More stories

  • in

    Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean

    1.
    Da Silva, J. F. & Williams, R. J. P. The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press (2001).
    2.
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).
    ADS  CAS  Article  Google Scholar 

    3.
    Bruland, K. W., Orians, K. J. & Cowen, J. P. Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. 58, 3171–3182 (1994).
    ADS  CAS  Article  Google Scholar 

    4.
    van Hulten, M. et al. Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese. Biogeosciences 14, 1123–1152 (2017).
    ADS  Article  CAS  Google Scholar 

    5.
    Baker, A. R. et al. Trace element and isotope deposition across the air–sea inter- face: progress and research needs. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374, 2081 (2016).
    Article  CAS  Google Scholar 

    6.
    Sunda, W. G., Huntsman, S. A. & Harvey, G. R. Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature 301, 234–236 (1983).
    ADS  CAS  Article  Google Scholar 

    7.
    Sunda, W. G. & Huntsman, S. A. Photoreduction of manganese oxides in seawater. Mar. Chem. 46, 133–152 (1994).
    CAS  Article  Google Scholar 

    8.
    Sunda, W. G. & Huntsman, S. Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea. Deep-Sea Res. Pt. A 35, 1297–1317 (1988).
    ADS  CAS  Article  Google Scholar 

    9.
    Wagener, T., Guieu, C., Losno, R., Bonnet, S. & Mahowald, N. Revisiting atmospheric dust export to the Southern Hemisphere ocean: Biogeochemical implications. Glob. Biogeochem. Cycles 22, GB2006 (2008).
    ADS  Article  CAS  Google Scholar 

    10.
    Tamsitt, V. et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun. 8, 172 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Boyd, P. W. Environmental factors controlling phytoplankton processes in the Southern Ocean. J. Phycol. 38, 844–861 (2002).
    Article  Google Scholar 

    12.
    Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).
    Article  Google Scholar 

    13.
    Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Iron in Antarctic waters. Nature 345, 156–158 (1990).
    ADS  CAS  Article  Google Scholar 

    14.
    Sedwick, P. N., Edwards, P. R., Mackey, D. J., Griffiths, F. B. & Parslow, J. S. Iron and manganese in surface waters of the Australian subantarctic region. Deep Sea Res. Pt. I 44, 1239–1253 (1997).
    CAS  Article  Google Scholar 

    15.
    Hatta, M., Measures, C. I., Selph, K. E., Zhou, M. & Hiscock, W. T. Iron fluxes from the shelf regions near the South Shetland Islands in the Drake Passage during the austral-winter 2006. Deep Sea Res. Pt. II 90, 89–101 (2013).
    ADS  CAS  Article  Google Scholar 

    16.
    Middag, R., De Baar, H. J. W., Laan, P. & Huhn, O. The effects of continental margins and water mass circulation on the distribution of dissolved aluminum and manganese in Drake Passage. J. Geophys. Res. 117, C01019 (2012).
    ADS  Google Scholar 

    17.
    Middag, R., de Baar, H. J., Klunder, M. B. & Laan, P. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co‐limitation. Limnol. Oceanogr. 58, 287–300 (2013).
    ADS  CAS  Article  Google Scholar 

    18.
    Browning, T. J. et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys. Res. Lett. 41, 2851–2857 (2014).
    ADS  CAS  Article  Google Scholar 

    19.
    Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63, 813–839 (2005).
    CAS  Article  Google Scholar 

    20.
    Kohfeld, K. E. and Ridgwell, A., 2009. Glacial-interglacial variability in atmospheric CO2. Surface Ocean-Lower Atmosphere Processes (Am. Geophys. Union, Washington DC), pp 251– 286 (2009).

    21.
    Petit, J. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).
    ADS  CAS  Article  Google Scholar 

    22.
    Lamy, F. et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science 343, 403–407 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Martin, J. H. Glacial‐interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).
    ADS  Article  Google Scholar 

    24.
    Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W. & Law, C. S. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730–CO733 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Khatiwala, S., Schmittner, A. & Muglia, J. Air-sea disequilibrium enhances ocean carbon storage during glacial periods. Sci. Adv. 5, eaaw4981 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).
    ADS  CAS  Article  Google Scholar 

    28.
    Chance, R., Jickells, T. D. & Baker, A. R. Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Mar. Chem. 177, 45–56 (2015).
    CAS  Article  Google Scholar 

    29.
    Gaiero, D. M., Probst, J. L., Depetris, P. J., Bidart, S. M. & Leleyter, L. Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim. Cosmochim. Acta 67, 3603–3623 (2003).
    ADS  CAS  Article  Google Scholar 

    30.
    Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Peers, G. & Price, N. M. A role for manganese in superoxide dismutases and growth of iron‐deficient diatoms. Limnol. Oceanogr. 49, 1774–1783 (2004).
    ADS  CAS  Article  Google Scholar 

    32.
    Wu, M. et al. Manganese and iron deficiency in Southern Ocean Phaeocystis antarctica populations revealed through taxon-specific protein indicators. Nat. Commun. 10, 1–10 (2019).
    ADS  Article  CAS  Google Scholar 

    33.
    Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. In IPCC special report on the ocean and cryosphere in a changing climate (2019).

    34.
    Buma, A. G., De Baar, H. J., Nolting, R. F. & Van Bennekom, A. J. Metal enrichment experiments in the Weddell‐Scotia Seas: effects of iron and manganese on various plankton communities. Limnol. Oceanogr. 36, 1865–1878 (1991).
    ADS  CAS  Article  Google Scholar 

    35.
    Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep Sea Res. Pt. II 44, 209–227 (1997).
    ADS  CAS  Article  Google Scholar 

    36.
    Sedwick, P. N., DiTullio, G. R. & Mackey, D. J. Iron and manganese in the Ross Sea, Antarctica: seasonal iron limitation in Antarctic shelf waters. J. Geophys. Res. 105, 11321–11336 (2000).
    ADS  CAS  Article  Google Scholar 

    37.
    Saito, M. A., Goepfert, T. J. & Ritt, J. T. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol. Oceanogr. 53, 276–290 (2008).
    ADS  CAS  Article  Google Scholar 

    38.
    Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si: N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).
    ADS  CAS  Article  Google Scholar 

    39.
    Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).
    ADS  CAS  Article  Google Scholar 

    40.
    Klunder, M. B. et al. Dissolved Fe across the Weddell Sea and Drake passage: impact of DFe on nutrient uptake. Biogeosciences 11, 651–669 (2014).
    ADS  Article  Google Scholar 

    41.
    Thomalla, S. J., Fauchereau, N., Swart, S. & Monteiro, P. M. S. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean. Biogeosciences 8, 2849–2866 (2011).
    ADS  CAS  Article  Google Scholar 

    42.
    Moore, C. M. Diagnosing oceanic nutrient deficiency. Philos. Tran. R. Soc. A 374, 20150290 (2016).
    ADS  Article  CAS  Google Scholar 

    43.
    Middag, R. D., De Baar, H. J. W., Laan, P., Cai, P. V. & Van Ooijen, J. C. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep Sea Res. Pt. II 58, 2661–2677 (2011).
    ADS  CAS  Article  Google Scholar 

    44.
    Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W. & Van Ooijen, J. C. Dissolved iron in the Southern Ocean (Atlantic sector). Deep Sea Res. Pt. II 58, 2678–2694 (2011).
    ADS  CAS  Article  Google Scholar 

    45.
    Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science 315, 612–617 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Parekh, P., Follows, M. J. & Boyle, E. A. Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19, GB2020 (2005).
    ADS  Article  CAS  Google Scholar 

    47.
    Measures, C. I. et al. The influence of shelf processes in delivering dissolved iron to the HNLC waters of the Drake Passage, Antarctica. Deep Sea Res. Pt. I 90, 77–88 (2013).
    ADS  CAS  Article  Google Scholar 

    48.
    Dulaiova, H., Ardelan, M. V., Henderson, P. B. & Charette, M. A. Shelf‐derived iron inputs drive biological productivity in the southern Drake Passage. Glob. Biogeochem. Cycles 23, GB4014 (2009).
    ADS  Article  CAS  Google Scholar 

    49.
    Jiang, M. et al. Fe sources and transport from the Antarctic Peninsula shelf to the southern Scotia Sea. Deep Sea Res. Pt. I 150, 103060 (2019).
    CAS  Article  Google Scholar 

    50.
    Anderson, T. R., Gentleman, W. C. & Yool, A. EMPOWER-1.0: an efficient model of planktonic ecosystems written in R. Geosci. Mod. Dev. 8, 2231–2262 (2015).
    Article  Google Scholar 

    51.
    Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Bertrand, E. M. et al. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol. Oceanogr. 52, 1079–1093 (2007).
    ADS  CAS  Article  Google Scholar 

    53.
    Le Quéré, C. et al. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences 13, 4111–4133 (2016).
    ADS  Article  CAS  Google Scholar 

    54.
    Calvo, E., Pelejero, C., Logan, G. A. & De Deckker, P. Dust‐induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography 19, PA2020 (2004).
    ADS  Article  Google Scholar 

    55.
    Sigman, D. M., Altabet, M. A., Francois, R., McCorkle, D. C. & Gaillard, J. F. The isotopic composition of diatom‐bound nitrogen in Southern Ocean sediments. Paleoceanography 14, 118–134 (1999).
    ADS  Article  Google Scholar 

    56.
    De La Rocha, C. L., Brzezinski, M. A., DeNiro, M. J. & Shemesh, A. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680–683 (1998).
    ADS  Article  CAS  Google Scholar 

    57.
    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Venables, H. & Moore, C. M. Phytoplankton and light limitation in the Southern Ocean: learning from high‐nutrient, high‐chlorophyll areas. J. Geophys. Res. Oceans 115, C02015 (2010).
    ADS  Article  CAS  Google Scholar 

    59.
    Van Heukelem, L. & Thomas, C. S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 910, 31–49 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283 (1996).
    ADS  CAS  Article  Google Scholar 

    61.
    Gibberd, M. J., Kean, E., Barlow, R., Thomalla, S. & Lucas, M. Phytoplankton chemotaxonomy in the Atlantic sector of the Southern Ocean during late summer 2009. Deep Sea Res. Pt. I 78, 70–78 (2013).
    CAS  Article  Google Scholar 

    62.
    Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. & Achterberg, E. P. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Anal. Chim. Acta 976, 1–13 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Wilson, S. T. et al. Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean. Science 365, 1040–1044 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Wuttig, K. et al. Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta 197, 653–668 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. Pt. A 34, 267–285 (1987).
    ADS  CAS  Article  Google Scholar 

    66.
    Buck, K. N., Sohst, B. & Sedwick, P. N. The organic complexation of dissolved iron along the US GEOTRACES (GA03) North Atlantic Section. Deep Sea Res. Pt. II 116, 152–165 (2015).
    CAS  Article  Google Scholar 

    67.
    Parekh, P., Follows, M. J. & Boyle, E. Modeling the global ocean iron cycle. Glob. Biogeochem. Cycles 18, GB1002 (2004).
    ADS  Article  CAS  Google Scholar 

    68.
    Dutkiewicz, S., Follows, M. J. & Parekh, P. Interactions of the iron and phosphorus cycles: a three‐dimensional model study. Glob. Biogeochem. Cycles 19, GB1012 (2005).
    ADS  Article  CAS  Google Scholar 

    69.
    Glockzin, M., Pollehne, F. & Dellwig, O. Stationary sinking velocity of authigenic manganese oxides at pelagic redoxclines. Mar. Chem. 160, 67–74 (2014).
    CAS  Article  Google Scholar 

