More stories

  • in

    Responses of intended and unintended receivers to a novel sexual signal suggest clandestine communication

    1.
    Martin, C. H., McGirr, J. A., Richards, E. J. & St John, M. E. How to investigate the origins of novelty: insights gained from genetic, behavioral, and fitness perspectives. Integr. Org. Biol. 1, https://doi.org/10.1093/iob/obz01 (2019).
    2.
    West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 80, 47–53 (1983).
    Article  Google Scholar 

    3.
    Ritchie, M. G. Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst. 179, 2091–2112 (2007).
    Google Scholar 

    4.
    Rosenthal, G. G. Mate Choice: The Evolution of Sexual Decision Making from Microbes to Humans (Princeton University Press, 2017).

    5.
    Servedio, M. R. & Boughman, J. W. The role of sexual selection in local adaptation and speciation. Annu. Rev. Ecol. Evol. Syst. 48, 85–109 (2017).
    Article  Google Scholar 

    6.
    Svensson, E. I. & Gosden, T. P. Contemporary evolution of secondary sexual traits in the wild. Funct. Ecol. 21, 422–433 (2007).
    Article  Google Scholar 

    7.
    Svensson, E. I. Eco-evolutionary dynamics of sexual selection and sexual conflict. Funct. Ecol. 33, 66–72 (2019).
    Article  Google Scholar 

    8.
    Tinghitella, R. M. Rapid evolutionary change in a sexual signal: genetic control of the mutation ‘flatwing’ that renders male field crickets (Teleogryllus oceanicus) mute. Heredity 100, 261–267 (2008).
    CAS  PubMed  Article  Google Scholar 

    9.
    Lassance, J. M. & Löfstedt, C. Chemical communication: a jewel sheds light on signal evolution. Curr. Biol. 23, 739–834 (2013).
    Article  CAS  Google Scholar 

    10.
    Niehuis, O. et al. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494, 345–348 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    11.
    Ryan, M. J. & Rand, A. S. Sexual selection and signal evolution: the ghost of biases past. Philos. Trans. R. Soc. B 340, 187–195 (1993).
    ADS  Article  Google Scholar 

    12.
    Ryan, M. J. & Rand, A. S. Female responses to ancestral advertisement calls in túngara frogs. Science 269, 390–392 (1995).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Ryan, M. J. & Cummings, M. E. Perceptual biases and mate choice. Annu. Rev. Ecol. Evol. Syst. 44, 437–459 (2013).
    Article  Google Scholar 

    14.
    Bush, S. L. & Schul, J. Evolution of novel signal traits in the absence of female preferences in Neoconocephalus katydids (Orthoptera, Tettigoniidae). PLoS ONE 5, https://doi.org/10.1371/journal.pone.0012457 (2010).

    15.
    Kolm, N., Amcoff, M., Mann, R. P. & Arnqvist, G. Diversification of a food-mimicking male ornament via sensory drive. Curr. Biol. 22, 1440–1443 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Espmark, Y., Amundsen, T. & Rosenqvist, G. Animal Signals: Signalling and Signal Design in Animal Communication (Tapir Academic Press, 2000).

    17.
    Pfaus, J. G., Erickson, K. A. & Talianakis, S. Somatosensory conditioning of sexual arousal and copulatory behavior in the male rat: a model of fetish development. Physiol. Behav. 122, 1–7 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Cetinkaya, H. & Domjan, M. Sexual fetishism in a quail (Coturnix japonica) model system: test of reproductive success. J. Comp. Psychol. 120, 427–432 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Arak, A. & Enquist, M. Hidden preferences and the evolution of signals. Philos. Trans. R. Soc. B 340, 207–213 (1993).
    ADS  Article  Google Scholar 

    20.
    Burley, N. T. & Symanski, R. ‘A taste for the beautiful’: latent aesthetic mate preferences for white crests in two species of australian grassfinches. Am. Nat. 152, 792–802 (1998).
    CAS  PubMed  Article  Google Scholar 

    21.
    Ryan, M. J. Sexual selection, receiver biases, and the evolution of sex differences. Science 281, 1999–2003 (1998).
    CAS  PubMed  Article  Google Scholar 

    22.
    Ryan, M. J., Bernal, X. E. & Stanley Rand, A. Female mate choice and the potential for ornament evolution in túngara frogs Physalaemus pustulosus. Curr. Zool. 56, 343–357 (2010).
    Article  Google Scholar 

    23.
    Reichert, M. S., Finck, J. & Ronacher, B. Exploring the hidden landscape of female preferences for complex signals. Evolution 71, 1009–1024 (2017).
    PubMed  Article  Google Scholar 

    24.
    Ryan, M. J., Fox, J. H., Wilczynski, W. & Rand, A. S. Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343, 66–67 (1990).
    ADS  CAS  PubMed  Article  Google Scholar 

    25.
    Moehring, A. J. & Boughman, J. W. Veiled preferences and cryptic female choice could underlie the origin of novel sexual traits. Biol. Lett. 15, 20180878 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Zuk, M. & Kolluru, G. R. Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 43, 415–438 (1998).
    Article  Google Scholar 

    27.
    Endler, J. A. Natural selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980).
    PubMed  Article  Google Scholar 

    28.
    Gray, D. A. & Cade, W. H. Sex, death and genetic variation: Natural and sexual selection on cricket song. Proc. R. Soc. Lond. B 266, 707–709 (1999).
    Article  Google Scholar 

    29.
    Rand, A. S. & Ryan, M. J. The adaptive significance of a complex vocal repertoire in a neotropical frog. Z. Tierpsychol. 57, 209–214 (1981).
    Article  Google Scholar 

    30.
    Lewkiewicz, D. A. & Zuk, M. Latency to resume calling after disturbance in the field cricket, Teleogryllus oceanicus, corresponds to population-level differences in parasitism risk. Behav. Ecol. Sociobiol. 55, 569–573 (2004).
    Article  Google Scholar 

    31.
    Tinghitella, R. M., Zuk, M., Beveridge, M. & Simmons, L. W. Island hopping introduces Polynesian field crickets to novel environments, genetic bottlenecks and rapid evolution. J. Evol. Biol. 24, 1199–1211 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Zhang, X. et al. Rapid parallel adaptation despite gene flow in silent crickets. Nat. Commun. https://doi.org/10.1038/s41467-020-20263-4 (2021).

    33.
    Bennet-Clark, H. C. Songs and the physics of sound production in Cricket Behavior and Neurobiology (eds Huber, F., Moore, T. E. & Werner, L.) 227–261 (Cornell University Press, New York, 1989).

    34.
    Bennet-Clark, H. C. Wing resonances in the Australian field cricket Teleogryllus oceanicus. J. Exp. Biol. 206, 1479–1496 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Zuk, M., Rotenberry, J. T. & Tinghitella, R. M. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol. Lett. 2, 521–524 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Pascoal, S. et al. Rapid convergent evolution in wild crickets. Curr. Biol. 24, 1369–1374 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Eldredge, L. G. & Evenhuis, N. L. Hawaii’s biodiversity: a detailed assessment of the numbers of species in the Hawaiian Islands. Bish. Mus. Occ. Pap. 76, 1–28 (2003).
    Google Scholar 

    38.
    Lehmann, G. U. C. Review of biogeography, host range and evolution of acoustic hunting in Ormiini (insecta, diptera, tachinidae), parasitoids of night-calling bushcrickets and crickets (insecta, orthoptera, ensifera). Zool. Anz. 242, 107–120 (2003).
    Article  Google Scholar 

    39.
    Zuk, M., Simmons, L. W. & Cupp, L. Calling characteristics of parasitized and unparasitized populations of the field cricket Teleogryllus oceanicus. Behav. Ecol. Sociobiol. 33, 339–343 (1993).
    Google Scholar 

    40.
    Tinghitella, R. M. & Zuk, M. Asymmetric mating preferences accommodated the rapid evolutionary loss of a sexual signal. Evolution 63, 2087–2098 (2009).
    Article  Google Scholar 

    41.
    Tinghitella, R. M., Broder, E. D., Gurule-Small, G. A., Hallagan, C. J. & Wilson, J. D. Purring crickets: the evolution of a novel sexual signal. Am. Nat. 192, 773–782 (2018).
    PubMed  Article  Google Scholar 

    42.
    Zuk, M., Bailey, N. W., Gray, B. & Rotenberry, J. T. Sexual signal loss: the link between behaviour and rapid evolutionary dynamics in a field cricket. J. Anim. Ecol. 87, 623–633 (2018).
    PubMed  Article  Google Scholar 

    43.
    Pascoal, S. et al. Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evol. Lett. 4, 19–33 (2020).
    PubMed  Article  Google Scholar 

    44.
    Rayner, J. G., Aldridge, S., Montealegre-Z, F. & Bailey, N. W. A silent orchestra: convergent song loss in Hawaiian crickets is repeated, morphologically varied, and widespread. Ecology 100, https://doi.org/10.1002/ecy.2694 (2019).

    45.
    Rotenberry, J. T., Zuk, M., Simmons, L. W. & Hayes, C. Phonotactic parasitoids and cricket song structure: an evaluation of alternative hypotheses. Evol. Ecol. 10, 233–243 (1996).
    Article  Google Scholar 

    46.
    Moiseff, A., Pollack, G. S. & Hoy, R. R. Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc. Natl Acad. Sci. USA 75, 4052–4056 (1978).
    ADS  CAS  PubMed  Article  Google Scholar 

    47.
    Hoy, R. R., Pollack, G. S. & Moiseff, A. Species-recognition in the field cricket, Teleogryllus oceanicus: behavioral and neural mechanisms. Integr. Comp. Biol. 22, 597–607 (1982).
    Google Scholar 

    48.
    Bailey, N. W., Moran, P. A. & Hennig, R. M. Divergent mechanisms of acoustic mate recognition between closely related field cricket species (Teleogryllus spp.). Anim. Behav. 130, 17–25 (2017).
    Article  Google Scholar 

    49.
    Ryan, M. J. Sexual selection, sensory systems and sensory exploitation in Oxford Surveys. In Evolutionary Biology (eds Antonovics, J. & Futuyma, D. J.) 157–195 (Oxford University Press, Oxford, 1990).

    50.
    Imaizumi, K. & Pollack, G. S. Neural coding of sound frequency by cricket auditory receptors. J. Neurosci. 19, 1508–1516 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Oshinsky, M. L. & Hoy, R. R. Physiology of the auditory afferents in an acoustic parasitoid fly. J. Neurosci. 22, 7254–7263 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Farr, J. A. Male rarity or novelty, female choice behavior, and sexual selection in the guppy, Poecilia reticulata Peters (Pisces: Poeciliidae). Evolution 31, 162–168 (1977).
    PubMed  Article  Google Scholar 

    53.
    Jennions, M. D. & Petrie, M. Variation in mate choice and mating preferences: a review of causes and consequences. Biol. Rev. Camb. Philos. Soc. 72, 283–327 (1997).
    CAS  PubMed  Article  Google Scholar 

    54.
    Brooks, R. & Endler, J. A. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. Evolution 55, 1644–1655 (2001).
    CAS  PubMed  Article  Google Scholar 

    55.
    Fowler-Finn, K. D. & Rodríguez, R. L. Repeatability of mate preference functions in Enchenopa treehoppers (Hemiptera: Membracidae). Anim. Behav. 85, 493–499 (2013).
    Article  Google Scholar 

    56.
    Kilmer, J. T. et al. Describing mate preference functions and other function-valued traits. J. Evol. Biol. 30, 1658–1673 (2017).
    CAS  PubMed  Article  Google Scholar 

    57.
    Walker, T. J. A live trap for monitoring Euphasiopteryx and tests with E. ochracea (Diptera: Tachinidae). Fla. Entomol. 72, 314–319 (1989).
    Article  Google Scholar 

    58.
    Mason, A. C., Oshinsky, M. L. & Hoy, R. R. Hyperacute directional hearing in a microscale auditory system. Nature 410, 686–690 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Gray, D. A., Kunerth, H. D., Zuk, M., Cade, W. H. & Balenger, S. L. Molecular biogeography and host relations of a parasitoid fly. Ecol. Evol. 9, 11476–11493 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Paur, J. & Gray, D. A. Individual consistency, learning and memory in a parasitoid fly, Ormia ochracea. Anim. Behav. 82, 825–830 (2011).
    Article  Google Scholar 

