More stories

  • in

    Development of a robust protocol for the characterization of the pulmonary microbiota

    Many precautions should be taken to limit the modification of the commensal communities studied and the increase of interindividual variation not attributable to the experimental variables. The following factors can influence the human microbiota and should be considered when designing studies targeting the lung microbiota: the administration of antibiotics or neoadjuvant25,26,27,28, the size of the lesion, the type of surgical procedure, the type of pulmonary pathology under study, and living habits of patients (e.g., smoking status, physical exercise, buccal hygiene, alcohol consumption)29,30,31,32,33,34.
    A more exhaustive list of concomitant factors was pointed out by Carney et al.35. However, as the different fields of microbiota studies expand, it is likely that additional variables that can alter its composition will be uncovered. The molecular tools currently used to analyze the human microbiota do not have the power to discriminate the impact of that many factors over the microbial profiles. Whenever possible, patients selected for lung microbiota studies should be extensively screened so that they can be as similar as possible. Longitudinal studies could also minimize the impact of those variables, as the same patient, with similar concomitant factors through the study, would be compared to himself overtime.
    Tissue management steps should consider the contamination possibilities. In addition to the selection of a less contamination-prone procedure, such as thoracoscopic lobectomy, the manipulations and the instrument used in subsampling the excised organ should be taken into account. A combination of bleach and humid heat was chosen to sterilize the instruments used to sample the cancerous and healthy tissue as it was considered the most easily accessible method. The use of humid heat itself (autoclave) lacks the power to completely neutralize bacterial genomic DNA in solutions and on surfaces36. On the other hand, the utilization of bleach, or a chlorinated detergent, leads to the complete degradation of contaminating DNA on surfaces, such as benches and instruments37,38, but requires rinsing to avoid corrosion. Hence, combining both methods, soaking the instruments in bleach 1.6% for 10 min before rinsing with distilled water and autoclaving in a sterilization pouches, ensures a minimal amount of DNA has to be degraded by moist heat. The rest of the single-use equipment used was commercially sterilized with ionizing radiation.
    Healthy lung tissue was subsampled from the pulmonary lobe containing the tumor to ensure that the developed method could be used on a variety of lung tissue samples. It could also act as a control of non-pathologic microbiota to allow comparisons of cancerous and non-cancerous samples within the same subject, hence minimizing the impact on inter-individual microbiota variations. In fact, Riquelme et al. found that the gut microbiota has the capacity to specifically colonize pancreatic tissue8. Correspondingly, the use of adjacent pulmonary tissue to the tumor could help get better insights at a specific colonization of the tumor by lung bacteria. A 5 cm distance between the tumor and the healthy sample was ensured to minimize the potential effect of increased inflammation surrounding the tumor. Furthermore, the lung microbiota composition seems to vary dependently on the position and depth of the respiratory tract, even inside a same lobe39. The healthy tissue was collected in the same tierce of pulmonary depth (Supplementary Fig. 4) in an attempt to sample a microbial community that it would be as representative of non-pathologic microbiota in the tumoral region as possible.
    The homogenization of frozen and thawed pulmonary tissues was attempted and was unsuccessful, both with the use of only a 2.8 mm tungsten bead in the Retsch – MM301 mixer mill (30 beats/s, 20 min) or of the Fisherbrand 150 homogenizer with plastic probes (Fisher scientific, Pittsburg). The elasticity of the tissue or its frozen state make the mass nearly unbreakable. The use of the Liberase™ TM enzymatic cocktail (collagenase I & II, thermolysin) prior to the mechanical homogenization proved successful and a homogeneous suspension was obtained using the two-step homogenization protocol (Supplementary Fig. 3). Multiple ratios of liquid to mass of tissue were tested and 3 mL/g was found optimal, as it facilitates the homogenization without overly diluting to sample. A similar ratio of liquid to tissue was used in breast tissue microbiota study40. The samples were first thawed at 4 °C to reduce potential growth or degradation of microorganisms. The digestion was performed directly in the 50 mL collection tube to limit the tissue manipulation and ensure possible contaminant tracking.
    Our team was also unable to replicate the results obtain by Yu et al. on larger tissue samples using 0.2 mg/mL of Proteinase K for 24 h13. The samples remained firm and turned brown. Using the Liberase™ cocktail enabled a much faster digestion (75 min) and broke down specifically the lung component responsible for its elasticity, the collagen.
    Three commercially available DNA extraction kits were tested. They were selected for their previous successful use in the study of pulmonary or gut microbiota and their intended application as described by the manufacturer. The extraction kits were first tested on homogenized lung tissue spiked with whole-cell bacterial community to assess the efficiency of DNA extraction and recuperation of the commercial kits. The three kits were able to recover more than 88% of the genera added to the samples. All the genera that were not detected by the Microbial and Powersoil (Cutibacterium acnes, Bacteroides vulgatus, Bifidobacterium adolescentis, D. radiodurans, Clostridium beijerinckii, L. gasseri), with the exception of H. pylori, were Gram-positive bacteria. This type of bacteria has been reported to require more aggressive extraction methods to break their tougher cell walls19. However, the bacterial community did not go through the enzymatic and physical homogenization that usually takes place before DNA extraction since we needed to obtain a homogenous tissue sample that could be processed with or without spiked bacteria. These hard to lyse Gram-positive bacteria could have been fragilized by these processes, rendering them easier to break down during the extraction protocol. Furthermore, the detection of the artificially incorporated bacteria does not account for the natural physical association that may occur between the human tissue and microbial cells. Nonetheless, these high percentages of recovery were promising and lead us to continue with the characterization of the extraction kits in a real-life context, meaning the analysis of the base-level microbiota in pulmonary samples collected and processed through the entire pipeline.
    Every measurement of the efficiency of extraction, including DNA yield (Supplementary Fig. 5), DNA purity (Supplementary Figs. 6 and 7), and alpha diversity (Fig. 1), pointed in the same direction. In fact, they all showed that the Blood extraction kit was the best option out of the three kits. Therefore, using the Blood kit is recommended as one of the pieces of a complete study design. Additionally, the presence of a high concentration of host DNA in tissue samples might tend to saturate the purification column, which could reduce to amount of bacterial DNA recovered. The superior DNA binding capacity of the affinity column of the Blood kit compared to the two others could explain its better performance and its higher yield in most cases. The samples extracted with the Blood kit were also associated with higher alpha diversity (Shannon index). Therefore, this extraction method was able to recover a higher number of different bacterial organisms (richness) and proportionality in the different OTUs (evenness). The absence of PCR inhibitors and a higher recuperation rate of bacterial DNA in the Blood extracted samples could have led to a more proper amplification in the sequencing process and to the recuperation of very low abundance bacterial DNA in the extraction eluate. For further research, it is advised to take the additional precaution of working under a biosafety cabinet or in the sterile field when analyzing the microbiota of lung tissues to reduce the risk of incorporation of airborne contaminants.
    The Illumina Miseq sequencing platform with the use of dual-index strategy has become the dominant technology used in microbial ecology studies for its cost efficiency, low error rate, and user-friendliness41,42,43. Most studies interested in the pulmonary microbiota have also used this technology11,13,14. The sequencing of the 16S rRNA gene amplicon was favored over a shotgun sequencing method because of the overwhelming quantity of human DNA joining bacterial genomes in the pulmonary tissue. The 16S rRNA gene is the most used marker of bacterial identification. No consensus has been reached on the selection of the 16S rRNA gene variable region (V) to sequence for human microbiota18,44. However, it should be kept consistent across studies to allow comparisons. Targeting the V3–V4 regions was suggested using the universal primers developed by Klindworth et al.45. Several microbiota studies, including lung microbiota, have also used these regions7,13,46,47,48.
    In the context of this study, genomic mock-community was spiked in DNA extracted from the pulmonary tissue at a biological meaningful concentration. Every genus added to the samples was successfully detected. Consequently, the high ratio of human DNA to bacterial DNA did not interfere with the amplification and detection steps of the sequencing procedure. The sequencing method in place seems adequate for its application in the characterization of pulmonary microbiota.
    Contaminating bacteria or DNA can have an important impact of the microbial profile observed in very low biomass samples such as pulmonary tissue23. Consequentially, in addition to proper protocol selection, methodological design that attempts to follow, detect, and account for contamination was proposed. Its main features include the incorporation of a single negative control that monitors the incorporation of contaminants at every step of the experimental method (Supplementary Fig. 3). Since every step of the protocol prior to the extraction is meant to be executed in a single tube and only by the addition of reagents, it is possible to carry and detect the contaminants introduced throughout the procedure. On the contrary, microbiota study methodologies usually dictate for the incorporation of multiple controls at every step of the procedure (e.g. DNA extraction kit, PCR controls, etc.)18. Although more informative as to which step leads to contamination, it makes data analysis harder since the presence of contamination in the multiple controls cannot by added.
    No bioinformatics standard operating procedure is available and what should be done with controls sequencing data is still under debate18. Some research groups tried to use a neutral community model49, additional qPCR data50, amplicon DNA yield, or prevalence algorithms51 to assess the influence of methodological contaminants. The removal of every bacterial OTU found in controls from the samples is often not appropriate as these OTUs might also be naturally present in the samples22. We propose using relative abundance ratio between samples and controls to remove contaminating OTUs. Since controls have much lower richness than extracted lung samples and that the total number of reads (sequencing depth) is distributed across every OTU, the relative abundance of reads for each OTU tend to be much higher in the control than the same OTU in samples. Therefore, if the relative abundance of an OTU is greatly superior in the sample than in the control, it is reasonable to think that the same OTU was also in the sample in a substantial quantity. To ensure that OTUs that were present in very low absolute abundance (e.g., from only 1–2 reads) do not lead to the removal of the highly abundant corresponding OTU in samples, only the OTUs with a ratio of 1000 (relative abundance of sample/relative abundance of sample) were kept. The rest of the OTUs found in controls were completely removed from the related samples, since the influence of contaminating DNA could not be differentiated from the pulmonary microbiota. This method would theoretically tolerate no more than 20 reads (0.1%) before removing the entire OTU from the sample if only one OTU was present in the samples (20,000 reads, 100%). The use of relative abundance helps reduce the absolute abundance bias induced by the divergence in sequencing depth. The OTUs were removed from both tissues at the same time or not at all to avoid adding artificial intraindividual variation. The authors acknowledge that the proposed contaminant management method does not have the in-dept validation of other methods, such as described by Davis et al. with the decontam package51. However, it does not share its limitations regarding the lack of consideration for OTU abundance and need of high number of controls to ensure sensitivity while using prevalence-based detection. Further research focused on the development of statistical methods to detect contaminant OTUs in the cases of lung microbiota is needed. This work is to be a starting point toward methodological standardization and its modular nature makes the bioinformatic contaminant management method proposed here interchangeable once a more robust one is uncovered.
    Pearson’s correlation tests were performed on the number of reads per OTU between the samples and their respective controls. Although these values were not normally distributed (Shapiro-Wilk, p  More

  • in

    Rats show direct reciprocity when interacting with multiple partners

    1.
    Lehmann, L. & Keller, L. The evolution of cooperation and altruism—a general framework and a classification of models. J. Evol. Biol. 19, 1365–1376 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Taborsky, M., Frommen, J. G. & Riehl, C. Correlated pay-offs are key to cooperation. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150084 (2016).
    Article  Google Scholar 

    3.
    Trivers, R. L. The evolution of altruism. Q. Rev. Biol. 46, 35–57 (1971).
    Article  Google Scholar 

    4.
    Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science (80-. ) 211, 1390–1396 (1981).
    ADS  MathSciNet  CAS  MATH  Article  Google Scholar 

    5.
    Pfeiffer, T., Rutte, C., Killingback, T., Taborsky, M. & Bonhoeffer, S. Evolution of cooperation by generalized reciprocity. Proc. R. Soc. B Biol. Sci. 272, 1115–1120 (2005).
    Article  Google Scholar 

    6.
    Rankin, D. J. & Taborsky, M. Assortment and the evolution of generalized reciprocity. Evolution (N. Y). 63, 1913–1922 (2009).