    70.
    Buesseler, K. O., McDonnell, A. M., Schofield, O. M., Steinberg, D. K. & Ducklow, H. W. High particle export over the continental shelf of the west Antarctic Peninsula. Geophys. Res. Lett. 37, L22606 (2010).
    ADS  Article  CAS  Google Scholar 

    71.
    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology. J. Geophys. Res. 109, C12003 (2004).
    ADS  Article  Google Scholar 

    72.
    Mahowald, N. et al. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. Atmospheres 104, 15895–15916 (1999).
    ADS  Article  Google Scholar  More

  • in

    North Pacific warming shifts the juvenile range of a marine apex predator

    1.
    Fuentes, M. M. et al. Adaptive management of marine mega-fauna in a changing climate. Mitig. Adapt. Strat. Glob. Change 21, 209–224 (2016).
    Article  Google Scholar 
    2.
    Grose, S. O., Pendleton, L., Leathers, A., Cornish, A. & Waitai, S. Climate change will re-draw the map for marine megafauna and the people who depend on them. Front. Mar. Sci. 7, 547 (2020).
    Article  Google Scholar 

    3.
    Halley, J. M., Van Houtan, K. S. & Mantua, N. How survival curves affect populations’ vulnerability to climate change. PLoS ONE 13, e0203124 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Zacharias, M. A. & Roff, J. C. Use of focal species in marine conservation and management: a review and critique. Aquat. Conserv. Mar. Freshw. Ecosyst. 11, 59–76 (2001).
    Article  Google Scholar 

    5.
    Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221–240 (2012).
    ADS  Article  Google Scholar 

    6.
    Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Change 3, 234–238 (2013).
    ADS  Article  Google Scholar 

    7.
    Jorgensen, S. J. et al. Killer whales redistribute white shark foraging pressure on seals. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-39356-2 (2019).
    CAS  Article  Google Scholar 

    8.
    Domeier, M. L. Global perspectives on the biology and life history of the white shark (CRC Press, Boca Raton, 2012).
    Google Scholar 

    9.
    Bruce, B. D. & Bradford, R. W. Habitat use and spatial dynamics of juvenile white sharks, Carcharodon carcharias, in eastern Australia. Global perspectives on the biology and life history of the white shark, 225–254 (2012).

    10.
    Lowe, C. G. et al. Historic fishery interactions with white sharks in the Southern California Bight. Global Perspectives on the Biology and Life History of the White Shark’.(Ed. ML Domeier.) pp, 169–186 (2012).

    11.
    Villafaña, J. A. et al. First evidence of a palaeo-nursery area of the great white shark. Sci. Rep. 10, 1–8 (2020).
    Article  CAS  Google Scholar 

    12.
    Oñate-González, E. C. et al. Importance of Bahia Sebastian Vizcaino as a nursery area for white sharks (Carcharodon carcharias) in the Northeastern Pacific: a fishery dependent analysis. Fish. Res. 188, 125–137 (2017).
    Article  Google Scholar 

    13.
    Klimley, A. P. The areal distribution and autoecology of the white shark, Carcharodon carcharias, off the west coast of North America. Mem. Southern Calif. Acad Sci 9, 15–40 (1985).
    Google Scholar 

    14.
    Weng, K. C. et al. Movements, behavior and habitat preferences of juvenile white sharks Carcharodon carcharias in the eastern Pacific. Mar. Ecol. Prog. Ser. 338, 211–224 (2007).
    ADS  Article  Google Scholar 

    15.
    White, C. F. et al. Quantifying habitat selection and variability in habitat suitability for juvenile white sharks. PLoS ONE 14, e0214642. https://doi.org/10.1371/journal.pone.0214642 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).
    ADS  Article  Google Scholar 

    17.
    Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res.: Oceans 122, 7267–7290 (2017).
    ADS  Article  Google Scholar 

    18.
    Thompson, A. et al. State of the California current: a new anchovy regime and Marine Heatwave? California Cooperative Oceanic Fisheries Investigations Reports. Calif. Cooper. Ocean. Fish. Investig. 60, 1–61 (2019).
    Google Scholar 

    19.
    Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).
    ADS  Article  Google Scholar 

    20.
    Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 9, 1–14 (2019).
    ADS  Article  CAS  Google Scholar 

    21.
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 1–9 (2019).
    Article  CAS  Google Scholar 

    22.
    Kohl, W. T., McClure, T. I. & Miner, B. G. Decreased temperature facilitates short-term sea star wasting disease survival in the keystone intertidal sea star Pisaster ochraceus. PLoS ONE 11, e0153670 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Laake, J. L., Lowry, M. S., DeLong, R. L., Melin, S. R. & Carretta, J. V. Population growth and status of California sea lions. J. Wildl. Manag. 82, 583–595 (2018).
    Article  Google Scholar 

    24.
    Jones, T. et al. Unusual mortality of Tufted puffins (Fratercula cirrhata) in the eastern Bering Sea. PLoS ONE 14, e0216532 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Savage, K. Alaska and British Columbia large whale unusual mortality event summary report. (2017).

    26.
    Gravem, S. A. & Morgan, S. G. Shifts in intertidal zonation and refuge use by prey after mass mortalities of two predators. Ecology 98, 1006–1015 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Cheung, W. W. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 1–10 (2020).
    Article  CAS  Google Scholar 

    28.
    Kanive, P. E. et al. Size-specific apparent survival rate estimates of white sharks using mark–recapture models. Can. J. Fish. Aquat. Sci. 76, 2027–2034 (2019).
    Article  Google Scholar 

    29.
    California_State_Senate. Budget Act of 2018. Senate Bill 840 2017–2018 (2018).

    30.
    Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290 (2012).
    Article  Google Scholar 

    31.
    Vianna, G. M., Meekan, M. G., Bornovski, T. H. & Meeuwig, J. J. Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs. PLoS ONE 9, e95565 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Klimley, A. P., Anderson, S. D., Pyle, P. & Henderson, R. Spatiotemporal patterns of white shark (Carcharodon carcharias) predation at the South Farallon Islands, California. Copeia, 680–690 (1992).

    33.
    Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S. D. & Halpern, B. S. Cold range edges of marine fishes track climate change better than warm edges. Glob. Change Biol. 26, 2908–2922 (2020).
    ADS  Article  Google Scholar 

    34.
    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Mcclure, M. M. et al. Incorporating climate science in applications of the US Endangered Species Act for aquatic species. Conserv. Biol. 27, 1222–1233 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).
    Article  Google Scholar 

    37.
    Cao, J., Thorson, J. T., Punt, A. E. & Szuwalski, C. A novel spatiotemporal stock assessment framework to better address fine-scale species distributions: Development and simulation testing. Fish Fish. 21, 350–367. https://doi.org/10.1111/faf.12433 (2020).
    Article  Google Scholar 

    38.
    Dewar, H., Domeier, M. & Nasby-Lucas, N. Insights into young of the year white shark, Carcharodon carcharias, behavior in the Southern California Bight. Environ. Biol. Fishes 70, 133–143 (2004).
    Article  Google Scholar 

    39.
    Moxley, J. H., Nicholson, T. E., Van Houtan, K. S. & Jorgensen, S. J. Non-trophic impacts from white sharks complicate population recovery for sea otters. Ecol. Evol. 9, 6378–6388. https://doi.org/10.1002/ece3.5209 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Cury, P. et al. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).
    Article  Google Scholar 

    41.
    Nicholson, T. E. et al. Gaps in kelp cover may threaten the recovery of California sea otters. Ecography 41, 1751–1762 (2018).
    Article  Google Scholar 

    42.
    Kenyon, K. W. The sea otter in the eastern Pacific Ocean. (US Bureau of Sport Fisheries and Wildlife, 1969).

    43.
    Tinker, M. T., Hatfield, B. B., Harris, M. D. & Ames, J. A. Dramatic increase in sea otter mortality from white sharks in California. Mar. Mammal Sci. 32, 309–326 (2016).
    Article  Google Scholar 

    44.
    Miller, M. A. et al. Predators, disease, and environmental change in the nearshore ecosystem: mortality in Southern Sea Otters (Enhydra lutris nereis) From 1998–2012. Front. Mar. Sci. 7, 582 (2020).
    Article  Google Scholar 

    45.
    Estes, J. A. & Palmisano, J. F. Sea otters: their role in structuring nearshore communities. Science 185, 1058–1060 (1974).
    ADS  CAS  PubMed  Article  Google Scholar 

    46.
    Hughes, B. B. et al. Recovery of a top predator mediates negative eutrophic effects on seagrass. Proc. Natl. Acad. Sci. USA 110, 15313–15318. https://doi.org/10.1073/pnas.1302805110 (2013).
    ADS  Article  PubMed  Google Scholar 

    47.
    Becker, S. L., Nicholson, T. E., Mayer, K. A., Murray, M. J. & Van Houtan, K. S. Environmental Factors May Drive the Post-release Movements of Surrogate-Reared Sea Otters. Frontiers in Marine Science 7, doi:https://doi.org/10.3389/fmars.2020.539904 (2020).

    48.
    Mayer, K. A. et al. Surrogate rearing a keystone species to enhance population and ecosystem restoration. Oryx, 1–11 (2019).

    49.
    Jorgensen, S. J. et al. Philopatry and migration of Pacific white sharks. Proc. R. Soc. B: Biol. Sci. 277, 679–688 (2010).
    Article  Google Scholar 

    50.
    Breaker, L. & Broenkow, W. W. The circulation of Monterey Bay and related processes. Moss Land. Mar. Lab. Tech. Publ. 89, 114 (1989).
    Google Scholar 

    51.
    Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536. https://doi.org/10.1038/s41467-019-14215-w (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heimbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl. Acad. Sci. 116, 1126–1131 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Gaines, S. D. & Denny, M. W. The largest, smallest, highest, lowest, longest, and shortest: extremes in ecology. Ecology 74, 1677–1692 (1993).
    Article  Google Scholar 

    54.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
    ADS  Article  Google Scholar 

    55.
    Oliver, E. C. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).
    CAS  Article  Google Scholar 

    56.
    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).
    Article  Google Scholar 

    57.
    McCauley, D. J., DeSalles, P. A., Young, H. S., Gardner, J. P. & Micheli, F. Use of high-resolution acoustic cameras to study reef shark behavioral ecology. J. Exp. Mar. Biol. Ecol. 482, 128–133 (2016).
    Article  Google Scholar 

    58.
    Ward-Paige, C. A. & Worm, B. Global evaluation of shark sanctuaries. Global Environ. Change 47, 174–189 (2017).
    Article  Google Scholar 

    59.
    Van Houtan, K. S. et al. Coastal sharks supply the global shark fin trade. Biol. Let. 16, 20200609 (2020).
    Article  CAS  Google Scholar 

    60.
    Benson, J. F. et al. Juvenile survival, competing risks, and spatial variation in mortality risk of a marine apex predator. J. Appl. Ecol. 55, 2888–2897 (2018).
    Article  Google Scholar 

    61.
    Cleveland, W. S. & Devlin, S. J. Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988).
    MATH  Article  Google Scholar 

    62.
    Beck, J., Ballesteros-Mejia, L., Nagel, P. & Kitching, I. J. Online solutions and the ‘W allacean shortfall’: what does GBIF contribute to our knowledge of species’ ranges?. Divers. Distrib. 19, 1043–1050 (2013).
    Article  Google Scholar 

    63.
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
    Article  Google Scholar 

    64.
    Van Horn, G. et al. in Proceedings of the IEEE conference on computer vision and pattern recognition. 8769–8778.

    65.
    Teo, S. L. et al. Validation of geolocation estimates based on light level and sea surface temperature from electronic tags. Mar. Ecol. Prog. Ser. 283, 81–98 (2004).
    ADS  Article  Google Scholar 

    66.
    Handcock, M. S. Package ‘reldist’. (2016).

    67.
    Reynolds, R. & Banzon, V. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2. NOAA National Centers for Environmental Information. 10, V5SQ8XB5 (2008).

