More stories

  • in

    Changes in the large carnivore community structure of the Judean Desert in connection to Holocene human settlement dynamics

    1.
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
    PubMed  Article  CAS  Google Scholar 
    2.
    Dietl, G. P. et al. Conservation paleobiology: Leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).
    ADS  CAS  Article  Google Scholar 

    3.
    Rick, T. C. & Lockwood, R. Integrating paleobiology, archeology, and history to inform biological conservation. Conserv. Biol. 27, 45–54 (2013).
    PubMed  Article  Google Scholar 

    4.
    Dietl, G. P. Brave new world of conservation paleobiology. Front. Ecol. Evol. 4, 21 (2016).
    Article  Google Scholar 

    5.
    Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).
    ADS  PubMed  Article  CAS  Google Scholar 

    6.
    Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).
    ADS  PubMed  Article  CAS  Google Scholar 

    7.
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).
    Article  Google Scholar 

    9.
    Faurby, S., Silvestro, D., Werdelin, L. & Antonelli, A. Brain expansion in early hominins predicts carnivore extinctions in East Africa. Ecol. Lett. 23, 537–544 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Van Der Kaars, S. et al. Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat. Commun. 8, 1–7 (2017).
    ADS  Article  CAS  Google Scholar 

    11.
    Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl. Acad. Sci. U. S. A. 111, 14472–14477 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Tsahar, E., Izhaki, I., Lev-Yadun, S. & Bar-Oz, G. Distribution and Extinction Of Ungulates During The Holocene of the Southern Levant. PLoS ONE 4, e5316 (2009).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Boivin, N. L. et al. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proc. Natl. Acad. Sci. U. S. A. 113, 6388–16396 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Jęodrzejewska, B., Jęodrzejewski, W., Bunevich, A. N., Minkowski, L. & Okarma, H. Population dynamics of Wolves Canis lupus in Bialowieża Primeval Forest (Poland and Belarus) in relation to hunting by humans, 1847–1993. Mamm. Rev. 26, 103–126 (1996).
    Article  Google Scholar 

    15.
    Orbach, M. & Yeshurun, R. The hunters or the hunters: Human and hyena prey choice divergence in the Late Pleistocene Levant. J. Hum. Evol. 102572 (2019).

    16.
    Werdelin, L. & Lewis, M. E. Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene carnivoran guild. PLoS ONE 8, e57944 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Albrecht, J. et al. Humans and climate change drove the Holocene decline of the brown bear. Sci. Rep. 7, 10399 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Dayan, T. Carnivore diversity in the late quaternary of Israel. Quat. Res. 41, 343–349 (1994).
    Article  Google Scholar 

    19.
    Price, G. J., Louys, J., Faith, J. T., Lorenzen, E. & Westaway, M. C. Big data little help in megafauna mysteries. Nature 558, 23–25 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    21.
    Mittelbach, G. G. & McGill, B. J. Community Ecology (Oxford University Press, Oxford, 2019).
    Google Scholar 

    22.
    Hebblewhite, M. et al. Human activity mediates a trophic cascade caused by wolves. Ecology 86, 2135–2144 (2005).
    Article  Google Scholar 

    23.
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Hoeks, S. et al. Mechanistic insights into the role of large carnivores for ecosystem structure and functioning. Ecography 283, 3 (2020).
    Google Scholar 

    25.
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Article  Google Scholar 

    26.
    Mendelssohn, H. & Yom-Tov, Y. Mammalia of Israel. 476 (Israel Academy of Sciences and Humanities, 1999).

    27.
    Hadas, G. Ancient agricultural irrigation systems in the oasis of Ein Gedi, Dead Sea, Israel. J. Arid Environ. 86, 75–81 (2012).
    ADS  Article  Google Scholar 

    28.
    Bar-Matthews, M., Ayalon, A., Kaufman, A. & Wasserburg, G. J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet. Sci. Lett. 166, 85–95 (1999).
    ADS  CAS  Article  Google Scholar 

    29.
    Litt, T., Ohlwein, C., Neumann, F. H. & Hense, A. Holocene climate variability in the Levant from the Dead Sea pollen record. Quat. Sci. Rev. 49, 95–105 (2012).
    ADS  Article  Google Scholar 

    30.
    Vaks, A., Bar-Matthews, M., Ayalon, A. & Matthews, A. Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth Planet. Sci. Lett. 249, 384–399 (2006).
    ADS  CAS  Article  Google Scholar 

    31.
    Frumkin, A. & Elitzur, Y. Historic Dead Sea level fluctuations calibrated with geological and archaeological evidence. Quat. Res. 57, 334–342 (2002).
    Article  Google Scholar 

    32.
    Lisker, S. et al. Late Quaternary environmental and human events at En Gedi, reflected by the geology and archaeology of the Moringa Cave (Dead Sea area, Israel). Quat. Res. 68, 203–212 (2007).
    Article  Google Scholar 

    33.
    Frumkin, A., Langford, B. & Porat, R. The Judean Desert—The major hypogene cave region of the Southern Levant. In Hypogene Karst Regions and Caves of the World (eds Klimchouk, A. et al.) 463–477 (Springer, Berlin, 2017).
    Google Scholar 

    34.
    Frumkin, A., Zaidner, Y., Na’aman, I., Tsatskin, A. & Porat, N. Sagging and collapse sinkholes over hypogenic hydrothermal karst in a carbonate terrain. Geomorphology 229, 45–57 (2015).
    ADS  Article  Google Scholar 

    35.
    Davidovich, U. The Chalcolithic—Early bronze age transition: A view from the Judean Desert Caves, Southern Levant. Paléorient 39, 125–138 (2013).
    Article  Google Scholar 

    36.
    Rick, J. W. Dates as data: An examination of the Peruvian preceramic radiocarbon record. Am. Antiq. 52, 55–73 (1987).
    Article  Google Scholar 

    37.
    Jacobson, A. P. et al. Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4, e1974 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Shamoon, H. & Shapira, I. Limiting factors of Striped Hyaena, Hyaena hyaena, distribution and densities across climatic and geographical gradients (Mammalia: Carnivora). Zool. Middle East 65, 189–200 (2019).
    Article  Google Scholar 

    39.
    Yirga, G. et al. Spotted hyena (Crocuta crocuta) concentrate around urban waste dumps across Tigray, northern Ethiopia. Wildl. Res. 42, 563–569 (2016).
    Article  Google Scholar 

    40.
    Davidovich, U. The Judean Desert during the Chalcolithic, Bronze and Iron Ages (Sixth-First Millennia BC): Desert and Sown Relations in light of Activity Patterns in a Defined Desert Environment (The Hebrew University, Jerusalem, 2014).
    Google Scholar 

    41.
    Geffen, E., Hefner, R., MacDonald, D. W. & Ucko, M. Diet and Foraging Behavior of Blanford’s Foxes, Vulpes cana, Israel. J. Mammal. 73, 395–402 (1992).
    Article  Google Scholar 

    42.
    Tchernov, E. The Middle Paleolithic mammalian sequence and its bearing on the origin of Homo sapiens in the southern Levant. in Investigations in South Levantine Prehistory (eds. Bar-Yosef, 0. & Vandermeersch, B.) 25–42 (BAR, International Series 497, 1989).

    43.
    Garfinkel, Y. et al. Pottery Neolithic Site in the Southern Coastal Plain of Israel, A final report. J. Israel Prehist. Soc. 32, 73–145 (2002).
    Google Scholar 

    44.
    Tichon, J., Rotem, G. & Ward, P. Estimating abundance of striped hyenas (Hyaena hyaena) in the Negev Desert of Israel using camera traps and closed capture–recapture models. Eur. J. Wildl. Res. 63, 5 (2016).
    Article  Google Scholar 

    45.
    Perez, I., Geffen, E. & Mokady, O. Critically Endangered Arabian leopards Panthera pardus nimr in Israel: estimating population parameters using molecular scatology. Oryx 40, 295–301 (2006).
    Article  Google Scholar 

    46.
    Avner, U. et al. Carnivore traps in the Negev and Judaean deserts (Israel): function, location and chronology. in Prédateurs dans tous leurs états: évolution, biodiversité, interactions, mythes, symboles. Actes des XXXIe rencontres internationales d’archéologie et d’histoire d’Antibes, 21–23 octobre 2010 (eds. Brugal, J. P., Gardeisen, A. & Zucker, A.) 253–268 (2011).

    47.
    Hadas, G. Hunting Traps around the Oasis of ʿEn Gedi. Israel Explor. J. 61, 2–11 (2011).
    Google Scholar 

    48.
    Torfstein, A., Goldstein, S. L., Stein, M. & Enzel, Y. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quat. Sci. Rev. 69, 1–7 (2013).
    ADS  Article  Google Scholar 

    49.
    Torfstein, A. et al. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth Planet. Sci. Lett. 412, 235–244 (2015).
    ADS  CAS  Article  Google Scholar 

    50.
    Lisker, S., Vaks, A., Bar-Matthews, M., Porat, R. & Frumkin, A. Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites. Quat. Sci. Rev. 29, 1201–1211 (2010).
    Article  Google Scholar 

    51.
    Frumkin, A. & Comay, O. The last glacial cycle of the southern Levant: Paleoenvironment and chronology of modern humans. J. Hum. Evol. https://doi.org/10.1016/j.jhevol.2019.04.007 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    52.
    Orland, I. J. et al. Seasonal resolution of Eastern Mediterranean climate change since 34ka from a Soreq Cave speleothem. Geochim. Cosmochim. Acta 89, 240–255 (2012).
    ADS  CAS  Article  Google Scholar 

    53.
    Bar-Matthews, M. & Ayalon, A. Speleothems as palaeoclimate indicators, a case study from Soreq Cave located in the Eastern Mediterranean Region, Israel. In Past Climate Variability Through Europe and Africa (eds Battarbee, R. W. et al.) 363–391 (Springer, Berlin, 2004).
    Google Scholar 

    54.
    Frumkin, A., Kadan, G., Enzel, Y. & Eyal, Y. Radiocarbon chronology of the Holocene Dead Sea: Attempting a regional correlation. Radiocarbon 43, 1179–1189 (2001).
    CAS  Article  Google Scholar 

    55.
    Morin, E., Ryb, T., Gavrieli, I. & Enzel, Y. Mean, variance, and trends of Levant precipitation over the past 4500 years from reconstructed Dead Sea levels and stochastic modeling. Quat. Res. 91, 751–767 (2019).
    CAS  Article  Google Scholar 

    56.
    Enzel, Y. et al. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat. Res. 60, 263–273 (2003).
    Article  Google Scholar 

    57.
    Bookman, R., Enzel, Y., Agnon, A. & Stein, M. Late Holocene lake levels of the Dead Sea. GSA Bull. 116, 555–571 (2004).
    Article  Google Scholar 

    58.
    Kagan, E. J., Langgut, D., Boaretto, E., Neumann, F. H. & Stein, M. Dead Sea levels during the Bronze and Iron ages. Radiocarbon 57, 237–252 (2015).
    Article  Google Scholar 

    59.
    Vaks, A. et al. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quat. Res. 59, 182–193 (2003).
    CAS  Article  Google Scholar 

    60.
    Frumkin, A., Ford, D. C. & Schwarcz, H. P. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quat. Res. 51, 317–327 (1999).
    CAS  Article  Google Scholar 

    61.
    Kolodny, Y., Stein, M. & Machlus, M. Sea-rain-lake relation in the Last Glacial East Mediterranean revealed by δ18O-δ13C in Lake Lisan aragonites. Geochim. Cosmochim. Acta 69, 4045–4060 (2005).
    ADS  CAS  Article  Google Scholar 

    62.
    Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003).
    ADS  CAS  Article  Google Scholar 

    63.
    Greenbaum, N., Ben-Zvi, A., Haviv, I. & Enzel, Y. The hydrology and paleohydrology of the Dead Sea tributaries. Geol. Soc. Am. Spec. Publ. 401, 63–93 (2006).
    Google Scholar 

    64.
    Enzel, Y. et al. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Glob. Planet. Change 60, 165–192 (2008).
    ADS  Article  Google Scholar 

    65.
    Petraglia, M. D., Groucutt, H. S., Guagnin, M., Breeze, P. S. & Boivin, N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl. Acad. Sci. U. S. A. 117, 8263–8270 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Frumkin, A. Holy Land Atlas: Judean Desert Caves (Magnes Press, Jerusalem, 2015).
    Google Scholar 

    67.
    Klein, E., Davidovich Uri, Porat, R., Ganor, A. & Ullman, M. In the Cave of the Skulls-Again. Biblic. Archaeol. Rev. 43, 18–19 and 57 (2017).