    7.
    Alexander, R. D. The Biology of Moral Systems (Aldine Gruyter, New York, 1987).
    Google Scholar 

    8.
    Nowak, M. A. & Sigmund, K. Evolution of indirect reciprocity by image scoring. Nature 393, 573 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Winkler, I., Jonas, K. & Rudolph, U. On the usefulness of memory skills in social interactions: Modifying the iterated Prisoner’s Dilemma. J. Conflict Resolut. 52, 375–384 (2008).
    Article  Google Scholar 

    10.
    Stevens, J. R., Volstorf, J., Schooler, L. J. & Rieskamp, J. Forgetting constrains the emergence of cooperative decision strategies. Front. Psychol. 1, 1–12 (2011).
    Article  Google Scholar 

    11.
    Milinski, M. & Wedekind, C. Working memory constrains human cooperation in the Prisoner’s Dilemma. Proc. Natl. Acad. Sci. 95, 13755–13758 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Volstorf, J., Rieskamp, J. & Stevens, J. R. The good, the bad, and the rare: Memory for partners in social interactions. PLoS One 6, e18945 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Barta, Z. et al. Optimal moult strategies in migratory birds. Philos. Trans. R. Soc. B Biol. Sci. 363, 211–229 (2008).
    Article  Google Scholar 

    14.
    Houston, A. I. & McNamara, J. M. Models of Adaptive Behaviour: An Approach Based on State (Cambridge University Press, Cambridge, 1999).
    Google Scholar 

    15.
    Tinbergen, N. The Study of Instinct (Clarendon Press, Oxford, 1951).
    Google Scholar 

    16.
    McNamara, J. M. & Houston, A. I. Integrating function and mechanism. Trends Ecol. Evol. 24, 670–675 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Gigerenzer, G., Todd, P. M. & ABC Research Group. Simple heuristics that make us smart. (Oxford University Press, 1999).

    18.
    Hurley, S. Social heuristics that make us smarter. Philos. Psychol. 18, 585–612 (2005).
    Article  Google Scholar 

    19.
    Isen, A. M. Positive affect, cognitive processes, and social behavior. Adv. Exp. Soc. Psychol. 20, 203–253 (1987).
    Google Scholar 

    20.
    Bartlett, M. Y. & DeSteno, D. Gratitude and prosocial behavior: Helping when it costs you. Psychol. Sci. 17, 319–325 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Stanca, L. Measuring indirect reciprocity: Whose back do we scratch? J. Econ. Psychol. 30, 190–202 (2009).
    Article  Google Scholar 

    22.
    Leimgruber, K. L. et al. Give what you get: Capuchin monkeys (Cebus apella) and 4-year-old children pay forward positive and negative outcomes to conspecifics. PLoS One 9, e87035 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Claidière, N. et al. Selective and contagious prosocial resource donation in capuchin monkeys, chimpanzees and humans. Sci. Rep. 5, 7631 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Gfrerer, N. & Taborsky, M. Working dogs cooperate among one another by generalised reciprocity. Sci. Rep. 7, 43867 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Rutte, C. & Taborsky, M. Generalized reciprocity in rats. PLoS Biol. 5, e196 (2007).
    CAS  Article  Google Scholar 

    26.
    Rutte, C. & Taborsky, M. The influence of social experience on cooperative behaviour of rats (Rattus norvegicus): Direct vs generalised reciprocity. Behav. Ecol. Sociobiol. 62, 499–505 (2008).
    Article  Google Scholar 

    27.
    Schneeberger, K., Dietz, M. & Taborsky, M. Reciprocal cooperation between unrelated rats depends on cost to donor and benefit to recipient. BMC Evol. Biol. 12, 41 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Schweinfurth, M. K., Aeschbacher, J., Santi, M. & Taborsky, M. Male Norway rats cooperate according to direct but not generalized reciprocity rules. Anim. Behav. 152, 93–101 (2019).
    Article  Google Scholar 

    29.
    Dolivo, V. & Taborsky, M. Cooperation among Norway rats: The importance of visual cues for reciprocal cooperation, and the role of coercion. Ethology 121, 1071–1080 (2015).
    Article  Google Scholar 

    30.
    Dolivo, V. & Taborsky, M. Norway rats reciprocate help according to the quality of help they received. Biol. Lett. 11, 20140959 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Wood, R. I., Kim, J. Y. & Li, G. R. Cooperation in rats playing the iterated Prisoner’s Dilemma game. Anim. Behav. 114, 27–35 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schweinfurth, M. K. & Taborsky, M. The transfer of alternative tasks in reciprocal cooperation. Anim. Behav. 131, 35–41 (2017).
    Article  Google Scholar 

    33.
    Schweinfurth, M. K. & Taborsky, M. Reciprocal trading of different commodities in Norway rats. Curr. Biol. 28, 594–599 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Stieger, B., Schweinfurth, M. K. & Taborsky, M. Reciprocal allogrooming among unrelated Norway rats (Rattus norvegicus) is affected by previously received cooperative, affiliative and aggressive behaviours. Behav. Ecol. Sociobiol. 71, 182 (2017).
    Article  Google Scholar 

    35.
    Delmas, G. E., Lew, S. E. & Zanutto, S. B. High mutual cooperation rates in rats learning reciprocal altruism: The role of payoff matrix. PLoS ONE 14, 1–14 (2019).
    Article  CAS  Google Scholar 

    36.
    Barnett, S. A. & Spencer, M. M. Feeding social behaviour and interspecific competition in wild rats. Behaviour 3, 229–242 (1951).
    Google Scholar 

    37.
    Norton, S., Culver, B. & Mullenix, P. Development of nocturnal behavior in albino rats. Behav. Biol. 15, 317–331 (1975).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Schweinfurth, M. K. & Taborsky, M. Rats play tit-for-tat instead of integrating cooperative experiences over multiple interactions. Proc. R. Soc. 287, 20192423 (2020).
    Google Scholar 

    39.
    Engqvist, L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav. 70, 967–971 (2005).
    Article  Google Scholar 

    40.
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. 8, 6–10 (2010).
    Article  CAS  Google Scholar 

    41.
    Schweinfurth, M. K. et al. Do female Norway rats form social bonds? Behav. Ecol. Sociobiol. 71, 98 (2017).
    Article  Google Scholar 

    42.
    Davis, D. E. The characteristics of rat populations. Q. Rev. Biol. 28, 373–401 (1953).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    McGuire, B., Pizzuto, T., Bemis, W. E. & Getz, L. L. General ecology of a rural population of Norway rats (Rattus norvegicus) based on intensive live trapping. Am. Midl. Nat. 155, 221–236 (2006).
    Article  Google Scholar 

    44.
    Dunbar, R. I. Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22, 469–493 (1992).
    Article  Google Scholar 

    45.
    Panoz-Brown, D. et al. Replay of episodic memories in the rat. Curr. Biol. 28, 1628–1634 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Crystal, J. D. Prospective memory. Curr. Biol. 23, 750–751 (2013).
    Article  CAS  Google Scholar 

    47.
    Telle, H. Beitrag zur Erkenntnis der Verhaltensweise von Ratten, vergleichend dargestellt bei Rattus norvegicus und Rattus rattus. Zeitschrift für Angew. Zool. 53, 129–196 (1966).
    Google Scholar 

    48.
    Calhoun, J. B. The ecology and sociobiology of the Norway rat. (U.S. Dept. of Health, Education, and Welfare, Public Health Service, 1979).

    49.
    Mogil, J. S. Mice are people too: Increasing evidence for cognitive, emotional and social capabilities in laboratory rodents. Can. Psychol. 60, 14–20 (2019).
    Article  Google Scholar 

    50.
    Dolivo, V., Rutte, C. & Taborsky, M. Ultimate and proximate mechanisms of reciprocal altruism in rats. Learn. Behav. 44, 223–226 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Müller, J. J. A., Massen, J. J. M., Bugnyar, T. & Osvath, M. Ravens remember the nature of a single reciprocal interaction sequence over 2 days and even after a month. Anim. Behav. 128, 69–78 (2017).
    Article  Google Scholar 

    52.
    Stevens, J. R. & Hauser, M. D. Why be nice? Psychological constraints on the evolution of cooperation. Trends Cogn. Sci. 8, 60–65 (2004).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Vertical distribution of soil available phosphorus and soil available potassium in the critical zone on the Loess Plateau, China

    Study area
    The study was conducted across the Loess Plateau (33°43′–41°16′N, 100°54′–114°33′E) (Fig. 1a), which represents approximately 6.5% of the total area of China6. The study area is dominated by temperate, arid, and semiarid continental monsoon climates. The annual evaporation is 1400–2000 mm, and the annual temperature ranges from 3.6 °C in the northwest to 14.3 °C in the southeast on the Loess Plateau7, while the annual precipitation ranges from 150 to 800 mm, where 55–78% of the precipitation falls from June to September7. The annual solar radiation ranges from 5.0 × 109 to 6.7 × 109 J m−2. The vegetation zones are forest, forest-steppe, typical-steppe, desert-steppe, and steppe-desert zones8 from southeast to northwest.
    Figure 1

    Locations of the Loess Plateau region in China (a) and the sampling sites (b); image data processed by ArcGIS 10.5 http://developers.arcgis.com.