    68.
    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. (2016).

    69.
    Lyons, K. et al. The degree and result of gillnet fishery interactions with juvenile white sharks in southern California assessed by fishery-independent and-dependent methods. Fish. Res. 147, 370–380 (2013).
    ADS  Article  Google Scholar 

    70.
    Mayer, L. et al. The Nippon Foundation—GEBCO seabed 2030 project: The quest to see the world’s oceans completely mapped by 2030. Geosciences 8, 63 (2018).
    ADS  Article  Google Scholar 

    71.
    Tanaka, K. R. et al. Mesoscale climatic impacts on the distribution of Homarus americanus in the US inshore Gulf of Maine. Can. J. Fish. Aquat. Sci. 76, 608–625 (2019).
    Article  Google Scholar 

    72.
    R_Core_Team. (Vienna, Austria, 2019). More

  • in

    Author Correction: Mapping the forest disturbance regimes of Europe

    Affiliations

    Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Freising, Germany
    Cornelius Senf & Rupert Seidl

    Institute for Silviculture, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
    Cornelius Senf & Rupert Seidl

    Berchtesgaden National Park, Berchtesgaden, Germany
    Rupert Seidl

    Authors
    Cornelius Senf

    Rupert Seidl

    Corresponding author
    Correspondence to Cornelius Senf. More

  • in

    Big trees drive forest structure patterns across a lowland Amazon regrowth gradient

    1.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).
    ADS  CAS  Article  Google Scholar 
    2.
    Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730. https://doi.org/10.1111/btp.12381 (2016).
    Article  Google Scholar 

    3.
    Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456. https://doi.org/10.1126/science.aam5432 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Brancalion, P. H. S. et al. Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica 48, 856–867. https://doi.org/10.1111/btp.12383 (2016).
    Article  Google Scholar 

    5.
    Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32. https://doi.org/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2 (2007).
    Article  Google Scholar 

    6.
    Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10, 5803. https://doi.org/10.1038/s41598-020-62591-x (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Csillik, O., Kumar, P., Mascaro, J., O’Shea, T. & Asner, G. P. Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Sci. Rep. 9, 17831. https://doi.org/10.1038/s41598-019-54386-6 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Nunes, S. et al. Uncertainties in assessing the extent and legal compliance status of riparian forests in the eastern Brazilian Amazon. Land Use Policy 82, 37–47. https://doi.org/10.1016/j.landusepol.2018.11.051 (2019).
    Article  Google Scholar 

    9.
    Rocha, G. P. E., Vieira, D. L. M. & Simon, M. F. Fast natural regeneration in abandoned pastures in southern Amazonia. For. Ecol. Manag. 370, 93–101. https://doi.org/10.1016/j.foreco.2016.03.057 (2016).
    Article  Google Scholar 

    10.
    Rodrigues, S. B. et al. Direct seeded and colonizing species guarantee successful early restoration of South Amazon forests. For. Ecol. Manag. 451, 117559. https://doi.org/10.1016/j.foreco.2019.117559 (2019).
    Article  Google Scholar 

    11.
    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688. https://doi.org/10.1111/j.1523-1739.2005.00697.x (2005).
    Article  Google Scholar 

    12.
    Laurance, W. F. et al. Rain forest fragmentation and the proliferation of sucessional trees. Ecology 87, 469–482. https://doi.org/10.1890/05-0064 (2006).
    Article  PubMed  Google Scholar 

    13.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214. https://doi.org/10.1038/nature16512 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    14.
    Camargo, J. L. C., Ferraz, I. D. K. & Imakawa, A. M. Rehabilitation of degraded areas of central Amazonia using direct sowing of forest tree seeds. Restor. Ecol. 10, 636–644. https://doi.org/10.1046/j.1526-100X.2002.01044.x (2002).
    Article  Google Scholar 

    15.
    Guariguata, M. R. & Ostertag, R. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manag. 148, 185–206. https://doi.org/10.1016/S0378-1127(00)00535-1 (2001).
    Article  Google Scholar 

    16.
    Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666. https://doi.org/10.1038/ncomms11666 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x (2009).
    Article  PubMed  Google Scholar 

    18.
    Peres, C. A., Emilio, T., Schietti, J., Desmouliere, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. USA 113, 892–897. https://doi.org/10.1073/pnas.1516525113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    19.
    Pessoa, M. S. et al. Deforestation drives functional diversity and fruit quality changes in a tropical tree assemblage. Perspect. Plant Ecol. Evol. Syst. 28, 78–86. https://doi.org/10.1016/j.ppees.2017.09.001 (2017).
    Article  Google Scholar 

    20.
    Bowen, M. E., McAlpine, C. A., House, A. P. & Smith, G. C. Regrowth forests on abandoned agricultural land: a review of their habitat values for recovering forest fauna. Biol. Cons. 140, 273–296. https://doi.org/10.1016/j.biocon.2007.08.012 (2007).
    Article  Google Scholar 

    21.
    Chazdon, R. L. & Uriarte, M. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48, 709–715. https://doi.org/10.1111/btp.12409 (2016).
    Article  Google Scholar 

    22.
    Neuschulz, E. L., Mueller, T., Schleuning, M. & Böhning-Gaese, K. Pollination and seed dispersal are the most threatened processes of plant regeneration. Sci. Rep. 6, 29839. https://doi.org/10.1038/srep29839 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Stoner, K. E., Riba-Hernández, P., Vulinec, K. & Lambert, J. E. The role of mammals in creating and modifying seedshadows in tropical forests and some possible consequences of their elimination. Biotropica 39, 316–327. https://doi.org/10.1111/j.1744-7429.2007.00292.x (2007).
    Article  Google Scholar 

    24.
    Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc. R. Soc. B 283, 20161634. https://doi.org/10.1098/rspb.2016.1634 (2016).
    Article  PubMed  Google Scholar 

    25.
    Asquith, N. M. & Mejía-Chang, M. Mammals, edge effects, and the loss of tropical forest diversity. Ecology 86, 379–390. https://doi.org/10.1890/03-0575 (2005).
    Article  Google Scholar 

    26.
    Beck, H., Snodgrass, J. W. & Thebpanya, P. Long-term exclosure of large terrestrial vertebrates: Implications of defaunation for seedling demographics in the Amazon rainforest. Biol. Cons. 163, 115–121. https://doi.org/10.1016/j.biocon.2013.03.012 (2013).
    Article  Google Scholar 

    27.
    Paine, C. E., Beck, H. & Terborgh, J. How mammalian predation contributes to tropical tree community structure. Ecology 97, 3326–3336. https://doi.org/10.1002/ecy.1586 (2016).
    Article  PubMed  Google Scholar 

    28.
    Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676. https://doi.org/10.1038/s41559-017-0334-0 (2017).
    Article  PubMed  Google Scholar 

    29.
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818 (2007).
    Article  MATH  Google Scholar 

    30.
    Wunderle, J. M. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. For. Ecol. Manag. 99, 223–235. https://doi.org/10.1016/S0378-1127(97)00208-9 (1997).
    Article  Google Scholar 

    31.
    Fragoso, J. M. V. Tapir-generated seed shadows: scale-dependent patchiness in the Amazon Rain Forest. J. Ecol. 85, 519–529. https://doi.org/10.2307/2960574 (1997).
    Article  Google Scholar 

    32.
    Hibert, F. et al. Unveiling the diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study. PLoS ONE 8, e60799. https://doi.org/10.1371/journal.pone.0060799 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768. https://doi.org/10.1890/07-0479.1 (2008).
    Article  PubMed  Google Scholar 

    34.
    Wright, S. J. et al. The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39, 289–291. https://doi.org/10.1111/j.1744-7429.2007.00293.x (2007).
    Article  Google Scholar 

    35.
    Molto, Q. et al. Predicting tree heights for biomass estimates in tropical forests; a test from French Guiana. Biogeosciences 11, 3121–3130. https://doi.org/10.5194/bg-11-3121-2014 (2014).
    ADS  Article  Google Scholar 

    36.
    Letcher, S. G. & Chazdon, R. L. Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in Northeastern Costa Rica. Biotropica 41, 608–617. https://doi.org/10.1111/j.1744-7429.2009.00517.x (2009).
    Article  Google Scholar 

    37.
    Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574. https://doi.org/10.1016/j.tree.2007.09.006 (2007).
    Article  PubMed  Google Scholar 

    38.
    Beven, K. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24, 43–69. https://doi.org/10.1080/02626667909491834 (1979).
    Article  Google Scholar 

    39.
    Campling, P., Gobin, A. & Feyen, J. Logistic modeling to spatially predict the probability of soil drainage classes. Soil Sci. Soc. Am. J. 66, 1390–1401. https://doi.org/10.2136/sssaj2002.1390 (2002).
    ADS  CAS  Article  Google Scholar 

    40.
    Nobre, A. D. et al. Height above the nearest drainage: a hydrologically relevant new terrain model. J. Hydrol. 404, 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051 (2011).
    ADS  Article  Google Scholar 

    41.
    Schietti, J. et al. Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol. Diver. 7, 241–253. https://doi.org/10.1080/17550874.2013.783642 (2014).
    Article  Google Scholar 

    42.
    Gehring, C., Denich, M. & Vlek, P. L. G. Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. J. Trop. Ecol. 21, 519–527. https://doi.org/10.1017/S0266467405002543 (2005).
    Article  Google Scholar 

    43.
    Feldpausch, T. R., Riha, S. J., Fernandes, E. C. M. & Wandelli, E. V. Development of forest structure and leaf area in secondary forests regenerating on abandoned pastures in Central Amazônia. Earth Interact. 9, 1–22. https://doi.org/10.1175/EI140.1 (2005).
    Article  Google Scholar 

    44.
    Luskin, M. S., Ickes, K., Yao, T. L. & Davies, S. J. Wildlife differentially affect tree and liana regeneration in a tropical forest: an 18-year study of experimental terrestrial defaunation versus artificially abundant herbivores. J. Appl. Ecol. 56, 1379–1388. https://doi.org/10.1111/1365-2664.13378 (2019).
    Article  Google Scholar 

    45
    Lu, D., Mausel, P., Brondizio, E. & Moran, E. Classification of successional forest stages in the Brazilian Amazon basin. Forest Ecol. Manag. 181, 301–312. https://doi.org/10.1016/S0378-1127(03)00003-3 (2003).
    Article  Google Scholar 

    46.
    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances 3, e1701345. https://doi.org/10.1126/sciadv.1701345 (2017).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    47
    de Castilho, C. V. et al. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecol. Manag. 234, 85–96. https://doi.org/10.1016/j.foreco.2006.06.024 (2006).
    Article  Google Scholar 

    48.
    Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000. https://doi.org/10.1111/ele.12964 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Fortunel, C. et al. Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest. Ecology 99, 2272–2283. https://doi.org/10.1002/ecy.2441 (2018).
    Article  PubMed  Google Scholar 

