Sludge amendment accelerating reclamation process of reconstructed mining substrates
1.
Kuang, X. Y., Cao, Y. G., Luo, G. B. & Huang, Y. H. Responses of melilotus officinalis growth to the composition of different topsoil substitute materials in the reclamation of open-pit mining grassland area in Inner Mongolia. Materials 12, 1–21. https://doi.org/10.3390/ma12233888 (2019).
CAS Article Google Scholar
2.
Cheng, W., Bian, Z. F., Dong, J. H. & Lei, S. G. Soil properties in reclaimed farmland by filling subsidence basin due to underground coal mining with mineral wastes in China. Trans. Nonferrous Metals Soc. China. 24, 2627–2635. https://doi.org/10.1016/S1003-6326(14)63392-6 (2014).
CAS Article Google Scholar
3.
Du, T., Wang, D. M., Bai, Y. J. & Zhang, Z. Z. Optimizing the formulation of coal gangue planting substrate using wastes: The sustainability of coal mine ecological restoration. Ecol. Eng. 143, 1–10. https://doi.org/10.1016/j.ecoleng.2019.105669 (2020).
Article Google Scholar
4.
Yin, N. N., Zhang, Z., Wang, L. P. & Qian, K. M. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ. Sci. Pollut. Res. 23, 17840–17849. https://doi.org/10.1007/s11356-016-6941-5 (2016).
CAS Article Google Scholar
5.
Clemente, R. et al. Combination of soil organic and inorganic amendments helps plants overcome trace element induced oxidative stress and allows phytostabilisation. Chemosphere 223, 223–231. https://doi.org/10.1016/j.chemosphere.2019.02.056 (2019).
ADS CAS Article PubMed Google Scholar
6.
Wu, D. et al. Integrated application of sewage sludge, earthworms and Jatropha curcas on abandoned rare-earth mine land soil. Chemosphere 214, 47–54. https://doi.org/10.1016/j.chemosphere.2018.09.087 (2019).
ADS CAS Article PubMed Google Scholar
7.
Blankinship, J. C., Fonte, S. J., Six, J. & Schimel, J. P. Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem. Geoderma 272, 39–50. https://doi.org/10.1016/j.geoderma.2016.03.008 (2016).
ADS Article Google Scholar
8.
Wang, S., Li, T., Zheng, Z. & Chen, H. Y. H. Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. Sci. Total Environ. 654, 1023–1032. https://doi.org/10.1016/j.scitotenv.2018.11.032 (2019).
ADS CAS Article PubMed Google Scholar
9.
Parvin, S., Van Geel, M., Yeasmin, T., Lievens, B. & Honnay, O. Variation in arbuscular mycorrhizal fungal communities associated with lowland rice (Oryza sativa) along a gradient of soil salinity and arsenic contamination in Bangladesh. Sci. Total Environ. 686, 546–554. https://doi.org/10.1016/j.scitotenv.2019.05.450 (2019).
ADS CAS Article PubMed Google Scholar
10.
Lanfranco, L., Fiorilli, V., Venice, F. & Bonfante, P. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J. Exp. Bot. 69, 2175–2188. https://doi.org/10.1093/jxb/erx432 (2018).
CAS Article PubMed Google Scholar
11.
Singh, A. K., Rai, A., Pandey, V. & Singh, N. Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics. J. Environ. Manag. 192, 142–149. https://doi.org/10.1016/j.jenvman.2017.01.041 (2017).
CAS Article Google Scholar
12.
Zhang, J., Ekblad, A., Sigurdsson, B. D. & Wallander, H. The influence of soil warming on organic carbon sequestration of arbuscular mycorrhizal fungi in a sub-arctic grassland. Soil Biol. Biochem. 147, 1–9. https://doi.org/10.1016/j.soilbio.2020.107826 (2020).
CAS Article Google Scholar
13.
Singh, A. K., Rai, A. & Singh, N. Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma 277, 41–50. https://doi.org/10.1016/j.geoderma.2016.05.004 (2016).
