, P. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Article  Google Scholar 

    109.
    Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., OHara, R. B., Simpson, G. L., Solymos, P., Stevens, M. & Wagner, H. vegan: community ecology package. R. package. version 2.2-1. http://CRAN.R-project.org/packagepvegan. (2015). at http://CRAN.R-project.org/packagepvegan.

    110.
    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).

    111.
    Legendre, P. & Legendre, L. Numerical Ecology, Third Edition. (Elsevier, Amsterdam, 2012).

    112.
    Harrell, F. E., Jr. Package ‘Hmisc’—Harrell Miscellaneous. 1–363 (http://cran.r-project.org/web/packages/Hmisc, 2012).

    113.
    Wei, T. Package ‘corrplot’—Visualization of a correlation matrix v0.60. 1–16 (https://CRAN.R-project.org/package=corrplot, 2012).

    114.
    Zeileis, A., Cribari-Neto, F., Gruen, B. & Kosmidis, I. Beta Regression in R. J. Stat. Softw. 34, 1–24 (2010).
    Article  Google Scholar 

    115.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2017). https://www.R-project.org/. More

  • in

    Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota

    Relative species abundance distribution
    In order to evaluate sample quality, we analysed both the Relative Species Abundance distribution (RSA) and the rarefaction curves. For each sample, we compared the RSA derived by shotgun and 16S sequencing. RSA histograms in logarithmic scale show that the distributions obtained by shotgun and 16S have similar shape at phylum level (Fig. 1a, b). In Fig. 1b, the 16S sample is characterized by a more patchy distribution, having identified less phyla. At phylum level, both strategies produce positively skewed samples in the log2-transformed distributions, except for 16S outliers, because none of the phyla is significantly rare (Fig. 2a).
    Figure 1

    RSA histograms in logarithmic scale (Preston plots 21) of bacterial abundances in one sample selected as anexample (caeca25): (a) genera sampled by shotgun sequencing, (b) genera sampled by 16S rRNA sequencing, (c) phyla sampled by shotgun sequencing and (d) phyla sampled by 16S sequencing.

    Full size image

    Figure 2

    Box plot of the RSA skewness of bacterial communities at (a) phylum level and (b) genus level. Bacterial communities are sampled with (left) shotgun sequencing and (right) 16S sequencing.

    Full size image

    On the other hand, at genus level, the two strategies display different shapes (Fig. 1c, d, Supplementary Fig. S1, S2, S3, S4). Indeed, the log2-transformed distributions derived by shotgun sequencing generally have a skewness closer to zero compared to those obtained by 16S, i.e. are more symmetrical (Figure 2b): a paired Student’s t-test on the skewness shows a significant difference between them (P = 8·10–6). This indicates that shotgun samples are characterized by a higher sampling size. According to Preston, left-skewed shapes of the RSA can be explained as artefacts of small sample size21,22, since insufficient sampling of the original space produces a truncation of the left tail of the RSA, increasing its skewness.
    In shotgun samples, the RSA skewness at genus level is related to the total number of reads (Supplementary Fig. S5): the shotgun samples with the lowest total number of reads have the largest skewness. Specifically, Supplementary Figure S5 shows that shotgun samples cluster in two groups, one characterized by a low number of reads (# reads  500,000, 50/78 samples) and a less skewed RSA.
    Noticeably, the high-skewness group includes all 9 samples from 1st day, all 15 crop samples from 14th day and 4 out of 18 crop samples from 35th day. The samples collected at day 1 were very poor in terms of biomass and the crop samples contained more feed residues than caecal samples, making the DNA extraction less efficient both in terms of DNA quantity and quality. For the comparative analysis we removed samples with less than 500,000 reads being characterized by a low quality. This choice was corroborated by the analysis of the rarefaction curves, showing that shotgun samples with less than 500,000 reads do not reach a plateau in terms of identified genera (Supplementary Fig. S6). All the 50 samples included in the comparative analysis have a total number of reads  > 500,000 and a skewness lower than the median of 16S samples, indicating a good sampling depth. Since included samples were characterized by a high microbial load, we are confident to extend the results of the following analyses only to samples with few contaminant DNA and low cross-contaminations. Nonetheless, we have shown that shotgun samples have a RSA similar to 16S samples when a low number of total reads is available, thus hypothesizing that in differential analyses carried on samples with a low microbial load regime, shotgun sequencing could perform similarly to 16S sequencing or even worse.
    For a balanced comparison, also 16S samples corresponding to the discarded shotgun samples were removed.
    Differential analysis for the experimental conditions
    Since in many situations a metagenomic analysis is used to discriminate between different experimental conditions, we compared the results of differential analysis performed on reads obtained by the two strategies. To this aim, we analysed the fold changes of genera abundances between compartments of the GI tract and between sampling times (Fig. 3 for caeca vs crop, Supplementary Fig. S7 for 14th vs. 35th day) common to both sequencing strategies (288 genera for caeca vs crop, and 246 for 14th vs. 45th day). Comparing the genera abundances between caeca and crop, 16S identified 108 statistically significant differences (adjusted P  More