Estrogen induces shift in abundances of specific groups of the coral microbiome
1.
Ghiselli, G. & Jardim, W. F. Interferentes endócrinos no meio ambiente. Quím. Nova 30, 695–706 (2007).
Article Google Scholar
2.
Vilela, C. L. S., Bassin, J. P. & Peixoto, R. S. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. Environ. Poll. 235, 546–559 (2018).
CAS Article Google Scholar
3.
Muller, M. et al. Occurrence of estrogens in sewage sludge and their fate during plant-scale anaerobic digestion. Chemosphere 81, 65–71 (2010).
ADS CAS PubMed Article Google Scholar
4.
Mills, M. R. et al. Removal of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment. Sci. Rep. 5, 1–10 (2015).
Article CAS Google Scholar
5.
Laurenson, J. P., Bloom, R. A., Page, S. & Sadrieh, N. Ethinylestradiol and other human pharmaceutical estrogens in the aquatic environment: A review of recent risk assessment data. AAPS J. 16, 299–310 (2014).
CAS PubMed PubMed Central Article Google Scholar
6.
Luzio, A., Santos, D., Fontaínhas-Fernandes, A. A., Monteiro, S. M. & Coimbra, A. M. Effects of 17α-ethinylestradiol at different water temperatures on zebrafish sex differentiation and gonad development. Aquat. Toxicol. 174, 22–35 (2016).
CAS PubMed Article Google Scholar
7.
Blewett, T., MacLatchy, D. L. & Wood, C. M. The effects of temperature and salinity on 17-α-ethynylestradiol uptake and its relationship to oxygen consumption in the model euryhaline teleost (Fundulus heteroclitus). Aquat. Toxicol. 127, 61–71 (2013).
CAS PubMed Article Google Scholar
8.
Atkinson, S., Atkinson, M. J. & Tarrant, A. M. Estrogens from sewage in coastal marine environments. Environ. Health Persp. 111, 531–535 (2003).
CAS Article Google Scholar
9.
Segner, H. et al. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: Report from the European IDEA project. Ecotoxicol. Environ. Safe. 54, 302–314 (2003).
CAS Article Google Scholar
10.
Tyler, C. R., Jobling, S. & Sumpter, J. P. Endocrine disruption in wildlife: A critical review of the evidence. Crit. Rev. Toxicol. 28, 319–361 (1998).
CAS PubMed Article PubMed Central Google Scholar
11.
Johnson, A. C., Belfroid, A. & Di Corcia, A. Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Sci. Total Environ. 256, 163–173 (2000).
ADS CAS PubMed Article PubMed Central Google Scholar
12.
Cadwell, D. J. et al. Derivation of an aquatic predicted no-effect concentration for the synthetic hormone, 17α-ethinyl estradiol. Environ. Sci. Technol. 10, 272–283 (2008).
Google Scholar
13.
Ternes, T. A. et al. Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci. Total Environ. 225, 81–90 (1999).
ADS CAS PubMed Article PubMed Central Google Scholar
14.
Kolpin, D. W. et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
15.
Huang, Y., Wang, X. L., Zhang, J. W. & Wu, K. S. Impact of endocrine-disrupting chemicals on reproductive function in zebrafish (Danio rerio). Reprod. Domest. Anim. 50, 1–6 (2009).
Article CAS Google Scholar
16.
Länge, R. et al. Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 20, 1216–1227 (2001).
PubMed Article PubMed Central Google Scholar
17.
Parrott, J. L. & Blunt, B. R. Life-cycle exposure of fathead minnows (Pimephales promelas) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes males. Environ. Toxicol. 20, 131–141 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar
18.
Bloom, M. S., Micu, R. & Neamtiu, I. Female infertility and “emerging” organic pollutants of concern. Curr. Epidemiol. Rep. 3, 39–50. https://doi.org/10.1007/s40471-016-0060-1 (2016).
Article Google Scholar
19.
Nash, J. P. et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ. Health Persp. 112, 1725–1733 (2004).
CAS Article Google Scholar
20.
Wu, C., Huang, X., Lin, J. & Liu, J. Occurrence and fate of selected endocrine-disrupting chemicals in water and sediment from an urban lake. Arch. Environ. Contam. Toxicol. 68, 225–236 (2014).
PubMed Article CAS PubMed Central Google Scholar
21.
Pennington, M. J. et al. Effects of contaminants of emerging concern on Megaselia scalaris (Lowe, Diptera: Phoridae) and its microbial community. Sci. Rep. 7, 1–12 (2017).