    Full size image

    Field sampling
    According to the different climate zones and vegetation types, five classic sampling sites were selected (Fig. 1b) on the Loess Plateau, which were Yangling, Changwu, Fuxian, Ansai, and Shenmu from south to north. Drilling equipment (assembled by Xi’an Qinyan Drilling Co. Ltd, China) was used to collect soil samples from soil surface down to bedrock. At each sampling site, disturbed soil samples were collected to determine the SAP and SAK concentrations, pH, soil particle composition, and soil organic matter contents. In addition, disturbed soil samples were collected from the middle of the soil column at 1-m intervals (i.e., 0.5 m, 1.5 m, 2.5 m, 3.5 m, etc.). The drilling and sampling work was carried out from April 28 to June 28, 2016. The total numbers of disturbed soil samples collected from Yangling, Changwu, Fuxian, Ansai, and Shenmu were 103, 205, 181, 161, and 58, respectively, and the corresponding soil drilling depths were 103.5 m, 204.5 m, 187.5 m, 161.6 m, and 56.6 m, respectively.
    Laboratory analyses
    Undisturbed soil samples were air-dried, separated, and passed through 0.25-mm or 2-mm sieves. SAP and SAK were extracted with ammonium lactate solution and detected by spectrophotometry and flame photometry. Soil total nitrogen (STN) concentrations were determined by the Kjeldahl digestion procedure9. Soil total phosphorus (STP) concentrations were determined by molybdenum antimony blue colorimetry10. The soil organic carbon (SOC) contents were analyzed by dichromate oxidation method11. The soil particle composition was determined by laser diffraction (Mastersizer 2000, Malvern Instruments, Malvern, UK)12. According to the mixture of soil and water mass ratio of 1:1, the pH value was determined with a pH meter equipped with a calibrated combined glass electrode. The soil water content (SWC) was determined by the mass loss after drying to constant mass in an oven at 105 °C13. The calcium carbonate content was determined by the acid-neutralization method14.
    Geostatistical analysis
    The geostatistical analysis was chosen to determine the spatial structure of the spatially dependent soil properties15, where a semivariogram was employed to quantify the spatial patterns of the variables. The equation for the semivariogram is16:

    $$ {text{R}}left( {text{h}} right) , = frac{1}{{2{text{N}}left( {text{h}} right)}}mathop sum limits_{{{text{i}} = 1}}^{{{text{N}}left( {text{h}} right)}} left[ {{text{Z}}left( {{text{x}}_{{text{i}}} } right){-}{text{Z}}left( {{text{x}}_{{{text{i}} + {text{h}}}} } right)} right]^{{2}} , $$
    (1)

    where for each site i, N(h) is the number of pairs separated by h, and Z(xi) is the value at location xi and Z(xi+h) for xi+h. There are four semivariogram models (spherical, exponential, linear, and Gaussian), which can be employed to describe the semivariogram, and the best fitting model is selected according to the smallest residual sum of squares (RSS) and the largest coefficient of determination (R2). The equation of each semivariogram model is16:
    Exponential model:

    $$ {text{R}}left( {text{h}} right) = {text{C}}_{0} + {text{C}}left[ {({1}{-}{text{exp}}( – {text{h}}/{text{A}}_{0} )} right] $$
    (2)

    Linear Model:

    $$ {text{R}}left( {text{h}} right) = {text{C}}_{0} + left[ {{text{h}}left( {{text{C}}/{text{A}}_{0} } right)} right] $$
    (3)

    Spherical Model:

    $$ {text{R}}left( {text{h}} right) = {text{C}}0 + {text{C}}left[ {{1}.{5}left( {{text{h}}/{text{A}}_{0} } right) – 0.{5}left( {{text{h}}/{text{A}}_{0} } right)^{{3}} } right] ;;;;;;;;; {text{h}} le {text{A}}0 $$
    (4)

    $$ {text{R}}left( {text{h}} right) = {text{C}}_{0} + {text{C}};;;;;;;;;;{text{h}} ge {text{A}}0 $$
    (5)

    Gaussian Model:

    $$ {text{R}}left( {text{h}} right) = {text{C}}_{0} + {text{C}}left[ {{1} – {text{exp}}left( { – {text{h}}^{{2}} /{text{A}}_{0}^{{2}} } right)} right] $$
    (6)

    where C0 indicates the nugget value, which is the short-range structure that occurs at distances smaller than the sampling interval, microheterogeneity, and experimental error; C0 + C is the sill indicating the random and structural variation, and; A0 is the range indicating the spatial correlation at different distances.
    Statistical analysis
    Descriptive statistical analyses (maximum, minimum, average, and coefficient of variation), Pearson’s correlation analysis, and linear regression analysis was performed with SPSS 16.0 (IBM SPSS, Chicago, IL, USA). Geostatistical analysis was performed with GS + software (version 7.05). More

  • in

    O antigen restricts lysogenization of non-O157 Escherichia coli strains by Stx-converting bacteriophage phi24B

    1.
    Cody, E. M. & Dixon, B. P. Hemolytic uremic syndrome. Pediatr. Clin. North Am. 66, 235–246. https://doi.org/10.1016/j.pcl.2018.09.011 (2019).
    Article  PubMed  Google Scholar 
    2.
    Chiang, Y. N., Penades, J. R. & Chen, J. Genetic transduction by phages and chromosomal islands: The new and noncanonical. PLoS Pathog 15, e1007878. https://doi.org/10.1371/journal.ppat.1007878 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Penades, J. R. & Christie, G. E. The phage-inducible chromosomal islands: A family of highly evolved molecular parasites. Annu. Rev. Virol. 2, 181–201. https://doi.org/10.1146/annurev-virology-031413-085446 (2015).
    CAS  Article  PubMed  Google Scholar 

    4.
    Valilis, E., Ramsey, A., Sidiq, S. & DuPont, H. L. Non-O157 Shiga toxin-producing Escherichia coli-A poorly appreciated enteric pathogen: Systematic review. Int. J. Infect Dis. 76, 82–87. https://doi.org/10.1016/j.ijid.2018.09.002 (2018).
    CAS  Article  PubMed  Google Scholar 

    5.
    Murinda, S. E. et al. Shiga toxin-producing Escherichia coli in mastitis: An international perspective. Foodborne Pathog. Dis. 16, 229–243. https://doi.org/10.1089/fpd.2018.2491 (2019).
    Article  PubMed  Google Scholar 

    6.
    Feiner, R. et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13, 641–650. https://doi.org/10.1038/nrmicro3527 (2015).
    CAS  Article  PubMed  Google Scholar 

    7.
    Bikard, D. & Marraffini, L. A. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Curr. Opin. Immunol. 24, 15–20. https://doi.org/10.1016/j.coi.2011.10.005 (2012).
    CAS  Article  PubMed  Google Scholar 

    8.
    Hoskisson, P. A. & Smith, M. C. Hypervariation and phase variation in the bacteriophage “resistome”. Curr. Opin. Microbiol. 10, 396–400. https://doi.org/10.1016/j.mib.2007.04.003 (2007).
    CAS  Article  PubMed  Google Scholar 

    9.
    De Ste Croix, M. et al. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol. Rev. 41, S3–S15. https://doi.org/10.1093/femsre/fux025 (2017).
    Article  PubMed  Google Scholar 

    10.
    Heredia, N. & Garcia, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 4, 250–255. https://doi.org/10.1016/j.aninu.2018.04.006 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Fatima, R. & Aziz, M. in StatPearls (2019).

    12.
    Mellor, G. E. et al. National Survey of Shiga Toxin-Producing Escherichia coli Serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian Beef Cattle Feces. J. Food Prot. 79, 1868–1874. https://doi.org/10.4315/0362-028X.JFP-15-507 (2016).
    Article  PubMed  Google Scholar 

    13.
    Kampmeier, S., Berger, M., Mellmann, A., Karch, H. & Berger, P. The 2011 German enterohemorrhagic Escherichia coli O104:H4 outbreak-the danger is still out there. Curr. Top. Microbiol. Immunol. 416, 117–148. https://doi.org/10.1007/82_2018_107 (2018).
    CAS  Article  PubMed  Google Scholar 

    14.
    Lee, M. S. & Tesh, V. L. Roles of shiga toxins in immunopathology. Toxins (Basel) https://doi.org/10.3390/toxins11040212 (2019).
    Article  PubMed Central  Google Scholar 

    15.
    Schmidt, H. Shiga-toxin-converting bacteriophages. Res. Microbiol. 152, 687–695. https://doi.org/10.1016/s0923-2508(01)01249-9 (2001).
    CAS  Article  PubMed  Google Scholar 

    16.
    Herold, S., Karch, H. & Schmidt, H. Shiga toxin-encoding bacteriophages–genomes in motion. Int. J. Med. Microbiol. 294, 115–121. https://doi.org/10.1016/j.ijmm.2004.06.023 (2004).
    CAS  Article  PubMed  Google Scholar 

    17.
    Chakraborty, D., Clark, E., Mauro, S. A. & Koudelka, G. B. Molecular mechanisms governing “hair-trigger” induction of shiga toxin-encoding prophages. Viruses https://doi.org/10.3390/v10050228 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Bloch, S. et al. Inhibition of Shiga toxin-converting bacteriophage development by novel antioxidant compounds. J. Enzyme Inhib. Med. Chem. 33, 639–650. https://doi.org/10.1080/14756366.2018.1444610 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    19.
    Fang, Y., Mercer, R. G., McMullen, L. M. & Ganzle, M. G. Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01378-17 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Smith, D. L. et al. Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 13, 311. https://doi.org/10.1186/1471-2164-13-311 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Kakoullis, L., Papachristodoulou, E., Chra, P. & Panos, G. Shiga toxin-induced haemolytic uraemic syndrome and the role of antibiotics: A global overview. J. Infect. 79, 75–94. https://doi.org/10.1016/j.jinf.2019.05.018 (2019).
    Article  PubMed  Google Scholar 

    22.
    Kavanagh, D., Raman, S. & Sheerin, N. S. Management of hemolytic uremic syndrome. F1000Prime Rep 6, 119. https://doi.org/10.12703/P6-119 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    James, C. E. et al. Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. Appl. Environ. Microbiol. 67, 4335–4337. https://doi.org/10.1128/aem.67.9.4335-4337.2001 (2001).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Smith, D. L. et al. Multilocus characterization scheme for shiga toxin-encoding bacteriophages. Appl. Environ. Microbiol. 73, 8032–8040. https://doi.org/10.1128/AEM.01278-07 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Eichhorn, I. et al. Lysogenic conversion of atypical enteropathogenic Escherichia coli (aEPEC) from human, murine, and bovine origin with bacteriophage Phi3538 Deltastx2::cat proves their enterohemorrhagic E. coli (EHEC) progeny. Int. J. Med. Microbiol. 308, 890–898. https://doi.org/10.1016/j.ijmm.2018.06.005 (2018).
    Article  PubMed  Google Scholar 

    26.
    Khalil, R. K., Skinner, C., Patfield, S. & He, X. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains. Pathog. Dis. https://doi.org/10.1093/femspd/ftw037 (2016).
    Article  PubMed  Google Scholar 

    27.
    Smith, D. L. et al. Short-tailed Stx phages exploit the conserved YaeT protein to disseminate Shiga toxin genes among enterobacteria. J. Bacteriol. 189, 7223–7233. https://doi.org/10.1128/JB.00824-07 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Botos, I., Noinaj, N. & Buchanan, S. K. Insertion of proteins and lipopolysaccharide into the bacterial outer membrane. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. https://doi.org/10.1098/rstb.2016.0224 (2017).
    Article  Google Scholar 