    68.
    Cherkinsky, A. Can we get a good radiocarbon age from “bad bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon 51, 647–655 (2009).
    CAS  Article  Google Scholar 

    69.
    Zazzo, A. & Saliège, J. F. Radiocarbon dating of biological apatites: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 52–61 (2011).
    Article  Google Scholar 

    70.
    Ramsey, C. B. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).
    ADS  Article  Google Scholar 

    71.
    Bevan, A., Crema, E. & Silva, F. rcarbon: Calibration and Analysis of Radiocarbon Dates. R package version 1 (2017). More

  • in

    Impact of synbiotics on gut microbiota during early life: a randomized, double-blind study

    1.
    Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331), 543–547 (2011).
    ADS  CAS  Article  Google Scholar 
    2.
    Huda, M. N. et al. Stool microbiota and vaccine responses of infants. Pediatrics 134(2), e362–372 (2014).
    Article  Google Scholar 

    3.
    Chichlowski, M., De Lartigue, G., German, J. B., Raybould, H. E. & Mills, D. A. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J. Pediatr. Gastroenterol. Nutr. 55(3), 321–332 (2012).
    CAS  Article  Google Scholar 

    4.
    Lewis, Z. T. & Mills, D. A. Differential establishment of bifidobacteria in the breastfed infant Ggut. Nestle Nutr. Inst. Workshop Series. 88, 149–159 (2017).
    Article  Google Scholar 

    5.
    Tannock, G. W., Lee, P. S., Wong, K. H. & Lawley, B. Why don’t all infants have bifidobacteria in their stool?. Front. Microbiol. 7, 834 (2016).
    Article  Google Scholar 

    6.
    Kumar, H. et al. The bifidogenic effect revisited—ecology and health perspectives of bifidobacterial colonization in early life. Microorganisms 8(12), 1855. https://doi.org/10.3390/microorganisms8121855 (2020).

    7.
    Bryant, K. & McDonald, L. C. Clostridium difficile infections in children. Pediatr. Infect. Dis. J. 28(2), 145–146 (2019).
    Article  Google Scholar 

    8.
    Lee, S. H., Gong, Y. N. & Ryoo, E. Clostridium difficile colonization and/or infection during infancy and the risk of childhood allergic diseases. Korean J. Pediatr. 60(5), 145–150 (2017).
    Article  Google Scholar 

    9.
    Shamir, R. The benefits of breast feeding. Nestle Nutr. Inst. Workshop Series. 86, 67–76 (2016).
    Article  Google Scholar 

    10.
    Turck, D. et al. Breastfeeding: Health benefits for child and mother. Arch. Pediatr. Organe Off. Soc. Francaise Pediatr. 20, S29-48 (2013).
    Google Scholar 

    11.
    Martin, R. et al. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 143(6), 754–758 (2003).
    CAS  Article  Google Scholar 

    12.
    Perez, P. F. et al. Bacterial imprinting of the neonatal immune system: Lessons from maternal cells?. Pediatrics 119(3), e724-732 (2007).
    Article  Google Scholar 

    13.
    Fernandez, L. et al. The microbiota of human milk in healthy women. Cell Mol. Biol. 59(1), 31–42 (2013).
    CAS  PubMed  Google Scholar 

    14.
    Heikkila, M. P. & Saris, P. E. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 95(3), 471–478 (2003).
    CAS  Article  Google Scholar 

    15.
    Damaceno, Q. S. et al. Evaluation of potential probiotics isolated from human milk and colostrum. Probiot. Antimicrob. Proteins. 9(4), 371–379 (2017).
    Article  Google Scholar 

    16.
    Boix-Amoros, A., Collado, M. C. & Mira, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front. Microbiol. 7, 492 (2016).
    Article  Google Scholar 

    17.
    Collado, M. C., Delgado, S., Maldonado, A. & Rodriguez, J. M. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett. Appl. Microbiol. 48(5), 523–528 (2009).
    CAS  Article  Google Scholar 

    18.
    Martin, R. et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 75(4), 965–969 (2009).
    CAS  Article  Google Scholar 

    19.
    Qian, L., Song, H. & Cai, W. Determination of Bifidobacterium and Lactobacillus in breast milk of healthy women by digital PCR. Beneficial Microb. 7(4), 559–569 (2016).
    CAS  Article  Google Scholar 

    20.
    Soto, A. et al. Lactobacilli and bifidobacteria in human breast milk: Influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 59(1), 78–88 (2014).
    Article  Google Scholar 

    21.
    Sugahara, H., Odamaki, T., Hashikura, N., Abe, F. & Xiao, J. Z. Differences in folate production by bifidobacteria of different origins. Biosci. Microb. Food Health. 34(4), 87–93 (2015).
    CAS  Article  Google Scholar 

    22.
    Odamaki, T. et al. Comparative genomics revealed genetic diversity and species/strain-level differences in carbohydrate metabolism of three probiotic bifidobacterial species. Int. J. Genom. 2015, 567809 (2015).
    Google Scholar 

    23.
    Kolida, S. & Gibson, G. R. Synbiotics in health and disease. Ann. Rev. Food Sci. Technol. 2, 373–393 (2011).
    Article  Google Scholar 

    24.
    Gurry, T. Synbiotic approaches to human health and well-being. Microb. Biotechnol. 10(5), 1070–1073 (2017).
    Article  Google Scholar 

    25.
    Chua, M. C. et al. Effect of synbiotic on the gut microbiota of cesarean delivered infants: A randomized, double-blind, multicenter study. J. Pediatr. Gastroenterol. Nutr. 65(1), 102–106 (2017).
    Article  Google Scholar 

    26.
    van Aa, L. B. et al. Effect of a new synbiotic mixture on atopic dermatitis in infants: A randomized-controlled trial. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 40(5), 795–804 (2010).
    Google Scholar 

    27.
    Ouwehand, A. C. A review of dose–responses of probiotics in human studies. Beneficial Microb. 8(2), 143–151 (2017).
    CAS  Article  Google Scholar 

    28.
    Bakker-Zierikzee, A. M. et al. Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br. J. Nutr. 94(5), 783–790 (2005).
    CAS  Article  Google Scholar 

    29.
    Haarman, M. & Knol, J. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 71(5), 2318–2324 (2005).
    CAS  Article  Google Scholar 

    30.
    Legendre, P., Oksanen, J. & ter Braak, C. J. F. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2(3), 269–277. https://doi.org/10.1111/j.2041-210X.2010.00078.x (2011).
    Article  Google Scholar 

    31.
    O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).
    Article  Google Scholar 

    32.
    Turroni, F., Ribbera, A., Foroni, E., van Sinderen, D. & Ventura, M. Human gut microbiota and bifidobacteria: From composition to functionality. Antonie Van Leeuwenhoek 94(1), 35–50 (2008).
    Article  Google Scholar 

    33.
    Hidalgo-Cantabrana, C. et al. Bifidobacteria and their health-promoting effects. Microbiol. Spectrum. https://doi.org/10.1128/microbiolspec.BAD-0010-2016 (2017).
    Article  Google Scholar 

    34.
    Underwood, M. A. et al. A comparison of two probiotic strains of bifidobacteria in premature infants. J. Pediatr. 163(6), 1585–1591.e1589 (2013).
    CAS  Article  Google Scholar 

    35.
    Bridgman, S. L. et al. Fecal short-chain fatty acid variations by breastfeeding status in infants at 4 months: Differences in relative versus absolute concentrations. Front. Nutr. 4, 11. https://doi.org/10.3389/fnut.2017.00011 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Wopereis, H. et al. Intestinal microbiota in infants at high risk for allergy: Effects of prebiotics and role in eczema development. J. Allergy Clin. Immunol. 141(4), 1334–1342.e5 (2017).
    Article  Google Scholar 

    37.
    Tunc, V. T., Camurdan, A. D., Ilhan, M. N., Sahin, F. & Beyazova, U. Factors associated with defecation patterns in 0–24-month-old children. Eur. J. Pediatr. 167(12), 1357–1362 (2008).
    Article  Google Scholar 

    38.
    Infante, D. D., Segarra, O. O., Redecillas, S. S., Alvarez, M. M. & Miserachs, M. M. Modification of stool’s water content in constipated infants: management with an adapted infant formula. Nutr. J. 10, 55. https://doi.org/10.1186/1475-2891-10-55 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Valdes-Varela, L., Hernandez-Barranco, A. M., Ruas-Madiedo, P. & Gueimonde, M. Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front. Microbiol. 7, 738 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Sommer, F., Anderson, J. M., Bharti, R., Raes, J. & Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15(10), 630–638 (2017).
    CAS  Article  Google Scholar 

    41.
    Baglatzi, L. et al. Effect of infant formula containing a low dose of the probiotic Bifidobacterium lactis CNCM I-3446 on immune and gut functions in c-section delivered babies: A pilot study. Clin. Med. Insights. Pediatr. 10, 11–19 (2016).
    CAS  Article  Google Scholar  More

  • in

    Peaks in bat activity at turbines and the implications for mitigating the impact of wind energy developments on bats

    1.
    IRENA. Global Energy Transformation: A Roadmap to 2050 (International Renewable Energy Agency, Abu Dhabi, 2018).
    Google Scholar 
    2.
    Onakpoya, I. J., O’Sullivan, J., Thompson, M. J. & Heneghan, C. J. The effect of wind turbine noise on sleep and quality of life: A systematic review and meta-analysis of observational studies. Environ. Int. 82, 1–9 (2015).
    Article  Google Scholar 

    3.
    Minderman, J., Pendlebury, C. J., Pearce-Higgins, J. W. & Park, K. J. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity. PLoS ONE 7, e41177 (2012).
    ADS  CAS  Article  Google Scholar 

    4.
    Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. IProc. R. Soc. B 284, 20170829 (2017).
    Article  Google Scholar 

    5.
    Marques, A. T. et al. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).
    Article  Google Scholar 

    6.
    Frick, W. F. et al. Fatalities at wind turbines may threaten population viability of a migratory bat. Biol. Conserv. 209, 172–177 (2017).
    Article  Google Scholar 

    7.
    Horn, J. W., Arnett, E. B. & Kunz, T. H. Behavioral responses of bats to operating wind turbines. J. Wildl. Manag. 72, 123–132 (2008).
    Article  Google Scholar 

    8.
    Roeleke, M., Blohm, T., Kramer-Schadt, S., Yovel, Y. & Voigt, C. C. Habitat use of bats in relation to wind turbines revealed by GPS tracking. Sci. Rep. 6, 28961 (2016).
    ADS  CAS  Article  Google Scholar 

    9.
    Cryan, P. M. et al. Behavior of bats at wind turbines. Proc. Natl. Acad. Sci. 111, 15126–15131 (2014).
    ADS  CAS  Article  Google Scholar 

    10.
    Rydell, J. et al. Mortality of bats at wind turbines links to nocturnal insect migration?. Eur. J. Wildl. Res. 56, 823–827 (2010).
    Article  Google Scholar 

    11.
    Millon, L., Colin, C., Brescia, F. & Kerbiriou, C. Wind turbines impact bat activity, leading to high losses of habitat use in a biodiversity hotspot. Ecol. Eng. 112, 51–54 (2018).
    Article  Google Scholar 

    12.
    Minderman, J., Gillis, M. H., Daly, H. F. & Park, K. J. Landscape-scale effects of single-and multiple small wind turbines on bat activity. Anim. Conserv. 20(5), 455–462 (2017).
    Article  Google Scholar 

    13.
    Lintott, P. R., Richardson, S. M., Hosken, D. J., Fensome, S. A. & Mathews, F. Ecological impact assessments fail to reduce risk of bat casualties at wind farms. Curr. Biol. 26, R1135–R1136 (2016).
    CAS  Article  Google Scholar 

    14.
    Lintott, P. R. et al. Ecobat: An online resource to facilitate transparent, evidence-based interpretation of bat activity data. Ecol. Evol. 8, 935–941 (2018).
    Article  Google Scholar 

    15.
    Rydell, J. et al. Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica 12, 261–274 (2010).
    Article  Google Scholar 

    16.
    Barré, K., Le Viol, I., Bas, Y., Julliard, R. & Kerbiriou, C. Estimating habitat loss due to wind turbine avoidance by bats: Implications for European siting guidance. Biol. Conserv. 226, 205–214 (2018).
    Article  Google Scholar 

    17.
    Verboom, B. & Huitema, H. The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecol. 12, 117–125 (1997).
    Article  Google Scholar 

    18.
    Roemer, C., Disca, T., Coulon, A. & Bas, Y. Bat flight height monitored from wind masts predicts mortality risk at wind farms. Biol. Conserv. 215, 116–122 (2017).
    Article  Google Scholar 

    19.
    Behr, O. et al. Mitigating bat mortality with turbine-specific curtailment algorithms: A model-based approach. In Wind Energy and Wildlife Interactions 135–160 (Springer, Cham, 2017).
    Google Scholar 

    20.
    Natural England and the Department for Environment, Food & Rural Affairs. Bats: Survey and mitigation for development projects (accessed 12 May 2017, 2015) https://www.gov.uk/guidance/bats-surveys-and-mitigation-for-development-projects.