    50.
    Tiessen, H., Chacon, P. & Cuevas, E. Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro. Oecologia 99, 145–150. https://doi.org/10.1007/BF00317095 (1994).
    ADS  CAS  Article  PubMed  Google Scholar 

    51.
    Paredes, O. S. L., Norris, D., Oliveira, T. G. D. & Michalski, F. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest. PLOS ONE 12, e0174049. https://doi.org/10.1371/journal.pone.0174049 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Michalski, L. J., Norris, D., de Oliveira, T. G. & Michalski, F. Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species. PLoS ONE 10, e0126114. https://doi.org/10.1371/journal.pone.0126114 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Mendes Pontes, A. R. Tree reproductive phenology determines the abundance of medium-sized and large mammalian assemblages in the Guyana shield of the Brazilian Amazonia. Anim. Biodiver. Conserv. 43(1), 9–26. https://doi.org/10.32800/abc.2020.43.0009 (2020).
    Article  Google Scholar 

    54.
    Arévalo-Sandi, A., Bobrowiec, P. E. D., Rodriguez Chuma, V. J. U. & Norris, D. Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient. PLoS ONE 13, e0193752. https://doi.org/10.1371/journal.pone.0193752 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55
    Arita, H. T., Robinson, J. G. & Redford, K. Rarity in Neotropical forest mammals and its ecological correlates. Conserv. Biol. 4, 181–192. https://doi.org/10.1111/j.1523-1739.1990.tb00107.x (1990).
    Article  Google Scholar 

    56.
    Peres, C. A. & Palacios, E. Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39, 304–315. https://doi.org/10.1111/j.1744-7429.2007.00272.x (2007).
    Article  Google Scholar 

    57.
    Emmons, L. H. & Feer, F. Neotropical Rainforest Mammals: A Field Guide (The University of Chicago Press, Chicago, 1997).
    Google Scholar 

    58.
    Michalski, F., Michalski, L. J. & Barnett, A. A. Environmental determinants and use of space by six Neotropical primates in the northern Brazilian Amazon. Stud. Neotrop. Fauna Environ. 52, 187–197. https://doi.org/10.1080/01650521.2017.1335276 (2017).
    Article  Google Scholar 

    59.
    Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618. https://doi.org/10.1046/j.1523-1739.2002.01025.x (2002).
    Article  Google Scholar 

    60.
    Norris, D., Peres, C. A., Michalski, F. & Hinchsliffe, K. Terrestrial mammal responses to edges in Amazonian forest patches: a study based on track stations. Mammalia 72, 15–23. https://doi.org/10.1515/mamm.2008.002 (2008).
    Article  Google Scholar 

    61.
    Martínez-Ramos, M. et al. Natural forest regeneration and ecological restoration in human-modified tropical landscapes. Biotropica 48, 745–757. https://doi.org/10.1111/btp.12382 (2016).
    Article  Google Scholar 

    62.
    Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L. & Lovejoy, T. E. Rainforest fragmentation kills big trees. Nature 404, 836–836. https://doi.org/10.1038/35009032 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661. https://doi.org/10.1111/j.1744-7429.2008.00454.x (2008).
    Article  Google Scholar 

    64.
    Santos, B. A. et al. Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol. Cons. 141, 249–260. https://doi.org/10.1016/j.biocon.2007.09.018 (2008).
    Article  Google Scholar 

    65.
    Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. & Tabarelli, M. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28, 462–468. https://doi.org/10.1016/j.tree.2013.01.001 (2013).
    Article  PubMed  Google Scholar 

    66
    Malhi, Y. et al. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 409–420. https://doi.org/10.1098/rstb.2003.1425 (2004).
    Article  Google Scholar 

    67.
    Keller, M., Palace, M. & Hurtt, G. Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties. For. Ecol. Manag. 154, 371–382. https://doi.org/10.1016/S0378-1127(01)00509-6 (2001).
    Article  Google Scholar 

    68.
    Arévalo-Sandi, A. R. & Norris, D. Short term patterns of germination in response to litter clearing and exclosure of large terrestrial vertebrates along an Amazon forest regrowth gradient. Glob. Ecol. Conserv. 13, e00371. https://doi.org/10.1016/j.gecco.2017.e00371 (2018).
    Article  Google Scholar 

    69.
    David, M. O. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 (2001).
    Article  Google Scholar 

    70
    ter Steege, H. et al. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J. Trop. Ecol. 16, 801–828 (2000).
    Article  Google Scholar 

    71.
    Batista, A. P. B. et al. Caracterização estrutural em uma floresta de terra firme no estado do Amapá, Brasil. Pesq. flor. bras 35, 21–33 (2015).
    Article  Google Scholar 

    72
    Eswaran, H., Ahrens, R., Rice, T. J. & Stewart, B. A. Soil Classification: A Global Desk Reference (CRC Press, Boca Raton, 2002).
    Google Scholar 

    73.
    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).
    Article  Google Scholar 

    74.
    ANA. Sistema de Monitoramento Hidrológico (Hydrological Monitoring System). Agência Nacional de Águas[[nl]]National Water Agency, Available at http://www.hidroweb.ana.gov.br, 2017).

    75
    Norris, D., Rodriguez Chuma, V. J. U., Arevalo-Sandi, A. R., Landazuri Paredes, O. S. & Peres, C. A. Too rare for non-timber resource harvest? Meso-scale composition and distribution of arborescent palms in an Amazonian sustainable-use forest. Forest Ecol. Manag. 377, 182–191. https://doi.org/10.1016/j.foreco.2016.07.008 (2016).
    Article  Google Scholar 

    76.
    Norris, D. & Michalski, F. Socio-economic and spatial determinants of anthropogenic predation on Yellow-spotted River Turtle, Podocnemis unifilis (Testudines: Pelomedusidae), nests in the Brazilian Amazon: Implications for sustainable conservation and management. Zoologia (Curitiba) 30, 482–490. https://doi.org/10.1590/S1984-46702013000500003 (2013).
    Article  Google Scholar 

    77
    Yirdaw, E., MongeMonge, A., Austin, D. & Toure, I. Recovery of floristic diversity, composition and structure of regrowth forests on fallow lands: implications for conservation and restoration of degraded forest lands in Laos. New Forests 50, 1007–1026. https://doi.org/10.1007/s11056-019-09711-2 (2019).
    Article  Google Scholar 

    78.
    McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: its definition and measurement. For. Ecol. Manag. 218, 1–24. https://doi.org/10.1016/j.foreco.2005.08.034 (2005).
    Article  Google Scholar 

    79.
    Sist, P., Mazzei, L., Blanc, L. & Rutishauser, E. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For. Ecol. Manag. 318, 103–109. https://doi.org/10.1016/j.foreco.2014.01.005 (2014).
    Article  Google Scholar 

    80.
    Phillips, O. L. et al. Species matter: wood density influences tropical forest biomass at multiple scales. Surv. Geophys. 40, 913–935. https://doi.org/10.1007/s10712-019-09540-0 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Bastin, J.-F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).
    Article  Google Scholar 

    82.
    TEAM Network. 69 (Tropical Ecology, Assessment and Monitoring Network, Center for Applied Biodiversity Science, Conservation International., Arlington, VA, USA., 2011).

    83.
    Hortal, J., Borges, P. A. & Gaspar, C. Evaluating the performance of species richness estimators: sensitivity to sample grain size. J. Anim. Ecol. 75, 274–287. https://doi.org/10.1111/j.1365-2656.2006.01048.x (2006).
    Article  PubMed  Google Scholar 

    84.
    Magurran, A. E. & McGill, B. J. in Biological diversity: frontiers in measurement and assessment (eds A. E. Magurran & B. J. McGill) Ch. 1, 1–7 (Oxford University Press, 2011).

    85.
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305. https://doi.org/10.1890/08-2244.1 (2010).
    Article  PubMed  Google Scholar 

    86.
    FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12 (2014).

    87.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach (Springer, Berlin, 2002).
    Google Scholar 

    88.
    Drasgow, F. in The Encyclopedia of Statistics Vol. 7 (eds S. Kotz & N. Johnson) 68–74 (Wiley, 1986).

    89.
    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. 3.6.3 (R Foundation for Statistical Computing, Vienna, 2020).
    Google Scholar 

    90.
    90vegan: Community Ecology Package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan (2016).

    91.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2009).
    Google Scholar 

    92.
    MuMIn: multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn (2016).

    93.
    Tweedie: Tweedie exponential family models. R package version 2.2.1. https://cran.r-project.org/web/packages/tweedie (2014). More

  • in

    Assessing biophysical and socio-economic impacts of climate change on regional avian biodiversity

    1.
    Díaz, S. et al. (eds) IPBES: Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, Bonn, 2019).
    Google Scholar 
    2.
    Struebig, M. J. et al. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Curr. Biol. 25, 372–378 (2015).
    CAS  PubMed  Article  Google Scholar 

    3.
    McMichael, A. J., Woodruff, R. E. & Hales, S. Climate change and human health: present and future risks. Lancet 367, 859–869 (2006).
    PubMed  Article  Google Scholar 

    4.
    Roson, R. & Sartori, M. Estimation of climate change damage functions for 140 regions in the GTAP 9 database. J. Glob. Econ. Anal. 1, 78–115 (2016).
    Article  Google Scholar 

    5.
    Tol, R. S. J. Who Benefits and Who Loses from Climate Change? In Handbook of Climate Change Mitigation and Adaptation (eds Chen, W.-Y. et al.) 1–12 (Springer, New York, 2014).
    Google Scholar 

    6.
    Veldkamp, A. & Fresco, L. O. CLUE: a conceptual model to study the conversion of land use and its effects. Ecol. Model. 85, 253–270 (1996).
    Article  Google Scholar 

    7.
    Verburg, P. H. & Overmars, K. P. Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 24, 1167–1181 (2009).
    Article  Google Scholar 

    8.
    Mantyka-pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
    Article  Google Scholar 

    9.
    Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5, 317–335 (2014).
    Article  Google Scholar 

    10.
    Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).
    PubMed  Article  Google Scholar 

    11.
    Brodie, J. F. Synergistic effects of climate change and agricultural land use on mammals. Front. Ecol. Environ. 14, 20–26 (2016).
    Article  Google Scholar 

    12.
    Brambilla, M., Pedrini, P., Rolando, A. & Chamberlain, D. E. Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. J. Biogeogr. 43, 2299–2309 (2016).
    Article  Google Scholar 

    13.
    Ferrier, S. et al. (eds) IPBES. Summary for Policymakers of the Methodological Assessment of Scenarios and Models of Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, Bonn, 2016).
    Google Scholar 

    14.
    Leclere, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).
    Article  Google Scholar 

    16.
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
    ADS  Article  Google Scholar 

    17.
    Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Ha, P. V., Kompas, T., Thi, H., Nguyen, M. & Hoang, C. Building a better trade model to determine local effects : a regional and intertemporal GTAP model. Econ. Model. 67, 102–113 (2016).
    Google Scholar 

    19.
    Van Ha, P. & Kompas, T. Solving intertemporal CGE models in parallel using a singly bordered block diagonal ordering technique. Econ. Model. 52, 3–12 (2016).
    Article  Google Scholar 

    20.
    Fuchs, R., Herold, M., Verburg, P. H. & Clevers, J. G. P. W. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 10, 1543–1559 (2013).
    ADS  Article  Google Scholar 

    21.
    Lawson, C. R., Hodgson, J. A., Wilson, R. J. & Richards, S. A. Prevalence, thresholds and the performance of presence-absence models. Methods Ecol. Evol. 5, 54–64 (2014).
    Article  Google Scholar 

    22.
    Wintle, B. A., Elith, J. & Potts, J. M. Fauna habitat modelling and mapping: a review and case study in the lower hunter central coast region of NSW. Austral. Ecol. 30, 719–738 (2005).
    Article  Google Scholar 

    23.
    Wintle, B. A. et al. Ecological–economic optimization of biodiversity conservation under climate change. Nat. Clim. Change 1, 355–359 (2011).
    ADS  Article  Google Scholar 

    24.
    Thomas, C. D. Climate change and extinction risk. Nature 430, 25 (2004).
    ADS  Article  CAS  Google Scholar 

    25.
    Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507 (2012).
    Article  Google Scholar 

    26.
    Baldwin, R. Use of maximum entropy modeling in wildlife research. Entropy 11, 854–866 (2009).
    ADS  Article  Google Scholar 

    27.
    R Development Core Team. R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing. https://www.R-project.org/ (2020). Accessed 3 September 2018.