    61.
    Bailey, N. W. & Zuk, M. Acoustic experience shapes female mate choice in field crickets. Proc. R. Soc. Lond. B 275, 2645–2650 (2008).
    Google Scholar 

    62.
    Balenger, S. L. & Zuk, M. Roaming Romeos: Male crickets evolving in silence show increased locomotor behaviours. Anim. Behav. 101, 213–219 (2015).
    Article  Google Scholar 

    63.
    Kopp, M. et al. Mechanisms of assortative mating in speciation with gene flow: connecting theory and empirical research. Am. Nat. 191, 1–20 (2018).
    PubMed  Article  Google Scholar 

    64.
    Ronald, K. L., Fernández-Juricic, E. & Lucas, J. R. Taking the sensory approach: how individual differences in sensory perception can influence mate choice. Anim. Behav. 84, 1283–1294 (2012).
    Article  Google Scholar 

    65.
    Bailey, N. W. & Zuk, M. Field crickets change mating preferences using remembered social information. Biol. Lett. 5, 449–451 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Dingemanse, N. J. & Wolf, M. Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim. Behav. 85, 1031–1039 (2013).
    Article  Google Scholar 

    67.
    Bailey, N. W., Pascoal, S. & Montealegre, F. Z. Testing the role of trait reversal in evolutionary diversification using song loss in wild crickets. Proc. Natl Acad. Sci. USA 116, 8941–8949 (2019).
    CAS  PubMed  Article  Google Scholar 

    68.
    Royauté, R. & Dochtermann, N. A. When the mean no longer matters: developmental diet affects behavioral variation but not population averages in the house cricket (Acheta domesticus). Behav. Ecol. 28, 337–345 (2017).
    Article  Google Scholar 

    69.
    Dochtermann, N. A. & Royauté, R. The mean matters: going beyond repeatability to interpret behavioural variation. Anim. Behav. 153, 147–150 (2019).
    Article  Google Scholar 

    70.
    Edward, D. A. The description of mate choice. Behav. Ecol. 26, 301–310 (2014).
    Article  Google Scholar 

    71.
    Xu, M. & Shaw, K. L. Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation. Proc. R. Soc. Lond. B 286 https://doi.org/10.1098/rspb.2019.1607 (2019).

    72.
    Pascoal, S. et al. Sexual selection and population divergence I: the influence of socially flexible cuticular hydrocarbon expression in male field crickets (Teleogryllus oceanicus). Evolution 70, 82–97 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Broder, D. E., Wikle, A. W., Gallagher, J. H. & Tinghitella, R. M. Substrate-borne vibrations in Pacific field cricket courtship displays. J. Orthoptera Res. (Accepted).

    74.
    Moran, P. A., Hunt, J., Mitchell, C., Ritchie, M. G. & Bailey, N. W. Sexual selection and population divergence III: Interspecific and intraspecific variation in mating signals. J. Evol. Biol. 33, 990–1005 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Pollack, G. S., Huber, F. & Weber, T. Frequency and temporal pattern-dependent phonotaxis of crickets (Teleogryllus oceanicus) during tethered flight and compensated walking. J. Comp. Physiol. A 154, 13–26 (1984).
    Article  Google Scholar 

    76.
    Thorson, J., Weber, T. & Huber, F. Auditory behavior of the cricket. J. Comp. Physiol. 146, 361–378 (1982).
    Article  Google Scholar 

    77.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

    78.
    Ritchie, M. G. The shape of female mating preferences. Proc. Natl Acad. Sci. U. S. A. 93, 14628–14631 (1996).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Rodríguez, R. L., Hallett, A. C., Kilmer, J. T. & Fowler-Finn, K. D. Curves as traits: genetic and environmental variation in mate preference functions. J. Evol. Biol. 26, 434–442 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Ludecke, D., Makowski, D., Patil, I. & Waggoner, P. easystats/performance: performance 0.4.7 (Version 0.4.7). Zenodo https://doi.org/10.5281/zenodo.3952174 (2020).

    81.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).

    82.
    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B 65, 95–114 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    83.
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. https://doi.org/10.18637/jss.v028.i05 (2008). More

  • in

    Small mammal glucocorticoid concentrations vary with forest fragment size, trap type, and mammal taxa in the Interior Atlantic Forest

    1.
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Ellis, E. C. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).
    Article  Google Scholar 

    4.
    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Debinski, D. M. & Holt, R. D. A survey and overview of habitat fragmentation experiments. Conserv. Biol. 14, 342–355 (2000).
    Article  Google Scholar 

    6.
    Laurance, W. F. et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 144, 56–67 (2011).
    Article  Google Scholar 

    7.
    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–210 (2012).

    9.
    Acevedo-Whitehouse, K. & Duffus, A. L. J. Effects of environmental change on wildlife health. Philos. Trans. R. Soc. B 364, 3429–3438 (2009).
    Article  Google Scholar 

    10.
    Jonsson, C. B., Figueiredo, L. T. M. & Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. CMR 23, 412–441 (2010).
    CAS  Article  Google Scholar 

    11.
    Ellis, R. D., McWhorter, T. J. & Maron, M. Integrating landscape ecology and conservation physiology. Landsc. Ecol. 27, 1–12 (2012).
    Article  Google Scholar 

    12.
    Chapman, C. A. et al. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?. Am. J. Phys. Anthropol. 131, 525–534 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 182, 861–879 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    14.
    Ordóñez-Gómez, J. D. et al. Proximal and distal predictors of the spider monkey’s stress levels in fragmented landscapes. PLoS ONE 11, e0149671 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Rimbach, R. et al. Effects of logging, hunting, and forest fragment size on physiological stress levels of two sympatric ateline primates in Colombia. Conserv. Physiol. 1, cot031 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Angelier, F. & Wingfield, J. C. Importance of the glucocorticoid stress response in a changing world: Theory, hypotheses and perspectives. Gen. Comp. Endocrinol. 190, 118–128 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Bonier, F., Martin, P. R., Moore, I. T. & Wingfield, J. C. Do baseline glucocorticoids predict fitness?. Trends Ecol. Evol. 24, 634–642 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Busch, D. S. & Hayward, L. S. Stress in a conservation context: A discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol. Conserv. 142, 2844–2853 (2009).
    Article  Google Scholar 

    19.
    Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Heimbürge, S., Kanitz, E., Tuchscherer, A. & Otten, W. Within a hair’s breadth—Factors influencing hair cortisol levels in pigs and cattle. Gen. Comp. Endocrinol. 288, 113359 (2020).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    23.
    Kalliokoski, O., Jellestad, F. K. & Murison, R. A systematic review of studies utilizing hair glucocorticoids as a measure of stress suggests the marker is more appropriate for quantifying short-term stressors. Sci. Rep. 9, 11997 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Koren, L. et al. Towards the validation of endogenous steroid testing in wildlife hair. J. Appl. Ecol. 56, 547–561 (2019).
    Article  Google Scholar 

    25.
    Wingfield, J. C. & Sapolsky, R. M. Reproduction and resistance to stress: When and how. J. Neuroendocrinol. 15, 711–724 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Sopinka, N. M. et al. Manipulating glucocorticoids in wild animals: Basic and applied perspectives. Conserv. Physiol. 3, cov031 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Cockrem, J. F. Conservation and behavioral neuroendocrinology. Horm. Behav. 48, 492–501 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Fefferman, N. H. & Romero, L. M. Can physiological stress alter population persistence? A model with conservation implications. Conserv. Physiol. 1, cot012 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Bauer, C. M. et al. Habitat type influences endocrine stress response in the degu (Octodon degus). Gen. Comp. Endocrinol. 186, 136–144 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Behie, A. M., Pavelka, M. S. M. & Chapman, C. A. Sources of variation in fecal cortisol levels in howler monkeys in Belize. Am. J. Primatol. 72, 600–606 (2010).

    31.
    Cavigelli, S. A. Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta. Anim. Behav. 57, 935–944 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Mahmud-Al-Rafat, A. & Taylor-Robinson, A. W. Emergence and persistence of hantavirus in rodent reservoirs: Role of glucocorticoid hormone. Biohelikon Immun. Dis. 2, 9 (2014).
    Google Scholar 

    33.
    Reeder, D. M. & Kramer, K. M. Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. J. Mammal. 86, 225–235 (2005).
    Article  Google Scholar 

    34.
    Dantzer, B., Fletcher, Q. E., Boonstra, R. & Sheriff, M. J. Measures of physiological stress: A transparent or opaque window into the status, management and conservation of species?. Conserv. Physiol. 2, cou023 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Bhattacharjee, S. et al. Glucocorticoid stress responses of reintroduced tigers in relation to anthropogenic disturbance in Sariska Tiger Reserve in India. PLoS ONE 10, e0127626 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Carlitz, E. H. D. et al. Measuring hair cortisol concentrations to assess the effect of anthropogenic impacts on wild chimpanzees (Pan troglodytes). PLoS ONE 11, e0151870 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    37.
    Creel, S., Christianson, D. & Schuette, P. Glucocorticoid stress responses of lions in relationship to group composition, human land use, and proximity to people. Conserv. Physiol. 1, cot021 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Hammond, T. T. et al. Physiological and behavioral responses to anthropogenic stressors in a human-tolerant mammal. J. Mammal. 100, 1928–1940 (2019).
    Article  Google Scholar 

    39.
    Martínez-Mota, R., Valdespino, C., Sánchez-Ramos, M. A. & Serio-Silva, J. C. Effects of forest fragmentation on the physiological stress response of black howler monkeys. Anim. Conserv. 10, 374–379 (2007).
    Article  Google Scholar 

    40.
    Rangel-Negrín, A., Alfaro, J. L., Valdez, R. A., Romano, M. C. & Serio-Silva, J. C. Stress in Yucatan spider monkeys: Effects of environmental conditions on fecal cortisol levels in wild and captive populations. Anim. Conserv. 12, 496–502 (2009).
    Article  Google Scholar 

    41.
    Dowle, M., Webster, K. N. & Deane, E. Faecal glucocorticoid metabolite concentrations in the free-ranging bandicoots (Perameles nasuta and Isoodon obesulus) of northern Sydney. Aust. Mammal. 35, 1 (2013).
    Article  Google Scholar 

    42.
    Malisch, J. L. et al. Baseline and stress-induced plasma corticosterone concentrations of mice selectively bred for high voluntary wheel running. Physiol. Biochem. Zool. 80, 146–156 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Mccabe, P. et al. Animal models of disease. Physiol. Behav. 68, 501–507 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Fredebaugh-Siller, S. L., Suski, C. D., Zuckerman, Z. C. & Schooley, R. L. Ecological correlates of stress for a habitat generalist in a biofuels landscape. Can. J. Zool. 91, 853–858 (2013).
    CAS  Article  Google Scholar 

    45.
    Johnstone, C. P., Lill, A. & Reina, R. D. Habitat loss, fragmentation and degradation effects on small mammals: Analysis with conditional inference tree statistical modelling. Biol. Conserv. 176, 80–98 (2014).
    Article  Google Scholar 

    46.
    McCormick, S. D. & Romero, L. M. Conservation endocrinology. Bioscience 67, 429–442 (2017).
    Article  Google Scholar 

    47.
    Fleytas, M. C. Cambios en el paisaje: evolución de la cobertura vegetal en la Región Oriental del Paraguay. In Biodiversidad del Paraguay: Una aproximación a sus realidades (ed. Fundación Moisés Bertoni) 77–88 (Fundación Moisés Bertoni, 2007).

    48.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Beaumont, L. J. et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl. Acad. Sci. 108, 2306–2311 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    de la Sancha, N. et al. An annotated checklist of the mammals of Paraguay. THERYA 8, 241–260 (2017).
    Article  Google Scholar 

    51.
    Porter, L. et al. Pitheciid conservation in Ecuador, Colombia, Peru, Bolivia and Paraguay. In Evolutionary Biology and Conservation of Titis, Sakis and Uacaris (eds. Veiga, L. M., Barnett, A. A., Ferrari, S. F. & Norconk, M. A.) 320–333 (Cambridge University Press, Cambridge, 2013).

    52.
    de la Sancha, N. U., Libardi, G. S. & Pardiñas, U. F. J. Discovery of a new genus record for Paraguay, the Atlantic Forest endemic rodent, Abrawayaomys (Cricetidae, Sigmodontinae). Mammalia 84, 366–371 (2019).
    Article  Google Scholar 

    53.
    Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 199, 229–243 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Hernandez, S. E., Strona, A. L. S., Leiner, N. O., Suzán, G. & Romano, M. C. Seasonal changes of faecal cortisol metabolite levels in Gracilinanus agilis (Didelphimorphia: Didelphidae) and its association to life histories variables and parasite loads. Conserv. Physiol. 6, (2018).