    21.
    Akerboom, S. et al. A comparison into the application of the EU species protection regulation with respect to renewable energy projects in the Netherlands, United Kingdom, Belgium, Denmark, and Germany. Eur. Energy Environ. Law Rev. 28(4), 144–158 (2019).
    Google Scholar 

    22.
    Mathews, F., Richardson, S. M., Lintott, P. R. & Hosken, D. Understanding the risk to European protected species (bats) at onshore wind turbine sites to inform risk management. Department for Environment Food and Rural Affairs Science and Research Projects. WC00753 Final Report (Phase 2) (2016).

    23.
    Fenton, M., Jacobson, S. & Stone, R. An automatic ultrasonic sensing system for monitoring the activity of some bats. Can. J. Zool. 51, 291–299 (1973).
    Article  Google Scholar 

    24.
    Russ, J. British Bat Calls: A Guide to Species Identification (Pelagic Publishing, Exeter, 2012).
    Google Scholar 

    25.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.R-project.org/.

    26.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    27.
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).
    Google Scholar 

    28.
    EUROBATS. Report of the Intersessional Working Group on Wind Turbines and Bat Populations. Doc.EUROBATS.StC9-AC19.12. Heraklion, Greece, 7–10th April 2014.

    29.
    Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (2014).
    Article  Google Scholar 

    30.
    Morton, D., Rowland, C., Wood, C., Meek, L., Marston, C., Smith, G., Wadsworth, R. & Simpson, I. Final Report for LCM2007—The new UK land cover map. Countryside Survey Technical Report No 11/07 (2011).

    31.
    EDINA Digimap Ordnance Survey Service. OS MasterMap Topography Layer (accessed February 2015, 2015). http://edina.ac.uk/digimap. More

  • in

    Optimizing livestock carrying capacity for wild ungulate-livestock coexistence in a Qinghai-Tibet Plateau grassland

    1.
    Chapin, F. S., Folke, C. & Kofinas, G. P. A framework for understanding change. In Principles of Ecosystem Stewardship (eds Folke, C. et al.) (Springer, Berlin, 2009).
    Google Scholar 
    2.
    Ellis, E. C. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).
    Article  Google Scholar 

    3.
    Conover, M. R. Resolving Human–Wildlife Conflicts: The Science of Wildlife Damage Management (Lewis Publishers CRC Press, Boca Raton, 2002).
    Google Scholar 

    4.
    Madhusudan, M. D. Living amidst large wildlife: Livestock and crop depredation by large mammals in the interior villages of Bhadra Tiger Reserve, South India. Environ. Manag. 31, 0466–0475 (2003).
    CAS  Article  Google Scholar 

    5.
    Aryal, A., Brunton, D. H., Ji, W., Barraclough, R. K. & Raubenheimer, D. Human–carnivore conflict: Ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain. Sci. 9, 321–329 (2014).
    Article  Google Scholar 

    6.
    Bhatnagar, Y. V., Wangchuk, R., Prins, H. H., Van Wieren, S. E. & Mishra, C. Perceived conflicts between pastoralism and conservation of the kiang Equus kiang in the Ladakh trans-Himalaya, India. Environ. Manag. 38, 934–941 (2006).
    Article  Google Scholar 

    7.
    Hernández, F., Corcoran, D., Graells, G., Roos, C. & Downey, M. C. Rancher perspectives of a livestock-wildlife conflict in Southern Chile. Rangelands 39, 56–63 (2017).
    Article  Google Scholar 

    8.
    Michalk, D. L. et al. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 30, 561–573 (2019).
    Article  Google Scholar 

    9.
    Hilker, T., Natsagdorj, E., Waring, R. H., Lyapustin, A. & Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Change Biol. 20, 418–428 (2014).
    ADS  Article  Google Scholar 

    10.
    Zheng, Z., Feng, C., Ye, S., Diao, Z. & Lü, S. Ecological pressures on grassland ecosystems and their conservation strategies in Northern China. Chin. J. Popul. Resourc. Environ. 13, 87–91 (2015).
    Article  Google Scholar 

    11.
    Wen, L. et al. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS ONE 8, e58432 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Krausman, P. R. et al. Livestock grazing, wildlife habitat, and rangeland values. Rangelands 31, 15–19 (2009).
    Article  Google Scholar 

    13.
    Bestelmeyer, B. T., Estell, R. E. & Havstad, K. M. Big questions emerging from a century of rangeland science and management. Rangel. Ecol. Manag. 65, 543–544 (2012).
    Article  Google Scholar 

    14.
    Galt, D., Molinar, F., Navarro, J., Joseph, J. & Holechek, J. L. Grazing capacity and stocking rate. Rangel. Arch. 22, 7–11 (2000).
    Google Scholar 

    15.
    Hobbs, N. T. & Swift, D. M. Estimates of habitat carrying capacity incorporating explicit nutritional constraints. J. Wildl. Manag. 49, 814–822 (1985).
    Article  Google Scholar 

    16.
    Vallentine, J. F. Grazing Management 2nd edn. (Academic Press, New York, 2001).
    Google Scholar 

    17.
    Mckeon, G. M. et al. Climate change impacts on northern Australian rangeland livestock carrying capacity: A review of issues. Rangel. J. 31, 1–29 (2009).
    Article  Google Scholar 

    18.
    Yu, L., Zhou, L., Liu, W. & Zhou, H. Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture, China. Pedosphere 20, 342–351 (2010).
    Article  Google Scholar 

    19.
    Chen, J. Review of canceling herds and returning to grassland policy in Sanjiangyuan Region in Qinghai Province: Based on survey of Maduo County. Natl. Res. Qinghai 19, 110–115 (2008).
    Google Scholar 

    20.
    Qin, D. Ecological Protection and Sustainable Development of Three-River-Source Area (Science Press, London, 2014).
    Google Scholar 

    21.
    Zhao, L., Li, Q. & Zhao, X. Multi-functionality and management of grassland in the Sanjiangyuan region. Resour. Sci. 42, 78–86 (2020).
    Google Scholar 

    22.
    Olson, D. M. & Dinerstein, E. The Global 200: A representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv. Biol. 12, 502–515 (1998).
    Article  Google Scholar 

    23.
    Li, J. et al. Global priority conservation areas in the face of 21st century climate change. PLoS ONE 8, 54839 (2013).
    ADS  Article  CAS  Google Scholar 

    24.
    Zhou, H., Zhou, L., Liu, W., Zhao, X. & Lai, D. Causes of grassland degradation and sustainable development of animal husbandry in Maduo County, Qinghai Province. Grassl. China 25, 63–67 (2003).
    Google Scholar 

    25.
    Xu, J., Chen, J., Hu, Y. & Zhao, Z. Research on the status and the dynamic of grassland degradation in Maduo County Qinghai Province. Pratacult. Sci. 28, 359–364 (2011).
    Google Scholar 

    26.
    NDRCC. Three-River-Source National Park Master Plan. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201801/t20180117_962245.html. (National Development and Reform Commission of China, 2018).

    27.
    Fu, M. et al. Functional zoning and space management of three-river-source national park. J. Geog. Sci. 29, 2069–2084 (2019).
    Article  Google Scholar 

    28.
    Sun, J. et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 65, 1405–1414 (2020).
    Article  Google Scholar 

    29.
    Tuanmu, M. et al. Effects of payments for ecosystem services on wildlife habitat recovery. Conserv. Biol. 30, 827–835 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Watzold, F. & Drechsler, M. Spatially uniform versus spatially heterogeneous compensation payments for biodiversity-enhancing land-use measures. Environ. Resour. Econ. 31, 73–93 (2005).
    Article  Google Scholar 

    31.
    Hu, Z., Kong, D. & Jin, L. Grassland eco-compensation: Rate differentiations of “reward for balanced grazing” and its reasons. China Popul. Resour. Environ. 25, 152–159 (2015).
    Google Scholar 

    32.
    Lu, C., Xie, G. & Xiao, Y. Ecological Compensation and the cost of wildlife conservation: Chang Tang Grasslands, Tibet. J. Resour. Ecol. 3, 20–25 (2012).
    Article  Google Scholar 

    33.
    Sitters, J. et al. Herded cattle and wild grazers partition water but share forage resources during dry years in East African savannas. Biol. Cons. 142, 738–750 (2009).
    Article  Google Scholar 

    34.
    Stokely, T. D. & Betts, M. G. Deer-mediated ecosystem service versus disservice depends on forest management intensity. J. Appl. Ecol. 57, 31–42 (2019).
    Article  Google Scholar 

    35.
    Östman, Ö. et al. Estimating competition between wildlife and humans—a case of cormorants and coastal fisheries in the Baltic Sea. PLoS ONE 8, e83763 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Guerra, A. S. Wolves of the Sea: Managing human-wildlife conflict in an increasingly tense ocean. Marine Policy 99, 369–373 (2018).
    Article  Google Scholar 

    37.
    Xin, Y. et al. The evaluation of carrying capacity of grassland in Qinghai. Qinghai Pratacult. 20, 13–22 (2011).
    Google Scholar 

    38.
    Du, J., Wang, G. & Li, Y. Rate and causes of degradation of alpine grassland in the source regions of the Yangtze and Yellow River during the last 45 years. Acta Pratacult. Sin. 24, 5–15 (2015).
    Google Scholar 

    39.
    Yu, L. et al. Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture, China. Pedosphere 20, 342–351 (2010).
    Article  Google Scholar 

    40.
    Lü, X. et al. Spatio-temporal changes of grassland production based on MODIS NPP in the Three-River Source Region from 2006 to 2015. J. Nat. Resour. 32, 1857–1868 (2017).
    Google Scholar 

    41.
    Knapp, A. K. et al. Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc. Natl. Acad. Sci. 117, 22249–22255 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Wu, X. et al. Predicting the shift of threatened ungulates’ habitats with climate change in Altun Mountain National Nature Reserve of the Northwestern Qinghai-Tibetan Plateau. Clim. Change 142, 331–344 (2017).
    Article  Google Scholar 

    43.
    Maduo County Local Records Compilation Committee. Maduo County Local Record (Qinghai Ethnic Publishing House, Qinghai, 2011).
    Google Scholar 

    44.
    Kondoh, H., Koizumi, T. & Ikeda, K. A geostatistical approach to spatial density distributions of sika deer (Cervus nippon). J. For. Res. 18, 93–100 (2013).
    Article  Google Scholar 

    45.
    Norris, D. et al. How to not inflate population estimates? Spatial density distribution of white-lipped peccaries in a continuous Atlantic forest. Anim. Conserv. 14, 492–501 (2011).
    Article  Google Scholar 

    46.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    47.
    Field, C. B., Randerson, J. T. & Malmström, C. M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 51, 74–88 (1995).
    ADS  Article  Google Scholar 

    48.
    Ali, I., Cawkwell, F., Dwyer, E., Barrett, B. & Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 9, 649–671 (2016).
    Article  Google Scholar 

    49.
    Chen, A. et al. Moisture availability mediates the relationship between terrestrial gross primary production and solar-induced chlorophyll fluorescence: Insights from global-scale variations. Glob. Change Biol. 2, 15373 (2020).
    Article  Google Scholar 

    50.
    Department of Animal Husbandry. Calculation of reasonable rangeland carrying capacity of natural grassland (NY/T635–2015). (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2015).