CAS Article Google Scholar
22.
Pennington, M. J., Prager, S. M., Walton, W. E. & Trumble, J. T. Culex quinquefasciatus larval microbiomes vary with instar and exposure to common wastewater contaminants. Sci. Rep. 6, 1–9 (2016).
Article CAS Google Scholar
23.
Pennington, M. J., Rivas, N. G., Prager, S. M., Walton, W. E. & Trumble, J. T. Pharmaceuticals and personal care products alter the holobiome and development of a medically important mosquito. Environ. Pollut. 203, 199–207 (2015).
CAS PubMed Article PubMed Central Google Scholar
24.
Fosch, S. E. et al. Contraception: Influence on vaginal microbiota and identification of vaginal lactobacilli using MALDI-TOF MS and 16S rDNA sequencing. Open Microbiol. J. 12, 218–229 (2018).
CAS PubMed PubMed Central Article Google Scholar
25.
Tarrant, A. M., Blomquist, C. H., Lima, P. H., Atkinson, M. J. & Atkinson, S. Metabolism of estrogens and androgens by scleractinian corals. Comp. Biochem. Phys. B. 136, 473–485 (2003).
Article CAS Google Scholar
26.
Tarrant, A. M., Atkinson, M. J. & Atkinson, S. Effects of steroidal estrogens on coral growth and reproduction. Mar. Ecol. Prog. Ser. 269, 121–129 (2004).
ADS CAS Article Google Scholar
27.
Atkinson, S. & Atkinson, M. J. Detection of estradiol-17β during a mass coral spawn. Coral Reefs 11, 33–35 (1992).
ADS Article Google Scholar
28.
Atkinson, S. Uptake of estrone from the water column by a coral community. Mar. Biol. 139, 321–325 (2001).
Article Google Scholar
29.
Rougée, L. R., Richmond, R. H. & Collier, A. C. Molecular reproductive characteristics of the reef coral Pocillopora damicornis. Comp. Biochem. Phys. A 189, 38–44 (2015).
Article CAS Google Scholar
30.
Blomquist, C. H., Lima, P. H., Tarrant, A. M., Atkinson, M. J. & Atkinson, S. 17β-Hydroxysteroid dehydrogenase (17β-HSD) in scleractinian corals and zooxanthellae. Comp. Biochem. Phys. B 143, 397–403 (2006).
Article CAS Google Scholar
31.
Tarrant, A. M., Atkinson, S. & Atkinson, M. J. Estrone and estradiol-17β concentration in tissue of the scleractinian coral, Montipora verrucosa. Comp. Biochem. Phys. A 122, 85–92 (1999).
CAS Article Google Scholar
32.
Twan, W. et al. Hormones and reproduction in scleractinian corals. Comp. Biochem. Phys. A 144, 247–253 (2006).
Article CAS Google Scholar
33.
Tarrant, A., Atkinson, M. & Atkinson, S. Uptake of estrone from the water column by a coral community. Mar. Biol. 139, 321–325 (2001).
CAS Article Google Scholar
34.
Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).
PubMed Article PubMed Central Google Scholar
35.
Rosenberg, E., Koren, O., Reshef, L. & Efrony, R. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).
CAS PubMed Article PubMed Central Google Scholar
36.
Rosenberg, E. Coral microbiology. Microb. Biotechnol. 2, 147 (2009).
PubMed PubMed Central Article Google Scholar
37.
Peixoto, R. S., Rosado, P. M., Leite, D. C., Rosado, A. S. & Bourne, D. G. Beneficial microorganisms for corals (BMC): Proposed mechanisms for coral health and resilience. Front. Mar. Sci. 8, 1–16 (2017).
CAS Google Scholar
38.
Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Patterns of coral heat tolerance. Nature Comm. 1, 1–8 (2017).
Google Scholar
39.
Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).
Article Google Scholar
40.
Rosado, P. M. et al. Marine probiotics: Increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).
CAS PubMed Article Google Scholar
41.
Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).
ADS CAS PubMed Article Google Scholar
42.
Wegley, L., Edwards, R., Rodriguez-Brito, B., Liu, H. & Rohwer, F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ. Microbiol. 9, 2707–2719 (2007).
CAS PubMed Article Google Scholar
43.
Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).
CAS PubMed Article Google Scholar
44.
Ritchie, K. B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).
ADS CAS Article Google Scholar
45.
Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).
CAS PubMed Article Google Scholar
46.
Santos, H. F. et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).
PubMed PubMed Central Article Google Scholar
47.
Santos, H. F. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 1–11 (2015).
