Responses of intended and unintended receivers to a novel sexual signal suggest clandestine communication
1.
Martin, C. H., McGirr, J. A., Richards, E. J. & St John, M. E. How to investigate the origins of novelty: insights gained from genetic, behavioral, and fitness perspectives. Integr. Org. Biol. 1, https://doi.org/10.1093/iob/obz01 (2019).
2.
West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 80, 47–53 (1983).
Article Google Scholar
3.
Ritchie, M. G. Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst. 179, 2091–2112 (2007).
Google Scholar
4.
Rosenthal, G. G. Mate Choice: The Evolution of Sexual Decision Making from Microbes to Humans (Princeton University Press, 2017).
5.
Servedio, M. R. & Boughman, J. W. The role of sexual selection in local adaptation and speciation. Annu. Rev. Ecol. Evol. Syst. 48, 85–109 (2017).
Article Google Scholar
6.
Svensson, E. I. & Gosden, T. P. Contemporary evolution of secondary sexual traits in the wild. Funct. Ecol. 21, 422–433 (2007).
Article Google Scholar
7.
Svensson, E. I. Eco-evolutionary dynamics of sexual selection and sexual conflict. Funct. Ecol. 33, 66–72 (2019).
Article Google Scholar
8.
Tinghitella, R. M. Rapid evolutionary change in a sexual signal: genetic control of the mutation ‘flatwing’ that renders male field crickets (Teleogryllus oceanicus) mute. Heredity 100, 261–267 (2008).
CAS PubMed Article Google Scholar
9.
Lassance, J. M. & Löfstedt, C. Chemical communication: a jewel sheds light on signal evolution. Curr. Biol. 23, 739–834 (2013).
Article CAS Google Scholar
10.
Niehuis, O. et al. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494, 345–348 (2013).
ADS CAS PubMed Article Google Scholar
11.
Ryan, M. J. & Rand, A. S. Sexual selection and signal evolution: the ghost of biases past. Philos. Trans. R. Soc. B 340, 187–195 (1993).
ADS Article Google Scholar
12.
Ryan, M. J. & Rand, A. S. Female responses to ancestral advertisement calls in túngara frogs. Science 269, 390–392 (1995).
ADS CAS PubMed Article Google Scholar
13.
Ryan, M. J. & Cummings, M. E. Perceptual biases and mate choice. Annu. Rev. Ecol. Evol. Syst. 44, 437–459 (2013).
Article Google Scholar
14.
Bush, S. L. & Schul, J. Evolution of novel signal traits in the absence of female preferences in Neoconocephalus katydids (Orthoptera, Tettigoniidae). PLoS ONE 5, https://doi.org/10.1371/journal.pone.0012457 (2010).
15.
Kolm, N., Amcoff, M., Mann, R. P. & Arnqvist, G. Diversification of a food-mimicking male ornament via sensory drive. Curr. Biol. 22, 1440–1443 (2012).
CAS PubMed Article PubMed Central Google Scholar
16.
Espmark, Y., Amundsen, T. & Rosenqvist, G. Animal Signals: Signalling and Signal Design in Animal Communication (Tapir Academic Press, 2000).
17.
Pfaus, J. G., Erickson, K. A. & Talianakis, S. Somatosensory conditioning of sexual arousal and copulatory behavior in the male rat: a model of fetish development. Physiol. Behav. 122, 1–7 (2013).
CAS PubMed Article PubMed Central Google Scholar
18.
Cetinkaya, H. & Domjan, M. Sexual fetishism in a quail (Coturnix japonica) model system: test of reproductive success. J. Comp. Psychol. 120, 427–432 (2006).
PubMed Article PubMed Central Google Scholar
19.
Arak, A. & Enquist, M. Hidden preferences and the evolution of signals. Philos. Trans. R. Soc. B 340, 207–213 (1993).
ADS Article Google Scholar
20.
Burley, N. T. & Symanski, R. ‘A taste for the beautiful’: latent aesthetic mate preferences for white crests in two species of australian grassfinches. Am. Nat. 152, 792–802 (1998).
CAS PubMed Article Google Scholar
21.
Ryan, M. J. Sexual selection, receiver biases, and the evolution of sex differences. Science 281, 1999–2003 (1998).
CAS PubMed Article Google Scholar
22.