    28.
    Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistics Database (2017).

    29.
    IUCN. The IUCN Red List of Threatened Species. Version 2018-2 (2018).

    30.
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
    PubMed  Article  Google Scholar 

    31.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    32.
    Gillings, S., Balmer, D. E. & Fuller, R. J. Directionality of recent bird distribution shifts and climate change in Great Britain. Glob. Change Biol. 21, 2155–2168 (2015).
    ADS  Article  Google Scholar 

    33.
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    van Vuuren, D. P. & Carter, T. R. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim. Change 122, 415–429 (2014).
    ADS  Article  Google Scholar 

    35.
    Bryan, B. A. et al. Land-use and sustainability under intersecting global change and domestic policy scenarios: trajectories for Australia to 2050. Glob. Environ. Change 38, 130–152 (2016).
    Article  Google Scholar 

    36.
    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).
    Article  Google Scholar 

    37.
    Hernandez, P. A., Graham, C., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).
    Article  Google Scholar 

    38.
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).
    Article  Google Scholar 

    39.
    Guisan, A. et al. Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20, 501–511 (2006).
    PubMed  Article  Google Scholar 

    40.
    Taylor, P. D., Fahrig, L., Henein, K. & Merriam, G. Connectivity Is a vital element of landscape structure. Oikos 68, 571 (1993).
    Article  Google Scholar 

    41.
    Gordon, A. et al. The use of dynamic landscape metapopulation models for forest management: a case study of the red-backed salamander. Can. J. For. Res. 42, 1091–1106 (2012).
    Article  Google Scholar 

    42.
    Cadenhead, N. C. R., Kearney, M. R., Moore, D., Mcalpin, S. & Wintle, B. A. Climate and fire scenario uncertainty dominate the evaluation of options for conserving the great desert skink. Conserv. Lett. 9, 181–190 (2015).
    Article  Google Scholar 

    43.
    UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. https://www.refworld.org/docid/57b6e3e44.html (2015). Accessed 22 November 2018.

    44.
    BirdLife International. Country profile: Vietnam. http://www.birdlife.org/datazone/country/vietnam (2018). Accessed 21 October 2018.

    45.
    BirdLife International. Country Profile: Australia. http://www.birdlife.org/datazone/country/australia (2018). Accessed 21 October 2018.

    46.
    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).
    ADS  Article  Google Scholar 

    47.
    Hijmans, R., Cameron, S., Parra, J., Jones, P. & Jarvis, A. WORLDCLIM—A Set of Global Climate Layers (Climate Grids), Version 1.4.

    48.
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    ADS  Article  Google Scholar 

    49.
    Hertel, T. Global Trade Analysis: Modeling and Applications (Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, West Lafayette, 1997).
    Google Scholar 

    50.
    Aguiar, A., Narayanan, B. & McDougall, R. An overview of the GTAP 9 data base. J. Glob. Econ. Anal. 1, 181–208 (2016).
    Article  Google Scholar 

    51.
    Van Ha, P., Kompas, T., Nguyen, H. T. M. & Long, C. H. Building a better trade model to determine local effects: a regional and intertemporal GTAP model. Econ. Model. 67, 102–113 (2017).
    Article  Google Scholar 

    52.
    Kompas, T., Pham, V. H. & Che, T. N. The effects of climate change on GDP by country and the global economic gains from complying with the Paris climate accord. Earth’s Future 6, 1153–1173 (2018).
    ADS  Article  Google Scholar 

    53.
    Horridge, J. M., Jerie, M., Mustakinov, D. & Schiffmann, F. GEMPACK manual, GEMPACK Software, ISBN 978-1–921654-34-3 (2018).

    54.
    Pearson, K. R. Solving Nonlinear Economic Models Accurately Via a Linear Representation. Working paper No. IP-55. Victoria University, Centre of Policy Studies (1991).

    55.
    Kompas, T. & Ha, P. V. The ‘curse of dimensionality’ resolved: the effects of climate change and trade barriers in large dimensional modelling. Econ. Model. 80, 103–110 (2018).
    Article  Google Scholar 

    56.
    Balay, S. et al. PETSc users manual, Technical Report ANL-95/11—Revision 3.11. (2019).

    57.
    Balay, S. et al. PETSc Web page. http://www.mcs.anl.gov/petsc (2019). Accessed 23 September 2018.

    58.
    Balay, S., Gropp, W. D., McInnes, L. C. & Smith, B. F. Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing (eds Arge, E. et al.) (Birkhaeuser Press, Boston, 1997).
    Google Scholar 

    59.
    HSL. A collection of fortran codes for large scale scientific computation. The HSL Mathematical Software Library (2013).

    60.
    World Bank Group. Population Estimates and Projections. http://data.worldbank.org/data-catalog/population-projection-tables (2016). Accessed 3 May 2018.

    61.
    Moulds, S., Buytaert, W. & Mijic, A. An open and extensible framework for spatially explicit land use change modelling: the lulcc R package. Geosci. Model Dev. 8, 3215–3229 (2015).
    ADS  Article  Google Scholar 

    62.
    Verburg, P. H. et al. Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ. Manag. 30, 391–405 (2002).
    ADS  Article  Google Scholar 

    63.
    Verburg, P. H., Veldkamp, T. & Bouma, J. Land use change under conditions of high population pressure: the case of Java. Glob. Environ. Change 9, 303–312 (1999).
    Article  Google Scholar 

    64.
    Verburg, P. H., Schulp, C. J. E., Witte, N. & Veldkamp, A. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agr. Ecosyst. Environ. 114, 39–56 (2006).
    Article  Google Scholar 

    65.
    Verburg, P. H., De Koning, G. H. J., Kok, K., Veldkamp, A. & Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model. 116, 45–61 (1999).
    Article  Google Scholar 

    66.
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Soft. 33, 1–22 (2010).
    Article  Google Scholar 

    67.
    Steven J. P., Miroslav D., Robert E. S. [Internet] Maxent software for modeling species niches and distributions (Version 3.3.3k). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 12 December 2018.

    68.
    GBIF. GBIF data portal. http://www.gbif.net/ (2016). Accessed 22 May 2018.

    69.
    Goetz, S. J., Sun, M., Zolkos, S., Hansen, A. & Dubayah, R. The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness. Environ. Res. Lett. 9, 034013 (2014).
    ADS  Article  Google Scholar 

    70.
    Maggini, R. et al. Assessing species vulnerability to climate and land use change: the case of the Swiss breeding birds. Divers. Distrib. 20, 708–719 (2014).
    Article  Google Scholar 

    71.
    Coxen, C. L., Frey, J. K., Carleton, S. A. & Collins, D. P. Species distribution models for a migratory bird based on citizen science and satellite tracking data. Glob. Ecol. Conserv. 11, 298–311 (2017).
    Article  Google Scholar 

    72.
    Stolar, J. & Nielsen, S. E. Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers. Distrib. 21, 595–608 (2015).
    Article  Google Scholar 

    73.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    PubMed  Article  Google Scholar 

    74.
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).
    PubMed  Article  Google Scholar 

    75.
    Morán-Ordóñez, A., Lahoz-Monfort, J. J., Elith, J. & Wintle, B. A. Evaluating 318 continental-scale species distribution models over a 60-year prediction horizon: what factors influence the reliability of predictions?. Glob. Ecol. Biogeogr. 26, 1–14 (2016).
    Google Scholar 

    76.
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’. http://cran.r-project.org/web/packages/dismo/index.html (2011). Accessed 6 July 2017. More

  • in

    Introduced ant species occupy empty climatic niches in Europe

    1.
    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).
    CAS  PubMed  Article  Google Scholar 
    2.
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Kellermann, V. et al. Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377–3389 (2012).
    PubMed  Article  Google Scholar 

    4.
    Baselga, A., Recuero, E., Parra-Olea, G. & García-París, M. Phylogenetic patterns in zopherine beetles are related to ecological niche width and dispersal limitation. Mol. Ecol. 20, 5060–5073 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).
    PubMed  Article  Google Scholar 

    6.
    Dormann, C. F., Gruber, B., Winter, M. & Herrman, D. Evolution of climate niches in European mammals?. Biol. Lett. 6, 229–232 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Hof, C., Rahbek, C. & Araújo, M. B. Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33, 242–250 (2010).
    Google Scholar 

    8.
    Duran, A. & Pie, M. R. Tempo and mode of climate niche evolution in Primates. Evolution 69, 2496–2506 (2015).
    PubMed  Article  Google Scholar 

    9.
    Khaliq, I. et al. Global variation in thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the tropics. J. Biogeogr. 42, 2187–2196 (2015).
    Article  Google Scholar 

    10.
    Pie, M. R. The macroevolution of climatic niches and its role in ant diversification. Ecol. Entomol. 41, 301–307 (2016).
    Article  Google Scholar 

    11.
    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).
    PubMed  Article  Google Scholar 

    12.
    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
    Article  Google Scholar 

    13.
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 33, 475–505 (2002).
    Article  Google Scholar 

    14.
    Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).
    CAS  PubMed  Article  Google Scholar 

    15.
    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?. Glob. Ecol. Biogeogr. 16, 24–33 (2007).
    Article  Google Scholar 

    16.
    Prinzing, A., Durka, W., Klotz, S. & Brandl, R. The niche of higher plants: evidence for phylogenetic conservatism. Proc. Biol. Sci. 268, 1–7 (2001).
    Article  Google Scholar 

    17.
    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Kozak, K. H. & Wiens, J. J. Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60, 2604–2621 (2006).
    PubMed  Article  Google Scholar 

    19.
    Rice, N. H., Martinez-Meyer, E. & Peterson, A. T. Ecological niche differentiation in the Aphelocoma jays: a phylogenetic perspective. Biol. J. Linn. Soc. 80, 369–383 (2003).
    Article  Google Scholar 

    20.
    Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. & Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781–1793 (2004).
    PubMed  Article  Google Scholar 

    21.
    Knouft, J. H., Losos, J. B., Glor, R. E. & Kolbe, J. J. Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87, S29–S38 (2006).
    PubMed  Article  Google Scholar 

    22.
    Cooper, N., Freckleton, R. P. & Jetz, W. Phylogenetic conservatism of environmental niches in mammals. Proc. Biol. Sci. 278, 2384–2391 (2011).
    PubMed  PubMed Central  Google Scholar 

    23.
    Kamilar, J. M. & Muldoon, K. M. The climatic niche diversity of Malagasy primates: a phylogenetic approach. PLoS ONE 5, e11073 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Peixoto, F. P., Villalobos, F. & Cianciaruso, M. V. Phylogenetic conservatism of climatic niche in bats. Glob. Ecol. Biogeogr. 26, 1055–1065 (2017).
    Article  Google Scholar 