    29.
    Knirel, Y. A. et al. Variations in O-antigen biosynthesis and O-acetylation associated with altered phage sensitivity in Escherichia coli 4s. J. Bacteriol. 197, 905–912. https://doi.org/10.1128/JB.02398-14 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    30.
    Golomidova, A. K. et al. Branched lateral tail fiber organization in T5-like bacteriophages DT57C and DT571/2 is revealed by genetic and functional analysis. Viruses https://doi.org/10.3390/v8010026 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Kulikov, E. E., Golomidova, A. K., Prokhorov, N. S., Ivanov, P. A. & Letarov, A. V. High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies. Sci. Rep. 9, 2958. https://doi.org/10.1038/s41598-019-39590-8 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    van der Ley, P., de Graaff, P. & Tommassen, J. Shielding of Escherichia coli outer membrane proteins as receptors for bacteriophages and colicins by O-antigenic chains of lipopolysaccharide. J. Bacteriol. 168, 449–451. https://doi.org/10.1128/jb.168.1.449-451.1986 (1986).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Kunisaki, H. & Tanji, Y. Intercrossing of phage genomes in a phage cocktail and stable coexistence with Escherichia coli O157:H7 in anaerobic continuous culture. Appl. Microbiol. Biotechnol. 85, 1533–1540. https://doi.org/10.1007/s00253-009-2230-2 (2010).
    CAS  Article  PubMed  Google Scholar 

    34.
    Golomidova, A. K., Kulikov, E. E., Babenko, V. V., Kostryukova, E. S. & Letarov, A. V. Complete genome sequence of bacteriophage St11Ph5, which Infects uropathogenic Escherichia coli strain up11. Genome Announcements https://doi.org/10.1128/genomeA.01371-17 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    35.
    Golomidova, A. K., Naumenko, O. I., Senchenkova, S. N., Knirel, Y. A. & Letarov, A. V. The O-polysaccharide of Escherichia coli F5, which is structurally related to that of E. coli O28ab, provides cells only weak protection against bacteriophage attack. Arch. Virol. 164, 2783–2787. https://doi.org/10.1007/s00705-019-04371-1 (2019).
    CAS  Article  PubMed  Google Scholar 

    36.
    Knirel, Y. A. et al. Structure and gene cluster of the O antigen of Escherichia coli F17, a candidate for a new O-serogroup. Int. J. Biol. Macromol. 124, 389–395. https://doi.org/10.1016/j.ijbiomac.2018.11.149 (2019).
    CAS  Article  PubMed  Google Scholar 

    37.
    Zdorovenko, E. L. et al. Structure of the O-polysaccharide of Escherichia coli O87. Carbohyd. Res. 412, 15–18. https://doi.org/10.1016/j.carres.2015.04.014 (2015).
    CAS  Article  Google Scholar 

    38.
    Zdorovenko, E. L. et al. Corrigendum to “Structure of the O-polysaccharide of Escherichia coli O87” [Carbohydr. Res. 412 (2015) 15–18]. Carbohydrate Res. 464, 1. https://doi.org/10.1016/j.carres.2018.04.013 (2018).

    39.
    Zdorovenko, E. L. et al. O-Antigens of Escherichia coli strains O81 and HS3–104 are structurally and genetically related, except O-Antigen glucosylation in E. coli HS3–104. Biochemistry 83, 534–541. https://doi.org/10.1134/S0006297918050061 (2018).
    CAS  Article  PubMed  Google Scholar 

    40.
    Kulikov, E. E. et al. Genomic sequencing and biological characteristics of a novel Escherichia coli bacteriophage 9g, a putative representative of a new Siphoviridae genus. Viruses 6, 5077–5092. https://doi.org/10.3390/v6125077 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Golomidova, A. K. et al. Escherichia coli bacteriophage Gostya9, representing a new species within the genus T5virus. Adv. Virol. 164, 879–884. https://doi.org/10.1007/s00705-018-4113-2 (2019).
    CAS  Article  Google Scholar 

    42.
    Kulikov, E. et al. Isolation and characterization of a novel indigenous intestinal N4-related coliphage vB_EcoP_G7C. Virology 426, 93–99. https://doi.org/10.1016/j.virol.2012.01.027 (2012).
    CAS  Article  PubMed  Google Scholar 

    43.
    Prokhorov, N. S. et al. Function of bacteriophage G7C esterase tailspike in host cell adsorption. Mol. Microbiol. 105, 385–398. https://doi.org/10.1111/mmi.13710 (2017).
    CAS  Article  PubMed  Google Scholar 

    44.
    Zdorovenko, E. L. et al. Corrigendum to “Structure of the O-polysaccharide of Escherichia coli O87”. Carbohydrate Res. 412, 15–18. https://doi.org/10.1016/j.carres.2018.04.013 (2015).
    CAS  Article  Google Scholar 

    45.
    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).
    Google Scholar 

    46.
    Samson, J. E., Magadan, A. H., Sabri, M. & Moineau, S. Revenge of the phages: Defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687. https://doi.org/10.1038/nrmicro3096 (2013).
    CAS  Article  PubMed  Google Scholar 

    47.
    Pawlak, A. et al. Salmonella O48 serum resistance is connected with the elongation of the lipopolysaccharide O-Antigen containing sialic acid. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18102022 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    48.
    Coggon, C. F. et al. A novel method of serum resistance by Escherichia coli that causes urosepsis. mBio https://doi.org/10.1128/mBio.00920-18 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Kintz, E. et al. Salmonella enterica Serovar Typhi lipopolysaccharide O-antigen modification impact on serum resistance and antibody recognition. Infect. Immunity https://doi.org/10.1128/IAI.01021-16 (2017).
    Article  Google Scholar 

    50.
    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97, 6640–6645. https://doi.org/10.1073/pnas.120163297 (2000).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Early life dietary intervention in dairy calves results in a long-term reduction in methane emissions

    The experiment was conducted at the INRAE dairy research farm (La boire, Marcenat, https://doi.org/10.15454/1.5572318050509348E12). Procedures were evaluated and approved by the French Ministry of Education and Research (APAFIS #4062-2015043014541577 v5), and carried out in accordance with French and European guidelines and regulations for animal experimentation. Information provided in the manuscript complies with the essential recommendations for reporting of the ARRIVE guidelines.
    Animals, diets and experimental design
    Eighteen female Holstein (n = 12), Montbéliarde (n = 4) and Holstein x Montbéliarde (n = 2) calves (42.07 ± 3.85 kg birth weight) were enrolled in the study at birth. Calves were kept with their dam for a few hours but systematically received 2 L of warm colostrum of good quality (≥ 50 g IgG per L) that is conserved at − 20 °C until use. Calves were individually housed for the first week of life and bottle fed 3 L of milk twice daily (0700 h and 1800 h). After the first week, calves were group housed according to treatment with ad libitum access to water and hay. Calves were fed up to 8 L of milk per day through the use of an automated milking system (De Laval, Sursee, Switzerland). Similarly, calves had access to calf starter (STARTIVO, Centraliment, Aurillac, France) from four weeks of age with a maximum daily allowance of 2 kg in the pre-weaning period. In the immediate post-weaning period, calves had access to 2 kg of GENIE ELEVAGE (Centraliment, Aurillac, France). Chemical composition of dietary ingredients is presented in Table S1.
    Calves were randomly assigned at birth to either a treatment (3-NOP, 3 mg 3-NOP/kg BW, n = 10 up to week 23, a heifer was removed from the herd due to infertility as a result of being born a twin, i.e., a free-martin, n = 9 at week 60) or control (CONT, placebo premix containing SiO2 and propylene glycol only, n = 8, nine calves were recruited but one calf died early in the study) group, such that breed distribution and birthweight were balanced across groups. The 3-NOP supplement contained 10% 3-NOP diluted in propylene glycol and adsorbed on SiO2, such that 30 mg of the supplement was fed per kilogram of body weight to achieve the above target dose of 3-NOP. The 3-NOP and placebo were mixed with water (300 mg/mL water) and administered daily via an oral gavage approximately 2 h after feeding. Calves were treated daily from the day of birth, following consumption of colostrum, until 14 weeks of age. All calves were weaned at week 11 using the step-down method over two weeks. After weaning, all calves were group housed in a single pen to replicate normal production practices.
    Calves were weighed weekly. Daily individual milk and concentrate intakes prior to weaning were recorded using automated feeders. Total group intake of hay and concentrate, and all refusals in the post-weaning period were recorded twice weekly.
    Sampling
    All calves were sampled for rumen fluid and faecal content at 1, 4, 11, 14, 23 and 60 weeks of life. Sampling at week 11 was conducted immediately prior to weaning and sampling at week 14 was conducted just prior to cessation of the treatment. Samples of rumen liquid were obtained via oesophageal tubing at least 2 h after feeding. Aliquots (1 mL) of rumen liquid were immediately frozen in liquid nitrogen and stored at − 80 °C until DNA extraction. Additional rumen liquid aliquots were taken for analysis of volatile fatty acids and ammonia as previously described25,26. At week 60, 3 mL of ruminal fluid was added to 3 mL of methyl green formalin saline (MFS) solution (35 mL/L formaldehyde, 0.14 mM NaCl, and 0.92 mM methyl green) and stored in the dark at room temperature until protozoa were counted. At each sampling period, calves were rectally finger-stimulated with sterile-gloved hand to facilitate the collection of a faecal sample, which was immediately frozen in liquid nitrogen and stored at − 80 °C until DNA extraction. Blood samples were taken via jugular venepuncture into a heparin tube at week 11, 14 and 23 for metabolic analysis. Blood was immediately centrifuged at 1500×g for 10 min at 4 °C. Plasma was stored at − 80 °C until analysis.
    Methane measurements
    Methane emissions were recorded using the GreenFeed system (C-Lock Inc., Rapid City, South Dakota, USA) during two time periods. Firstly, from weaning (week 11) until week 23, one GreenFeed system was programmed using C-Lock Inc. software to deliver a maximum of six rotations of a feed dispensing cup, delivering ~ 6 g of pellet concentrate GENIE ELEVAGE (as fed) per rotation, with intervals of 30 s between each rotation, so that 36 g of pellet was delivered during each visit. During the second phase of measurement when heifers were 57 to 60 weeks of age, two GreenFeed systems were utilised with software programmed to deliver a maximum of six rotations of a feed dispensing cup, delivering approximately 45 g of pellet (as fed) per rotation, with intervals of 30 s between each rotation, so that 270 g of pellet was delivered during each visit. During the second measurement period, calves were separated according to treatment group and allocated to one of two GreenFeed systems. An adaptation period of one week preceded a 4-week experimental recording period. After two weeks, calves were rotated into the alternate pen to eliminate any possible biases between the two GreenFeed systems. During all measurement periods, a minimum of 3 h was required between visits. The calf starter pellets described above were used as an enticement. Recorded methane measurements were included if the total time spent in the feeder was > 3 min with calves visiting the feeder a minimum of three times per day to ensure repeatability of the recorded measurements27.
    DNA extraction and amplicon sequencing
    Genomic DNA (gDNA) was extracted from each rumen and faeces sample using a bead-beating and on-column purification28. DNA extracts were quantified on a Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific, France) and run on a FlashGel System (Lonza, Rockland, Inc.) to check integrity. Approximately 15 µg of rumen or faecal gDNA were sent to Roy J. Carver Biotechnology Center (Urbana, IL61801, USA) for microfluidics PCR amplification (Biomark HD, Fluidigm, South San Francisco, USA) and HiSeq Illumina paired end sequencing. Selected primers for amplification targeting the V3–V5 region of 16S rRNA gene of bacteria, 16S rRNA gene of archaea, fungal ITS2 and protozoal 18S rRNA gene are presented in Table S2. After amplification all samples were pooled. The library was sequenced on one lane of a HiSeq V2 Rapid flowcell for 251 cycles from each end of the fragments using a HiSeq 500-cycle SBS sequencing kit version 2 (Illumina, San Diego, USA).
    Bioinformatic analysis
    All pipelines have a quality control step, removing sequences with Phred scores of More