    51.
    Zhao, F., Lin, G. & Zhao, Z. The analysis of relationship between grassland and livestock based on MODIS vegetation index in Madoi in Qinghai. Heilongjiang Anim. Sci. Vet. Med. 1, 75–77 (2012).
    Google Scholar 

    52.
    Yang, L. et al. Tick-defense grooming patterns of two sympatric Tibetan ungulates. J. Zool. 307, 242–248 (2019).
    Article  Google Scholar  More

  • in

    Legume-rhizobium specificity effect on nodulation, biomass production and partitioning of faba bean (Vicia faba L.)

    1.
    Giller, K. E. et al. N2 Africa: Putting nitrogen fixation to work for smallholder farmers in Africa. In Agrological Intensification of Agricultural Systems in the African Highlands (eds Vanlauwe, B. et al.) 156–174 (Routledge, London, 2013).
    Google Scholar 
    2.
    Goss, M. J., de Varennes, A., Smith, P. S. & Ferguson, J. A. Nitrogen fixation by soybean grown with different levels of mineral nitrogen and fertilizer replacement value for a following crop. Can. J. So. Sci. 82, 139–145 (2002).
    Article  Google Scholar 

    3.
    Abdul-Aziz, A.L. Contribution of rhizobium and phosphorus fertilizer to biological nitrogen fixation and grain yield of soybean in the Tolon District. A Thesis Submitted to the Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, in partial fulfillment of the requirement of the degree of Master of Science in soil science (2013).

    4.
    Argaw, S. Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas spp. effect on soybean (Glycine max L. (Merri)) in Assossa area. J. Agric. Sci. Tech. 14, 213–224 (2012).
    CAS  Google Scholar 

    5.
    Keneni, G. et al. Phenotypic diversity for symbio-agronomic characters in Ethiopia chickpea (Cicer arietinum L.) germplasm accessions. Afr. J. Biotechnol. 11(63), 12634–12651 (2012).
    Google Scholar 

    6.
    Ouma, E. W., Asango, A. M., Maingi, J. & Njeru, M. Elucidating the potential of native rhizobial isolates to improve biological nitrogen fixation and growth of common bean and soybean in smallholder farming systems of Kenya. Int. J. Agron. 2016, 1–7 (2016).
    Article  CAS  Google Scholar 

    7.
    Stajković, O. et al. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom. Biotech. Lett. 16, 5919–5926 (2011).
    Google Scholar 

    8.
    Chen, Y. X. et al. Faba bean (Vicia faba L.) nodulating rhizobia in Panxi, China, are diverse at species, plant growth promoting ability, and symbiosis related gene levels. Front. Microbiol. 9, 1–10 (2018).
    Article  Google Scholar 

    9.
    Saἲdi, S., Chebil, S., Gtari, M. & Mhamdi, R. Characterization of root-nodule bacteria isolated from vicia faba and selection of plant growth promoting isolates. World J. Microbiol. Biotechnol. 29, 1099–1106 (2013).
    Article  CAS  Google Scholar 

    10.
    Workalemahu, W. The effect of indigenous toot nodulating bacteria on nodulation and growth of faba bean (Vicia faba L.) in the low-input agricultural systems of Tigray highlands, northern Ethiopia. Momona Ethiop. J. Sci. 1(2), 30–43 (2009).
    Article  Google Scholar 

    11.
    Sánchez-Cañizares, C. et al. Genomic diversity in the endosymbiotic bacterium Rhizobium leguminosarum. Genes. 9(60), 1–26 (2018).
    Google Scholar 

    12.
    Laguerre, G., Louvrier, P., Allard, M. R. & Amarger, N. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host-legumes. Appl. Environ. Microbiol. 69(4), 2276–2283 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Sachs, J. L., Kembel, S. W., Lau, A. M. & Simms, E. L. In situphylogenetic structure and diversity of wild Bradyrhizobium communities. Appl. Environ. Microbiol. 75, 4727–4735 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Laguerre, G., Depret, G., Bourion, V. & Duc, G. Rhizobium leguminosarumbv. viciae genotypes interact with pea plants in developmental responses of nodules, roots and shoots. New Phytol. 176, 680–690 (2007).
    PubMed  Article  Google Scholar 

    15.
    McKenzie, R. H. et al. Response of peat or rhizobia inoculation and start nitrogen in Alberta. Can. J. Plant Sci. 81, 637–643 (2001).
    Article  Google Scholar 

    16.
    Siczek, A. & Lipiec, J. Impact of faba bean-seed rhizobial inoculation on microbial activity in the rhizosphere soil during growing season. Int. J. Mol. Sci. 17(784), 1–9 (2016).
    Google Scholar 

    17.
    Downie, J. A. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol. Rev. 34, 150–170 (2010).
    CAS  PubMed  Article  Google Scholar 

    18.
    Fujita, H., Aoki, S. & Kawaguchi, M. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis. PLoS ONE 9, e93670 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Beltayef, H. et al. Statement of biological nitrogen fixation in snap bean under Mediterranean semi-arid conditions. Bulgarian J. of Agri. Sci. 24(2), 244–251 (2018).
    Google Scholar 

    20.
    Pitkäjärvi, J. et al. Persistence, population dynamics and competitiveness for nodulation of marker gene tagged Rhizobium galegaestrains in field lysimeters in the Boreal climatic zone. FEMS Microbiol. Ecol. 2, 2 (2003).
    Google Scholar 

    21.
    Bouyoucos, G. J. Hydrometer method improvement for making particle size analysis of soils. Agron. J. 54, 179–186 (1962).
    Google Scholar 

    22.
    Black, G. R. & Hertge, K. H. Bulk density. In methods of soil analysis (ed. Klute, A.) 377–382 (SSSA, Madison, Wiscosin, 1986).
    Google Scholar 

    23.
    Carter, M. R. & Gregorich, E. G. Soil Sampling and Methods of Analysis 2nd edn. (Canadian Soil Science Society, Boca Raton, 2008).
    Google Scholar 

    24.
    Mclean, E. O. Aluminum. In Methods of Soil Analysis, Part 2 chemical methods (ed. Black, C. A.) 978–998 (America Sci. Agron, Madison, 1965).
    Google Scholar 

    25.
    van Reeuwijk, L. P. Procedures for Soil Analysis 6th edn. (Technical Paper/International Soil Reference and Information Center, Wageningen, 2002).
    Google Scholar 

    26.
    Jońca, Z. & Lewandowski, W. Verification of measurement capabilities of flame atomic spectrometry for the determination of sodium, potassium, magnesium, and calcium in natural fresh water part I. Comparison of recommended methods. Polish J. Environ. Studies 13(3), 275–280 (2004).
    Google Scholar 

    27.
    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).
    ADS  CAS  Article  Google Scholar 

    28.
    Bremner, J. M. & Mulvaney, C. S. Nitrogen total in methods of soil analysis. In Chemical and Microbiological Properties (ed. Page, A. L.) (SSSA, Wiscosin, 1982).
    Google Scholar 

    29.
    Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of available phosphorous in soils by extraction with sodium bicarbonate. USDA Circ. 939, 1–19 (1954).
    Google Scholar 

    30.
    Vincent, J. M. A manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook No 15 (Blackwell Scientific Publications Ltd, Oxford, 1970).
    Google Scholar 

    31.
    Woomer, P., Bennett, J. & Yost, R. Overcoming inflexibilities in most-probable-number-procedures. Agron. J. 82, 349–353 (1990).
    Article  Google Scholar 

    32.
    Somasegaran, P. & Hoben, H. J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology (Springer Verlag, New York, 1994).
    Google Scholar 

    33.
    Broughton, W. J. & Diworth, M. J. Control of leghemoglobin synthesis in snake beans. Biochem. J. 125, 1075–1080 (1971).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Guene, N. F. D., Diouf, A. & Gueye, M. Nodulation and nitrogen fixation of field grown common bean (Phaseolus vulgaris) as influenced by fungicide seed treatment. Afr. J. Biotechnol. 2(7), 198–201 (2003).
    CAS  Article  Google Scholar 

    35.
    Ondieki, D. K., Nyaboga, E. N., Wagacha, J. M. & Mwaura, F. B. Morphological and genetic diversity of rhizobia nodulating cowpea (Vigna unguiculata L.) from agricultural soils of Lower Eastern Kenya. Int. J. Microbiol. 2017, 1–9 (2017).
    Article  CAS  Google Scholar 

    36.
    Rice, W. A., Clyton, G. W., Lupwayi, N. Z. & Olsen, P. E. Evaluation of coated seeds as a Rhizobium delivery system for field pea. Can. J. Plant Sci. 81(1), 248–249 (2001).
    Google Scholar 

    37.
    Beets, P. N., Pearce, S. H., Oliver, G. R. & Clinton, P. W. Root to shoot rations for deriving below-ground biomass of Pinus radiate standards. New Zealand J. Forestry Sci. 37(2), 267–288 (2007).
    Google Scholar 

    38.
    SAS. SAS/STAT Software Syntax, Version 9.0. SAS Institute, Cary, NC. USA(2010).

    39.
    Raposeiras, R. et al. Rhizobium strains competitiveness on bean nodulation in Cerrado soils. Brasilia 41, 439–447 (2006).
    Google Scholar 

    40.
    Ulzen, J. Optimizing legume-rhizobia symbiosis to enhance legume grain yield in smallholder farming system in Ghana. A thesis submitted to the Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University Science and Technology, Kumasi, in partial fulfillment of the requirements of the degree of doctor of philosophy in soil science(2018).

    41.
    Zengeni, R., Mpepereki, S. & Giller, K. E. Manure and soil properties affect survival and persistence of soybean nodulation rhizobia in smallholder soils of Zimbabwe. Agric. Ecosyst. Environ. Appl. Soil Eco. 32, 232–242 (2006).
    Article  Google Scholar 

    42.
    Jida, M. & Assefa, F. Phenotypic diversity and plant growth promoting characteristics of Mesorhizobium species isolated from faba bean (Vicia faba L.) growing areas of Ethiopia. Afr. J. Biotechnol. 11, 7483–7493 (2012).
    CAS  Google Scholar 

    43.
    Kawaletz, H., Molder, I., Terwei, P. A. A. & Ammer, S. Z. C. Pot experiments with woody species. A review. Forestry 87, 4 (2014).
    Article  Google Scholar 

    44.
    Farid, M. & Navabi, A. N2 fixation ability of different dry bean genotypes. Can. J. Plant Sci. 95, 1243–1257 (2015).
    CAS  Article  Google Scholar 

    45.
    Nkot, L. N. et al. Abundance of legume nodulating bacteria in soils of diverse land use systems in Cameroon. Univ. J. Plant Sci. 3(5), 97–108 (2015).
    Article  Google Scholar 

    46.
    Solomon, T., Pant, L.M. & Angaw, T. Effects of inoculation by Bradyrhizobium japonicum strains on nodulation, nitrogen fixation, and yield of soybean (Glycine max L. Merill) varieties on Nitosols of Bako, western Ethiopia. International Scholarly Research Network ISRN Agron. 2012, Article ID 261475, Pp. 1–8 (2012).

