More stories

  • in

    The occurrence and ecology of microbial chain elongation of carboxylates in soils

    1.
    Barker HA, Taha SM. Clostridium kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol. J Bacteriol. 1942;43:347–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, et al. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ Sci Technol. 2016;50:2796–810.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Béchamp MA. Lettre de m. A. Béchamp a m. Dumas. Ann Chim Phys 1868;4:103–11.
    Google Scholar 

    4.
    Weimer PJ, Stevenson DM. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen. Appl Microbiol Biotechnol. 2012;94:461–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Kenealy WR, Waselefsky DM. Studies on the substrate range of Clostridium kluyveri – the use of propanol and succinate. Arch Microbiol. 1985;141:187–94.
    CAS  Article  Google Scholar 

    6.
    Barker HA, Kamen MD, Bornstein BT. The synthesis of butyric and caproic acids from ethanol and acetic acid by Clostridium kluyveri. Proc Natl Acad Sci USA. 1945;31:373–81.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Bornstein BT, Barker HA. The energy metabolism of Clostridium kluyveri and the synthesis of fatty acids. J Biol Chem. 1948;172:659–69.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittimatter A, et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci USA. 2008;105:2128–33.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Gonzalez-Cabaleiro R, Lema JM, Rodriguez J, Kleerebezem R. Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses. Energy Environ Sci. 2013;6:3780–9.
    CAS  Article  Google Scholar 

    10.
    Spirito CM, Richter H, Rabaey K, Stams AJM, Angenent LT. Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol. 2014;27:115–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Rittmann BE & McCarty PL. Environmental Biotechnology: Principles and Applications. McGraw-Hill Book Education: New York; 2001.

    12.
    Thauer RK, Jungermann K, Henninger H, Wenning J, Decker K. The energy metabolism of Clostridium kluyveri. Eur J Biochem. 1968;4:173–80.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Stadtman ER, Barker HA. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. I. Preparation of cell-free extracts that catalyze the conversion of ethanol and acetate to butyrate and caproate. J Biol Chem. 1949;180:1085–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Stadtman ER, Barker HA. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. VI. Reactions of acyl phosphates. J Biol Chem. 1950;184:769–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy Environ Sci. 2011;4:216–24.
    CAS  Article  Google Scholar 

    16.
    Agler MT, Spirito CM, Usack JG, Werner JJ, Angenent LT. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ Sci. 2012;5:8189–92.
    CAS  Article  Google Scholar 

    17.
    Cavalcante WD, Leitao RC, Gehring TA, Angenent LT, Santaella ST. Anaerobic fermentation for n-caproic acid production: A review. Process Biochem. 2017;54:106–19.
    CAS  Article  Google Scholar 

    18.
    De Groof V, Coma M, Arnot T, Leak DJ, Lanham AB. Medium chain carboxylic acids from complex organic feedstocks by mixed culture fermentation. Molecules 2019;24:398.
    PubMed Central  Article  CAS  Google Scholar 

    19.
    Schievano A, Sciarria TP, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, et al. Electro-fermentation – merging electrochemistry with fermentation in industrial applications. Trends Biotechnol. 2016;34:866–78.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Jourdin L, Raes SMT, Buisman CJN, Strik D. Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. Front Energy Res. 2018;6:7.
    Article  Google Scholar 

    21.
    Candry P, Huang SL, Carvajal-Arroyo JM, Rabaey K, Ganigue R. Enrichment and characterisation of ethanol chain elongating communities from natural and engineered environments. Sci Rep. 2020;10:1–10.
    Article  CAS  Google Scholar 

    22.
    Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere 2020;30:25–39.
    Article  Google Scholar 

    23.
    Rui JP, Peng JJ, Lu YH. Succession of bacterial populations during plant residue decomposition in rice field soil. Appl Environ Microbiol. 2009;75:4879–86.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Tsutsuki K, Ponnamperuma FN. Behavior of anaerobic decomposition in submerged soils – effect of organic material amendment, soil properties, and temperature. Soil Sci Plant Nutr. 1987;33:13–33.
    CAS  Article  Google Scholar 

    25.
    Roy R, Kluber HD, Conrad R. Early initiation of methane production in anoxic rice soil despite the presence of oxidants. FEMS Microbiol Ecol. 1997;24:311–20.
    CAS  Article  Google Scholar 

    26.
    Adeleke R, Nwangburuka C, Oboirien B. Origins, roles and fate of organic acids in soils: a review. S Afr J Bot. 2017;108:393–406.
    CAS  Article  Google Scholar 

    27.
    Mohana Rangan S, Mouti A, LaPat-Polasko L, Lowry GV, Krajmalnik-Brown R, Delgado A. Synergistic zero-valent iron (Fe0) and microbiological trichloroethene and perchlorate reductions are determined by the concentration and speciation of Fe. Environ Sci Technol. 2020;54:14422–31.
    Article  CAS  Google Scholar 

    28.
    Delgado AG, Kang D-W, Nelson KG, Fajardo-Williams D, Miceli JF, III, Done HY, et al. Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene. PLoS ONE. 2014;9:e100654.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Delgado AG, Fajardo-Williams D, Popat SC, Torres CI, Krajmalnik-Brown R. Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures. Appl Microbiol Biotechnol. 2014;98:2729–37.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Chen TF, Delgado AG, Yavuz BM, Maldonado J, Zuo Y, Kamath R, et al. Interpreting interactions between ozone and residual petroleum hydrocarbons in soil. Environ Sci Technol. 2017;51:506–13.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Esquivel-Elizondo S, Miceli J, Torres CI, Krajmalnik-Brown R. Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation. Biotechnol Bioeng. 2018;115:341–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Delgado AG, Fajardo-Williams D, Kegerreis KL, Parameswaran P, Krajmalnik-Brown R. Impact of ammonium on syntrophic organohalide-respiring and fermenting microbial communities. mSphere. 2016;1:e00053–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Delgado AG, Fajardo-Williams D, Bondank E, Esquivel-Elizondo S, Krajmalnik-Brown R. Coupling bioflocculation of Dehalococcoides mccartyi to high-rate reductive dehalogenation of chlorinated ethenes. Environ Sci Technol. 2017;51:11297–307.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Esquivel-Elizondo S, Delgado AG, Krajmalnik-Brown R. Evolution of microbial communities growing with carbon monoxide, hydrogen, and carbon dioxide. FEMS Microbiol Ecol. 2017;93:fix076.
    Article  CAS  Google Scholar 

    35.
    Xiaoyu Z, Yong T, Cheng L, Xiangzhen L, Na W, Wenjie Z, et al. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production. Sci Rep. 2015;5:14360.
    Article  CAS  Google Scholar 

    36.
    Caporaso JG, Christian LL, William AW, Donna B-L, James H, Noah F, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–24.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Masella A, Bartram A, Truszkowski J, Brown D, Neufeld J. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform. 2012;13:31.
    CAS  Article  Google Scholar 

    38.
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–57.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, et al. RESCRIPt: Reproducible sequence taxonomy reference database management for the masses. bioRxiv. 2020; https://doi.org/10.1101/2020.10.05.326504.

    42.
    Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST plus: architecture and applications. BMC Bioinform. 2009;10:1.
    Article  CAS  Google Scholar 

    44.
    Kusel K, Drake HL. Acetate synthesis in soil from a Bavarian beech forest. Appl Environ Microbiol. 1994;60:1370–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Kusel K, Drake HL. Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl Environ Microbiol. 1995;61:3667–75.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Duddleston KN, Kinney MA, Kiene RP, Hines ME. Anaerobic microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic end product. Glob Biogeochem Cycles. 2002;16:11.1–9.
    Article  CAS  Google Scholar 

    47.
    Thebrath B, Mayer HP, Conrad R. Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. FEMS Microbiol Ecol. 1992;86:295–302.
    CAS  Article  Google Scholar 

    48.
    Delgado AG, Parameswaran P, Fajardo-Williams D, Halden RU, Krajmalnik-Brown R. Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb Cell Fact. 2012;11:128.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Kucek LA, Spirito CM, Angenent LT. High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation. Energy Environ Sci. 2016;9:3482–94.
    CAS  Article  Google Scholar 

    50.
    Volker AR, Gogerty DS, Bartholomay C, Hennen-Bierwagen T, Zhu HL, Bobik TA. Fermentative production of short-chain fatty acids in Escherichia coli. Microbiology 2014;160:1513–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Grootscholten TIM, Steinbusch KJJ, Hamelers HVM, Buisman CJN. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. Bioresour Technol. 2013;135:440–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Reddy MV, Mohan SV, Chang YC. Medium-chain fatty acids (MCFA) production through anaerobic fermentation using Clostridium kluyveri: effect of ethanol and acetate. Appl Biochem Biotechnol. 2018;185:594–605.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Scarborough MJ, Lawson CE, Hamilton JJ, Donohue TJ, Noguera DR. Metatranscriptomic and thermodynamic insights into medium-chain fatty acid production using an anaerobic microbiome. mSystems 2018;3:6.
    Article  Google Scholar 

    54.
    Bao S, Wang QY, Zhang PY, Zhang Q, Wu Y, Li F, et al. Effect of acid/ethanol ratio on medium chain carboxylate production with different VFAs as the electron acceptor: insight into carbon balance and microbial community. Energies 2019;12:3720.
    CAS  Article  Google Scholar 

    55.
    Spirito CM, Marzilli AM, Angenent LT. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-caprylate in a bioreactor with product extraction. Environ Sci Technol. 2018;52:13438–47.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Coma M, Vilchez-Vargas R, Roume H, Jauregui R, Pieper DH, Rabaey K. Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation. Environ Sci Technol. 2016;50:6467–76.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72:1719–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J 2009;3:992–1000.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Hollister EB, Forrest AK, Wilkinson HH, Ebbole DJ, Malfatti SA, Tringe SG, et al. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production. Appl Microbiol Biotechnol. 2010;88:389–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Mackie RI, Aminov RI, Hu WP, Klieve AV, Ouwerkerk D, Sundset MA, et al. Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol. 2003;69:6808–15.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Ye TR, Cai HY, Liu X, Jiang HL. Dominance of Oscillospira and Bacteroides in the bacterial community associated with the degradation of high-concentration dimethyl sulfide under iron-reducing condition. Ann Microbiol. 2016;66:1199–206.
    CAS  Article  Google Scholar 

    63.
    Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016;24:523–4.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Clarke RTJ. Niche in pasture-fed ruminants for the large rumen bacteria Oscillospira, Lampropedia, and Quin’s and Eadie’s ovals. Appl Environ Microbiol. 1979;37:654–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Lee GH, Rhee MS, Chang DH, Lee J, Kim S, Yoon MH, et al. Oscillibacter ruminantium sp nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol. 2013;63:1942–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Iino T, Mori K, Tanaka K, Suzuki KI, Harayama S. Oscillibacter valericigenes gen. nov., sp nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol. 2007;57:1840–5.
    PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria – From metagenomic species to metabolic features. Environ Microbiol. 2017;19:835–41.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Wang H-J, Dai K, Wang Y-Q, Wang H-F, Zhang F, Zeng RJ. Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors. Bioresour Technol. 2018;267:650–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Fraj B, Ben Hania W, Postec A, Hamdi M, Ollivier B, Fardeau ML. Fonticella tunisiensis gen. nov., sp nov., isolated from a hot spring. Int J Syst Evol Microbiol. 2013;63:1947–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandezgarayzabal J, Garcia P, et al. The phylogeny of the genus Clostridium – Proposal of 5 new genera and 11 new species combinations. Int J Syst Bacteriol. 1994;44:812–26.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    BS Jeon, Kim BC, Um Y, et al. BI. Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1. Appl Microbiol Biotechnol. 2010;88:1161–7.
    Article  CAS  Google Scholar 

    72.
    Zhu XY, Zhou Y, Wang Y, Wu TT, Li XZ, Li DP, et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol Biofuels. 2017;10:102.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Robertson WJ, Bowman JP, Franzmann PD, Mee BJ. Desulfosporosinus meridiei sp nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol. 2001;51:133–40.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Lee YJ, Romanek CS, Wiegel J. Desulfosporosinus youngiae sp nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage. Int J Syst Evol Microbiol. 2009;59:2743–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Spatial patterns in phage-Rhizobium coevolutionary interactions across regions of common bean domestication