  • in

    Foxes fertilize the subarctic forest and modify vegetation through denning

    1.
    Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control and competition. Am. Nat. 879, 412–425 (1960).
    Google Scholar 
    2.
    Oksanen, L., Fretwell, S. D., Arruda, J. & Niemelä, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).
    Article  Google Scholar 

    3.
    Oksanen, L. & Oksanen, T. The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat. 155, 703–723 (2000).
    PubMed  Article  Google Scholar 

    4.
    Ripple, W. J. & Beschta, R. L. Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biol. Conserv. 145, 205–213 (2012).
    Article  Google Scholar 

    5.
    Smith, C. C. & Reichman, O. J. The evolution of food caching by birds and mammals. Ann. Rev. Ecol. Evol. Syst. 15, 329–351 (1984).
    Article  Google Scholar 

    6.
    Couvreur, M. et al. Epizoochory by large herbivores: merging data with models. Basic Appl. Ecol. 9, 204–212 (2008).
    Article  Google Scholar 

    7.
    Kulbaba, M. W., Tardif, J. C. & Staniforth, R. J. Morphological and ecological relationships between burrs and furs. Am. Mid Nat. 161, 380–391 (2009).
    Article  Google Scholar 

    8.
    Schmitz, O. J., Hawlena, D. & Trussell, G. C. Predator control of ecosystem nutrient dynamics. Ecol. Lett. 13, 1199–1209 (2010).
    PubMed  Article  Google Scholar 

    9.
    Hämäläinen, A. et al. The ecological significance of secondary seed dispersal by carnivores. Ecosphere 8, 1–16 (2017).
    Article  Google Scholar 

    10.
    Leroux, S. J. & Schmitz, O. J. Predator-driven elemental cycling: the impact of predation and risk effects on ecosystem stoichiometry. Ecol. Evol. 5, 4976–4988 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Hilderbrand, G. V., Hanley, T. A., Robbins, C. T. & Schwartz, C. C. Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem. Oecologia 121, 546–550 (1999).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Ben-David, M., Bowyer, R. T., Duffy, L. K., Roby, D. D. & Schell, D. M. Social behaviour and ecosystem processes: river otter latrines and nutrient dynamics of terrestrial vegetation. Ecology 79, 2567–2571 (1998).
    Article  Google Scholar 

    13.
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).
    Article  Google Scholar 

    14.
    Sanders, D. et al. Integrating ecosystem engineering and food webs. Oikos 123, 513–524 (2014).
    Article  Google Scholar 

    15.
    Larivière, S. & Pasitschniak-Arts, M. Vulpes vulpes. Mamm. Species 537, 1–11 (1996).
    Article  Google Scholar 

    16.
    Kurek, P. & Holeksa, J. Grains in the diets of medium-sized carnivores—a case of diplochory?. Pol. J. Ecol. 63, 286–290 (2015).
    Article  Google Scholar 

    17.
    Godó, L. et al. Ecosystem engineering by foxes is mediated by the landscape context—a case study from steppic burial mounds. Ecol. Evol. 8, 7044–7054 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Bartoń, K. A. & Zalewski, A. Winter severity limits red fox populations in Eurasia. Glob. Ecol. Biogeogr 16, 281–289 (2007).
    Article  Google Scholar 

    19.
    Berteaux, D., Gallant, D., Sacks, B. N. & Statham, M. J. Red foxes (Vulpes vulpes) at their expanding front in the Canadian Arctic have indigenous maternal ancestry. Polar Biol. 38, 913–917 (2015).
    Article  Google Scholar 

    20.
    Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 1–10 (2011).
    Article  Google Scholar 

    22.
    Buermann, W. et al. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 41, 1995–2002 (2014).
    ADS  Article  Google Scholar 

    23.
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Schachtman, D. P., Reid, R. J. & Ayling, S. M. Phosphorus uptake by plants: from soil to cell. Plant Phys. 116, 447–453 (1998).
    CAS  Article  Google Scholar 

    25.
    Nordin, A., Högberg, P. & Näsholm, T. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia 129, 125–132 (2001).
    ADS  PubMed  Article  Google Scholar 

    26.
    Hartley, I. P., Hopkins, D. W., Sommerkorn, M. & Wookey, P. A. The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol. Biochem. 42, 92–100 (2010).
    CAS  Article  Google Scholar 

    27.
    Chapin, S. F. III., Matson, P. A. & Vitousek, P. Principles of Terrestrial Ecosystem Ecology 2nd edn. (Springer, Berlin, 2011).
    Google Scholar 

    28.
    Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).
    ADS  Article  Google Scholar 

    29.
    Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, Hoboken, 1979).
    Google Scholar 

    30.
    Suding, K. N. et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. PNAS 12, 4387–4392 (2005).
    ADS  Article  CAS  Google Scholar 

    31.
    Roth, J. D. Variability in marine resources affects arctic fox population dynamics. J. Anim. Ecol. 72, 668–676 (2003).
    PubMed  Article  Google Scholar 

    32.
    Gallant, D., Slough, B. G., Reid, D. G. & Berteaux, D. Arctic fox versus red fox in the warming Arctic: four decades of den surveys in north Yukon. Polar Biol. 35, 1421–1431 (2012).
    Article  Google Scholar 

    33.
    Ritchie, J. C. The vegetation of northern Manitoba: II. A prisere on the Hudson Bay lowlands. Ecology 38, 429–435 (1957).
    Article  Google Scholar 

    34.
    Johnson, K. L. Wildflowers of Churchill and the Hudson Bay Region (Manitoba Museum of Nature, Winnipeg, 1987).
    Google Scholar 

    35.
    Brook, R. K. Structure and Dynamics of the Vegetation in Wapusk National Park and the Cape Churchill Wildlife Management Area of Manitoba, Community and Landscape Scales. MSc Thesis thesis, University of Manitoba (2001).

    36.
    Smith, R. E. et al. (ed pp 277–298 Agriculture and Agri-Food Canada Land Resource Unit Research Branch Technical Bulletin 1998–9E) (1998).

    37.
    Tews, J. Hummock vegetation at the arctic tree-line near Churchill, Manitoba. Can. Field Nat. 118, 590–594 (2004).
    Article  Google Scholar 

    38.
    Kurek, P., Kapusta, A. & Holeksa, J. Burrowing by badgers (Meles meles) and foxes (Vulpes vulpes) changes soil conditions and vegetation in a European temperate forest. Ecol. Res. 29, 1–11 (2014).
    CAS  Article  Google Scholar 

    39.
    Gharajehdaghipour, T., Roth, J. D., Fafard, P. M. & Markham, J. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens. Sci. Rep. 6, 24020. https://doi.org/10.1038/srep24020 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Khan, S. A., Mulvaney, R. L. & Hoeft, R. G. Direct-diffusion methods for inorganic nitrogen analysis of soil. Soil Sci. Soc. Am. J. 64, 1083–1089 (2000).
    ADS  CAS  Article  Google Scholar 

    41.
    Kalra, Y. P. & Maynard, D. G. Methods Manual for Soil and Plant Analysis (Forestry Canada. Northwest Reg. North. For. Cent. Edmonton, Ab., 1991).

    42.
    Wardle, D. A. Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystems. Funct. Ecol. 7, 346–355 (1993).
    Article  Google Scholar 

    43.
    R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna Austria, 2020).

    44.
    Dufrene, M. & Legendre, P. Species assemblages and Indicator species: the need for a flexible asymmetrical approach. Ecol. Mon. 67, 345–366 (1997).
    Google Scholar 

    45.
    Ordination and Multivariate Analysis for Ecology. Version 1.8 (2016).

    46.
    Rubinstein, R. Y. Simulation and the Monte Carlo method 1st edn. (Wiley, Hoboken, 1981).
    Google Scholar 

    47.
    Pwr: basic functions for power analysis. R package v1.3–0. (2020).

    48.
    Wijesinghe, D. K., John, E. A. & Hutchings, M. J. Does pattern of soil resource heterogeneity determine plant and community structure? An experimental investigation. J. Ecol. 93, 99–112 (2005).
    Article  Google Scholar 

    49.
    Moore, T. R. The nutrient status of Subarctic woodland soils. Arctic Alpine. Res. 12, 147–160 (1980).
    CAS  Article  Google Scholar 

    50.
    Vance, E. D. & Chapin, S. F. III. Substrate limitations to microbial activity in taiga forest floors. Soil Biol. Biochem. 33, 173–188 (2011).
    Article  Google Scholar 

    51.
    Green, J. S. & Flanders, J. T. Diameter and pH comparisons of coyote and red fox scats. J. Wildl. Manag. 45, 765–767 (1981).
    Article  Google Scholar 

    52.
    Lee, S.-H., Jang, I., Chae, N., Choi, T. & Kang, H. Organic layer serves as a hotspot of microbial activity and abundance in arctic tundra soils. Microb. Ecol. 65, 405–414 (2013).
    CAS  PubMed  Article  Google Scholar 

    53.
    Pitman, R. M. Wood ash use in forestry—a review of the environmental impacts. Forestry 79, 563–588 (2006).
    Article  Google Scholar 

    54.
    Saarsalmi, A., Smolander, A., Moilanen, M. & Kukkola, M. Wood ash in boreal, low-productive pine stands on upland and peatland sites: long-term effects on stand growth and soil properties. For. Ecol. Manag. 327, 86–95 (2014).
    Article  Google Scholar 

    55.
    Facelli, J. M. & Pickett, S. T. A. Plant litter: its dynamics and effects on plant community structure. Bot. Rev. 57, 1–32 (1991).
    Article  Google Scholar 

    56.
    Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C. & Sleep, D. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53–63 (1996).
    ADS  PubMed  Article  Google Scholar 

    57.
    Näsholm, T. et al. Boreal forest plants take up organic nitrogen. Nature 392, 914–917 (1998).
    ADS  Article  Google Scholar 

    58.
    Fafard, P. M., Roth, J. D. & Markham, J. Nutrient deposition on Arctic fox dens creates atypical tundra plant assemblages at the edge of the Arctic. J. Veg. Sci. 31, 173–179. https://doi.org/10.1111/jvs.12828 (2019).
    Article  Google Scholar 