Ryan, M. J., Bernal, X. E. & Stanley Rand, A. Female mate choice and the potential for ornament evolution in túngara frogs Physalaemus pustulosus. Curr. Zool. 56, 343–357 (2010).
Article Google Scholar
23.
Reichert, M. S., Finck, J. & Ronacher, B. Exploring the hidden landscape of female preferences for complex signals. Evolution 71, 1009–1024 (2017).
PubMed Article Google Scholar
24.
Ryan, M. J., Fox, J. H., Wilczynski, W. & Rand, A. S. Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343, 66–67 (1990).
ADS CAS PubMed Article Google Scholar
25.
Moehring, A. J. & Boughman, J. W. Veiled preferences and cryptic female choice could underlie the origin of novel sexual traits. Biol. Lett. 15, 20180878 (2019).
PubMed PubMed Central Article Google Scholar
26.
Zuk, M. & Kolluru, G. R. Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 43, 415–438 (1998).
Article Google Scholar
27.
Endler, J. A. Natural selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980).
PubMed Article Google Scholar
28.
Gray, D. A. & Cade, W. H. Sex, death and genetic variation: Natural and sexual selection on cricket song. Proc. R. Soc. Lond. B 266, 707–709 (1999).
Article Google Scholar
29.
Rand, A. S. & Ryan, M. J. The adaptive significance of a complex vocal repertoire in a neotropical frog. Z. Tierpsychol. 57, 209–214 (1981).
Article Google Scholar
30.
Lewkiewicz, D. A. & Zuk, M. Latency to resume calling after disturbance in the field cricket, Teleogryllus oceanicus, corresponds to population-level differences in parasitism risk. Behav. Ecol. Sociobiol. 55, 569–573 (2004).
Article Google Scholar
31.
Tinghitella, R. M., Zuk, M., Beveridge, M. & Simmons, L. W. Island hopping introduces Polynesian field crickets to novel environments, genetic bottlenecks and rapid evolution. J. Evol. Biol. 24, 1199–1211 (2011).
CAS PubMed Article PubMed Central Google Scholar
32.
Zhang, X. et al. Rapid parallel adaptation despite gene flow in silent crickets. Nat. Commun. https://doi.org/10.1038/s41467-020-20263-4 (2021).
33.
Bennet-Clark, H. C. Songs and the physics of sound production in Cricket Behavior and Neurobiology (eds Huber, F., Moore, T. E. & Werner, L.) 227–261 (Cornell University Press, New York, 1989).
34.
Bennet-Clark, H. C. Wing resonances in the Australian field cricket Teleogryllus oceanicus. J. Exp. Biol. 206, 1479–1496 (2003).
CAS PubMed Article PubMed Central Google Scholar
35.
Zuk, M., Rotenberry, J. T. & Tinghitella, R. M. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol. Lett. 2, 521–524 (2006).
PubMed PubMed Central Article Google Scholar
36.
Pascoal, S. et al. Rapid convergent evolution in wild crickets. Curr. Biol. 24, 1369–1374 (2014).
CAS PubMed Article PubMed Central Google Scholar
37.
Eldredge, L. G. & Evenhuis, N. L. Hawaii’s biodiversity: a detailed assessment of the numbers of species in the Hawaiian Islands. Bish. Mus. Occ. Pap. 76, 1–28 (2003).
Google Scholar
38.
Lehmann, G. U. C. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (insecta, diptera, tachinidae), parasitoids of night-calling bushcrickets and crickets (insecta, orthoptera, ensifera). Zool. Anz. 242, 107–120 (2003).
Article Google Scholar
39.
Zuk, M., Simmons, L. W. & Cupp, L. Calling characteristics of parasitized and unparasitized populations of the field cricket Teleogryllus oceanicus. Behav. Ecol. Sociobiol. 33, 339–343 (1993).
Google Scholar
40.
Tinghitella, R. M. & Zuk, M. Asymmetric mating preferences accommodated the rapid evolutionary loss of a sexual signal. Evolution 63, 2087–2098 (2009).
Article Google Scholar
41.
Tinghitella, R. M., Broder, E. D., Gurule-Small, G. A., Hallagan, C. J. & Wilson, J. D. Purring crickets: the evolution of a novel sexual signal. Am. Nat. 192, 773–782 (2018).
