More stories

  • in

    Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa

    Reported SARS-CoV-2 case counts, mortality and testing in SSA as of December 2020
    Variables and data sources for reporting data
    The numbers of reported cases, deaths and tests for the 48 SSA countries studied (Supplementary Table 1) were sourced from the Africa CDC dashboard on 20 December 2020 (and previously on 23 September and 30 June 2020). The Africa CDC obtains data from the official Africa CDC Regional Collaborating Centre and member state reports. Differences in the timing of reporting by member states results in some variation in the recency of data within the centralized Africa CDC repository, but data should broadly reflect the relative scale of testing and reporting efforts across countries. For Mauritius (https://covid19.mu/) and Rwanda (https://covid19.who.int/region/afro/country/rw), reporting to the Africa CDC was confirmed by comparison to country-specific dashboards.
    The countries or member states within SSA in this study follow the United Nations and Africa CDC-listed regions of Southern, Western, Central and Eastern Africa (excluding Sudan). From the Northern Africa region, Mauritania is included in SSA.
    For comparison to non-SSA countries, the number of reported cases in other geographical regions were obtained from the Johns Hopkins University Coronavirus Resource Center on 23 September 2020 (https://coronavirus.jhu.edu/map.html).
    Case fatality ratios (CFRs) were calculated by dividing the number of reported deaths by the number of reported cases and expressed as a percentage. Positivity was calculated by dividing the number of reported cases by the number of reported tests. Testing and case rates were calculated per 100,000 population using population size estimates for 2020 from the United Nations Population Division (https://population.un.org/wpp/Download/Standard/Population/). Since reported confirmed cases are likely to be an underestimate of the true number of infections, CFRs may be a poor proxy for the IFR, defined as the proportion of infections that result in mortality4.
    Variation in testing and mortality rates
    Testing rates among SSA countries varied by multiple orders of magnitude as of 30 June and remain highly variable as of 23 September and 20 December 2020. The number of tests completed per 100,000 population ranged from 19.84 in Burundi to 13,508.13 in Mauritius in June 2020; from 65.98 in the Democratic Republic of the Congo to 18,321.83 in Mauritius in September 2020; and from 100.9 in the Democratic Republic of the Congo to 23695.0 in Mauritius in December 2020 (Extended Data Fig. 1a). Tanzania (6.50 tests per 100,000 population) has not reported new tests, cases or deaths to the Africa CDC since April 2020. The number of reported infections (that is, positive tests) was strongly correlated with the number of tests completed in June 2020 (Pearson’s correlation coefficient, r = 0.9667, P 50% coincident with population >50,000) within administrative 2 units61. For some countries, estimates at administrative 2 units were unavailable (Comoros, Cape Verde, Lesotho, Mauritius, Mayotte and Seychelles); estimates at the administrative-1 unit level were used for these cases (these were all island nations, with the exception of Lesotho).
    Metapopulation model methods
    Once SARS-CoV-2 has been introduced into a country, the degree of spread of the infection within the country is governed by subnational mobility: the pathogen is more likely to be introduced into a location where individuals arrive more frequently than one where incoming travelers are less frequent. Large-scale consistent measures of mobility are rare. However, recently, estimates of accessibility have been produced at a global scale26. Although this is unlikely to perfectly reflect mobility within countries, especially since interventions and travel restrictions are put in place, it provides a starting point for evaluating the role of human mobility in shaping the outbreak pace across SSA. We used the inverse of a measure of the cost of travel between the centroids of administrative level 2 spatial units to describe mobility between locations (estimated by applying the costDistance function in the gdistance package v1.3-6 in R to the friction surfaces supplied in Weiss et al.26). With this, we developed a metapopulation model for each country to develop an overview of the possible range of trajectories of unchecked spread of SARS-CoV-2.
    We assumed that the pathogen first arrives in each country in the administrative 2 level unit with the largest population (for example, the largest city) and the population in each administrative 2 level (of size Nj) is entirely susceptible at the time of arrival. We then tracked the spread within and between each of the administrative 2 level units of each country. Within each administrative 2 level unit, dynamics are governed by a discrete time susceptible (S), infected (I) and recovered (R) model with a time step of approximately one week, which is broadly consistent with the serial interval of SARS-CoV-2. Within the spatial unit indexed j, with total size Nj, the number of infected individuals in the next time step is defined by:

    $$I_{j,t + 1} = beta I_{j,t}^alpha S_{j,t}/N_j + iota _{j,t}$$

    where β captures the magnitude of transmission over the course of one discrete time step; since the discrete time step chosen is set to approximate the serial interval of the virus, this will reflect the R0 of SARS-CoV-2, and is thus set to 2.5; the exponent α = 0.97 is used to capture the effects of discretization62 and Ij,t captures the introduction of new infections into site j at time t. Susceptible and recovered individuals are updated according to:

    $$begin{array}{l}S_{j,t + 1} = S_{j,t} + wR_{j,t} – I_{j,t + 1} + b\ R_{j,t + 1} = (1 – w)R_{j,t} + I_{j,t}end{array}$$

    where b reflects the introduction of new susceptible individuals resulting from the birth rate, set to reflect the most recent estimates for that country from the World Bank Data (https://data.worldbank.org/indicator/SP.DYN.CBRT.IN), and w reflects the rate of waning of immunity. The population is initiated with Sj,1 = NjRj,1 = 0, and Ij,1 = 0 except for the spatial unit corresponding to the largest population size Nj for each country since this is assumed to be the location of introduction; for this spatial unit, we set Ij,1 = 1.
    We made the simplifying assumption that mobility linking locations i and j, denoted as ci,j, scales with the inverse of the cost of travel between sites i and j evaluated according to the friction surface provided in Weiss et al.26. The introduction of an infected individual into location j is then defined by a draw from a Bernouilli distribution following:

    $$iota _{j,t} approx {mathrm{Bernouilli}}left( {1 – {mathrm{exp}}left( { – mathop {sum }limits_1^L {c_{i,j}}{I_{i,t}}/{N_i}} right)} right)$$

