Functional traits explain crayfish invasive success in the Netherlands
1.
Keller, R. P., Geist, J., Jeschke, J. M. & Kühn, I. Invasive species in Europe: ecology, status, and policy. Environ. Sci. Eur. 23, 1–17 (2011).
Article Google Scholar
2.
Parker, M., Thompson, J. N. & Weller, S. G. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).
Article Google Scholar
3.
Allendorf, F. W. & Lundquist, L. L. Introduction: population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).
Article Google Scholar
4.
Crowl, T. A., Crist, T. O., Parmenter, R. R., Belovsky, G. & Lugo, A. E. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6, 238–246 (2008).
Article Google Scholar
5.
van der Veer, G. & Nentwig, W. Environmental and economic impact assessment of alien and invasive fish species in Europe using the generic impact scoring system. Ecol. Freshw. Fish 24, 646–656 (2015).
Article Google Scholar
6.
Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).
PubMed Article PubMed Central Google Scholar
7.
Scalera, R. How much is Europe spending on invasive alien species?. Biol. Invasions 12, 173–177 (2010).
Article Google Scholar
8.
Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
CAS PubMed Article PubMed Central Google Scholar
9.
McLellan, R., Iyengar, L., Jeffries, B. & Oerlemans, N. Living Planet Report 2014: Species and Spaces, People and Places (WWF International, Gland, 2014).
Google Scholar
10.
García-Berthou, E. et al. Introduction pathways and establishment rates of invasive aquatic species in Europe. Can. J. Fish. Aquat. Sci. 62, 453–463 (2005).
Article Google Scholar
11.
Karatayev, A. Y., Burlakova, L. E., Padilla, D. K., Mastitsky, S. E., & Olenin, S. Invaders are not a random selection of species. Biol. Invasions, 11, 2009. https://doi.org/10.1007/s10530-009-9498-0 (2009).
Article Google Scholar
12.
Verdonschot, R. C. M., Vos, J. H., & Verdonschot, P. F. M. Exotische macrofauna en macrofyten in de Nederlandse zoete wateren: voorkomen en beleid in 2012. (WOt-werkdocument 334) (Wettelijke Onderzoekstaken Natuur & Milieu, 2013).
13.
Holdich, D. M., Reynolds, J. D., Souty-Grosset, C. & Sibley, P. J. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 394–395, 11 (2009).
Article Google Scholar
14.
Chucholl, C. Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biol. Invasions 15, 125–141 (2013).
Article Google Scholar
15.
Barbaresi, S. & Gherardi, F. The invasion of the alien crayfish Procambarus clarkii in Europe, with particular reference to Italy. Biol. Invasions 2, 259–264 (2000).
Article Google Scholar
16.
Gherardi, F. Crayfish invading Europe: the case study of Procambarus clarkii. Mar. Freshw. Behav. Physiol. 39, 175–191 (2006).
Article Google Scholar
17.
Kouba, A., Petrusek, A. & Kozák, P. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Manag. Aquat. Ecosyst. 413, 5 (2014).
Article Google Scholar
18.
Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. 100 of the world’s worst invasive alien species: a selection from the global invasive species database in Aliens vol. 12 (Invasive Species Specialist Group, 2000).
19.
Padilla, D. K. & Williams, S. L. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front. Ecol. Environ. 2, 131–138 (2004).
Article Google Scholar
20.
Faulkes, Z. The global trade in crayfish as pets. Crustacean Res. 44, 75–92 (2015).
Article Google Scholar
21.
Soes, D. M., & Koese, B. Invasive Crayfish in the Netherlands: A Preliminary Risk Analysis. (Bureau Waardenburg bv, Stichting EIS-Nederland, Invasive Alien Species Team, 2010).
22.
Chucholl, C. & Wendler, F. Positive selection of beautiful invaders: long-term persistence and bio-invasion risk of freshwater crayfish in the pet trade. Biol. Invasions 19, 197–208 (2017).
Article Google Scholar
23.
Zeng, Y., Chong, K. Y., Grey, E. K., Lodge, D. M. & Yeo, D. C. Disregarding human pre-introduction selection can confound invasive crayfish risk assessments. Biol. Invasions 17, 2373–2385 (2015).
Article Google Scholar
24.
Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).
PubMed Article Google Scholar
25.
Statzner, B., Bonada, N. & Dolédec, S. Biological attributes discriminating invasive from native European stream macroinvertebrates. Biol. Invasions 10, 517–530 (2008).
Article Google Scholar
26.
Whitney, K. D. & Gabler, C. A. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers. Distrib. 14, 569–580 (2008).
Article Google Scholar
27.
Kolar, C. S. & Lodge, D. M. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16, 199–204 (2001).
PubMed Article Google Scholar
28.
Marchetti, M. P., Moyle, P. B. & Levine, R. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshw. Biol. 49, 646–661 (2004).
Article Google Scholar
29.
Grabowski, M., Bacela, K. & Konopacka, A. How to be an invasive gammarid (Amphipoda: Gammaroidea)-comparison of life history traits. Hydrobiologia 590, 75–84 (2007).
Article Google Scholar
30.