    1.
    Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005;13:278–84.
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hatfull GF. Dark matter of the biosphere: the amazing world of bacteriophage diversity. J Virol. 2015;89:8107–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Bouvier T, Del Giorgio PA. Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol. 2007;9:287–97.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol. 2003;6:417–24.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Howard-Varona C, Hargreaves KR, Solonenko NE, Markillie LM, White RA, Brewer HM, et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 2018;12:1605–18.
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Weinbauer MG, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environ Microbiol. 2004;6:1–11.
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Thurber RV. Current insights into phage biodiversity and biogeography. Curr Opin Microbiol. 2009;12:582–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Chow C-ET, Suttle CA. Biogeography of viruses in the sea. Annu Rev Virol. 2015;2:41–66.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Shkoporov AN, Khokhlova EV, Fitzgerald CB, Stockdale SR, Draper LA, Ross RP, et al. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat Commun. 2018;9:4781.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Breitbart M, Miyake JH, Rohwer F. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol Lett. 2004;236:249–56.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun. 2014;5:4498.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Jameson E, Mann NH, Joint I, Sambles C, Mühling M. The diversity of cyanomyovirus populations along a North-South Atlantic Ocean transect. ISME J. 2011;5:1713–21.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Delong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N, et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 2006;311:496–503.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Finke JF, Suttle CA. The environment and cyanophage diversity: insights from environmental sequencing of DNA polymerase. Front Microbiol. 2019;10:167.
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Hanson CA, Marston MF, Martiny JB. Biogeographic variation in host range phenotypes and taxonomic composition of marine cyanophage isolates. Front Microbiol. 2016;7:983.
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Huang S, Zhang S, Jiao N, Chen F. Marine cyanophages demonstrate biogeographic patterns throughout the global ocean. Appl Environ Microbiol. 2015;81:441–52.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Marston MF, Taylor S, Sme N, Parsons RJ, Noyes TJE, Martiny JBH. Marine cyanophages exhibit local and regional biogeography. Environ Microbiol. 2013;15:1452–63.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Winter C, Matthews B, Suttle CA. Effects of environmental variation and spatial distance on bacteria, archaea and viruses in sub-polar and arctic waters. ISME J. 2013;7:1507–18.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Luo E, Aylward FO, Mende DR, Delong EF. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 2017;8:e01903–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Brum JR, Ignacio-espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    23.
    Dennehy JJ. What ecologists can tell virologists. Annu Rev Microbiol. 2014;68:117–35.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Held NL, Whitaker RJ. Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol. 2009;11:457–66.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Ashby B, Boots M. Multi-mode fluctuating selection in host–parasite coevolution. Ecol Lett. 2017;20:357–65.
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:916–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Vos M, Birkett PJ, Birch E, Griffiths RI, Buckling A. Local adaptation of bacteriophages to their bacterial hosts in soil. Science 2009;325:833.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Gomez P, Buckling A. Coevolution with phages does not influence the evolution of bacterial mutation rates in soil. ISME J. 2013;7:2242–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Kraemer SA, Boynton PJ. Evidence for microbial local adaptation in nature. Mol Ecol. 2017;26:1860–76.
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Kawecki T, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7:1225–41.
    Article  Google Scholar 

    31.
    Lenormand T. Gene flow and the limits to natural selection. Trends Ecol Evol. 2002;17:183–9.
    Article  Google Scholar 

    32.
    Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution. 2008;62:316–36.
    PubMed  Article  Google Scholar 

    33.
    Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol. 2013;22:5983–99.
    PubMed  Article  Google Scholar 

    34.
    Zhang Q-G, Buckling A. Migration highways and migration barriers created by host–parasite interactions. Ecol Lett. 2016;19:1479–85.
    PubMed  Article  Google Scholar 

    35.
    Wang IJ, Bradburd GS. Isolation by environment. Mol Ecol. 2014;23:5649–62.
    PubMed  Article  Google Scholar 

    36.
    Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci. 2002;269:931–6.
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Kunin V, He S, Warnecke F, Peterson SB, Garcia Martin H, Haynes M, et al. A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res. 2008;18:293–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Lopez Pascua L, Gandon S, Buckling A. Abiotic heterogeneity drives parasite local adaptation in coevolving bacteria and phages. J Evol Biol. 2012;25:187–95.
    CAS  PubMed  Article  Google Scholar 

    39.
    Baumann P. Biology of endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005;59:155–89.
    CAS  PubMed  Article  Google Scholar 

    40.
    Levy A, Gonzalez IS, Mittelviefhaus M, Clingenpeel S, Paredes SH, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2018;50:138–50.
    CAS  Article  Google Scholar 

    41.
    Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005;307:1915–20.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    42.
    Heath KD, Tiffin P. Context dependence in the coevolution of plant and rhizobial mutualists. Proc Biol Sci. 2007;274:1905–12.
    PubMed  PubMed Central  Google Scholar 

    43.
    Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol Plant Microbe Interact. 2010;23:784–90.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Aguilar OM, Riva O, Peltzer E. Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci. 2004;101:13548–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, et al. Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. N Phytol. 2013;197:300–13.
    CAS  Article  Google Scholar 

    46.
    Koenig R, Gepts P. Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor Appl Genet. 1989;78:809–17.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Melkonian R, Moulin L, Béna G, Tisseyre P, Chaintreuil C, Heulin K, et al. The geographical patterns of symbiont diversity in the invasive legume Mimosa pudica can be explained by the competitiveness of its symbionts and by the host genotype. Environ Microbiol. 2014;16:2099–111.
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Tian CF, Young JPW, Wang ET, Tamimi SM, Chen WX. Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiol Ecol. 2010;73:563–76.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Burdon JJ, Thrall PH. Spatial and temporal patterns in coevolving plant and pathogen associations. Am Nat. 1999;153:S15–S33.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Van Cauwenberghe J, Visch W, Michiels J, Honnay O. Selection mosaics differentiate Rhizobium-host plant interactions across nitrogen environments. Oikos 2016;125:1755–61.
    Article  Google Scholar 

    51.
    Guimarães PR, Pires MM, Jordano P, Bascompte J, Thompson JN. Indirect effects drive coevolution in mutualistic networks. Nature 2017;550:511–4.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    52.
    Heath KD, Lau JA. Herbivores alter the fitness benefits of a plant–rhizobium mutualism. Acta Oecol. 2011;37:87–92.
    Article  Google Scholar 

    53.
    Rogers HS, Buhle ER, HilleRisLambers J, Fricke EC, Miller RH, Tewksbury JJ. Effects of an invasive predator cascade to plants via mutualism disruption. Nat Commun. 2017;8:6–13.
    Article  CAS  Google Scholar 

    54.
    Delmas E, Besson M, Brice MH, Burkle LA, Dalla Riva GV, Fortin MJ, et al. Analysing ecological networks of species interactions. Biol Rev. 2019;94:16–36.
    Article  Google Scholar 

    55.
    Gaiarsa MP, Guimarães PR. Interaction strength promotes robustness against cascading effects in mutualistic networks. Sci Rep. 2019;9:1–7.
    CAS  Article  Google Scholar 

    56.
    Sih A, Crowley P, McPeek M, Petranka J, Strohmeier K. Predation, competition, and prey communities: a review of field experiments. Annu Rev Ecol Syst. 1985;16:269–311.
    Article  Google Scholar 

    57.
    Parratt SR, Barrès B, Penczykowski RM, Laine AL. Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory. Mol Ecol. 2017;26:1964–79.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Hatcher MJ, Dick JTA, Dunn AM. How parasites affect interactions between competitors and predators. Ecol Lett. 2006;9:1253–71.
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Hutchinson MC, Bramon Mora B, Pilosof S, Barner AK, Kéfi S, Thébault E, et al. Seeing the forest for the trees: putting multilayer networks to work for community ecology. Funct Ecol. 2019;33:206–17.
    Article  Google Scholar 

    60.
    Koskella B, Taylor TB. Multifaceted impacts of bacteriophages in the plant microbiome. Annu Rev Phytopathol. 2018;56:361–80.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Evans TJ, Ind A, Komitopoulou E, Salmond GPC. Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. J Appl Microbiol. 2010;109:505–14.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Perez Carrascal OM, Vaninsberghe D, Juárez S, Polz MF. Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris. Environ Microbiol. 2016;18:2660–76.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Santamaría RI, Bustos P, Sepúlveda-Robles O, Lozano L, Rodríguez C, Fernández JL, et al. Narrow-host-range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl Environ Microbiol. 2014;80:446–54.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Carlson K. Working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds). Bacteriophages: biology and applications. Boca Raton, FL: CRC Press; 2005). p. 437–94.

    66.
    Werle E, Schneider C, Renner M, Völker M, Fiehn W. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res. 1994;22:4354–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-Cell sequencing. J Comput Biol. 2012;19:455–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Gordon D, Green P. Consed: a graphical editor for next-generation sequencing. Bioinformatics 2013;29:2936–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep. 2016;6:24373.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3 — new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci. 2009;106:19126–31.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–14.
    Article  Google Scholar 

    76.
    Lopes A, Tavares P, Petit M, Guérois R, Zinn-justin S. Automated classification of tailed bacteriophages according to their neck organization. BMC Genom. 2014;15:1027.
    Article  CAS  Google Scholar 

    77.
    Hyman P, Abedon ST. Phage host range and efficiency of plating. In: Clokie MRJ, Kropinski AM (eds). Bacteriophages, methods and protocols. Vol. I: Isolation, characterization, and interactions. Totowa, NJ: Humana Press; 2009. p. 175–202.

    78.
    Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Holmfeldt K, Solonenko N, Howard-Varona C, Moreno M, Malmstrom RR, Blow MJ, et al. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems. Environ Microbiol. 2016;18:3949–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Ishizawa H, Kuroda M, Morikawa M, Ike M. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnol Biofuels. 2017;10:1–10.
    Article  CAS  Google Scholar 

    81.
    Cenens W, Makumi A, Mebrhatu MT, Lavigne R, Aertsen A. Phage–host interactions during pseudolysogeny. Bacteriophage 2013;3:e25029.
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Glinn D, et al. Community Ecology Package. https://cran.r-project.org, https://github.com/vegandevs/vegan. 2019.

    84.
    Flores CO, Poisot T, Valverde S, Weitz JS. BiMat: a MATLAB package to facilitate the analysis of bipartite networks. Methods Ecol Evol. 2016;7:127–32.
    Article  Google Scholar 

    85.
    Consul PC. A simple urn model dependent on predetermined strategy. Sankhyā Indian J Stat Ser B. 1974;36:391–9.
    Google Scholar 

    86.
    Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell. 2002;153:51–68.
    Article  Google Scholar 

    87.
    Flores CO, Valverde S, Weitz JS. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 2013;7:520–32.
    PubMed  Article  PubMed Central  Google Scholar 

    88.
    Porter SS, Chang PL, Conow CA, Dunham JP, Friesen ML. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J. 2016;11:248–62.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    89.
    Greenlon A, Chang PL, Damtew ZM, Muleta A, Carrasquilla-Garcia N, Kim D, et al. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc Natl Acad Sci. 2019;116:15200–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Scola V, Ramond JB, Frossard A, Zablocki O, Adriaenssens EM, Johnson RM, et al. Namib desert soil microbial community diversity, assembly, and function along a natural xeric gradient. Micro Ecol. 2018;75:193–203.
    CAS  Article  Google Scholar 

    91.
    Short CM, Suttle CA. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol. 2005;71:480–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    92.
    Edwards RA, Vega AA, Norman HM, Ohaeri M, Levi K, Dinsdale EA, et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol. 2019;4:1727–36.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Culley AI, Steward GF. New genera of RNA viruses in subtropical seawater, inferred from polymerase gene sequences. Appl Environ Microbiol. 2007;73:5937–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Miranda-Sánchez F, Rivera J, Vinuesa P. Diversity patterns of Rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes. Environ Microbiol. 2016;18:2375–91.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    95.
    Bontemps C, Rogel MA, Wiechmann A, Mussabekova A, Moody S, Simon MF, et al. Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts. N Phytol. 2016;209:319–33.
    CAS  Article  Google Scholar 

    96.
    Van Cauwenberghe J, Lemaire B, Stefan A, Efrose R, Michiels J, Honnay O. Symbiont abundance is more important than pre-infection partner choice in a Rhizobium – legume mutualism. Syst Appl Microbiol. 2016;39:345–9.
    PubMed  Article  PubMed Central  Google Scholar 

    97.
    Van Cauwenberghe J, Michiels J, Honnay O. Effects of local environmental variables and geographical location on the genetic diversity and composition of Rhizobium leguminosarum nodulating Vicia cracca populations. Soil Biol Biochem. 2015;90:71–9.
    Article  CAS  Google Scholar 

    98.
    Van Cauwenberghe J, Verstraete B, Lemaire B, Lievens B, Michiels J, Honnay O. Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst Appl Microbiol. 2014;37:613–21.
    PubMed  Article  PubMed Central  Google Scholar 

    99.
    Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015;9:472–84.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    Mühling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, et al. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton. Environ Microbiol. 2005;7:499–508.
    PubMed  Article  PubMed Central  Google Scholar 

    101.
    Sun Y, Zhang S, Long L, Dong J, Chen F, Huang S. Genetic diversity and cooccurrence patterns of marine cyanopodoviruses and picocyanobacteria. Appl Environ Microbiol. 2018;84:e00591–18.
    CAS  PubMed  PubMed Central  Google Scholar 

    102.
    Chase AB, Arevalo P, Brodie EL, Polz MF, Karaoz U, Martiny JBH. Maintenance of sympatric and allopatric populations in free-living terrestrial bacteria. mBio. 2019;10:e02361–19.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS. Statistical structure of host – phage interactions. Proc Natl Acad Sci. 2011;108:E288.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    104.
    Koskella B, Thompson JN, Preston GM, Buckling A. Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria. Am Nat. 2011;177:440–51.
    PubMed  Article  PubMed Central  Google Scholar 

    105.
    Koskella B, Parr N. The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time. Philos Trans R Soc B Biol Sci. 2015;370:20140297.
    Article  Google Scholar 

    106.
    Morgan AD, Gandon S, Buckling A. The effect of migration on local adaptation in a coevolving host-parasite system. Nature 2005;437:253–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Gómez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:12453.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    108.
    Zhang Q-G, Buckling A. Resource-dependent antagonistic coevolution leads to a new paradox of enrichment. Ecology 2016;97:1319–28.
    PubMed  Article  PubMed Central  Google Scholar 

    109.
    Lopez-Pascua LDC, Buckling A. Increasing productivity accelerates host-parasite coevolution. J Evol Biol. 2008;21:853–60.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    110.
    Gurney J, Aldakak L, Betts A, Gougat-Barbera C, Poisot T, Kaltz O, et al. Network structure and local adaptation in co-evolving bacteria–phage interactions. Mol Ecol. 2017;26:1764–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    111.
    Thompson JN. The geographic mosaic of coevolution. Chicago, IL: Uni. Chicago Press; 2005. More

  • in

    Metabolomic signatures of coral bleaching history

    1.
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).
    CAS  PubMed  Google Scholar 
    2.
    Muscatine, L. & Porter, J. W. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27, 454–460 (1977).
    Google Scholar 

    3.
    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508–511 (2013).
    Google Scholar 

    4.
    National Academies of Sciences, Engineering, and Medicine A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs (The National Academies Press, 2019); https://doi.org/10.17226/25279

    5.
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).
    CAS  PubMed  Google Scholar 

    6.
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
    CAS  PubMed  Google Scholar 

    7.
    Bay, R. & Palumbi, S. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).
    PubMed  PubMed Central  Google Scholar 

    9.
    Ziegler, M., Seneca, F., Yum, L. & P, S.-N. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Hillyer, K. E. et al. 13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics 14, 12 (2018).
    Google Scholar 

    11.
    Hillyer, K. E. et al. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs 36, 105–118 (2017).
    Google Scholar 

    12.
    Sogin, E. M., Putnam, H., Gates, R. D., Putnam, H. M. & Anderson, P. E. Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral Pocillopora damicornis. Metablomics 12, 71 (2016).
    Google Scholar 

    13.
    Hillyer, K. E., Tumanov, S., Villas-Bô As, S. & Davy, S. K. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. https://doi.org/10.1242/jeb.128660 (2016).