    47.
    Adamu, A., Hailemariam, A., Assefa, F. & Bekele, E. Studies of Rhizobium inoculation and fertilizer treatment on growth and production of faba bean (Vicia faba L.) in some yield-depleted and yield-sustained regions of Semen Shoa. Ethiopia J. of Sci. 24, 197–211 (2001).
    Google Scholar 

    48.
    Mohammadi, K., Sohrabi, Y., Heidari, G., Khalesro, S. & Majidi, M. Effective factors on biological nitrogen fixation. Afr. J. Agric. Res. 7, 1782–1788 (2012).
    Google Scholar 

    49.
    Raven, J. A. Protein turnover and plant RNA and phosphorus requirement in relation to nitrogen fixation. Plant Sci. 189, 25–35 (2012).
    Article  CAS  Google Scholar 

    50.
    Bello, S. K., Yusuf, A. A. & Cargele, M. Performance of cowpea as influenced by native strain of rhizobia, lime and phosphorus in Samaru, Nigeria. Symbiosis 75, 167–176 (2018).
    CAS  PubMed  Article  Google Scholar 

    51.
    Talaat, N. B. & Abdallah, A. M. Response of faba bean (Vicia faba L.) to dual inoculation with Rhizobium and VA mycorrhiza under different levels of N and P fertilization. J. Appl. Sci. Res. 4, 1092–1102 (2008).
    CAS  Google Scholar 

    52.
    Yoseph, T. & Worku, W. Effect of NP fertilizer rate and Bradyrhizobium inoculation on nodulation, N-uptake and crude protein content of soybean (Glycine Max (L) Merrill), at Jinka. Southern Ethiopia. J. Biol. Agric. Healthcare 4(6), 49–54 (2014).
    Google Scholar 

    53.
    Hungria, M., Campo, R. J. & Mendes, I. C. Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol. Fertl. Soils 39, 51–61 (2003).
    Article  CAS  Google Scholar 

    54.
    Kellman, A.W. Rhizobium inoculation, cultivar and management effects on the growth, development and yield of common bean (Phaseolus vulgaris L.). A PhD thesis, Lincoln University, New Zealand(2008).

    55.
    Voisin, A. S., Salon, C. & Warembourg, F. R. Seasonal patterns of 13C partitioning between shoot and nodulated roots of N2-or nitrate fed- Pisum sativum (L). Ann. Bot. 91, 539–546 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Graham, P. H., Hungria, M. & Tlusty, B. Breeding for better nitrogen fixation in grain legumes: Where do the rhizobia fit in?. Crop Manag https://doi.org/10.1094/CM-2004-0301-02-RV (2004).
    Article  Google Scholar 

    57.
    Minalku, A., Gebrekidan, H. & Assefa, F. Symbiotic effectiveness and characterization of Rhizobium strains of faba bean (Vicia faba L.) collected from eastern and western Hararghe highlands of Ethiopia. Ethiopian J. Nat. Resour 11(2), 223–244 (2009).
    Google Scholar 

    58.
    Sindhu, S., Dua, S., Verma, M. K. & Khandewal, A. Growth promotion of legumes by inoculation of rhizosphere bacteria. In Microbes for Legume Improvement (eds Khan, M. S. et al.) (Springer-Verlag, Wien, 2010).
    Google Scholar 

    59.
    Hemissi, I. et al. Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. Afr. J. Micro. Res. 5(25), 4080–4090 (2011).
    CAS  Google Scholar 

    60.
    Zahran, H. H. Rhizobia from Wild legumes: Diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotechnol. 91, 143–153 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Zahir, Z. A., Arshad, M. & Frankenberger, J. R. Plant growth promoting Rhizobacteria: Applications and perspectives in agriculture. J. Adv. Agron. 81, 97–16 (2004).
    CAS  Article  Google Scholar 

    62.
    Thilakarathna, M. S. et al. Evaluating the effectiveness of Rhizobium inoculants and micronutrients as technologies for Nepalese common bean smallholder farmers in the real-world context of highly variable hillside environments and indigenous farming practices. Agriculture 9(20), 1–17 (2019).
    Google Scholar 

    63.
    Tena, W., Wolde-Meskel, E. & Walley, F. Symbiotic efficiency of native and exotic Rhizobium strains nodulating lentil (Lens culinaris Medik) in soils of southern Ethiopia. Agronomy 6, 1–11 (2016).
    Article  CAS  Google Scholar 

    64.
    Cakmakci, R., Donmez, M. F. & Erdogan, U. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk. J. Agr. For. 31, 189–199 (2007).
    CAS  Google Scholar 

    65.
    Kyei-Boahen, S., Giroux, C. & Walley, F. L. Fall vs Springrhizobial inoculation of chickpea. Can. J. Plant Sci. 85, 893–896 (2005).
    Article  Google Scholar 

    66.
    Oğutcu, H., Algur, O. F., Elkoca, E. & Kantar, F. The determination of symbiotic effectiveness of Rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum. Turkey J. Agric. Forestry 32, 241–248 (2008).
    Google Scholar 

    67.
    Korir, H., Mungai, N. W., Thuita, M., Hamba, Y. & Masso, G. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 8, 141 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    van de Werf, A. & Negal, O. S. Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: Opinion. Plant Soil 185, 21–32 (1996).
    Article  Google Scholar 

    69.
    Koevoets, I. T., Venema, J. H., Elzegna, J. T. M. & Testerink, C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 7, 1335 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Ferreira, P. A. A., Bomfeti, C. A., Soares, B. L. & Moreira, F. M. S. Efficient nitrogen-fixing Rhizobium strains isolated from Amazonian soils are highly tolerant to acidity and aluminum. World J. Microbiol. Biotechnol. 28(5), 1947–1959 (2012).
    Article  CAS  Google Scholar 

    71.
    Kawaka, F., Dida, M.M., Peter, A., Opala, P.A., Ombori, O., Maingi, J., Osoro, N., Muthini, M., Amoding, A., Mukaminega, D. & Muoma, J. Symbiotic efficiency of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in soils of western Kenya. International Scholarly Research Notices (2014).

    72.
    Guo, Y. J., Ni, Y. & Huang, J. G. Effects of Rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop. Grassl. 44, 109–114 (2010).
    Google Scholar 

    73.
    Gicharu, G. K., Gitonga, N. M., Boga, H., Cheruiyot, R. C. & Maingi, J. M. Effect of inoculating selected climbing bean cultivars with different rhizobia strains on nitrogen fixation. Int. J. Microbiol. Res. 1(2), 25–31 (2013).
    Google Scholar 

    74.
    Mothapo, N. V. et al. Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth) genotypes with resident soil rhizobia. Biol. Fertil. Soils. 49(7), 871–879 (2013).
    Article  Google Scholar 

    75.
    Oono, R. & Denison, R. F. Comparing symbiotic efficiency between swollen versus non-swollen RhizobialBacteriods. Plant Physiol. 154, 1541–1548 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Sharma, S., Upadhyay, R. G. & Sharma, C. R. Effect of Rhizobium inoculation and nitrogen on growth, dry matter accumulation and yield of black gram (Vigna mungo). Legume Res. 23(1), 64–66 (2000).
    Google Scholar 

    77.
    Kantar, F., Elkoca, E., Ögütcü, H. & Algur, Ö. F. Chickpea yields in relation to Rhizobium inoculation from wild chickpea at high altitudes. J. Agron. Crop Sci. 189, 291–297 (2003).
    Article  Google Scholar  More

  • in

    Descriptive multi-agent epidemiology via molecular screening on Atlantic salmon farms in the northeast Pacific Ocean

