Bacterial associations in the healthy human gut microbiome across populations
1.
Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol. 14, e1002533 (2016).
PubMed PubMed Central Article CAS Google Scholar
2.
Kho, Z. Y. & Lal, S. K. The human gut microbiome—A potential controller of wellness and disease. Front. Microbiol. 9, 1835 (2018).
PubMed PubMed Central Article Google Scholar
3.
Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).
CAS PubMed PubMed Central Article Google Scholar
4.
Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).
CAS PubMed Article ADS PubMed Central Google Scholar
5.
Das, B. & Nair, G. B. Homeostasis and dysbiosis of the gut microbiome in health and disease. J. Biosci. 44, 117 (2019).
PubMed Article PubMed Central Google Scholar
6.
Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31, 69–75 (2015).
CAS PubMed PubMed Central Article Google Scholar
7.
Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease: How changes in microbiota structure influence health. Cell. Microbiol. 16, 1024–1033 (2014).
CAS PubMed PubMed Central Article Google Scholar
8.
Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).
CAS PubMed PubMed Central Article ADS Google Scholar
9.
Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. 108, 4592–4598 (2011).
CAS PubMed Article ADS PubMed Central Google Scholar
10.
Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).
PubMed PubMed Central Article ADS CAS Google Scholar
11.
Chatelier, L. M. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).
PubMed Article CAS PubMed Central Google Scholar
12.
Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).
CAS PubMed Article PubMed Central Google Scholar
13.
Becker, C., Neurath, M. F. & Wirtz, S. The intestinal microbiota in inflammatory bowel disease. ILAR J. 56, 192–204 (2015).
CAS PubMed Article PubMed Central Google Scholar
14.
Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).
CAS PubMed PubMed Central Article Google Scholar
15.
The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
PubMed Central Article ADS CAS Google Scholar
16.
Johnson, A. J. et al. Daily sampling reveals personalized diet–microbiome associations in humans. Cell Host Microbe 25, 789-802.e5 (2019).
CAS PubMed Article PubMed Central Google Scholar
17.
Villmones, H. C. et al. Species level description of the human ileal bacterial microbiota. Sci. Rep. 8, 1–9 (2018).
CAS Article Google Scholar
18.
Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).
CAS PubMed PubMed Central Article Google Scholar
19.
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
CAS PubMed Article ADS PubMed Central Google Scholar
20.
Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2, e00122-e211 (2011).
PubMed PubMed Central Article Google Scholar
21.
Lupatini, M. et al. Network topology reveals high connectance levels and few key microbial genera within soils. Front. Environ. Sci. 2, 10 (2014).
Article Google Scholar
22.
Eiler, A., Heinrich, F. & Bertilsson, S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 6, 330–342 (2012).
CAS PubMed Article Google Scholar
23.
Kara, E. L., Hanson, P. C., Hu, Y. H., Winslow, L. & McMahon, K. D. A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, WI, USA. ISME J. 7, 680–684 (2013).
PubMed Article Google Scholar
24.
Shetty, S. A., Hugenholtz, F., Lahti, L., Smidt, H. & de Vos, W. M. Intestinal microbiome landscaping: Insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol. Rev. 41, 182–199 (2017).
CAS PubMed PubMed Central Article Google Scholar
25.
Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. 115, E11951–E11960 (2018).
CAS PubMed Article Google Scholar
26.
Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).
CAS PubMed PubMed Central Article Google Scholar
27.
Fox, G. E., Magrum, L. J., Balcht, W. E., Wolfef, R. S. & Woese, C. R. Classification of methanogenic bacteria by 16S ribosomal RNA characterization (comparative oligonucleotide cataloging/phylogeny/molecular evolution). Evolution (N.Y.) 74, 4537–4541 (1977).
CAS Google Scholar
28.
Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66 (2004).
CAS PubMed Article ADS Google Scholar
29.
Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, e57923 (2013).
PubMed PubMed Central Article ADS CAS Google Scholar
30.
Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6, 1–29 (2018).
Google Scholar
31.