    55.
    Hing, S., Narayan, E. J., Thompson, R. C. A. & Godfrey, S. S. The relationship between physiological stress and wildlife disease: Consequences for health and conservation. Wildl. Res. 43, 51 (2016).
    Article  Google Scholar 

    56.
    Beehner, J. C. & Bergman, T. J. The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness. Horm. Behav. 91, 68–83 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Cruz, C. F., Ribeiro, A., Martins, M. & Cavaco-Paulo, A. Effect of a peptide in cosmetic formulations for hair volume control. Int. J. Cosmet. Sci. 39, 600–609 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Song, S.-H. et al. Prevention of lipid loss from hair by surface and internal modification. Sci. Rep. 9, 9834 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Jessop, T. S., Woodford, R. & Symonds, M. R. E. Macrostress: Do large-scale ecological patterns exist in the glucocorticoid stress response of vertebrates? Funct. Ecol. 27, 120–130 (2013).
    Article  Google Scholar 

    60.
    de la Sancha, N. U., Maestri, R., Bovendorp, R. S. & Higgins, C. L. Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica 52, 182–195 (2020).
    Article  Google Scholar 

    61.
    Rimbach, R., Heymann, E. W., Link, A. & Heistermann, M. Validation of an enzyme immunoassay for assessing adrenocortical activity and evaluation of factors that affect levels of fecal glucocorticoid metabolites in two New World primates. Gen. Comp. Endocrinol. 191, 13–23 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Velázquez, M. C. & Ramírez Pinto, F. Guía de los mamíferos de la Reserva Natural Tapytá. (Fundación Moisés Bertoni, 2014).

    63.
    Sikes, R. S. & the Animal Care and Use Committee of the American Society of Mammalogists. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).

    64.
    de la Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia 78, 437–449 (2014).
    Google Scholar 

    65.
    de la Sancha, N., D’Elía, G., Netto, F., Pérez, P. & Salazar-Bravo, J. Discovery of Juliomys (Rodentia, Sigmodontinae) in Paraguay, a new genus of Sigmodontinae for the country’s Atlantic Forest. Mammalia 73, 162–167 (2009).
    Google Scholar 

    66.
    de la Sancha, N. U., Pérez-Estigarribia, P. E., McCulloch, E. & Boyle, S. A. Micromamíferos. In Guía de los mamíferos de la Reserva Natural Tapytá (eds. Velázquez, M. C. & Ramírez Pinto, F.) 91–124 (Fundación Moisés Bertoni, 2014).

    67.
    de la Sancha, N. U. et al. Rhipidomys (Rodentia, Cricetidae) from Paraguay: Noteworthy new records and identity of the Paraguayan species. Mammalia 75, 269–276 (2011).
    Google Scholar 

    68.
    de la Sancha, N. U. & D’Elía, G. Additions to the Paraguayan mammal fauna: The first records of two marsupials (Didelphimorphia, Didelphidae) with comments on the alpha taxonomy of Cryptonanus and Philander. Mammalia 79, (2015).

    69.
    Macbeth, B. J., Cattet, M. R. L., Stenhouse, G. B., Gibeau, M. L. & Janz, D. M. Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): Considerations with implications for other wildlife. Can. J. Zool. 88, 935–949 (2010).
    CAS  Article  Google Scholar 

    70.
    Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A. & Meyer, J. S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 147, 255–261 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Koren, L. et al. A novel method using hair for determining hormonal levels in wildlife. Anim. Behav. 63, 403–406 (2002).
    Article  Google Scholar 

    72.
    Higgins, J. J. An Introduction to Modern Nonparametric Statistics. (Brooks/Cole, 2004).

    73.
    Gow, R., Thomson, S., Rieder, M., Van Uum, S. & Koren, G. An assessment of cortisol analysis in hair and its clinical applications. Forensic Sci. Int. 196, 32–37 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Strauss, R. E. Discriminating groups of organisms. In Morphometrics for Nonmorphometricians (ed. Elewa, A. M. T.) vol. 124, 73–91 (Springer, Berlin, 2010).

    75.
    Hernandez, G., Garcia, S., Vilela, J. F. & de la Sancha, N. U. Ontogenetic variation of an omnivorous generalist rodent: The case of the montane akodont (Akodon montensis). J. Mammal. 98, 1741–1752 (2017).
    Article  Google Scholar 

    76.
    Rossi, L. F., de la Sancha, N. U., Luaces, J. P., Estevez, D. Y. & Merani, M. S. Morphological description and comparison of sperm from eighteen species of cricetid rodents. J. Mammal. 99, 1398–1404 (2018).
    Article  Google Scholar 

    77.
    Ordóñez-Garza, N., Matson, J. O., Strauss, R. E., Bradley, R. D. & Salazar-Bravo, J. Patterns of phenotypic and genetic variation in three species of endemic Mesoamerican Peromyscus (Rodentia: Cricetidae). J. Mammal. 91, 848–859 (2010).
    Article  Google Scholar 

    78.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    79.
    Crawley, M. J. Statistics: An Introduction Using R. 2nd ed. (Wiley, Hoboken, 2015).

    80.
    Garcia, S., Luengo, J., Sáez, J. A., López, V. & Herrera, F. A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25, 734–750 (2013).
    Article  Google Scholar 

    81.
    Liu, H., Hussain, F., Tan, C. L. & Dash, M. Discretization: An enabling technique. Data Min. Knowl. Disc. 6, 393–423 (2002).
    MathSciNet  Article  Google Scholar 

    82.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).

    83.
    Hurvich, C. M. & Tsai, C.-L. Bias of the corrected AIC criterion for underfitted regression and time series models. Biometrika 78, 499–509 (1991).
    MathSciNet  MATH  Google Scholar 

    84.
    Anderson, D. R., Burnham, K. P. & White, G. C. AIC model selection in overdispersed capture-recapture data. Ecology 75, 1780–1793 (1994).
    Article  Google Scholar 

    85.
    Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
    MathSciNet  MATH  Article  Google Scholar 

    86.
    Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. (2020).

    87.
    Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006).
    Article  Google Scholar 

    88.
    Huang, J. & Ling, C. X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 17, 299–310 (2005).
    CAS  Article  Google Scholar 

    89.
    Friendly, M. A brief history of the mosaic display. J. Comput. Graph. Stat. 11, 89–107 (2002).
    MathSciNet  Article  Google Scholar 

    90.
    McDonald, J. H. Handbook of Biological Statistics. 3rd ed. (Sparky House Publishing, 2014).

    91.
    ESRI. ArcGIS 10.7. (2019). More

  • in

    The power of community science to quantify ecological interactions in cities

    1.
    United Nations, Department of Economic and Social Affairs, Population Division. World Urban. Prospect. 2018 Highlights (2019).
    2.
    Sebastián-González, E., Dalsgaard, B., Sandel, B. & Guimarães, P. R. Macroecological trends in nestedness and modularity of seed-dispersal networks: Human impact matters. Glob. Ecol. Biogeogr. 24, 293–303 (2015).
    Article  Google Scholar 

    3.
    Eötvös, C. B., Magura, T. & Lövei, G. L. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landsc. Urban Plan. 180, 54–59 (2018).
    Article  Google Scholar 

    4.
    Anders, J. L. et al. Comparison of the intestinal helminth community of the large Japanese field mouse (Apodemus speciosus) between urban, rural, and natural sites in Hokkaido, Japan. Parasitol. Int. 70, 51–57 (2019).
    Article  Google Scholar 

    5.
    Abrams, P. A. & Rowe, L. The effects of predation on the age and size of maturity of prey. Evolution 50, 1052–1061 (1996).
    Article  Google Scholar 

    6.
    Sheriff, M. J., Krebs, C. J. & Boonstra, R. The ghosts of predators past: Population cycles and the role of maternal programming under fluctuating predation risk. Ecology 91, 2983–2994 (2010).
    Article  Google Scholar 

    7.
    Vollset, K. W., Barlaup, B. T., Skoglund, H., Normann, E. S. & Skilbrei, O. Salmon lice increase the age of returning Atlantic salmon. Biol. Lett. 10, 20140085 (2014).
    Article  Google Scholar 

    8.
    Medina, F. M. et al. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Change Biol. 17, 3503–3510 (2011).
    ADS  Article  Google Scholar 

    9.
    Devictor, V., Whittaker, R. J. & Beltrame, C. Beyond scarcity: Citizen science programmes as useful tools for conservation biogeography. Divers. Distrib. 16, 354–362 (2010).
    Article  Google Scholar 

    10.
    Hurlbert, A. H. & Liang, Z. Spatiotemporal variation in avian migration phenology: Citizen science reveals effects of climate change. PLoS ONE 7, e31662 (2012).
    ADS  CAS  Article  Google Scholar 

    11.
    Li, E. et al. An urban biodiversity assessment framework that combines an urban habitat classification scheme and citizen science data. Front. Ecol. Evol. 7, 277 (2019).
    ADS  CAS  Article  Google Scholar 

    12.
    Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Lett. 3, 620–623 (2007).
    Article  Google Scholar 

    13.
    Geffroy, B., Samia, D. S. M., Bessa, E. & Blumstein, D. T. How nature-based tourism might increase prey vulnerability to predators. Trends Ecol. Evol. 30, 755–765 (2015).
    Article  Google Scholar 

    14.
    Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).
    ADS  Article  Google Scholar 

    15.
    Tablado, Z. & Jenni, L. Determinants of uncertainty in wildlife responses to human disturbance. Biol. Rev. https://doi.org/10.1111/brv.12224 (2015).
    Article  PubMed  Google Scholar 

    16.
    Becker, M. & Buchholz, S. The sand lizard moves downtown—habitat analogues for an endangered species in a metropolitan area. Urban Ecosyst. 19, 361–372 (2016).
    Article  Google Scholar 

    17.
    Chavez-Zichinelli, C. A. et al. How stressed are birds in an urbanizing landscape? Relationships between the physiology of birds and three levels of habitat alteration. Condor 115, 84–92 (2013).
    Article  Google Scholar 

    18.
    Jiménez-Peñuela, J., Ferraguti, M., Martínez-de la Puente, J., Soriguer, R. & Figuerola, J. Urbanization and blood parasite infections affect the body condition of wild birds. Sci. Total Environ. 651, 3015–3022 (2019).
    ADS  Article  Google Scholar 

    19.
    Birnie-Gauvin, K., Peiman, K. S., Gallagher, A. J., de Bruijn, R. & Cooke, S. J. Sublethal consequences of urban life for wild vertebrates. Environ. Rev. 24, 416–425 (2016).
    Article  Google Scholar 

    20.
    Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the western Palearctic. Oecologia 159, 849–858 (2009).
    ADS  Article  Google Scholar 

    21.
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).
    Article  Google Scholar 

    22.
    Lazic, M. M., Carretero, M. A., Zivkovic, U. & Crnobrnja-Isailovic, J. City life has fitness costs: Lower body condition and increased parasite intensity in urban common wall lizards Podarcis muralis. Salamandra 53, 10–17 (2016).
    Google Scholar 

    23.
    Giraudeau, M., Mousel, M., Earl, S. & Mcgraw, K. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).
    ADS  Article  Google Scholar 

    24.
    Kellner, K. F., Page, L. K., Downey, M. & Mccord, S. E. Effects of urbanization on prevalence of Baylisascaris procyonis in intermediate host populations. J. Wildl. Dis. 48, 1083–1087 (2012).
    Article  Google Scholar 

    25.
    Geue, D. & Partecke, J. Reduced parasite infestation in urban Eurasian blackbirds (Turdus merula): A factor favoring urbanization?. Can. J. Zool. 86, 1419–1425 (2008).
    Article  Google Scholar 

    26.
    Arnold, E. N. Caudal autotomy as a defense. In Biology of the Reptilia (eds. Gans, C. & Huey, R. B.) 235–273 (Liss, 1988).