    where L is the total number of administrative 2 units in that country and the rate of introduction is the product of connectivity between the focal location and each other location multiplied by the proportion of population in each other location that is infected.
    Some countries show rapid spread between administrative units within the country (for example, a country with parameters that broadly reflect those available for Malawi; Extended Data Fig. 7), while in others (for example, reflecting Madagascar), connectivity may be so low that the outbreak may be over in the administrative unit of the largest size (where it was introduced) before introductions successfully reach other poorly connected administrative units. Where duration of immunity is sufficiently long, the result may be a hump-shaped relationship between the proportion of the population that is infected after five years and the time to the first local extinction of the pathogen (Extended Data Fig. 7, top right). In countries with lower connectivity (for example, resembling Madagascar), local outbreaks can go extinct rapidly before traveling very far; in other countries (for example, resembling Gabon), the pathogen goes extinct rapidly because it travels rapidly and rapidly depletes susceptible individuals everywhere. The U-shaped pattern diminishes as the rate of waning of immunity increases and is replaced by a monotonic negative relationship. With sufficiently rapid waning of immunity, local extinction ceases to occur in the absence of control efforts.
    The impact of the pattern of travel between centroids is echoed by the pattern of travel within administrative districts: countries where the pathogen does not reach a large fraction of the administrative 2 units within the country in five years are also those where within-administrative-unit travel is low (Extended Data Fig. 7, right).
    These simulations provide a window into qualitative patterns expected for subnational spread of the pandemic virus but there is no clear way of calibrating the absolute rate of travel between regions of relevance for SARS-CoV-2; this is further complicated by the remaining uncertainties around rates of waning of immunity. Thus, the time scales of these simulations should be considered in relative, rather than absolute terms. Variation in lockdown effectiveness, or other changes in mobility for a given country, may also compromise relative comparisons as might large volumes of land border crossings in some settings, which we have not accounted for in this study. Variability in testing and case reporting complicates clarifying this (Extended Data Fig. 7, bottom left and bottom right, respectively) but we have highlighted countries with less connectivity (that is, less synchronous outbreaks expected) relative to the median among SSA countries and with older populations (that is, a greater proportion in higher-risk age groups) (Extended Data Fig. 8).
    The University of Oxford’s Blavatnik School of Government generated composite scores of government response, interventions for containment and economic support provided, with each scored from 0 to 100 (Coronavirus Government Response Tracker; https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker). These data were compared with the day on which ten cases were exceeded in a country according to the Johns Hopkins dashboard data (Johns Hopkins Coronavirus Resource Center; https://coronavirus.jhu.edu/map.html).
    While faster waning of immunity will act to increase the rate of spread of the infection, resulting in a higher proportion infected after one year, control efforts will generally act to slow the rate of spread of the infection (Extended Data Fig. 9). Since different countries are likely to have differently effective control efforts (Extended Data Fig. 9), this precludes making country-specific predictions as to the relative impact of control efforts on delay.
    Modeling epidemic trajectories in scenarios where transmission rate depends on climate
    Climate data sourcing: variation in humidity in SSA
    Specific humidity data for selected urban centers comes from the ERA5 using an average climatology (1981–2017)53; we did not consider year-to-year climate variations. Selected cities (n = 56) were chosen to represent the major urban areas in SSA. The largest city in each SSA country was included as well as any additional cities that were among the 25 largest cities or busiest airports in SSA.
    Methods for climate-driven modeling of SARS-CoV-2
    We used a climate-driven susceptible-infected-recovered-susceptible model to estimate epidemic trajectories (that is, the time of peak incidence) in different cities in 2020, assuming no control measures were in place or a 10 or 20% reduction in R0 beginning 2 weeks after the total reported cases for a country exceeded 10 cases25,63. The model is given by:

    $$frac{{mathrm{d}}S}{{mathrm{d}}t} = frac{{N – S – L}}{L} – frac{{beta (t)IS}}{N}$$

    $$frac{{mathrm{d}}I}{{mathrm{d}}t} = frac{{beta (t)IS}}{N} – frac{I}{D}$$

    where S is the susceptible population, I is the infected population and N is the total population. D is the mean infectious period, set at 5 d following ref. 25.
    To investigate the effects on epidemic trajectories of a climate dependency of SARS-CoV-2 on cities with the climate patterns of the selected cities in SSA, we used parameters from the most climate-dependent scenario in ref. 25, based on the endemic betacoronavirus HKU1 in the United States. In this scenario L, the duration of immunity, was 66.25 weeks (that is, >1 year and such that waning immunity did not affect the timing of the epidemic peak). We initially selected a range where R0 declined from R0max = 2.5 to R0min = 1.5 (that is, transmission declined 40% at high humidity) since this exceeds the range observed for influenza and other coronaviruses for which data are available (from the United States). R0max = 2.5 was chosen because 2.5 is often cited as the approximate R0 for SARS-CoV-2. Thus, we initially assumed that the climate dependence of SARS-CoV-2 in SSA would not greatly exceed that of other known coronaviruses from the US context. Then, we explored the effects of different degrees of climate dependency (that is, wider ranges between R0max = 2.5 to R0min = 1.5 and scenarios where R0min approached 1) (Extended Data Fig. 10).
    Transmission is governed by β(t), which is related to the basic reproduction number R0 by R0(t) = β(t)D. The basic reproduction number varies based on climate and is related to specific humidity according to the equation:

    $$R_0 = {mathrm{exp}}{[a times q(t) + {mathrm{log}}(R_{0{mathrm{max}}} – R_{0{mathrm{min}}})]} + R_{0{mathrm{min}}}$$

    where q(t) is specific humidity53 and a is set at −227.5 based on estimated HKU1 parameters25. We assumed the time of introduction for cities to be the date at which the total reported cases for a country exceeded 10 cases.
    Sensitivity analysis
    Selecting an R0min value of 1, such that epidemic growth stops at high humidities, is likely implausible since simulations indicated no outbreaks would occur in cities such as Antananarivo (countered by the observation that SARS-CoV-2 outbreaks did in fact occur) (Extended Data Fig. 10b; see Supplementary Table 1 for the reported case counts at the country level). Expanding the range between R0min and R0max by increasing R0max resulted in epidemic peaks being reached earlier after outbreak onset but did not increase the difference in timing between cities with different climates (Extended Data Fig. 10c; for example, the difference in timing between peaks in Windhoek and Lomé is similar in 10a and 10c). Finally, we explored scenarios where the R0min was between 1.0 and 1.5. When R0min  > 1.1, epidemic peaks were seen in each SSA city with the difference in timing of the peak growing larger when smaller values of R0min were selected (Extended Data Fig. 10d). However, the difference in timing, even when small values of R0min were selected, was a maximum of 25 weeks and rapidly reduced to only a few weeks when R0min approached 1.5.
    Reporting Summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    An evolving view on biogeochemical cycling of iron

    1.
    Ehrenberg, C. Vorläufige Mitteilungen über das wirkliche Vorkommen fossiler Infusorien und ihre große Verbreitung. Poggendorff Ann. 38, 213–227 (1836).
    Google Scholar 
    2.
    Chan, C. S. et al. The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00796 (2016). Microscopic analysis indicates how the morphology of iron-oxidizing bacteria in microbial mats responds to environmental conditions.
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C. & Kappler, A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12, 797–808 (2014).
    CAS  PubMed  Article  Google Scholar 

    4.
    Ehrlich, H. L., Newman, D. K. & Kappler, A. Ehrlich’s Geomicrobiology. (CRC Press, 2015).

    5.
    Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015). First article to demonstrate magnetite could support complete microbial iron cycling; that is, Fe(ii) in magnetite can be used as an electron source by Fe(ii) oxidizers and Fe(iii) can be used by Fe(iii) reducers as an electron acceptor in a cycling fashion.
    CAS  PubMed  Article  Google Scholar 

    6.
    Berg, J. S. et al. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environ. Microbiol. 18, 5288–5302 (2016).
    CAS  PubMed  Article  Google Scholar 

    7.
    Kappler, A. & Bryce, C. Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ. Microbiol. 19, 842–846 (2017).
    PubMed  Article  Google Scholar 

    8.
    Wang, M., Hu, R., Zhao, J., Kuzyakov, Y. & Liu, S. Iron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils. Geoderma 271, 173–180 (2016).
    CAS  Article  Google Scholar 

    9.
    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009). First demonstration that methane oxidation can be coupled to reduction of iron(iii) oxides and manganese(iv) oxides.
    CAS  PubMed  Article  Google Scholar 

    10.
    Orihel, D. M. et al. The “nutrient pump:” iron-poor sediments fuel low nitrogen-to-phosphorus ratios and cyanobacterial blooms in polymictic lakes. Limnol. Oceanogr. 60, 856–871 (2015).
    Article  Google Scholar 

    11.
    Lalonde, K., Mucci, A., Ouellet, A. & Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).
    CAS  PubMed  Article  Google Scholar 

    12.
    Muehe, E. M. et al. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species. Environ. Sci. Technol. 47, 14099–14109 (2013).
    CAS  PubMed  Article  Google Scholar 

    13.
    Glodowska, M. et al. Role of in situ natural organic matter in mobilizing As during microbial reduction of FeIII-mineral-bearing aquifer sediments from Hanoi (Vietnam). Environ. Sci. Technol. 54, 4149–4159 (2020).
    CAS  PubMed  Article  Google Scholar 