Ranjan, R., Rani, A., Metwally, A., McGee, H. S. & Perkins, D. L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977 (2016).
CAS PubMed Article Google Scholar
32.
Laudadio, I. et al. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. Omi. A J. Integr. Biol. 22, 248–254 (2018).
CAS Article Google Scholar
33.
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 1–6 (2017).
Article Google Scholar
34.
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).
CAS PubMed PubMed Central Article ADS Google Scholar
35.
Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228 (2017).
CAS PubMed Article Google Scholar
36.
Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 44, 40 (1982).
MathSciNet MATH Google Scholar
37.
Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, 1–25 (2015).
Article CAS Google Scholar
38.
Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441 (2008).
PubMed MATH Article Google Scholar
39.
Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).
CAS PubMed Article ADS Google Scholar
40.
Efron, B. & Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986).
MathSciNet MATH Article Google Scholar
41.
Su, W., Bogdan, M., Candès, E. & Candes, E. False discoveries occur early on the lasso path. Ann. Stat. 45, 2133–2150 (2017).
MathSciNet MATH Article Google Scholar
42.
Saunders, A. M., Albertsen, M., Vollertsen, J. & Nielsen, P. H. The activated sludge ecosystem contains a core community of abundant organisms. ISME J. 10, 11–20 (2016).
CAS PubMed Article PubMed Central Google Scholar
43.
Tsvetovat, M. & Kouznetsov, A. Social network analysis for startups. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki (2011).
44.
Stadtfeld, C., Takács, K. & Vörös, A. The emergence and stability of groups in social networks. Soc. Netw. 60, 129–145 (2020).
Article Google Scholar
45.
Cordasco, G. & Gargano, L. Community detection via semi-synchronous label propagation algorithms. 2010 IEEE Int. Work. Bus. Appl. Soc. Netw. Anal. BASNA 2010 (2010). https://doi.org/10.1109/BASNA.2010.5730298.
46.
Prettejohn, B. J., Berryman, M. J. & McDonnell, M. D. Methods for generating complex networks with selected structural properties for simulations: A review and tutorial for neuroscientists. Front. Comput. Neurosci. 5, 11 (2011).
PubMed PubMed Central Article Google Scholar
47.
Guimerà, R., Sales-Pardo, M. & Amaral, L. A. N. Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70, 25101 (2004).
Article ADS CAS Google Scholar
48.
Trosvik, P. & de Muinck, E. J. Ecology of bacteria in the human gastrointestinal tract—Identification of keystone and foundation taxa. Microbiome 3, 44 (2015).
PubMed PubMed Central Article Google Scholar
49.
Verster, A. J. & Borenstein, E. Competitive lottery-based assembly of selected clades in the human gut microbiome. Microbiome 6, 186 (2018).
PubMed PubMed Central Article Google Scholar
50.
Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).
PubMed PubMed Central Article Google Scholar
51.
Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).
CAS PubMed Article PubMed Central Google Scholar
52.
Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).
PubMed PubMed Central Article Google Scholar
53.
Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).
CAS PubMed Article PubMed Central Google Scholar
54.
Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).
CAS PubMed Article ADS Google Scholar
55.
Jackson, M. A. et al. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations. PeerJ 6, e4303 (2018).
PubMed PubMed Central Article CAS Google Scholar
56.
Darcy, J. L. et al. A phylogenetic model for the recruitment of species into microbial communities and application to studies of the human microbiome. ISME J. 14, 1359–1368 (2020).
PubMed Article Google Scholar
57.
Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).
PubMed PubMed Central Article ADS CAS Google Scholar
58.
Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430 (2002).
CAS PubMed Article ADS PubMed Central Google Scholar
59.
Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).
CAS PubMed PubMed Central Article Google Scholar
60.
Mark Welch, J. L., Hasegawa, Y., McNulty, N. P., Gordon, J. I. & Borisy, G. G. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc. Natl. Acad. Sci. 114, E9105–E9114 (2017).
CAS PubMed Article Google Scholar
61.
