More stories

  • in

    Response of cyanobacterial mats to ambient phosphate fluctuations: phosphorus cycling, polyphosphate accumulation and stoichiometric flexibility

    Our findings highlight the critical role of polyP in Sodalinema stali-formed cyanobacterial mats, as it was dynamically accumulated and recycled during acclimation to P fluctuations.Cellular response to progressive P starvationAnalogous to planktonic cyanobacteria, growth under low P availability could be sustained by recycling polyP, which acted as a primary P source (Fig. 2a) [16, 23, 24]. We further attribute the rapid reduction of easily dispensable cellular P-containing compounds to the substitution of cellular phospholipids with S- or N-containing membrane lipids to maintain growth at the onset of P stress (Fig. 2a) [15, 23]. However, the exhaustion of this easily dispensable P pool limited proliferation in Phase 2, and the metabolic strategy switched from a focus on growth towards maintenance (Fig. 5). The interpretation of prevailing cellular processes based on our results is graphically summarized and explained in detail below (Fig. 5).Fig. 5: Schematic interpretation of cellular phosphorus (P) cycling in a cyanobacterial mat, based on significant changes of the monitored parameters (arbitrary units).a At low P availability, initially contained polyphosphate (polyP) was recycled simultaneously with phosphate uptake to sustain growth at constant C:N:P ratios. Further proliferation at the onset of P stress in Phase 1 was sustained by mobilization of cellular P, e.g. phospholipids, which led to rapidly increasing C:N:P ratios. Severe P stress in Phase 2, indicated by increasing APase activity, prevented proliferation and photosynthesis, indicated by a loss of green chlorophyll pigments. PolyP accumulation by deficiency response occurs with severely increasing P stress, whereby globular DNA accumulation indicates the allocation of P contained in DNA into polyP. P re-addition to the P-stressed cells in Phase 3 triggered overplus uptake and narrow C:N:P ratios, transitioning to luxury uptake at higher C:N:P ratios following polyP recycling. b At high P availability, polyP in Phase 1 was accumulated by overplus uptake at narrow C:N:P ratios, transitioning to luxury uptake at higher C:N:P ratios during polyP recycling in Phase 2. P-deprivation in Phase 3 did not affect the cells, which we attributed to a sufficient amount of phosphate in the residual medium or within the biofilm matrix. Arrows indicate phosphorus transformation processes, whereby arrows pointing towards DNA represent cell growth. Yellow granules = polyP, blue granules = globular DNA spheres, P = phospholipids, S = substitute lipids.Full size imageSevere P stress in Phase 2 was indicated by the colour change from green towards yellow-green (Fig. S1) and increasing APase activity (Fig. 2a). The colour change suggested the loss of photosynthetic pigments [40], but we could not clarify whether this occurred through active cellular pigment reduction or degradation of available chlorophyll e.g., by oxidation. The increasing APase activity (Fig. 2a) suggested that Sodalinema stali is capable of hydrolysing organic P [14]. Even though APase expression did not trigger proliferation, it likely hydrolysed a potentially available organic P pool, as increasing DIC, NH4 and decreasing pH indicated progressive decay and remineralisation of organic matter (Fig. 1a). This suggests that in analogous oligotrophic environments with often fluctuating conditions, the strategy has to be maximizing the utilization of external P sources contained in organic and inorganic sediment particles that get trapped in the EPS [41]. The sediment can contain large amounts of organic P [42] and the fluctuating physico-chemical gradients in the EPS matrix due to high daytime pH and low oxygen conditions at night, facilitate P desorption from metal oxides, leading to higher dissolved phosphate concentrations within the mat, compared to the overlying water body [3]. However, alternating redox conditions at the SWI could also trigger polyP release from benthic microorganisms to the sediments, where it could act as a P source for the benthic food-chain, or ultimately trigger the formation of mineral P phases [32], to sustainably remove P from the aquatic cycle. Either way, we suggest that polyP-containing cyanobacterial mats critically impact P fluxes at the SWI.With persisting severe P stress and increasing APase activity in Phase 2, polyP accumulation as a deficiency response was observed (Fig. 2a), which has been reported from planktonic cyanobacteria of different habitats [24, 29, 23], as well as stream periphyton [28]. However, the reasons causing this deficiency response remain unresolved. In marine phytoplankton of the oligotrophic Sargasso Sea, Martin et al. [23] excluded that polyP-rich cells were in a perpetual overplus state with ‘undetectable’ pulses driving this state and suggested that polyP accumulation occurred as a cellular stress response. In other studies, reduced biosynthesis of P-rich rRNA coincided with deficiency responses [26, 28] and led to the suggestion that polyP accumulation at P concentrations below a certain threshold required for growth occurs because of P allocation changes away from growth and towards storage. Further, APase can hydrolytically cleave phosphate groups from nucleic acids and convert DNA-lipid-P to DNA-lipids, which were shown to self-assemble into globular lipid-based DNA micelles [43]. These preferentially anchor on cell membranes [44], and indeed, such DNA spheres were found to accumulate at the cell’s polar membranes in our experiments adjacent to polyP during deficiency response (Fig. 4a: Phase 2,c). Therefore, we suggest that intracellular P recovery by cleavage from P-rich DNA and reallocation to polyP, and potentially reduced rRNA synthesis [31], is also a strategy in benthic mats of Sodalinema stali as a response to severe P stress when P availability is too low to sustain growth. This supports the theory of a reallocation of resources away from growth towards flexibly available P and energy storage. Such direct intracellular P cycling could be beneficial to help retain P within the cyanobacterial population; while external P moieties such as dissolved organic P within the matrix can act as an additional P source, they are also likely to be subject to nutrient competition between cyanobacteria and other organisms inhabiting the matrix.Such effects of potential interactions in terms of nutrient competition or provision between cyanobacteria and mutualistic microorganisms contained within the same EPS matrix are difficult to assess and we cannot exclude some potential effects on our results. However, mutualistic microorganisms that are naturally contained in many cyanobacterial or algal cultures are often critical for metacommunity functioning and hence, working with axenic mat-forming strains may even further falsify any obtained results. Furthermore, microscopic analyses revealed that Sodalinema always dominated the biomass and hence, it is here considered reasonable to work with a non-axenic culture.Cellular response to a simulated P pulseIn P-deficient cells, the affinity of the P uptake system is typically increased to maximize P uptake for future pulses [13, 45]. The simulated P pulse to the P-stressed cells in Phase 3 led to a rapid increase of the cellular P content by 1260% relative to C within 3 days (Fig. 2a), whereby P was accumulated to a significant part as polyP, which is characteristic for overplus uptake [25]. Many different types of oligotrophic aquatic habitats experience only temporal P pulses, e.g., from redox changes at the benthic interface leading to P release from the sediment [32], storm run-off [28], upwelling [46], or excretions of aquatic animals [47]. The capability of microorganisms to immediately take up, store, and efficiently re-use this P by overplus uptake is hence of critical importance for a population to sustain a potential subsequent period of low P availability. Overplus uptake is typically accompanied by the overall slow growth of the population and cellular recovery from P starvation, including ultrastructural organization and recovery of the photosynthetic apparatus [48]. This took one week after re-feeding of P-starved Nostoc sp. PCC 7118 cells [48]—a timeframe very similar to the delayed onset of photosynthesis observed in our study, indicated by the elevated pH at day 9 (Fig. 1a). Regarding overplus-triggering mechanisms following P pulses, Solovochenko et al. [48] suggested that overplus uptake occurs due to a delayed down-regulation of high-affinity Pi transporters, which are active during P starvation, and emphasized the simultaneous advantage of osmotically inert polyP accumulation as a response to dramatically high phosphate concentrations in the cells. Even though APase levels declined following our experimental P re-addition, they were significantly elevated for at least 9 days (Fig. 2a). As our experimental design involved replacing the medium with APase-free, BG11 + medium after Phase 2, we assume that the APase detected in Phase 3 was actively produced, and we conclude that previously relevant, low-P response mechanisms are slowly disengaged with some sort of lag, even when ambient P is repleted. Following cellular recovery, Sodalinema now recycled stored polyP instead of further accumulating it during the transition from overplus-to luxury uptake, which was reflected in the increasing C:N:P molar ratios and decreasing polyP levels without significant additional phosphate uptake (Figs. 1a, 2a, 5).Qualitative observations on polyP distributionMost methods applied to analyse polyP in microorganisms are quantitative and do not contain information on its spatial distribution within a population. The here observed variable distribution of polyP between the cells during luxury uptake and deficiency response, as well as the retention of polyP in few individual filaments during polyP recycling in Phase 1 of the low P experiment (Fig. 4) suggests strategies of either slow growth with a retention of polyP, or of high growth with polyP recycling. This was also suggested for cells of a unicellular Synechocystis sp. PCC 6803 population during overplus uptake [47]. In contrast, polyP in our experiment was distributed homogeneously between all cyanobacterial cells during overplus uptake (Fig. 4a: Phase 3, Fig. 4b: Phase 1). Yet, we are unaware of any polyP distribution study in multicellular or mat-forming cyanobacteria and hence, further mechanisms of interactions, e.g., cell-to-cell communication [49, 50], might also contribute to purposeful differentiation of cells or filaments within a common matrix.In summary, our study shows that the mat-forming Sodalinema stali (1) is capable of luxury uptake, overplus uptake and deficiency response with a heterogenous polyP distribution during polyP recycling, luxury uptake and deficiency response, while (2) dynamically adjusting cellular P content to changing phosphate concentrations. (3) Proliferation is sustained under the expense of polyP, followed by P acquisition from other easily dispensable cellular P-containing compounds under the onset of P stress. (4) Further, biosynthetic allocation changes away from growth towards maintenance with relative polyP accumulation at the expense of P-rich DNA are conducted under severe P stress. Our findings demonstrate the extraordinary capabilities of mat-forming cyanobacteria to adapt their P acquisition strategies to strong P fluctuations. While lasting proliferation under P limitation requires the mobilization of additional P sources through regeneration of P from particulate matter, the transition to net P accumulation under excess ambient P is rapid and effective. Since current projections of climate and land use change include intensified pulses of P load to aquatic ecosystems [50], e.g., through external input from surplus of agriculture fertilizer, inefficient wastewater treatment plants, and internal loads via the mobilization of legacy P, these P ‘bioaccumulators’ could form an important component in P remediation by temporarily accumulating P within the mat, and synthesizing polyP that could ultimately stimulate the formation of mineral P phases to sustainably remove P from the aquatic cycle. More

  • in

    Fine-resolution global maps of root biomass carbon colonized by arbuscular and ectomycorrhizal fungi