ADS CAS Article Google Scholar
14.
Xiao, L. et al. Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the Loess Plateau. Geoderma 334, 1–8. https://doi.org/10.1016/j.geoderma.2018.07.043 (2019).
ADS CAS Article Google Scholar
15.
Qian, K. M., Wang, P. & Yin, N. Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. Int. J. Min. Sci. Technol. 22, 553–557. https://doi.org/10.1016/j.ijmst.2012.01.019 (2012).
CAS Article Google Scholar
16.
Ahirwal, J. & Maiti, S. K. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate. J. Environ. Manag. 201, 369–377. https://doi.org/10.1016/j.jenvman.2017.07.003 (2017).
CAS Article Google Scholar
17.
Yuan, Y., Zhao, Z. Q., Li, X. Z., Wang, Y. Y. & Bai, Z. K. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China. Sci. Total Environ. 613, 1196–1206. https://doi.org/10.1016/j.scitotenv.2017.09.170 (2018).
ADS CAS Article PubMed Google Scholar
18.
Hassan, W. et al. Labile organic carbon fractions, regulator of CO2 emission: Effect of plant residues and water regimes. Clean: Soil, Air, Water 44, 1358–1367. https://doi.org/10.1002/clen.201400405 (2016).
CAS Article Google Scholar
19.
Cheng, X. R., Yu, M. K. & Wang, G. G. Effects of thinning on soil organic carbon fractions and soil properties in Cunninghamia lanceolata stands in Eastern China. Forests. 8, 1–21. https://doi.org/10.3390/f8060198 (2017).
Article Google Scholar
20.
Zhong, Y. Q. W., Yan, W. M. & Shangguan, Z. P. Soil carbon and nitrogen fractions in the soil profile and their response to long-term nitrogen fertilization in a wheat field. CATENA 135, 38–46. https://doi.org/10.1016/j.catena.2015.06.018 (2015).
CAS Article Google Scholar
21.
Wang, Y., Ling, C., Chen, Y., Jiang, X. R. & Chen, G. Q. Microbial engineering for easy downstream processing. Biotechnol. Adv. 37, 1–9. https://doi.org/10.1016/j.biotechadv.2019.03.004 (2019).
CAS Article PubMed Google Scholar
22.
Ye, G. P. et al. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment. Soil Biol. Biochem. 134, 15–24. https://doi.org/10.1016/j.soilbio.2019.03.018 (2019).
CAS Article Google Scholar
23.
Du, R. et al. Advanced nitrogen removal with simultaneous Anammox and denitrification in sequencing batch reactor. Bioresour. Technol. 162, 316–322. https://doi.org/10.1016/j.biortech.2014.03.041 (2014).
CAS Article PubMed Google Scholar
24.
Luna, L. et al. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. CATENA 143, 256–264. https://doi.org/10.1016/j.catena.2016.04.013 (2016).
CAS Article Google Scholar
25.
Hao, X. H. et al. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutr. Cycl. Agroecosyst. 81, 17–24. https://doi.org/10.1007/s10705-007-9145-z (2008).
Article Google Scholar
26.
Fokom, R. et al. Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil Tillage Res. 120, 69–75. https://doi.org/10.1016/j.still.2011.11.004 (2012).
Article Google Scholar
27.
Wang, W. et al. Glomalin changes in urban-rural gradients and their possible associations with forest characteristics and soil properties in Harbin City, Northeastern China. J. Environ. Manag. 224, 225–234. https://doi.org/10.1016/j.jenvman.2018.07.047 (2018).
CAS Article Google Scholar
28.
Anirwal, J., Kumar, A., Pietrzykowski, M. & Maiti, S. K. Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration: A case study from India. Environ. Sci. Pollut. Res. 25, 27992–28003. https://doi.org/10.1007/s11356-018-2789-1 (2018).
CAS Article Google Scholar
29.