    25.
    Ricciardi, A., Hoopes, M. F., Marchetti, M. P. & Lockwood, J. L. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83, 263–282 (2013).
    Article  Google Scholar 

    26.
    Bellard, C. & Jeschke, J. M. A spatial mismatch between invader impacts and research publications. Conserv. Biol. 30, 230–232 (2016).
    CAS  PubMed  Article  Google Scholar 

    27.
    Arnan, X. et al. Dominance-diversity relationships in ant communities differ with invasion. Glob. Change Biol. 24, 4614–4625 (2018).
    ADS  Article  Google Scholar 

    28.
    Gussow, A. B., Auslander, N., Wolf, Y. I. & Koonin, E. V. Prediction of the incubation period for COVID-19 and future virus disease outbreaks. BMC Biol. 18, 1–12 (2020).
    Article  CAS  Google Scholar 

    29.
    Raffini, F. et al. From nucleotides to satellite imagery: approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).
    CAS  Article  Google Scholar 

    30.
    Chown, S. L. et al. Biological invasions, climate change and genomics. Evol Appl 8, 23–46 (2015).
    PubMed  Article  Google Scholar 

    31.
    Rollins, L. A., Richardson, M. F. & Shine, R. A genetic perspective on rapid evolution in cane toads (Rhiniella marina). Mol. Ecol. 24, 2264–2276 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Estoup, A. et al. Is there a genetic paradox of biological invasion?. Annu. Rev. Ecol. Evol. Syst. 47, 51–72 (2016).
    Article  Google Scholar 

    33.
    Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Fenderson, L. E., Kovach, A. I. & Llamas, B. Spatiotemporal landscape genetics: Investigating ecology and evolution through space and time. Mol. Ecol. 29, 218–246 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Violle, C., Nemergut, D. R., Pu, Z. & Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 14, 782–787 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Novak, S. J. The role of evolution in the invasion process. Proc. Natl. Acad. Sci. USA 104, 3671–3672 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Buswell, J. M., Moles, A. T. & Hartley, S. Is rapid evolution common in introduced plant species?. J. Ecol. 99, 214–224 (2011).
    Article  Google Scholar 

    38.
    Saul, W.-C. & Jeschke, J. M. Eco-evolutionary experience in novel species interactions. Ecol. Lett. 18, 236–245 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Hölldobler, B. & Wilson, E. O. The ants (Harvard University Press, Cambridge, 1990).
    Google Scholar 

    40.
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species: a selection from the global invasive species database (Invasive Species Specialist Group, Auckland, 2000).
    Google Scholar 

    41.
    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Evol. Syst. 33, 181–233 (2002).
    Article  Google Scholar 

    42.
    Lessard, J.-P. et al. Strong influence of regional species pools on continent-wide structuring of local communities. Proc. Biol. Sci. 279, 266–274 (2011).
    PubMed  PubMed Central  Google Scholar 

    43.
    Lucky, A., Trautwein, M. D., Guénard, B., Weiser, M. D. & Dunn, R. R. Tracing the rise of ants—out of the ground. PLoS ONE 8, e84012 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Economo, E. P. et al. Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proc. Biol. Sci. 282, 20141416 (2015).
    PubMed  PubMed Central  Google Scholar 

    45.

    46.
    http://www.antwiki.org/.

    47.
    https://www.gbif.org/.

    48.
    https://www.antweb.org/.

    49.
    Lebas, C., Galkowski, C., Blatrix, R. & Wegnez, P. Forumis d’Europe occidentale Delachaux et Niestle (Le Premier guide complet d’Europe, Paris, 2016).
    Google Scholar 

    50.
    Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Bernard, F. Faune de l’Europe et du Bassin Méditerranéen. 3. Les Fourmis (Hymenoptera Formicidae) d’Europe Occidentale et Septentrionale. Eur. et Bas. Med. 3. Masson éditeurs, Paris (1968)

    52.
    Seifert, B. The Ants of Central and North Europe (Lutra Verlags-und Vertriebsgesellschaf, Tauer, 2018).
    Google Scholar 

    53.
    http://www.iucngisd.org/gisd/100_worst.php.

    54.
    Wetterer, J. K. Worldwide spread of Emery’s sneaking ant, Cardiocondyla emeryi (Hymenoptera: Formicidae). Myrmecol. News 17, 13–20 (2012).
    Google Scholar 

    55.
    Heinze, J., Cremer, S., Eckl, N. & Schrempf, A. Stealthy invaders: the biology of Cardiocondyla tramp ants. Insect. Soc. 53, 1–7 (2006).
    Article  Google Scholar 

    56.
    Fournier, A., Penone, C., Pennino, M. G. & Courchamp, F. Predicting future invaders and future invasions. Proc. Natl. Acad. Sci. USA 116, 7905–7910 (2019).
    CAS  PubMed  Article  Google Scholar 

    57.
    Moreau, C. S. & Bell, C. D. Testing the museum versus cradle biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67, 2240–2257 (2013).
    PubMed  Article  Google Scholar 

    58.
    Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera:Formicidae). Syst. Entomol. 40, 61–81 (2015).
    Article  Google Scholar 

    59.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    60.
    https://www.creaf.cat.

    61.
    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2016).

    62.
    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
    Article  Google Scholar 

    63.
    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
    Article  Google Scholar 

    64.
    Hijmans, R.J. & van Etten, J. raster: Geographic Data Analysis and Modeling. R package version 2.9-5. https://cran.r-project.org/web/packages/raster/index.html (2016).

    65.
    Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.1–4. https://cran.r-project.org/web/packages/dismo/index.html (2011).

    66.
    Wiens, J. J. The niche, biogeography and species interactions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2336–2350 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    King, J. R. & Tschinkel, W. R. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. USA 105, 20339–20343 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    68.
    Vonshak, M. & Gordon, D. M. Intermediate disturbance promotes invasive ant abundance. Biol. Conserv. 186, 359–367 (2015).
    Article  Google Scholar 

    69.
    McGlynn, T. P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeogr. 26, 535–548 (1999).
    Article  Google Scholar 

    70.
    Kaspari, M. & Vargo, E. Does colony size buffer environmental variation? Bergmann’s rule and social insects. Am. Nat. 145, 610–632 (1995).
    Article  Google Scholar 

    71.
    McGlynn, T. P. Non-native ants are smaller than related native ants. Am. Nat. 154, 690–699 (1999).
    PubMed  Article  PubMed Central  Google Scholar 

    72.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Article  Google Scholar 

    73.
    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).
    Article  Google Scholar 

    74.
    Jenkins, C. N. et al. Global diversity in light of climate change: The case of ants. Divers. Distrib. 17, 652–662 (2011).
    Article  Google Scholar 

    75.
    Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl. Acad. Sci. USA 98, 5446–5451 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    76.
    Ness, J. H. & Bronstein, J. L. The effects of invasive ants on prospective ant mutualists. Biol. Invasions 6, 445–461 (2004).
    Article  Google Scholar 

    77.
    Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8, 875–894 (2005).
    Article  Google Scholar 

    78.
    Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    https://www.cbd.int/sp/targets/rationale/target-9. More

  • in

    Improving prediction and assessment of global fires using multilayer neural networks

    1.
    Bowman, D. M. et al. Fire in the earth system. Science 324, 481–484. https://doi.org/10.1126/science.1163886 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Scott, A. C. The pre-quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329. https://doi.org/10.1016/s0031-0182(00)00192-9 (2000).
    Article  Google Scholar 

    3.
    Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl. Acad. Sci. 108, 5209–5214. https://doi.org/10.1073/pnas.1018116108 (2011).
    ADS  Article  PubMed  Google Scholar 

    4.
    Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int. J. Wildl. Fire 18, 483–507. https://doi.org/10.1071/wf08187 (2009).
    Article  Google Scholar 

    5.
    Hantson, S., Pueyo, S. & Chuvieco, E. Global fire size distribution is driven by human impact and climate: Spatial trends in global fire size distribution. Glob. Ecol. Biogeogr. 24, 77–86. https://doi.org/10.1111/geb.12246 (2015).
    Article  Google Scholar 

    6.
    Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).
    CAS  Article  Google Scholar 

    7.
    Lasslop, G., Brovkin, V., Reick, C. H., Bathiany, S. & Kloster, S. Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback. Geophys. Res. Lett. 43, 6324–6331. https://doi.org/10.1002/2016gl069365 (2016).
    ADS  Article  Google Scholar 

    8.
    Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4): ANALYSIS OF BURNED AREA. J. Geophys. Res. Biogeosci. 118, 317–328. https://doi.org/10.1002/jgrg.20042 (2013).
    Article  Google Scholar 

    9.
    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720. https://doi.org/10.5194/essd-9-697-2017 (2017).
    ADS  Article  Google Scholar 

    10.
    Loehman, R. A., Reinhardt, E. & Riley, K. L. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees-a cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. For. Ecol. Manag. 317, 9–19. https://doi.org/10.1016/j.foreco.2013.04.014 (2014).
    Article  Google Scholar 

    11.
    Landry, J.-S. & Matthews, H. D. Non-deforestation fire vs. fossil fuel combustion: the source of CO(_{{2}}) emissions affects the global carbon cycle and climate responses. Biogeosciences 13, 2137–2149. https://doi.org/10.5194/bg-13-2137-2016 (2016).
    ADS  Article  Google Scholar 

    12.
    Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284. https://doi.org/10.1126/science.11638860 (2016).
    Article  Google Scholar 

    13.
    Langmann, B., Duncan, B., Textor, C., Trentmann, J. & van der Werf, G. R. Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ. 43, 107–116. https://doi.org/10.1126/science.11638861 (2009).
    ADS  CAS  Article  Google Scholar 

    14.
    Urbanski, S. Wildland fire emissions, carbon, and climate: Emission factors. For. Ecol. Manag. 317, 51–60. https://doi.org/10.1016/j.foreco.2013.05.045 (2014).
    Article  Google Scholar 

    15.
    Veraverbeke, S., Verstraeten, W. W., Lhermitte, S., Van De Kerchove, R. & Goossens, R. Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire – burn severity using multitemporal MODIS imagery. Int. J. Wildl. Fire 21, 243. https://doi.org/10.1071/WF10075 (2012).
    Article  Google Scholar 

    16.
    Bowman, D. M. J. S., Murphy, B. P., Williamson, G. J. & Cochrane, M. A. Pyrogeographic models, feedbacks and the future of global fire regimes: Correspondence. Glob. Ecol. Biogeogr. 23, 821–824. https://doi.org/10.1126/science.11638864 (2014).
    Article  Google Scholar 

    17.
    Harris, R. M. B., Remenyi, T. A., Williamson, G. J., Bindoff, N. L. & Bowman, D. M. J. S. Climate-vegetation-fire interactions and feedbacks: Trivial detail or major barrier to projecting the future of the Earth system?: Climate-vegetation-fire interactions and feedbacks. Wiley Interdiscip. Rev. Clim. Change 7, 910–931. https://doi.org/10.1002/wcc.428 (2016).
    Article  Google Scholar 

    18.
    Bradstock, R. A. A biogeographic model of fire regimes in Australia: Current and future implications: A biogeographic model of fire in Australia. Glob. Ecol. Biogeogr. 19, 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.x (2010).
    Article  Google Scholar 

    19.
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362. https://doi.org/10.1126/science.aal4108 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. 107, 19167–19170. https://doi.org/10.1073/pnas.1003669107 (2010).
    ADS  Article  PubMed  Google Scholar 