PubMed Article Google Scholar
42.
Zuk, M., Bailey, N. W., Gray, B. & Rotenberry, J. T. Sexual signal loss: the link between behaviour and rapid evolutionary dynamics in a field cricket. J. Anim. Ecol. 87, 623–633 (2018).
PubMed Article Google Scholar
43.
Pascoal, S. et al. Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evol. Lett. 4, 19–33 (2020).
PubMed Article Google Scholar
44.
Rayner, J. G., Aldridge, S., Montealegre-Z, F. & Bailey, N. W. A silent orchestra: convergent song loss in Hawaiian crickets is repeated, morphologically varied, and widespread. Ecology 100, https://doi.org/10.1002/ecy.2694 (2019).
45.
Rotenberry, J. T., Zuk, M., Simmons, L. W. & Hayes, C. Phonotactic parasitoids and cricket song structure: an evaluation of alternative hypotheses. Evol. Ecol. 10, 233–243 (1996).
Article Google Scholar
46.
Moiseff, A., Pollack, G. S. & Hoy, R. R. Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc. Natl Acad. Sci. USA 75, 4052–4056 (1978).
ADS CAS PubMed Article Google Scholar
47.
Hoy, R. R., Pollack, G. S. & Moiseff, A. Species-recognition in the field cricket, Teleogryllus oceanicus: behavioral and neural mechanisms. Integr. Comp. Biol. 22, 597–607 (1982).
Google Scholar
48.
Bailey, N. W., Moran, P. A. & Hennig, R. M. Divergent mechanisms of acoustic mate recognition between closely related field cricket species (Teleogryllus spp.). Anim. Behav. 130, 17–25 (2017).
Article Google Scholar
49.
Ryan, M. J. Sexual selection, sensory systems and sensory exploitation in Oxford Surveys. In Evolutionary Biology (eds Antonovics, J. & Futuyma, D. J.) 157–195 (Oxford University Press, Oxford, 1990).
50.
Imaizumi, K. & Pollack, G. S. Neural coding of sound frequency by cricket auditory receptors. J. Neurosci. 19, 1508–1516 (1999).
CAS PubMed PubMed Central Article Google Scholar
51.
Oshinsky, M. L. & Hoy, R. R. Physiology of the auditory afferents in an acoustic parasitoid fly. J. Neurosci. 22, 7254–7263 (2002).
CAS PubMed PubMed Central Article Google Scholar
52.
Farr, J. A. Male rarity or novelty, female choice behavior, and sexual selection in the guppy, Poecilia reticulata Peters (Pisces: Poeciliidae). Evolution 31, 162–168 (1977).
PubMed Article Google Scholar
53.
Jennions, M. D. & Petrie, M. Variation in mate choice and mating preferences: a review of causes and consequences. Biol. Rev. Camb. Philos. Soc. 72, 283–327 (1997).
CAS PubMed Article Google Scholar
54.
Brooks, R. & Endler, J. A. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. Evolution 55, 1644–1655 (2001).
CAS PubMed Article Google Scholar
55.
Fowler-Finn, K. D. & Rodríguez, R. L. Repeatability of mate preference functions in Enchenopa treehoppers (Hemiptera: Membracidae). Anim. Behav. 85, 493–499 (2013).
Article Google Scholar
56.
Kilmer, J. T. et al. Describing mate preference functions and other function-valued traits. J. Evol. Biol. 30, 1658–1673 (2017).
CAS PubMed Article Google Scholar
57.
Walker, T. J. A live trap for monitoring Euphasiopteryx and tests with E. ochracea (Diptera: Tachinidae). Fla. Entomol. 72, 314–319 (1989).
Article Google Scholar
58.
Mason, A. C., Oshinsky, M. L. & Hoy, R. R. Hyperacute directional hearing in a microscale auditory system. Nature 410, 686–690 (2001).
ADS CAS PubMed Article PubMed Central Google Scholar
59.
Gray, D. A., Kunerth, H. D., Zuk, M., Cade, W. H. & Balenger, S. L. Molecular biogeography and host relations of a parasitoid fly. Ecol. Evol. 9, 11476–11493 (2019).
PubMed PubMed Central Article Google Scholar
60.
Paur, J. & Gray, D. A. Individual consistency, learning and memory in a parasitoid fly, Ormia ochracea. Anim. Behav. 82, 825–830 (2011).