Sun, S., Li, S., Avera, B. N., Strahm, B. D. & Badgley, B. D. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 83, 1–14. https://doi.org/10.1128/AEM.00966-17 (2017).
CAS Article Google Scholar
30.
Amir, H. et al. Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: A field experiment. Sci. Total Environ. 651, 334–343. https://doi.org/10.1016/j.scitotenv.2018.09.153 (2019).
ADS CAS Article PubMed Google Scholar
31.
Klabi, R. et al. Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community. Soil Biol. Biochem. 70, 176–182. https://doi.org/10.1016/j.soilbio.2013.12.019 (2014).
CAS Article Google Scholar
32.
Prasad, R., Tuteja, N. & Varma, A. Mycorrhiza—Nutrient Uptake, Biocontrol Ecorestoration 161–163 (Springer International Publishing, Cham, 2017).
Google Scholar
33.
Becher, P. G. et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat. Microbiol. 5, 821–829. https://doi.org/10.1038/s41564-020-0697-x (2020).
CAS Article PubMed Google Scholar
34.
Houston, T. F. & Bougher, N. L. Records of hypogeous mycorrhizal fungi in the diet of some Western Australian bolboceratine beetles (Coleoptera: Geotrupidae, Bolboceratinae). Aust. J. Entomol. 49, 49–55. https://doi.org/10.1111/j.1440-6055.2009.00720.x (2010).
Article Google Scholar
35.
Han, X. G. et al. Dynamics of arbuscular mycorrhizal fungi in relation to root colonization, spore density, and soil properties among different spreading stages of the exotic plant threeflower beggarweed (Desmodium triflorum) in a Zoysia tenuifolia lawn. Weed Sci. 67, 689–701. https://doi.org/10.1017/wsc.2019.50 (2019).
Article Google Scholar
36.
Sandeep, S., Manjaiah, K. M., Mayadevi, M. R. & Singh, A. K. Monitoring temperature sensitivity of soil organic carbon decomposition under maize-wheat cropping systems in semi-arid India. Environ. Monit. Assess. 188, 1–15. https://doi.org/10.1007/s10661-016-5455-4 (2016).
CAS Article Google Scholar
37.
Ahirwal, J. & Maiti, S. K. Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. CATENA 166, 114–123. https://doi.org/10.1016/j.catena.2018.03.026 (2018).
CAS Article Google Scholar
38.
Stumpf, L., Pauletto, E. A. & Pinto, L. F. S. Soil aggregation and root growth of perennial grasses in a constructed clay minesoil. Soil Tillage Res. 161, 71–78. https://doi.org/10.1016/j.still.2016.03.005 (2016).
Article Google Scholar
39.
Helliwell, J. R. et al. The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface. Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-14904-w (2017).
CAS Article Google Scholar
40.
Fu, W. J. et al. The carbon storage in moso bamboo plantation and its spatial variation in Anji County of southeastern China. J. Soils Sedim. 14, 320–329. https://doi.org/10.1007/s11368-013-0665-7 (2014).
CAS Article Google Scholar
41.
Zhang, Z. H., Wang, Q., Wang, H., Nie, S. M. & Liang, Z. W. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP). Sci. Total Environ. 581, 657–665. https://doi.org/10.1016/jscitotenv.2016.12.176 (2017).
ADS Article PubMed Google Scholar
42.
Janos, D. P., Garamszegi, S. & Beltran, B. Glomalin extraction and measurement. Soil Biol. Biochem. 40, 728–739. https://doi.org/10.1016/j.soilbio.2007.10.007 (2008).
CAS Article Google Scholar
43.
Dave, B. P. & Soni, A. Diversity of halophilic Archaea at salt pans around Bhavnagar Coast, Gujarat. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 83, 225–232. https://doi.org/10.1007/s40011-012-0124-z (2013).
Article Google Scholar
44.
Magurran, A. E. Ecological Diversity and Its Measurement 61–80 (Princeton University Press, Princeton, 1988).
Google Scholar More