    21.
    Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: The current and future distribution of wildfire. PLoS One 4, e5102 (2009).
    ADS  Article  Google Scholar 

    22.
    Pausas, J. G. & Keeley, J. E. Abrupt climate-independent fire regime changes. Ecosystems 17, 1109–1120. https://doi.org/10.1007/s10021-014-9773-5 (2014).
    CAS  Article  Google Scholar 

    23.
    Pausas, J. G. & Ribeiro, E. The global fire-productivity relationship: Fire and productivity. Glob. Ecol. Biogeogr. 22, 728–736. https://doi.org/10.1016/s0031-0182(00)00192-90 (2013).
    Article  Google Scholar 

    24.
    Mondal, N. & Sukumar, R. Fires in seasonally dry tropical forest: Testing the varying constraints hypothesis across a regional rainfall gradient. PLoS One 11, e0159691. https://doi.org/10.1371/journal.pone.0159691 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Foley, J. A. et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles 10, 603–628. https://doi.org/10.1029/96gb02692 (1996).
    ADS  CAS  Article  Google Scholar 

    26.
    Thonicke, K., Venevsky, S., Sitch, S. & Cramer, W. The role of fire disturbance for global vegetation dynamics: Coupling fire into a dynamic global vegetation model. Glob. Ecol. Biogeogr. 10, 661–677. https://doi.org/10.1046/j.1466-822x.2001.00175.x (2001).
    Article  Google Scholar 

    27.
    Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7, 1991. https://doi.org/10.1016/s0031-0182(00)00192-94 (2010).
    ADS  CAS  Article  Google Scholar 

    28.
    Rabin, S. S. et al. The fire modeling intercomparison project (FireMIP), phase 1: Experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197. https://doi.org/10.5194/gmd-10-1175-2017 (2017).
    ADS  CAS  Article  Google Scholar 

    29.
    Li, F., Zeng, X. & Levis, S. A process-based fire parameterization of intermediate complexity in a dynamic global vegetation model. Biogeosciences 9, 2761–2780. https://doi.org/10.1016/s0031-0182(00)00192-96 (2012).
    ADS  Article  Google Scholar 

    30.
    Li, F., Levis, S. & Ward, D. Quantifying the role of fire in the earth system-part 1: Improved global fire modeling in the community earth system model (cesm1). Biogeosciences 10, 2293 (2013).
    ADS  CAS  Article  Google Scholar 

    31.
    Hantson, S. et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. 13, 3299–3318. https://doi.org/10.5194/gmd-13-3299-2020 (2020).
    ADS  Article  Google Scholar 

    32.
    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537. https://doi.org/10.1038/ncomms8537 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 24, 5164–5175. https://doi.org/10.1016/s0031-0182(00)00192-98 (2018).
    ADS  Article  Google Scholar 

    34.
    Archibald, S., Roy, D. P., van Wilgen, B. W. & Scholes, R. J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Change Biol. 15, 613–630. https://doi.org/10.1111/j.1365-2486.2008.01754.x (2009).
    ADS  Article  Google Scholar 

    35.
    Aldersley, A., Murray, S. J. & Cornell, S. E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 409, 3472–3481. https://doi.org/10.1016/s0031-0182(00)00192-99 (2011).
    ADS  CAS  Article  PubMed  Google Scholar 

    36.
    Yang, L., Dawson, C. W., Brown, M. R. & Gell, M. Neural network and GA approaches for dwelling fire occurrence prediction. Knowl. Based Syst. 19, 213–219. https://doi.org/10.1016/j.knosys.2005.11.021 (2006).
    Article  Google Scholar 

    37.
    Dutta, R., Aryal, J., Das, A. & Kirkpatrick, J. B. Deep cognitive imaging systems enable estimation of continental-scale fire incidence from climate data. Sci. Rep. 3, 3188. https://doi.org/10.1038/srep03188 (2013).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Satir, O., Berberoglu, S. & Donmez, C. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Hazards Risk 7, 1645–1658. https://doi.org/10.1080/19475705.2015.1084541 (2016).
    Article  Google Scholar 

    39.
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the cru ts3. 10 dataset. Int. J. Climatol. 34, 623–642 (2014).
    Article  Google Scholar 

    40.
    Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 4, 1147–1167 (2003).
    ADS  Article  Google Scholar 

    41.
    Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176. https://doi.org/10.1073/pnas.10181161083 (2005).
    ADS  Article  Google Scholar 

    42.
    Freire, S. & Pesaresi, M. Ghs population grid, derived from gpw4, multitemporal (1975, 1990, 2000, 2015).European Commission Joint Research Centre (JRC) (2015).

    43.
    Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).
    ADS  Article  Google Scholar 

    44.
    Friedl, M. A. et al. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182. https://doi.org/10.1073/pnas.10181161084 (2010).
    ADS  Article  Google Scholar 

    45.
    Channan, S., Collins, K. & Emanuel, W. Global Mosaics of the Standard Modis Land Cover Type Data Vol. 30 (University of Maryland and the Pacific Northwest National Laboratory, College Park, 2014).
    Google Scholar 

    46.
    Lay, E. H. et al. Wwll global lightning detection system: Regional validation study in brazil. Geophys. Res. Lett. 31, 20 (2004).
    Google Scholar 

    47.
    Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in north American boreal forests. Nat. Clim. Change 7, 529–534 (2017).
    ADS  Article  Google Scholar 

    48.
    Chen, Y. et al. A pan-tropical cascade of fire driven by el niño/southern oscillation. Nat. Clim. Change 7, 906. https://doi.org/10.1038/s41558-017-0014-8 (2017).
    ADS  CAS  Article  Google Scholar 

    49.
    Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of amazon deforestation carbon emissions. Nat. Commun. 9, 536. https://doi.org/10.1038/s41467-017-02771-y (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    50.
    Yin, Y. et al. Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño: FIRE CARBON EMISSIONS IN EQUATORIAL ASIA. Geophys. Res. Lett. 43, 10472–10479. https://doi.org/10.1073/pnas.10181161087 (2016).
    ADS  CAS  Article  Google Scholar 

    51.
    Verdon, D. C., Kiem, A. S. & Franks, S. W. Multi-decadal variability of forest fire risk-eastern Australia. Int. J. Wildl. Fire 13, 165–171. https://doi.org/10.1071/WF03034 (2004).
    Article  Google Scholar 

    52.
    Mariani, M., Fletcher, M.-S., Holz, A. & Nyman, P. Enso controls interannual fire activity in southeast Australia: Enso and fire activity in SE Australia. Geophys. Res. Lett. 43, 10891–10900. https://doi.org/10.1002/2016GL070572 (2016).
    ADS  Article  Google Scholar 

    53.
    Li, L.-M., Song, W.-G., Ma, J. & Satoh, K. Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk. Int. J. Wildl. Fire 18, 640–647. https://doi.org/10.1071/WF07136 (2009).
    Article  Google Scholar 

    54.
    Vasilakos, C., Kalabokidis, K., Hatzopoulos, J. & Matsinos, I. Identifying wildland fire ignition factors through sensitivity analysis of a neural network. Nat. Hazards 50, 125–143. https://doi.org/10.1071/wf081871 (2009).
    Article  Google Scholar 

    55.
    Whitman, E., Parisien, M.-A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 9, 18796. https://doi.org/10.1038/s41598-019-55036-7 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Hawbaker, T. J. et al. Human and biophysical influences on fire occurrence in the united states. Ecol. Appl. 23, 565–582 (2013).
    Article  Google Scholar 

    57.
    Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058. https://doi.org/10.1038/s41559-016-0058 (2017).
    Article  Google Scholar 

    58.
    Andela, N. & van der Werf, G. R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Change 4, 791–795. https://doi.org/10.1038/nclimate2313 (2014).
    ADS  Article  Google Scholar 

    59.
    Walker, X. J. et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Changehttps://doi.org/10.1038/s41558-020-00920-8 (2020).
    Article  Google Scholar 

    60.
    Zubkova, M., Boschetti, L., Abatzoglou, J. T. & Giglio, L. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophys. Res. Lett. 46, 7643–7653. https://doi.org/10.1029/2019GL083469 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    61.
    Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 1–22 (2012).
    Article  Google Scholar 

    62.
    Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69. https://doi.org/10.1016/j.gloplacha.2016.12.017 (2017).
    ADS  Article  Google Scholar 

    63.
    Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735. https://doi.org/10.1071/wf081877 (2010).
    ADS  CAS  Article  Google Scholar 

    64.
    Archibald, S. et al. Biological and geophysical feedbacks with fire in the earth system. Environ. Res. Lett. 13, 033003. https://doi.org/10.1071/wf081878 (2018).
    ADS  Article  Google Scholar 

    65.
    Ponomarev, E., Kharuk, V. & Ranson, K. Wildfires dynamics in Siberian larch forests. Forests 7, 125. https://doi.org/10.3390/f7060125 (2016).
    Article  Google Scholar 

    66.
    van der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N. & Dolman, A. J. Climate controls on the variability of fires in the tropics and subtropics: Climate controls on fires. Glob. Biogeochem. Cycleshttps://doi.org/10.1029/2007GB003122 (2008).
    Article  Google Scholar  More

  • in

    Food and nutrition of Gaur (Bos gaurus C.H. Smith, 1827) at the edge of Khao Yai National Park, Thailand

    1.
    Guerbois, C., Chapanda, E. & Fritz, H. Combining multi-scale socio-ecological approaches to understand the susceptibility of subsistence farmers to elephant crop raiding on the edge of a protected area. J. Appl. Ecol. 49, 1149–1158 (2012).
    Article  Google Scholar 
    2.
    Felton, A. M. et al. Protein content of diets dictates the daily energy intake of a free-ranging primate. Behav. Ecol. 20, 685–690 (2009).
    Article  Google Scholar 

    3.
    Rode, K. D., Chiyo, P. I., Chapman, C. A. & McDowell, L. R. Nutritional ecology of elephants in Kibale National Park, Uganda, and its relationship with crop-raiding behaviour. J. Trop. Ecol. 22, 441–449 (2006).
    Article  Google Scholar 

    4.
    Duckworth, J. W., Sankar, K., Williams, A. C., Kumar, N. S. & Timmins, R. J. Bos gaurus. The IUCN Red List of Threatened Species 2016, e.T2891A46363646 (2016).

    5.
    Royal Thai Government Gazette. Wildlife Preservation and Protection Act, B.E.2562 (2019) of Thailand. www.ratchakitcha.soc.go.th (2019, in Thai).

    6.
    Srikosamatara, S. & Suteethorn, V. Populations of gaur and banteng and their management in Thailand. Nat. His. Bull. Siam Soc. 43(1), 55–83 (1995).
    Google Scholar 

    7.
    Laichanthuek, P., Sukmasuang, R. & Duengkae, P. Population and habitat use of gaur (Bos gaurus) around Khao Phaeng Ma Non-hunting Area, Nakhon Ratchasima Province. J. Wildl. Thailand 24, 83–95 (2017).
    Google Scholar 

    8.
    Chetri, M. Diet analysis of gaur, Bos gaurus gaurus (Smith, 1827) by micro-histological analysis of fecal samples in Parsa Wildlife Reserve, Nepal. Our Nat. 4, 20–28 (2006).
    Article  Google Scholar 

    9.
    Bell, R. H. V. The use of the herb layer by grazing ungulates in Serangeti. In Watson, A. (Ed.). Animal Population in Relation to Their Food Resources. (Blackwell Scientific Publication 1970).