    14.
    Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876 (2019).
    Google Scholar 

    15.
    Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).
    PubMed  PubMed Central  Google Scholar 

    16.
    Thomas, L. & Palumbi, S. R. The genomics of recovery from coral bleaching. Proc. R. Soc. B 284, 20171790 (2017).
    PubMed  Google Scholar 

    17.
    Wall, C. B. et al. Shifting baselines: repeat bleaching drives coral physiotypes through environmental legacy and cellular memory. Preprint at bioRxiv https://doi.org/10.1101/2020.04.23.056457 (2020).

    18.
    Matsuda, S. et al. Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species. Front. Ecol. Evol. 8, 178 (2020).
    Google Scholar 

    19.
    Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Glob. Change Biol. 22, 2702–2714 (2016).
    Google Scholar 

    20.
    van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).
    Google Scholar 

    21.
    Anthony, K. R. N. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Change Biol. 21, 48–61 (2015).
    Google Scholar 

    22.
    da Silva, R. R., Lopes, N. P. & Silva, D. B. in Mass Spectrometry in Chemical Biology: Evolving Applications (eds da Silva, R. R. & Lopes, N. P.) 57–81 (Royal Society of Chemistry, 2017).

    23.
    Cunning, R., Ritson-Williams, R. & Gates, R. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).
    CAS  Google Scholar 

    24.
    Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Rosset, S. et al. Lipidome analysis of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbionts. Coral Reefs 38, 1241–1253 (2019).
    Google Scholar 

    26.
    Li, Y. et al. Simultaneous structural identification of diacylglyceryl-N-trimethylhomoserine (DGTS) and diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) in microalgae using dual Li+/H+ adduct ion mode by ultra-performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry. Rapid Commun. Mass Spectrom. 31, 457–468 (2017).
    CAS  PubMed  Google Scholar 

    27.
    Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian–dinoflagellate symbiosis. Proc. Natl Acad. Sci. USA 114, 13194–13199 (2017).
    CAS  PubMed  Google Scholar 

    28.
    Weis, V. M. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).
    CAS  PubMed  Google Scholar 

    29.
    Mansour, J. S., Pollock, F. J., Díaz-Almeyda, E., Iglesias-Prieto, R. & Medina, M. Intra- and interspecific variation and phenotypic plasticity in thylakoid membrane properties across two Symbiodinium clades. Coral Reefs 37, 841–850 (2018).
    Google Scholar 

    30.
    Roach, T. N. F. et al. A multiomic analysis of in situ coral–turf algal interactions. Proc. Natl Acad. Sci. USA 117, 13588–13595 (2020).
    CAS  PubMed  Google Scholar 

    31.
    Quinn, R. A. et al. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc. R. Soc. B 283, 20160469 (2016).
    PubMed  Google Scholar 

    32.
    Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Galtier d’Auriac, I. et al. Before platelets: the production of platelet-activating factor during growth and stress in a basal marine organism. Proc. R. Soc. B 285, 20181307 (2018).
    PubMed  Google Scholar 

    34.
    Quistad, S. D. et al. Evolution of TNF-induced apoptosis reveals 550 My of functional conservation. Proc. Natl Acad. Sci. USA 111, 9567–9572 (2014).
    CAS  PubMed  Google Scholar 

    35.
    Williams, A. et al. Metabolomic shifts associated with heat stress in coral holobionts. Sci. Adv. 7, eabd4210 (2021).
    PubMed Central  Google Scholar 

    36.
    Takahashi, N. Chemistry of Plant Hormones (CRC, 1986).

    37.
    Reyes, F., Martín, R. & Fernández, R. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft coral Eunicella granulata. J. Nat. Prod. 69, 668–670 (2006).
    CAS  PubMed  Google Scholar 

    38.
    Hill, R., Larkum, A. W. & Kramer, D. Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching. Coral Reefs 31, 963–975 (2012).
    Google Scholar 

    39.
    Venn, A. A., Wilson, M. A., Trapido-Rosenthal, H. G., Keely, B. J. & Douglas, A. E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29, 2133–2142 (2006).
    CAS  PubMed  Google Scholar 

    40.
    Martin, F. J. et al. A top-down systems biology view of microbiome–mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).
    PubMed  PubMed Central  Google Scholar 

    41.
    Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).
    CAS  PubMed  Google Scholar 

    43.
    Dixon, G., Abbott, E. & Matz, M. Meta-analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol. Ecol. https://doi.org/10.1111/mec.15535 (2020).

    44.
    Boström-Einarsson, L. et al. Coral restoration – a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).
    PubMed  PubMed Central  Google Scholar 

    45.
    Van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
    PubMed  Google Scholar 

    46.
    Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).
    PubMed  PubMed Central  Google Scholar 

    47.
    Bay, R., Rose, N., Logan, C. & Palumbi, S. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).
    PubMed  PubMed Central  Google Scholar 

    48.
    Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).
    PubMed  Google Scholar 

    49.
    Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).
    Google Scholar 

    50.
    Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).
    CAS  PubMed  Google Scholar 

    52.
    Martin, C. et al. Viscosin-like lipopeptides from frog skin bacteria inhibit Aspergillus fumigatus and Batrachochytrium dendrobatidis detected by imaging mass spectrometry. Sci. Rep. 9, 3019 (2019).
    Google Scholar 

    53.
    Cunning, R., Gillette, P., Capo, T., Galvez, K. & Baker, A. C. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34, 155–160 (2015).
    Google Scholar 

    54.
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).
    Google Scholar  More

  • in

    Ocean acidification may slow the pace of tropicalization of temperate fish communities

    1.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Article  Google Scholar 
    2.
    Pecl, G. T. et al. Biodiversity redistribution under climate: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Article  CAS  Google Scholar 

    3.
    Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883–894 (2008).
    CAS  Article  Google Scholar 

    4.
    Feary, D. A. et al. Latitudinal shift in coral reef fishes: why some species do other do not shift. Fish. Fish. (Oxf.) 15, 593–615 (2013).
    Article  Google Scholar 

    5.
    Nakamura, Y., Feary, D. A., Kanda, M. & Yamaoka, K. Tropical fishes dominate temperate reef fish communities within western Japan. PLoS ONE 8, e81107 (2013).
    Article  CAS  Google Scholar 

    6.
    Peers, M. J. L., Wehtje, M., Thornton, D. H. & Murray, D. L. Prey switching as a means of enhancing persistence in predators at the trailing southern edge. Glob. Change Biol. 20, 1126–1135 (2014).
    Article  Google Scholar 

    7.
    Verges, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).
    CAS  Article  Google Scholar 

    8.
    Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddo, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731 (2009).
    Article  Google Scholar 

    9.
    Johnson, C. R., Ling, S. D., Ross, J., Shepherd, S. & Miller, K. Establishment of the Long-Spined Sea Urchin (Centrostephanus rodgersii) in Tasmania: First Assessment of Potential Threats to Fisheries. FRDC Final Report, Project No. 2001/044 (School of Zoology & Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, 2005).

    10.
    Beck, H. J., Feary, D. A., Nakamura, Y. & Booth, D. J. Temperate macroalgae impacts tropical fish recruitment at forefront of range expansion. Coral Reefs 36, 639–651 (2017).
    Article  Google Scholar 

    11.
    Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl Acad. Sci. USA 112, 13272–13277 (2015).
    CAS  Article  Google Scholar 

    12.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    CAS  Article  Google Scholar 

    13.
    Connell, S. D. et al. The duality of ocean acidification as a resource and a stressor. Ecology 99, 1005–1010 (2018).
    Article  Google Scholar 

    14.
    Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Russell, B. D. & Connell, S. D. Species interactions drive fish biodiversity loss in a high-CO2 world. Curr. Biol. 27, 2177–2184 (2017).
    CAS  Article  Google Scholar 

    15.
    Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81–85 (2017).
    CAS  Article  Google Scholar 

    16.
    Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Proc. R. Soc. B 368, 20120442 (2013).
    Google Scholar 

    17.
    Russell, B. D. et al. Future seagrass beds: can increased productivity lead to increased carbon storage? Mar. Pollut. Bull. 73, 463–469 (2013).
    CAS  Article  Google Scholar 

    18.
    Palacios, S. L. & Zimmerman, R. C. Response of ellgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar. Ecol. Prog. Ser. 344, 1–13 (2007).
    Article  Google Scholar 

    19.
    Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob. Change Biol. 17, 2488–2497 (2011).
    Article  Google Scholar 

    20.
    Linares, C. et al. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc. R. Soc. B Biol. Sci. 282, 20150587 (2015).
    CAS  Article  Google Scholar 

    21.
    Russell, B. D., Thompson, J. A. I., Falkenberg, L. J. & Connell, S. D. Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob. Change Biol. 15, 2153–2162 (2009).
    Article  Google Scholar 

    22.
    Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B Biol. Sci. 277, 1409–1415 (2010).
    Article  Google Scholar 

    23.
    Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162 (2011).
    Article  Google Scholar 

    24.
    Johnson, M. D., Comeau, S., Lantz, C. A. & Smith, J. E. Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages. Coral Reefs 36, 1059–1070 (2017).
    Article  Google Scholar 

    25.
    Kroeker, K. J., Kordas, R. L. & Harley, D. G. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).
    Article  CAS  Google Scholar 

    26.
    Goldenberg, S. U., Nagelkerken, I., Ferreira, C. M., Ullah, H. & Connell, S. D. Boosted food web productivity through ocean acidification collapses under warming. Glob. Change Biol. 23, 4177–4184 (2017).
    Article  Google Scholar 

    27.
    Wernberg, T., Smale, D. A. & Thomsen, M. S. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob. Change Biol. 18, 1491–1498 (2012).
    Article  Google Scholar 

    28.
    Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA 108, 14515–14520 (2011).
    CAS  Article  Google Scholar 

    29.
    Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Change 8, 229–233 (2018).
    Article  Google Scholar 

    30.
    Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513–515 (2015).
    Article  Google Scholar 

    31.
    Widdicombe, S., Dupont, S. & Thorndyke, M. Laboratory Experiments and Benthic Mesocosm Studies. Guide for Best Practices in Ocean Acidification Research and Data Reporting (EPOCA, 2008).

    32.
    Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).
    CAS  Article  Google Scholar 

    33.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
    CAS  Article  Google Scholar 

    34.
    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
    CAS  Article  Google Scholar 

    35.
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Article  Google Scholar 

    36.
    Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Phil. Trans. R. Soc. B 370, 20130269 (2015).
    Article  Google Scholar 

    37.
    Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull. 73, 470–484 (2013).
    CAS  Article  Google Scholar 

    38.
    Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102–114 (2007).
    Article  Google Scholar 

    39.
    Nagelkerken, I., Russell, B. D., Gillanders, B. M. & Connell, S. D. Ocean acidification alters fish populations indirectly through habitat modification. Nat. Clim. Change 6, 89–93 (2016).
    CAS  Article  Google Scholar 

    40.
    Hall-Spencer, J. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).
    CAS  Article  Google Scholar 

    41.
    Kroeker, K., Gambi, M. C. & Micheli, F. Community dynamics and ecosystem simplification in a high-CO2 ocean. Proc. Natl Acad. Sci. USA 110, 12721–12726 (2013).
    CAS  Article  Google Scholar 

    42.
    Enochs, I. C. et al. Shift from coral to macroalgae dominance on volcanically acidified reef. Nat. Clim. Change 5, 1083–1088 (2015).
    CAS  Article  Google Scholar 

    43.
    Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).
    Article  Google Scholar 

    44.
    Perry, A. L., Low, O. L., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
    CAS  Article  Google Scholar 

    45.
    Steneck, R. S. Herbivory on coral reefs: a synthesis. In Proc. 6th International Coral Reef Symposium. Vol. 1, 37–49 (1988).