    59.
    Hovstad, K. A., Borvik, S. & Ohlson, M. Epizoochorous seed dispersal in relation to seed availability—an experiment with a red fox dummy. J. Veg. Sci. 20, 455–464 (2009).
    Article  Google Scholar 

    60.
    Rosalino, L. M. & Santos-Reis, M. Fruit consumption by carnivores in Mediterranean Europe. Mammal Rev. 39, 67–78 (2009).
    Article  Google Scholar 

    61.
    Grinath, J. B., Larios, L., Prugh, L. R., Brashares, J. S. & Suding, K. N. Environmental gradients determine the potential for ecosystem engineering effects. Oikos https://doi.org/10.1111/oik.05768 (2019).
    Article  Google Scholar 

    62.
    Crane, C. M. & Bertness, M. D. Ecosystem engineering across environmental gradients: Implications for conservation and management. Bioscience 56, 211–218 (2006).
    Article  Google Scholar 

    63.
    Bruun, H. H., Österdahl, S., Moen, J. & Angerbjorn, A. Distinct patterns in alpine vegetation around dens of the Arctic fox. Ecography 28, 81–87 (2005).
    Article  Google Scholar 

    64.
    Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 1–15 (2011).
    Article  Google Scholar 

    65.
    Márton, M. et al. Den site selection of the European badger, Meles meles, and the red fox, Vulpes vulpes, Hungary. J. Vertebr. Biol. 65, 72–79 (2016).
    Google Scholar 

    66.
    Towne, E. G. Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122, 232–239 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    67.
    Gharajedaghipour, T. & Roth, J. D. Predators attract prey through ecosystem engineering in the Arctic. Ecosphere 9, e02077 (2018).
    Google Scholar  More

  • in

    Responses of intended and unintended receivers to a novel sexual signal suggest clandestine communication

    1.
    Martin, C. H., McGirr, J. A., Richards, E. J. & St John, M. E. How to investigate the origins of novelty: insights gained from genetic, behavioral, and fitness perspectives. Integr. Org. Biol. 1, https://doi.org/10.1093/iob/obz01 (2019).
    2.
    West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 80, 47–53 (1983).
    Article  Google Scholar 

    3.
    Ritchie, M. G. Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst. 179, 2091–2112 (2007).
    Google Scholar 

    4.
    Rosenthal, G. G. Mate Choice: The Evolution of Sexual Decision Making from Microbes to Humans (Princeton University Press, 2017).

    5.
    Servedio, M. R. & Boughman, J. W. The role of sexual selection in local adaptation and speciation. Annu. Rev. Ecol. Evol. Syst. 48, 85–109 (2017).
    Article  Google Scholar 

    6.
    Svensson, E. I. & Gosden, T. P. Contemporary evolution of secondary sexual traits in the wild. Funct. Ecol. 21, 422–433 (2007).
    Article  Google Scholar 

    7.
    Svensson, E. I. Eco-evolutionary dynamics of sexual selection and sexual conflict. Funct. Ecol. 33, 66–72 (2019).
    Article  Google Scholar 

    8.
    Tinghitella, R. M. Rapid evolutionary change in a sexual signal: genetic control of the mutation ‘flatwing’ that renders male field crickets (Teleogryllus oceanicus) mute. Heredity 100, 261–267 (2008).
    CAS  PubMed  Article  Google Scholar 

    9.
    Lassance, J. M. & Löfstedt, C. Chemical communication: a jewel sheds light on signal evolution. Curr. Biol. 23, 739–834 (2013).
    Article  CAS  Google Scholar 

    10.
    Niehuis, O. et al. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494, 345–348 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Ryan, M. J. & Rand, A. S. Sexual selection and signal evolution: the ghost of biases past. Philos. Trans. R. Soc. B 340, 187–195 (1993).
    ADS  Article  Google Scholar 

    12.
    Ryan, M. J. & Rand, A. S. Female responses to ancestral advertisement calls in túngara frogs. Science 269, 390–392 (1995).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Ryan, M. J. & Cummings, M. E. Perceptual biases and mate choice. Annu. Rev. Ecol. Evol. Syst. 44, 437–459 (2013).
    Article  Google Scholar 

    14.
    Bush, S. L. & Schul, J. Evolution of novel signal traits in the absence of female preferences in Neoconocephalus katydids (Orthoptera, Tettigoniidae). PLoS ONE 5, https://doi.org/10.1371/journal.pone.0012457 (2010).

    15.
    Kolm, N., Amcoff, M., Mann, R. P. & Arnqvist, G. Diversification of a food-mimicking male ornament via sensory drive. Curr. Biol. 22, 1440–1443 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Espmark, Y., Amundsen, T. & Rosenqvist, G. Animal Signals: Signalling and Signal Design in Animal Communication (Tapir Academic Press, 2000).

    17.
    Pfaus, J. G., Erickson, K. A. & Talianakis, S. Somatosensory conditioning of sexual arousal and copulatory behavior in the male rat: a model of fetish development. Physiol. Behav. 122, 1–7 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Cetinkaya, H. & Domjan, M. Sexual fetishism in a quail (Coturnix japonica) model system: test of reproductive success. J. Comp. Psychol. 120, 427–432 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Arak, A. & Enquist, M. Hidden preferences and the evolution of signals. Philos. Trans. R. Soc. B 340, 207–213 (1993).
    ADS  Article  Google Scholar 

    20.
    Burley, N. T. & Symanski, R. ‘A taste for the beautiful’: latent aesthetic mate preferences for white crests in two species of australian grassfinches. Am. Nat. 152, 792–802 (1998).
    CAS  PubMed  Article  Google Scholar 

    21.
    Ryan, M. J. Sexual selection, receiver biases, and the evolution of sex differences. Science 281, 1999–2003 (1998).
    CAS  PubMed  Article  Google Scholar 

    22.
    Ryan, M. J., Bernal, X. E. & Stanley Rand, A. Female mate choice and the potential for ornament evolution in túngara frogs Physalaemus pustulosus. Curr. Zool. 56, 343–357 (2010).
    Article  Google Scholar 

    23.
    Reichert, M. S., Finck, J. & Ronacher, B. Exploring the hidden landscape of female preferences for complex signals. Evolution 71, 1009–1024 (2017).
    PubMed  Article  Google Scholar 

    24.
    Ryan, M. J., Fox, J. H., Wilczynski, W. & Rand, A. S. Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343, 66–67 (1990).
    ADS  CAS  PubMed  Article  Google Scholar 

    25.
    Moehring, A. J. & Boughman, J. W. Veiled preferences and cryptic female choice could underlie the origin of novel sexual traits. Biol. Lett. 15, 20180878 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Zuk, M. & Kolluru, G. R. Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 43, 415–438 (1998).
    Article  Google Scholar 

    27.
    Endler, J. A. Natural selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980).
    PubMed  Article  Google Scholar 

    28.
    Gray, D. A. & Cade, W. H. Sex, death and genetic variation: Natural and sexual selection on cricket song. Proc. R. Soc. Lond. B 266, 707–709 (1999).
    Article  Google Scholar 

    29.
    Rand, A. S. & Ryan, M. J. The adaptive significance of a complex vocal repertoire in a neotropical frog. Z. Tierpsychol. 57, 209–214 (1981).
    Article  Google Scholar 

    30.
    Lewkiewicz, D. A. & Zuk, M. Latency to resume calling after disturbance in the field cricket, Teleogryllus oceanicus, corresponds to population-level differences in parasitism risk. Behav. Ecol. Sociobiol. 55, 569–573 (2004).
    Article  Google Scholar 

    31.
    Tinghitella, R. M., Zuk, M., Beveridge, M. & Simmons, L. W. Island hopping introduces Polynesian field crickets to novel environments, genetic bottlenecks and rapid evolution. J. Evol. Biol. 24, 1199–1211 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Zhang, X. et al. Rapid parallel adaptation despite gene flow in silent crickets. Nat. Commun. https://doi.org/10.1038/s41467-020-20263-4 (2021).

    33.
    Bennet-Clark, H. C. Songs and the physics of sound production in Cricket Behavior and Neurobiology (eds Huber, F., Moore, T. E. & Werner, L.) 227–261 (Cornell University Press, New York, 1989).

    34.
    Bennet-Clark, H. C. Wing resonances in the Australian field cricket Teleogryllus oceanicus. J. Exp. Biol. 206, 1479–1496 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Zuk, M., Rotenberry, J. T. & Tinghitella, R. M. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol. Lett. 2, 521–524 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Pascoal, S. et al. Rapid convergent evolution in wild crickets. Curr. Biol. 24, 1369–1374 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Eldredge, L. G. & Evenhuis, N. L. Hawaii’s biodiversity: a detailed assessment of the numbers of species in the Hawaiian Islands. Bish. Mus. Occ. Pap. 76, 1–28 (2003).
    Google Scholar 

    38.
    Lehmann, G. U. C. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (insecta, diptera, tachinidae), parasitoids of night-calling bushcrickets and crickets (insecta, orthoptera, ensifera). Zool. Anz. 242, 107–120 (2003).
    Article  Google Scholar 

    39.
    Zuk, M., Simmons, L. W. & Cupp, L. Calling characteristics of parasitized and unparasitized populations of the field cricket Teleogryllus oceanicus. Behav. Ecol. Sociobiol. 33, 339–343 (1993).
    Google Scholar 

    40.
    Tinghitella, R. M. & Zuk, M. Asymmetric mating preferences accommodated the rapid evolutionary loss of a sexual signal. Evolution 63, 2087–2098 (2009).
    Article  Google Scholar 

    41.
    Tinghitella, R. M., Broder, E. D., Gurule-Small, G. A., Hallagan, C. J. & Wilson, J. D. Purring crickets: the evolution of a novel sexual signal. Am. Nat. 192, 773–782 (2018).
    PubMed  Article  Google Scholar 

    42.
    Zuk, M., Bailey, N. W., Gray, B. & Rotenberry, J. T. Sexual signal loss: the link between behaviour and rapid evolutionary dynamics in a field cricket. J. Anim. Ecol. 87, 623–633 (2018).
    PubMed  Article  Google Scholar 

    43.
    Pascoal, S. et al. Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evol. Lett. 4, 19–33 (2020).
    PubMed  Article  Google Scholar 

    44.
    Rayner, J. G., Aldridge, S., Montealegre-Z, F. & Bailey, N. W. A silent orchestra: convergent song loss in Hawaiian crickets is repeated, morphologically varied, and widespread. Ecology 100, https://doi.org/10.1002/ecy.2694 (2019).