    To calculate total root biomass C colonized by AM and EcM fungi, we developed a workflow that combines multiple publicly available datasets to ultimately link fine root stocks to mycorrhizal colonization estimates (Fig. 1). These estimates were individually derived for 881 different spatial units that were constructed by combining 28 different ecoregions, 15 land cover types and six continents. In a given spatial unit, the relationship between the proportion of AM- and EcM-plants aboveground biomass and the proportion of AM- and EcM-associated root biomass depends on the prevalence of distinct growth forms. Therefore, to increase the accuracy of our estimates, calculations were made separately for woody and herbaceous vegetation and combined in the final step and subsequently mapped. Below we detail the specific methodologies we followed within the workflow and the main assumptions and uncertainties associated.Fig. 1Workflow used to create maps of mycorrhizal fine root biomass carbon. The workflow consists of two main steps: (1) Estimation of total fine root stock capable to form mycorrhizal associations with AM and EcM fungi and (2) estimation of the proportion of fine roots colonized by AM and EcM fungi.Full size imageDefinition of spatial unitsAs a basis for mapping mycorrhizal root abundances at a global scale, we defined spatial units based on a coarse division of Bailey’s ecoregions23 After removing regions of permanent ice and water bodies, we included 28 ecoregions defined according to differences in climatic regimes and elevation (deposited at Dryad-Table S1). A map of Bailey’s ecoregions was provided by the Oak Ridge National Laboratory Distributed Active Archive Center24 at 10 arcmin spatial resolution. Due to potential considerable differences in plant species identities, ecoregions that extended across multiple continents were split for each continent. The continent division was based upon the FAO Global Administrative Unit Layers (http://www.fao.org/geonetwork/srv/en/). Finally, each ecoregion-continent combination was further divided according to differences in land cover types using the 2015 Land Cover Initiative map developed by the European Space Agency at 300 m spatial resolution (https://www.esa-landcover-cci.org/). To ensure reliability, non-natural areas (croplands and urban areas), bare areas and water bodies were discarded (Table 1). In summary, a combination of 28 ecoregions, 15 land cover types and six continents were combined to define a total of 881 different spatial units (deposited at Dryad-Table S2). The use of ecoregion/land cover/continent combination provided a much greater resolution than using a traditional biome classification and allowed to account for human-driven transformations of vegetation, the latter based on the land cover data.Table 1 List of land cover categories within the ESA CCI Land Cover dataset, used to assemble maps of mycorrhizal root biomass.Full size tableMycorrhizal fine root stocksTotal root C stocksEstimation of the total root C stock in each of the spatial units was obtained from the harmonized belowground biomass C density maps of Spawn et al.20. These maps are based on continental-to-global scale remote sensing data of aboveground biomass C density and land cover-specific root-to-shoot relationships to generate matching belowground biomass C maps. This product is the best up-to-date estimation of live root stock available. For subsequent steps in our workflow, we distinguished woody and herbaceous belowground biomass C as provided by Spawn et al.20. As the tundra belowground biomass C map was provided without growth form distinction, it was assessed following a slightly different workflow (see Section 2.2.3 for more details). To match the resolution of other input maps in the workflow, all three belowground biomass C maps were scaled up from the original spatial resolution of 10-arc seconds (approximately 300 m at the equator) to 10 arc‐minutes resolution (approximately 18.5 km at the equator) using the mean location of the raster cells as aggregation criterion.As the root biomass C maps do not distinguish between fine and coarse roots and mycorrhizal fungi colonize only the fine fractions of the roots, we considered the fine root fraction to be 88,5% and 14,1% of the total root biomass for herbaceous and woody plants, respectively. These constants represent the mean value of coarse/fine root mass ratios of herbaceous and woody plants provided by the Fine-Root Ecology Database (FRED) (https://roots.ornl.gov/)25 (deposited at Dryad-Table S3). Due to the non-normality of coarse/fine root mass ratios, mean values were obtained from log-transformed data and then back-transformed for inclusion into the workflow.Finally, the belowground biomass C maps consider the whole root system, but mycorrhizal colonization occurs mainly in the upper 30 cm of the soil18. Therefore, we estimated the total fine root stocks in the upper 30 cm by applying the asymptotic equation of vertical root distribution developed by Gale & Grigal26:$$y=1-{beta }^{d}$$where y is the cumulative root fraction from the soil surface to depth d (cm), and β is the fitted coefficient of extension. β values of trees (β = 0.970), shrubs (β = 0.978) and herbs (β = 0.952) were obtained from Jackson et al.27. A mean value was then calculated for trees and shrubs to obtain a woody vegetation β value of 0.974. As a result, we estimated that 54.6% of the total live root of woody vegetation and 77.1% of herbaceous vegetation is stored in the upper 30 cm of the soil. In combination, this allowed deriving fine root C stocks in the upper 30 cm of woody and herbaceous vegetation.The proportion of root stocks colonized by AM and EcMThe proportion of root stock that forms associations with AM or EcM fungi was obtained from the global maps of aboveground biomass distribution of dominant mycorrhizal types published by Soudzilovskaia et al.14. These maps provide the relative abundance of EcM and AM plants based on information about the biomass of grass, shrub and tree vegetation at 10arcmin resolution. To match with belowground root woody plants biomass data, proportions of AM trees and shrubs underlying the maps of Soudzilovskaia et al.14 were summed up to obtain the proportion of AM woody vegetation. The same was done for EcM trees and shrubs.Our calculations are subjected to the main assumption that, within each growth form, the proportion of aboveground biomass associated with AM and EcM fungi reflects the proportional association of AM and EM fungi to belowground biomass. We tested whether root:shoot ratios were significantly different between AM and EcM woody plants (the number of EcM herbaceous plants is extremely small17). Genera were linked to growth form based on the TRY database (https://www.try-db.org/)19 and the mycorrhizal type association based on the FungalRoots database17. Subsequently, it was tested whether root:shoot ratios of genera from the TRY database (https://www.try-db.org/)19 were significantly different for AM vs EcM woody plants. No statistically significant differences (ANOVA-tests p-value = 0.595) were found (Fig. 2).Fig. 2Mean and standar error of root to shoot ratios of AM and EcM woody plant species.Full size imageEstimation of mycorrhizal fine root stocksWe calculated the total biomass C of fine roots that can potentially be colonized by AM or EcM fungi by multiplying the total woody and herbaceous fine root C biomass in the upper 30 cm of the soil by the proportion of AM and EcM of woody and herbaceous vegetation. In the case of tundra vegetation, fine root C stocks were multiplied by the relative abundance of AM and EcM vegetation without distinction of growth forms (for simplicity, this path was not included in Fig. 1, but can be seen in Fig. 3. As tundra vegetation consists mainly of herbs and small shrubs, the distinction between woody and herbaceous vegetation is not essential in this case.Fig. 3Workflow used to create mycorrhizal fine root biomass C maps specific for tundra areas.Full size imageFinally, we obtained the mean value of mycorrhiza growth form fine root C stocks in each of the defined spatial units. These resulted in six independent estimations: AM woody, AM herbaceous, EcM woody, EcM herbaceous, AM tundra and EcM tundra total fine root biomass C (Fig. 4).Fig. 4Fine root biomass stocks capable to form association with AM (a) and EcM (b) fungi for woody, herbaceous and tundra vegetation. Final AM and EcM stock result from the sum of the growth form individual maps. There were no records of fine root biomass of EcM herbaceous vegetation.Full size imageThe intensity of root colonization by mycorrhizal fungiColonization databaseThe FungalRoot database is the largest up-to-date compilation of intensity of root colonization data, providing 36303 species observations for 14870 plant species. Colonization data was filtered to remove occurrences from non-natural conditions (i.e., from plantations, nurseries, greenhouses, pots, etc.) and data collected outside growing seasons. Records without explicit information about habitat naturalness and growing season were maintained as colonization intensity is generally recorded in the growing season of natural habitats. When the intensity of colonization occurrences was expressed in categorical levels, they were converted to percentages following the transformation methods stated in the original publications. Finally, plant species were distinguished between woody and herbaceous species using the publicly available data from TRY (https://www.trydb.org/)19. As a result, 9905 AM colonization observations of 4494 species and 521 EcM colonization observations of 201 species were used for the final calculations (Fig. 5).Fig. 5Number of AM (a) and EcM (b) herbaceous and woody plant species and total observations obtained from FungalRoot database.Full size imageThe use of the mean of mycorrhizal colonization intensity per plant species is based on two main assumptions:

    1)

    The intensity of root colonization is a plant trait: It is known that the intensity of mycorrhizal infections of a given plant species varies under different climatic and soil conditions28,29, plant age30 and the identity of colonizing fungal species31. However, Soudzilovskaia et al.9 showed that under natural growth conditions the intraspecific variation of root mycorrhizal colonization is lower than interspecific variation, and is within the range of variations in other plant eco-physiological traits. Moreover, recent literature reported a positive correlation between root morphological traits and mycorrhizal colonization, with a strong phylogenetic signature of these correlations32,33. These findings provide support for the use of mycorrhizal root colonization of plants grown in natural conditions as a species-specific trait.

    2)

    The percentage of root length or root tips colonized can be translated to the percentage of biomass colonized: intensity of root colonization is generally expressed as the proportion of root length colonized by AM fungi or proportion of root tips colonized by EcM fungi (as EcM infection is restricted to fine root tips). Coupling this data with total root biomass C stocks requires assuming that the proportion of root length or proportion of root tips colonized is equivalent to the proportion of root biomass colonized. While for AM colonization this equivalence can be straightforward, EcM colonization can be more problematic as the number of root tips varies between tree species. However, given that root tips represent the terminal ends of a root network34, the proportion of root tips colonized by EcM fungi can be seen as a measurement of mycorrhizal infection of the root system and translated to biomass independently of the number of root tips of each individual. Yet, it is important to stress that estimations of fine root biomass colonized by AM and EcM as provided in this paper might not be directly comparable.