    14.
    Cutting, R. S., Coker, V. S., Fellowes, J. W., Lloyd, J. R. & Vaughan, D. J. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochim. Cosmochim. Acta 73, 4004–4022 (2009).
    CAS  Article  Google Scholar 

    15.
    Wu, T. et al. Interactions between Fe(III)-oxides and Fe(III)-phyllosilicates during microbial reduction 2: natural subsurface sediments. Geomicrobiol. J. 34, 231–241 (2017).
    CAS  Article  Google Scholar 

    16.
    Jaisi, D. P., Dong, H. & Liu, C. Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochim. Cosmochim. Acta 71, 1145–1158 (2007).
    CAS  Article  Google Scholar 

    17.
    Bosch, J., Heister, K., Hofmann, T. & Meckenstock, R. U. Nanosized iron oxide colloids strongly enhance microbial iron reduction. Appl. Environ. Microbiol. 76, 184–189 (2010).
    CAS  PubMed  Article  Google Scholar 

    18.
    Aeppli, M. et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environ. Sci. Technol. 53, 8736–8746 (2019).
    CAS  PubMed  Article  Google Scholar 

    19.
    Levar, C. E., Hoffman, C. L., Dunshee, A. J., Toner, B. M. & Bond, D. R. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME J. 11, 741–752 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Wang, Z. et al. Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 74, 6746–6755 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Kügler, S. et al. Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich Fen. Sci. Total. Environ. 646, 972–988 (2019).
    PubMed  Article  CAS  Google Scholar 

    22.
    Daugherty, E. E., Gilbert, B., Nico, P. S. & Borch, T. Complexation and redox buffering of iron(II) by dissolved organic matter. Environ. Sci. Technol. 51, 11096–11104 (2017).
    CAS  PubMed  Article  Google Scholar 

    23.
    von der Heyden, B., Roychoudhury, A. & Myneni, S. Iron-rich nanoparticles in natural aquatic environments. Minerals 9, 287 (2019). Thorough review of the nature and impact of iron nanoparticles in the environment.
    Article  CAS  Google Scholar 

    24.
    Hassellöv, M. & von der Kammer, F. Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 4, 401–406 (2008).
    Article  CAS  Google Scholar 

    25.
    Liu, J. et al. Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1. Geochim. Cosmochim. Acta 193, 160–175 (2016).
    CAS  Article  Google Scholar 

    26.
    Druschel, G. K., Emerson, D., Sutka, R., Suchecki, P. & Luther, G. W. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim. Cosmochim. Acta 72, 3358–3370 (2008). Landmark study using voltammetric electrodes to elucidate the optimum geochemical conditions of microaerophilic Fe(ii) oxidizers.
    CAS  Article  Google Scholar 

    27.
    Barnes, A., Sapsford, D. J., Dey, M. & Williams, K. P. Heterogeneous Fe(II) oxidation and zeta potential. J. Geochem. Explor. 100, 192–198 (2009).
    CAS  Article  Google Scholar 

    28.
    González-Davila, M., Santana-Casiano, J. M. & Millero, F. J. Oxidation of iron (II) nanomolar with H2O2 in seawater. Geochim. Cosmochim. Acta 69, 83–93 (2005).
    Article  CAS  Google Scholar 

    29.
    Kanzaki, Y. & Murakami, T. Rate law of Fe(II) oxidation under low O2 conditions. Geochim. Cosmochim. Acta 123, 338–350 (2013).
    CAS  Article  Google Scholar 

    30.
    King, D. W., Lounsbury, H. A. & Millero, F. J. Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ. Sci. Technol. 29, 818–824 (1995).
    CAS  PubMed  Article  Google Scholar 

    31.
    Emerson, D., Fleming, E. J. & McBeth, J. M. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu. Rev. Microbiol. 64, 561–583 (2010).
    CAS  PubMed  Article  Google Scholar 

    32.
    Chan, C. S., Emerson, D. & Luther, G. W. III The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations. Geobiology 14, 509–528 (2016).
    CAS  PubMed  Article  Google Scholar 

    33.
    Mori, J. F. et al. Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov. ISME J. 11, 2624–2636 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Emerson, D. & De Vet, W. The role of FeOB in engineered water ecosystems: a review. J. AWWA 107, E47–E57 (2015).
    Article  Google Scholar 

    35.
    MacDonald, D. J. et al. Using in situ voltammetry as a tool to identify and characterize habitats of iron-oxidizing bacteria: from fresh water wetlands to hydrothermal vent sites. Environ. Sci. Process. Impacts 16, 2117–2126 (2014).
    PubMed  Article  Google Scholar 

    36.
    Emerson, D., Weiss, J. V. & Megonigal, J. P. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl. Environ. Microbiol. 65, 2758–2761 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Laufer, K. et al. Microaerophilic Fe(II)-oxidizing Zetaproteobacteria isolated from low-Fe marine coastal sediments: physiology and composition of their twisted stalks. Appl. Environ. Microbiol. 83, e03118–03116 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Orcutt, B. N. et al. Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J. 5, 692–703 (2011).
    CAS  PubMed  Article  Google Scholar 

    39.
    Field, E. K. et al. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions. Geobiology 14, 499–508 (2016).
    CAS  PubMed  Article  Google Scholar 

    40.
    Maisch, M. et al. Contribution of microaerophilic iron(II)-oxidizers to iron(III) mineral formation. Environ. Sci. Technol. 53, 8197–8204 (2019).
    CAS  PubMed  Article  Google Scholar 

    41.
    Chiu, B. K., Kato, S., McAllister, S. M., Field, E. K. & Chan, C. S. Novel pelagic iron-oxidizing Zetaproteobacteria from the Chesapeake Bay oxic–anoxic transition zone. Front. Microbiol. 8, 1280 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    McAllister, S. M. et al. The Fe(II)-oxidizing Zetaproteobacteria: historical, ecological and genomic perspectives. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiz015 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    43.
    Barco, R. A. et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl. Environ. Microbiol. 81, 5927–5937 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    McAllister, S. M. et al. Validating the Cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents. mSystems 5, e00553–00519 (2020). Support for Cyc2 as the iron oxidase in microaerophilic Fe(ii) oxidizers.
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Jeans, C. et al. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J. 2, 542–550 (2008).
    CAS  PubMed  Article  Google Scholar 

    46.
    Edwards, B. A. & Ferris, F. G. Influence of water flow on in situ rates of bacterial Fe(II) oxidation. Geomicrobiol. J. 37, 67–75 (2020).
    CAS  Article  Google Scholar 

    47.
    Liu, J. et al. Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front. Microbiol. 3, 37 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    48.
    Chan, C. S., McAllister, S. M., Garber, A., Hallahan, B. J. & Rozovsky, S. Fe oxidation by a fused cytochrome-porin common to diverse Fe-oxidizing bacteria. bioRxiv https://doi.org/10.1101/228056 (2018).
    Article  Google Scholar 

    49.
    Byrne, J. M., Schmidt, M., Gauger, T., Bryce, C. & Kappler, A. Imaging organic–mineral aggregates formed by Fe(II)-oxidizing bacteria using helium ion microscopy. Environ. Sci. Technol. Lett. 5, 209–213 (2018).
    CAS  Article  Google Scholar 

    50.
    Krepski, S. T., Emerson, D., Hredzak-Showalter, P. L., Luther, G. W. III & Chan, C. S. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils. Geobiology 11, 457–471 (2013).
    CAS  PubMed  Article  Google Scholar 

    51.
    Sowers, T. D., Holden, K. L., Coward, E. K. & Sparks, D. L. Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron (oxyhydr)oxides. Environ. Sci. Technol. 53, 4295–4304 (2019).
    CAS  PubMed  Article  Google Scholar 

    52.
    Lueder, U., Druschel, G., Emerson, D., Kappler, A. & Schmidt, C. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic iron(II)-oxidizing bacteria. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix177 (2017).
    Article  Google Scholar 

    53.
    van der Grift, B., Rozemeijer, J. C., Griffioen, J. & van der Velde, Y. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water. Hydrol. Earth Syst. Sci. 18, 4687–4702 (2014).
    Article  Google Scholar 

    54.
    Enright, A. M. L. & Ferris, F. G. Bacterial Fe(II) oxidation distinguished by long-range correlation in redox potential. J. Geophys. Res. Biogeosci. 121, 1249–1257 (2016).
    CAS  Article  Google Scholar 

    55.
    Lueder, U., Jørgensen, B. B., Kappler, A. & Schmidt, C. Photochemistry of iron in aquatic environments. Environ. Sci. Process. Impacts 22, 12–24 (2020).
    CAS  PubMed  Article  Google Scholar 

    56.
    Widdel, F. et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836 (1993).
    CAS  Article  Google Scholar 

    57.
    Hartman, H. The Evolution of Photosynthesis and Microbial Mats: A Speculation on the Banded Iron Formations. (Alan R. Liss, Inc., 1984).