    10.
    Jarman, P. J. The social organization of antelope in relation to their ecology. Behaviour 48, 215–266 (1974).
    Article  Google Scholar 

    11.
    Bhumpakphan, N. & McShea, W. J. Ecology of gaur and banteng in the seasonally dry forests of Thailand. In: McShea, W. J., Davies, S. J. & Bhumpakphan, N. (Eds.). The Ecology and Conservation of Seasonally Dry Forests in Asia. (Rowman and Littlefield Publishers, Inc. and Smithsonian Institution Scholarly Press 2011).

    12.
    Steinmetz, R. Gaur (Bos gaurus) and banteng (Bos javanicus) in the lowland forest mosaic of Xe Pian Protection Area, Lao PDR: Abundance, habitat use and conservation. Mammalia 68, 141–157 (2004).
    Article  Google Scholar 

    13.
    Karanth, K. U. & Sunquist, M. E. Population structure, density and biomass of large herbivores in the tropical forests of Nagarahole, India. J. Trop. Ecol. 8, 21–35 (1992).
    Article  Google Scholar 

    14.
    Steinmetz, R. Ecological surveys, monitoring, and the role of local people in protected areas of Lao PDR. (International Institute for Environment and Development 2000).

    15.
    Choudhury, A. Distribution and conservation of gaur Bos gaurus in the Indian Subcontinent. Mammal. Rev. 12, 199–226 (2002).
    Article  Google Scholar 

    16.
    Gad, S. D. & Shyama, S. K. Diet composition and quality in Indian bison (Bos gaurus) based on fecal analysis. Zool. Sci. 28(4), 264–267 (2011).
    Article  Google Scholar 

    17.
    Velho, N., Srinivasan, U., Singh, P. & Laurance, W. F. Large mammal use of protected and community-managed lands in a biodiversity hotspot. Anim. Conserv. https://doi.org/10.1111/acv.12234 (2015).
    Article  Google Scholar 

    18.
    Bidayabha, T. Ecology and behavior of gaur (Bos gaurus) in a degraded area at Khao Phaeng-Ma, the Northestern Edge of Khao Yai National Park. (Faculty of Biology, Mahidol University 2001).

    19.
    Panusittikorn, P. & Prato, T. Conservation of protected areas in Thailand: the case of Khao Yai National Park, protected areas in East Asia. George Wright Forum 18(2), 66–76 (2001).
    Google Scholar 

    20.
    Sorensen, A. A., van Beest, F. M. & Brook, R. K. Quantifying overlap in crop selection patterns among three sympatric ungulates in an agricultural landscape. Basic App. Ecol. 16, 601–609 (2015).
    Article  Google Scholar 

    21.
    Todorov, N. A. Cereals, pulses and oilseeds. Livestock Produc. Sci. 19, 47–95 (1988).
    Article  Google Scholar 

    22.
    Curzer, H. J., Wallace, M. C., Perry, G., Muhlberger, P. J. & Perry, D. The ethics of wildlife research: a nine R theory. ILAR J. 54(1), 52–57 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Department of National Parks, Wildlife and Plant Conservation (DNP). Management plan for Dong Phayayen-Khao Yai Forest Complex. (Department of National Parks, Wildlife, and Plant Conservation 2006).

    24.
    Kao-mim, N. Use of Hyperspectral Imaging System Data from HJ – 1A Satellite for Forest Types Classification in Khao Yai National Park. (MS thesis, Kasetsart University 2018, in Thai).

    25.
    Ngoprasert, D. & Gale, G. A. Tiger density, dhole occupancy, and prey occupancy in the human disturbed Dong Phayayen – Khao Yai Forest Complex, Thailand. Mamm. Biol. 95, 51–58 (2019).
    Article  Google Scholar 

    26.
    Lashley, M. A., Chitwood, M. C., Street, G. M., Moorman, C. E. & DePerno, C. S. Do indirect bite count surveys accurately represent diet selection of white-tailed deer in a forested environment?. Wildl. Res. 43, 254–260 (2016).
    CAS  Article  Google Scholar 

    27.
    Lashley, M. A., Chitwood, M. C., Harper, C. A., Moorman, C. E. & DePerno, C. S. Collection, handling and analysis of forages for concentrate selectors. Wildl. Biol. Prac. 10(1), 6–15 (2014).
    Google Scholar 

    28.
    Shafer, E. L. Jr. The twig-count method for measuring hardwood deer browse. J. Wildl. Manag. 27(3), 428–437 (1963).
    Article  Google Scholar 

    29.
    Ivlev, V. S. Experimental Ecology of the Feeding of Fishes. (Yale University Press 1961).

    30.
    Association of Official Analytical Chemists (AOAC). Guidelines for collaborative study procedure to validate characteristics of a method of analysis. J. Assoc. Off. Anal. Chem. 71, 161–171 (1988).

    31.
    Petterson, D. S., Harris, D. J., Rayner, C. J., Blakeney, A. B. & Choct, M. Methods for the analysis of premium livestock grains. Aus. J Agric. Res. 50, 775–787 (1999).
    Article  Google Scholar 

    32.
    Midkiff, V. A century of analytical excellence. The history of feed analysis, as chronicled in the development of AOAC official methods, 1884–1984. J. Assoc. Off. Anal. Chem. 67, 851–860 (1984).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Brown, R. H. & Mueller-Harvey, I. Evaluation of the novel Soxflo technique for rapid extraction of crude fat in foods and animal feeds. J. AOAC Int. 82, 1369–1374 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Leopold, B. D. & Krausman, P. R. Diurnal activity patterns of desert mule deer in relation to temperature. Texas J. Sci. 39, 49–53 (1987).
    Google Scholar 

    35.
    Holechek, J. L., Vavra, M. & Pieper, R. D. Botanical composition determination of range herbivore diets: a review. J. Range Manag. 35(3), 309–315 (1982).
    Article  Google Scholar 

    36.
    Jayson, E. A. Assessment of Human-Wildlife Conflict and Mitigation Measures in Northern Kerala: Final Report of the Research Project KFRI/653/12. (Kerala Forest Research Institute 2016).

    37.
    Prayong, N. & Srikosamatara, S. Cutting trees in a secondary forest to increase gaur Bos gaurus numbers in Khao Phaeng Ma Reforestation area, Nakhon Ratchasima Province, Thailand. Conserv. Evid. 14, 5–9 (2017).
    Google Scholar 

    38.
    Cervasio, F., Argenti, G., Genghini, M. & Ponzetta, M. P. Agronomic methods for mountain grassland habitat restoration for faunistic purposes in a protected area of the northern Apennines (Italy). iForest 9, 490–496 (2016).
    Article  Google Scholar 

    39.
    Argenti, G., Racanelli, V., Bartolozzi, S., Staglianò, N. & Guerri, F. S. Evaluation of wild animals browsing preferences in forage resources. Ital. J. Agron. 12, 884 (2017).
    Google Scholar 

    40.
    Freschi, P. et al. Diet composition of the Italian roe deer (Capreolus capreolus italicus) (Mammalia: Cervidae) from two protected areas. Eur. Zool. J. 84, 34–42 (2017).
    Article  CAS  Google Scholar 

    41.
    Robbins, C. T., Spalinger, D. E. & van Hoven, W. Adaptation of ruminants to browse and grass diets: are anatomical-based browser-grazer interpretations valid?. Oecologia 103, 208–213 (1995).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Ahrestani, F. S., Heitkönig, I. M. A., Matsubayashi, H. & Prins, H. H. T. 2016. Grazing and browsing by large herbivores in South and Southeast Asia. In: Ahrestani, F. S. & Sankaran, M. (Eds). The ecology of large herbivores in South and Southeast Asia. Ecol. Stud. 225 (2016).

    43.
    Krishnan, M. An ecological survey of the large mammals of Peninsular India. J. Bombay Nat. His. Soc. 69, 297–315 (1972).
    Google Scholar 

    44.
    Ahrestani, F. S. et al. Estimating densities of large herbivores in tropical forests: rigorous evaluation of a dung-based method. Ecol. Evol. 8, 7312–7322 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Ahrestani, F. S. Bos gaurus (Artiodactyla: Bovidae). Mamm. Species 50, 34–50 (2018).
    Article  Google Scholar 

    46.
    Nayak, B. K. & Patra, A. K. Food and feeding habits of Indian bison, Bos gaurus (Smith, 1827) in Kuldiha Wildlife Sanctuary, Balasore, Odisha, India and its conservation. Int. Res. J. Biol. Sci. 4(5), 73–79 (2015).
    Google Scholar 

    47.
    Gad, S. D. & Shyama, S. K. Studies on the food and feeding habits of gaur Bos gaurus H Smith (Mammalia: Artiodactyla: Bovidae) in two protected areas of Goa. J. Threat. Taxa 1, 128–130 (2009).
    Article  Google Scholar 

    48.
    Fresehi, P., Riccioli, F., Argenti, G. & Ponzetta, M. P. The sustainability of wildlife in agroforestry land. Agric. Agric. Sci. Proc. 8, 148–157 (2016).
    Google Scholar 

    49.
    Moser, B., Schutz, M. & Hindenlang, K. E. Resource selection by roe deer: Are wind throw gaps attractive feeding places?. For. Ecol. Manag. 255, 1179–1185 (2008).
    Article  Google Scholar 

    50.
    Wilsey, B. J. & Martin, L. M. Top-down control of rare species abundances by native ungulates in a grassland restoration. Restor. Ecol. 23, 465–472 (2015).
    Article  Google Scholar 

    51.
    Kouch, T., Preston, T. R. & Ly, J. Studies on utilization of trees and shrubs as the sole feedstuff by growing goats; foliage preferences and nutrient utilization. Livestock Res. Rural Dev. 15(7), http://www.lrrd.org/irrd15/7/kouc157.htm (2003).

    52.
    Kaitho, R. J. et al. Palatability of multipurpose tree species: effect of species and length of study on intake and relative palatability by sheep. Agrofor. Syst. 33, 249–261 (1996).
    Article  Google Scholar 

    53.
    Kaitho, R. J. et al. Palatability of wilted and dried multipurpose tree species fed to sheep and goats. Anim. Feed Sci. Technol. 65, 151–163 (1997).
    Article  Google Scholar 

    54.
    Provenza, M. P., Cervasio, F., Crocetti, C., Messeri, A. & Argenti, G. Habitat improvements with wildlife purposes in a grazed area on the Apennine mountains. Ital. J. Agron. 5, 233–238 (2003).
    Google Scholar 

    55.
    Lucas, J. R. Role of foraging time constraints and variable prey encounter in optimal diet choice. Am. Nat. 122(2), 191–209 (1983).
    Article  Google Scholar 

    56.
    Poapongsakorn, N., Ruhs, M. & Tangjitwisuth, S. Problems and outlook of agriculture in Thailand. TDRI Quar. Rev. 13(2), 3–14 (1998).
    Google Scholar 

    57.
    Retamosa, M. I., Humberg, L. A., Beasley, J. C. & Rhodes, O. E. Jr. Modeling wildlife damage to crops in northern Indiana. Human-Wild. Conf. 2(2), 225–239 (2008).
    Google Scholar 

    58.
    Su, K., Ren, J., Yang, J., Hou, Y. & Wen, Y. Human-Elephant conflicts and villagers’ attitudes and knowledge in the Xishuangbanna Nature Reserve, China. Inter. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph17238910 (2020).
    Article  Google Scholar  More