    sPlot databaseThe sPlotOpen database21 holds information about the relative abundance of vascular plant species in 95104 different vegetation plots spanning 114 countries. In addition, sPlotOpen provides three partially overlapping resampled subset of 50000 plots each that has been geographically and environmentally balanced to cover the highest plant species variability while avoiding rare communities. From these three available subsets, we selected the one that maximizes the number of spatial units that have at least one vegetation plot. We further checked if any empty spatial unit could be filled by including sPlot data from other resampling subsets.Plant species in the selected subset were classified as AM and EcM according to genus-based mycorrhizal types assignments, provided in the FungalRoot database17. Plant species that could not be assigned to any mycorrhizal type were excluded. Facultative AM species were not distinguished from obligated AM species, and all were considered AM species. The relative abundance of species with dual colonization was treated as 50% AM and 50% ECM. Plant species were further classified into woody and herbaceous species using the TRY database.Estimation of the intensity of mycorrhizal colonizationThe percentage of AM and EcM root biomass colonized per plant species was spatially upscaled by inferring the relative abundance of AM and EcM plant species in each plot. For each mycorrhizal-growth form and each vegetation plot, the relative abundance of plant species was determined to include only the plant species for which information on the intensity of root colonization was available. Then, a weighted mean intensity of colonization per mycorrhizal-growth form was calculated according to the relative abundance of the species featuring that mycorrhizal-growth form in the vegetation plot. Lastly, the final intensity of colonization per spatial unit was calculated by taking the mean value of colonization across all plots within that spatial unit. These calculations are based on 38127 vegetation plots that hold colonization information, spanning 384 spatial units.The use of vegetation plots as the main entity to estimate the relative abundance of AM and EcM plant species in each spatial unit assumes that the plant species occurrences and their relative abundances in the selected plots are representative of the total spatial unit. This is likely to be true for spatial units that are represented by a high number of plots. However, in those spatial units where the number of plots is low, certain vegetation types or plant species may be misrepresented. We addressed this issue in our uncertainty analysis. Details are provided in the Quality index maps section.Final calculation and maps assemblyThe fraction of total fine root C stocks that is colonized by AM and EcM fungi was estimated by multiplying fine root C stocks by the mean root colonization intensity in each spatial unit. This calculation was made separately for tundra, woody and herbaceous vegetation.To generate raster maps based on the resulting AM and EcM fine root biomass C data, we first created a 10 arcmin raster map of the spatial units. To do this, we overlaid the raster map of Bailey ecoregions (10 arcmin resolution)24, the raster of ESA CCI land cover data at 300 m resolution aggregated to 10 arcmin using a nearest neighbour approach (https://www.esa-landcover-cci.org/) and the FAO polygon map of continents (http://www.fao.org/geonetwork/srv/en/), rasterized at 10 arcmin. Finally, we assigned to each pixel the corresponding biomass of fine root colonized by mycorrhiza, considering the prevailing spatial unit. Those spatial units that remained empty due to lack of vegetation plots or colonization data were filled with the mean value of the ecoregion x continent combination.Quality index mapsAs our workflow comprises many different data sources and the extracted data acts in distinct hierarchical levels (i.e plant species, plots or spatial unit level), providing a unified uncertainty estimation for our maps is particularly challenging. Estimates of mycorrhizal fine root C stocks are related mainly to belowground biomass C density maps and mycorrhizal aboveground biomass maps, which have associated uncertainties maps provided by the original publications. In contrast, estimates of the intensity of root colonization in each spatial unit have been associated with three main sources of uncertainties:

    1)

    The number of observations in the FungalRoot database. The mean species-level intensity of mycorrhizal colonization in the vegetation plots has been associated with a number of independent observations of root colonization for each plant species. We calculated the mean number of observations of each plant species for each of the vegetation plots and, subsequently the mean number of observations (per plant species) from all vegetation plots in each spatial unit. These spatial unit averaged number of observations ranged from 1 to 14 in AM and from 1 to 26 in EcM. A higher number of observations would indicate that the intraspecific variation in the intensity of colonization is better captured and, therefore, the species-specific colonization estimates are more robust.

    2)

    The relative plant coverage that was associated with colonization data. From the selected vegetation plots, only a certain proportion of plant species could be associated with the intensity of colonization data in FungalRoot database. The relative abundance of the plant species with colonization data was summed up in each vegetation plot. Then, we calculated the average values for each spatial unit. Mean abundance values ranged from 0.3 to 100% in both AM and EcM spatial units. A high number indicates that the dominant plant species of the vegetation plots have colonization data associated and, consequently, the community-averaged intensity of colonization estimates are more robust.

    3)

    The number of vegetation plots in each spatial unit. Each of the spatial units differs in the number of plots used to calculate the mean intensity of colonization, ranging from 1 to 1583 and from 1 to 768 plots in AM and EcM estimations, respectively. A higher number of plots is associated with a better representation of the vegetation variability in the spatial units, although this will ultimately depend on plot size and intrinsic heterogeneity (i.e., a big but homogeneous spatial unit may need fewer vegetation plots for a good representation than a small but very heterogeneous spatial unit).

    We provide independent quality index maps of the spatial unit average of these three sources of uncertainty. These quality index maps can be used to locate areas where our estimates have higher or lower robustness. More

  • in

    City comfort: weaker metabolic response to changes in ambient temperature in urban red squirrels

    Speakman, J. R. The cost of living: Field metabolic rates of small mammals. Adv. Ecol. Res. 30, 177–297 (1999).Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metaboolic theory of ecology. Ecology 85(7), 1771–1789. https://doi.org/10.1890/03-9000 (2004).Article 

    Google Scholar 
    Larivée, M. L., Boutin, S., Speakman, J. R., McAdam, A. G. & Humphries, M. M. Associations between over-winter survival and resting metabolic rate in juvenile North American red squirrels. Funct. Ecol. 24(3), 597–607. https://doi.org/10.1111/j.1365-2435.2009.01680.x (2010).Article 

    Google Scholar 
    Corp, N., Gorman, M. L. & Speakman, J. R. Seasonal variation in the resting metabolic rate of male wood mice Apodemus sylvaticus from two contrasting habitats 15 km apart. J. Comp. Physiol. B 167(3), 229–239. https://doi.org/10.1007/s003600050069 (1997).Article 
    CAS 

    Google Scholar 
    Lehto Hürlimann, M., Martin, J. G. A. & Bize, P. Evidence of phenotypic correlation between exploration activity and resting metabolic rate among populations across an elevation gradient in a small rodent species. Behav. Ecol. Sociobiol. 73(9), 131. https://doi.org/10.1007/s00265-019-2740-6 (2019).Article 

    Google Scholar 
    Reher, S., Rabarison, H., Montero, B. K., Turner, J. M. & Dausmann, K. H. Disparate roost sites drive intraspecific physiological variation in a Malagasy bat. Oecologia 198(1), 35–52. https://doi.org/10.1007/s00442-021-05088-2 (2022).Article 
    ADS 

    Google Scholar 
    McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. https://doi.org/10.1038/s41893-019-0436-6 (2019).Article 

    Google Scholar 
    Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21(4), 186–191. https://doi.org/10.1016/j.tree.2005.11.019 (2006).Article 

    Google Scholar 
    United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects 2018: Highlights. https://population.un.org/wup/Publications/ (2018).Alberti, M. et al. The complexity of urban eco-evolutionary dynamics. Bioscience 70(9), 772–793. https://doi.org/10.1093/biosci/biaa079 (2020).Article 

    Google Scholar 
    Birnie-Gauvin, K., Peiman, K. S., Gallagher, A. J., de Bruijn, R. & Cooke, S. J. Sublethal consequences of urban life for wild vertebrates. Environ. Rev. 24(4), 416–425. https://doi.org/10.1139/er-2016-0029 (2016).Article 

    Google Scholar 
    Diamond, S. E. & Martin, R. A. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. J. Exp. Biol. 224((Suppl_1)), jeb22336. https://doi.org/10.1242/jeb.229336 (2021).Article 

    Google Scholar 
    Grimm, N. B. et al. Global change and the ecology of cities. Science 319(5864), 756–760. https://doi.org/10.1126/science.1150195 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    McDonnell, M. J. & Pickett, S. T. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71(4), 1232–1237. https://doi.org/10.2307/1938259 (1990).Article 

    Google Scholar 
    Francis, R. A. & Chadwick, M. A. What makes a species synurbic?. Appl. Geogr. 32(2), 514–521. https://doi.org/10.1016/j.apgeog.2011.06.013 (2012).Article 

    Google Scholar 
    Luniak, M. Synurbization–adaptation of animal wildlife to urban development. In Proc. 4th Int. Symposium Urban Wildl. Conserv (Tucson, University of Arizona, 2004).Coogan, S. C. P., Raubenheimer, D., Zantis, S. P. & Machovsky-Capuska, G. E. Multidimensional nutritional ecology and urban birds. Ecosphere 9(4), e02177. https://doi.org/10.1002/ecs2.2177 (2018).Article 

    Google Scholar 
    Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. Camb. Philos. Soc. 88(3), 537–549. https://doi.org/10.1111/brv.12012 (2013).Article 

    Google Scholar 
    Łopucki, R., Klich, D., Ścibior, A. & Gołębiowska, D. Hormonal adjustments to urban conditions: Stress hormone levels in urban and rural populations of Apodemus agrarius. Urban Ecosyst. 22(3), 435–442. https://doi.org/10.1007/s11252-019-0832-8 (2019).Article 

    Google Scholar 
    McCleery, R. in Urban mammals in Urban Ecosystem Ecology (eds. Aitkenhead-Peterson, J., Volder, A.) 87–102 (American Society of Agronomy, 2010). https://doi.org/10.2134/agronmonogr55.c52010Uchida, K., Suzuki, K., Shimamoto, T., Yanagawa, H. & Koizumi, I. Seasonal variation of flight initiation distance in Eurasian red squirrels in urban versus rural habitat. J. Zool. 298(3), 225–231. https://doi.org/10.1111/jzo.12306 (2016).Article 

    Google Scholar 
    Kleerekoper, L., van Esch, M. & Salcedo, T. B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recyl. 64, 30–38. https://doi.org/10.1016/j.resconrec.2011.06.004 (2012).Article 

    Google Scholar 
    Pickett, S. T. et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 92(3), 331–362. https://doi.org/10.1016/j.jenvman.2010.08.022 (2011).Article 
    CAS 

    Google Scholar 
    Rizwan, A. M., Dennis, L. Y. & Chunho, L. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20(1), 120–128 (2008).Article 
    CAS 

    Google Scholar 
    Isaksson, C. Urban ecophysiology: Beyond costs, stress and biomarkers. J. Exp. Biol. 223(22), jeb203794. https://doi.org/10.1242/jeb.203794 (2020).Article 

    Google Scholar 
    Miles, L. S., Carlen, E. J., Winchell, K. M. & Johnson, M. T. J. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol. Appl. 14(1), 3–11. https://doi.org/10.1111/eva.13165 (2020).Article 

    Google Scholar 
    Gavett, A. P. & Wakeley, J. S. Blood constituents and their relation to diet in urban and rural house sparrows. Condor 88(3), 279–284. https://doi.org/10.2307/1368873 (1986).Article 

    Google Scholar 
    Murray, M. et al. Greater consumption of protein-poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human-wildlife conflict. Ecography 38(12), 1235–1242. https://doi.org/10.1111/ecog.01128 (2015).Article 

    Google Scholar 
    Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7(1), 5014. https://doi.org/10.1038/s41598-017-04575-y (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Schulte-Hostedde, A. I., Mazal, Z., Jardine, C. M. & Gagnon, J. Enhanced access to anthropogenic food waste is related to hyperglycemia in raccoons (Procyon lotor). Conserv. Physiol. 6(1), coy026. https://doi.org/10.1093/conphys/coy026 (2018).Article 
    CAS 

    Google Scholar 
    Fingland, K., Ward, S. J., Bates, A. J. & Bremner-Harrison, S. A systematic review into the suitability of urban refugia for the Eurasian red squirrel Sciurus vulgaris. Mamm. Rev. 52(1), 26–38. https://doi.org/10.1111/mam.12264 (2021).Article 

    Google Scholar 
    Jokimäki, J., Selonen, V., Lehikoinen, A. & Kaisanlahti-Jokimäki, M.-L. The role of urban habitats in the abundance of red squirrels (Sciurus vulgaris, L.) in Finland. Urban For. Urban Green. 27, 100–108. https://doi.org/10.1016/j.ufug.2017.06.021 (2017).Article 