    58.
    Ozaki, K., Tajika, E., Hong, P. K., Nakagawa, Y. & Reinhard, C. T. Effects of primitive photosynthesis on Earth’s early climate system. Nat. Geosci. 11, 55–59 (2018).
    CAS  Article  Google Scholar 

    59.
    Croal, L. R., Jiao, Y. & Newman, D. K. The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003. J. Bacteriol. 189, 1774–1782 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    Ehrenreich, A. & Widdel, F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 4517–4526 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Jiao, Y., Kappler, A., Croal, L. R. & Newman, D. K. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl. Environ. Microbiol. 71, 4487–4496 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Straub, K. L., Rainey, F. A. & Widdel, F. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int. J. Syst. Evol. Microbiol. 49, 729–735 (1999).
    CAS  Article  Google Scholar 

    63.
    Heising, S., Richter, L., Ludwig, W. & Schink, B. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a Geospirillum sp. strain. Arch. Microbiol. 172, 116–124 (1999).
    CAS  PubMed  Article  Google Scholar 

    64.
    Llirós, M. et al. Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin. Sci. Rep. 5, 13803 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Laufer, K. et al. Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix054 (2017).
    Article  PubMed  Google Scholar 

    66.
    Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).
    CAS  PubMed  Article  Google Scholar 

    67.
    Gupta, D. et al. Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake. mBio 10, e02668–02619 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Gledhill, M. & Buck, K. The organic complexation of iron in the marine environment: A review. Front. Microbiol. 3, 69 (2012).
    PubMed  PubMed Central  Google Scholar 

    69.
    Saraiva, I. H., Newman, D. K. & Louro, R. O. Functional characterization of the FoxE iron oxidoreductase from the photoferrotroph Rhodobacter ferrooxidans SW2. J. Biol. Chem. 287, 25541–25548 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Crowe, S. A. et al. Draft genome sequence of the pelagic photoferrotroph Chlorobium phaeoferrooxidans. Genome Announc. 5, e01584–01516 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Bryce, C., Blackwell, N., Straub, D., Kleindienst, S. & Kappler, A. Draft genome sequence of Chlorobium sp. strain N1, a marine Fe(II)-oxidizing green sulfur bacterium. Microbiol. Resour. Announc. 8, e00080–00019 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    72.
    Miot, J. et al. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim. Cosmochim. Acta 73, 696–711 (2009).
    CAS  Article  Google Scholar 

    73.
    Schaedler, S. et al. Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria. Geomicrobiol. J. 26, 93–103 (2009).
    CAS  Article  Google Scholar 

    74.
    Hegler, F., Schmidt, C., Schwarz, H. & Kappler, A. Does a low-pH microenvironment around phototrophic FeII-oxidizing bacteria prevent cell encrustation by FeIII minerals? FEMS Microbiol. Ecol. 74, 592–600 (2010).
    CAS  PubMed  Article  Google Scholar 

    75.
    Swanner, E. D. et al. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions. Geochim. Cosmochim. Acta 165, 44–61 (2015).
    CAS  Article  Google Scholar 

    76.
    Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010). A comprehensive review of the many dynamic processes which influence iron cycling in the oceans.
    CAS  Article  Google Scholar 

    77.
    Faust, B. C. & Zepp, R. G. Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 27, 2517–2522 (1993).
    CAS  Article  Google Scholar 

    78.
    Rose, A. L. & Waite, T. D. Reduction of organically complexed ferric iron by superoxide in a simulated natural water. Environ. Sci. Technol. 39, 2645–2650 (2005).
    CAS  PubMed  Article  Google Scholar 

    79.
    Voelker, B. M., Morel, F. M. M. & Sulzberger, B. Iron redox cycling in surface waters:  Effects of humic substances and light. Environ. Sci. Technol. 31, 1004–1011 (1997).
    CAS  Article  Google Scholar 

    80.
    Barbeau, K., Zhang, G., Live, D. H. & Butler, A. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J. Am. Chem. Soc. 124, 378–379 (2002).
    CAS  PubMed  Article  Google Scholar 

    81.
    Waite, T. D. & Morel, F. M. M. Photoreductive dissolution of colloidal iron oxides in natural waters. Environ. Sci. Technol. 18, 860–868 (1984).
    CAS  PubMed  Article  Google Scholar 

    82.
    Sulzberger, B. Light-induced redox cycling of iron: roles for CO2 uptake and release by aquatic ecosystems. Aquat. Geochem. 21, 65–80 (2015).
    CAS  Article  Google Scholar 

    83.
    Garg, S., Rose, A. L. & Waite, T. D. Photochemical production of superoxide and hydrogen peroxide from natural organic matter. Geochim. Cosmochim. Acta 75, 4310–4320 (2011).
    CAS  Article  Google Scholar 

    84.
    Xing, G., Garg, S. & Waite, T. D. Is superoxide-mediated Fe(III) reduction important in sunlit surface waters? Environ. Sci. Technol. 53, 13179–13190 (2019).
    CAS  PubMed  Article  Google Scholar 

    85.
    Sutherland, K. M., Wankel, S. D. & Hansel, C. M. Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proc. Natl. Acad. Sci. USA 117, 3433–3439 (2020).
    CAS  PubMed  Article  Google Scholar 

    86.
    Diaz, J. M. et al. Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340, 1223–1226 (2013).
    CAS  PubMed  Article  Google Scholar 

    87.
    Lis, H., Kranzler, C., Keren, N. & Shaked, Y. A comparative study of iron uptake rates and mechanisms amongst marine and fresh water cyanobacteria: prevalence of reductive iron uptake. Life 5, 841–860 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Swanner, E. D., Maisch, M., Wu, W. & Kappler, A. Oxic Fe(III) reduction could have generated Fe(II) in the photic zone of Precambrian seawater. Sci. Rep. 8, 4238 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    89.
    Emmenegger, L., Schönenberger, R., Sigg, L. & Sulzberger, B. Light-induced redox cycling of iron in circumneutral lakes. Limnol. Oceanogr. 46, 49–61 (2001).
    CAS  Article  Google Scholar 

    90.
    Lueder, U., Jørgensen, B. B., Kappler, A. & Schmidt, C. Fe(III) photoreduction producing Feaq2+ in oxic freshwater sediment. Environ. Sci. Technol. 54, 862–869 (2020).
    CAS  PubMed  Article  Google Scholar 

    91.
    Lueder, U. et al. Influence of physical perturbation on Fe(II) supply in coastal marine sediments. Environ. Sci. Technol. 54, 3209–3218 (2020).
    CAS  PubMed  Article  Google Scholar 

    92.
    Peng, C., Bryce, C., Sundman, A. & Kappler, A. Cryptic cycling of complexes containing Fe(III) and organic matter by phototrophic Fe(II)-oxidizing bacteria. Appl. Environ. Microbiol. 85, e02826–02818 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    93.
    Schmidt, C., Behrens, S. & Kappler, A. Ecosystem functioning from a geomicrobiological perspective a conceptual framework for biogeochemical iron cycling. Environ. Chem. 7, 399–405 (2010).
    CAS  Article  Google Scholar 

    94.
    Raven, J. A., Kübler, J. E. & Beardall, J. Put out the light, and then put out the light. J. Mar. Biol. Assoc. U.K. 80, 1–25 (2000).
    CAS  Article  Google Scholar 

    95.
    Camacho, A., Walter, X. A., Picazo, A. & Zopfi, J. Photoferrotrophy: Remains of an ancient photosynthesis in modern environments. Front. Microbiol. 8 (2017). A review on the physiology of anoxygenic phototrophic Fe(ii) oxidizers and their role in modern and ancient redox-stratified systems.