    45.
    Rotenberry, J. T., Zuk, M., Simmons, L. W. & Hayes, C. Phonotactic parasitoids and cricket song structure: an evaluation of alternative hypotheses. Evol. Ecol. 10, 233–243 (1996).
    Article  Google Scholar 

    46.
    Moiseff, A., Pollack, G. S. & Hoy, R. R. Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc. Natl Acad. Sci. USA 75, 4052–4056 (1978).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Hoy, R. R., Pollack, G. S. & Moiseff, A. Species-recognition in the field cricket, Teleogryllus oceanicus: behavioral and neural mechanisms. Integr. Comp. Biol. 22, 597–607 (1982).
    Google Scholar 

    48.
    Bailey, N. W., Moran, P. A. & Hennig, R. M. Divergent mechanisms of acoustic mate recognition between closely related field cricket species (Teleogryllus spp.). Anim. Behav. 130, 17–25 (2017).
    Article  Google Scholar 

    49.
    Ryan, M. J. Sexual selection, sensory systems and sensory exploitation in Oxford Surveys. In Evolutionary Biology (eds Antonovics, J. & Futuyma, D. J.) 157–195 (Oxford University Press, Oxford, 1990).

    50.
    Imaizumi, K. & Pollack, G. S. Neural coding of sound frequency by cricket auditory receptors. J. Neurosci. 19, 1508–1516 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Oshinsky, M. L. & Hoy, R. R. Physiology of the auditory afferents in an acoustic parasitoid fly. J. Neurosci. 22, 7254–7263 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Farr, J. A. Male rarity or novelty, female choice behavior, and sexual selection in the guppy, Poecilia reticulata Peters (Pisces: Poeciliidae). Evolution 31, 162–168 (1977).
    PubMed  Article  Google Scholar 

    53.
    Jennions, M. D. & Petrie, M. Variation in mate choice and mating preferences: a review of causes and consequences. Biol. Rev. Camb. Philos. Soc. 72, 283–327 (1997).
    CAS  PubMed  Article  Google Scholar 

    54.
    Brooks, R. & Endler, J. A. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. Evolution 55, 1644–1655 (2001).
    CAS  PubMed  Article  Google Scholar 

    55.
    Fowler-Finn, K. D. & Rodríguez, R. L. Repeatability of mate preference functions in Enchenopa treehoppers (Hemiptera: Membracidae). Anim. Behav. 85, 493–499 (2013).
    Article  Google Scholar 

    56.
    Kilmer, J. T. et al. Describing mate preference functions and other function-valued traits. J. Evol. Biol. 30, 1658–1673 (2017).
    CAS  PubMed  Article  Google Scholar 

    57.
    Walker, T. J. A live trap for monitoring Euphasiopteryx and tests with E. ochracea (Diptera: Tachinidae). Fla. Entomol. 72, 314–319 (1989).
    Article  Google Scholar 

    58.
    Mason, A. C., Oshinsky, M. L. & Hoy, R. R. Hyperacute directional hearing in a microscale auditory system. Nature 410, 686–690 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Gray, D. A., Kunerth, H. D., Zuk, M., Cade, W. H. & Balenger, S. L. Molecular biogeography and host relations of a parasitoid fly. Ecol. Evol. 9, 11476–11493 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Paur, J. & Gray, D. A. Individual consistency, learning and memory in a parasitoid fly, Ormia ochracea. Anim. Behav. 82, 825–830 (2011).
    Article  Google Scholar 

    61.
    Bailey, N. W. & Zuk, M. Acoustic experience shapes female mate choice in field crickets. Proc. R. Soc. Lond. B 275, 2645–2650 (2008).
    Google Scholar 

    62.
    Balenger, S. L. & Zuk, M. Roaming Romeos: Male crickets evolving in silence show increased locomotor behaviours. Anim. Behav. 101, 213–219 (2015).
    Article  Google Scholar 

    63.
    Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).
    PubMed  Article  Google Scholar 

    64.
    Ronald, K. L., Fernández-Juricic, E. & Lucas, J. R. Taking the sensory approach: how individual differences in sensory perception can influence mate choice. Anim. Behav. 84, 1283–1294 (2012).
    Article  Google Scholar 

    65.
    Bailey, N. W. & Zuk, M. Field crickets change mating preferences using remembered social information. Biol. Lett. 5, 449–451 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Dingemanse, N. J. & Wolf, M. Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim. Behav. 85, 1031–1039 (2013).
    Article  Google Scholar 

    67.
    Bailey, N. W., Pascoal, S. & Montealegre, F. Z. Testing the role of trait reversal in evolutionary diversification using song loss in wild crickets. Proc. Natl Acad. Sci. USA 116, 8941–8949 (2019).
    CAS  PubMed  Article  Google Scholar 

    68.
    Royauté, R. & Dochtermann, N. A. When the mean no longer matters: developmental diet affects behavioral variation but not population averages in the house cricket (Acheta domesticus). Behav. Ecol. 28, 337–345 (2017).
    Article  Google Scholar 

    69.
    Dochtermann, N. A. & Royauté, R. The mean matters: going beyond repeatability to interpret behavioural variation. Anim. Behav. 153, 147–150 (2019).
    Article  Google Scholar 

    70.
    Edward, D. A. The description of mate choice. Behav. Ecol. 26, 301–310 (2014).
    Article  Google Scholar 

    71.
    Xu, M. & Shaw, K. L. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc. R. Soc. Lond. B 286 https://doi.org/10.1098/rspb.2019.1607 (2019).

    72.
    Pascoal, S. et al. Sexual selection and population divergence I: the influence of socially flexible cuticular hydrocarbon expression in male field crickets (Teleogryllus oceanicus). Evolution 70, 82–97 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Broder, D. E., Wikle, A. W., Gallagher, J. H. & Tinghitella, R. M. Substrate-borne vibrations in Pacific field cricket courtship displays. J. Orthoptera Res. (Accepted).

    74.
    Moran, P. A., Hunt, J., Mitchell, C., Ritchie, M. G. & Bailey, N. W. Sexual selection and population divergence III: Interspecific and intraspecific variation in mating signals. J. Evol. Biol. 33, 990–1005 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Pollack, G. S., Huber, F. & Weber, T. Frequency and temporal pattern-dependent phonotaxis of crickets (Teleogryllus oceanicus) during tethered flight and compensated walking. J. Comp. Physiol. A 154, 13–26 (1984).
    Article  Google Scholar 

    76.
    Thorson, J., Weber, T. & Huber, F. Auditory behavior of the cricket. J. Comp. Physiol. 146, 361–378 (1982).
    Article  Google Scholar 

    77.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

    78.
    Ritchie, M. G. The shape of female mating preferences. Proc. Natl Acad. Sci. U. S. A. 93, 14628–14631 (1996).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Rodríguez, R. L., Hallett, A. C., Kilmer, J. T. & Fowler-Finn, K. D. Curves as traits: genetic and environmental variation in mate preference functions. J. Evol. Biol. 26, 434–442 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Ludecke, D., Makowski, D., Patil, I. & Waggoner, P. easystats/performance: performance 0.4.7 (Version 0.4.7). Zenodo https://doi.org/10.5281/zenodo.3952174 (2020).

    81.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).

    82.
    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B 65, 95–114 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    83.
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. https://doi.org/10.18637/jss.v028.i05 (2008). More

  • in

    Small mammal glucocorticoid concentrations vary with forest fragment size, trap type, and mammal taxa in the Interior Atlantic Forest

    1.
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Ellis, E. C. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).
    Article  Google Scholar 

    4.
    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Debinski, D. M. & Holt, R. D. A survey and overview of habitat fragmentation experiments. Conserv. Biol. 14, 342–355 (2000).
    Article  Google Scholar 

    6.
    Laurance, W. F. et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 144, 56–67 (2011).
    Article  Google Scholar 

    7.
    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–210 (2012).

    9.
    Acevedo-Whitehouse, K. & Duffus, A. L. J. Effects of environmental change on wildlife health. Philos. Trans. R. Soc. B 364, 3429–3438 (2009).
    Article  Google Scholar 

    10.
    Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. CMR 23, 412–441 (2010).
    CAS  Article  Google Scholar 

    11.
    Ellis, R. D., McWhorter, T. J. & Maron, M. Integrating landscape ecology and conservation physiology. Landsc. Ecol. 27, 1–12 (2012).
    Article  Google Scholar 

    12.
    Chapman, C. A. et al. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?. Am. J. Phys. Anthropol. 131, 525–534 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 182, 861–879 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Ordóñez-Gómez, J. D. et al. Proximal and distal predictors of the spider monkey’s stress levels in fragmented landscapes. PLoS ONE 11, e0149671 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Rimbach, R. et al. Effects of logging, hunting, and forest fragment size on physiological stress levels of two sympatric ateline primates in Colombia. Conserv. Physiol. 1, cot031 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Angelier, F. & Wingfield, J. C. Importance of the glucocorticoid stress response in a changing world: Theory, hypotheses and perspectives. Gen. Comp. Endocrinol. 190, 118–128 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Bonier, F., Martin, P. R., Moore, I. T. & Wingfield, J. C. Do baseline glucocorticoids predict fitness?. Trends Ecol. Evol. 24, 634–642 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Busch, D. S. & Hayward, L. S. Stress in a conservation context: A discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol. Conserv. 142, 2844–2853 (2009).
    Article  Google Scholar 

    19.
    Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Heimbürge, S., Kanitz, E., Tuchscherer, A. & Otten, W. Within a hair’s breadth—Factors influencing hair cortisol levels in pigs and cattle. Gen. Comp. Endocrinol. 288, 113359 (2020).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    23.
    Kalliokoski, O., Jellestad, F. K. & Murison, R. A systematic review of studies utilizing hair glucocorticoids as a measure of stress suggests the marker is more appropriate for quantifying short-term stressors. Sci. Rep. 9, 11997 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Koren, L. et al. Towards the validation of endogenous steroid testing in wildlife hair. J. Appl. Ecol. 56, 547–561 (2019).
    Article  Google Scholar 

    25.
    Wingfield, J. C. & Sapolsky, R. M. Reproduction and resistance to stress: When and how. J. Neuroendocrinol. 15, 711–724 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Sopinka, N. M. et al. Manipulating glucocorticoids in wild animals: Basic and applied perspectives. Conserv. Physiol. 3, cov031 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Cockrem, J. F. Conservation and behavioral neuroendocrinology. Horm. Behav. 48, 492–501 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Fefferman, N. H. & Romero, L. M. Can physiological stress alter population persistence? A model with conservation implications. Conserv. Physiol. 1, cot012 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Bauer, C. M. et al. Habitat type influences endocrine stress response in the degu (Octodon degus). Gen. Comp. Endocrinol. 186, 136–144 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Behie, A. M., Pavelka, M. S. M. & Chapman, C. A. Sources of variation in fecal cortisol levels in howler monkeys in Belize. Am. J. Primatol. 72, 600–606 (2010).