    46.
    Purcell, S. W. & Bellwood, D. R. A functional analysis of food procurement in two surgeonfish species, Acanthurus nigrofuscus and Ctenochaetus striatus (Acanthuridae). Environ. Biol. Fishes 37, 139–159 (1993).
    Article  Google Scholar 

    47.
    Curley, B. G., Gillanders, B. M. & Kingsford, M. J. Spatial and habitat related patterns of temperate reef fish assemblages: implications for the design of marine protected areas. Mar. Freshw. Res. 53, 1197–1210 (2002).
    Article  Google Scholar 

    48.
    Coen, L. D., Luckenbach, M. W. & Breitburg, D. L. The role of oyster reef as essential fish habitat: a review of current knowledge and some new perspectives. Am. Fish. Soc. Symp. 22, 438–454 (1999).
    Google Scholar 

    49.
    Lenihan, H. S. et al. Cascading of habitat degradation: oyster reefs invaded by refugee fishes escaping stress. Ecol. Appl. 11, 764–782 (2001).
    Article  Google Scholar 

    50.
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
    CAS  Article  Google Scholar 

    51.
    Thomas, Y., Cassou, C., Gernez, P. & Pouvreau, S. Oysters as sentinels of climatic variability and climatic change in coastal ecosystems. Environ. Res. Lett. 13, 104009 (2018).
    Article  Google Scholar 

    52.
    Alleway, H. K. & Connell, S. D. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory. Conserv. Biol. 29, 795–804 (2015).
    Article  Google Scholar 

    53.
    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. BioScience 168, 64–76 (2018).
    Article  Google Scholar 

    54.
    O’Brien, J. M. & Scheibling, R. E. Turf wars: competition between foundation and turf-forming species on temperate and tropical reefs and its role in regime shifts. Mar. Ecol. Prog. Ser. 599, 1–17 (2018).
    Article  Google Scholar 

    55.
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).
    Article  Google Scholar 

    56.
    Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70–78 (2016).
    Article  Google Scholar 

    57.
    Smith, S. M., Fox, R. J., Booth, D. J. & Donelson, J. M. ‘Stick with your kind, or hang with locals?’ Implications of shoaling strategy for tropical reef fish on a range-expansion frontline. Glob. Change Biol. 24, 1663–1672 (2018).
    Article  Google Scholar 

    58.
    Kingsbury, K. M., Gillanders, B. M., Booth, D. J., Coni, E. O. C. & Nagelkerken, I. Range-extending coral reef fishes trade-off growth for maintenance of body condition in cooler waters. Sci. Total Environ. 703, 134598 (2019).
    Article  CAS  Google Scholar 

    59.
    Kingsbury, K. M., Gillanders, B. M., Booth, D. J. & Nagelkerken, I. Trophic niche segregation allows range-extending coral reef fishes to co-exist with temperate species under climate change. Glob. Change Biol. 26, 721–733 (2020).
    Article  Google Scholar 

    60.
    Foo, S. A., Dworjanyn, S. A., Poore, A. G. B. & Byrne, M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS ONE 7, e42497 (2012).
    CAS  Article  Google Scholar 

    61.
    Kelly, M. W., Padilla-Gamino, J. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrus purpuratus. Glob. Change Biol. 19, 2536–2546 (2013).
    Article  Google Scholar 

    62.
    Uthicke, S. et al. Little evidence of adaptation potential to ocean acidification at a CO2 vent. Ecol. Evol. 9, 10004–10016 (2019).
    Article  Google Scholar 

    63.
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).
    CAS  Article  Google Scholar 

    64.
    Siikayuopio, A. I., Mortesen, A., Dale, T. & Foss, A. Effects of carbon dioxide exposure on feed intake and gonad growth in green sea urchin, Stringylicentritus droebachiensis. Aquaculture 266, 97–101 (2007).
    Article  CAS  Google Scholar 

    65.
    Dworjanyn, S. A. & Byrne, M. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Proc. R. Soc. B Biol. Sci. 285, 20172684 (2018).
    Article  CAS  Google Scholar 

    66.
    Miles, H., Widdicombe, S., Spicer, J. I. & Hall-Spencer, J. Effects of anthropogenic seawater acidification on acid–base balance in the sea urchin Psammechinus miliaris. Mar. Pollut. Bull. 54, 89–96 (2007).
    CAS  Article  Google Scholar 

    67.
    Spicer, J. I., Widdicombe, S., Needham, H. R. & Berge, J. A. Impact of CO2-acidified seawater on the extracellular acid–base balance of the northern sea urchin Strongylocentrotus dröebachiensis. J. Exp. Mar. Biol. Ecol. 407, 19–25 (2011).
    CAS  Article  Google Scholar 

    68.
    Uthicke, S. et al. Echinometra sea urchins acclimatized to elevated pCO2 at volcanic vents outperform those under present-day pCO2 conditions. Glob. Change Biol. 22, 2451–2461 (2016).
    Article  Google Scholar 

    69.
    Wernberg, T. et al. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett. 13, 685–694 (2010).
    Article  Google Scholar 

    70.
    Simonson, E. J., Metaxas, A. & Scheibling, R. E. Kelp in hot water: effects of warming seawater temperature on kelp quality as a food source and settlement substrate. Mar. Ecol. Prog. Ser. 537, 105–119 (2015).
    CAS  Article  Google Scholar 

    71.
    Ross, P. M., Parker, L. & Byrne, M. Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J. Mar. Sci. 73, 537–549 (2016).
    Article  Google Scholar 

    72.
    Wong, J. M., Johnson, K. M., Kelly, M. W. & Hofmann, G. E. Transcriptomics reveals transgenerational effects in purple sea urchin embryos: adult acclimation to upwelling conditions alters the response of their progeny to differential pCO2 levels. Mol. Ecol. 27, 1120–1137 (2018).
    CAS  Article  Google Scholar 

    73.
    Clark, M. S. et al. Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris. Sci. Rep. 9, 952 (2019).
    Article  CAS  Google Scholar 

    74.
    Ghedini, G., Russell, B. D. & Connell, S. D. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol. Lett. 18, 182–187 (2015).
    Article  Google Scholar 

    75.
    Munday, P. L., Rummer, J. L. & Baumann, H. Adaptation and evolutionary responses to high CO2. Fish. Physiol. 37, 369–395 (2019).
    Article  Google Scholar 

    76.
    Miller, G. M., Watson, S. A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat. Clim. Change 2, 858–861 (2012).
    CAS  Article  Google Scholar 

    77.
    Allan, B. J. M., Miller, G. M., McCormick, M. I., Domenici, P. & Munday, P. L. Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proc. R. Soc. B Biol. Sci. 281, 20132179 (2014).
    Article  Google Scholar 

    78.
    Welch, M., Watson, S., Welsh, J. Q., McCormick, M. I. & Munday, P. L. Effect of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nat. Clim. Change 4, 1086–1089 (2014).
    CAS  Article  Google Scholar 

    79.
    Rummer, J. L. & Munday, P. L. Climate change and the evolution of reef fishes: past and future. Fish. Fish. (Oxf.) 18, 22–39 (2017).
    Article  Google Scholar 

    80.
    Connell, S. D. & Irving, A. D. Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J. Biogeogr. 35, 1608–1621 (2008).
    Article  Google Scholar 

    81.
    Pecorino, D., Lamare, M. D. & Barker, M. F. Growth, morphometrics and size structure of the Diamatidae sea urchin Centrostephanus rodgersii in northern New Zealand. Mar. Freshw. Res. 63, 624–634 (2012).
    Article  Google Scholar 

    82.
    Brinkman, T. J. & Smith, A. M. E. Effects of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand. Mar. Freshw. Res. 66, 360–370 (2015).
    Article  Google Scholar 

    83.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 596, 82–90 (2017).
    Article  CAS  Google Scholar 

    84.
    Booth, D. J., Beretta, G. A., Brown, L. & Figueira, W. F. Predicting success of range-expanding coral reef fish in temperate habitats using fish in temperature–abundance relationships. Front. Mar. Sci. 5, 31 (2018).
    Article  Google Scholar 

    85.
    Ridgeway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613 (2007).
    Google Scholar 

    86.
    Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425 (2013).
    Article  Google Scholar 

    87.
    Figueira, W. F. & Booth, D. J. Increasing ocean temperatures allow tropical fishes to survive overwinter in temperate waters. Glob. Change Biol. 16, 506–516 (2010).
    Article  Google Scholar 

    88.
    McLeod, I. et al. Habitat value of Sydney rock oyster (Saccostrea glomerata) reefs on soft sediments. Mar. Freshw. Res. 71, 771–781 (2019).
    Article  Google Scholar 

    89.
    Gillies, C. L. et al. Australian shellfish ecosystems: past distribution, current status and future direction. PLoS ONE 13, e0190914 (2018).
    Article  CAS  Google Scholar 

    90.
    Minte-Vera, C. V., Moura, R. L. & Francini-Filho, R. B. Nested sampling: an improved visual-census technique for studying reef fish assemblages. Mar. Ecol. Prog. Ser. 367, 283–293 (2008).
    Article  Google Scholar 

    91.
    Fulton, C. J., Noble, M. N., Radford, B., Gallen, C. & Harasti, D. Microhabitat selectivity underpins regional indicators of fish abundance and replenishment. Ecol. Indic. 70, 222–231 (2016).
    Article  Google Scholar 

    92.
    Choat, J. H. & Clements, K. D. Diet in Odacid and Aplodactylid fishes from Australia and New Zealand. Aust. J. Mar. Freshw. Res. 43, 1451–1459 (1992).
    Article  Google Scholar 

    93.
    Clements, K. D. & Choat, J. H. Comparison of herbivory in the closely-related marine fish genera Girella and Kyphosus. Mar. Biol. 127, 579–586 (1997).
    Article  Google Scholar 

    94.
    Ceccarelli, D. M. Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853–866 (2007).
    Article  Google Scholar 

    95.
    Zarco-Perello, S., Wemberg, T., Langlois, T. J. & Vanderklift, M. A. Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Sci. Rep. 7, 820 (2017).
    Article  CAS  Google Scholar 

    96.
    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).
    Article  Google Scholar 

    97.
    Paliy, O. & Shankar, V. Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032–1057 (2016).
    CAS  Article  Google Scholar 

    98.
    Hemingson, C. R. & Bellwood, D. R. Biogeographic patterns in major marine realms: function not taxonomy unites fish assemblages in reef, seagrass and mangrove systems. Ecography 41, 174–182 (2018).
    Article  Google Scholar 

    99.
    McClanahan, T. R. & Kaunda-Arara, B. Fishery recovery in a coral-reef marine park and its effect on the adjacent fishery. Conserv. Biol. 10, 1187–1199 (1996).
    Article  Google Scholar 

    100.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 

    101.
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).
    Article  Google Scholar 

    102.
    Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011).
    Article  Google Scholar 

    103.
    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

    104.
    Jax, K. Thresholds, tipping points and limits. In OpenNESS Ecosystem Services Reference Book (eds Potschin, M. & Jax, K.) (2016). More

  • in

    Dogs display owner-specific expectations based on olfaction

    1.
    Kaminski, J. & Marshall-Pescini, S. The Social Dog: Behaviour and Cognition (Elsevier publishers, Dordrecht, 2014).
    Google Scholar 
    2.
    Brown, D. S. & Johnston, R. E. in Chemical Signals in Vertebrates 3 (ed D Müller-Schwartze) 343–346 (Plenum Press, 1983).

    3.
    Cafazzo, S., Natoli, E. & Valsecchi, P. Scent-marking behaviour in a pack of free-ranging domestic dogs. Ethology 118, 955–966. https://doi.org/10.1111/j.1439-0310.2012.02088.x (2012).
    Article  Google Scholar 

    4.
    Lisberg, A. E. & Snowdon, C. T. The effects of sex, gonadectomy and status on investigation patterns of unfamiliar conspecific urine in domestic dogs, Canis familiaris. Anim. Behav. 77, 1147–1154 (2009).
    Article  Google Scholar 

    5.
    Walker, D. B. et al. Naturalistic quantification of canine olfactory sensitivity. Appl. Anim. Behav. Sci. 97, 241–254. https://doi.org/10.1016/j.applanim.2005.07.009 (2006).
    Article  Google Scholar 

    6.
    Miklosi, A. Dog Behaviour, Evolution, and Cognition 1st edn, Vol. 304 (Oxford University Press, Oxford, 2007).
    Google Scholar 

    7.
    Hall, N., Glenn, K., Smith, D. & Wynne, C. Performance of Pugs, German Shepherds, and Greyhounds (Canis lupus familiaris) on an odor-discrimination task. J. Comp. Psychol. 129, 237–246 (2015).
    Article  Google Scholar 

    8.
    Williams, M. & Johnston, J. M. Training and maintaining the performance of dogs (Canis familiaris) on an increasing number of odor discriminations in a controlled setting. Appl. Anim. Behav. Sci. 78, 55–65. https://doi.org/10.1016/s0168-1591(02)00081-3 (2002).
    Article  Google Scholar 

    9.
    Alasaad, S. et al. Sarcoptic-mange detector dogs used to identify infected animals during outbreaks in wildlife. Vet. Res. 8, 33 (2012).
    Google Scholar 

    10.
    Browne, C., Stafford, K. & Fordham, R. The use of scent-detection dogs. Ir. Vet. J. 59, 97–102 (2006).
    Google Scholar 

    11.
    Dalziel, D. J., Uthman, B. M., McGorray, S. P. & Reep, R. L. Seizure-alert dogs: a review and preliminary study. Seizure-Eur. J. Epilepsy 12, 115–120. https://doi.org/10.1016/s1059-1311(02)00225-x (2003).
    Article  Google Scholar 

    12.
    Furton, K. G. & Myers, L. J. The Scientific Foundation And Efficacy Of The Use Of Canines And Chemical Detectors For Explosives. Talanta 43, 487–500 (2001).
    Article  Google Scholar 

    13.
    Gazit, I., Goldblatt, A. & Terkel, J. The role of context specificity in learning: the effects of training context on explosives detection in dogs. Anim. Cogn. 8, 143–150. https://doi.org/10.1007/s10071-004-0236-9 (2005).
    Article  PubMed  Google Scholar 

    14.
    Lim, K., Fisher, M. & Burns-Cox, C. J. Type 1 diabetics and their pets. Diabet. Med. 9, S3–S4 (1992).
    Google Scholar 

    15.
    Lippi, G. & Cervellin, G. Canine olfactory detection of cancer versus laboratory testing: myth or opportunity?. Clin. Chem. Lab. Med. 50, 435–439 (2012).
    CAS  PubMed  Google Scholar 

    16.
    Marchal, S., Bregeras, O., Puaux, D., Gervais, R. & Ferry, B. Rigorous training of dogs leads to high accuracy in human scent matching-to-sample performance. PLoS ONE 11, e0146963 (2016).
    Article  Google Scholar 

    17.
    Brisbin, I. L. J. & Austad, S. N. Testing the individual odor theory of canine olfaction. Anim. Behav. 42, 63–70. https://doi.org/10.1016/s0003-3472(05)80606-2 (1991).
    Article  Google Scholar 

    18.
    Schoon, G. A. A. Scent identification lineups by dogs (Canis familiaris): Experimental design and forensic application. Appl. Anim. Behav. Sci. 49, 257–267. https://doi.org/10.1016/0168-1591(95)00656-7 (1996).
    Article  Google Scholar 

    19.
    Bräuer, J., Hanus, D., Pika, S., Gray, R. & Uomini, N. Old and new approaches to animal cognition: there is not “One Cognition”. J. Intell. 8, 28. https://doi.org/10.3390/jintelligence8030028 (2020).
    Article  PubMed Central  Google Scholar 

    20.
    Prato Previde, E. & Valsecchi, P. in The Social Dog (eds Juliane Kaminski & S Marshall-Pescini) Ch. 6, 165–190 (Elsevier Publishers, 2014).