    96.
    Crowe, S. A. et al. Deep-water anoxygenic photosythesis in a ferruginous chemocline. Geobiology 12, 322–339 (2014).
    CAS  PubMed  Article  Google Scholar 

    97.
    Straub, K. L., Benz, M., Schink, B. & Widdel, F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62, 1458–1460 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    98.
    Bryce, C. et al. Microbial anaerobic Fe(II) oxidation – Ecology, mechanisms and environmental implications. Environ. Microbiol. 20, 3462–3483 (2018).
    CAS  PubMed  Article  Google Scholar 

    99.
    Blöthe, M. & Roden, E. E. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl. Environ. Microbiol. 75, 6937–6940 (2009). Article describing the composition of the only confirmed autotrophic nitrate-dependent, Fe(ii)-oxidizing enrichment culture.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    100.
    Laufer, K., Røy, H., Jørgensen, B. B. & Kappler, A. Evidence for the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in marine coastal sediment. Appl. Environ. Microbiol. 82, 6120–6131 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Liu, T., Chen, D., Luo, X., Li, X. & Li, F. Microbially mediated nitrate-reducing Fe(II) oxidation: quantification of chemodenitrification and biological reactions. Geochim. Cosmochim. Acta 256, 97–115 (2019).
    CAS  Article  Google Scholar 

    102.
    Otte, J. M. et al. N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. Sci. Rep. 9, 10691 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    103.
    Wang, M., Hu, R., Ruser, R., Schmidt, C. & Kappler, A. Role of chemodenitrification for N2O emissions from nitrate reduction in rice paddy soils. ACS Earth Space Chem. 4, 122–132 (2020).
    CAS  Article  Google Scholar 

    104.
    He, S., Tominski, C., Kappler, A., Behrens, S. & Roden, E. E. Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture KS. Appl. Environ. Microbiol. 82, 2656–2668 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    105.
    Buchwald, C., Grabb, K., Hansel, C. M. & Wankel, S. D. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2− reduction by Fe(II) and its production of N2O. Geochim. Cosmochim. Acta 186, 1–12 (2016).
    CAS  Article  Google Scholar 

    106.
    Haaijer, S. C. M., Lamers, L. P. M., Smolders, A. J. P., Jetten, M. S. M. & Op den Camp, H. J. M. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiol. J. 24, 391–401 (2007).
    CAS  Article  Google Scholar 

    107.
    Edwards, K. J., Rogers, D. R., Wirsen, C. O. & McCollom, T. M. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69, 2906–2913 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Yan, R. et al. Effect of reduced sulfur species on chemolithoautotrophic pyrite oxidation with nitrate. Geomicrobiol. J. 36, 19–29 (2019).
    CAS  Article  Google Scholar 

    109.
    Holmes, P. R. & Crundwell, F. K. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochim. Cosmochim. Acta 64, 263–274 (2000).
    CAS  Article  Google Scholar 

    110.
    Zhao, L., Dong, H., Edelmann, R. E., Zeng, Q. & Agrawal, A. Coupling of Fe(II) oxidation in illite with nitrate reduction and its role in clay mineral transformation. Geochim. Cosmochim. Acta 200, 353–366 (2017).
    CAS  Article  Google Scholar 

    111.
    Zhang, L., Dong, H., Kukkadapu, R. K., Jin, Q. & Kovarik, L. Electron transfer between sorbed Fe(II) and structural Fe(III) in smectites and its effect on nitrate-dependent iron oxidation by Pseudogulbenkiania sp. strain 2002. Geochim. Cosmochim. Acta 265, 132–147 (2019).
    CAS  Article  Google Scholar 

    112.
    Shelobolina, E. S., VanPraagh, C. G. & Lovley, D. R. Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol. J. 20, 143–156 (2003).
    CAS  Article  Google Scholar 

    113.
    Larese-Casanova, P., Haderlein, S. B. & Kappler, A. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: effect of pH, bicarbonate, phosphate, and humic acids. Geochim. Cosmochim. Acta 74, 3721–3734 (2010).
    CAS  Article  Google Scholar 

    114.
    Pantke, C. et al. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environ. Sci. Technol. 46, 1439–1446 (2012).
    CAS  PubMed  Article  Google Scholar 

    115.
    Nordhoff, M. et al. Insights into nitrate-reducing Fe(II) oxidation mechanisms through analysis of cell-mineral associations, cell encrustation, and mineralogy in the chemolithoautotrophic enrichment culture KS. Appl. Environ. Microbiol. 83, e00752–00717 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    116.
    Smith, R. L., Kent, D. B., Repert, D. A. & Böhlke, J. K. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer. Geochim. Cosmochim. Acta 196, 102–120 (2017).
    CAS  Article  Google Scholar 

    117.
    Madison, A. S., Tebo, B. M., Mucci, A., Sundby, B. & Luther, G. W. Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341, 875–878 (2013).
    CAS  PubMed  Article  Google Scholar 

    118.
    Gillispie, E. C., Taylor, S. E., Qafoku, N. P. & Hochella, M. F. Jr. Impact of iron and manganese nano-metal-oxides on contaminant interaction and fortification potential in agricultural systems – a review. Environ. Chem. 16, 377–390 (2019).
    CAS  Article  Google Scholar 

    119.
    Siebecker, M., Madison, A. S. & Luther, G. W. Reduction kinetics of polymeric (soluble) manganese (IV) oxide (MnO2) by ferrous iron (Fe2+). Aquat. Geochem. 21, 143–158 (2015).
    CAS  Article  Google Scholar 

    120.
    Herndon, E. M., Havig, J. R., Singer, D. M., McCormick, M. L. & Kump, L. R. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake. Geochim. Cosmochim. Acta 231, 50–63 (2018).
    CAS  Article  Google Scholar 

    121.
    Maguffin, S. C. et al. Influence of manganese abundances on iron and arsenic solubility in rice paddy soils. Geochim. Cosmochim. Acta 276, 50–69 (2020).
    CAS  Article  Google Scholar 

    122.
    Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    123.
    Myers, C. R. & Nealson, K. H. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J. Bacteriol. 172, 6232–6238 (1990).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    124.
    Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996).
    CAS  Article  Google Scholar 

    125.
    Coates, J. D., Ellis, D. J., Gaw, C. V. & Lovley, D. R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Evol. Microbiol. 49, 1615–1622 (1999).
    CAS  Article  Google Scholar 

    126.
    Tor, J. M. & Lovley, D. R. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ. Microbiol. 3, 281–287 (2001).
    CAS  PubMed  Article  Google Scholar 

    127.
    Hansel, C. M., Benner, S. G. & Fendorf, S. Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ. Sci. Technol. 39, 7147–7153 (2005).
    CAS  PubMed  Article  Google Scholar 