    Google Scholar 
    Dausmann, K. H., Wein, J., Turner, J. M. & Glos, J. Absence of heterothermy in the European red squirrel (Sciurus vulgaris). Mammal. Biol. 78(5), 332–335. https://doi.org/10.1016/j.mambio.2013.01.004 (2013).Article 

    Google Scholar 
    Turner, J. M., Reher, S., Warnecke, L. & Dausmann, K. H. Eurasian red squirrels show little seasonal variation in metabolism in food-enriched habitat. Physiol. Biochem. Zool. 90(6), 655–662. https://doi.org/10.1086/694847 (2017).Article 

    Google Scholar 
    McNab, B. K. On the comparative ecological and evolutionary significance of total and mass-specific rates of metabolism. Physiol. Biochem. Zool. 72(5), 642–644 (1999).Article 
    CAS 

    Google Scholar 
    Menzies, A. K. et al. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct. Ecol. 34(11), 2292–2301. https://doi.org/10.1111/1365-2435.13640 (2020).Article 

    Google Scholar 
    Wauters, L. & Dhondt, A. Activity budget and foraging behaviour of the red squirrel (Sciurus vulgaris Linnaeus, 1758) in a coniferous habitat. Z. Säugetierkd. 52(6), 341–353 (1987).
    Google Scholar 
    Wauters, L., Swinnen, C. & Dhondt, A. A. Activity budget and foraging behaviour of red squirrels (Sciurus vulgaris) in coniferous and deciduous habitats. J. Zool. 227(1), 71–86. https://doi.org/10.1111/j.1469-7998.1992.tb04345.x (1992).Article 

    Google Scholar 
    Reher, S., Dausmann, K. H., Warnecke, L. & Turner, J. M. Food availability affects habitat use of Eurasian red squirrels (Sciurus vulgaris) in a semi-urban environment. J. Mammal. 97(6), 1543–1554. https://doi.org/10.1093/jmammal/gyw105 (2016).Article 

    Google Scholar 
    Moller, H. Foods and foraging behavior of red (Sciurus vulgaris) and grey (Sciurus carolinensis) squirrels. Mammal. Rev. 13(2–4), 81–98. https://doi.org/10.1111/j.1365-2907.1983.tb00270.x (1983).Article 

    Google Scholar 
    Krauze-Gryz, D. & Gryz, J. in A review of the diet of the red squirrel (Sciurus vulgaris) in different types of habitats in Red squirrels: Ecology, conservation & management in Europe (eds. Shuttleworth, C. M., Lurz, P. W. W., Hayward, M. W.) 39–50 (European Squirrel Initiative, London, 2015)Shuttleworth, C. M. in The effect of supplemental feeding on the red squirrel (Sciurus vulgaris), Doctoral dissertation (University of London, London, 1996).Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. https://doi.org/10.1093/conphys/cox030 (2017).Article 

    Google Scholar 
    Wist, B., Stolter, C. & Dausmann, K. H. Sugar addicted in the city: Impact of urbanisation on food choice and diet composition of the Eurasian red squirrel (Sciurus vulgaris). J. Urban Ecol. 8(1), juac012. https://doi.org/10.1093/jue/juac012 (2022).Article 

    Google Scholar 
    Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proc. Biol. Sci. 278(1724), 3465–3473. https://doi.org/10.1098/rspb.2011.1778 (2011).Article 
    CAS 

    Google Scholar 
    Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18(11), 573–581. https://doi.org/10.1016/j.tree.2003.08.007 (2003).Article 

    Google Scholar 
    Lovegrove, B. G. The influence of climate on the basal metabolic rate of small mammals: A slow-fast metabolic continuum. J. Comp. Physiol. B 173(2), 87–112. https://doi.org/10.1007/s00360-002-0309-5 (2003).Article 
    CAS 

    Google Scholar 
    McNab, B. K. The energetics of endotherms. Ohio J. Sci. 74(6), 370–380 (1974).
    Google Scholar 
    Tattersall, G. J. et al. Coping with thermal challenges: Physiological adaptations to environmental temperatures. Compr. Physiol. 2(3), 2151–2202 (2012).Article 

    Google Scholar 
    Broggi, J. et al. Sources of variation in winter basal metabolic rate in the great tit. Funct. Ecol. 21(3), 528–533. https://doi.org/10.1111/j.1365-2435.2007.01255.x (2007).Article 

    Google Scholar 
    Schlünzen, K. H., Hoffmann, P., Rosenhagen, G. & Riecke, W. Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int. J. Climatol. 30(8), 1121–1136. https://doi.org/10.1002/joc.1968 (2010).Article 

    Google Scholar 
    Reher, S. & Dausmann, K. H. Tropical bats counter heat by combining torpor with adaptive hyperthermia. Proc. R. Soc. B Biol. Sci. 288(1942), 20202059. https://doi.org/10.1098/rspb.2020.2059 (2021).Article 

    Google Scholar 
    Rezende, E. L. & Bacigalupe, L. D. Thermoregulation in endotherms: Physiological principles and ecological consequences. J. Comp. Physiol. B 185(7), 709–727. https://doi.org/10.1007/s00360-015-0909-5 (2015).Article 
    CAS 

    Google Scholar 
    Scholander, P. F., Hock, R., Walters, V., Johnson, F. & Irving, L. Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. 99(2), 237–258. https://doi.org/10.2307/1538741 (1950).Article 
    CAS 

    Google Scholar 
    Terblanche, J. S., Clusella-Trullas, S., Deere, J. A., Van Vuuren, B. J. & Chown, S. L. Directional evolution of the slope of the metabolic rate-temperature relationship is correlated with climate. Physiol. Biochem. Zool. 82(5), 495–503. https://doi.org/10.1086/605361 (2009).Article 

    Google Scholar 
    Gallo, K. P., Easterling, D. R. & Peterson, T. C. The influence of land use/land cover on climatological values of the diurnal temperature range. J. Clim. 9(11), 2941–2944. https://doi.org/10.1175/1520-0442(1996)009%3c2941:TIOLUC%3e2.0.CO;2 (1996).Article 
    ADS 

    Google Scholar 
    Wang, K. et al. Urbanization effect on the diurnal temperature range: Different roles under solar dimming and brightening. J. Clim. 25(3), 1022–1027. https://doi.org/10.1175/jcli-d-10-05030.1 (2012).Article 
    ADS 

    Google Scholar 
    Fristoe, T. S. et al. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals. Proc. Natl. Acad. Sci. USA 112(52), 15934–15939. https://doi.org/10.1073/pnas.1521662112 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Sándor, K. et al. Urban nestlings have reduced number of feathers in Great Tits (Parus major). Ibis 163(4), 1369–1378. https://doi.org/10.1111/ibi.12948 (2021).Article 

    Google Scholar 
    Beliniak, A., Krauze-Gryz, D., Jasińska, K., Jankowska, K. & Gryz, J. Contrast in daily activity patterns of red squirrels inhabiting urban park and urban forest. Hystrix https://doi.org/10.4404/hystrix-00476-2021 (2021).Article 

    Google Scholar 
    Thomas, L. S., Teich, E., Dausmann, K., Reher, S. & Turner, J. M. Degree of urbanisation affects Eurasian red squirrel activity patterns. Hystrix 29(2), 175–180. https://doi.org/10.4404/hystrix-00065-2018 (2018).Article 

    Google Scholar 
    Krauze-Gryz, D., Gryz, J. & Brach, M. Spatial organization, behaviour and feeding habits of red squirrels: Differences between an urban park and an urban forest. J. Zool. 315(1), 69–78. https://doi.org/10.1111/jzo.12905 (2021).Article 

    Google Scholar 
    Jarman, T. E., Gartrell, B. D. & Battley, P. F. Differences in body composition between urban and rural mallards Anas platyrhynchos. J. Urban Ecol. 6(1), juaa011. https://doi.org/10.1093/jue/juaa011 (2020).Article 

    Google Scholar 
    Cruz-Neto, A. P. & Bozinovic, F. The relationship between diet quality and basal metabolic rate in endotherms: Insights from intraspecific analysis. Physiol. Biochem. Zool. 77(6), 877–889 (2004).Article 

    Google Scholar 
    Geluso, K. & Hayes, J. P. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol. Biochem. Zool. 72(2), 189–197 (1999).Article 
    CAS 

    Google Scholar 
    Seebacher, F. Is endothermy an evolutionary by-product?. Trends Ecol. Evol. 35(6), 503–511. https://doi.org/10.1016/j.tree.2020.02.006 (2020).Article 

    Google Scholar 
    Perissinotti, P. P., Antenucci, C. D., Zenuto, R. & Luna, F. Effect of diet quality and soil hardness on metabolic rate in the subterranean rodent Ctenomys talarum. Comp. Biochem. Physiol. Mol. Integr. Physiol. 154(3), 298–307. https://doi.org/10.1016/j.cbpa.2009.05.013 (2009).Article 
    CAS 

    Google Scholar 
    Thorp, C. R., Ram, P. K. & Florant, G. L. Diet alters metabolic rate in the yellow-bellied marmot (Marmota flaviventris) during hibernation. Physiol. Zool. 67(5), 1213–1229. https://doi.org/10.1086/physzool.67.5.30163890 (1994).Article 

    Google Scholar 
    Silva, S. I., Jaksic, F. M. & Bozinovic, F. Interplay between metabolic rate and diet quality in the South American fox Pseudalopex culpaeus. Comp. Biochem. Physiol. Mol Integr. Physiol. 137(1), 33–38. https://doi.org/10.1016/j.cbpb.2003.09.022 (2004).Article 
    CAS 

    Google Scholar 
    Rewkiewicz-Dziarska, A., Wielopolska, A. & Gill, J. Hematological indices of Apodemus agrarius (Pallas, 1771) from different urban environments. Bull. Acad. Polon. Sci. Ser. Sci. Biol. 25(4), 261–268 (1977).CAS 

    Google Scholar 
    Ohrnberger, S. A., Hambly, C., Speakman, J. R. & Valencak, T. G. Limits to sustained energy intake XXXII: Hot again: Dorsal shaving increases energy intake and milk output in golden hamsters (Mesocricetus auratus). J Exp. Biol. https://doi.org/10.1242/jeb.230383 (2020).Article 

    Google Scholar 
    Speakman, J. R. & Król, E. The heat dissipation limit theory and evolution of life histories in endotherms—Time to dispose of the disposable soma theory?. Integr. Comp. Biol. 50(5), 793–807. https://doi.org/10.1093/icb/icq049 (2010).Article 

    Google Scholar 
    Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: Parallel and non-parallel responses to urban heat islands across three cities. Proc. R. Soc. B Biol. Sci. 285(1882), 20180036. https://doi.org/10.1098/rspb.2018.0036 (2018).Article 

    Google Scholar 
    Isaksson, C. & Hahs, A. Urbanization, oxidative stress and inflammation: A question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29(7), 913–923. https://doi.org/10.1111/1365-2435.12477 (2015).Article 

    Google Scholar 
    Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: Implications of global climate change. Clim. Res. 37(2–3), 181–201 (2008).Article 

    Google Scholar 
    Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83(4), 1153–1181 (2003).Article 
    CAS 