    27.
    Higham, T. E., Russell, A. P. & Zani, P. A. Integrative biology of tail autotomy in lizards. Physiol. Biochem. Zool. 86, 603–610 (2013).
    Article  Google Scholar 

    28.
    Itescu, Y., Schwarz, R., Meiri, S. & Pafilis, P. Intraspecific competition, not predation, drives lizard tail loss on islands. J. Anim. Ecol. 86, 66–74 (2017).
    Article  Google Scholar 

    29.
    Bowker, R. W. A Comparative Behavioral Study and Taxonomic Analyses of Gerrhonotine Lizards (Arizona State University, Tempe, 1988).
    Google Scholar 

    30.
    Bateman, P. W. & Fleming, P. A. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. 277, 1–14 (2009).
    Article  Google Scholar 

    31.
    Tyler, R. K., Winchell, K. M. & Revell, L. J. Tails of the city: Caudal autotomy in the tropical lizard, Anolis cristatellus, in urban and natural areas of Puerto Rico. J. Herpetol. 50, 435–441 (2016).
    Article  Google Scholar 

    32.
    Arnold, E. N. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, 127–169 (1984).
    Article  Google Scholar 

    33.
    Bellairs, A. D. A. & Bryant, S. V. Autotomy and regeneration in reptiles. In Biology of the Reptilia (eds. Gans, C. & Billet, F.) 301–410 (Wiley, Hoboken, 1985).

    34.
    Chapple, D. G. & Swain, R. Inter-populational variation in the cost of autotomy in the metallic skink (Niveoscincus metallicus). J. Zool. 264, 411–418 (2004).
    Article  Google Scholar 

    35.
    Wright, S. A., Lane, R. S. & Clover, J. R. Infestation of the Southern Alligator Lizard (Squamata: Anguidae) by Ixodes pacificus (Acari: Ixodidae) and its susceptibility to Borrelia burgdorferi. J. Med. Entomol. 35, 1044–1049 (1998).
    CAS  Article  Google Scholar 

    36.
    Tanner, D. & Perry, J. Road effects on abundance and fitness of Galápagos lava lizards (Microlophus albemarlensis). J. Environ. Manag. 85, 270–278 (2007).
    Article  Google Scholar 

    37.
    Main, A. R. & Bull, M. The impact of tick parasites on the behaviour of the lizard Tiliqua rugosa. Oecologia 122, 574–581 (2000).
    ADS  CAS  Article  Google Scholar 

    38.
    Stanley, T. R. et al. Changes in capture rates and body size among vertebrate species occupying an insular urban habitat reserve. Conserv. Sci. Pract. 2, e245 (2020).
    Google Scholar 

    39.
    Pellitteri-Rosa, D. et al. Urbanization affects refuge use and habituation to predators in a polymorphic lizard. Anim. Behav. 123, 359–367 (2017).
    Article  Google Scholar 

    40.
    Rebolo-Ifrán, N. et al. Links between fear of humans, stress and survival support a non-random distribution of birds among urban and rural habitats. Sci. Rep. 5, 13723 (2015).
    ADS  Article  Google Scholar  More

  • in

    Assessing spatio-temporal patterns and driving force of ecosystem service value in the main urban area of Guangzhou

    This paper uses Landsat TM/OLI images from 1987, 1993, 1999, 2005, 2011 and 2017 by the weight vector AdaBoost (WV AdaBoost) multi-classification algorithm extracting LULC data sets, and the spatiotemporal patterns of LULC over these periods were analysed. The spatiotemporal change patterns and driving force of ESV was estimated. The effect of LULC dynamics on the ESV was evaluated. The flow chart is shown in Fig. 1.
    Figure 1

    The framework of this paper.

    Full size image

    Study area
    Guangzhou is located at 112° 57′ ~ 114° 3′ E, 22° 26′ ~ 23° 56′ N in the southeast part of Guangdong Province in the northern margin of the Pearl River Delta. It has a total land area of 7434.40 km2. The topography is high in the northeast and low in the southwest, with low mountains and hills in the north and plains in the south and a rich geomorphology. The level of urbanization is high, the land use structure is complex and the land use pattern is changing rapidly. Regional public infrastructure, commercial service land and external transportation land is increasing. Export-oriented industrial agglomeration areas are developing continuously, and the characteristics of export-oriented land use are obvious. Guangzhou has a subtropical oceanic monsoon climate, with an annual average temperature of 20–22 °C and an annual rainfall of about 1720 mm. Guangzhou includes eleven districts (Fig. 2a). This paper focuses on the main urban area of Guangzhou as the research object, a decision based on the city government’s overall urban development strategy for Guangzhou (2010–2020), the main urban area of Guangzhou includes five districts—Liwan, Yuexiu, Haizhu, Baiyun and Tianhe (Fig. 2a). In 2017, the per capita GDP will exceed 136,100 yuan for the first time (Fig. 2b). The population density is large, and the intensity of development is extraordinary. The population has increased from 2.73 million in 1987 to 8.05 million in 2017 (Fig. 2c). The industrial structure has been constantly optimized and improved. The proportion of secondary industries decreased from 31.46% in 1987 to 11.28% in 2017, while the proportion of tertiary industries increased from 61.9% in 1987 to 89.61% in 2017.
    Figure 2

    Location of study area and GDP and population. (a) location, (b) GDP, (c) population. (Software: Arc Map 10.5.0, http://www.esri.com. OriginPro 2017C SR2, https://www.originlab.com/).

    Full size image

    Data and data processing
    Data
    The data used include Landsat series images, an administrative zoning map of Guangzhou, a local historical land use map and social and economic statistics from 1987 to 2017. To explore the socio-economic and natural factors driving the ESV change for different land use types, we examined ten factors—the normalized vegetation index (NDVI), year-end population, elevation, slope, distance from roads, distance from railways, land cover types, GDP, secondary industry GDP and investment in fixed assets.
    The Landsat images were taken from the United States Geological Survey website (http://glovis.usgs.gov/), and we downloaded cloud-free Landsat 5 TM and Landsat 8 OLI images (path 122, row 44). Images taken in the dry season (October, November and December) were selected because there was less cloud cover, the change in surface reflectance was much smaller than in other seasons and the image quality was higher. The spatial resolution of imaging is 30 m, and the data of Landsat 5 TM (8 December 1987, 24 December 1993, 25 December 1999, 23 November 2005, 19 November 2011) and Landsat 8 OLI (23 October 2017) were collected.
    The elevation data are provided by the Japan Aerospace Exploration Agency (http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm); the horizontal resolution is 30 m, and the elevation accuracy is 5 m. The road and railway data are provided by Openstreetmap (download.geofabrik.de/), and the distance between roads and railways were calculated. The land use types are provided by Tsinghua University (http://data.ess.tsinghua.edu.cn/) with a resolution of 10 m. GDP, secondary industry GDP and investment in fixed assets were provided by Guangzhou Statistics Bureau28.
    Considering the size of the study area and the resolution of the data, we used Fishnet in ArcGIS10.5 to establish a 500 × 500 m grid covering the study area. The values of ten factors were extracted to the grid centre points, and 3915 points were obtained.
    Remote sensing extraction of LULC types
    To obtain high-precision LULC data, the surface features based on the original remote sensing image were enhanced using the index model (the Index-based Built-up Index (IBI)29, the modified normalized difference water index (MNDWI)30 and the soil-adjusted vegetation index (SAVI)). The humidity, brightness and green chroma indices were transformed using the tasselled-cap method23. Using the six indices, six images were calculated and superposed into a new multi-band image in the order of IBI, SAVI, MNDWI, brightness, green chroma and humidity (referred to as the six-index image). This was superposed with the original image (band 1, 2, 3, 4, 5, 7) to create an enhanced 12-band image as the data source for LULC classification. The image stretching function was then used to stretch the composite image to better distinguish the characteristics of land use types. After feature enhancement, the LULC types in the main urban area of Guangzhou could be divided into seven types—forest, water body, grassland, cultivated land, high reflectivity building, low reflectivity building and bare land. Of these, high reflectance buildings and low reflectance buildings are sub-categories of the built-up area category. The spectrum of high reflectivity buildings is similar to that of bare land; therefore, they are classified separately to avoid erroneous classification31. Based on Google Earth and TM/OLI images, the interpretation marks of LULC types were established (Table 1). To obtain pure and representative samples, the K-means method of unsupervised classification was utilized to cluster the pixels of the ISM image into seven unlabelled classes and to eliminate abnormal clustering. We then selected uniform points and drew polygons on them. Each polygon contains more than 100 pixels, and each class contains between five and seven polygons. All polygons were saved in a shape file as a mask file, which is utilized to extract pure pixels as training samples.
    Table 1 Interpretation mark of land cover types.
    Full size table

    Dou and Chen31 suggest using the weight vector AdaBoost (WV AdaBoost) multi-classification algorithm for LULC classification. Compared with AdaBoost, it provides higher classification accuracy and stability. WV AdaBoost includes a C4.5 decision tree, a Naïve Bayes neural network and an artificial neural network. In this study, we use Naïve Bayes-based WV AdaBoost to classify LULC based on Landsat-enhanced images. To obtain a highly accurate LULC classification, it is necessary to post-process the image after classification, overlay the early land use map during the research period, check the incorrectly classified area, and filter and correct some segments. After image classification, the random selection of 200 pixels in each class was checked, and the correctness of the classification and the evaluated accuracy were confirmed.
    The average classification accuracy of WV AdaBoost based on Naïve Bayes on the original image is 85.02%, and the kappa coefficient is 0.839. The WV AdaBoost algorithm is based on Naïve Bayes processes for the 12-band images of the new combination (enhanced 12-band image). The average classification accuracy is 88.86%, and the kappa coefficient is 0.871. The classification results still need to be strengthened by post-processing, which achieves good classification accuracy. The final average classification accuracy is 91.97%. The kappa coefficient is 0.907. These classification results agree with the ensuing analysis of LULC.
    Methods
    Based on Landsat TM/OLI data from 1987 to 2017, a transfer matrix, a land use change index, an ESV evaluation index, a sensitivity model (CS) and a geo-detector (P) were used to analyze the response of ESVs to LULC evolution.
    Transfer matrix
    The transfer matrix reflects the dynamic process information about mutual transformation LULC types at the beginning (T) and the end (T + 1) of a specified period of time in a certain region (Fig. 3). The general form is:

    $${S}_{ij}=left[begin{array}{c}{s}_{11} {s}_{12}dots {s}_{1n}\ {s}_{21} {s}_{22}dots {s}_{2n}\ dots dots dots dots \ { s}_{n1} {s}_{n2}dots {s}_{nn}end{array}right]$$
    (1)

    where S stands for area, and i,j (i,j = 1,2,…, n) represents LULC types before and after the transfer.
    Figure 3

    Land use transfer process. T the beginning of land use types, T + 1 the end of land use types; A, B, C, D, E, F: different land use types.

    Full size image

    The LULC analyzing indices
    (1)
    Land use dynamics (RS)
    Land use dynamics describe the rate and magnitude of LUCC. The general form is:

    $$RS=frac{{U}_{b}-{U}_{a}}{{U}_{a}}times frac{1}{T}times 100mathrm{%},$$
    (2)

    where ({U}_{a}) is the area of a certain land class at the beginning (km2), ({U}_{b}) is the area of a certain land class at the end (km2), and T is the study period.

    (2)
    Spatial dynamics of land use (RSS)
    Spatial dynamics of land use describe the degree of spatial change in a certain land use type. The general form is:

    $$RSS=frac{{U}_{in}-{U}_{out}}{{U}_{a}}times frac{1}{T}times 100mathrm{%},$$
    (3)

    where ({U}_{in}) is the sum area of other types converted to this type in study period T, and ({U}_{out}) is the sum area of a certain type converted to other types in study period T. ({U}_{a}) is the area of a certain type at the beginning.