Article Google Scholar
61.
Bailey, N. W. & Zuk, M. Acoustic experience shapes female mate choice in field crickets. Proc. R. Soc. Lond. B 275, 2645–2650 (2008).
Google Scholar
62.
Balenger, S. L. & Zuk, M. Roaming Romeos: Male crickets evolving in silence show increased locomotor behaviours. Anim. Behav. 101, 213–219 (2015).
Article Google Scholar
63.
Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).
PubMed Article Google Scholar
64.
Ronald, K. L., Fernández-Juricic, E. & Lucas, J. R. Taking the sensory approach: how individual differences in sensory perception can influence mate choice. Anim. Behav. 84, 1283–1294 (2012).
Article Google Scholar
65.
Bailey, N. W. & Zuk, M. Field crickets change mating preferences using remembered social information. Biol. Lett. 5, 449–451 (2009).
PubMed PubMed Central Article Google Scholar
66.
Dingemanse, N. J. & Wolf, M. Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim. Behav. 85, 1031–1039 (2013).
Article Google Scholar
67.
Bailey, N. W., Pascoal, S. & Montealegre, F. Z. Testing the role of trait reversal in evolutionary diversification using song loss in wild crickets. Proc. Natl Acad. Sci. USA 116, 8941–8949 (2019).
CAS PubMed Article Google Scholar
68.
Royauté, R. & Dochtermann, N. A. When the mean no longer matters: developmental diet affects behavioral variation but not population averages in the house cricket (Acheta domesticus). Behav. Ecol. 28, 337–345 (2017).
Article Google Scholar
69.
Dochtermann, N. A. & Royauté, R. The mean matters: going beyond repeatability to interpret behavioural variation. Anim. Behav. 153, 147–150 (2019).
Article Google Scholar
70.
Edward, D. A. The description of mate choice. Behav. Ecol. 26, 301–310 (2014).
Article Google Scholar
71.
Xu, M. & Shaw, K. L. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc. R. Soc. Lond. B 286 https://doi.org/10.1098/rspb.2019.1607 (2019).
72.
Pascoal, S. et al. Sexual selection and population divergence I: the influence of socially flexible cuticular hydrocarbon expression in male field crickets (Teleogryllus oceanicus). Evolution 70, 82–97 (2016).
PubMed Article PubMed Central Google Scholar
73.
Broder, D. E., Wikle, A. W., Gallagher, J. H. & Tinghitella, R. M. Substrate-borne vibrations in Pacific field cricket courtship displays. J. Orthoptera Res. (Accepted).
74.
Moran, P. A., Hunt, J., Mitchell, C., Ritchie, M. G. & Bailey, N. W. Sexual selection and population divergence III: Interspecific and intraspecific variation in mating signals. J. Evol. Biol. 33, 990–1005 (2020).
CAS PubMed Article PubMed Central Google Scholar
75.
Pollack, G. S., Huber, F. & Weber, T. Frequency and temporal pattern-dependent phonotaxis of crickets (Teleogryllus oceanicus) during tethered flight and compensated walking. J. Comp. Physiol. A 154, 13–26 (1984).
Article Google Scholar
76.
Thorson, J., Weber, T. & Huber, F. Auditory behavior of the cricket. J. Comp. Physiol. 146, 361–378 (1982).
Article Google Scholar
77.
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
78.
Ritchie, M. G. The shape of female mating preferences. Proc. Natl Acad. Sci. U. S. A. 93, 14628–14631 (1996).
ADS CAS PubMed PubMed Central Article Google Scholar
79.
Rodríguez, R. L., Hallett, A. C., Kilmer, J. T. & Fowler-Finn, K. D. Curves as traits: genetic and environmental variation in mate preference functions. J. Evol. Biol. 26, 434–442 (2013).
PubMed Article PubMed Central Google Scholar
80.
Ludecke, D., Makowski, D., Patil, I. & Waggoner, P. easystats/performance: performance 0.4.7 (Version 0.4.7). Zenodo https://doi.org/10.5281/zenodo.3952174 (2020).
81.
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).
82.
Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B 65, 95–114 (2003).
MathSciNet MATH Article Google Scholar
83.
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. https://doi.org/10.18637/jss.v028.i05 (2008). More