    Google Scholar 
    Pereira, M. E., Aines, J. & Scheckter, J. L. Tactics of heterothermy in eastern gray squirrels (Sciurus carolinensis). J. Mammal. 83(2), 467–477 (2002).Article 

    Google Scholar 
    Breuner, C. W., Wingfield, J. C. & Romero, L. M. Diel rhythms of basal and stress-induced corticosterone in a wild, seasonal vertebrate. Gambel’s white-crowned sparrow. J Exp. Zool. 284(3), 334–342. https://doi.org/10.1002/(SICI)1097-010X(19990801)284:3%3c334::AID-JEZ11%3e3.0.CO;2-# (1999).Article 
    CAS 

    Google Scholar 
    Careau, V., Thomas, D., Humphries, M. M. & Réale, D. Energy metabolism and animal personality. Oikos 117(5), 641–653. https://doi.org/10.1111/j.0030-1299.2008.16513.x (2008).Article 

    Google Scholar 
    Fletcher, Q. E. et al. Seasonal stage differences overwhelm environmental and individual factors as determinants of energy expenditure in free-ranging red squirrels. Funct. Ecol. 26(3), 677–687. https://doi.org/10.1111/j.1365-2435.2012.01975.x (2012).Article 

    Google Scholar 
    Barthel, L. & Berger, A. Unexpected gene-flow in urban environments: The example of the European Hedgehog. Animals 10(12), 2315. https://doi.org/10.3390/ani10122315 (2020).Article 

    Google Scholar 
    Fusco, N. A., Carlen, E. J. & Munshi-South, J. Urban landscape genetics: are biologists keeping up with the pace of urbanization?. Current Landsc. Ecol. Rep. 6(2), 35–45. https://doi.org/10.1007/s40823-021-00062-3 (2021).Article 

    Google Scholar 
    Ziege, M. et al. Population genetics of the European rabbit along a rural-to-urban gradient. Sci. Rep. 10(1), 2448. https://doi.org/10.1038/s41598-020-57962-3 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Morash, A. J., Neufeld, C., MacCormack, T. J. & Currie, S. The importance of incorporating natural thermal variation when evaluating physiological performance in wild species. J. Exp. Biol. 221(14), jeb164673. https://doi.org/10.1242/jeb.164673 (2018).Article 

    Google Scholar 
    Pörtner, H.-O., et al. Climate change 2022: Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report (2022).Anderies, J. M., Katti, M. & Shochat, E. Living in the city: Resource availability, predation, and bird population dynamics in urban areas. J. Theor. Biol. 247(1), 36–49. https://doi.org/10.1016/j.jtbi.2007.01.030 (2007).Article 
    ADS 
    MATH 

    Google Scholar 
    Shochat, E. Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106(3), 622–626. https://doi.org/10.1111/j.0030-1299.2004.13159.x (2004).Article 

    Google Scholar 
    Koprowski, J. L. Handling tree squirrels with a safe and efficient restraint. Wildl. Soc. B 30(1), 101–103. https://doi.org/10.2307/3784642 (2002).Article 

    Google Scholar 
    Magris, L. & Gurnell, J. Population ecology of the red squirrel (Sciurus vulgaris) in a fragmented woodland ecosystem on the Island of Jersey Channel Islands. J. Zool. 256(1), 99–112. https://doi.org/10.1017/s0952836902000134 (2002).Article 

    Google Scholar 
    Bethge, J., Wist, B., Stalenberg, E. & Dausmann, K. Seasonal adaptations in energy budgeting in the primate Lepilemur leucopus. J Comp. Physiol. B 187(5–6), 827–834. https://doi.org/10.1007/s00360-017-1082-9 (2017).Article 

    Google Scholar 
    Dausmann, K. H., Glos, J. & Heldmaier, G. Energetics of tropical hibernation. J Comp. Physiol. B 179(3), 345–357. https://doi.org/10.1007/s00360-008-0318-0 (2009).Article 
    CAS 

    Google Scholar 
    Kobbe, S., Nowack, J. & Dausmann, K. H. Torpor is not the only option: Seasonal variations of the thermoneutral zone in a small primate. J. Comp. Physiol. B 184(6), 789–797. https://doi.org/10.1007/s00360-014-0834-z (2014).Article 

    Google Scholar 
    Lighton, J. R. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, 2018).Book 

    Google Scholar 
    Bethge, J., Razafimampiandra, J. C., Wulff, A. & Dausmann, K. H. Sportive lemurs elevate their metabolic rate during challenging seasons and do not enter regular heterothermy. Conserv. Physiol. 9(1), coab075. https://doi.org/10.1093/conphys/coab075 (2021).Article 

    Google Scholar 
    Reher, S., Ehlers, J., Rabarison, H. & Dausmann, K. H. Short and hyperthermic torpor responses in the Malagasy bat Macronycteris commersoni reveal a broader hypometabolic scope in heterotherms. J. Comp. Physiol. B 188(6), 1015–1027. https://doi.org/10.1007/s00360-018-1171-4 (2018).Article 
    CAS 

    Google Scholar 
    Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J Stat. Softw. 40(3), 1–25 (2011).Article 

    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. RStudio. dplyr: A Grammar of Data Manipulation (1.0. 7) (2021).Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14(6), 1–27. https://doi.org/10.18637/jss.v014.i06 (2005).Article 

    Google Scholar 
    Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer Science & Business Media, New York, 2008).Book 
    MATH 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26 (2017).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).Book 
    MATH 

    Google Scholar 
    Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. 8(15), 1–27 (2003).Article 

    Google Scholar 
    Garamszegi, L. Z. et al. Changing philosophies and tools for statistical inferences in behavioral ecology. Behav. Ecol. 20(6), 1363–1375. https://doi.org/10.1093/beheco/arp137 (2009).Article 

    Google Scholar 
    Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65(1), 13–21. https://doi.org/10.1007/s00265-010-1037-6 (2010).Article 

    Google Scholar 
    Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75(5), 1182–1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x (2006).Article 

    Google Scholar 
    Barton, K. & Barton, M. K. MuMIn: Multi-Model Inference. R package version 1.43.17; https://CRAN.R-project.org/package=MuMIn (2020).Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R ( Springer Science & Business Media 2009).Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Soc. Method. Res. 33(2), 261–304 (2004).Article 

    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19(2), 101–108. https://doi.org/10.1016/j.tree.2003.10.013 (2004).Article 

    Google Scholar 
    Lorah, J. Effect size measures for multilevel models: Definition, interpretation, and TIMSS example. Large-scale Assess. Educ. 6(1), 8. https://doi.org/10.1186/s40536-018-0061-2 (2018).Article 

    Google Scholar 
    Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D. & Mermelstein, R. J. A practical guide to calculating cohen’s f2, a measure of local effect size, from PROC MIXED. Front. Psychol. 3, 111–111. https://doi.org/10.3389/fpsyg.2012.00111 (2012).Article 

    Google Scholar 
    Lüdecke, D. sjPlot: Data visualization for statistics in social science. R package version 2.8.5 2020; https://CRAN.R-project.org/package=sjPlot (2020).Nakagawa, S., Johnson, P. C. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14(134), 20170213 (2017).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 85(4), 935–956. https://doi.org/10.1111/j.1469-185X.2010.00141.x (2010).Article 

    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8(11), 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).Article 

    Google Scholar  More

  • in

    Bimodality and alternative equilibria do not help explain long-term patterns in shallow lake chlorophyll-a

    Real-world dataThe dataset consisted of 2986 observations from 902 freshwater shallow lakes in Denmark and North America (data extracted from the LAGOSNE database on 22 February 2022 via R LAGOSNE package version 2.0.2)56 (Supplementary Fig. 9). The Danish lakes were sampled for one or several years from 1984 to 2020 (data extracted in October 2021 from https://odaforalle.au.dk/main.aspx) (Supplementary Fig. 10). Prerequisites for inclusion in the analysis were that lakes had been sampled for physical and chemical variables at least four times or at least three times over the growing season (May to September) for the Danish or North American lakes, respectively, had a mean depth of less than 3 m and were freshwater. Water chemistry samples were analysed using standard methods and data for total phosphorus (TP), total nitrogen (TN) and chlorophyll-a are included here57. The mean and range of TP, TN and chlorophyll-a for the combined sites is given in Table 1, along with the values for each region separately.To gain a longer-term perspective on the relationship between nutrients and chlorophyll-a, we calculated the across-year averages of the summer means of TP, TN and chlorophyll-a, sequentially increasing numbers of years included in the mean up to a total of a five-year mean, at which point there were only 99 lakes left in the dataset. In calculating the multi-year means we allowed a maximum gap of 2 years between observations (i.e. two observations could cover 3 years) to avoid including time series with too many missing years in between. Hence, only lakes with sufficient numbers of sequential data were included, resulting in a large drop in lake numbers as the length of the multi-year mean increased (Table 2).Numerical methodsDiagnostic tests or proxies of alternative equilibriaWe modelled the response of chlorophyll-a to TP and TN using generalised-linear models58 with Gamma distribution and an identity link on untransformed data for single-year and multiple-year means up to 5-year means. We used the Gamma distribution, as chlorophyll fit this significantly better than a normal or log-normal distribution. We used psuedo R2 of the model along with the patterns of residuals, and finally, we plotted the kernel density of the chlorophyll-a values as diagnostics of the presence, absence or prevalence of alternative equilibria in the simulated and real work data.To test how appropriate these diagnostics or proxies of alternative stable states in terms of how well they identify the existence of alternative stable states in randomly sampled multi-year data, we

    1.

    Simulated two scenarios for the main manuscript, with and without alternative stable states in the data, which were as close to the real-life data as possible. The results of these scenarios appear in the main text (please see details below in the “Data Simulation” section).

    2.

    We provide multiple scenarios with different degrees, or prevalence, of alternative stable states in the data, see simulations of alternative stable state scenarios. The results of these scenarios appear in Supplementary note 2.