    We used high-throughput qPCR to screen for 58 infective agents in four Atlantic salmon farm cohorts from British Columbia throughout their production cycles. We measured presence and copy number for target genetic sequences, characteristic of specific viral, bacterial, and eukaryotic agents, including several recently discovered viruses30,31, known or suspected to cause disease in salmon. These agents displayed various temporal patterns of prevalence and intensity, with several displaying elevated levels in dead and dying fish.
    The data and analyses we have presented provide a unique look into the epidemiology of farmed salmon populations, and wildlife/livestock diseases generally. No past studies have had access to multiple farmed-salmon cohorts, throughout their production cycles, with the capacity to molecularly screen for a large suite of infectious agents. Other work has reported agent data for dead-sampled fish collected in BC as part of Fisheries and Oceans Canada’s farm audit program40, but such analyses lack the time-series nature of the results we have presented. To our knowledge, no other studies have provided such detailed, comprehensive information for infective agents in domestic or wild populations over time. This study, therefore, presents a substantial step toward effectively monitoring shared wildlife/livestock diseases, made possible by cutting-edge technology, as predicted previously22.
    While our findings offer specific insight to salmon farmers, aquaculture managers, and those concerned with the disease ecology of sympatric wild salmon, we caution that results remain correlative, and relevant patterns (e.g. apparent mortality signatures) require further investigation. Unfortunately, a lack of regular testing of dead and dying fish (collection was opportunistic, at farms’ discretion) resulted in potential for associated patterns to be obscured. Due to this potential bias in the sampling design, we are unable to draw conclusions related to farm-level mortality rates, but several agents showed patterns of note, including elevated levels in dead and dying fish.
    Agent patterns
    Perhaps the clearest single-agent pattern—the elevated load of T. maritimum in dead and dying fish (Fig. 3B)—matches generally accepted patterns in aquaculture. Induced tenacibaculosis can be responsible for substantial on-farm mortality worldwide41, and mouthrot resulting from T. maritimum in the east Pacific causes substantial losses42. In our study, mouthrot was noted during veterinarians’ sample processing for cohorts one, three, and four in the months after ocean entry. We note that elevated levels in dead and dying fish could represent the bacterium’s acknowledged role as an opportunistic pathogen41, rather than a direct cause of mortality. We also note the positive correlations between T. maritimum load and that of a number of different agents (Fig. 5), consistent with the view that T. maritimum may facilitate co-infections43. Given its high overall prevalence in fish (Table 3), secondary factors—such as co-infections—might exacerbate infection with T. maritimum, playing a role in mortality.
    K. thyrsites intensity was elevated in dead and dying fish for cohorts three and four, around the time they were transferred to their final marine locations (Fig. S8). In both cases, the cohorts finished their production cycles in farms on the central east coast of Vancouver Island (Fig. 1), a region in which the risk of K. thyrsites infection is acknowledged to be high44. This myxozoan parasite is economically important due to post-mortem myoliquefaction seen in infected fish, but it is not considered a pathogen45, and it is unclear why higher gene-copy levels would be observed in dead/dying fish. K. thyrsites may merely replicate faster in stressed fish (in this case due to transport). Our surveillance of pathogens did not include skeletal muscle tissue, where K. thyrsites spores develop, but it did include heart, which can be infected by the parasite46. We note that K. thyrsites was correlated with PRV, with both agents known to infect muscle tissue (although red blood cells are the primary infective tissue for PRV). Follow-up histopathological investigation may provide some insight into K. thyrsites distribution and any associations with pathology or patterns of co-infection.
    PRV, which is the causative agent of Heart and Skeletal Muscle Inflammation (HSMI)47 and has recently generated controversy in BC28,29,48, shows several patterns of note. PRV prevalence increased to near ubiquity over time (Fig. 2D), concurrent with an increase, peak, slight decline, and then stabilisation of intensity (Fig. 3B). Although our perspective is limited to sampled fish, with a noted potential for bias, the observed PRV trends were consistent across all four cohorts, and the intensity patterns are consistent with previously reported dissemination, peak replication, and long-term persistence phases of the virus within hosts29,48. Past findings suggest that PRV may induce an antiviral response in hosts that can protect them against certain co-infections49,50. Perhaps counter to the generality of this claim, PRV and ASCV exhibited the strongest load correlation out of any we observed across our data set (Fig. 4). ASCV was originally isolated from salmon with HSMI, and was initially thought to play a role in the disease51. Other work has found no relationship between ASCV and PRV infections or HSMI52. In the case of a related baitfish calicivirus, however, there is evidence that viral co-infection is linked to disease manifestation53, so further work is needed to tease these relationships apart. In general, dead and dying Atlantic salmon in our study did not show elevated prevalence or intensity of PRV, except shortly after ocean entry in cohort one (Figs. 2D, 3B). This mortality signature corresponds to the onset of lesions diagnostic of HSMI in cohort one, which subsequently spread to affect the majority of that farm population for most of a year29.
    The gill chlamydia bacterium, C. Syngnamydia salmonis, showed a consistent trend towards elevated prevalence in dead and dying salmon (Fig. 2B). Observed intensity was low, however, often averaging approximately a single copy (Fig. S15). Sequencing has validated past detections of this agent on the Fluidigm BioMark™, and has also revealed SNP diversity within the primer-binding region, resulting in potential underdetection (Miller et al. unpublished). Given a putative mortality signature and the lack of prior epidemiological study of this recently discovered agent54,55, we would suggest further work on C. Syngnamydia salmonis.
    Ephemeral mortality signatures appeared for several agents. F. psychrophilum was clearly elevated in dead and dying fish in-hatchery, although we only had access to two hatchery cohorts and cannot draw general conclusions. Intensity of both the ASCV and CTV-2 were elevated in sampled dead and dying fish from at least one cohort shortly after ocean entry (Figs. 3A, S2). Both viruses were also present in-hatchery. The previously reported Cutthroat trout virus appears to be apathogenic56 in trout, and has been detected in Atlantic salmon57. Little is known about the novel variant for which we screened, although in situ hybridisation has revealed that infection can be systemic and extensive in the brain (Mordecai et al. 2020). As for the ASCV, associated pathology was found to be likely due to PRV contamination51. Extremely limited information about these two viruses, paired with our findings, warrants further investigation (e.g. with histopathology and in situ hybridisation) to determine if either virus is linked with pathology. As both these viruses were detected in Chinook salmon (Mordecai et al. 2020), and considering their high prevalence in Atlantic salmon farms, the potential risk they pose to wild Pacific salmon populations should be a priority for future research.
    Infectious agent levels overall, as measured by relative infectious burden, showed a clear trend in smolts coming out of freshwater hatcheries for cohorts three and four. There, infectious burden was much higher (in one case 10 000 times higher) in dead and dying fish than in live-sampled fish. While the effect dissipated once fish entered the marine environment, it is clear that hatchery fish are dying with—or of—elevated levels of infection. The patterns we observed likely reflect the transition from freshwater to saltwater, with a coincident shift in infective-agent communities58. Smoltification has also been associated with immune depression59, and elevated infectious burden around the time of ocean entry may reflect this. Where we had dead/dying hatchery samples, however, infectious burden was elevated weeks before ocean entry, hinting at the potential for problems in-hatchery.
    Across all agents, we observed apparent coinfection signals that clearly differed from random chance (Figs. 5, S21). We point out, however, that due to the longitudinal nature of our study and cursory investigation of agent correlations, the correlation results almost certainly indicate shared temporal trends that may or may not indicate underlying interactions. For example, Candidatus Branchiomonas cysticola and Flavobacterium psychrophilum were positively correlated with each other, but negatively correlated with a number of other agents. This could be due to both agents being common in-hatchery but not in the marine environment (Figs. S3, S6), counter to many other agents’ patterns. Alternatively, the correlation could be due to a biological relationship, perhaps in relation to gill health. We intend to follow up on a number of correlational patterns.
    Agent idiosyncrasies
    Several agents showed unexpected patterns, or patterns that may be connected to their particular biology.
    The putative Narna-like virus, a recently discovered agent31, showed elevated prevalence in dead and dying fish (Fig. S9). This pattern was mainly due to over-representation in dead-sampled fish, as we detected the agent in 13.2% of dead fish, 1.6% of moribund fish, and 0.4% of live-sampled fish in saltwater. Given that Narnaviridae, of which the putative Narna-like virus is a member, is thought mainly to infect fungi60, this virus may be associated with a fungal decomposer. This is speculative, however, and recent genomic evidence from across taxa suggests that the Narnaviridae may be much more widespread than previously thought61.
    Counter to the common trend, P. pseudobranchicola tended to be less common in dead and dying fish than in live-sampled fish (Fig. 2C), with dead fish, in particular, tending to exhibit the lowest levels (results not shown). P. pseudobranchicola primarily infects the pseudobranch62, a structure near the gills involved in oxygenating blood in the eye. Infection also occurs in tissue collected for this study, especially gill63, and we speculate that loads in dead fish could be reduced due to myxospore release or degradation of delicate gill tissue after host death. Given that we did not sample the pseudobranch, it is likely that our data underestimates the load of this organism.
    The sampling environments (freshwater or marine) of several detections were unexpected. In particular, we detected K. thyrsites and T. maritimum (Fig. 3C) in freshwater hatcheries, although these agents are considered marine species64,65. It is possible that these hatcheries introduced saltwater in the weeks before ocean transfer, to prepare smolts for release. We also detected F. psychrophilum, considered a freshwater bacterium66, in marine net pens (Fig. 2A). The bacterium is known to survive in brackish water67, however, and this is not the first time it has been detected in a marine setting40,68.
    Broader connections
    Not all infective agents cause disease, and even agents that do can be present long before—or long after—clinical symptoms. Our work presents only a piece of the puzzle in what is a multifaceted, complex scenario of shared wildlife/livestock disease in salmon aquaculture. The controversy surrounding PRV in BC, as an example, illustrates this complexity. While conventional lab challenges using PRV from BC sources have failed to reproduce in BC fish the extent of HSMI lesions observed on Norwegian farms48,69, work related to our study has been able to identify and shed light on HSMI, and related jaundice/anemia in Chinook salmon, in BC salmon farms28,29. While we saw a putative mortality signature in one cohort during this study, the normal course of PRV infection was not always associated with mortality (e.g. Figs. 2D, 3B). More work will be required to elucidate the nuances of PRV infection, factors that induce associated disease, and possible resultant mortality. A fruitful place to start would be to carry out sampling and diagnostics of dead and dying fish in farms and pens experiencing elevated mortality.
    Although we have shown putative mortality signatures for several infective agents in farmed Atlantic salmon, these are not necessarily the agents that pose the greatest risk to wild salmon. For one thing, a given agent need not produce the same effects in different species28,70. For another, contact between populations may not coincide with infection maxima. Depending on when farm smolts enter the marine environment, for example, PRV could be at low prevalence in the spring, when a number of wild Pacific salmon species migrate as juveniles15. Other times of year would be more relevant for interactions with other wild species, and there is much scope for transfer between farmed and wild environments. In addressing shared wildlife/livestock disease, we need to consider both wildlife and livestock as populations that serve as potential reservoirs of disease agents, and are susceptible to outbreaks71. In this context, surveillance and monitoring are essential facets of disease management23, providing raw material to develop understanding of disease and build effective management strategies. Parallel work is monitoring wild populations for the same agents we have investigated here, with the prospect of cross-referencing patterns and impacts72,73,74.
    The ubiquity of infectious agents on the farms leads naturally to discussion of potential control strategies, which present a variety of challenges in aquaculture. Vaccination has proven successful at times, but the salmon aquaculture industry has a somewhat chequered history with uptake, since vaccination can affect host growth, and thus the bottom line13. In addition, vaccines have only been developed for a handful of agents. Reducing translocations can be an effective control strategy on land20,78, but transmissive properties of the marine environment and highly mobile marine carrier hosts pose challenges to isolating host populations geographically (Krkosek 2015). Our findings provide circumstantial evidence that some agents (e.g. K. thyrsites) respond to translocations. The fact that two of our four focal cohorts moved substantial distances throughout their respective marine production may be cause for concern, considering the infective-agent populations we have shown those cohorts to have harboured. In general, aquaculture-associated disease and related management decisions have a history of generating political controversy75. Infective-agent monitoring and analyses are critical for designing, implementing, and evaluating effective disease-control measures, and for bridging divides in debate surrounding aquaculture.
    With respect to the aquaculture industry, the tools we employed in this study may prove useful for disease management and fish health. We have shown that for many agents, patterns of infection in dead and dying fish mirror those in live fish. By integrating high-throughput infectious-agent screening with existing monitoring of dead fish, farm vets and managers could access a wealth of otherwise unavailable or costly information. Combining such results with strategic sacrificial sampling of live fish during mortality peaks could allow additional insight into which agents may be driving mortality. Protecting the ‘herd’ (and its wild neighbours) may justify such mortal sampling. Furthermore, in other ongoing work, we have seen that much infective-agent information is accessible via nonlethal gill biopsy, which also enables high-throughput screening for gene expression patterns associated with various patterns of stress76 and disease77. Used appropriately, such a combination of tools could be very powerful.
    Disease monitoring is never complete, and detection always lags behind pathogen spread78, but new technologies—such as those we employed here – can facilitate efficient, lower-cost surveillance and monitoring. Surveillance for existing pathogens and identification of previously unknown pathogens is part of the integrative approach required to understand and control existing and emerging infectious diseases22. Here, we have further demonstrated the utility of high-throughput, modern genetic techniques for monitoring known infective agents and for generating information about previously under-studied agents26,29,30,31,37,38. Further work will target the risk of transfer between wild and farmed hosts and prioritize threats to salmon, farmed and wild. More

  • in

    Possible interference of Bacillus thuringiensis in the survival and behavior of Africanized honey bees (Apis mellifera)

    1.
    Celli, G. & Maccagnani, B. Honey bees as bioindicators of environmental pollution. Bull. Insectol. 56, 1–3 (2003).
    Google Scholar 
    2.
    Quigley, T. P., Amdam, G. V. & Harwood, G. H. Honey bees as bioindicators of changing global agricultural landscapes. Curr. Opin. Insect Sci. 35, 132–137 (2019).
    PubMed  Article  Google Scholar 

    3.
    Hung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B Biol. Sci. 285, 20172140 (2018).
    Article  Google Scholar 

    4.
    Giannini, T. C., Cordeiro, G. D., Freitas, B. M., Saraiva, A. M. & Imperatriz-Fonseca, V. L. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Econ. Entomol. 108, 849–857 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351, 388–391 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Miñarro, M., García, D. & Martínez-Sastre, R. Los insectos polinizadores en la agricultura: importancia y gestión de su biodiversidad. Ecosistemas Rev. Científica Ecol. y Medio Ambient. 27, 81–90 (2018).
    Google Scholar 

    7.
    Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7, 24–28 (2012).
    Article  CAS  Google Scholar 

    8.
    Kaplan, J. K. Colony collapse disorder: an incomplete puzzle. Agric. Res. Mag. 60, 2489 (2012).
    Google Scholar 

    9.
    VanEngelsdorp, D. et al. Colony collapse disorder: a descriptive study. PLoS ONE 4, 1–17 (2009).
    Article  CAS  Google Scholar 

    10.
    Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: a risk assessment. PLoS ONE 9, e94482 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Sindiveg, S. N. da I. de P. para D. V. Mapeamento De Abelhas Participativo (MAP). Relatório 3 anos (2014-2017). Colmeia Viva (2017). 61p. https://www.colmeiaviva.com.br/wp-content/uploads/2019/10/RelatorioMAP.pdf

    12.
    Wolff, L. F. & Santos, R. S. S. Abelhas melíferas: bioindicadores de qualidade ambiental e de sustentabilidade da agricultura familiar de base ecológica. Embrapa Clima Temperado-Documentos https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/543990/1/documento244.pdf (2008).

    13.
    Amaro, P. & Godinho, J. Pesticidas e abelhas. Rev. Ciências Agrárias 35, 53–62 (2012).
    Google Scholar 

    14.
    Tosi, S. & Nieh, J. C. A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light. Sci. Rep. 7, 1–13 (2017).
    Article  CAS  Google Scholar 

    15.
    Catae, A. F. et al. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. Pest Manag. Sci. 75, 607–615 (2019).
    CAS  PubMed  Article  Google Scholar 

    16.
    Alves, S. Controle Microbiano de Insetos (FEALQ, Piracicaba, 1998).
    Google Scholar 

    17.
    Hajek, A. E. & Eilenberg, J. Natural Enemies: An Introduction to Biological Control (Cambridge University Press, Cambridge, 2018).
    Google Scholar 

    18.
    Lacey, L. A. et al. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).
    CAS  PubMed  Article  Google Scholar 

    19.
    Melo, A. L. D. A., Soccol, V. T. & Soccol, C. R. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit. Rev. Biotechnol. 36, 317–326 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    20.
    Eski, A., Demir, İ, Sezen, K. & Demirbağ, Z. A new biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J. Microbiol. Biotechnol. 33, 35 (2017).
    Article  CAS  Google Scholar 

    21.
    Göktürk, T. Pyrethrum ve Bacillus thuringiensis biyopestisitlerinin Pristiphora abietina (Christ, 1791) (Hymenoptera: Tenthredinidae) üzerindeki etkisi. Artvin Çoruh Üniversitesi Orman Fakültesi Derg. 18, 83–87 (2017).
    Article  Google Scholar 

    22.
    MAPA, M. da A. P. e A. Agrofit. MAPA http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (2019).

    23.
    Konecka, E., Kaznowski, A., Stachowiak, M. & Maciąg, M. Activity of spore-crystal mixtures of new Bacillus thuringiensis strains against Dendrolimus pini (Lepidoptera: Lasiocampidae) and Spodoptera exigua (Lepidoptera: Noctuidae). Folia For. Pol. Ser. A 60, 91–98 (2018).
    Google Scholar 

    24.
    Gupta, S. & Dikshit, A. K. Biopesticides: an ecofriendly approach for pest control. J. Biopestic. 3, 186–188 (2010).
    Google Scholar 

    25.
    Habid, M. E. M. & Andrade, C. F. S. Bactérias entomopatogênicas. in Controle microbiano de insetos (ed Alves, S. B.) 384–446 (FEALQ, Piracicaba, 1998).