    21.
    Gacsi, M. et al. Species-specific differences and similarities in the behavior of hand-raised dog and wolf pups in social situations with humans. Dev. Psychobiol. 47, 111–122 (2005).
    Article  Google Scholar 

    22.
    Miklosi, A., Kubinyi, E., Gacsi, M., Viranyi, Z. & Csanyi, V. A simple reason for a big difference: wolves do not look back at humans but dogs do. Curr. Biol. 13, 763–766 (2003).
    CAS  Article  Google Scholar 

    23.
    Marshall-Pescini, S., Rao, A., Virányi, Z. & Range, F. The role of domestication and experience in ‘looking back’ towards humans in an unsolvable task. Sci. Rep. 7, 46636. https://doi.org/10.1038/srep46636 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Miklosi, A., Polgardi, T. J. & J. & Csányi, V. Intentional behavior in dog-human communication: an experimental analysis of “showing’’ behaviour in the dog”. Anim. Cognit. 3, 159–166 (2000).
    Article  Google Scholar 

    25.
    Heberlein, M. T. E., Turner, D. C., Range, F. & Virányi, Z. A comparison between wolves, Canis lupus, and dogs, Canis familiaris, in showing behaviour towards humans. Anim. Behav. 122, 59–66. https://doi.org/10.1016/j.anbehav.2016.09.023 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    26.
    Henschel, M., Winters, J., Müller, T. F. & Bräuer, J. Effect of shared information and owner behavior on showing in dogs (Canis familiaris). Anim. Cogn. https://doi.org/10.1007/s10071-020-01409-9 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Kaminski, J., Neumann, M., Bräuer, J., Call, J. & Tomasello, M. Domestic dogs communicate to request and not to inform. Anim. Behav. 82, 651–658 (2011).
    Article  Google Scholar 

    28.
    Piotti, P. & Kaminski, J. Do dogs provide information helpfully?. PLoS ONE 11, e0159797. https://doi.org/10.1371/journal.pone.0159797 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Topal, J. et al. Attachment to humans: a comparative study on hand-reared wolves and differently socialized dog puppies. Anim. Behav. 70, 1367–1375 (2005).
    Article  Google Scholar 

    30.
    Gacsi, M., Topal, J., Miklosi, A., Doka, A. & Csanyi, V. Attachment behavior of adult dogs (Canis familiaris) living at rescue centers: forming new bonds. J. Comp. Psychol. 115, 423–431 (2001).
    Article  Google Scholar 

    31.
    Hare, B. & Tomasello, M. Human-like social skills in dogs?. Trends Cognit. Sci. 9, 439–444 (2005).
    Article  Google Scholar 

    32.
    Nagasawa, M. et al. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science 348, 333–336. https://doi.org/10.1126/science.1261022 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    33.
    Bräuer, J. & Belger, J. A ball is not a Kong: odor representation and search behavior in domestic dogs (Canis familiaris) of different education. J. Comp. Psychol. 132, 189–199. https://doi.org/10.1037/com0000115 (2018).
    Article  PubMed  Google Scholar 

    34.
    Hepper, P. G. & Wells, D. L. How many footsteps do dogs need to determine the direction of an odour trail. Chem. Senses 30, 291–298 (2005).
    Article  Google Scholar 

    35.
    Wells, D. L. & Hepper, P. G. Directional tracking in the domestic dog, Canis familiaris. Appl. Anim. Behav. Sci. 84, 297–305. https://doi.org/10.1016/j.applanim.2003.08.009 (2003).
    Article  Google Scholar 

    36.
    Polgár, Z., Miklósi, Á. & Gácsi, M. Strategies used by pet dogs for solving olfaction-based problems at various distances. PLoS ONE 10, e0131610. https://doi.org/10.1371/journal.pone.0131610.pmid:26176609 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Phillips, C. J., Coppinger, R. P. & Schimel, D. S. Hyperthermia in running sled dogs. J. Appl. Physiol. 51, 135–142. https://doi.org/10.1152/jappl.1981.51.1.135 (1981).
    CAS  Article  PubMed  Google Scholar 

    38.
    Köhler, F. Vergleichende Untersuchungen zur Belastung von Lawinen- und Rettungshunden bei der Lauf- und der Sucharbeit Ph.D. thesis, Ludwig-Maximilians-Universität München (2004).

    39.
    Snovak, A. E. Guide to search and rescue dogs (Hauppauge, New York, 2004).
    Google Scholar 

    40.
    Pearsall, M. D. & Verbruggen, H. Scent—Training to Track, Search and Rescue (Alpine Publications, Crawford, 1982).
    Google Scholar 

    41.
    Syrotuck, W. G. Scent and the Scenting Dog (Barkleigh Productions, Mechanicsburg, 2000).
    Google Scholar 

    42.
    Judah, J. C. Building a Basic Foundation for Search and Rescue Dog Training (Lulu Publishing, Morrisville, 2007).
    Google Scholar 

    43.
    Jones, K. E., Dashfield, K., Downend, A. B. & Otto, C. M. Search-and-rescue dogs: an overview for veterinarians. J. Am. Vet. Med. Assoc. 225, 854–860. https://doi.org/10.2460/javma.2004.225.854 (2004).
    Article  PubMed  Google Scholar 

    44.
    Wright, G. A. & Thomson, M. G. A. in Chemical Ecology and Phytochemistry of Forest Ecosys-tems (ed J Romeo) 191–226 (Elsevier, 2005).

    45.
    Woidtke, L., Dreßler, J. & Hädrich-Babian, C. Individual human scent as a forensic identifier using mantrailing. Forensic Sci. Int. 282, 111–121. https://doi.org/10.1016/j.forsciint.2017.11.021 (2017).
    CAS  Article  PubMed  Google Scholar 

    46.
    Goss, K.-U. Comment on “Individual human scent as a forensic identifier using mantrailing”. Forensic Sci. Int. 297, e19. https://doi.org/10.1016/j.forsciint.2019.02.024 (2019).
    CAS  Article  PubMed  Google Scholar 

    47.
    Courts, C., Euteneuer, J. & Gosch, A. There is no evidence that dogs can smell DNA—Comment on “Individual human scent as a forensic identifier using mantrailing”. Forensic Sci. Int. 297, e14–e15 (2019).
    CAS  Article  Google Scholar 

    48.
    Jezierski, T., Ensminger, J. & Papet, L. Canine Olfaction Science and Law (CRC Press, Boca Raton, 2016).
    Google Scholar 

    49.
    Laing, D. G. Natural sniffing gives optimum odour perception for humans. Perception 12, 99–117. https://doi.org/10.1068/p120099 (1983).
    CAS  Article  PubMed  Google Scholar 

    50.
    Gadbois, S. & Reeve, C. Canine olfaction: scent, sign, and situation. In Domestic Dog Cognition and Behavior: The Scientific Study of Canis familiaris (ed. Horowitz, A.) 3–29 (Springer, Berlin, 2014).
    Google Scholar 

    51.
    Neuhaus, V. W. The importance of sniffing to the olfaction of the dog. Zeitschrift für Säugetierkunde 46, 301–310 (1981).
    Google Scholar 

    52.
    Craven, B. A., Paterson, E. G. & Settles, G. S. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. J. R. Soc. Interface 7, 933–943. https://doi.org/10.1098/rsif.2009.0490 (2010).
    Article  PubMed  Google Scholar 

    53.
    Lawson, M. J., Craven, B. A., Paterson, E. G. & Settles, G. S. A Computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction. Chem. Senses 37, 553–566. https://doi.org/10.1093/chemse/bjs039 (2012).
    CAS  Article  PubMed  Google Scholar 

    54.
    Gazit, I. & Terkel, J. Domination of olfaction over vision in explosives detection by dogs. Appl. Anim. Behav. Sci. 82, 65–73. https://doi.org/10.1016/S0168-1591(03)00051-0 (2003).
    Article  Google Scholar 

    55.
    Schmidt-Nielsen, K., Bretz, W. L. & Taylor, C. R. Panting in dogs: unidirectional air flow over evaporative surfaces. Science 169, 1102. https://doi.org/10.1126/science.169.3950.1102 (1970).
    ADS  CAS  Article  PubMed  Google Scholar 

    56.
    Goldberg, M. B., Langman, V. A. & Taylor, C. R. Panting in dogs: paths of air flow in response to heat and exercise. Respir. Physiol. 43, 327–338. https://doi.org/10.1016/0034-5687(81)90113-4 (1981).
    CAS  Article  PubMed  Google Scholar 

    57.
    Greatbatch, I., Gosling, R. J. & Allen, S. Quantifying search dog effectiveness in a terrestrial search and rescue environment. Wilderness Environ. Med. 26, 327–334. https://doi.org/10.1016/j.wem.2015.02.009 (2015).
    Article  PubMed  Google Scholar 

    58.
    Scandurra, A., Alterisio, A., Di Cosmo, A. & D’Aniello, B. Behavioral and Perceptual Differences between Sexes in Dogs: An Overview. Animals (Basel) 8, 151. https://doi.org/10.3390/ani8090151 (2018).
    Article  Google Scholar 

    59.
    Persson, M. E., Roth, L. S., Johnsson, M., Wright, D. & Jensen, P. Human-directed social behaviour in dogs shows significant heritability. Genes Brain Behav. 14, 337–344. https://doi.org/10.1111/gbb.12194 (2015).
    CAS  Article  PubMed  Google Scholar 

    60.
    Hamilton, J. & Vonk, J. Do dogs (Canis lupus familiaris) prefer family?. Behav. Proc. 119, 123–134 (2015).
    Article  Google Scholar 

    61.
    Topál, J. in The Social Dog: behaviour and cognition (eds Juliane Kaminski & Sarah Mashall-Pescini) 319–346 (Elsevier publishers, 2014).

    62.
    Polgár, Z., Kinnunen, M., Újváry, D., Miklósi, Á. & Gácsi, M. A test of canine olfactory capacity: comparing various dog breeds and wolves in a natural detection task. PLoS ONE 11, e0154087. https://doi.org/10.1371/journal.pone.0154087 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    63.
    Jezierski, T. et al. Efficacy of drug detection by fully-trained police dogs varies by breed, training level, type of drug and search environment. Forensic Sci. Int. 237, 112–118. https://doi.org/10.1016/j.forsciint.2014.01.013.pmid:24631776 (2014).
    CAS  Article  PubMed  Google Scholar 

    64.
    Siniscalchi, M. et al. Sniffing with the right nostril: lateralization of response to odour stimuli by dogs. Anim. Behav. 82, 399–404. https://doi.org/10.1016/j.anbehav.2011.05.020 (2011).
    Article  Google Scholar  More

  • in

    Meta-analysis cum machine learning approaches address the structure and biogeochemical potential of marine copepod associated bacteriobiomes