Thiébaut, G. Invasion success of non-indigenous aquatic and semi-aquatic plants in their native and introduced ranges. A comparison between their invasiveness in North America and in France. Biol. Invasions 9, 1–12 (2007).
Article Google Scholar
31.
Swart, C., Visser, V. & Robinson, T. B. Patterns and traits associated with invasions by predatory marine crabs. NeoBiota 39, 79 (2018).
Article Google Scholar
32.
Larson, E. R. & Olden, J. D. Latent extinction and invasion risk of crayfishes in the southeastern United States. Conserv. Biol. 24, 1099–1110 (2010).
PubMed Article PubMed Central Google Scholar
33.
Tricarico, E., Vilizzi, L., Gherardi, F. & Copp, G. H. Calibration of FI-ISK, an invasiveness screening tool for nonnative freshwater invertebrates. Risk Anal. Int. J. 30, 285–292 (2010).
Article Google Scholar
34.
Larson, E. R. & Olden, J. D. Using avatar species to model the potential distribution of emerging invaders. Glob Ecol. Biogeogr. 21, 1114–1125 (2012).
Article Google Scholar
35.
Veselý, L., Buřič, M. & Kouba, A. Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures?. Sci. Rep. 5, 16340 (2015).
ADS PubMed PubMed Central Article CAS Google Scholar
36.
Jaklič, M. & Vrezec, A. The first tropical alien crayfish species in European waters: the redclaw Cherax quadricarinatus (Von Martens, 1868) (Decapoda, Parastacidae). Crustaceana 84, 651–665 (2011).
Article Google Scholar
37.
Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: a null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).
Article Google Scholar
38.
Marchetti, M. P., Moyle, P. B. & Levine, R. Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecol. Appl. 14, 587–596 (2004).
Article Google Scholar
39.
Bennett, S. N., Olson, J. R., Kershner, J. L. & Corbett, P. Propagule pressure and stream characteristics influence introgression: cutthroat and rainbow trout in British Columbia. Ecol. Appl. 20, 263–277 (2010).
PubMed Article PubMed Central Google Scholar
40.
Cruz, M. J. & Rebelo, R. Colonization of freshwater habitats by an introduced crayfish, Procambarus clarkii Southwest Iberian Peninsula. Hydrobiologia 575, 191–201 (2007).
Article Google Scholar
41.
Lynas, J., Storey, A. W. & Knott, B. Aggressive interactions between three species of freshwater crayfish of the genus Cherax (Decapoda: Parastacidae). Mar. Freshw. Behav. Physiol. 40, 105–116 (2007).
Article Google Scholar
42.
Corey, S. Comparative fecundity of four species of crayfish in southwestern Ontario, Canada (Decapoda, Astacidea). Crustaceana 52(3), 276–286 (1987).
Article Google Scholar
43.
Somers, K. M. Characterizing size-specific fecundity in crustaceans. Crustacean Egg Prod. 7, 357–378 (1991).
Google Scholar
44.
Maguire, I., Klobučar, G. I. V. & Erben, R. The relationship between female size and egg size in the freshwater crayfish Austropotamobius torrentium. Bulletin Français de la Pêche et de la Pisciculture 376–377, 777–785 (2005).
Article Google Scholar
45.
Pilotto, F. et al. The invasive crayfish Faxonius limosus in Lake Varese: estimating abundance and population size structure in the context of habitat and methodological constraints. J. Crustacean Biol. 28, 633–640 (2008).
Article Google Scholar
46.
Hobbs Jr, H. H. A checklist of the North and Middle American crayfishes (Decapoda: Astacidae and Cambaridae). Smithsonian Contrib. Zool. 166, 1–161 (1974).
Google Scholar
47.
Mrugała, A. et al. Trade of ornamental crayfish in Europe as a possible introduction pathway for important crustacean diseases: crayfish plague and white spot syndrome. Biol. Invasions 17, 1313–1326 (2015).
Article Google Scholar
48.
Svoboda, J., Mrugała, A., Kozubíková-Balcarová, E. & Petrusek, A. Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: a review. J. Fish Dis. 40, 127–140 (2017).
CAS PubMed Article PubMed Central Google Scholar
49.
Grandjean, F. et al. Status of Pacifastacus leniusculus and its role in recent crayfish plague outbreaks in France: improving distribution and crayfish plague infection patterns. Aquat. Invasions, 12, 541–549 (2017).
Article Google Scholar
50.
Crandall, K. A. & De Grave, S. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. J. Crustacean Biol. 37, 615–653 (2017).
Article Google Scholar
51.
Freshwater Crayfish: A Global Overview. (ed. Kawai, T., Faulkes, Z., & Scholtz, G.) (CRC Press, Boca Raton, 2015).
52.
Buřič, M., Kouba, A. & Kozak, P. Reproductive plasticity in freshwater invader: from long-term sperm storage to parthenogenesis. PLoS ONE 8, e77597. https://doi.org/10.1371/journal.pone.0077597 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
53.