    128.
    Shi, L. et al. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ. Microbiol. Rep. 1, 220–227 (2009).
    CAS  PubMed  Article  Google Scholar 

    129.
    Shi, L., Squier, T. C., Zachara, J. M. & Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65, 12–20 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    130.
    Butler, J. E., Young, N. D. & Lovley, D. R. Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11, 40 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    131.
    Reguera, G. et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72, 7345–7348 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    132.
    Lovley, D. R. & Holmes, D. E. Protein nanowires: the electrification of the microbial world and maybe our own. J. Bacteriol. 202, e00331–00320 (2020). A comprehensive and recent review on extracellular electron transfer by bacteria.
    CAS  PubMed  Article  Google Scholar 

    133.
    Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).
    CAS  PubMed  Article  Google Scholar 

    134.
    Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D. & Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl. Acad. Sci. USA 108, 15248–15252 (2011).
    CAS  PubMed  Article  Google Scholar 

    135.
    Ueki, T. et al. Decorating the outer surface of microbially produced protein nanowires with peptides. ACS Synth. Biol. 8, 1809–1817 (2019).
    CAS  PubMed  Article  Google Scholar 

    136.
    Smith, J. A., Lovley, D. R. & Tremblay, P.-L. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl. Environ. Microbiol. 79, 901–907 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    137.
    Pirbadian, S. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 111, 12883–12888 (2014).
    CAS  PubMed  Article  Google Scholar 

    138.
    El-Naggar, M. Y. et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA 107, 18127–18131 (2010).
    CAS  PubMed  Article  Google Scholar 

    139.
    Roden, E. E. et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3, 417–421 (2010).
    CAS  Article  Google Scholar 

    140.
    Lohmayer, R., Kappler, A., Lösekann-Behrens, T. & Planer-Friedrich, B. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl. Environ. Microbiol. 80, 3141–3149 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    141.
    Kappler, A., Benz, M., Schink, B. & Brune, A. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 47, 85–92 (2004).
    CAS  PubMed  Article  Google Scholar 

    142.
    Cervantes, F. J. et al. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms. Environ. Microbiol. 4, 51–57 (2002).
    CAS  PubMed  Article  Google Scholar 

    143.
    Coates, J. D. et al. Recovery of humic-reducing bacteria from a diversity of environments. Appl. Environ. Microbiol. 64, 1504–1509 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    144.
    Piepenbrock, A., Behrens, S. & Kappler, A. Comparison of humic substance- and Fe(III)-reducing microbial communities in anoxic aquifers. Geomicrobiol. J. 31, 917–928 (2014).
    CAS  Article  Google Scholar 

    145.
    Canfield, D. E. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619–632 (1989).
    CAS  PubMed  Article  Google Scholar 

    146.
    Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 105, 3968–3973 (2008).
    CAS  PubMed  Article  Google Scholar 

    147.
    von Canstein, H., Ogawa, J., Shimizu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008).
    Article  CAS  Google Scholar 

    148.
    Nevin, K. P. & Lovley, D. R. Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol. J. 19, 141–159 (2002).
    CAS  Article  Google Scholar 

    149.
    Markelova, E. et al. Deconstructing the redox cascade: what role do microbial exudates (flavins) play? Environ. Chem. 14, 515–524 (2017).
    CAS  Article  Google Scholar 

    150.
    Bai, Y. et al. AQDS and redox-active NOM enables microbial Fe(III)-mineral reduction at cm-scales. Environ. Sci. Technol. 54, 4131–4139 (2020). The first article to demonstrate that microorganisms can transfer electrons to Fe(iii) over centimetre distances by electron shuttling.
    CAS  PubMed  Article  Google Scholar 

    151.
    Bai, Y., Sun, T., Angenent, L. T., Haderlein, S. B. & Kappler, A. Electron hopping enables rapid electron transfer between quinone-/hydroquinone-containing organic molecules in microbial iron(III) mineral reduction. Environ. Sci. Technol. 54, 10646–10653 (2020).
    CAS  PubMed  Article  Google Scholar 

    152.
    Liu, F. et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ. Microbiol. 17, 648–655 (2015).
    CAS  PubMed  Article  Google Scholar 

    153.
    Taillefert, M. et al. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. J. Inorg. Biochem. 101, 1760–1767 (2007).
    CAS  PubMed  Article  Google Scholar 

    154.
    in ‘t Zandt, M. H., de Jong, A. E., Slomp, C. P. & Jetten, M. S. The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy064 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    155.
    Sivan, O. et al. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 56, 1536–1544 (2011).
    CAS  Article  Google Scholar 

    156.
    Miura, Y., Watanabe, A., Murase, J. & Kimura, M. Methane production and its fate in paddy fields. Soil Sci. Plant Nutr. 38, 673–679 (1992).
    CAS  Article  Google Scholar 

    157.
    Crowe, S. A. et al. The methane cycle in ferruginous Lake Matano. Geobiology 9, 61–78 (2011).
    CAS  PubMed  Article  Google Scholar 

    158.
    Amos, R. T. et al. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer. Geobiology 10, 506–517 (2012).
    CAS  PubMed  Article  Google Scholar 

    159.
    Glodowska, M. et al. Arsenic mobilization by anaerobic iron-dependent methane oxidation. Commun. Earth Environ. 1, 42 (2020). First study providing evidence that anaerobic oxidation of methane coupled to reduction of arsenic-bearing Fe(iii) minerals can lead to arsenic mobilization in groundwater.
    Article  Google Scholar 

    160.
    Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E. & Orphan, V. J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707 (2016).
    CAS  PubMed  Article  Google Scholar 

    161.
    Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).
    CAS  PubMed  Article  Google Scholar 

    162.
    Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl. Acad. Sci. USA 113, 12792–12796 (2016).
    CAS  PubMed  Article  Google Scholar 

    163.
    Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 12, 1929–1939 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    164.
    Clément, J.-C., Shrestha, J., Ehrenfeld, J. G. & Jaffé, P. R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil. Biol. Biochem. 37, 2323–2328 (2005).
    Article  CAS  Google Scholar 

    165.
    Huang, S. & Jaffé, P. R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences 12, 769–779 (2015).
    Article  Google Scholar 

    166.
    Li, X. et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environ. Sci. Technol. 49, 11560–11568 (2015).
    CAS  PubMed  Article  Google Scholar 

    167.
    Zhou, G.-W. et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction. Environ. Sci. Technol. 50, 9298–9307 (2016).
    CAS  PubMed  Article  Google Scholar 

    168.
    Yang, W. H., Weber, K. A. & Silver, W. L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat. Geosci. 5, 538–541 (2012).
    CAS  Article  Google Scholar 

    169.
    Li, X. et al. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge. J. Environ. Sci. 64, 42–50 (2018).
    Article  Google Scholar 

    170.
    Huang, S. & Jaffé, P. R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6. PLoS ONE 13, e0194007 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    171.
    Sawayama, S. Possibility of anoxic ferric ammonium oxidation. J. Biosci. Bioeng. 101, 70–72 (2006).
    CAS  PubMed  Article  Google Scholar 

    172.
    Zhu, X., Burger, M., Doane, T. A. & Horwath, W. R. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl. Acad. Sci. USA 110, 6328–6333 (2013).
    CAS  PubMed  Article  Google Scholar 

    173.
    Ginn, B., Meile, C., Wilmoth, J., Tang, Y. & Thompson, A. Rapid iron reduction rates are stimulated by high-amplitude redox fluctuations in a tropical forest soil. Environ. Sci. Technol. 51, 3250–3259 (2017). A good example of the dynamic nature of iron cycling in the environment and its impact on the reducibility of minerals.
    CAS  PubMed  Article  Google Scholar 