    Hierarchical bootstrap approachThere are a large number of permutations of data, both real-world and simulated, that can provide a mean of the two to five sequential years from each lake in the time series data. It was vital to have a method that selects the data for analysis that provides a valid and comparable representation of both real work and simulated data and the models’ errors. In order to provide this we used a non-parametric hierarchical bootstrap procedure38. The flowchart shows the data preparation and data analysis steps of the hierarchical bootstrap procedure (Fig. 4). In the first step (step 1 in Fig. 4), all possible longer-term means are calculated for each lake. To keep as much data as possible, we decided to allow for up to 2 years of gap in the data between years. Taking the 5-year mean data as an example, if data from a lake existed for the years 1991 and 1994−1997, a 5-year mean would be calculated for the years 1991, 1994, 1995, 1996 and 1997. However, if the time series would contain a larger gap, e.g. data would only exist for the years 1991 and 1995–1998, no 5-year mean could be calculated. After the selection procedure, all the 2-year, 3-year and 5-year means are transferred into a new table (step 2 in Fig. 4).Fig. 4Data preparation and analysis steps of the hierarchical bootstrap procedure.Full size imageThe procedure is the same for each temporal scale from 2-year means to 5-year means. For the example of 5 mean years, lakes are randomly sampled from the full 5-year mean dataset in step 2 (Fig. 4) with replacement up to the number of lakes as in the original dataset, for the 5-year means 99 (step 3a). Here, the same lake can appear multiple times or not at all. This step is common for every bootstrap procedure59. However, since we have nested data (5-year means within lakes), we need a second step, in which for every resampled lake in step 3a, one 5-year mean is chosen (step 3b in Fig. 4). Then the three GLM models are produced from the randomly selected data in step 3c (Fig. 4). These steps are then repeated 1000 times to get a good representation of the uncertainties of the model. To ensure a fair comparison between single-year data and their equivalent multi-year mean data, we repeated the bootstrap procedure with single years only using only the lakes for which we also calculated multi-year means. To take the five-year mean as an example, there were 99 lakes where we could calculate at least one 5-year mean observation. First, we ran the bootstrap procedure to calculate 5-year mean values of TP, TN and chlorophyll-a (1000 times) and then took single years’ values of TP, TN and chlorophyll-a (1000 times) from exactly the same 99 lakes. With this approach, exactly the same datasets with the same lakes and observations within lakes are used for the calculation of the multi-year means and their single-year counterparts, making for a robust analysis. The GLM models did not always converge. If either the TP, TN or TP*TN model with interaction did not converge, the iteration was not used in further analysis. The number of converging models equal for each iteration of random samples is given in the results.The described hierarchical approach is the best way to reflect the structure of the original data. A simple, non-hierarchical bootstrap would favour lakes with more five-year means over lakes with fewer five-year means, simply because these make up a larger part of the data. Furthermore, sampling without replacement at the lake level would result in five-year means from lakes with few data dominating the produced random dataset, as every lake would be sampled every time, which then would result in high model leverage of 5-year means from lakes with less data. In contrast, the hierarchical procedure ensures that every lake has the same chance to end up in the randomly sampled bootstrap, in the second step, it ensures that of each sampled lake, every 5-year mean has the same chance to end up in the random dataset. These notions are in agreement with the findings of an assessment on how to properly resample hierarchical data by non-parametric bootstrap38.Data simulationGeneral approach of simulation assumptions and proceduresWe generated random scatter for the generalised-linear model based on Gamma distributions for two different “populations” of lakes with two different intercepts and slopes. At first, we calculated the linear equations for the two populations:For each population i and j, 99 samples (equalling the number of lakes in real-life data with 5-year means, nlake) were generated with a specific number of data points depending on the scenario (nyear) each, hence nlake = 1−99 for each population of lakes, e.g. with 20 years (nyear = 20) each.We found the real nutrient data to be normally distributed, with total nitrogen (TN) having a range between 0.33 and 4.93 mg/L and a constant coefficient of variation (CV, with a mean CV of 0.35) across this range (the same is true for total phosphorus (TP) at a shorter range). Hence, for each nlake, the x for the nyear = 20 were generated based on the mean range (mean per lake of the real-life data) and CV (0.35) from the real-life TN concentration data, hence with a range of 0.33 to 4.33 mg/L. Therefore the values and random variability of x in the simulations are close to the true values of the TN concentrations. The x is then fed into the linear equations above.To the resulting yi and yj we added random noise based on the Gamma distribution (using the rgamma function in R). We used a Gamma distribution because the Chlorophyll-a concentration also follows a Gamma distribution. The variability of a Gamma distribution is expressed by the shape variable. The variability of chlorophyll-a, its shape value, equals 2.63. This shape value was used in the Gamma distribution of yi and yj. The final calculated yi and yj had therefore a random rate calculated as shape/yi or shape/yj. Hence, their variability in the y dimension was close to the true chlorophyll-a variability.The data from both lake populations were then pooled and randomly sampled using the same hierarchical bootstrap procedure with 500 iterations for the scenarios in the supplementary materials and with 1000 iterations for main text simulation scenarios, which is identical to what was done for the real-world data.Simulation scenarios based on characteristics of real-world dataThe real-world 5-year mean data consisted of 99 lakes with 5–20 years of data for each lake. For the simulation scenario in the main text, we therefore randomly sampled between 5 and 20 data points for each of the 99 simulated lakes based on the x distribution described above. Intercepts and slopes of the simulation, resembled the range of the true data (see scatter plots in Fig. 2 of the main manuscript).In the alternative stable state scenario, we chose two slopes and intercepts for different populations of lakes:

    Population i: ai = 0, bi = 40

    Population j: aj = 50, bj = 120

    We based the slopes and intercepts of the ASS scenarios on the diagnostic combination defined by Scheffer and Carpenter7 which propose an abrupt shift in (a) the time series, (b) the multimodal distribution of states and (c) the dual relationship to a controlling factor. Here, the idea is that an ecosystem will jump from one state to the next at the same (nutrient) conditions (different intercept and/or slope, condition a within ref. 7), where any change in the nutrient will have different effects on algae or macrophytes (best represented by different slope, condition c), resulting in a multimodal distribution of the response (condition b). Hence, simulations are in line with what is predicted for ASS, but we took great lengths to also show other possibilities with the simulations in the Supplementary information to ensure we did not overlook any occasional occurrence of alternative equilibria.Here, the appearance of alternative stable states in the data could happen at any point in the time series of a single lake, or the entire time series could include only one of the two alternative stable states. To accommodate these alternative stable state constellations (for each of which we made a separate simulation scenario, (see Supplementary Note 2, “Simulations of alternative stable state constellations”), we forced the alternative stable state scenario to be constructed of 1/3 of data with one state, 1/3 of data with the second state and 1/3 of data where both alternative states could occur. In the latter case, the alternative stable state appeared after the first 20% but before the last 20% of the time series. Since the variability and range of x (nutrient) and y (chlorophyll -a response) is simulated as close as possible to the real-world data in all scenarios, the measures taken here (variable time series and combination of different alternative stable state scenario constellations) produce a simulation as close to the real-world data as possible. Specifically, we found the real-world nutrient data to be normally distributed, with total nitrogen (TN) having a range between 0.33 and 4.93 mg/L and a constant coefficient of variation (CV, with a mean CV of 0.35) across this range (the same is true for total phosphorus (TP) at a shorter range). Hence, for each simulated lake, the x were generated based on this mean range and CV. Furthermore, the resulting yi and yj were randomised by using a Gamma distribution (using the rgamma function in R). We used a Gamma distribution because the chlorophyll-a concentration also follows a Gamma distribution. The variability of a Gamma distribution is expressed by the shape variable. The variability of chlorophyll-a, its shape value, equals 2.63. This shape value was used in the Gamma distribution of yi and y. The final calculated yi and yj had, therefore a random rate calculated as shape/yi or shape/y. Hence, their variability in the y dimension was close to the true chlorophyll-a variability.For the scenario without alternative stable states, both populations of data had the same intercept and slope:

    Population i: ai = 0, bi = 40

    Population j: aj = 0, bj = 40.

    Please see Supplementary Note 2 for further simulations of different potential constellations of alternative states. There we show that our approach finds alternative stable states in response to nutrient concentration, even if they appear in time series from different lakes.Assessment of diagnostic tests or proxies of alternative equilibriaWe modelled the response of chlorophyll-a to TP and TN using generalised-linear models3 with Gamma distribution and an identity link on untransformed data for single-year and multiple-year means up to 5-year means. We used the Gamma distribution, as chlorophyll fit this significantly better than a normal or log-normal distribution. We used R2 of the model along with the patterns of residuals, and finally, we plotted the kernel density of the chlorophyll-a values as diagnostics of the presence, absence or prevalence of alternative equilibria in the simulated and real work data.The comparison of how the diagnostics/proxies of alternative stable states respond to the variation in the prevalence of alternative equilibria in the simulated datasets provides a robust assessment of their ability to identify both the presence and absence of alternative equilibria. It is the response of these diagnostic tests over time, with the increase in the temporal perspective as more years are added to the mean values of TP, TN and chlorophyll-a, that are key to the identification of the presence and or absence of alternative equilibria in a given dataset. The simulations show that a dataset which contains alternative equilibria will show (1) no improvement in R2 as the temporal perspective of the data increases (more years in the multi-year mean); (2) an increased bimodality in the residuals of the models of nutrients predicting chlorophyll-a will increase as more years are added to the multi-year mean and (3) the kernel density function of chlorophyll-a will display increasingly bimodality as more years are added to the mean. In the absence of alternative equilibria, the patterns differ with an R2, and increase in unimodality of residuals and a consistent unimodal pattern in the kernel density function. Thus, the diagnostic tests provide a robust test of both the presence and absence of alternative equilibria in a given dataset.Alternative stable state assessment for real data with limited data rangeIt could be the case that alternative stable states do not appear in the full dataset but only in a limited TN and TP concentration range. We filtered and re-analyzed the data, only keeping data points within the following two ranges: – TN concentration = 0.5−2 mg/L–TP concentration = 0.05−0.4 mg/L. In the filtered data, 1329 out of the original 2876 single-year data points, 289 out of 1028 3-year mean data points and 212 out of the 864 five-mean year data points remained. The filtered data consisted of data points from 550, 48 and 27 lakes for the single-year data, 3-year means and 5-year means, respectively. The smaller range resulted in lower R² of the models, yet the pattern that multi-year means result in higher R² compared to single-year data was largely consistent, apart from the 5-year mean TN models for which both, the single-year and mean data resulted in very low R² (Supplementary Fig. 6). Furthermore, due to the lower number of samples, the errors of all proxies are higher, making conclusions more difficult than for the full data. Still, we do not see any clear indication of alternative stable states in the scatter plots (two groups of dots are not appearing (Supplementary Fig. 5), the Kernel density plots (or model residuals (Supplementary Fig. 6)). i.e. no signs of bimodality in residuals or Kernel density plots. Please see details on this analysis in the supplementary material.Details and the R code for the steps for the random multi-year sampling can be found in the supplementary materials.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Diversity enables the jump towards cooperation for the Traveler’s Dilemma