    (3)
    Land use change state index (PS)

    The land use change state index represents the trend and state of LUCC. The general form is:

    $$PS=frac{{U}_{in}-{U}_{out}}{{U}_{in}+{U}_{out}},$$
    (4)

    where ({U}_{in}) is the sum area of other types converted to this type in study period T, and ({U}_{out}) is the sum area of a certain type converted to other types in study period T.
    Calculation of ecosystem service value
    In this paper, the improved ecosystem services valuation method based on the unit area value equivalent factor proposed by Xie et al.2 is employed to evaluate ESV. Therefore, the LULC types of the main urban area of Guangzhou were associated to the corresponding representative biomes (Table 2). The most representative biomes used as a proxy for each LULC type are: (1) cropland for cultivated land, (2) tropical forest for forest, (3) grassland for grassland, and (4) water system and wetland for water body. (5) bare land for bare land.
    Table 2 Parameters of ESV for different land use types in the main urban area of Guangzhou.
    Full size table

    The LULC types are not exactly identical with the representative biomes. For example, cultivated land in this study accounts areas used for paddy fields and dry land. Therefore, the ESV index of cultivated land is calculated by weighting the area ratio of paddy field and dry land in the statistical yearbook. The average value of the ESV index of the water system and wetland is adopted for water body. The ESV index of build-up area is 0. the ESV index of land use types is shown in Table 2. The value of the universal equivalent factor ESV (D value) of the improved ESV method is 340.65 thousand yuan/km2.
    In this study, the ESV of each land use unit area is based on the research methods of Costanza3 and Xie et al.2. The calculation formula is:

    $$ESV=sum {A}_{i}times {VC}_{i}$$
    (5)

    $${ESV}_{f}=sum {A}_{i}times {VC}_{fi},$$
    (6)

    where ESV is the total value (yuan) of ecosystem services, ({A}_{i}) (km2) is the area of class i, and VCi is the ESV coefficient (yuan/km· year) corresponding to class i. ESVf is the single ESV, and VCfi is the value coefficient of the single service function.
    Sensitivity analysis model
    The sensitivity model is used to calculate the response of ESV to the change of value coefficient (VC)14 by adjusting the 50% of the ESV coefficient of each land use type up and down and determining the change in ESV over time and the degree of dependence on the value coefficient. The calculation formula is as follows:

    $$CS=frac{{(ESV}_{j}-{ESV}_{i})/{ESV}_{i}}{{(VC}_{jk}-{VC}_{ik})/{VC}_{ik}},$$
    (7)

    where ESV is the estimated ESV, VC is the value coefficient, i and j are the initial value and adjusted value (50% up and down adjustment) and K is the land use type. When CS ≥ 1, ESV is elastic relative to VC; when CS ≤ 1, ESV is inelastic. The larger the CS value is, the more critical the accuracy of the ESV index.
    Grid analysis method
    Grid analysis method is used to divided the study area into regular grid matrixes with the same size and no overlap, and takes grid as the research object to express and statistical unit in geospatial space9. It uses regular square grid as ESV’s spatial statistical unit instead of irregular land-use map spots to ensure the capacity invariance within the unit, which not only highlights the spatial distribution characteristics of ESV, but also facilitates the spatial quantitative statistics of ESV.
    The premise of calculating ESV spatial differentiation is to determine the size of grid cell. In this study, based on ArcGIS10.5 software, the area of each land use type in four grid units with side length of 0.5 km, 1 km, 2 km and 3 km was extracted respectively, and then compare the degree of area change, namely the coefficient of variation. The grid of this scale is the optimal grid unit size for the spatial differentiation of ESV in the study area. Finally, the grid analysis method is introduced to construct a (0.5 × 0.5) km square grid as a geospatial statistical unit. By using the equal spacing system sampling method, the study area is divided into 2024 square grids that do not overlap each other (0.5 × 0.5) km, and the grid matrix is composed of these grids. Through the intersection operation of grid matrix and land use data of each research year, the area of various land use types in each grid is counted, and the spatial heterogeneity of land use types and ESV is analyzed.
    Geo-detector
    Combined with GIS spatial superposition technology and set theory, a statistical method proposed by Wang et al.32 can detect spatial heterogeneity and reveal the driving force to identify the interaction between multiple factors. This model is widely used to analyze the influence mechanism of social economic factors and natural environmental factors. The geo-detector consists of four detectors—a differentiation and factor detector, an interaction detector, a risk area detector and an ecological detector. In this paper, factor detection and interaction detection are utilized to detect and analyze the driving force of ESVs in the main urban area of Guangzhou.
    (1) Factor detector: Factor detection can identify the explanatory power of each spatial driving factor in landscape type change, and its model is as follows:

    $$P=1-frac{1}{{ndelta }^{2}}sum_{i=1}^{m}{n}_{i}{{delta }^{2}}_{i},$$
    (8)

    where P is the explanatory power index of ESV influencing factors; ni is the number of samples in the secondary area; n is the total number of samples; m is the number of samples in the secondary area; ({delta }^{2}) is the variance in land use type change in the whole area; and ({{delta }^{2}}_{i}) is the variance in land use type in the secondary area. Thus, the model is established, assuming ({{delta }^{2}}_{i}) ≠ 0.
    The range of values for P is [0,1]. When P = 0, it shows that the spatial distribution of ESV changes is random. The larger the P value is, the greater the impact of longitudinal driving factors on ESV changes.
    (2) Interactive detector: Interaction detection can be used to identify the interaction between different spatial drivers. When detecting the interaction of X1 and X2, the explanatory power of the dependent variable Y will increase or decrease. The evaluation method is used to calculate the q value of two factors, X1 and X2, for Y, respectively, q (X1) and q (X2); to calculate the q value of their interaction, q (X1 ∩ X2); and to compare q (X1), q (X2) and q (X1 ∩ X2). The five results of the interactive detector are given in Table 3.
    Table 3 Types of interactions between two covariates.
    Full size table More

  • in

    Fecundity determines the outcome of founding queen associations in ants

    In this study, we used the black garden ant Lasius niger to investigate the benefits and factors of pleometrosis, the transitory association between founding queens. The monitoring of colonies founded by one or two queens showed that pleometrosis increased and accelerated offspring production. Then, the experimental pairing of L. niger founding queens revealed that in pairs of queens of different fecundity but similar size, the most fecund queen was more likely to survive. Our experiment could not detect a similar effect of size when controlling for fecundity. Finally, we found that queens associated preferentially with less fecund queens.
    Our findings of pleometrosis benefiting offspring production are in line with the literature for this, and other ant species3,7,9,10,12,22,23. Interestingly, we only detected these benefits at the colony level, as pleometrosis had either no effect or a negative influence on the per capita offspring production9,12,22. However, colony-level measurements are more relevant in the case of pleometrosis, as the queen that survives the association inherits all the offspring produced during colony foundation. In the field, colonies with a faster, more efficient worker production would have a competitive advantage over neighbouring founding colonies3,4. This is especially true for L. niger, which shows high density of founding colonies that compete for limiting resources and raid the brood of other colonies10. Thus, the competitive advantage provided by pleometrosis likely enhances colony growth and survival.
    The increased and faster production of workers in colonies with two queens may stem from a nutritional boost for the larvae. L. niger founding queens do not forage, and produce the first cohort of workers from their own metabolic reserves. Larvae have been observed to cannibalize both viable and non-viable (trophic) eggs24. We found that colonies with two queens produced more eggs, but that this did not translate in them having more larvae. However, more of these larvae became pupae—and ultimately workers. In addition, while the time to produce the first egg and larva did not differ between colonies with one and two queens, the first pupa and worker were produced faster when two queens were present, consistent with a shorter larval stage. We propose that larvae in pleometrotic colonies developed faster and were more likely to reach pupation because they had more eggs that provided nutrients, boosting the development rate of the first workers.
    These benefits of pleometrosis are only inherited by the queens that survive, it is thus important to understand the factors that determine queen survival in pleometrotic associations. Although this question has been relatively well studied3,16,17,18,19,20,21, it has remained challenging to disentangle the effects of correlated factors. For example, we found that size, which has been reported to predict queen survival16,19, correlated with fecundity, which would itself be confounded with the parentage of workers in the first cohort produced. To address this issue, we disentangled size and fecundity experimentally, and used foreign workers that developed from pupae collected in field colonies to prevent any potential nepotistic behaviour.
    We found that fecundity, but not size, determined queen survival. The finding that, despite being of similar size, more fecund queens are more likely to survive indicates that the outcome of pleometrosis is not the mere consequence of physical dominance. The higher fecundity could reflect a better health condition, which may give the advantage to the more fecund queen in direct fights3,15, or if workers initiate the fights. Natural selection may have favoured workers that skew aggression toward the less fecund queen, both because this queen would be less efficient at building a colony, and because the workers would be more likely to be the offspring of the more fecund queen. The latter would not necessarily involve direct nepotistic behaviours (the workers would not behave according to parentage, but to fecundity), which have remained elusive in social insects in general25,26,27, and in pleometrotic associations in particular16,17,20. Despite regular behavioural observations, we did not observe who initiated aggression in our experiments, and it remains unclear whether the queens and/or the workers are responsible for the onset of fights. Consistently with previous studies16,23, we found that a certain proportion of queen death occurred before worker emergence, suggesting that worker presence is not required for queen execution. Finally, we cannot rule out that the least fecund queens were more likely to die because of a weaker health status, possibly combined with the stress of being associated with another, healthier queen.
    Although it has not been directly reported before, our finding that fecundity determines queen survival is consistent with previous reports of weight being associated with queen survival17, more fecund queens being more aggressive28, cuticular hydrocarbon profiles differing between surviving and culled queens21, and between more and less fecund queens28. We could not directly support previous reports of size correlating with survival16,19. This could be because in those studies, size could have been confounded with fecundity, and/or because we lacked the statistical power to detect such effect in our experiment.
    Pleometrosis provides clear benefits, but these benefits are only inherited by the surviving queens, and the losing queens pay the great cost of dying without contributing to the next generation. Natural selection should thus favour queens that decide whether or not to join a pleometrotic association based on the relative benefits compared to individual foundation—these may differ across ecological contexts29—and the likelihood of surviving the association. As fecundity appears to determine queen survival in L. niger, queens may have evolved the ability to choose among potential partners according to their fecundity. Our results are consistent with this hypothesis, as queens preferentially associated with partners that would later produce fewer eggs, possibly because they were less fecund, and therefore less healthy and easier to eliminate. This suggests that founding queens may assess the fecundity of potential partners, possibly via their cuticular hydrocarbon profile28. This result further supports our finding that fecundity plays an important role in pleometrotic associations. It is important to note that this difference in egg production could have alternative explanations. First, it could stem from more fecund queens having no interest in forming an association because they are able to start a competitive colony alone. Second, it could be a consequence, rather than a cause, of the outcome of the choice experiment. We cannot rule out that entering an association with another queen and/or leaving this association prematurely at the end of the choice experiment may have been stressful for the chosen queens, and affected their later production of eggs. We could not detect any difference between chosen and not chosen queens in the number of larvae and pupae produced, which are likely influenced by factors other than fecundity (e.g., brood care behaviour). Interestingly, we did not find that queens chose according to size, consistent with our finding that size may not affect which queen survives the pleometrotic association.
    Our study informs on the benefits and factors of pleometrosis, and highlights the role of fecundity in the decision to associate with another queen, and in determining which queen survives the association. As such, it contributes to a better understanding of the onset and outcome of pleometrosis, a classic case of cooperation between unrelated animals. More

  • in

    Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees

    1.
    Dharampal, P. S., Hetherington, M. C. & Steffan, S. A. Microbes make the meal: Oligolectic bees require microbes within their host pollen to thrive. Ecol. Entomol. https://doi.org/10.1111/een.12926 (2020).
    Article  Google Scholar 
    2.
    Sonnenburg, J. L. & Bäckhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Suzuki, T. A. Links between natural variation in the microbiome and host fitness in wild mammals. Integr. Comp. Biol. 57, 756–769 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Kwong, W. K., Mancenido, A. L. & Moran, N. A. Immune system stimulation by the native gut microbiota of honey bees. R. Soc. Open Sci. 4, 170003 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Bo, T.-B. et al. Coprophagy prevention alters microbiome, metabolism, neurochemistry, and cognitive behavior in a small mammal. ISME J. https://doi.org/10.1038/s41396-020-0711-6 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    7.
    Sarkar, A. et al. The role of the microbiome in the neurobiology of social behaviour. Biol. Rev. 95, 12603 (2020).
    Article  Google Scholar 

    8.
    Vernier, C. L. et al. The gut microbiome defines social group membership in honey bee colonies. Sci. Adv. 6, 3431 (2020).
    ADS  Article  CAS  Google Scholar 

    9.
    Lemoine, M. M., Engl, T. & Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 39, 14–20 (2020).
    PubMed  Article  Google Scholar 

    10.
    Engel, P. et al. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. MBio. https://doi.org/10.1128/mBio.02164-15 (2006).
    Article  Google Scholar 

    11.
    Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: How systematic depletion of key symbionts erodes immunity. Trends Microbiol. https://doi.org/10.1016/j.tim.2020.06.006 (2020).
    Article  PubMed  Google Scholar 