    26.
    Bravo, A., Gill, S. S. & Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423–435 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Slessor, K. N., Winston, M. L. & Conte, Y. L. Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol. 31, 2731–2745 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Lugtenberg, B. Principles of Plant-Microbe Interactions (Springer, Berlin, 2015).
    Google Scholar 

    29.
    Palma, L. & Berry, C. Understanding the structure and function of Bacillus thuringiensis toxins. Toxicon 109, 1–3 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Malone, L. A. et al. Effects of ingestion of a Bacillus thuringiensis toxin and a trypsin inhibitor on honey bee flight activity and longevity. Apidologie 32, 57–68 (2001).
    CAS  Article  Google Scholar 

    31.
    Yi, D., Fang, Z. & Yang, L. Effects of Bt cabbage pollen on the honeybee Apis mellifera L. Sci. Rep. 8, 1–6 (2018).
    Article  CAS  Google Scholar 

    32.
    D’Urso, V. et al. Observations on midgut of Apis mellifera workers (Hymenoptera: Apoidea) under controlled acute exposures to a Bacillus thuringiensis-based biopesticide. Apidologie 48, 51–62 (2017).
    Article  CAS  Google Scholar 

    33.
    Libardoni, G. et al. Effect of different Bacillus thuringiensis strains on the longevity of Africanized honey bee. Semin. Agrar. 39, 329–338 (2018).
    Article  Google Scholar 

    34.
    Zhu, Y. C., Wang, Y., Portilla, M., Parys, K. & Li, W. Risk and toxicity assessment of a potential natural insecticide, methyl benzoate, in honey bees (Apis mellifera L.). Insects 10, 1–17 (2019).
    Google Scholar 

    35.
    Hesselbach, H., Seeger, J., Schilcher, F., Ankenbrand, M. & Scheiner, R. Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees Apis mellifera. J. Appl. Ecol. 57, 609–618 (2020).
    CAS  Article  Google Scholar 

    36.
    Gomes, I. N., Vieira, K. I. C., Gontijo, L. M. & Resende, H. C. Honeybee survival and flight capacity are compromised by insecticides used for controlling melon pests in Brazil. Ecotoxicology 29, 97–107 (2020).
    Article  CAS  Google Scholar 

    37.
    Alquisira-Ramírez, E. V., Paredes-Gonzalez, J. R., Hernández-Velázquez, V. M., Ramírez-Trujillo, J. A. & Peña-Chora, G. In vitro susceptibility of Varroa destructor and Apis mellifera to native strains of Bacillus thuringiensis. Apidologie 45, 707–718 (2014).
    Article  CAS  Google Scholar 

    38.
    Fagúndez, G. A., Blettler, D. C., Krumrick, C. G., Bertos, M. A. & Trujillo, C. G. Do agrochemicals used during soybean flowering affect the visits of Apis mellifera L.?. Span. J. Agric. Res. 14, 7 (2016).
    Article  Google Scholar 

    39.
    Alquisira-Ramírez, E. V. et al. Effects of Bacillus thuringiensis strains virulent to Varroa destructor on larvae and adults of Apis mellifera. Ecotoxicol. Environ. Saf. 142, 69–78 (2017).
    PubMed  Article  CAS  Google Scholar 

    40.
    Horta, A. B., Pannuti, L., Baldin, E. L. L. & Furtado, E. L. Toxinas inseticidas de Bacillus thuringiensis. In Biotecnologia Aplicada à Agro&Indústria (ed. Resende, R. R.) 737–773 (Blucher, Erkrath, 2017). https://doi.org/10.5151/9788521211150-21.
    Google Scholar 

    41.
    Malone, L. A., Burgess, E. P. J. & Stefanovic, D. Effects of a Bacillus thuringiensis toxin, two Bacillus thuringiensis biopesticide formulations, and a soybean trypsin inhibitor on honey bee (Apis mellifera L.) survival and food consumption. Apidologie 30, 465–473 (1999).
    CAS  Article  Google Scholar 

    42.
    Potrich, M. et al. Effect of entomopathogens on Africanized Apis mellifera L. (Hymenoptera: Apidae). Rev. Bras. Entomol. 22, 1–2. https://doi.org/10.1016/j.rbe.2017.12.002 (2018).
    ADS  Article  Google Scholar 

    43.
    Wang, Y. Y. et al. Toxicological, biochemical, and histopathological analyses demonstrating that Cry1C and Cry2A are not toxic to larvae of the honeybee Apis mellifera. J. Agric. Food Chem. 63, 6126–6132 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Renzi, M. T. et al. Chronic toxicity and physiological changes induced in the honey bee by the exposure to fi pronil and Bacillus thuringiensis spores alone or combined. Ecotoxicol. Environ. Saf. 127, 205–213 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hendriksma, H. P. et al. Effect of stacked insecticidal cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS ONE 8, 1–11 (2013).
    Article  CAS  Google Scholar 

    46.
    Jia, H. R. et al. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae). Sci. Rep. 6, 1–8 (2016).
    Article  CAS  Google Scholar 

    47.
    Jia, H.-R. et al. No effect of Bt Cry1Ie toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae). Sci. Rep. 7, 1–10 (2017).
    Article  CAS  Google Scholar 

    48.
    Dai, P. et al. The effect of Bt Cry9Ee toxin on honey bee brood and adults reared in vitro, Apis mellifera (Hymenoptera: Apidae). Ecotoxicol. Environ. Saf. 181, 381–387 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Baptista, A. P. M., Carvalho, G. A., Carvalho, S. M., Carvalho, C. F. & de Bueno Filho, J. S. S. Toxicidade produtos fitossanitários utilizados em citros para Apis mellifera. Ciência Rural 39, 955–961 (2009).
    CAS  Article  Google Scholar 

    50.
    Tomé, H. V. V., Barbosa, W. F., Martins, G. F. & Guedes, R. N. C. Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide. Chemosphere 124, 103–109 (2015).
    ADS  PubMed  Article  CAS  Google Scholar 

    51.
    Kaplan, E. L. & Meier, P. Non parametric estimation from incomplete observation. J. Am. Stat. Assoc. 53, 457–481 (1958).
    MATH  Article  Google Scholar 

    52.
    Therneau, T. M. A Package for Survival Analysis in R. R package version 3.2-7. https://CRAN.R-project.org/package=survival (2020).

    53.
    Agresti, A. Categorical Data Analysis (Wiley, New York, 2002).
    Google Scholar 

    54.
    Christensen, R. H. B. Ordinal-Regression Models for Ordinal Data. R package version 2019.12-10. https://CRAN.R-project.org/package=ordina (2019).

    55.
    Russell, L. R Package ’emmeans’: Estimated Marginal Means, aka Least-Squares Means. https://github.com/rvlenth/emmeans (2020). More

  • in

    Hunting territories and land use overlap in sedentarised Baka Pygmy communities in southeastern Cameroon

    1.
    Henriksen, J. B. Case study 7. Key principles in implementing ILO convention no. 169. in Research on Best Practices for the Implementation of the Principles of ILO Convention No. 169 (Programme to Promote ILO Convention No. 169, 2008).
    2.
    MacKay, F. Addressing Past Wrongs: Indigenous Peoples and Protected Areas: The Right to Restitution of Lands and Resources. (Forest Peoples Programme, 2002).

    3.
    Hunter-gatherers of the Congo Basin: cultures, histories and biology of African Pygmies. (Transaction Publishers, 2014).

    4.
    Robillard, M. & Bahuchet, S. Les Pygmées et les autres: terminologie, catégorisation et politique. J. Afr. 82, 15–51 (2012).
    Google Scholar 

    5.
    Joiris, D. V. La chasse, la chance, le chant: aspect du systeme ritual des Baka du Cameroun. (Université Libre de Bruxelles, 1998).

    6.
    Rupp, S. Interethnic Relations in Southeastern Cameroon: Challenging the” Hunter-Gatherer”–” Farmer” Dichotomy. Afr. Study Monogr. 28, 37–56 (2003).
    Google Scholar 

    7.
    Bahuchet, S. Dans la Forêt D’Afrique Centrale: Les Pygmées Aka Et Baka. (PEETERS-SELAF, 1992).

    8.
    Yasuoka, H. Long-term foraging expeditions (Molongo) among the Baka Hunter-Gatherers in the Northwestern Congo Basin, with Special Reference to the “Wild Yam Question”. Hum. Ecol. 34, 275–296 (2006).
    Article  Google Scholar 

    9.
    Gallois, S. & Duda, R. Beyond productivity: The socio-cultural role of fishing among the Baka of southeastern Cameroon. Revue d’ethnoécologie [En ligne], (2016).

    10.
    Yasuoka, H. Snare hunting among Baka hunter-gatherers: Implications for sustainable wildlife management. Afr. Study Monogr. 49, 115–136 (2014).
    Google Scholar 

    11.
    Hayashi, K. Hunting activities in forest camps among the Baka hunter-gatherers of Southeastern Cameroon. Afr. Study Monogr. 29, 73–92 (2008).
    Google Scholar 

    12.
    Duda, R., Gallois, S. & Reyes-Garcia, V. Hunting techniques, wildlife offtake and market integration. A perspective from individual variations among the Baka (Cameroon). Afr. Study Monogr. 38, 97–118 (2017).

    13.
    Pemunta, N. V. Fortress conservation, wildlife legislation and the Baka Pygmies of southeast Cameroon. GeoJournal 84, 1035–1055 (2019).
    Article  Google Scholar 

    14.
    Dounias, E. & Leclerc, C. Spatial shifts and migration time scales among the Baka Pygmies of Cameroon and the Punan of Borneo. in The social ecology of tropical forest: Migration, populations and frontiers (eds. de Jong, W., Lye, T. P. & Ken-Chi, A.) 147–173 (University Press and Trans Pacific Press, 2006).

    15.
    Leclerc, C. L’adoption de l’agriculture chez les Pygmées Baka du Cameroun. (Editions Quae, 2012).

    16.
    Gallois, S. Dynamics of Local ecological knowledge among the Baka children from southeastern Cameroon. (Universitat Autònoma de Barcelona, 2015).

    17.
    Coquery-Vidrovitch, C. Le Congo au temps des grandes compagnies concessionnaires 1898–1930. (Mouton & Co, 2017).

    18.
    Pourtier, R. Le Gabon: etat et developpement. vol. Tome 2 (l’Harmattan, 1989).

    19.
    Jean, S. Les jachères en Afrique tropicale: interprétation technique et foncière. (Musée de l’Homme, 1975).

    20.
    Bailey, R. C., Bahuchet, S. & Hewlett, B. S. Development in the Central African rainforest: concern for forest peoples. in Conservation of West and Central African Rainforest (ed. Cleaver, K. M.) 202–211 (International Union for Conservation of Nature and Natural Resource, 1992).

    21.
    Bahuchet, S., McKey, D. & de Garine, I. Wild yams revisited: Is independence from agriculture possible for rain forest hunter-gatherers?. Hum. Ecol. 19, 213–243 (1991).
    Article  Google Scholar 

    22.
    Froment, A. Human biology and the health of African rainforest inhabitants. in Hunter-gatherers of the Congo basin 117–164 (Transaction Publishers, 2014).

    23.
    Althabe, G. Changements sociaux chez les Pygmées Baka de l’Est-Cameroun. Cahiers d’études africaines 561–592 (1965).