Google Scholar
48.
Röthig, T., Yum, L. K., Kremb, S. G., Roik, A. & Voolstra, C. R. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Sci. Rep. 7, 44714 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
49.
Meyer, J. L., Paul, V. J. & Teplitski, M. Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions. PLoS ONE 9, e100316 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
50.
Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 4, 1–11 (2017).
Article Google Scholar
51.
Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).
PubMed PubMed Central Article CAS Google Scholar
52.
Webster, N. S. et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci. Rep. 6, 19324 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
53.
Ainsworth, T. D., Thurber, R. V. & Gates, R. D. The future of coral reefs: A microbial perspective. Trends Ecol. Evol. 25, 233–240 (2009).
PubMed Article PubMed Central Google Scholar
54.
Gissi, F. et al. The effect of dissolved nickel and copper on the adult coral Acropora muricata and its microbiome. Environ. Pollut. 250, 792–806 (2019).
CAS PubMed Article PubMed Central Google Scholar
55.
Leite, D. C. et al. Coral bacterial-core abundance and network complexity as proxies for anthropogenic pollution. Front. Microbiol. 9, 833 (2018).
PubMed PubMed Central Article Google Scholar
56.
Vega Thurber, R. et al. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 11, 2148–2163 (2009).
PubMed Article CAS PubMed Central Google Scholar
57.
Meron, D. et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 5, 51–60 (2011).
PubMed Article PubMed Central Google Scholar
58.
McDevitt-Irwin, J. M., Baum, J. K., Garren, M. & Vega Thurber, R. L. Responses of coral-associated bacterial communities to local and global stressors. Front. Mar. Sci. 4, 262 (2017).
Article Google Scholar
59.
Al-Dahash, L. M. & Mahmoud, H. M. Harboring oil-degrading bacteria: A potential mechanism of adaptation and survival in corals inhabiting oil-contaminated reefs. Mar. Pollut. Bull. 72, 364–374 (2013).
CAS PubMed Article PubMed Central Google Scholar
60.
Wenger, A. S., Fabricius, K. E., Jones, G. P. & Brodie, J. E. Effects of sedimentation, eutrophication, and chemical pollution on coral reef fishes. In Ecology of Fishes on Coral Reefs (ed. Mora, C.) 145–153 (Cambridge University Press, Cambridge, 2015).
Google Scholar
61.
Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 1–12 (2016).
Article CAS Google Scholar
62.
Marangoni, L. F. et al. Copper effects on biomarkers associated with photosynthesis, oxidative status and calcification in the Brazilian coral Mussismilia harttii (Scleractinia, Mussidae). Mar. Environ. Res. 130, 248–257 (2017).
CAS PubMed Article PubMed Central Google Scholar
63.
Ferrigno, F. et al. Corals in high diversity reefs resist human impact. Ecol. Indic. 70, 106–113 (2016).
Article Google Scholar
64.
Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 80, 929–933 (2003).
ADS Article CAS Google Scholar
65.
Pastorok, R. & Bilyard, G. Effects of sewage pollution on coral-reef communities. Mar. Ecol. Prog. Ser. 21, 175–189 (1985).
ADS Article Google Scholar
66.
Tarrant, A. M. Hormonal signaling in cnidarians: Do we understand the pathways well enough to know whether they are being disrupted?. Ecotoxicology 16, 5–13 (2007).
CAS PubMed Article PubMed Central Google Scholar
67.
Peters, E. C., Gassman, N. J., Firman, J. C., Richmond, R. H. & Power, E. A. Ecotoxicology of tropical marine ecosystems. Environ. Toxicol. Chem. 16, 12–40 (1997).
CAS Article Google Scholar
68.
Holert, J. et al. Metagenomes reveal global distribution of bacterial steroid catabolism in natural, engineered, and host environments. MBio 9, e02345-e2417 (2018).
CAS PubMed PubMed Central Article Google Scholar
69.
Winter, A. P. M., Chaloub, R. M. & Duarte, G. A. S. Photosynthetic responses of corals Mussismilia harttii (Verrill, 1867) from turbid waters to changes in temperature and presence/absence of light. Braz. J. Oceanogr. 64, 203–216 (2016).
Article Google Scholar
70.
Fonseca, J. S., Marangoni, L. F. B., Marques, J. A. & Bianchini, A. Effects of increasing temperature alone and combined with copper exposure on biochemical and physiological parameters in the zooxanthellate scleractinian coral Mussismilia harttii. Aquat. Toxicol. 190, 121–132 (2017).
CAS PubMed Article Google Scholar
71.
