1.
Pantoja-Hernández, L. & Martínez-García, J. C. Retroactivity in the context of modularly structured biomolecular systems. Front. Bioeng. Biotechnol. 3, 85 (2015).
PubMed PubMed Central Article Google Scholar
2.
Jayanthi, S. & Del Vecchio, D. Retroactivity attenuation in bio-molecular systems based on timescale separation. IEEE Trans. Autom. Control 56, 748–761 (2011).
MathSciNet Article Google Scholar
3.
Gyorgy, A. et al. Isocost lines describe the cellular economy of genetic circuits. Biophys. J. 109, 639–646 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
4.
Summers, D. The kinetics of plasmid loss. Trends Biotechnol 9, 273–278 (1991).
CAS PubMed Article PubMed Central Google Scholar
5.
Mishra, D., Rivera, P. M., Lin, A., Del Vecchio, D. & Weiss, R. A load driver device for engineering modularity in biological networks. Nat. Biotechnol. 32, 1268–1275 (2014).
CAS PubMed PubMed Central Article Google Scholar
6.
Weiße, A. Y., Oyarzún, D. A., Danos, V. & Swain, P. S. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA 112, E1038–E1047 (2015).
ADS PubMed Article CAS PubMed Central Google Scholar
7.
Brenner, K., You, L. & Arnold, F. H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26, 483–489 (2008).
CAS PubMed Article PubMed Central Google Scholar
8.
Kennedy, T. A. et al. Biodiversity as a barrier to ecological invasion. Nature 417, 636–638 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
9.
Beyter, D. et al. Diversity, productivity, and stability of an industrial microbial ecosystem. Appl. Environ. Microbiol. 82, 2494–2505 (2016).
CAS PubMed PubMed Central Article Google Scholar
10.
Butler, G. J. & Wolkowicz, G. S. K. A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985).
MathSciNet Article Google Scholar
11.
Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).
CAS PubMed Article PubMed Central Google Scholar
12.
Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microb. 8, 15–25 (2010).
CAS Article Google Scholar
13.
Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2, 589 (2011).
ADS PubMed Article CAS PubMed Central Google Scholar
14.
Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl. Acad. Sci. USA 112, 6449–6454 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar
15.
May, A. et al. Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ 7, e7565 (2019).
PubMed PubMed Central Article Google Scholar
16.
Czaran, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 99, 786–790 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
17.
Dinh, C. V., Chen, X. & Prather, K. L. J. Development of a quorum-sensing based circuit for control of coculture population composition in a naringenin production system. ACS Synth. Biol. 9, 590–597 (2020).
CAS PubMed Article PubMed Central Google Scholar
18.
Stephens, K., Pozo, M., Tsao, C.-Y., Hauk, P. & Bentley, W. E. Bacterial coculture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nat. Commun. 10, 4129 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
19.
Liu, F., Mao, J., Lu, T. & Hua, Q. Synthetic, context-dependent microbial consortium of predator and prey. ACS Synth. Biol. 8, 1713–1722 (2019).
CAS PubMed Article PubMed Central Google Scholar
20.
Gupta, A., Reizman, I. M. B., Reisch, C. R. & Prather, K. L. J. Dynamic regulation of metabolic flux in engineered bacteria using a pathwayindependent quorum-sensing circuit. Nat. Biotechnol. 35, 273–279 (2017).
CAS PubMed PubMed Central Article Google Scholar
21.
Scott, S. R. & Hasty, J. Quorum sensing communication modules for microbial consortia. ACS Synth. Biol. 5, 969–977 (2016).
CAS PubMed PubMed Central Article Google Scholar
22.
Balagaddé, F. K. et al. A synthetic Escherichia coli predator–prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).
PubMed PubMed Central Article Google Scholar
23.
Kong, W., Meldgin, D. R., Collins, J. J. & Lu, T. Designing microbial consortia with defined social interactions. Nat. Chem. Biol. 14, 821–829 (2018).
CAS PubMed Article Google Scholar
24.
Rebuffat S. M. (ed. Kastin, A. J.) In Handbook of Biologically Active Peptides 129–137 (Elsevier, 2013).