    174.
    Mejia, J., Roden, E. E. & Ginder-Vogel, M. Influence of oxygen and nitrate on Fe (hydr)oxide mineral transformation and soil microbial communities during redox cycling. Environ. Sci. Technol. 50, 3580–3588 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    175.
    Laufer, K. et al. Coexistence of microaerophilic, nitrate-reducing, and phototrophic Fe(II) oxidizers and Fe(III) reducers in coastal marine sediment. Appl. Environ. Microbiol. 82, 1433–1447 (2016).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    176.
    Hansel, C. M., Ferdelman, T. G. & Tebo, B. M. Cryptic cross-linkages among biogeochemical cycles: novel insights from reactive intermediates. Elements 11, 409–414 (2015). A review on cryptic element cycling in the environment, including cryptic iron cycling.
    CAS  Article  Google Scholar 

    177.
    Klueglein, N. & Kappler, A. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 – questioning the existence of enzymatic Fe(II) oxidation. Geobiology 11, 180–190 (2013).
    CAS  PubMed  Article  Google Scholar 

    178.
    Matus, F. et al. Ferrous wheel hypothesis: Abiotic nitrate incorporation into dissolved organic matter. Geochim. Cosmochim. Acta 245, 514–524 (2019). Demonstration of the ‘ferrous wheel hypothesis’ with insights for the role of coupled iron and nitrogen cycling in the environment.
    CAS  Article  Google Scholar 

    179.
    Chen, C., Hall, S. J., Coward, E. & Thompson, A. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nat. Commun. 11, 2255 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    180.
    Patzner, M. S. et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nat. Commun. 11, 6329 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    181.
    Beckwith, C. R. et al. Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth. Front. Microbiol. 6, 332 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    182.
    Bird, L. J., Bonnefoy, V. & Newman, D. K. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19, 330–340 (2011).
    CAS  PubMed  Article  Google Scholar 

    183.
    Field, S. J. et al. Purification and magneto-optical spectroscopic characterization of cytoplasmic membrane and outer membrane multiheme c-type cytochromes from Shewanella frigidimarina NCIMB400. J. Biol. Chem. 275, 8515–8522 (2000).
    CAS  PubMed  Article  Google Scholar 

    184.
    Giffaut, E. et al. Andra thermodynamic database for performance assessment: ThermoChimie. Appl. Geochem. 49, 225–236 (2014).
    CAS  Article  Google Scholar 

    185.
    Salmon, T. P., Rose, A. L., Neilan, B. A. & Waite, T. D. The FeL model of iron acquisition: nondissociative reduction of ferric complexes in the marine environment. Limnol. Oceanogr. 51, 1744–1754 (2006).
    CAS  Article  Google Scholar 

    186.
    Navrotsky, A., Mazeina, L. & Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science 319, 1635–1638 (2008).
    CAS  PubMed  Article  Google Scholar 

    187.
    Gorski, C. A., Edwards, R., Sander, M., Hofstetter, T. B. & Stewart, S. M. Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples. Environ. Sci. Technol. 50, 8538–8547 (2016). One of the first examples of using electrochemical methods to better understand the range of redox potentials present in different iron phases.
    CAS  PubMed  Article  Google Scholar 

    188.
    Robie, R. A. & Heminway, B. S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. (United States Printing Office, 1995).

    189.
    Navrotsky, A., Ma, C., Lilova, K. & Birkner, N. Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 330, 199–201 (2010).
    CAS  PubMed  Article  Google Scholar 

    190.
    Robie, R. A. & Bethke, P. Molar Volumes and Densities of Minerals. Report TEI-822 (United States Department of the Interior Geological Survey, 1962).

    191.
    Gorski, C. A., Nurmi, J. T., Tratnyek, P. G., Hofstetter, T. B. & Scherer, M. M. Redox behavior of magnetite: implications for contaminant reduction. Environ. Sci. Technol. 44, 55–60 (2010).
    CAS  PubMed  Article  Google Scholar 

    192.
    Gorski, C. A., Klüpfel, L. E., Voegelin, A., Sander, M. & Hofstetter, T. B. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. Environ. Sci. Technol. 47, 13477–13485 (2013).
    CAS  PubMed  Article  Google Scholar 

    193.
    Oswald, K. et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters. Limnol. Oceanogr. 61, S101–S118 (2016).
    Article  Google Scholar 

    194.
    Braunschweig, J., Bosch, J. & Meckenstock, R. U. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation. N. Biotechnol. 30, 793–802 (2013).
    CAS  PubMed  Article  Google Scholar 

    195.
    Villa, R. D., Trovó, A. G. & Nogueira, R. F. P. Environmental implications of soil remediation using the Fenton process. Chemosphere 71, 43–50 (2008).
    CAS  PubMed  Article  Google Scholar 

    196.
    Wagai, R. & Mayer, L. M. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim. Cosmochim. Acta 71, 25–35 (2007).
    CAS  Article  Google Scholar 

    197.
    Nitzsche, K. S. et al. Arsenic removal from drinking water by a household sand filter in Vietnam — effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Sci. Total. Environ. 502, 526–536 (2015).
    CAS  PubMed  Article  Google Scholar 

    198.
    Sipos, P., Németh, T., Kis, V. K. & Mohai, I. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 73, 461–469 (2008).
    CAS  PubMed  Article  Google Scholar 

    199.
    Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).
    CAS  Article  Google Scholar 

    200.
    Schaedler, F., Kappler, A. & Schmidt, C. A revised iron extraction protocol for environmental samples rich in nitrite and carbonate. Geomicrobiol. J. 35, 23–30 (2018).
    CAS  Article  Google Scholar 

    201.
    Porsch, K. & Kappler, A. FeII oxidation by molecular O2 during HCl extraction. Environ. Chem. 8, 190–197 (2011).
    CAS  Article  Google Scholar 

    202.
    Roden, E. E. & Zachara, J. M. Microbial reduction of crystalline iron(III) oxides:  Influence of oxide surface area and potential for cell growth. Environ. Sci. Technol. 30, 1618–1628 (1996).
    CAS  Article  Google Scholar 

    203.
    Tessier, A., Campbell, P. G. C. & Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851 (1979).
    CAS  Article  Google Scholar 

    204.
    Stookey, L. L. Ferrozine – a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).
    CAS  Article  Google Scholar 

    205.
    Clark, L. J. Iron(II) determination in the presence of iron(III) using 4,7-diphenyl-1,10-phenanthroline. Anal. Chem. 34, 348–352 (1962).
    CAS  Article  Google Scholar 

    206.
    Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. & Van Cappellen, P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15, 785–790 (2000).
    CAS  Article  Google Scholar  More

  • in

    Human disturbance causes widespread disruption of animal movement

    1.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    CAS  PubMed  Google Scholar 
    2.
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
    CAS  PubMed  Google Scholar 

    3.
    Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).
    CAS  PubMed  Google Scholar 

    4.
    Tucker, M. A. et al. Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
    CAS  PubMed  Google Scholar 

    5.
    Wang, X. et al. Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl. Nat. Commun. 10, 2187 (2019).
    PubMed  PubMed Central  Google Scholar 

    6.
    Fahrig, L. Non-optimal animal movement in human-altered landscapes. Funct. Ecol. 21, 1003–1015 (2007).
    Google Scholar 

    7.
    Cosgrove, A. J., McWhorter, T. J. & Maron, M. Consequences of impediments to animal movements at different scales: a conceptual framework and review. Divers. Distrib. 24, 448–459 (2018).
    Google Scholar 

    8.
    Mergey, M., Helder, R. & Roeder, J.-J. Effect of forest fragmentation on space-use patterns in the European pine marten (Martes martes). J. Mammal. 92, 328–335 (2011).
    Google Scholar 

    9.
    Main, M. T., Davis, R. A., Blake, D., Mills, H. & Doherty, T. S. Human impact overrides bioclimatic drivers of red fox home range size globally. Divers. Distrib. https://doi.org/10.1111/ddi.13115 (2020).