    31.
    Cavigelli, S. A. Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta. Anim. Behav. 57, 935–944 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Mahmud-Al-Rafat, A. & Taylor-Robinson, A. W. Emergence and persistence of hantavirus in rodent reservoirs: Role of glucocorticoid hormone. Biohelikon Immun. Dis. 2, 9 (2014).
    Google Scholar 

    33.
    Reeder, D. M. & Kramer, K. M. Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. J. Mammal. 86, 225–235 (2005).
    Article  Google Scholar 

    34.
    Dantzer, B., Fletcher, Q. E., Boonstra, R. & Sheriff, M. J. Measures of physiological stress: A transparent or opaque window into the status, management and conservation of species?. Conserv. Physiol. 2, cou023 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Bhattacharjee, S. et al. Glucocorticoid stress responses of reintroduced tigers in relation to anthropogenic disturbance in Sariska Tiger Reserve in India. PLoS ONE 10, e0127626 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Carlitz, E. H. D. et al. Measuring hair cortisol concentrations to assess the effect of anthropogenic impacts on wild chimpanzees (Pan troglodytes). PLoS ONE 11, e0151870 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    Creel, S., Christianson, D. & Schuette, P. Glucocorticoid stress responses of lions in relationship to group composition, human land use, and proximity to people. Conserv. Physiol. 1, cot021 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Hammond, T. T. et al. Physiological and behavioral responses to anthropogenic stressors in a human-tolerant mammal. J. Mammal. 100, 1928–1940 (2019).
    Article  Google Scholar 

    39.
    Martínez-Mota, R., Valdespino, C., Sánchez-Ramos, M. A. & Serio-Silva, J. C. Effects of forest fragmentation on the physiological stress response of black howler monkeys. Anim. Conserv. 10, 374–379 (2007).
    Article  Google Scholar 

    40.
    Rangel-Negrín, A., Alfaro, J. L., Valdez, R. A., Romano, M. C. & Serio-Silva, J. C. Stress in Yucatan spider monkeys: Effects of environmental conditions on fecal cortisol levels in wild and captive populations. Anim. Conserv. 12, 496–502 (2009).
    Article  Google Scholar 

    41.
    Dowle, M., Webster, K. N. & Deane, E. Faecal glucocorticoid metabolite concentrations in the free-ranging bandicoots (Perameles nasuta and Isoodon obesulus) of northern Sydney. Aust. Mammal. 35, 1 (2013).
    Article  Google Scholar 

    42.
    Malisch, J. L. et al. Baseline and stress-induced plasma corticosterone concentrations of mice selectively bred for high voluntary wheel running. Physiol. Biochem. Zool. 80, 146–156 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Mccabe, P. et al. Animal models of disease. Physiol. Behav. 68, 501–507 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Fredebaugh-Siller, S. L., Suski, C. D., Zuckerman, Z. C. & Schooley, R. L. Ecological correlates of stress for a habitat generalist in a biofuels landscape. Can. J. Zool. 91, 853–858 (2013).
    CAS  Article  Google Scholar 

    45.
    Johnstone, C. P., Lill, A. & Reina, R. D. Habitat loss, fragmentation and degradation effects on small mammals: Analysis with conditional inference tree statistical modelling. Biol. Conserv. 176, 80–98 (2014).
    Article  Google Scholar 

    46.
    McCormick, S. D. & Romero, L. M. Conservation endocrinology. Bioscience 67, 429–442 (2017).
    Article  Google Scholar 

    47.
    Fleytas, M. C. Cambios en el paisaje: evolución de la cobertura vegetal en la Región Oriental del Paraguay. In Biodiversidad del Paraguay: Una aproximación a sus realidades (ed. Fundación Moisés Bertoni) 77–88 (Fundación Moisés Bertoni, 2007).

    48.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Beaumont, L. J. et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl. Acad. Sci. 108, 2306–2311 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    de la Sancha, N. et al. An annotated checklist of the mammals of Paraguay. THERYA 8, 241–260 (2017).
    Article  Google Scholar 

    51.
    Porter, L. et al. Pitheciid conservation in Ecuador, Colombia, Peru, Bolivia and Paraguay. In Evolutionary Biology and Conservation of Titis, Sakis and Uacaris (eds. Veiga, L. M., Barnett, A. A., Ferrari, S. F. & Norconk, M. A.) 320–333 (Cambridge University Press, Cambridge, 2013).

    52.
    de la Sancha, N. U., Libardi, G. S. & Pardiñas, U. F. J. Discovery of a new genus record for Paraguay, the Atlantic Forest endemic rodent, Abrawayaomys (Cricetidae, Sigmodontinae). Mammalia 84, 366–371 (2019).
    Article  Google Scholar 

    53.
    Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 199, 229–243 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Hernandez, S. E., Strona, A. L. S., Leiner, N. O., Suzán, G. & Romano, M. C. Seasonal changes of faecal cortisol metabolite levels in Gracilinanus agilis (Didelphimorphia: Didelphidae) and its association to life histories variables and parasite loads. Conserv. Physiol. 6, (2018).

    55.
    Hing, S., Narayan, E. J., Thompson, R. C. A. & Godfrey, S. S. The relationship between physiological stress and wildlife disease: Consequences for health and conservation. Wildl. Res. 43, 51 (2016).
    Article  Google Scholar 

    56.
    Beehner, J. C. & Bergman, T. J. The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness. Horm. Behav. 91, 68–83 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Cruz, C. F., Ribeiro, A., Martins, M. & Cavaco-Paulo, A. Effect of a peptide in cosmetic formulations for hair volume control. Int. J. Cosmet. Sci. 39, 600–609 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Song, S.-H. et al. Prevention of lipid loss from hair by surface and internal modification. Sci. Rep. 9, 9834 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Jessop, T. S., Woodford, R. & Symonds, M. R. E. Macrostress: Do large-scale ecological patterns exist in the glucocorticoid stress response of vertebrates? Funct. Ecol. 27, 120–130 (2013).
    Article  Google Scholar 

    60.
    de la Sancha, N. U., Maestri, R., Bovendorp, R. S. & Higgins, C. L. Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica 52, 182–195 (2020).
    Article  Google Scholar 

    61.
    Rimbach, R., Heymann, E. W., Link, A. & Heistermann, M. Validation of an enzyme immunoassay for assessing adrenocortical activity and evaluation of factors that affect levels of fecal glucocorticoid metabolites in two New World primates. Gen. Comp. Endocrinol. 191, 13–23 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Velázquez, M. C. & Ramírez Pinto, F. Guía de los mamíferos de la Reserva Natural Tapytá. (Fundación Moisés Bertoni, 2014).

    63.
    Sikes, R. S. & the Animal Care and Use Committee of the American Society of Mammalogists. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).

    64.
    de la Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia 78, 437–449 (2014).
    Google Scholar 

    65.
    de la Sancha, N., D’Elía, G., Netto, F., Pérez, P. & Salazar-Bravo, J. Discovery of Juliomys (Rodentia, Sigmodontinae) in Paraguay, a new genus of Sigmodontinae for the country’s Atlantic Forest. Mammalia 73, 162–167 (2009).
    Google Scholar 

    66.
    de la Sancha, N. U., Pérez-Estigarribia, P. E., McCulloch, E. & Boyle, S. A. Micromamíferos. In Guía de los mamíferos de la Reserva Natural Tapytá (eds. Velázquez, M. C. & Ramírez Pinto, F.) 91–124 (Fundación Moisés Bertoni, 2014).

    67.
    de la Sancha, N. U. et al. Rhipidomys (Rodentia, Cricetidae) from Paraguay: Noteworthy new records and identity of the Paraguayan species. Mammalia 75, 269–276 (2011).
    Google Scholar 

    68.
    de la Sancha, N. U. & D’Elía, G. Additions to the Paraguayan mammal fauna: The first records of two marsupials (Didelphimorphia, Didelphidae) with comments on the alpha taxonomy of Cryptonanus and Philander. Mammalia 79, (2015).

    69.
    Macbeth, B. J., Cattet, M. R. L., Stenhouse, G. B., Gibeau, M. L. & Janz, D. M. Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): Considerations with implications for other wildlife. Can. J. Zool. 88, 935–949 (2010).
    CAS  Article  Google Scholar 

    70.
    Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A. & Meyer, J. S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 147, 255–261 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Koren, L. et al. A novel method using hair for determining hormonal levels in wildlife. Anim. Behav. 63, 403–406 (2002).
    Article  Google Scholar 

    72.
    Higgins, J. J. An Introduction to Modern Nonparametric Statistics. (Brooks/Cole, 2004).

    73.
    Gow, R., Thomson, S., Rieder, M., Van Uum, S. & Koren, G. An assessment of cortisol analysis in hair and its clinical applications. Forensic Sci. Int. 196, 32–37 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Strauss, R. E. Discriminating groups of organisms. In Morphometrics for Nonmorphometricians (ed. Elewa, A. M. T.) vol. 124, 73–91 (Springer, Berlin, 2010).

    75.
    Hernandez, G., Garcia, S., Vilela, J. F. & de la Sancha, N. U. Ontogenetic variation of an omnivorous generalist rodent: The case of the montane akodont (Akodon montensis). J. Mammal. 98, 1741–1752 (2017).
    Article  Google Scholar 

    76.
    Rossi, L. F., de la Sancha, N. U., Luaces, J. P., Estevez, D. Y. & Merani, M. S. Morphological description and comparison of sperm from eighteen species of cricetid rodents. J. Mammal. 99, 1398–1404 (2018).
    Article  Google Scholar 

    77.
    Ordóñez-Garza, N., Matson, J. O., Strauss, R. E., Bradley, R. D. & Salazar-Bravo, J. Patterns of phenotypic and genetic variation in three species of endemic Mesoamerican Peromyscus (Rodentia: Cricetidae). J. Mammal. 91, 848–859 (2010).
    Article  Google Scholar 

    78.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    79.
    Crawley, M. J. Statistics: An Introduction Using R. 2nd ed. (Wiley, Hoboken, 2015).

    80.
    Garcia, S., Luengo, J., Sáez, J. A., López, V. & Herrera, F. A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25, 734–750 (2013).
    Article  Google Scholar 

    81.
    Liu, H., Hussain, F., Tan, C. L. & Dash, M. Discretization: An enabling technique. Data Min. Knowl. Disc. 6, 393–423 (2002).
    MathSciNet  Article  Google Scholar 

    82.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).

    83.
    Hurvich, C. M. & Tsai, C.-L. Bias of the corrected AIC criterion for underfitted regression and time series models. Biometrika 78, 499–509 (1991).
    MathSciNet  MATH  Google Scholar 

    84.
    Anderson, D. R., Burnham, K. P. & White, G. C. AIC model selection in overdispersed capture-recapture data. Ecology 75, 1780–1793 (1994).
    Article  Google Scholar 

    85.
    Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
    MathSciNet  MATH  Article  Google Scholar 

    86.
    Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. (2020).

    87.
    Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006).
    Article  Google Scholar 

    88.
    Huang, J. & Ling, C. X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17, 299–310 (2005).
    CAS  Article  Google Scholar 

    89.
    Friendly, M. A brief history of the mosaic display. J. Comput. Graph. Stat. 11, 89–107 (2002).
    MathSciNet  Article  Google Scholar 

    90.
    McDonald, J. H. Handbook of Biological Statistics. 3rd ed. (Sparky House Publishing, 2014).

    91.
    ESRI. ArcGIS 10.7. (2019). More