25.
Geldart, K., Forkus, B., McChesney, E., McCue, M. & Kaznessis, Y. pMPES: a modular peptide expression system for the delivery of antimicrobial peptides to the site of gastrointestinal infections using probiotics. Pharmaceuticals 9, 60 (2016).
PubMed Central Article CAS PubMed Google Scholar
26.
Fedorec, A. J. H. et al. Two new plasmid post-segregational killing mechanisms for the implementation of synthetic gene networks in Escherichia coli. iScience 14, 323–334 (2019).
ADS CAS PubMed PubMed Central Article Google Scholar
27.
MacDonald, J. T., Barnes, C., Kitney, R. I., Freemont, P. S. & Stan, G.-B. V. Computational design approaches and tools for synthetic biology. Integr. Biol. 3, 97 (2011).
Article Google Scholar
28.
Kirk, P., Thorne, T. & Stumpf, M. P. H. Model selection in systems and synthetic biology. Curr. Opin. Biotechnol. 24, 767–774 (2013).
CAS PubMed Article Google Scholar
29.
Barnes, C. P., Silk, D., Sheng, X. & Stumpf, M. P. H. Bayesian design of synthetic biological systems. Proc. Natl. Acad. Sci. USA 108, 15190–15195 (2011).
ADS CAS PubMed Article Google Scholar
30.
Woods, M. L., Leon, M., Perez-Carrasco, R. & Barnes, C. P. A Statistical approach reveals designs for the most robust stochastic gene oscillators. ACS Synth. Biol. 5, 459–470 (2016).
CAS PubMed PubMed Central Article Google Scholar
31.
Leon, M., Woods, M. L., Fedorec, A. J. H. & Barnes, C. P. A computational method for the investigation of multistable systems and its application to genetic switches. BMC Syst. Biol. 10, 130 (2016).
PubMed PubMed Central Article Google Scholar
32.
Yeoh, J. W. et al. An automated biomodel selection system (BMSS) for gene circuit designs. ACS Synth. Biol. 8, 1484–1497 (2019).
CAS PubMed Article PubMed Central Google Scholar
33.
Beal, J. et al. An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Synth. Biol. 1, 317–331 (2012).
CAS PubMed Article PubMed Central Google Scholar
34.
Rodrigo, G. & Jaramillo, A. AutoBioCAD: full biodesign automation of genetic circuits. ACS Synth. Biol. 2, 230–236 (2013).
CAS PubMed Article PubMed Central Google Scholar
35.
Friedman, J. & Gore, J. Ecological systems biology: the dynamics of interacting populations. Current Opinion in Systems Biology 1, 114–121 (2017).
Article Google Scholar
36.
Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P. H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009).
PubMed Article PubMed Central Google Scholar
37.
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
MathSciNet Article Google Scholar
38.
Salis, H. M., Mirsky, E. A. & Christopher, C. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).
CAS PubMed PubMed Central Article Google Scholar
39.
Marisch, K. et al. A Comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptomeand proteome level. PLoS ONE 8, e70516 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
40.
Treloar, N. J., Fedorec, A. J. H., Ingalls, B. & Barnes, C. P. Deep reinforcement learning for the control of microbial co-cultures in bioreactors. PLOS Comput. Biol. 16, e1007783 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
41.
Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).
ADS CAS PubMed Article PubMed Central Google Scholar
42.
Kerner, A., Park, J., Williams, A. & Lin, X. N. A programmable Escherichia coli consortium via tunable symbiosis. PLoS ONE 7, e34032 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
43.
Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).
CAS PubMed PubMed Central Article Google Scholar
44.
Shou, W., Ram, S. & Vilar, J. M. G. Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. USA 104, 1877–1882 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
45.
Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J 8, 953–962 (2014).
CAS PubMed Article PubMed Central Google Scholar
46.
Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial crossprotection mutualism. Proc. Natl. Acad. Sci. USA 113, 6236–6241 (2016).
CAS PubMed Article PubMed Central Google Scholar
47.
Hosoda, K. et al. Cooperative adaptation to establishment of a synthetic bacterial mutualism. PLoS ONE 6, e17105 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
48.