    Game theory is a framework for analysing the outcome of the strategic interaction between decision makers1. The fundamental concept is that of a Nash equilibrium where no player can improve her payoff by a unilateral strategy change. Typically, the Nash equilibrium is considered to be the optimal outcome of a game, however in social dilemmas the individual optimal outcome is at odds with the collective optimal outcome2. This means that one player can improve her payoff at the expense of the other by unilaterally deviating, but if both deviate, they end up with lower payoffs. In this type of games, the mutually beneficial, but non-Nash equilibrium strategy is called cooperation. However, in this context cooperation should not be interpreted as an interest in the welfare of others, as players only aim to secure a high payoff for themselves.In this framework, payoff maximisation is considered to be rational, but when such rational players then seize every opportunity to gain at the opponent’s expense, they may counterintuitively both end up with low payoffs. A game that clearly exhibits this contradiction is the Traveler’s Dilemma. Since its formulation in 1994 by the economist Kaushik Basu3, the game has become one of the most studied in the economics literature. Additionally, it has been discussed in theoretical biology in the context of evolutionary game theory.In general, the dilemma relies on the individuals’ incentive to undercut the opponent. To be more specific, players are motivated to claim a lower value than their opponent to reach a higher payoff at the opponent’s expense. Such incentive leads players to a systematic mutual undercutting until the lowest possible payoff is reached, which is the unique Nash equilibrium. It seems paradoxical that players defined as rational in a game theoretical sense end up with such a poor outcome. Therefore, the question that naturally arises is how can this poor outcome be prevented and how cooperation can be achieved.To address these questions, it can be helpful to better understand price wars, which consist in the mutual undercutting of prices to gain market share. In addition, it can provide information about human behaviour, because economic experiments have shown that individuals prefer to choose the cooperative high payoff action, instead of the Nash equilibrium4.Our analysis focuses on showing that the Traveler’s Dilemma can be decomposed into a local and a global game. If the payoff optimisation is constrained to the local game, then players will inevitably end up in the Nash equilibrium. However, if players escape the local maximisation and optimise their payoff for the global game, they can reach the cooperative high payoff equilibrium.Here, we show that the cooperative equilibrium can be reached in a game like the Traveler’s Dilemma due to diversity, which we define as the presence of suboptimal strategies. The appearance of strategies far from those of the residents allows for the local maximisation process to be escaped, such that an optimisation at a global level takes place. Overall this can lead to cooperation because by considering “suboptimal strategies” that play against each other it is possible to reach higher payoffs, both collectively and individually.GameThe Traveler’s Dilemma is a two-player game. Player i has to choose a claim, (n_i), from the action space, consisting of all integers on the interval [L, U], where (0 le L < U). The payoffs are determined as follows: If both players, i and j, choose the same value ((n_i = n_j)), both get paid that value. There is a reward parameter (R >1), such that if (n_i < n_j), then i receives (n_i + R) and j gets (n_i- R) Thus, the payoff of player i playing against player j is$$begin{aligned} pi _{ij} = {left{ begin{array}{ll} n_i& text { if } n_i = n_j\ n_i + R& text { if } n_i < n_j\ n_j - R& text { if } n_i > n_j end{array}right. } end{aligned}$$
    (1)
    Thus, a player is better off by choosing a slightly lower value than the opponent: when j plays (n_j), then it is best for i to play (n_j-1). The iteration of this reasoning, which we will call the stairway to hell, leads to the only Nash equilibrium of the game, ({L,L}), where both players choose the lowest possible claim. The classical game theory method to arrive to this equilibrium is called iterative elimination of dominated strategies5.The game can be visualised through its payoff matrix (Fig. 1). For simplicity, we use the values from the original formulation: (L=2), (U=100) and (R=2). The payoff matrix shows that the Traveler’s Dilemma can be decomposed into a local and a global game. Let us begin with the local game. When the action space of the game is reduced to two adjacent actions n and (n+1) (black boxes in Fig. 1), the Traveler’s Dilemma with (R=2) is equivalent to the Prisoner’s Dilemma6. In general, for any value of R, the Traveler’s Dilemma becomes a Prisoner’s Dilemma for any pair of actions n and (n+s), where ( 1 le s le R-1 ). For example, for (R=4) the pair of actions n and (n+1), n and (n+2), n and (n+3) follow the same game structure as the Prisoner’s Dilemma. Therefore, the Traveler’s Dilemma consists of many embedded Prisoners’ Dilemmas. This means that at a local level the game is a Prisoner’s Dilemma.If we now consider actions that are distant from each other in the action space, e.g. 2 and 100, we can observe a coordination game structure (gray boxes in Fig. 1), where ({100,100}) is payoff and risk dominant7,8. In general, any pair of actions n and (n+s), where ( R le s le U-n), construct a coordination game. As a result, the Traveler’s Dilemma becomes a coordination game at a global level, which has different equilibria than the local game.Figure 1Payoff matrix of the Traveler’s Dilemma. Visualisation of the payoff scheme described by Eq. (1). For simplicity, the action space is ( {n_i in {mathbb {N}} mid 2 le n_i le 100}) and the reward parameter is (R=2). The Traveler’s Dilemma can be decomposed into a local and a global game. At a local level the game is a Prisoner’s Dilemma (black boxes). This happens when the action space is reduced to any pair of actions n and (n+s), where ( 1 le s le R-1 ). While at the global level, we can observe a coordination game (gray boxes). This level is defined as any pair of actions n and (n+s), where ( R le s le U-n).Full size imageParadoxSocial dilemmas appear paradoxical in the sense that self-interested competing players, when rationally playing the Nash equilibrium, end up with a payoff that clearly goes against their self-interest. But with the Traveler’s Dilemma, the paradox goes further, as suggested in its original formulation3. Classical game theory proposes ({L,L}) as the Nash equilibrium of the game. However, it seems unlikely and implausible that, with R being moderately low, say (R=2), for individuals to play the Nash equilibrium. This has been confirmed in economic experiments where individuals rather choose values close to the upper bound of the interval. Such experiments have also shown that the chosen value depends on the reward parameter (R), where an increasing value of R shifts players’ decision towards ({L,L})4. Nonetheless, classical game theory states that the Nash equilibrium of the game is independent of R.Consequently, the aim of this paper is to seek and explore simple mechanisms through which the apparent non-rational cooperative behaviour can come about. We also examine the effect of the reward parameter on the game’s outcome. Given that the Traveler’s Dilemma paradox emerges in the classical game theory framework, we analyse the game using evolutionary game theory tools5,9,10. This dynamical approach allows us to explore adaptive behaviour outside of the stationary classical game theory framework. To be more precise, for this approach individuals dynamically adjust their actions according to their payoffs.The key point of course is to understand how the system can converge to high claims. We show that this behaviour is possible because the Traveler’s Dilemma can be decomposed into a local and a global game. If the payoff maximisation is constrained to the local level, then the stairway to hell leads the system to the Nash equilibrium; given that locally the game is a Prisoner’s Dilemma. On the other hand, at a global level the game follows a coordination game structure, where the high claim actions are payoff dominant. Thus, for the system to reach a high claim equilibrium the maximisation process needs to jump from the local to the global level.Our analysis led us to identify the mechanism of diversity as responsible for enabling this jump and preventing players from going down the stairway to hell. This mechanism works on the idea that to reach a high claim equilibrium, players have to benefit from playing a high claim. For a population setting, it means that players need to have the chance to encounter opponents also playing high. From a learning model point of view, it refers to the belief that the opponent will also play high, at least with a certain probability. If the belief is shared by both players, they should both play high and reach the cooperative equilibrium. Here, we explore these two types of models to unveil the mechanism leading to cooperation.Population based models unveil diversity as the cooperative mechanism via the effect of mutations on the game’s outcome. This is shown for the replicator-mutator equation and the Wright–Fisher model. Similarly, a two-player learning model approach, more in line with human reasoning, shows that if players are free to adopt a higher payoff action from a diverse action set during their introspection process, they can reach the cooperative equilibrium. This result is obtained using introspection dynamics.Finally, we explain how diversity is the underlying mechanism that enables the convergence to high claims in previously proposed models. To be more precise, we show that diversity is required because it allows for the maximisation process to jump from the local to the global level. More

  • in

    COP15: escalating tourism threatens park conservation

    At December’s United Nations Convention on Biological Diversity summit (COP15), an insidious threat emerged to national parks — even as scientists argued for expanding protected areas. The World Travel & Tourism Council wants commercial tourism to be allowed to build developments in national parks globally, without obligation to help finance park conservation (see go.nature.com/3x2fsi9). This would undermine existing private tourism developments that do support conservation.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Scientists petition UCLA to reverse ecologist’s suspension

    The University of California, Los Angeles, suspended ecologist Priyanga Amarasekare without salary or benefits for one year, and will cut her salary by 20% for two more years.Credit: Al Seib/Los Angeles Times via Getty

    In April of last year, the Ecological Society of America awarded Priyanga Amarasekare one of the highest honours in the field of ecology: the Robert H. MacArthur Award. A little over two months later, the University of California, Los Angeles (UCLA), placed Amarasekare on a one-year suspension without pay or benefits, and forbid her from accessing her laboratory, maintaining her insect colonies, managing her grants or contacting students. Now scientists from around the world, who call Amarasekare a “highly distinguished ecologist”, “a committed teacher and outstanding mentor” and a “tireless advocate for under-represented groups”, are calling for her reinstatement.
    Scientists question Max Planck Society’s treatment of women leaders
    The precise allegations that led to her suspension are unknown. UCLA has declined to release them, and barred Amarasekare from discussing the matter publicly. But long-standing tensions between Amarasekare and the university are no secret. A native of Sri Lanka and one of two women of colour who have tenure in the ecology and evolution department, she has previously accused the university of discrimination for repeatedly denying her promotions that were granted to colleagues. Former students and faculty members who are familiar with the situation think that Amarasekare’s suspension was retaliation for speaking out.Some 315 scientists raised concerns about her suspension in a petition that was delivered to the university on 23 January, arguing that Amarasekare “has long been denied significant advancement within her department, out of keeping with her contributions to the field”. Moreover, the sanctions levied against Amarasekare — including the one-year suspension and 20% salary reduction for an additional two years — represent “the kind of punishment normally applied only to the most egregious wrongdoings”, including scientific misconduct and sexual harassment violations, the petitioners write.In the absence of compelling evidence to the contrary, the scientists ask that UCLA rescind the disciplinary actions and fully compensate Amarasekare.Officials with UCLA say that the university “supports freedom of expression and does not condone retaliation of any sort”. They declined to discuss the accusations against or in support of Amarasekare, saying the university is “bound to respect the privacy of the numerous individuals involved in this matter”. Amarasekare also declined to comment.A confusing decisionColleagues told Nature that Amarasekare is the rare ecologist whose research spans the theoretical, computational and experimental realms. One project in her laboratory that touches on all of these areas focuses on the impact of climate change on insect communities. “She’s really several years ahead of everybody else,” says Andy Dobson, an ecologist at Princeton University in New Jersey who led the petition. Dobson has written letters to support Amarasekare’s various applications for promotion at UCLA and says he has been baffled by the university’s decisions. “She complained, and most of what’s happened seems to be a reaction against that,” he says.
    Legal win for US scientist bolsters others caught in China crackdown
    Nature spoke to several former students and faculty members who defended Amarasekare in administrative hearings in September 2021. Although none knew the specific details of the charges against her, they all thought she had been targeted for speaking out against what she saw as discrimination within the department. In particular, they said Amarasekare vented about her own experience at UCLA on a departmental e-mail listserve created to discuss issues of racism and discrimination in the aftermath of the killing of George Floyd, whose death in May 2020 sparked national protests.“That’s why she got into trouble. She ended up criticizing pretty much the entire department — with good reason,” says Marcel Vaz, an ecologist at Wilkes University in Wilkes-Barre, Pennsylvania, who was a graduate student in the department at the time. He and other students came forward to support her. “We demanded some explanation,” Vaz says, “but we never got any feedback.”Peter Kareiva, a former UCLA faculty member who spoke on Amarasekare’s behalf during the administrative proceedings, calls her a brilliant scientist as well as a terrific teacher and student mentor. Kareiva witnessed Amarasekare raise uncomfortable issues and challenge internal policies in faculty meetings. He says she might have made mistakes in terms of “facilitating harmony” among fellow faculty members, but that her goal was always to improve the department.
    How a scandal in spider biology upended researchers’ lives
    “I am still incredulous by the punishment levied,” says Kareiva, who now serves as president of the Aquarium of the Pacific in Long Beach, California.It is unclear what happens next, but scientists and former students and faculty members contacted by Nature are concerned about the impact on Amarasekare’s current students, the disruption of federally funded research and the potentially irretrievable loss of time-sensitive experiments that could provide insights regarding the ecological impacts of climate change.As the recipient of the MacArthur award, Amarasekare is expected to discuss this research when she delivers her keynote address at the Ecological Society of America’s annual meeting in Portland, Oregon, in August. More

