Environmental (e)RNA advances the reliability of eDNA by predicting its age
1.
Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425. https://doi.org/10.1098/rsbl.2008.0118 (2008).
Article PubMed PubMed Central Google Scholar
2.
Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, Oxford, 2018).
Google Scholar
3.
Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087. https://doi.org/10.1038/ncomms14087 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
4.
Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585. https://doi.org/10.1038/s41467-020-17337-8 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
5.
Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. 11, 254. https://doi.org/10.1038/s41467-019-14105-1 (2020).
ADS CAS Article PubMed PubMed Central Google Scholar
6.
Klymus, K. E. et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ. DNA 2, 271–282. https://doi.org/10.1002/edn3.29 (2020).
Article Google Scholar
7.
Sepulveda, A. J. et al. A round-robin evaluation of the repeatability and reproducibility of environmental DNA assays for dreissenid mussels. Environ. DNA 2, 446–459. https://doi.org/10.1002/edn3.68 (2020).
Article Google Scholar
8.
Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are Environmental DNA methods ready for aquatic invasive species management?. Trends Ecol. Evol. 35, 668–678. https://doi.org/10.1016/j.tree.2020.03.011 (2020).
Article PubMed Google Scholar
9.
Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17. https://doi.org/10.1007/s10592-015-0775-4 (2016).
CAS Article Google Scholar
10.
Lacoursière-Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions. Mol. Ecol. Resour. 16, 1401–1414. https://doi.org/10.1111/1755-0998.12522 (2016).
CAS Article PubMed Google Scholar
11.
Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J. C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544. https://doi.org/10.1038/ncomms12544 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
12.
Shogren, A. J. et al. Controls on eDNA movement in streams: Transport, retention, and resuspension. Sci. Rep. 7, 5065. https://doi.org/10.1038/s41598-017-05223-1 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
13.
Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 10361. https://doi.org/10.1038/s41598-018-28424-8 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
14.
Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92. https://doi.org/10.1016/j.biocon.2014.11.038 (2015).
Article Google Scholar
15.
Lance, R. F. et al. Experimental observations on the decay of environmental DNA from bighead and silver carps. Manag. Biol. Invasion 8, 343. https://doi.org/10.3391/mbi.2017.8.3.08 (2017).
Article Google Scholar
16.
Tsuji, S., Ushio, M., Sakurai, S., Minamoto, T. & Yamanaka, H. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLoS ONE 12, e0176608. https://doi.org/10.1371/journal.pone.0176608 (2017).
CAS Article PubMed PubMed Central Google Scholar
17.
Cristescu, M. E. Can environmental RNA revolutionize biodiversity science?. Trends Ecol. Evol. 34, 694–697. https://doi.org/10.1016/j.tree.2019.05.003 (2019).
Article PubMed Google Scholar
18.
Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121. https://doi.org/10.1007/s10531-020-01980-0 (2020).
Article Google Scholar
19.
Allan, E. A., Zhang, W. G., Lavery, A. C. & Govindarajan, A. F. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA. https://doi.org/10.1002/edn3.141 (2020).
Article Google Scholar
20.
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x (2012).
CAS Article PubMed Google Scholar
21.
Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459. https://doi.org/10.1111/1365-2664.12306 (2014).
CAS Article Google Scholar
22.
Minamoto, T. et al. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio. Mol. Ecol. Resour. 17, 324–333. https://doi.org/10.1111/1755-0998.12586 (2017).
CAS Article PubMed Google Scholar
23.
Stewart, K. A. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers. Conserv. 28, 983–1001. https://doi.org/10.1007/s10531-019-01709-8 (2019).
Article Google Scholar
24.
Foran, D. R. Relative degradation of nuclear and mitochondrial DNA: An experimental approach. J. Forensic Sci. 51, 766–770. https://doi.org/10.1111/j.1556-4029.2006.00176.x (2006).
CAS Article PubMed Google Scholar
25.
Dysthe, J. C., Franklin, T. W., McKelvey, K. S., Young, M. K. & Schwartz, M. K. An improved environmental DNA assay for bull trout (Salvelinus confluentus) based on the ribosomal internal transcribed spacer I. PLoS ONE 13, e0206851. https://doi.org/10.1371/journal.pone.0206851 (2018).
CAS Article PubMed PubMed Central Google Scholar
26.
Li, Y. & Breaker, R. R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2’-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372. https://doi.org/10.1021/ja990592p (1999).
CAS Article Google Scholar
27.
Fontaine, M. & Guillot, E. Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts. FEMS Microbiol. Lett. 226, 237–243. https://doi.org/10.1016/S0378-1097(03)00538-X (2003).
CAS Article PubMed Google Scholar
28.
Voet, D. & Voet, J. G. Biochemistry 492–496 (Wiley, New York, 2011).
Google Scholar
29.
Eigner, J., Boedtker, H. & Michaels, G. The thermal degradation of nucleic acids. Biochem. Biophys. Acta. 51, 165–168. https://doi.org/10.1016/0006-3002(61)91028-9 (1961).
CAS Article PubMed Google Scholar
30.
Mengoni, A. et al. Comparison of 16S rRNA and 16S rDNA T-RFLP approaches to study bacterial communities in soil microcosms treated with chromate as perturbing agent. Micro. Ecol. 50, 375–384. https://doi.org/10.1007/s00248-004-0222-4 (2005).
CAS Article Google Scholar
31.
Westermann, A. J., Gorski, S. A. & Vogel, J. Dual RNA-seq of pathogen and host. Nat. Rev. Microbiol. 10, 618–630. https://doi.org/10.1038/nrmicro2852 (2012).
CAS Article PubMed Google Scholar
32.