    12.
    Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).
    CAS  PubMed  Article  Google Scholar 

    13.
    Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. 114, 4775–4780 (2017).
    CAS  PubMed  Article  Google Scholar 

    14.
    Zheng, H. et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio. https://doi.org/10.1128/mBio.01326-16 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    15.
    Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4, 60–65 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Lee, F. J., Rusch, D. B., Stewart, F. J., Mattila, H. R. & Newton, I. L. G. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ. Microbiol. 17, 796–815 (2015).
    CAS  PubMed  Article  Google Scholar 

    17.
    Anderson, K. E. et al. Hive-stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol. Ecol. 23, 5904–5917 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Dharampal, P. S., Carlson, C., Currie, C. R. & Steffan, S. A. Pollen-borne microbes shape bee fitness. Proc. R. Soc. B Biol. Sci. 286, 20182894 (2019).
    CAS  Article  Google Scholar 

    19.
    Rothman, J. A., Leger, L., Graystock, P., Russell, K. & McFrederick, Q. S. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ. Microbiol. 21, 1462–2920. https://doi.org/10.1111/1462-2920.14641 (2019).
    CAS  Article  Google Scholar 

    20.
    Wu, Y. et al. Honey bee ( Apis mellifera ) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microb. Biotechnol. 13, 1201–1212 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Praet, J. et al. Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ. Microbiol. 20, 214–227 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Forsgren, E., Olofsson, T. C., Vásquez, A. & Fries, I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41, 99–108 (2010).
    Article  Google Scholar 

    23.
    Cariveau, D. P., Elijah Powell, J., Koch, H., Winfree, R. & Moran, N. A. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J. 8, 2369–2379 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Raymann, K., Shaffer, Z. & Moran, N. A. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 15, e2001861 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Schwarz, R. S., Moran, N. A. & Evans, J. D. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc. Natl. Acad. Sci. 113, 9345–9350 (2016).
    CAS  PubMed  Article  Google Scholar 

    26.
    Maes, P. W., Rodrigues, A. P., Oliver, R., Mott, B. M. & Anderson, K. E. Diet related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honey bee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).
    CAS  PubMed  Article  Google Scholar 

    27.
    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. 108, 19288–19292 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Evans, J. D. & Lopez, D. L. Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 97, 752–756 (2004).
    CAS  PubMed  Article  Google Scholar 

    29.
    Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590 (2017).
    CAS  PubMed  Article  Google Scholar 

    30.
    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. 109, 11002–11007 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    31.
    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Micro 14, 374–384 (2016).
    CAS  Article  Google Scholar 

    32.
    McFrederick, Q. S. & Rehan, S. M. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol. Ecol. 25, 2302–2311 (2016).
    CAS  PubMed  Article  Google Scholar 

    33.
    McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).
    PubMed  Article  Google Scholar 

    34.
    McFrederick, Q. S. et al. Environment or kin: whence do bees obtain acidophilic bacteria?. Mol. Ecol. 21, 1754–1768 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    McFrederick, Q. S., Wcislo, W. T., Hout, M. C. & Mueller, U. G. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees. FEMS Microbiol. Ecol. 88, 398–406 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Graystock, P., Rehan, S. M. & McFrederick, Q. S. Hunting for healthy microbiomes: Determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conserv. Genet. 18, 701–711 (2017).
    Article  Google Scholar 

    37.
    McFrederick, Q. S. et al. Specificity between lactobacilli and hymenopteran hosts is the exception rather than the rule. Appl. Environ. Microbiol. 79, 1803–1812 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Sanders, J. G. et al. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 23, 1268–1283 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, 1–17 (2017).
    Article  Google Scholar 

    40.
    Rothman, J. A., Andrikopoulos, C., Cox-Foster, D. & McFrederick, Q. S. Floral and foliar source affect the bee nest microbial community. Microb. Ecol. 78, 506–516 (2019).
    PubMed  Article  Google Scholar 

    41.
    Cohen, H., McFrederick, Q. S. & Philpott, S. M. Environment shapes the microbiome of the blue orchard bee, Osmia lignaria. Microb. Ecol. 80, 897–907 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Muñoz-Colmenero, M. et al. Differences in honey bee bacterial diversity and composition in agricultural and pristine environments—A field study. Apidologie. https://doi.org/10.1007/s13592-020-00779-w (2020).
    Article  Google Scholar 

    43.
    Kapheim, K. M. et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE 10, 1–14 (2015).
    Article  CAS  Google Scholar 

    44.
    Elijah Powell, J., Eiri, D., Moran, N. A. & Rangel, J. Modulation of the honey bee queen microbiota: Effects of early social contact. PLoS ONE 13, 1–14 (2018).
    Google Scholar 

    45.
    Tarpy, D. R., Mattila, H. R. & Newton, I. L. G. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl. Environ. Microbiol. 81, 3182–3191 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Dong, Z. X. et al. Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different developmental stages. Microbiol. Res. 231, 126370 (2020).
    CAS  PubMed  Article  Google Scholar 

    47.
    D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).
    Article  CAS  Google Scholar 

    48.
    Huang, S. K. et al. Influence of feeding type and Nosema ceranae infection on the gut microbiota of Apis cerana workers. mSystems 3, 177–195 (2018).
    Article  Google Scholar 

    49.
    Rothman, J. A., Carroll, M. J., Meikle, W. G., Anderson, K. E. & McFrederick, Q. S. Longitudinal effects of supplemental forage on the Honey Bee (Apis mellifera) microbiota and inter- and intra-colony variability. Microb. Ecol. 76, 814–824 (2018).
    CAS  PubMed  Article  Google Scholar 

    50.
    Zhang, Y. et al. Nosema ceranae infection enhances Bifidobacterium spp. abundances in the honey bee hindgut. Apidologie 50, 353–362 (2019).
    Article  Google Scholar 

    51.
    Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees (Princeton University Press, Princeton, 2019).
    Google Scholar 

    52.
    Santos, P. K. F., Arias, M. C. & Kapheim, K. M. Loss of developmental diapause as prerequisite for social evolution in bees. Biol. Lett. 15, 20190398 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Harmon-Threatt, A. Influence of nesting characteristics on health of wild bee communities. Annu. Rev. Entomol. 65, 39–56 (2020).
    CAS  PubMed  Article  Google Scholar 

    54.
    Johansen, C., Mayer, D., Stanford, A. & Kious, C. Alkali Bees: Their Biology and Management for Alfalfa Seed Production in the Pacific Northwest (Publication, Pacific Northwest Cooperative Extension Service, Genesee, 1982).
    Google Scholar 

    55.
    Cane, J. H. A native ground-nesting bee (Nomia melanderi) sustainably managed to pollinate alfalfa across an intensively agricultural landscape. Apidologie 39, 315–323 (2008).
    Article  Google Scholar 

    56.
    Cane, J. H. Pollinating bees (Hymenoptera: Apiformes) of U.S. alfalfa compared for rates of pod and seed set. J. Econ. Entomol. 95, 22–27 (2002).
    PubMed  Article  Google Scholar 

    57.
    Batra, S. W. & Bohart, G. E. Alkali bees: Response of adults to pathogenic fungi in brood cells. Science 165, 607 (1969).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Galbraith, D. A. et al. Investigating the viral ecology of global bee communities with high-throughput metagenomics. Sci. Rep. 8, 1–11 (2018).
    CAS  Article  Google Scholar 

    59.
    Bohart, G. E., Stephen, W. P. & Eppley, E. K. The biology of Heterostylum robustum (Diptera: Bombyliidae), a parasite of the alkali bee. Ann. Entomol. Soc. Am. 53, 425–435 (1960).
    Article  Google Scholar 

    60.
    Johansen, C. A., Mayer, D. F. & Eves, J. D. Biology and management of the alkali bee, Nomia melanderi Cockrell (Hymenoptera: Halictidae).Melanderii Cockrell (Hymenoptera: Halictidae).Melanderi (Washington State Entomology, Pullman, 1978).
    Google Scholar 

    61.
    Johansen, C. A. & Mayer, D. F. Pollinator Protection: A Bee and Pesticide Handbook (Wicwas Press, Kalamazoo, 1990).
    Google Scholar 

    62.
    Stephen, W. P. Solitary bees in North American agriculture: A perspective. In For Nonnative Crops, Whence Pollinators of the Future? (eds Strickler, K. & Cane, J. H.) 41–66 (Entomological Society of America, Annapolis, 2003).
    Google Scholar 

    63.
    Kapheim, K. M. et al. Draft genome assembly and population genetics of an agricultural pollinator, the solitary alkali bee (Halictidae: Nomia melanderi). G3 9, 625–634 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Batra, S. W. T. Aggression, territoriality, mating and nest aggregation of some solitary bees (Hymenoptera: Halictidae, Megachilidae, Colletidae, Anthophoridae). J. Kansas Entomol. Soc. 51, 547–559 (1978).
    Google Scholar 

    65.
    Mayer, D. F. & Miliczky, E. R. Emergence, male behavior, and mating in the alkali bee, Nomia melanderi Cockerell (Hymenoptera: Halictidae). J. Kansas Entomol. Soc. 71, 61–68 (1998).
    Google Scholar 

    66.
    Kapheim, K. M. & Johnson, M. M. Juvenile hormone, but not nutrition or social cues, affects reproductive maturation in solitary alkali bees (Nomia melanderi). J. Exp. Biol. https://doi.org/10.1242/jeb.162255 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Koch, H. & Schmid-Hempel, P. Bacterial communities in central European bumble bees: Low diversity and high specificity. Microb. Ecol. 62, 121–133 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Martinson, V. G., Moy, J. & Moran, N. A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 78, 2830–2840 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl. Environ. Microbiol. 80, 7378–7387 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    70.
    Kapheim, K. M. & Johnson, M. M. Support for the reproductive ground plan hypothesis in a solitary bee: Links between sucrose response and reproductive status. Proc. R. Soc. B Biol. Sci. 284, 20162406 (2017).
    Article  CAS  Google Scholar 

    71.
    R Core Team. R: A Language and Environment for Statistical Computing (2019).

    72.
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. BioRxiv. https://doi.org/10.1101/221499 (2017).
    Article  Google Scholar 

    74.
    Jari Oksanen, F. et al. vegan: Community Ecology Package (2019).

    75.
    McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    78.
    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means (2020).

    79.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    80.
    Lahti, L. & Shetty, S. Microbiome R Package (2012).

    81.
    Zheng, J. et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70, 2782–2858 (2020).
    CAS  PubMed  Article  Google Scholar 

    82.
    Rummel, P. S. et al. Maize root and shoot litter quality controls short-term emissions and bacterial community structure of arable soil. Biogeosciences 17, 1181–1198 (2020).
    ADS  CAS  Article  Google Scholar 

    83.
    McFrederick, Q. S., Vuong, H. Q. & Rothman, J. A. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers. Int. J. Syst. Evol. Microbiol. 68, 1879–1884 (2018).
    CAS  PubMed  Article  Google Scholar 

    84.
    Wittouck, S., Wuyts, S., Meehan, C. J., van Noort, V. & Lebeer, S. A genome-based species taxonomy of the Lactobacillus genus complex. mSystems. https://doi.org/10.1128/mSystems.00264-19 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    85.
    Engel, P. & Moran, N. A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
    CAS  PubMed  Article  Google Scholar 

    86.
    Cane, J. H., Dobson, H. E. M. & Boyer, B. Timing and size of daily pollen meals eaten by adult females of a solitary bee (Nomia melanderi) (Apiformes: Halictidae). Apidologie 48, 17–30 (2016).
    Article  CAS  Google Scholar 

    87.
    Engel, P., Bartlett, K. D. & Moran, N. A. The bacterium Frischella perrara causes scab formation in the gut of its honeybee host. MBio 6, 1–8 (2015).
    Article  CAS  Google Scholar 

    88.
    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).
    PubMed  Article  Google Scholar 

    89.
    Vásquez, A. & Olofsson, T. C. The lactic acid bacteria involved in the production of bee pollen and bee bread. J. Apic. Res. 48, 189–195 (2009).
    Article  Google Scholar 

    90.
    Vuong, H. Q. & McFrederick, Q. S. Comparative genomics of wild bee and flower isolated Lactobacillus reveals potential adaptation to the bee host. Genome Biol. Evol. 11, 2151–2161 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Demographic effects of interacting species: exploring stable coexistence under increased climatic variability in a semiarid shrub community