  • in

    Pulsed, continuous or somewhere in between? Resource dynamics matter in the optimisation of microbial communities

    There is a growing impetus to leverage our fundamental understanding of microbial community assembly towards applied problems. With microbes contributing to diverse physiological, biogeochemical, and agricultural processes, the potential to control and optimise microbial communities holds promise for interventions ranging from industrial and environmental remediation to human medicine and biofuel production [1, 2]. Realising this goal is contingent on high fidelity between theory, experiments, and the natural dynamics of target systems.Theoretical and experimental research in microbial community optimisation has largely proceeded along two parallel paths. Theoretical approaches leverage mathematical models and metabolic networks to predict which species combinations are stable and how they can optimise a given function (e.g., maximum biomass, waste degradation or host health) [3,4,5,6,7]. Experimental studies often take a combinatorial approach, iteratively assembling different species combinations in vitro and evaluating their stability and functional attributes [8,9,10,11]. Both theory and experiments are valuable but they are also susceptible to their own modus operandi that may limit their correspondence and their translation to real-world systems. On the one hand, theoretical approaches typically adopt the analytical tractability of steady state dynamics, where microbial consumers and the resources on which they depend are assumed to establish a stable equilibrium. On the other hand, experimental approaches almost exclusively embrace the high-throughput efficiency of serial-batch culture, where consumers and resources are made to fluctuate over several orders of magnitude with each serial passage. This raises an important question: should we expect unity in the composition of optimised communities emerging under continuous resource supply (e.g., chemostat) versus the discrete pulsed resource supply of, for example, serial-batch culture?To explore how microbial community composition varies under contrasting resource supply dynamics, we performed simulations of a classical resource-competition model:$$frac{{dN_i}}{{dt}} = N_ileft( {mathop {sum}limits_{j = 1}^n {mu _{ij}left( {R_j} right) – m} } right)$$
    (1)
    $$frac{{dR_j}}{{dt}} = {Psi}_jleft( {R_j} right) – mathop {sum }limits_{i = 1}^n Q_{ij}mu _{ij}left( {R_j} right)N_i,$$
    (2)
    where Ni is the population density of consumer i, Rj is the concentration of resource j, μij(Rj) is the per capita functional response of consumer i, m is the per capita mortality rate due to dilution, Ψj(Rj) is the resource supply function, and Qij is the resource quota of consumer i on resource j (amount of resource per unit consumer). The consumer functional response is given by the Monod function, (mu _{ij}(R_j) = mu _{max_{ij}}frac{{R_j}}{{K_{s_{ij}} + R_j}}) , where (mu _{max_{ij}}) is the maximum growth rate and (K_{s_{ij}}) is the half saturation constant for consumer i on resource j.To set up the simulations, we randomly sampled the parameters of the Monod growth functions, (μmax and Ks) for five species competing for five substitutable resources (essential resources are treated separately in the supplementary information, with similar findings). In one set of parametrisations (n = 100 unique competitor combinations) we used both random μmax and Ks, and in another set (n = 100) we imposed a trade-off in maximum growth rate and substrate affinity (( {frac{{mu _{max}}}{{K_s}}} )) (Fig. 1a). The rationale for imposing a trade-off is that metabolic theory predicts that organisms that invest energy into a high maximum growth rate will have lower substrate affinities and vice versa [12, 13]. To ensure reasonable growth rates relative to the time-scale of resource pulsing, we sampled μmax such that minimum doubling times spanned from 21 to 52 min (when all resources are non-limiting). For each of the random competitor combinations, we simulated resources under continuous or pulsed resource supply with resource replenishment every 1/2, 1, 2, 4, 12, or 24 h. Under pulsed resource supply, Ψj(Rj) and m are removed from Eq. (1) and (2) and replaced by discontinuous resource pulsing and cell transfer at fixed intervals. The total resource flux (and mortality) was held constant under all frequencies of resource supply i.e., less frequent replenishment corresponds to larger resource pulses (see Supplementary Information for full model/simulation specifications).Fig. 1: Quantifying compositional overlap between communities assembled under continuous vs. pulsed resource supply.a Per capita growth responses (Monod functions) from a single iteration of the model assuming a trade-off between maximum growth rate and resource affinity (colours correspond to individual consumers). b Time series of consumers in a under different resource supply regimes. Numbers above individual panels reflect pulsing intervals in hours. The amplitude of population fluctuations increases with longer intervals between pulses, with distinct phases of growth, saturation, and instantaneous mortality visible at a finer temporal resolution (Fig. S10). c Example measure of compositional overlap (Jaccard similarity index) between communities assembled under continuous resource supply (far left panel in b) vs. pulsing every two hours (centre panel in b).Full size imageAfter allowing the competitors to reach a steady state (time-averaged over 24 h under pulsed treatments), we quantified the correspondence between the continuous supply treatment and the pulsed treatments using the Jaccard similarity index, (Jleft( {A,B} right) = frac{{left| {A cap B} right|}}{{left| {A cup B} right|}}) (0 ≤ J(A,B) ≤ 1), where the numerator gives the number of species (max = 5) that persist under continuous (A) and pulsed (B) resource supply, and the denominator gives the number of species (max = 5) that persist under continuous or pulsed resource supply (Fig. 1b, c).Under both sets of simulations (with and without enforcing a trade-off between maximal growth rate and resource affinity), we observe that the similarity in final community composition between continuous and pulsed resource supply decays with increasingly large intervals between resource replenishment (Fig. 2a). When no trade-off is imposed between maximum growth rate and resource affinity (orange line in Fig. 2a) the mean compositional similarity is only 0.68 when resources are pulsed every 2 h and down to 0.41 when resources are pulsed every 24 h (typical of serial-batch culture). The rate of decay in the Jaccard index is more severe when a trade-off is imposed between maximum growth rate and substrate affinity, to the extent that once pulsing intervals reach four hours there is almost zero overlap in community composition (blue line in Fig. 2a).Fig. 2: Impact of resource supply regime on community composition and abundance weighted mean trait values.a Compositional overlap (Jaccard similarity) between communities under continuous versus pulsed resource supply. Orange lines, points and circles denote model parametrisations with random sampling of both μmax and Ks; blue lines, points and circles denote model parametrisations with a trade-off imposed between μmax and resource affinity (( {frac{{mu _{max}}}{{K_s}}} )). Simulation parameters provided in the Supplementary Information. b Mean trait values for affinity and μmax averaged for each consumer across the five resources and weighted by their final abundance at the end of a simulation (cont. = continuous). In both a and b, small points (jittered for clarity) give the result of an individual simulation; large circles indicate the corresponding mean.Full size imageEcological theory provides an intuitive explanation for these observations. When resources are more continuously supplied, the better competitor is the one that can sustain a positive growth rate at the lowest concentrations of a limiting resource (i.e., has a higher resource affinity or lower R* in the language of resource competition theory [14]). In contrast, under increasingly pulsed resource supply, the better competitor is the one that can grow rapidly at higher resource concentrations. Having a high resource affinity (low R*) is of little benefit if resource concentrations fluctuate over large amplitudes because it only confers an ephemeral competitive advantage in the brief period before the resource is completely depleted (ahead of the next resource pulse). Instead, a high maximum growth rate is optimal because it allows the consumer to grow rapidly and quickly deplete a shared limiting resource. This high maximum growth strategy is, however, sub-optimal under continuous resource supply because a low R* strategist can draw the resource down and hold it at a concentration at which the maximum growth strategist is unable to maintain a positive growth rate.Looking at the mean trait values for resource affinity and μmax weighted by each consumer’s final abundance, it is indeed apparent that consumers with a higher affinity (averaged across the five resources) are favoured under continuous resource supply, while consumers with high maximum growth rates are favoured under pulsing intervals of increasing length (Fig. 2b). Enforcing this trade-off, therefore, leads to the rapid decline in compositional similarity we observe under resource pulsing. Notably, it also leads to a richness peak at intermediate pulsing intervals, where these alternative strategies have a higher probability of coexisting [15] (Fig. S1). At the same time, we still observe a decline in compositional similarity when μmax and Ks are randomly sampled independently of each other simply because the trade-off between maximum growth and resource affinity will emerge occasionally by chance. Two experimental tests of microbial community composition under continuous versus pulsed resource supply are consistent with these observations [16, 17].To evaluate the sensitivity of these observations to different assumptions, we ran additional simulations under various alternative model parameterisations and formulations. In brief, comparable trends to those described above are observed when: i) maximum growth rates are faster or slower than those presented in the main text (Figs. S2, S3); ii) all resources are assumed to be essential to growth (following Liebig’s law of the minimum) (Fig. S4); iii) a weaker trade-off is imposed between maximum growth and affinity (Figs. S5, S6); or iv) mortality is continuous rather than intermittent (Figs. S7, S8). We also investigated the relationship between observed compositional overlap and the dynamical stability under continuous resource supply, anticipating that more stable communities would tend to be more resistant to compositional shifts under resource pulsing. The reality appears more nuanced, namely that weaker dynamical stability at the limit of constant resource supply is associated with higher variance in compositional overlap under continuous vs. pulsed conditions (Fig. S9). In other words, systems with weaker stability are less predictable. A wide range of other microbial traits and trade-offs may interact unpredictably with the relationship between resource supply and community composition. The potential modulating role of system instabilities generated by cross-feeding interactions, non-convex trade-off functions, and the evolution of specialist versus generalist strategies present several especially valuable lines of enquiry [18,19,20].Although these observations are germane to any consumer-resource system, our emphasis here is on the emerging field of microbial community optimisation, where the practical implications are especially timely and important; namely, the resource supply regime must be tailored to the community being optimised. For example, wastewater treatment might be more appropriately modelled under continuous resource supply [21], whereas fermented food and beverage production may be more closely allied to the pulsed resource dynamics observed in batch culture [22]. Resource supply might also be manipulated to favourably modify the competitive hierarchy in an existing community (e.g., by regulating the rate of nutrient supply to the gut through meal timing). Indeed, there is emerging evidence that feeding frequency can drive significant changes in gut microbiota composition [23, 24]. Thus, resource supply dynamics should be considered both a constraint in the design of novel microbial communities and as a tuning mechanism for the optimisation of preexisting communities like those found in the human gut. More