    CAB diversity between the copepod genera
    Calanus spp. are filter feeders and mostly herbivores, but do feed on ciliates and other heterotrophic protists during reproduction and energy shortfall38,39. This may be the reason for their high H index. Most of the gene sequences used for this meta-analysis were from Calanus finmarchicus; however, Centropages sp. feeds on different sources, from microalgae to fish larvae40. Acartia spp. are primarily omnivorous (with a high degree of carnivore behaviour), feeding on phytoplankton, rotifers, and occasionally ciliates41, whereas Temora spp. frequently switches its feeding behaviour, i.e., from omnivore to herbivore, based on season and on food availability42. The bacterial alpha diversity analysis in the Temora spp. revealed a significantly lower Shannon diversity. However, in an earlier study, no difference was reported in alpha diversity between the Temora sp. and Acartia sp.37. This can be explained based on the source of copepods involved for the study by Wega et al.37, which was based only on a single source, i.e., the central Baltic sea; however, in our case the CAB sequences for Acartia spp. were from the central Baltic sea37 as well as the Gulf of Maine10. The occurrence of high Faith’s_PD in Pleuromamma spp. may be due to their range distribution in the water column, and few species within Pleuromamma spp. are known to migrate vertically11,43, or possibly due to their food uptake, which includes phytoplankton, microzooplankton (ciliates and flagellates) and detritus11,44.
    The consensus phylogram revealed that, at the genera level, Calanus spp. was phylogenetically closer to Pleuromamma spp. and formed two distinct clusters in the PCoA plot. Furthermore, the difference in dissimilarity percentage of CAB between Pleuromamma spp. and Calanus spp. may be attributed to the difference in vertical migration, life stages and feeding behaviour between the two copepod genera. Pleuromamma spp., an omnivorous feeder11,44, can migrate vertically up to 1000 m11,43 whereas Calanus sp., mostly herbivores but occasional omnivores36,37, can migrate up to 600 m45,46. This may also be due to the difference in the life stage of Calanus sp. (the microbial communities varied between diapausing and active feeding)2.
    ANCOM
    In an early report, bacterial members belonging to the Gammaproteobacteria were observed to be dominant in Calanus finmarchicus, followed by members of Alphaproteobacteria10. However, in the present ANCOM, the presence of Gamma and Alphaproteobacteria were equal (three genera each) in Calanus spp. (Fig. 3). Similar to our results, the unclassified genus of Rhodobacteraceae was reported to be abundant in Acartia longiremis10. Colwelliaceae was reported to be abundant in Calanus finmarchicus10; however, in the present analysis, family Colwelliaceae was found in a high percentage in Centropages sp.. An abundance of Flavobacteriaceae was observed, along with phytoplankton and diatoms in the gut of Calanus finmarchicus containing food2, whereas Sedinimicola sp. (Flavobacteriaceae) was observed to be dominant in Acartia longiremis, Calanus finmarchicus and Centropages hamatus10. In addition, Dorosz et al.47 reported that Flavobacterium was more dominant in Temora longicornis than in Acartia tonsa, whereas, in our case, Flavobacteriaceae was found in a high percentage in Calanus spp.. Upon comparison of the present ANCOM and previous reports, Pseudoalteromonas sp. appeared in high percentage not only within Centropages sp.10 but also in consistent and abundant bacteria in Acartia sp., and Calanus sp. The prevalence of Pseudomonas has been observed in Pleuromamma sp.11, whereas this was not the case in our analysis (Fig. 3). Similarly, Cregeen11 analysed the bacteriobiome of Pleuromamma sp. and observed the dominance of Alteromonas, but, from our meta-analysis, a higher abundance of Alteromonas was observed in Centropages sp. compared to five other genera, including Pleuromamma spp. (Fig. 3).
    From our analysis, Nitrosopumilus was observed contain a high amount of Temora spp., but the abundance of Nitrosopumilus was reported to show no difference between the particle-associated in the water column and within Temora sp.37; thus, the high percentage observed in our analysis may be due to the exchange of Nitrosopumilus from seawater. Vibrionales was identified as a core member in the gut of Pleuromamma spp.1, similar to the present analysis, wherein Vibiro percentage was found to be high in the CAB of Pleuromamma spp.. The copepods were reported to have a selective niche of Vibrio capable of degrading chitin1,48. In the present analysis, seven bacterial taxa were found to be in high percentages in Centropages sp. and, among those seven, four taxa belong to the Gammaproteobacteria. A high proportion of Gammaproteobacteria in Centropages sp. was also reported previously10.
    Machine learning-based prediction
    The masking effect of the abundant bacterial community associated with the copepod diet and ambient water column should not hinder the detection of core OTUs, as evidenced by previous studies1,2. QIIME2 core_abundance algorithms used in the present study did not predict single bacterial s-OTUs (data not presented). Hence, we used machine learning approaches to detect important core s-OTUs specific to copepod genera.
    From our SML classifier results, the important s-OTUs predicted in Calanus spp. and Pleuromamma spp. were found to have high prediction accuracy (area under the curve (AUC) = 1.00). Therefore, we discuss the important s-OTUs predicted for these two copepod genera (Calanus spp. and Pleuromamma spp.). To begin with, among the important s-OTUs predicted in Calanus spp. from the present analysis (both SML models: RFC and GBC), Gammaproteobacteria was a dominant member (15 and 9 s-OTUs from RFC and GBC, respectively) followed by Alphaproteobacteria, which represents 6 and 3 s-OTUs from RFC and GBC, respectively. This observation was similar to that in an earlier study, where Gammaproteobacteria and Alphaproteobacteria were reported as core OTUs in Calanus finmarchicus2. In addition, within the Gammaproteobacteria, seven (RFC) and five (GBC) s-OTUs representing the Acinetobacter (Moraxellaceae) were predicted as important s-OTUs in the present study, similar to an earlier study in which Moraxellaceae was reported to be closely associated with Calanus finmarchicus10. Moreover, four s-OTUs of Acinetobacter (Moraxellaceae) were also reported as core OTUs in Calanus finmarchicus2. In addition to the present analysis, three s-OTUs from both SML classifiers (RFC and GBC) belonging to Vibrio shilonii were predicted as important s-OTUs in Calanus spp.. Comparably, four OTUs of Vibrionaceae (three OTUs of Vibrio sp. and one similar to Vibrio harveyi) were observed in Calanus finmarchicus2.
    In the present SML analysis, one genus Bradyrhizobium (order Rhizobiales), was predicted as an important s-OTU in Pleuromamma spp. by GBC classifiers. Moreover, in the present ANCOM, Bradyrhizobium was found in a high percentage within Pleuromamma spp.. This Bradyrhizobium is also known to contain nifH gene, as they usually occur in seawater49 and SML-GBC also predicted this genus as an important s-OTU in Calanus spp.. Bradyrhizobiaceae was also found to be the most abundant OTU, contained in 79 of the total 137 sequences in the negative control in a similar analysis1. Thus, in the case of Bradyrhizobium, a further investigation is required in order to come to a meaningful conclusion.
    Moreover, in a previous study, order Vibrionales was also predicted as a core member (based on presence/absence) in Pleuromamma spp.1. The genus Pseudoalteromonas was also already reported as occurring in high abundance in Pleuromamma sp.11. However, in the present analysis, GBC predicted five s-OTUs of Pseudoalteromonas as important s-OTUs in Pleuromamma spp., whereas RFC predicted two s-OTUs of Pseudoalteromonas as important s-OTUs in Acartia spp., Calanus spp., and Centropages sp. (Fig. 4e). This is similar to Pseudoalteromonas, which is reported as a constant and stable OTU in Acartia sp.37, Calanus sp.2 and Centropages sp.10. Thus, it is unwise to consider Pseudoaltermonas as being specific to one copepod genera.
    In the present study, the GBC model predicted three s-OTUs of Alteromonas and two s-OTUs of Marinobacter as important ones in Pleuromamma spp., and ANCOM also showed that the genus Marinobacter proportion was high in Pleuromamma spp.. Comparably, both Alteromonas and Marinobacter were reported as common in Pleuromamma sp.11. Though the abundance of genus Sphingomonas was low, it was reported to appear consistently in Pleuromamma sp.11, and our analysis predicted this genus as an important s-OTU of Pleuromamma spp. (from GBC) (Fig. 4f).
    In the present study, the GBC model predicted Limnobacter as an important s-OTU in Pleuromamma spp., and ANCOM also showed that the proportion of genus Limnobacter was high in Pleuromamma spp.. Moreover, in a previous study, Limnobacter was reported to occur in high abundance in, as well as being unique to, copepods (Pleuromamma spp.)11. Also, the genera Methyloversatilis was reported to be low in abundance in Pleuromamma spp., whereas the SML-GBC model in this study predicted this genus to be an important s-OTU in Pleuromamma spp. (Fig. 4f). The order Pseudomonadales was reported as a core member in Pleuromamma spp.1; however, our GBC model predicted the bacterial genera Enhydrobacter (Pseudomonadales) as an important s-OTU in Pleuromamma spp. (Fig. 4f). In addition, from ANCOM, this genus Enhydrobacter was found in high percentage in Pleuromamma spp., but was also reported to be high in proportion in calanoid copepods6. One another important s-OTU predicted in Pleuromamma spp. by our GBC model was Desulfovibrio, and ANCOM also showed that the proportion of genus Desulfovibrio was found to be high in Pleuromamma spp..
    HTCC2207 (Gammaproteobacteria) was predicted as an important s-OTU in Calanus spp. by both SML models. Also, from ANCOM, HTCC2207 was found in a high percentage in Calanus spp.. HTCC2207 is usually more abundant in seawater, and has been reported as present in Acartia longiremis., Calanus finmarchicus and Centropages hamatus with a full gut10. Due to their known proteorhodopsin gene and being free water—living bacteria50, the probability of detecting this bacterium in the copepod gut may be determined by food ingestion.
    Sediminibacterium (Chitinophagaceae) was reported to be in low abundance but regularly present in Pleuromamma sp.11. However, in the present analysis, the RFC model predicted Sediminibacterium as important s-OTUs in Acartia spp., Calanus spp. and Temora spp. (Fig. 4e,f), whereas the GBC model predicted Sediminibacterium as important s-OTUs in Acartia spp. and Temora spp. (Fig. 4). Chitinophagaceae was reported to be associated with calanoid copepods in the North Atlantic Ocean6. Earlier studies showed that the genus Photobacterium (Phylum: Proteobacteria) was abundant in Pleuromamma sp.11, Centropages sp.10, and Calanus finmarchicus2. Herein, Photobacterium was detected as an important s-OTU in Calanus spp. by the RFC model only. Furthermore, in the present analysis, Nitrosopumilus was predicted as an important s-OTU in Acartia spp. and Temora spp. by both the SML models, and this genus was also reported to be in high percentage in Acartia sp. and Temora sp.37.
    Furthermore, RFC predicts Pelomonas as an important s-OTU in Acartia spp., Centropages sp. and Calanus spp.. However, in a previous study, Pelomonas was ruled out as a core OTU in Calanus spp.2. The GBC predicted two s-OTUs of RS62 and one s-OTUs of Planctomyces as important ones in Acartia spp., and Temora spp.. RS62 belongs to the order Burkholderiales, and though this order was reported to be abundant, abundance varied between individual copepods (Acartia sp. and Temora sp.)37. Burkholderiales was also reported as a main copepod-associated community9. However, in the present study, the genus Comamonas belonging to Burkholderiales was predicted as an important s-OTU in Acartia spp., and Temora spp. by both SML models.
    Approximately 25 taxa detected by the RFC approach were also found in high percentages from ANCOM. Among them, five s-OTUs, viz., Anaerospora, Micrococcus, Micrococcus luteus, Vibrio shilonii and Methylobacteriaceae, were predicted as important s-OTUs in Calanus spp. in our report, for the first time (Fig. 4e). From the 28 taxa detected by the GBC model, four s-OTUs, viz., Phaeobacter, Acinetobacter johnsonii, Vibrio shilonii, and Piscirickettsiaceae, were predicted as important s-OTUs in Calanus spp. in our report, for the first time (Fig. 4f). In addition, eight s-OTUs, viz., Marinobacter, Limnobacter. Methyloversatilis, Desulfovibrio, Enhydrobacter, Sphingomonas, Alteromonas and Coriobacteriaceae, were predicted as important s-OTUs in Pleuromamma spp. in the GBC model, for the first time.
    Potential biogeochemical genes of CAB and their variation and abundance
    Bacterial communities exploit copepods as microhabitat by colonising copepods’ internal and external surfaces, and mediate marine biogeochemical processes9. CABs also metabolise organic compounds, such as chitin, taurine, and other complex molecules in and around the copepod, which may be a hotspot for the biogeochemical process9. In an earlier analysis, potential functional genes in the water column of the Southern Ocean were processed using Parallel-Meta3 software51; herein, we have used a more advanced PICRUSt2 analysis to screen for the potential functional genes.
    Methanogenesis
    In the present analysis, the bacterial taxa involved in methane production, viz. methanogenesis, methylphosphonate, DMSP and DMSO, were observed in all copepod genera but relative proportion varied between genera. A similar observation in Acartia sp. and Temora sp. has been reported37.
    In the present analysis, we found that CAB has a complete set of aerobic methanogenesis genes (PhnL, M, J, H and G) which convert methylphosphonate (MPn) to methane (CH4)52. Some copepods, like Acartia sp. and Temora sp., were reported to associate with bacteria involved in CH4 production from MPn37. De Corte et al.9 suggested that different copepod species have different CAB, and only some copepods have the specific CAB for methanogenesis and other biogeochemical cycles.
    A previous study (with 14 C-labelled experiments) observed high methane production in Temora longicornis compared to Acartia spp.53. In addition, the methanogenic archeae i.e., Methanobacterium bryantii-like sequences, Methanogenium organophilum, Methanolobus vulcani-like sequences and Methanogenium organophilum were noted in Acartia clausi and Temora longicornis faecal pellets54. In the present study, we observed that Pleuromamma spp. has a high proportion of the mcrA gene (Fig. S2).
    T. longicornis fed with a high content of TMA-/DMA-rich phytoplankton produced the maximum amount of CH4, suggesting that this production may be due to the micro-niches inside the copepods55. However, in our analysis, CAB of Pleuromamma spp. was found to have a high proportion of the dmd-tmd gene.
    In our meta-analysis, Acartia spp. was found to have a high proportion of the dmdA gene. The taxa detected in the present study, such as Pelagibacteraceae, some Alpha and Gammaproteobacteria, are known to have dmdA genes56.
    Copepods feeding on phytoplankton liberate DMSP, which, in turn, is utilised by the DMSP-consuming bacteria in the gut (Acartia tonsa), leading to methane production57. Moreover, the methane enrichment in the Central Baltic Sea is due to the dominant zooplankton Temora longicornis feeding on the DMSP-/DMSO-rich Dinophyceae, resulting in methane release53.
    Instead of analysing faecal pellets57 and anaerobic incubation experiments58, further research should also consider CAB-mediated aerobic methanogenesis as one factor with which to solve the ‘ocean methane paradox’.
    Methanotrophic potential of CAB
    The present analysis showed that the CABs of Pleuromamma spp. and Centropages sp. were had a high proportion of methanol dehydrogenase genes (mxaF and mxaI) (Fig. S2). This may be due to the presence of Proteobacteria that involves methane oxidation, viz., Beijerinckiaceae, Methylococcaceae, Methylocystaceae and Verrucomicrobia (Supplementary File Table S3)59.
    Assimilatory sulphate reduction
    A relative abundance of taxa such as Synechococcus and the Deltaproteobacterial family (unclassified genera in Desulfovibrionaceae), Rhodobacteraceae and Flavobacterium (Supplementary File Table S3) were observed in the CAB of Temora spp., which may be responsible for the ASR pathway, as these taxa are known to have ferredoxin-sulphite reductase activity (Supplementary File Table S3).
    Nitrogen fixation
    A high abundance of nifH gene was reported in copepods collected from the coastal waters of Denmark (Øresund) (mostly contributed by Acartia spp.), with Vibrio spp. as dominant members16. However, in the present study, the nifH gene was found to be high in the CAB of Pleuromamma spp. (Fig. S4), and one should note that this may be due to the high abundance of genus Vibrio in the CAB of Pleuromamma spp. (Supplementary File Table S3). Vibrio attached to the exoskeleton and gut lining of copepods60 using chitin as both a carbon and energy source was previously reported10. Furthermore, copepods are reported to be a hotspot for nitrogen fixation at a rate of 12.9–71.9 μmol N dm−3 copepod biomass per day16. The abundance of nifH gene in the CAB of Pleuromamma spp. may be due to the presence of genera including Synechococcus, Prochlorococcus, Bradyrhizobium, Microcystis, and Trichodesmium (Supplementary File S3).
    Denitrification
    In our analysis, the CAB of Temora spp. were found to have the highest proportion of napA and napB genes (Fig. S4), followed by Pleuromamma spp., whereas an abundance of napA and narG genes were reported in North Atlantic copepods contributed by Calanus sp. and Paraeuchaeate sp.9. However, in the present analysis, the CAB of Temora spp. was found to have a high proportion of narG (Fig. S4). Bacterial genera including Pseudoalteromonas, Actinobacterium and Shewanella also contain the nirS gene, as reported in both live and dead Calanus finmarchicus14. Likewise, from our analysis, both Pseudoalteromonas and Actinobacteria were found in Calanus spp.. A metagenome analysis of copepod-associated microbial community reported them having genes responsible for denitrification and DNRA9.
    Anaerobic nitric oxide reduction
    Families including Aeromonadaceae and Enterobacteriaceae were observed in the CAB of Pleuromamma spp. and Calanus spp., in relatively higher proportion than in other copepods. The genera Aeromonas (family Aeromonadaceae)61 and Escherichia coli (family Enterobacteriaceae)62 are known to contain norV genes. The presence of these bacterial taxa in Pleuromamma spp. may be due to feeding of ciliates, flagellates, and detritus particles11,44. This may be one reason for a high proportion of norV and norW genes in these copepods (Fig. S4).
    Carbon processes
    Bacterial taxa like Colwelliaceae10,63Flavobacterium, Arthrobacter, Serratia, Bacillus, Enterobacter, Vibrio64, Pseudoalteromonas63 and Achromobacter65 produce chitinase. The presence of chitinase gene in CAB is unsurprising, as their foregut and hindgut are both made up of chitin11. The overall outline of CAB-mediated biogeochemical pathways is represented in Fig. 6.
    Figure 6