    1.
    Jongejans, E., de Kroon, H., Tuljapurkar, S. & Shea, K. Plant populations track rather than buffer climate fluctuations. Ecol. Lett. 13, 736–743 (2010).
    PubMed  Article  Google Scholar 
    2.
    Tenhumberg, B., Crone, E. E., Ramula, S. & Tyre, A. J. Time-lagged effects of weather on plant demography: Drought and Astragalus scaphoides. Ecology 99, 915–925 (2018).
    PubMed  Article  Google Scholar 

    3.
    Boyce, M. S., Haridas, C. V., Lee, C. T. & the NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Törang, P., Ehrlén, J. & Ågren, J. Linking environmental and demographic data to predict future population viability of a perennial herb. Oecologia 163, 99–109 (2010).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
    Article  Google Scholar 

    6.
    García-Cervigón, A. I., Camarero, J. J., Cueva, E., Espinosa, C. I. & Escudero, A. Climate seasonality and tree growth strategies in a tropical dry forest. J. Veg. Sci. 31, 266–280 (2020).
    Article  Google Scholar 

    7.
    Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl. Acad. Sci. U.S.A. 103, 12793–12798 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Wasonga, O., Gabiri, G., MacOpiyo, L., Mburu, J. & Majaliwa, J. G. M. Land cover and soil properties influence on forage quantity in a semiarid region in East Africa. Appl. Environ. Soil Sci. 2019, 6874268 (2019).
    Google Scholar 

    9.
    Zheng, X. X., Liu, G. H., Fu, B. J., Jin, T. T. & Liu, Z. F. Effects of biodiversity and plant community composition on productivity in semiarid grasslands of Hulunbeir, Inner Mongolia, China. Ann. N. Y. Acad. Sci. 1195, E52–E64 (2010).
    PubMed  Article  Google Scholar 

    10.
    Saiz, H. & Alados, C. L. Changes in semi-arid plant species associations along a livestock grazing gradient. PLoS ONE 9, e91478 (2012).
    Google Scholar 

    11.
    Chacón-Labella, J., de la Cruz, M., Pescador, D. S. & Escudero, A. Individual species affect plant traits structure in their surroundings: Evidence of functional mechanisms of assembly. Oecologia 180, 975–987 (2016).
    ADS  PubMed  Article  Google Scholar 

    12.
    Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).
    Article  Google Scholar 

    13.
    Nicolè, F., Dahlgren, J. P., Vivat, A., Till-Bottraud, I. & Ehrlén, J. Interdependent effects of habitat quality and climate on population growth of an endangered plant. J. Ecol. 99, 1211–1218 (2011).
    Article  Google Scholar 

    14.
    McIntire, E. J. B. & Fajardo, A. Facilitation as a ubiquitous driver of biodiversity. New Phytol. 201, 403–416 (2014).
    PubMed  Article  Google Scholar 

    15.
    Mihoč, M. A. K. et al. Soil under nurse plants is always better than outside: A survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 408, 31–41 (2016).
    Article  CAS  Google Scholar 

    16.
    Maestre, F. T., Valladares, F. & Reynolds, J. F. Is the change of plant–plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J. Ecol. 93, 748–757 (2005).
    Article  Google Scholar 

    17.
    Gustaffson, C. & Ehrlén, J. Effects of intraspecific and interspecific density on the demography of a perennial herb, Sanicula europaea. Oikos 100, 317–324 (2003).
    Article  Google Scholar 

    18.
    García-Cervigón, A. I., Iriondo, J. M., Linares, J. C. & Olano, J. M. Disentangling facilitation along the life cycle: Impacts of plant–plant interactions at vegetative and reproductive stages in a Mediterranean forb. Front. Plant Sci. 7, 129 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Miriti, M. N. Ontogenetic shift from facilitation to competition in a desert shrub. J. Ecol. 94, 973–979 (2006).
    Article  Google Scholar 

    20.
    Soliveres, S. L., DeSoto, L., Maestre, F. T. & Olano, J. M. Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation. Perspect. Plant Ecol. Evol. Syst. 12, 227–234 (2010).
    Article  Google Scholar 

    21.
    Dahlgren, J. P. & Ehrlén, J. Linking environmental variation to population dynamics of a forest herb. J. Ecol. 97, 666–674 (2009).
    Article  Google Scholar 

    22.
    Griffith, A. B. Positive effects of native shrubs on Bromus tectorum demography. Ecology 91, 141–154 (2010).
    PubMed  Article  Google Scholar 

    23.
    Tenhumberg, B., Suwa, T., Tyre, A. J., Russell, F. L. & Louda, S. M. Integral projection models show exotic thistle is more limited than native thistle by ambient competition and herbivory. Ecosphere 6, 69 (2015).
    Article  Google Scholar 

    24.
    García-Algarra, J., Galeano, J., Pastor, J. M., Iriondo, J. M. & Ramasco, J. J. Rethinking the logistic approach for population dynamics of mutualistic interactions. J. Theoret. Biol. 363, 332–343 (2014).
    MathSciNet  MATH  Article  Google Scholar 

    25.
    Adler, P. B., Dalgleish, H. J. & Ellner, S. P. Forecasting plant community impacts of climate variability and change: When do competitive interactions matter?. J. Ecol. 100, 478–487 (2012).
    Article  Google Scholar 

    26.
    Chu, C. & Adler, P. B. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecol. Monogr. 85, 373–392 (2015).
    Article  Google Scholar 

    27.
    Easterling, M. R., Ellner, S. P. & Dixon, P. M. Size-specific sensitivity: Applying a new structured population model. Ecology 81, 694–708 (2000).
    Article  Google Scholar 

    28.
    Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).
    PubMed  Article  Google Scholar 

    29.
    Rees, M. & Ellner, S. P. Integral projection models for populations in temporally varying environments. Ecol. Monogr. 79, 575–594 (2009).
    Article  Google Scholar 

    30.
    Williams, J. L., Jacquemyn, H., Ochocki, B. M., Brys, R. & Miller, T. E. X. Life history evolution under climate change and its influence on the population dynamics of a long-lived plant. J. Ecol. 103, 798–808 (2015).
    Article  Google Scholar 

    31.
    IPCC. Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).

    32.
    Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc. Natl. Acad. Sci. U.S.A. 95, 14839–14842 (1998).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Olano, J. M., Eugenio, M. & Escudero, A. Site effect is stronger than species identity in driving demographic responses of Helianthemum (Cistaceae) shrubs in gypsum environments. Am. J. Bot. 98, 1–8 (2011).
    Article  Google Scholar 

    34.
    Arroyo-Cosultchi, G., Golubov, J. & Mandujano, M. C. Pulse seedling recruitment on the population dynamics of a columnar cactus: Effect of an extreme rainfall event. Acta Oecol. 71, 52–60 (2016).
    ADS  Article  Google Scholar 

    35.
    Quintana-Ascencio, P. F., Caballero, I., Olano, J. M., Escudero, A. & Albert, M. J. Does habitat structure matter? Spatially explicit population modeling of an Iberian gypsum endemic. Popul. Ecol. 51, 317–328 (2009).
    Article  Google Scholar 

    36.
    Eugenio, M., Olano, J. M., Ferrandis, P., Martínez-Duro, E. & Escudero, A. Population structure of two dominant gypsophyte shrubs through a secondary plant succession. J. Arid Environ. 76, 30–35 (2012).
    ADS  Article  Google Scholar 

    37.
    Martínez, I. et al. Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Aust. J. Bot. 54, 339–348 (2006).
    Article  Google Scholar 

    38.
    Sánchez, A. M., Alonso-Valiente, P., Albert, M. J. & Escudero, A. How might edaphic specialists in gypsum islands respond to climate change? Reciprocal sowing experiment to infer local adaptation and phenotypic plasticity. Ann. Bot. 120, 135–146 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).
    ADS  PubMed  Article  Google Scholar 

    40.
    Escudero, A., Somolinos, R. C., Olano, J. M. & Rubio, A. Factors controlling the establishment of Helianthemum squamatum (L.) Dum., an endemic gypsophite of semi-arid Spain. J. Ecol. 87, 290–302 (1999).
    Article  Google Scholar 

    41.
    Escudero, A., Iriondo, J. M., Olano, J. M., Rubio, A. & Somolinos, R. Factors affecting establishment of a gypsophyte: The case of Lepidium subulatum (Brassicaceae). Am. J. Bot. 87, 861–871 (2000).
    CAS  PubMed  Article  Google Scholar 

    42.
    Aragón, C. F., Albert, M. J., Giménez-Benavides, L., Luzuriaga, A. L. & Escudero, A. Environmental scales on the reproduction of a gypsophyte: A hierarchical approach. Ann. Bot. 99, 519–527 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Caballero, I., Olano, J. M., Loidi, J. & Escudero, A. A model for small-scale seed bank and standing vegetation connection along time. Oikos 117, 1788–1795 (2008).
    Article  Google Scholar 

    44.
    de la Cruz, M., Romão, R. L., Escudero, A. & Maestre, F. T. Where do seedlings go? A spatio-temporal analysis of seedling mortality in a semi-arid gypsophyte. Ecography 31, 720–730 (2008).
    Article  Google Scholar 

    45.
    Tye, M. R. et al. Assessing seed and microsite limitation on population dynamics of a gypsophyte through experimental soil crust disturbance and seed addition. Plant Ecol. 218, 595–607 (2017).
    Article  Google Scholar 

    46.
    Olano, J. M., Caballero, I., Loidi, J. & Escudero, A. Prediction of plant cover from seed bank analysis in a semi-arid plant community on gypsum. J. Veg. Sci. 16, 215–222 (2005).
    Article  Google Scholar 

    47.
    Luzuriaga, A. L., Sánchez, A. M., Maestre, F. T. & Escudero, A. Assemblage of a semi-arid annual plant community: Abiotic and biotic filters act hierarchically. PLoS ONE 7, e41270 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Peralta, A. M. L., Sánchez, A. M., Luzuriaga, A. L., de Bello, F. & Escudero, A. Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach. J. Ecol. 107, 2772–2788 (2019).
    CAS  Article  Google Scholar 

    49.
    Wilcock, C. & Neiland, R. Pollination failure in plants: Why it happens and when it matters. Trends Plant Sci. 7, 270–277 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Watson, I. W., Westoby, M. & Holm, A. M. Continuous and episodic components of demographic change in arid zone shrubs: Models of two Eremophila species from Western Australia compared with published data on other species. J. Ecol. 85, 833–846 (1997).
    Article  Google Scholar 

    51.
    Schwinning, S., Sala, O. E., Loik, M. E. & Ehleringer, J. R. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141, 191–193 (2004).
    ADS  PubMed  Article  Google Scholar 

    52.
    Wiegand, K., Jeltsch, F. & Ward, D. Minimum recruitment frequency in plants with episodic recruitment. Oecologia 141, 363–372 (2004).
    ADS  PubMed  Article  Google Scholar 

    53.
    Caballero, I., Olano, J. M., Escudero, A. & Loidi, J. Seed bank structure along a semi-arid gypsum gradient in central Spain. J. Arid Environ. 55, 287–299 (2003).
    ADS  Article  Google Scholar 

    54.
    Olano, J. M., Caballero, I. & Escudero, A. Soil seed bank recovery occurs more rapidly than expected in semi-arid Mediterranean gypsum vegetation. Ann. Bot. 109, 299–307 (2012).
    CAS  PubMed  Article  Google Scholar 

    55.
    Holzapfel, C. & Mahall, B. E. Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 80, 1747–1761 (1999).
    Article  Google Scholar 

    56.
    Schöb, C., Prieto, I., Armas, C. & Pugnaire, F. I. Consequences of facilitation: One plant’s benefit is another plant’s cost. Funct. Ecol. 28, 500–508 (2014).
    Article  Google Scholar 

    57.
    Chesson, R. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Article  Google Scholar 

    58.
    Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
    PubMed  Article  Google Scholar 

    59.
    Shipley, B. et al. Reinforcing foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).
    ADS  PubMed  Article  Google Scholar 

    60.
    Lankau, R. A. & Strauss, S. Y. Newly rare or newly common: Evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evol. Appl. 4, 338–353 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Escavy, J. I., Herrero, M. J. & Arribas, M. E. Gypsum resources of Spain: Temporal and spatial distribution. Ore Geol. Rev. 49, 72–84 (2012).
    Article  Google Scholar 

    62.
    Monturiol, F. & Alcalá-del-Olmo, L. Mapa de Asociaciones de Suelos de la Comunidad de Madrid. Escala 1:200.000 (Consejo Superior de Investigaciones Científicas, Madrid, 1990).
    Google Scholar 

    63.
    Guerrero-Campo, J., Palacio, S., Pérez-Rontome, C. & Montserrat-Martí, G. Effect of root system morphology on root-sprouting and shoot-rooting abilities in 123 plant species from eroded lands in north-east Spain. Ann. Bot. 98, 439–447 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1–7. http://CRAN.R-project.org/package=lme4. Accessed June 2018 (2014).