    10.
    Laver, P. N. & Alexander, K. A. Association with humans and seasonality interact to reverse predictions for animal space use. Mov. Ecol. 6, 5 (2018).
    PubMed  PubMed Central  Google Scholar 

    11.
    Riotte-Lambert, L. & Matthiopoulos, J. Environmental predictability as a cause and consequence of animal movement. Trends Ecol. Evol. 35, 163–174 (2020).
    PubMed  Google Scholar 

    12.
    Laurian, C., Ouellet, J.-P., Courtois, R., Breton, L. & St-Onge, S. Effects of intensive harvesting on moose reproduction. J. Appl. Ecol. 37, 515–531 (2000).
    Google Scholar 

    13.
    Tamburello, N., Côté, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Nat. 186, 196–211 (2015).
    PubMed  Google Scholar 

    14.
    Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).
    CAS  PubMed  Google Scholar 

    15.
    Perona, A. M., Urios, V. & López-López, P. Holidays? Not for all. Eagles have larger home ranges on holidays as a consequence of human disturbance. Biol. Conserv. 231, 59–66 (2019).
    Google Scholar 

    16.
    Staggenborg, J., Schaefer, H. M., Stange, C., Naef-Daenzer, B. & Grüebler, M. U. Time and travelling costs during chick-rearing in relation to habitat quality in little owls Athene noctua. Ibis (Lond. 1859) 159, 519–531 (2017).
    Google Scholar 

    17.
    Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).
    PubMed  Google Scholar 

    18.
    Blomquist, S. & Hunter, M. L. Jr A multi-scale assessment of habitat selection and movement patterns by northern leopard frog (Lithobates [Rana] pipiens) in a managed forest. Herpetol. Conserv. Biol. 4, 142–160 (2009).
    Google Scholar 

    19.
    Peaden, J. M., Nowakowski, A. J., Tuberville, T. D., Buhlmann, K. A. & Todd, B. D. Effects of roads and roadside fencing on movements, space use, and carapace temperatures of a threatened tortoise. Biol. Conserv. 214, 13–22 (2017).
    Google Scholar 

    20.
    Siffczyk, C., Brotons, L., Kangas, K. & Orell, M. Home range size of willow tits: a response to winter habitat loss. Oecologia 136, 635–642 (2003).
    PubMed  Google Scholar 

    21.
    Breininger, D. R., Bolt, M. R., Legare, M. L., Drese, J. H. & Stolen, E. D. Factors influencing home-range sizes of eastern indigo snakes in central Florida. J. Herpetol. 45, 484–490 (2011).
    Google Scholar 

    22.
    Hirt, M. R., Jetz, W., Rall, B. C. & Brose, U. A general scaling law reveals why the largest animals are not the fastest. Nat. Ecol. Evol. 1, 1116–1122 (2017).
    PubMed  Google Scholar 

    23.
    Garland, T. & Albuquerque, R. L. Locomotion, energetics, performance, and behavior: a mammalian perspective on lizards, and vice versa. Integr. Comp. Biol. 57, 252–266 (2017).
    PubMed  Google Scholar 

    24.
    Wilson, K. S., Pond, B. A., Brown, G. S. & Schaefer, J. A. The biogeography of home range size of woodland caribou Rangifer tarandus caribou. Divers. Distrib. 25, 205–216 (2019).
    Google Scholar 

    25.
    Wang, Y., Smith, J. A. & Wilmers, C. C. Residential development alters behavior, movement, and energetics in a top carnivore. PLoS ONE 12, e0184687 (2017).
    PubMed  PubMed Central  Google Scholar 

    26.
    Vangestel, C., Braeckman, B. P., Matheve, H. & Lens, L. Constraints on home range behaviour affect nutritional condition in urban house sparrows (Passer domesticus). Biol. J. Linn. Soc. Lond. 101, 41–50 (2010).
    Google Scholar 

    27.
    Hinam, H. L. & St. Clair, C. C. High levels of habitat loss and fragmentation limit reproductive success by reducing home range size and provisioning rates of northern saw-whet owls. Biol. Conserv. 141, 524–535 (2008).
    Google Scholar 

    28.
    Herrera, J. M., de Sá Teixeira, I., Rodríguez-Pérez, J. & Mira, A. Landscape structure shapes carnivore-mediated seed dispersal kernels. Landsc. Ecol. 31, 731–743 (2016).
    Google Scholar 

    29.
    Carpenter, J. K., O’Donnell, C. F. J., Moltchanova, E. & Kelly, D. Long seed dispersal distances by an inquisitive flightless rail (Gallirallus australis) are reduced by interaction with humans. R. Soc. Open Sci. 6, 190397 (2019).
    PubMed  PubMed Central  Google Scholar 

    30.
    Januchowski-Hartley, F. A., Graham, N. A. J., Feary, D. A., Morove, T. & Cinner, J. E. Fear of fishers: human predation explains behavioral changes in coral reef fishes. PLoS ONE 6, e22761 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Whittington, J., Low, P. & Hunt, B. Temporal road closures improve habitat quality for wildlife. Sci. Rep. 9, 3772 (2019).
    PubMed  PubMed Central  Google Scholar 

    32.
    Soanes, K. et al. Movement re-established but not restored: inferring the effectiveness of road-crossing mitigation for a gliding mammal by monitoring use. Biol. Conserv. 159, 434–441 (2013).
    Google Scholar 

    33.
    Jacobsen, L. B., Chrenková, M., Sunde, P. & Salek, M. Effects of food provisioning and habitat management on spatial behaviour of little owls during the breeding season. Ornis Fenn. 93, 121–129 (2016).
    Google Scholar 

    34.
    Zeller, K. A., Lewsion, R., Fletcher, R. J., Tulbure, M. G. & Jennings, M. K. Understanding the importance of dynamic landscape connectivity. Land (Basel) 9, 303 (2020).
    Google Scholar 

    35.
    Doherty, T. S. & Driscoll, D. A. Coupling movement and landscape ecology for animal conservation in production landscapes. Proc. R. Soc. Lond. B 285, 20172272 (2018).
    Google Scholar 

    36.
    Rohatgi, A. WebPlotDigitizer, version 4.2 (2019); https://automeris.io/WebPlotDigitizer

    37.
    Börger, L. et al. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75, 1393–1405 (2006).
    PubMed  Google Scholar 

    38.
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
    Google Scholar 

    39.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 

    40.
    Neumann, W., Ericsson, G. & Dettki, H. Does off-trail backcountry skiing disturb moose? Eur. J. Wildl. Res. 56, 513–518 (2010).
    Google Scholar 

    41.
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
    Google Scholar 

    42.
    Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).
    Google Scholar 

    43.
    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).
    PubMed  PubMed Central  Google Scholar 

    44.
    Froese, R. & Pauly, D. (eds) Fishbase (2019); www.fishbase.org

    45.
    Myers, P. et al. The Animal Diversity Web (Univ. Michigan, 2020); https://animaldiversity.org

    46.
    AmphibiaWeb (Univ. California Berkeley, 2020); https://amphibiaweb.org

    47.
    Froese, R., Thorson, J. T. & Reyes, R. B. A Bayesian approach for estimating length–weight relationships in fishes. J. Appl. Ichthyol. 30, 78–85 (2014).
    Google Scholar 

    48.
    Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).
    Google Scholar 

    49.
    Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).
    Google Scholar 

    50.
    Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 

    51.
    Williams, D. R., Rast, P. & Bürkner, P.-C. Bayesian meta-analysis with weakly informative prior distributions. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/7tbrm (2018).

    52.
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).
    Google Scholar 

    53.
    Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Rosenberg, M. S. The file-drawer problem revisted: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468 (2005).
    PubMed  Google Scholar  More