    Overall representation of the potential functional genes of CAB involved in biogeochemical cycles. The circle and colour represent the copepod genera contained in high proportion for that particular biogeochemical process.

    Full size image

    Role of CAB in iron remineralization
    Pleuromamma spp. carries a similar proportion of ferric iron reductase (fhuF) and ferrous iron transport protein A (feoA) genes (Fig. S6a,b). The presence of a high proportion of ferric iron reductase gene fhuF in Pleuromamma spp. requires detailed investigation. It was reported that acidic and low-oxygen conditions in the copepod gut may assist iron dissolution and remineralisation, forming soluble Fe(II)13,66. This increases the iron bioavailability in the surroundings, promoting phytoplankton growth66. In addition, bacterial community associated with the zooplankton, such as Bacteroidetes, Alphaproteobacteria and Gammaproteobacteria, are known to carry genes involved in iron metabolism9.
    In an early study on Thalassiosira pseudonana fed to Acartia tonsa, iron was found in the faecal pellets67. However, in the present analysis, Acartia spp. was found to have a lower proportion of the feoA gene compared to Temora spp. and Pleuromamma spp.. Moreover, genes involved in iron metabolism were reported to be high in zooplankton-associated microbiome9.
    The differential iron contributions of different copepod genera were unknown until now. For organisms that must combat oxygen limitation for their survival (Pleuromamma spp.), pathways for the uptake of ferrous iron are essential. Nevertheless, the meta-analysis performed here showed that Pleuromamma spp. may be a significant contributor to both iron bioavailability and nitrogen fixation.
    CAB as a source of cyanocobalamin-synthesising prokaryotes
    Organisms within all domains of life require the cofactor cobalamin (vitamin B12), which is usually produced only by a subset of bacteria and archaea68. Previous studies reported that the cobalamin in ocean surface water is due to de novo synthesis by Thaumarchaeota. Moreover, few members of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes genomes were reported to contain the cobalamin-synthesising gene68. In our analysis, the CAB of Temora spp. was found to have a high proportion of Thaumarchaeota, whereas Alpha-gammaproteobacteria content was found to be high in the CAB of Acartia spp., Calanus spp. and Pleuromamma spp.. In this regard, further studies on CAB diversity from different ocean realms would shine a light on the actual potential of CAB in global biogeochemical cycles. More

  • in

    Assessing biophysical and socio-economic impacts of climate change on regional avian biodiversity

    1.
    Díaz, S. et al. (eds) IPBES: Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, Bonn, 2019).
    Google Scholar 
    2.
    Struebig, M. J. et al. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Curr. Biol. 25, 372–378 (2015).
    CAS  PubMed  Article  Google Scholar 

    3.
    McMichael, A. J., Woodruff, R. E. & Hales, S. Climate change and human health: present and future risks. Lancet 367, 859–869 (2006).
    PubMed  Article  Google Scholar 

    4.
    Roson, R. & Sartori, M. Estimation of climate change damage functions for 140 regions in the GTAP 9 database. J. Glob. Econ. Anal. 1, 78–115 (2016).
    Article  Google Scholar 

    5.
    Tol, R. S. J. Who Benefits and Who Loses from Climate Change? In Handbook of Climate Change Mitigation and Adaptation (eds Chen, W.-Y. et al.) 1–12 (Springer, New York, 2014).
    Google Scholar 

    6.
    Veldkamp, A. & Fresco, L. O. CLUE: a conceptual model to study the conversion of land use and its effects. Ecol. Model. 85, 253–270 (1996).
    Article  Google Scholar 

    7.
    Verburg, P. H. & Overmars, K. P. Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 24, 1167–1181 (2009).
    Article  Google Scholar 

    8.
    Mantyka-pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
    Article  Google Scholar 

    9.
    Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5, 317–335 (2014).
    Article  Google Scholar 

    10.
    Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).
    PubMed  Article  Google Scholar 

    11.
    Brodie, J. F. Synergistic effects of climate change and agricultural land use on mammals. Front. Ecol. Environ. 14, 20–26 (2016).
    Article  Google Scholar 

    12.
    Brambilla, M., Pedrini, P., Rolando, A. & Chamberlain, D. E. Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. J. Biogeogr. 43, 2299–2309 (2016).
    Article  Google Scholar 

    13.
    Ferrier, S. et al. (eds) IPBES. Summary for Policymakers of the Methodological Assessment of Scenarios and Models of Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, Bonn, 2016).
    Google Scholar 

    14.
    Leclere, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).
    Article  Google Scholar 

    16.
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
    ADS  Article  Google Scholar 

    17.
    Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Ha, P. V., Kompas, T., Thi, H., Nguyen, M. & Hoang, C. Building a better trade model to determine local effects : a regional and intertemporal GTAP model. Econ. Model. 67, 102–113 (2016).
    Google Scholar 

    19.
    Van Ha, P. & Kompas, T. Solving intertemporal CGE models in parallel using a singly bordered block diagonal ordering technique. Econ. Model. 52, 3–12 (2016).
    Article  Google Scholar 

    20.
    Fuchs, R., Herold, M., Verburg, P. H. & Clevers, J. G. P. W. A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 10, 1543–1559 (2013).
    ADS  Article  Google Scholar 

    21.
    Lawson, C. R., Hodgson, J. A., Wilson, R. J. & Richards, S. A. Prevalence, thresholds and the performance of presence-absence models. Methods Ecol. Evol. 5, 54–64 (2014).
    Article  Google Scholar 

    22.
    Wintle, B. A., Elith, J. & Potts, J. M. Fauna habitat modelling and mapping: a review and case study in the lower hunter central coast region of NSW. Austral. Ecol. 30, 719–738 (2005).
    Article  Google Scholar 

    23.
    Wintle, B. A. et al. Ecological–economic optimization of biodiversity conservation under climate change. Nat. Clim. Change 1, 355–359 (2011).
    ADS  Article  Google Scholar 

    24.
    Thomas, C. D. Climate change and extinction risk. Nature 430, 25 (2004).
    ADS  Article  CAS  Google Scholar 

    25.
    Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507 (2012).
    Article  Google Scholar 

    26.
    Baldwin, R. Use of maximum entropy modeling in wildlife research. Entropy 11, 854–866 (2009).
    ADS  Article  Google Scholar 

    27.
    R Development Core Team. R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing. https://www.R-project.org/ (2020). Accessed 3 September 2018.

    28.
    Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistics Database (2017).

    29.
    IUCN. The IUCN Red List of Threatened Species. Version 2018-2 (2018).

    30.
    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
    PubMed  Article  Google Scholar 

    31.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    32.
    Gillings, S., Balmer, D. E. & Fuller, R. J. Directionality of recent bird distribution shifts and climate change in Great Britain. Glob. Change Biol. 21, 2155–2168 (2015).
    ADS  Article  Google Scholar 

    33.
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    van Vuuren, D. P. & Carter, T. R. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim. Change 122, 415–429 (2014).
    ADS  Article  Google Scholar 

    35.
    Bryan, B. A. et al. Land-use and sustainability under intersecting global change and domestic policy scenarios: trajectories for Australia to 2050. Glob. Environ. Change 38, 130–152 (2016).
    Article  Google Scholar 

    36.
    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).
    Article  Google Scholar 

    37.
    Hernandez, P. A., Graham, C., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).
    Article  Google Scholar 

    38.
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).
    Article  Google Scholar 

    39.
    Guisan, A. et al. Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20, 501–511 (2006).
    PubMed  Article  Google Scholar 

    40.
    Taylor, P. D., Fahrig, L., Henein, K. & Merriam, G. Connectivity Is a vital element of landscape structure. Oikos 68, 571 (1993).
    Article  Google Scholar 

    41.
    Gordon, A. et al. The use of dynamic landscape metapopulation models for forest management: a case study of the red-backed salamander. Can. J. For. Res. 42, 1091–1106 (2012).
    Article  Google Scholar 

    42.
    Cadenhead, N. C. R., Kearney, M. R., Moore, D., Mcalpin, S. & Wintle, B. A. Climate and fire scenario uncertainty dominate the evaluation of options for conserving the great desert skink. Conserv. Lett. 9, 181–190 (2015).
    Article  Google Scholar 

    43.
    UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. https://www.refworld.org/docid/57b6e3e44.html (2015). Accessed 22 November 2018.

    44.
    BirdLife International. Country profile: Vietnam. http://www.birdlife.org/datazone/country/vietnam (2018). Accessed 21 October 2018.

    45.
    BirdLife International. Country Profile: Australia. http://www.birdlife.org/datazone/country/australia (2018). Accessed 21 October 2018.

    46.
    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).
    ADS  Article  Google Scholar 

    47.
    Hijmans, R., Cameron, S., Parra, J., Jones, P. & Jarvis, A. WORLDCLIM—A Set of Global Climate Layers (Climate Grids), Version 1.4.

    48.
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    ADS  Article  Google Scholar 

    49.
    Hertel, T. Global Trade Analysis: Modeling and Applications (Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, West Lafayette, 1997).
    Google Scholar 

    50.
    Aguiar, A., Narayanan, B. & McDougall, R. An overview of the GTAP 9 data base. J. Glob. Econ. Anal. 1, 181–208 (2016).
    Article  Google Scholar 

    51.
    Van Ha, P., Kompas, T., Nguyen, H. T. M. & Long, C. H. Building a better trade model to determine local effects: a regional and intertemporal GTAP model. Econ. Model. 67, 102–113 (2017).
    Article  Google Scholar 

    52.
    Kompas, T., Pham, V. H. & Che, T. N. The effects of climate change on GDP by country and the global economic gains from complying with the Paris climate accord. Earth’s Future 6, 1153–1173 (2018).
    ADS  Article  Google Scholar 

    53.
    Horridge, J. M., Jerie, M., Mustakinov, D. & Schiffmann, F. GEMPACK manual, GEMPACK Software, ISBN 978-1–921654-34-3 (2018).

    54.
    Pearson, K. R. Solving Nonlinear Economic Models Accurately Via a Linear Representation. Working paper No. IP-55. Victoria University, Centre of Policy Studies (1991).

    55.
    Kompas, T. & Ha, P. V. The ‘curse of dimensionality’ resolved: the effects of climate change and trade barriers in large dimensional modelling. Econ. Model. 80, 103–110 (2018).
    Article  Google Scholar 

    56.
    Balay, S. et al. PETSc users manual, Technical Report ANL-95/11—Revision 3.11. (2019).

    57.
    Balay, S. et al. PETSc Web page. http://www.mcs.anl.gov/petsc (2019). Accessed 23 September 2018.

    58.
    Balay, S., Gropp, W. D., McInnes, L. C. & Smith, B. F. Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing (eds Arge, E. et al.) (Birkhaeuser Press, Boston, 1997).
    Google Scholar 

    59.
    HSL. A collection of fortran codes for large scale scientific computation. The HSL Mathematical Software Library (2013).