Kaldre, K., Meženin, A., Paaver, T., & Kawai, T. A preliminary study on the tolerance of marble crayfish Procambarus fallax f. virginalis to low temperature in Nordic climate in Freshwater crayfish: global overview, 54–62 (2016).
54.
Vogt, G. Marmorkrebs: natural crayfish clone as emerging model for various biological disciplines. J. Biosci. 36, 377–382 (2011).
PubMed Article Google Scholar
55.
Chucholl, C. Predicting the risk of introduction and establishment of an exotic aquarium animal in Europe: insights from one decade of Marmorkrebs (Crustacea, Astacida, Cambaridae) releases. Biol. Invasions 5, 309–318 (2014).
Article Google Scholar
56.
Chucholl, C., Morawetz, K. & Groß, H. The clones are coming–strong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquat. Invasions 7, 511–519 (2012).
Article Google Scholar
57.
Soes, D. M. & van Eekelen, R. Rivierkreeften, een oprukkend probleem?. De Levende Natuur 107, 56–59 (2006).
Google Scholar
58.
Mauvisseau, Q., Tönges, S., Andriantsoa, R., Lyko, F. & Sweet, M. Early detection of an emerging invasive species: eDNA monitoring of a parthenogenetic crayfish in freshwater systems. Manag. Biol. Invasions 10, 461 (2019).
Article Google Scholar
59.
Strand, D. A. et al. Monitoring a Norwegian freshwater crayfish tragedy: eDNA snapshots of invasion, infection and extinction. J. Appl. Ecol. 56, 1661–1673 (2019).
CAS Article Google Scholar
60.
Beentjes, K. K., Speksnijder, A. G., Schilthuizen, M., Schaub, B. E. & van der Hoorn, B. B. The influence of macroinvertebrate abundance on the assessment of freshwater quality in The Netherlands. Metabarcoding Metagenom. 2, e26744 (2018).
Article Google Scholar
61.
Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: a literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).
Article Google Scholar
62.
Zhang, Z. et al. Impacts of climate change on the global potential distribution of two notorious invasive crayfishes. Freshw. Biol. 65, 353–365 (2020).
Article Google Scholar
63.
Capinha, C., Leung, B. & Anastácio, P. Predicting worldwide invasiveness for four major problematic decapods: an evaluation of using different calibration sets. Ecography 34, 448–459 (2011).
Article Google Scholar
64.
Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S. & Kats, L. B. Aquatic invasive species: challenges for the future. Hydrobiologia 750, 147–170 (2015).
PubMed PubMed Central Article Google Scholar
65.
Früh, D., Stoll, S. & Haase, P. Physicochemical and morphological degradation of stream and river habitats increases invasion risk. Biol. Invasions 14, 2243–2253 (2012).
Article Google Scholar
66.
Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).
Article Google Scholar
67.
Scalici, M. et al. The new threat to Italian inland waters from the alien crayfish “gang”: the Australian Cherax destructor Clark, 1936. Hydrobiologia 632, 341–345 (2009).
Article Google Scholar
68.
Koese, B. & Evers, C. H. M. A National Inventory of Invasive Freshwater Crayfish in the Netherlands in 2010 (EIS, Stichting European Invertebrate Survey Nederland, 2011).
Google Scholar
69.
Clement, J., & van Puijenbroek, P. Basiskaart Aquatisch: de Watertypenkaart Het oppervlaktewater in de TOP10NL geclassificeerd naar watertype (No. 500067004). (Planbureau voor de Leefomgeving 2010).
70.
Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).
ADS Google Scholar
71.
Lyko, F. The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa 4363(4), 544–552 (2017).
PubMed Article PubMed Central Google Scholar
72.
Usseglio-Polatera, P. & Tachet, H. Theoretical habitat templets, species traits, and species richness: Plecoptera and Ephemeroptera in the Upper Rhône River and its floodplain. Freshw. Biol. 31, 357–375 (1994).
Article Google Scholar
73.
Poff, N. L. et al. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. North Am. Benthological. Soc. 25, 730–755 (2006).
Article Google Scholar
74.
Wyse, S. V. et al. A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion. Int. J. Wildland Fire 25, 466–477 (2016).
Article Google Scholar
75.
Hill, M. O. TWINSPAN. A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. (Ecology and Systematics, Cornell University, 1979).
76.
Hu, G. et al. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease. PLoS ONE 7, e36432. https://doi.org/10.1371/journal.pone.0036432 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
77.
Agir, S. U., Kutbay, H. G. & Surmen, B. Plant diversity along coastal dunes of the Black Sea (North of Turkey). Rendiconti Lincei 27, 443–453 (2016).
Article Google Scholar
78.
Andrej, P. & Andraž, Č. Functional response traits and plant community strategy indicate the stage of secondary succession. Hacquetia 11, 209–225 (2012).
Article Google Scholar
79.
Hill, M.O. & Šmilauer, P. TWINSPAN for Windows version 2.3. (Centre for Ecology and Hydrology & University of South Bohemia, Huntingdon & Ceske Budejovice, 2005).
80.
Roleček, J., Tichý, L., Zelený, D. & Chytrý, M. Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. J. Veg. Sci. 20, 596–602 (2009).
Article Google Scholar More