Fung, T. C., Artis, D. & Sonnenberg, G. F. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol. Rev. 260, 35–49 (2014).
CAS PubMed PubMed Central Article Google Scholar
62.
Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).
CAS PubMed Article Google Scholar
63.
Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235 (2001).
Article Google Scholar
64.
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
CAS PubMed PubMed Central Article ADS Google Scholar
65.
Lynd, L. R., Weimer, P. J., van Zyl, W. H. & Pretorius, I. S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 72 (2002).
Article Google Scholar
66.
Turroni, F. et al. Glycan cross-feeding activities between bifidobacteria under in vitro conditions. Front. Microbiol. 6, 1030 (2015).
PubMed PubMed Central Article Google Scholar
67.
Hall, C. V. et al. Co-existence of network architectures supporting the human gut microbiome. iScience 22, 380–391 (2019).
PubMed PubMed Central Article ADS Google Scholar
68.
Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, e102451 (2014).
PubMed PubMed Central Article ADS CAS Google Scholar
69.
Jones, M. B. et al. Library preparation methodology can influence genomic and functional predictions in human microbiome research. Proc. Natl. Acad. Sci. 112, 14024–14029 (2015).
CAS PubMed Article ADS Google Scholar
70.
Lahti, L., Salojärvi, J., Salonen, A., Scheffer, M. & de Vos, W. M. Tipping elements in the human intestinal ecosystem. Nat. Commun. 5, 4344 (2014).
CAS PubMed PubMed Central Article ADS Google Scholar
71.
Dhakan, D. B. et al. The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. Gigascience 8, giz004 (2019).
PubMed PubMed Central Article CAS Google Scholar
72.
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
CAS PubMed PubMed Central Article Google Scholar
73.
Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968–976 (2019).
CAS PubMed Article Google Scholar
74.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
CAS PubMed PubMed Central Article Google Scholar
75.
Langmead, B. & Salzberg, S. Bowtie2. Nat. Methods 9, 357–359 (2013).
Article CAS Google Scholar
76.
O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).
PubMed Article CAS Google Scholar
77.
Xia, L. C., Cram, J. A., Chen, T., Fuhrman, J. A. & Sun, F. Accurate genome relative abundance estimation based on shotgun metagenomic reads. PLoS ONE 6, e27992 (2011).
CAS PubMed PubMed Central Article ADS Google Scholar
78.
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
CAS PubMed PubMed Central Article Google Scholar
79.
Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).
Article CAS Google Scholar
80.
Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
CAS PubMed PubMed Central Article Google Scholar
81.
Haft, D. H. TIGRFAMs: A protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43 (2001).
CAS PubMed PubMed Central Article Google Scholar
82.
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
CAS PubMed PubMed Central Article Google Scholar
83.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).
Google Scholar
84.
Zhao, T., Liu, H., Roeder, K., Lafferty, J. & Wasserman, L. The huge package for high-dimensional undirected graph estimation in R. J. Mach. Learn. Res. 13, 6 (2016).
MathSciNet MATH Google Scholar
85.
Liu, H., Roeder, K. & Wasserman, L. Stability approach to regularization selection (stars) for high dimensional graphical models. Advances in Neural Information Processing Systems (2010).
86.
Hagberg, A., Swart, P. & Chult, D. S. Exploring network structure, dynamics, and function using NetworkX. No. LA-UR-08-05495; LA-UR-08-5495 (Los Alamos National Lab. (LANL), Los Alamos, 2008).
87.
Newman, M. E. J. Networks: An Introduction 168–234 (Oxford University Press, Oxford, 2010).
Google Scholar
88.
Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006).
CAS PubMed Article ADS PubMed Central Google Scholar
89.
Newman, M. E. J. Mixing patterns in networks. Phys. Rev. E 67, 26126 (2003).
MathSciNet CAS Article ADS Google Scholar
90.
Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
MathSciNet Article ADS Google Scholar
91.
Brandes, U. A faster algorithm for betweenness centrality*. J. Math. Sociol. 25, 163–177 (2001).
MATH Article Google Scholar More