    60.
    World Bank Group. Population Estimates and Projections. http://data.worldbank.org/data-catalog/population-projection-tables (2016). Accessed 3 May 2018.

    61.
    Moulds, S., Buytaert, W. & Mijic, A. An open and extensible framework for spatially explicit land use change modelling: the lulcc R package. Geosci. Model Dev. 8, 3215–3229 (2015).
    ADS  Article  Google Scholar 

    62.
    Verburg, P. H. et al. Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ. Manag. 30, 391–405 (2002).
    ADS  Article  Google Scholar 

    63.
    Verburg, P. H., Veldkamp, T. & Bouma, J. Land use change under conditions of high population pressure: the case of Java. Glob. Environ. Change 9, 303–312 (1999).
    Article  Google Scholar 

    64.
    Verburg, P. H., Schulp, C. J. E., Witte, N. & Veldkamp, A. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agr. Ecosyst. Environ. 114, 39–56 (2006).
    Article  Google Scholar 

    65.
    Verburg, P. H., De Koning, G. H. J., Kok, K., Veldkamp, A. & Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model. 116, 45–61 (1999).
    Article  Google Scholar 

    66.
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Soft. 33, 1–22 (2010).
    Article  Google Scholar 

    67.
    Steven J. P., Miroslav D., Robert E. S. [Internet] Maxent software for modeling species niches and distributions (Version 3.3.3k). http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 12 December 2018.

    68.
    GBIF. GBIF data portal. http://www.gbif.net/ (2016). Accessed 22 May 2018.

    69.
    Goetz, S. J., Sun, M., Zolkos, S., Hansen, A. & Dubayah, R. The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness. Environ. Res. Lett. 9, 034013 (2014).
    ADS  Article  Google Scholar 

    70.
    Maggini, R. et al. Assessing species vulnerability to climate and land use change: the case of the Swiss breeding birds. Divers. Distrib. 20, 708–719 (2014).
    Article  Google Scholar 

    71.
    Coxen, C. L., Frey, J. K., Carleton, S. A. & Collins, D. P. Species distribution models for a migratory bird based on citizen science and satellite tracking data. Glob. Ecol. Conserv. 11, 298–311 (2017).
    Article  Google Scholar 

    72.
    Stolar, J. & Nielsen, S. E. Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers. Distrib. 21, 595–608 (2015).
    Article  Google Scholar 

    73.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    PubMed  Article  Google Scholar 

    74.
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).
    PubMed  Article  Google Scholar 

    75.
    Morán-Ordóñez, A., Lahoz-Monfort, J. J., Elith, J. & Wintle, B. A. Evaluating 318 continental-scale species distribution models over a 60-year prediction horizon: what factors influence the reliability of predictions?. Glob. Ecol. Biogeogr. 26, 1–14 (2016).
    Google Scholar 

    76.
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’. http://cran.r-project.org/web/packages/dismo/index.html (2011). Accessed 6 July 2017. More

  • in

    Introduced ant species occupy empty climatic niches in Europe

    1.
    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).
    CAS  PubMed  Article  Google Scholar 
    2.
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Kellermann, V. et al. Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377–3389 (2012).
    PubMed  Article  Google Scholar 

    4.
    Baselga, A., Recuero, E., Parra-Olea, G. & García-París, M. Phylogenetic patterns in zopherine beetles are related to ecological niche width and dispersal limitation. Mol. Ecol. 20, 5060–5073 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).
    PubMed  Article  Google Scholar 

    6.
    Dormann, C. F., Gruber, B., Winter, M. & Herrman, D. Evolution of climate niches in European mammals?. Biol. Lett. 6, 229–232 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Hof, C., Rahbek, C. & Araújo, M. B. Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33, 242–250 (2010).
    Google Scholar 

    8.
    Duran, A. & Pie, M. R. Tempo and mode of climate niche evolution in Primates. Evolution 69, 2496–2506 (2015).
    PubMed  Article  Google Scholar 

    9.
    Khaliq, I. et al. Global variation in thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the tropics. J. Biogeogr. 42, 2187–2196 (2015).
    Article  Google Scholar 

    10.
    Pie, M. R. The macroevolution of climatic niches and its role in ant diversification. Ecol. Entomol. 41, 301–307 (2016).
    Article  Google Scholar 

    11.
    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).
    PubMed  Article  Google Scholar 

    12.
    Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
    Article  Google Scholar 

    13.
    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. Syst. 33, 475–505 (2002).
    Article  Google Scholar 

    14.
    Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).
    CAS  PubMed  Article  Google Scholar 

    15.
    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?. Glob. Ecol. Biogeogr. 16, 24–33 (2007).
    Article  Google Scholar 

    16.
    Prinzing, A., Durka, W., Klotz, S. & Brandl, R. The niche of higher plants: evidence for phylogenetic conservatism. Proc. Biol. Sci. 268, 1–7 (2001).
    Article  Google Scholar 

    17.
    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Kozak, K. H. & Wiens, J. J. Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60, 2604–2621 (2006).
    PubMed  Article  Google Scholar 

    19.
    Rice, N. H., Martinez-Meyer, E. & Peterson, A. T. Ecological niche differentiation in the Aphelocoma jays: a phylogenetic perspective. Biol. J. Linn. Soc. 80, 369–383 (2003).
    Article  Google Scholar 

    20.
    Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J. & Moritz, C. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58, 1781–1793 (2004).
    PubMed  Article  Google Scholar 

    21.
    Knouft, J. H., Losos, J. B., Glor, R. E. & Kolbe, J. J. Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87, S29–S38 (2006).
    PubMed  Article  Google Scholar 

    22.
    Cooper, N., Freckleton, R. P. & Jetz, W. Phylogenetic conservatism of environmental niches in mammals. Proc. Biol. Sci. 278, 2384–2391 (2011).
    PubMed  PubMed Central  Google Scholar 

    23.
    Kamilar, J. M. & Muldoon, K. M. The climatic niche diversity of Malagasy primates: a phylogenetic approach. PLoS ONE 5, e11073 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Peixoto, F. P., Villalobos, F. & Cianciaruso, M. V. Phylogenetic conservatism of climatic niche in bats. Glob. Ecol. Biogeogr. 26, 1055–1065 (2017).
    Article  Google Scholar 

    25.
    Ricciardi, A., Hoopes, M. F., Marchetti, M. P. & Lockwood, J. L. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 83, 263–282 (2013).
    Article  Google Scholar 

    26.
    Bellard, C. & Jeschke, J. M. A spatial mismatch between invader impacts and research publications. Conserv. Biol. 30, 230–232 (2016).
    CAS  PubMed  Article  Google Scholar 

    27.
    Arnan, X. et al. Dominance-diversity relationships in ant communities differ with invasion. Glob. Change Biol. 24, 4614–4625 (2018).
    ADS  Article  Google Scholar 

    28.
    Gussow, A. B., Auslander, N., Wolf, Y. I. & Koonin, E. V. Prediction of the incubation period for COVID-19 and future virus disease outbreaks. BMC Biol. 18, 1–12 (2020).
    Article  CAS  Google Scholar 

    29.
    Raffini, F. et al. From nucleotides to satellite imagery: approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).
    CAS  Article  Google Scholar 

    30.
    Chown, S. L. et al. Biological invasions, climate change and genomics. Evol Appl 8, 23–46 (2015).
    PubMed  Article  Google Scholar 

    31.
    Rollins, L. A., Richardson, M. F. & Shine, R. A genetic perspective on rapid evolution in cane toads (Rhiniella marina). Mol. Ecol. 24, 2264–2276 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Estoup, A. et al. Is there a genetic paradox of biological invasion?. Annu. Rev. Ecol. Evol. Syst. 47, 51–72 (2016).
    Article  Google Scholar 

    33.
    Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 32, 464–474 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Fenderson, L. E., Kovach, A. I. & Llamas, B. Spatiotemporal landscape genetics: Investigating ecology and evolution through space and time. Mol. Ecol. 29, 218–246 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Violle, C., Nemergut, D. R., Pu, Z. & Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 14, 782–787 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Novak, S. J. The role of evolution in the invasion process. Proc. Natl. Acad. Sci. USA 104, 3671–3672 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Buswell, J. M., Moles, A. T. & Hartley, S. Is rapid evolution common in introduced plant species?. J. Ecol. 99, 214–224 (2011).
    Article  Google Scholar 

    38.
    Saul, W.-C. & Jeschke, J. M. Eco-evolutionary experience in novel species interactions. Ecol. Lett. 18, 236–245 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Hölldobler, B. & Wilson, E. O. The ants (Harvard University Press, Cambridge, 1990).
    Google Scholar 

    40.
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species: a selection from the global invasive species database (Invasive Species Specialist Group, Auckland, 2000).
    Google Scholar 

    41.
    Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Evol. Syst. 33, 181–233 (2002).
    Article  Google Scholar 

    42.
    Lessard, J.-P. et al. Strong influence of regional species pools on continent-wide structuring of local communities. Proc. Biol. Sci. 279, 266–274 (2011).
    PubMed  PubMed Central  Google Scholar 

    43.
    Lucky, A., Trautwein, M. D., Guénard, B., Weiser, M. D. & Dunn, R. R. Tracing the rise of ants—out of the ground. PLoS ONE 8, e84012 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Economo, E. P. et al. Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proc. Biol. Sci. 282, 20141416 (2015).
    PubMed  PubMed Central  Google Scholar 

    45.

    46.
    http://www.antwiki.org/.

    47.
    https://www.gbif.org/.

    48.
    https://www.antweb.org/.

    49.
    Lebas, C., Galkowski, C., Blatrix, R. & Wegnez, P. Forumis d’Europe occidentale Delachaux et Niestle (Le Premier guide complet d’Europe, Paris, 2016).
    Google Scholar 

    50.
    Bertelsmeier, C., Ollier, S., Liebhold, A. & Keller, L. Recent human history governs global ant invasion dynamics. Nat. Ecol. Evol. 1, 0184 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Bernard, F. Faune de l’Europe et du Bassin Méditerranéen. 3. Les Fourmis (Hymenoptera Formicidae) d’Europe Occidentale et Septentrionale. Eur. et Bas. Med. 3. Masson éditeurs, Paris (1968)

    52.
    Seifert, B. The Ants of Central and North Europe (Lutra Verlags-und Vertriebsgesellschaf, Tauer, 2018).
    Google Scholar 

    53.
    http://www.iucngisd.org/gisd/100_worst.php.

    54.
    Wetterer, J. K. Worldwide spread of Emery’s sneaking ant, Cardiocondyla emeryi (Hymenoptera: Formicidae). Myrmecol. News 17, 13–20 (2012).
    Google Scholar 

    55.
    Heinze, J., Cremer, S., Eckl, N. & Schrempf, A. Stealthy invaders: the biology of Cardiocondyla tramp ants. Insect. Soc. 53, 1–7 (2006).
    Article  Google Scholar 

    56.
    Fournier, A., Penone, C., Pennino, M. G. & Courchamp, F. Predicting future invaders and future invasions. Proc. Natl. Acad. Sci. USA 116, 7905–7910 (2019).
    CAS  PubMed  Article  Google Scholar 

    57.
    Moreau, C. S. & Bell, C. D. Testing the museum versus cradle biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67, 2240–2257 (2013).
    PubMed  Article  Google Scholar 

    58.
    Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera:Formicidae). Syst. Entomol. 40, 61–81 (2015).
    Article  Google Scholar 

    59.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    60.
    https://www.creaf.cat.

    61.
    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2016).

    62.
    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
    Article  Google Scholar 

    63.
    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).
    Article  Google Scholar 

    64.
    Hijmans, R.J. & van Etten, J. raster: Geographic Data Analysis and Modeling. R package version 2.9-5. https://cran.r-project.org/web/packages/raster/index.html (2016).

    65.
    Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.1–4. https://cran.r-project.org/web/packages/dismo/index.html (2011).

    66.
    Wiens, J. J. The niche, biogeography and species interactions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2336–2350 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    67.
    King, J. R. & Tschinkel, W. R. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. USA 105, 20339–20343 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    68.
    Vonshak, M. & Gordon, D. M. Intermediate disturbance promotes invasive ant abundance. Biol. Conserv. 186, 359–367 (2015).
    Article  Google Scholar 

    69.
    McGlynn, T. P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeogr. 26, 535–548 (1999).
    Article  Google Scholar 

    70.
    Kaspari, M. & Vargo, E. Does colony size buffer environmental variation? Bergmann’s rule and social insects. Am. Nat. 145, 610–632 (1995).
    Article  Google Scholar 

    71.
    McGlynn, T. P. Non-native ants are smaller than related native ants. Am. Nat. 154, 690–699 (1999).
    PubMed  Article  PubMed Central  Google Scholar 

    72.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Article  Google Scholar 

    73.
    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).
    Article  Google Scholar 

    74.
    Jenkins, C. N. et al. Global diversity in light of climate change: The case of ants. Divers. Distrib. 17, 652–662 (2011).
    Article  Google Scholar 

    75.
    Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl. Acad. Sci. USA 98, 5446–5451 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    76.
    Ness, J. H. & Bronstein, J. L. The effects of invasive ants on prospective ant mutualists. Biol. Invasions 6, 445–461 (2004).
    Article  Google Scholar 

    77.
    Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8, 875–894 (2005).
    Article  Google Scholar 

    78.
    Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    https://www.cbd.int/sp/targets/rationale/target-9. More