Ralph, P. J., Schreiber, U., Gademann, R., Kühl, M. & Larkum, A. W. D. Coral photobiology studied with a new imaging pulse amplitude modulated fluorometer. J. Phycol. 41, 335–342 (2005).
Article Google Scholar
72.
Sato, Y., Bourne, D. G. & Willis, B. L. Effects of temperature and light on the progression of black band disease on the reef coral, Montiporahispida. Coral Reefs 30, 753–761 (2011).
ADS Article Google Scholar
73.
Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2013).
ADS CAS Article Google Scholar
74.
Fernando, S. C. et al. Microbiota of the major south atlantic reef building. Microb. Ecol. 69, 267–280 (2015).
PubMed Article Google Scholar
75.
De Castro, A. P., Dias, S. A. & Reis, A. M. M. Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from eastern Brazil. Microb. Ecol. 59, 658–667 (2010).
PubMed Article Google Scholar
76.
Santos, H. F. et al. Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution. PLoS ONE 6, e14693 (2011).
Article CAS Google Scholar
77.
Santos, H. F., Cury, J. C., Carmo, F. L., Rosado, A. S. & Peixoto, R. S. 18S rDNA sequences from microeukaryotes reveal oil indicators in mangrove sediment. PLoS ONE 5, e12437 (2010).
ADS PubMed PubMed Central Article CAS Google Scholar
78.
Oleynik, G. N., Yurishinets, V. I. & Starosila, Y. V. Bacterioplankton and bacteriobenthos as biological indicators of the aquatic ecosystems’ state (a review). Hydrobiol. J. 47, 37–48 (2011).
Article Google Scholar
79.
Jain, A., Singh, B. N., Singh, S. P., Singh, H. B. & Singh, S. Exploring biodiversity as bioindicators for water pollution. Natl. Conf. Biodivers. Dev. Poverty Alleviation, 50–56 (2010).
80.
Bloem, J. & Breure, A. M. Microbial indicators. In Bioindicators and Biomonitors (eds Markert, B. A. et al.) 257–282 (Elsevier, Amsterdam, 2003).
Google Scholar
81.
Parmar, T. K., Rawtani, D. & Agrawal, Y. K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 9, 110–118 (2016).
CAS Article Google Scholar
82.
Wilkins, L. G. E. et al. Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol. 17, e3000533 (2019).
CAS PubMed PubMed Central Article Google Scholar
83.
Kurisu, F., Ogura, M., Saitoh, S., Yamazoe, A. & Yagi, O. Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp.. J. Biosci. Bioeng. 109, 576–582 (2010).
CAS PubMed Article Google Scholar
84.
Wang, Y. et al. Degradation of 17 β-estradiol and products by a mixed culture of Rhodococcus equi DSSKP-R-001 and Comamonas testosteroni QYY20150409. Biotechnol. Biotechnol. Equip. 33, 268–277 (2019).
CAS Article Google Scholar
85.
Yoshimoto, T. et al. Isolates from activated sludge in wastewater treatment plants. Appl. Environ. Microbiol. 70, 5283–5289 (2004).
CAS PubMed PubMed Central Article Google Scholar
86.
Zhao, H. et al. Genome analysis of Rhodococcus sp. DSSKP-R-001: A highly effective β-estradiol-degrading bacterium. Int. J. Genomics 2018, 3505428 (2018).
PubMed PubMed Central Google Scholar
87.
Edet, U. O. & Antai, S. P. Correlation and distribution of xenobiotics genes and metabolic activities with level of total petroleum hydrocarbon in soil, sediment and estuary water in the Niger Delta Region of Nigeria. Asian J. Biotechnol. Genet. Eng. 1(1), 1–11 (2018).
Google Scholar
88.
Parida, S. & Sharma, D. The microbiome-estrogen connection and breast cancer risk. Cells 8, 1642 (2019).
CAS PubMed Central Article PubMed Google Scholar
89.
Schreiber, U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. In Chlorophyll a Fluorescence: A Signature of Photosynthesis (eds Papageorgiou, G. C. & Govindjee, C.) 279–319 (Springer, Berlin, 2004).
Google Scholar
90.
Siebeck, U. E., Marshall, N. J., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).
ADS Article Google Scholar
91.
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package. Palaeontol. Electron. 4, 1–9 (2001).
Google Scholar
92.
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
93.
Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
CAS PubMed PubMed Central Article Google Scholar
94.
McCune, B. & Mefford, M. J. PC-ORD v. 6.0. MjM Software, Gleneden Beach (2010). More