    24.
    Kitanishi, K. Cultivation by the Baka hunter-gatherers in the tropical rain forest of central Africa. Afr. Study Monogr. 28, 143–157 (2003).
    Google Scholar 

    25.
    Knight, J. Relocated to the roadside: preliminary observations on the forest Peoples of Gabon. Afr. Study Monogr. 28, 81–121 (2003).
    Google Scholar 

    26.
    Yasuoka, H. Fledging agriculturalists? Rethinking the adoption of cultivation by the Baka hunter-gatherers. Afr. Study Monogr. 43, 85–114 (2012).
    Google Scholar 

    27.
    Duda, R. Ethnoecology of hunting in an empty forest: practices, local perceptions and social change among the Baka (Cameroon). (Universitat Autonoma de Barcelona, 2017).

    28.
    Reyes-García, V. et al. Dietary transitions among three contemporary hunter-gatherers across the tropics. Food Secur. 11, 109–122 (2019).
    Article  Google Scholar 

    29.
    Gallois, S., Heger, T., van Andel, T., Sonké, B. & Henry, A. G. From bush mangoes to bouillon cubes: wild plants and diet among the Baka, forager-horticulturalists from Southeast Cameroon. Econ. Bot. https://doi.org/10.1007/s12231-020-09489-x (2020).
    Article  Google Scholar 

    30.
    Fa, J. E. et al. Differences between pygmy and non-pygmy hunting in Congo Basin Forests. PLoS ONE 11, e0161703 (2016).
    Article  Google Scholar 

    31.
    Dounias, E. & Froment, A. When forest-based hunter-gatherers become sedentary: consequences for diet and health. Unasylva 57, 8 (2006).
    Google Scholar 

    32.
    Hagino, I., Sato, H. & Yamauchi, T. The demographic characteristics and nutritional status for a hunter-gatherer society with social transitions in southeastern Cameroon. Afr. Study Monogr. 45–57 (2014).

    33.
    Mertens, B. & Lambin, E. F. Spatial modelling of deforestation in southern Cameroon: spatial disaggregation of diverse deforestation processes. Appl. Geogr. 17, 143–162 (1997).
    Article  Google Scholar 

    34.
    Mertens, B. & Lambin, E. F. Land-cover-change trajectories in Southern Cameroon. Ann. Assoc. Am. Geogr. 90, 467–494 (2000).
    Article  Google Scholar 

    35.
    Ndoye, O. & Kaimowitz, D. Macro-economics, markets and the humid forests of Cameroon, 1967–1997. J. Mod. Afr. Stud. 38, 225–253 (2000).
    Article  Google Scholar 

    36.
    Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52, 143 (2002).
    Article  Google Scholar 

    37.
    Messerli, P., Giger, M., Dwyer, M. B., Breu, T. & Eckert, S. The geography of large-scale land acquisitions: Analysing socio-ecological patterns of target contexts in the global South. Appl. Geogr. 53, 449–459 (2014).
    Article  Google Scholar 

    38.
    Seaquist, J. W., Li Johansson, E. & Nicholas, K. A. Architecture of the global land acquisition system: Applying the tools of network science to identify key vulnerabilities. Environ. Res. Lett. 9, 114006 (2014).
    ADS  Article  Google Scholar 

    39.
    Yasuoka, H. et al. Changes in the composition of hunting catches in southeastern Cameroon: a promising approach for collaborative wildlife management between ecologists and local hunters. E&S 20, art25 (2015).

    40.
    Ohl-Schacherer, J. et al. The Sustainability of subsistence hunting by Matsigenka native communities in Manu National Park Peru. Conserv. Biol. 21, 1174–1185 (2007).
    Article  Google Scholar 

    41.
    Parry, L., Barlow, J. & Peres, C. A. Hunting for sustainability in tropical secondary forests. Conserv. Biol. 23, 1270–1280 (2009).
    Article  Google Scholar 

    42.
    Kümpel, N. F., Milner-Gulland, E. J., Rowcliffe, J. M. & Cowlishaw, G. Impact of gun-hunting on diurnal primates in continental Equatorial Guinea. Int. J. Primatol. 29, 1065–1082 (2008).
    Article  Google Scholar 

    43.
    Coad, L. et al. Social and ecological change over a decade in a village hunting system, central Gabon. Conserv. Biol. 27, 270–280 (2013).
    CAS  Article  Google Scholar 

    44.
    Walters, G., Schleicher, J., Hymas, O. & Coad, L. Evolving hunting practices in Gabon: Lessons for community-based conservation interventions. E&S 20, art31 (2015).

    45.
    Zerca y Lejos. Soberanía alimentaria y medios de vida (Baka food security). https://zercaylejos.org/proyectos/soberania-alimentaria/ (2020).

    46.
    Zerca y Lejos. Educación. https://zercaylejos.org/proyectos/educacion/ (2020).

    47.
    Ávila Martin, E. et al. Wild meat hunting and use by sedentarised Baka Pygmies in southeastern Cameroon. PeerJ 8, e9906 (2020).
    Article  Google Scholar 

    48.
    Ndameau, B. Case Study 7: Cameroon – Boumba Bek – Protected areas and indigenous peoples: The paradox of conservation and survival of the Baka in Moloundou region (south-east Cameroon). in Indigenous Peoples and Protected Areas in Africa: From Principles to Practice (eds. Nelson, J. & Hossack, L.) 215–241 (Forest Peoples Programme, 2001).

    49.
    Egbe, S. E. et al. The Law, Communities and Wildlife Management in Cameroon. in Cameroon Rural Development Forestry Network. Network Paper (Overseas Development Institute, 2001).

    50.
    World Weather Online. Djoum Monthly Climate Averages. https://www.worldweatheronline.com/djoum-weather-averages/sud/cm.aspx (2020).

    51.
    Letouzey, R. Notice phytogéographique du Cameroun au 1:500000. (1985).

    52.
    Global Forest Watch. An overview of logging in Cameroon. (World Resources Institute (WRI), 2000).

    53.
    Morgan, D. et al. Impacts of selective logging and associated anthropogenic disturbance on intact forest landscapes and apes of Northern Congo. Front. For. Glob. Change 2, 28 (2019).
    Article  Google Scholar 

    54.
    Ichikawa, M. Problems in the conservation of rainforests in Cameroon. Afr. Study Monogr. 33, 3–20 (2006).
    Google Scholar 

    55.
    Ichikawa, M. Forest Conservation and Indigenous Peoples in The Congo Basin: New Trends toward Reconciliation between Global Issues and Local Interest. in Hunter-gatherers of the Congo Basin: cultures, histories and biology of African Pygmies (ed. Hewlett, B. S.) 321–342 (Transaction Publishers, 2014).

    56.
    Hattori, S. Current issues facing the forest people in southeastern Cameroon: the dynamics of Baka life and their ethnic relationship with farmers. Afr. Study Monogr. 47, 97–119 (2014).
    Google Scholar 

    57.
    United Nations. Free, Prior and Informed Consent of Indigenous Peoples. https://www.ohchr.org/Documents/Issues/ipeoples/freepriorandinformedconsent.pdf (2013).

    58.
    Darwin Initiative. Project 24029: Enabling Baka attain food security, improved health and sustain biodiversity. (2020).

    59.
    Remote Pixel. Remote Pixel—Satellite Imagery Search. https://remotepixel.ca/ (2018).

    60.
    European Space Agency. Sentinel online. https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (2020).

    61.
    System for Automated Geoscientific Analyses (SAGA). SAGA – System for Automated Geoscientific Analyses. http://www.saga-gis.org/en/index.html (2020).

    62.
    Global Forest Watch. Cameroon forest management units (last updated 2018). https://data.globalforestwatch.org/datasets/cameroon-forest-management-units (2020).

    63.
    Global Forest Watch. Cameroon community forests (last updated 2018). http://data.globalforestwatch.org/datasets/cameroon-community-forests?geometry=6.430%2C5.125%2C17.724%2C8.941 (2020).

    64.
    Calenge, C. & Fortmann-Roe, S. Package ‘adehabitatHR’. (2020).

    65.
    Benhamou, S. & Cornélis, D. Incorporating movement behavior and barriers to improve kernel home range space use estimates. J. Wildl. Manag. 74, 1353–1360 (2010).
    Article  Google Scholar 

    66.
    Benhamou, S. & Riotte-Lambert, L. Beyond the Utilization Distribution: Identifying home range areas that are intensively exploited or repeatedly visited. Ecol. Model. 227, 112–116 (2012).
    Article  Google Scholar 

    67.
    Lechowicz, M. J. The sampling characteristics of electivity indices. Oecologia 52, 22–30 (1982).
    ADS  Article  Google Scholar 

    68.
    R Foundation for Statistical Computing. R. (2018).

    69.
    Jarque, C. M. & Bera, A. K. A test for normality of observations and regression residuals. Int. Stat. Rev. 55, 163 (1987).
    MathSciNet  Article  Google Scholar 

    70.
    Gavrilov, I. & Pusev, R. Package ‘normtest’. (2015).

    71.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Soft. 82, (2017).

    72.
    Gockowski, J. et al. The forest margins of Cameroon. in Slash-and-burn Agriculture: The Search for Alternatives (eds. Palm, C. A., Vosti, A. S., Sanchez, A. P. & Polly, J. E.) 305–331 (Columbia University Press, 2005).

    73.
    Nounamo, L. & Yemefack, M. Shifting cultivation practices and sustainable forestland use in the evergreen forest of Cameroon. in Seminar proceedings ‘Sustainable management of African rain forest’, held inKribi, Cameroon, November 1999. Part II. (eds. Jonkers, W. B. J., Foahom, B. & Schmidt, P.) (The Tropenbos Foundation, 2001).

    74.
    Chapin, M., Lamb, Z. & Threlkeld, B. Mapping indigenous lands. Annu. Rev. Anthropol. 34, 619–638 (2005).
    Article  Google Scholar 

    75.
    Rainforest Foundation UK. Mapping for rights: Putting communities on the map. Mapping for rights. https://www.mappingforrights.org/index (2020).

    76.
    Fisher, R., Heckbert, S., León Villalobos, J. M. & Sutton, S. Augmenting physical 3D models with projected information to support environmental knowledge exchange. Appl. Geogr. 112, 102095 (2019).
    Article  Google Scholar 

    77.
    Njounan Tegomo, O., Defo, L. & Usongo, L. Mapping of resource use area by the Baka Pygmies inside and around Boumba-Bek National Park in Southeast Cameroon, with special reference to Baka’s customary rights. Afr. Study Monogr. 43, 45–59 (2012).

    78.
    Bobo, K. S., Kamgaing, T. O. W., Kamdoum, E. C. & Dzefack, Z. C. B. Bushmeat hunting in southeastern Cameroon: magnitude and impact on duikers (Cephalophus spp.). African Study Monographs Suppl. 51, 119–141 (2015).

    79.
    Constantino, P. de A. L. Dynamics of hunting territories and prey distribution in Amazonian Indigenous Lands. Appl. Geogr. 56, 222–231 (2015).

    80.
    Read, J. M. et al. Space, place, and hunting patterns among Indigenous Peoples of the Guyanese Rupununi region. Journal of Latin American Geography 9, 213–243 (2010).
    Article  Google Scholar 

    81.
    Smith, D. A. The spatial patterns of indigenous wildlife use in western Panama: Implications for conservation management. Biol. Cons. 141, 925–937 (2008).
    Article  Google Scholar 

    82.
    Pangau-Adam, M., Noske, R. & Muehlenberg, M. Wildmeat or bushmeat? Subsistence hunting and commercial harvesting in Papua (West New Guinea) Indonesia. Hum. Ecol. 40, 611–621 (2012).
    Article  Google Scholar 

    83.
    Kümpel, N. F. Incentives for sustainable hunting of bushmeat in Río Muni, Equatorial Guinea. (Imperial college London, 2006).

    84.
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).
    ADS  Article  Google Scholar 

    85.
    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis. Biol. Cons. 143, 1307–1316 (2010).
    Article  Google Scholar 

    86.
    World Land Trust. Area converter. https://www.worldlandtrust.org/get-involved/educational-resources/area-converter/ (2020).

    87.
    Billong Fils, P. E. et al. Ethnobotanical survey of wild edible plants used by Baka People in southeastern Cameroon. J. Ethnobiol. Ethnomed. 16 (2020).

    88.
    Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
    Article  Google Scholar 

    89.
    Bruce, T. et al. Faunal Inventory of the Dja Faunal Reserve, Cameroon—2018. 62 (2018). More