    65.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–120. http://CRAN.R-project.org/package=nlme. Accessed June 2018 (2015).

    66.
    Metcalf, C. J. E., McMahon, S. M., Salguero-Gómez, R. & Jongejans, E. IPMpack: An R package for integral projection models. Methods Ecol. Evol. 4, 195–200 (2013).
    Article  Google Scholar 

    67.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed June 2018 (2015). More

  • in

    There is little evidence that spicy food in hot countries is an adaptation to reducing infection risk

    1.
    Sherman, P. W. & Billing, J. Darwinian gastronomy: why we use spices: spices taste good because they are good for us. BioScience 49, 453–463 (1999).
    Article  Google Scholar 
    2.
    Billing, J. & Sherman, P. W. Antimicrobial functions of spices: why some like it hot. Q. Rev. Biol. 73, 3–49 (1998).
    CAS  PubMed  Article  Google Scholar 

    3.
    Galton, F. Comment on ‘On a method of investigating the development of institutions; applied to laws of marriage and descent’ by E. B. Tylor. J. Anthropol. Inst. Gt Br. Irel. 18, 245–272 (1889).
    Google Scholar 

    4.
    Bromham, L., Hua, X., Cardillo, M., Schneemann, H. & Greenhill, S. J. Parasites and politics: why cross-cultural studies must control for relatedness, proximity and covariation. R. Soc. Open Sci. 5, 181100 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Mace, R. & Holden, C. J. A phylogenetic approach to cultural evolution. Trends Ecol. Evol. 20, 116–121 (2005).
    PubMed  Article  Google Scholar 

    6.
    Freckleton, R. P. & Jetz, W. Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proc. R. Soc. B 276, 21–30 (2008).
    Article  Google Scholar 

    7.
    Hua, X., Greenhill, S. J., Cardillo, M., Schneemann, H. & Bromham, L. The ecological drivers of variation in global language diversity. Nat. Commun. 10, 2047 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Ohtsubo, Y. Adaptive ingredients against food spoilage in Japanese cuisine. Int. J. Food Sci. Nutr. 60, 677–687 (2009).
    PubMed  Article  Google Scholar 

    9.
    Murray, D. R. & Schaller, M. Historical prevalence of infectious diseases within 230 geopolitical regions: a tool for investigating origins of culture. J. Cross Cult. Psychol. 41, 99–108 (2010).
    Article  Google Scholar 

    10.
    Sherman, P. W. & Hash, G. A. Why vegetable recipes are not very spicy. Evol. Hum. Behav. 22, 147–163 (2001).
    PubMed  Article  Google Scholar 

    11.
    Havelaar, A. H. et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12, e1001923 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Lewnard, J. A., Lo, N. C., Arinaminpathy, N., Frost, I. & Laxminarayan, R. Childhood vaccines and antibiotic use in low- and middle-income countries. Nature 581, 94–99 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    McMichael, A. J. & Beaglehole, R. The changing global context of public health. Lancet 356, 495–499 (2000).
    CAS  PubMed  Article  Google Scholar 

    14.
    Salomon, J. A. et al. Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet 380, 2144–2162 (2012).
    PubMed  Article  Google Scholar 

    15.
    Kummu, M. & Varis, O. The world by latitudes: a global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 31, 495–507 (2011).
    Article  Google Scholar 

    16.
    Johnell, O., Borgstrom, F., Jonsson, B. & Kanis, J. Latitude, socioeconomic prosperity, mobile phones and hip fracture risk. Osteoporos. Int. 18, 333–337 (2007).
    CAS  PubMed  Article  Google Scholar 

    17.
    Kanis, J. A. et al. Variations in latitude may or may not explain the worldwide variation in hip fracture incidence. Osteoporos. Int. 23, 2401–2402 (2012).
    Article  Google Scholar 

    18.
    Fisman, D. et al. Geographical variability in the likelihood of bloodstream infections due to Gram-negative bacteria: correlation with proximity to the equator and health care expenditure. PLoS ONE 9, e114548 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Coccia, M. The effect of country wealth on incidence of breast cancer. Breast Cancer Res. Treat. 141, 225–229 (2013).
    PubMed  Article  Google Scholar 

    20.
    Buchter, B., Dunkel, M. & Li, J. Multiple sclerosis: a disease of affluence? Neuroepidemiology 39, 51–56 (2012).
    PubMed  Article  Google Scholar 

    21.
    Roberts, S. & Winters, J. Linguistic diversity and traffic accidents: Lessons from statistical studies of cultural traits. PLoS ONE 8, e70902 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).
    Article  Google Scholar 

    25.
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).
    CAS  PubMed  Article  Google Scholar 

    26.
    Dunn, R. R., Davies, T. J., Harris, N. C. & Gavin, M. C. Global drivers of human pathogen richness and prevalence. Proc. R. Soc. B 277, 2587–2595 (2010).
    PubMed  Article  Google Scholar 

    27.
    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645 (2007).
    PubMed  Article  Google Scholar 

    28.
    Collen, B. et al. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23, 40–51 (2014).
    PubMed  Article  Google Scholar 

    29.
    Just, M. G. et al. Global biogeographic regions in a human‐dominated world: the case of human diseases. Ecosphere 5, 1–21 (2014).
    Article  Google Scholar 

    30.
    Morand, S., Owers, K. & Bordes, F. in Confronting Emerging Zoonoses (eds Yamada, A. et al.) 27–41 (Springer, 2014).

    31.
    Turner, J. Spice: the History of a Temptation (Alfred A. Knopf, 2004).

    32.
    Kraft, K. H. et al. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl Acad. Sci. USA 111, 6165–6170 (2014).
    CAS  PubMed  Article  Google Scholar 

    33.
    Portnoy, S. in The SAGE Encyclopedia of Food Issues Vol. 1 (ed. Albala, K.) 84–86 (SAGE Publications, 2015).

    34.
    Jain, A., Rakhi, N. & Bagler, G. Analysis of food pairing in regional cuisines of India. PLoS ONE 10, e0139539 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Zhu, Y.-X. et al. Geography and similarity of regional cuisines in China. PLoS ONE 8, e79161 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Kline, M. A., Shamsudheen, R. & Broesch, T. Variation is the universal: making cultural evolution work in developmental psychology. Philos. Trans. R. Soc. B 373, 20170059 (2018).
    Article  Google Scholar 

    37.
    Bagler, G. CulinaryDB (Indraprastha Institute of Information Technology Delhi, 2017); https://cosylab.iiitd.edu.in/culinarydb/

    38.
    Iranshahy, M. & Iranshahi, M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—a review. J. Ethnopharmacol. 134, 1–10 (2011).
    CAS  PubMed  Article  Google Scholar 

    39.
    Nakamura, Y. et al. Comparison of the glucosinolate–myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties. J. Agric. Food Chem. 56, 2702–2707 (2008).
    CAS  PubMed  Article  Google Scholar 

    40.
    Gupta, S. & Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 12, 600–609 (2011).
    CAS  Article  Google Scholar 

    41.
    Devi, K. P., Suganthy, N., Kesika, P. & Pandian, S. K. Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement. Altern. Med. 8, 1 (2008).
    Article  CAS  Google Scholar 

    42.
    Cox, S., Abu-Ghannam, N. & Gupta, S. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 17, 205–220 (2010).
    CAS  Google Scholar 

    43.
    Lipkin, A. et al. An antimicrobial peptide Ar-AMP from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 66, 2426–2431 (2005).
    CAS  PubMed  Article  Google Scholar 

    44.
    Maiyo, Z., Ngure, R., Matasyoh, J. & Chepkorir, R. Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr. J. Biotechnol. 9, 3178–3182 (2010).
    Google Scholar 

    45.
    Dan, S. Antibacterial activity of paeonol in vitro. Her. Med. 9, 009 (2012).
    Google Scholar 

    46.
    Uddin, G., Sadat, A. & Siddiqui, B. S. Phytochemical screening, in vitro antioxidant and antimicrobial activities of the crude fractions of Paeonia emodi Wall. Ex Royle. Middle East J. Sci. Res. 17, 367–373 (2013).
    Google Scholar 

    47.
    Joung, Y.-M. et al. Antioxidative and antimicrobial activities of lilium species extracts prepared from different aerial parts. Korean J. Food Sci. Technol. 39, 452–457 (2007).
    Google Scholar 

    48.
    He, J., Chen, L., Heber, D., Shi, W. & Lu, Q.-Y. Antibacterial compounds from Glycyrrhiza uralensis. J. Nat. Prod. 69, 121–124 (2006).
    CAS  PubMed  Article  Google Scholar 

    49.
    Dhingra, V., Pakki, S. R. & Narasu, M. L. Antimicrobial activity of artemisinin and its precursors. Curr. Sci. 78, 709–713 (2000).
    CAS  Google Scholar 

    50.
    Gupta, V. K. et al. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol. 116, 377–380 (2008).
    PubMed  Article  Google Scholar 

    51.
    Chen, C. et al. Chemical composition and antimicrobial and DPPH scavenging activity of essential oil of Toona sinensis (A. Juss.) Roem from China. BioResources 9, 5262–5278 (2014).
    Google Scholar 

    52.
    Arzanlou, M. & Bohlooli, S. Introducing of green garlic plant as a new source of allicin. Food Chem. 120, 179–183 (2010).
    CAS  Article  Google Scholar 

    53.
    Shittu, L. et al. Antibacterial and antifungal activities of essential oils of crude extracts of Sesame radiatum against some common pathogenic micro-organisms. Iran. J. Pharmacol. Ther. 6, 165–170 (2008).
    Google Scholar 

    54.
    Medina, E., Romero, C., Brenes, M. & de Castro, A. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Prot. 70, 1194–1199 (2007).
    CAS  PubMed  Article  Google Scholar 

    55.
    South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).
    Article  Google Scholar 

    56.
    R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org/ (R Foundation for Statistical Computing, 2016).

    57.
    GADM Maps and Data (GADM, 2012); https://www.gadm.org

    58.
    Bivand, R. et al. rgeos: interface to geometry engine—open source (GEOS) v.0.3-21 https://cran.r-project.org/package=rgeos (2016).

    59.
    Bromham, L. Curiously the same: swapping tools between linguistics and evolutionary biology. Biol. Philos. 32, 855–886 (2017).
    Article  Google Scholar 

    60.
    Mace, R. & Pagel, M. The comparative method in anthropology. Curr. Anthropol. 35, 549–564 (1994).
    Article  Google Scholar 

    61.
    Harvey, P. H. & Pagel, M. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, 1991).

    62.
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Article  Google Scholar 

    63.
    Miller, M. A. & Paige, J. C. Other food borne infections. Vet. Clin. North Am. Food Anim. Pract. 14, 71–89 (1998).
    CAS  PubMed  Article  Google Scholar 

    64.
    Fisman, D. N. & Laupland, K. Guess who’s coming to dinner? Emerging foodborne zoonoses. Can. J. Infect. Dis. Med. Microbiol. 21, 8–10 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Sookias, R. B., Passmore, S. & Atkinson, Q. D. Deep cultural ancestry and human development indicators across nation states. R. Soc. Open Sci. 5, 171411 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Johnson, P. C. D., Barry, S. J. E., Ferguson, H. M. & Muller, P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol. Evol. 6, 133–142 (2015).
    PubMed  Article  Google Scholar 

    67.
    O’Hagan, A. Kendall’s Advanced Theory Of Statistics Vol. 2B: Bayesian Inference (Halsted, 1994).

    68.
    Bonds, M. H., Keenan, D. C., Rohani, P. & Sachs, J. D. Poverty trap formed by the ecology of infectious diseases. Proc. R. Soc. B: 277, 1185–1192 (2010).
    Article  Google Scholar  More