Blanco, G. & Blanco, A. Medical Biochemistry (Academic Press, Cambridge, 2017). https://doi.org/10.1016/B978-0-12-803550-4.00006-9.
Google Scholar
33.
Sidova, M., Tomankova, S., Abaffy, P., Kubista, M. & Sindelka, R. Effects of post-mortem and physical degradation on RNA integrity and quality. Biomol. Detect. Quantif. 5, 3–9. https://doi.org/10.1016/j.bdq.2015.08.002 (2015).
CAS Article PubMed PubMed Central Google Scholar
34.
Vanderploeg, H. A., Liebig, J. R., Nalepa, T. F., Fahnenstiel, G. L. & Pothoven, S. A. Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. J. Great Lakes Res. 36, 50–59. https://doi.org/10.1016/j.jglr.2010.04.005 (2010).
Article Google Scholar
35.
Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Particle size distribution of environmental DNA from the nuclei of marine fish. Environ. Sci. Technol. 53, 9947–9956. https://doi.org/10.1021/acs.est.9b02833 (2019).
ADS CAS Article PubMed Google Scholar
36.
Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146. https://doi.org/10.1002/ece3.4802 (2019).
Article PubMed PubMed Central Google Scholar
37.
Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M. & Duncan, R. P. Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA. Environ. Sci. Technol. 52, 6408–6416. https://doi.org/10.1021/acs.est.8b01071 (2018).
ADS CAS Article PubMed Google Scholar
38.
Doi, H. et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE 10, e0122763. https://doi.org/10.1371/journal.pone.0122763 (2015).
CAS Article PubMed PubMed Central Google Scholar
39.
Klymus, K. E., Richter, C. A., Chapman, D. C. & Paukert, C. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol. Conserv. 183, 77–84. https://doi.org/10.1016/j.biocon.2014.11.020 (2015).
Article Google Scholar
40.
Jo, T. et al. Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Mol. Ecol. Resour. 17, e25–e33. https://doi.org/10.1111/1755-0998.12685 (2017).
CAS Article PubMed Google Scholar
41.
Raymaekers, M., Smets, R., Maes, B. & Cartuyvels, R. Checklist for optimization and validation of real-time PCR assays. J. Clin. Lab. Anal. 23, 145–151. https://doi.org/10.1002/jcla.20307 (2009).
CAS Article PubMed PubMed Central Google Scholar
42.
Satoh, M. & Kuroiwa, T. Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp. Cell Res. 196, 137–140. https://doi.org/10.1016/0014-4827(91)90467-9 (1991).
CAS Article PubMed Google Scholar
43.
Moushomi, R., Wilgar, G., Carvalho, G., Creer, S. & Seymour, M. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Sci. Rep. 9, 12500. https://doi.org/10.1038/s41598-019-48984-7 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
44.
Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environ. DNA 2, 140–151. https://doi.org/10.1002/edn3.51 (2020).
Article Google Scholar
45.
Eirín-López, J. M. et al. Molecular evolutionary characterization of the mussel Mytilus histone multigene family: First record of a tandemly repeated unit of five histone genes containing an H1 subtype with “orphon” features. J. Mol. Evol. 58, 131–144. https://doi.org/10.1007/s00239-003-2531-5 (2004).
ADS CAS Article PubMed Google Scholar
46.
Peñarrubia, L. et al. Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples. Sci. Rep. 6, 39067. https://doi.org/10.1038/srep39067 (2016).
ADS CAS Article PubMed PubMed Central Google Scholar
47.
Gingera, T. D., Bajno, R., Docker, M. & Reist, J. Environmental DNA as a detection tool for zebra mussels Dreissena polymorpha (Pallas, 1771) at the forefront of an invasion event in Lake Winnipeg, Manitoba, Canada. Manag. Biol. Invasion 8, 287. https://doi.org/10.3391/mbi.2017.8.3.03 (2017).
Article Google Scholar
48.
Marshall, N. T. & Stepien, C. A. Invasion genetics from eDNA and thousands of larvae: A targeted metabarcoding assay that distinguishes species and population variation of zebra and quagga mussels. Ecol. Evol. 9, 3515–3538. https://doi.org/10.1002/ece3.4985 (2019).
Article PubMed PubMed Central Google Scholar
49.
Wood, S. A. et al. Release and degradation of environmental DNA and RNA in a marine system. Sci. Total Environ. 704, 135314. https://doi.org/10.1016/j.scitotenv.2019.135314 (2020).
ADS CAS Article PubMed Google Scholar
50.
Osley, M. A. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60, 827–861. https://doi.org/10.1146/annurev.bi.60.070191.004143 (1991).
CAS Article PubMed Google Scholar
51.
Takeuchi, A. et al. Release of eDNA by different life history stages and during spawning activities of laboratory-reared Japanese eels for interpretation of oceanic survey data. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-42641-9 (2019).
CAS Article Google Scholar
52.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2017). www.R-project.org.
53.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01. (2015).
54.
Lenth, R. et al. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.3. (2020). https://CRAN.R-project.org/package=emmeans.
55.
Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867. https://doi.org/10.1021/acs.est.5b05672 (2016).
ADS CAS Article PubMed Google Scholar
56.
Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. 1, 1–11. https://doi.org/10.1038/s42003-018-0192-6 (2018).
CAS Article Google Scholar
57.
Kasai, A., Takada, S., Yamazaki, A., Masuda, R. & Yamanaka, H. The effect of temperature on environmental DNA degradation of Japanese eel. Fish. Sci. 86, 465–471. https://doi.org/10.1007/s12562-020-01409-1 (2020).
CAS Article Google Scholar
58.
Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, e0186462 (2019).
Article Google Scholar More