Zhang, X. & Reed, J. L. Adaptive evolution of synthetic cooperating communities improves growth performance. PLoS ONE 9, e108297 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
49.
Chen, Y., Kim, J. K., Hirning, A. J., Josi, K. & Bennett, M. R. Emergent genetic oscillations in a synthetic microbial consortium. Science 349, 986–989 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
50.
Bernstein, H. C., Paulson, S. D. & Carlson, R. P. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157, 159–166 (2012).
CAS PubMed Article Google Scholar
51.
Scott, S. R. et al. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis. Nat. Microbiol. 2, 17083 (2017).
CAS PubMed PubMed Central Article Google Scholar
52.
Ziesack, M. et al. Engineered Interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium. mSystems 4, e00352–19 (2019).
PubMed PubMed Central Article Google Scholar
53.
Liao, M. J., Din, M. O., Tsimring, L. & Hasty, J. Rock-paper-scissors: engineered population dynamics increase genetic stability. Science 365, 1045–1049 (2019).
ADS CAS PubMed PubMed Central Article Google Scholar
54.
Ahn, J. et al. Human gut microbiome and risk for colorectal cancer. J. Natl Cancer Inst 105, 1907–1911 (2013).
CAS PubMed PubMed Central Article Google Scholar
55.
Stokell, J. R. et al. Analysis of changes in diversity and abundance of the microbial community in a cystic fibrosis patient over a multiyear period. J. Clin. Microbiol. 53, 237–247 (2015).
CAS PubMed Article PubMed Central Google Scholar
56.
Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).
PubMed Article PubMed Central Google Scholar
57.
Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).
ADS CAS PubMed Article PubMed Central Google Scholar
58.
Wang, X., Policarpio, L., Prajapati, D., Li, Z. & Zhang, H. Developing E. coli– E. coli co-cultures to overcome barriers of heterologous tryptamine biosynthesis. Metab. Eng. Commun. 10, e00110 (2020).
PubMed Article PubMed Central Google Scholar
59.
Yuan, S. F., Yi, X., Johnston, T. G. & Alper, H. S. De novo resveratrol production through modular engineering of an Escherichia coli–Saccharomyces cerevisiae co-culture. Microb. Cell Factor 19, 143 (2020).
CAS Article Google Scholar
60.
Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol 1, 109 (2017).
PubMed Article Google Scholar
61.
Carmona-Fontaine, C. & Xavier, J. B. Altruistic cell death and collective drug resistance. Molecular Systems Biology 8, 627 (2012).
PubMed PubMed Central Article Google Scholar
62.
Tanouchi, Y., Pai, A., Buchler, N. E. & You, L. Programming stress-induced altruistic death in engineered bacteria. Mol. Syst. Biol. 8, 626 (2012).
PubMed PubMed Central Article CAS Google Scholar
63.
Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).
ADS CAS PubMed Article Google Scholar
64.
Williams, G. T. Programmed cell death: a fundamental protective response to pathogens. Trends Microbiol 2, 463–464 (1994).
CAS PubMed Article Google Scholar
65.
Calles, B., Goñi-Moreno, Á. & Lorenzo, V. Digitalizing heterologous gene expression in Gram-negative bacteria with a portable ON/OFF module. Mol. Syst. Biol. 15, e8777 (2019).
CAS PubMed PubMed Central Article Google Scholar
66.
Fedorec, A., Karkaria, B., Sulu, M. & Barnes, C. Single strain control of microbial consortia. bioRxiv, https://doi.org/10.1101/2019.12.23.887331 (2019).
67.
Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).
ADS CAS PubMed Article Google Scholar
68.
Hsu, R. H. et al. Venturelli. Microbial interaction network inference in microfluidic droplets. Cell Syst 9, 229–242.e4 (2019).
CAS PubMed PubMed Central Article Google Scholar
69.
Doekes, H. M., De Boer, R. J. & Hermsen, R. Toxin production spontaneously becomes regulated by local cell density in evolving bacterial populations. PLoS Comput. Biol. 15, e1007333 (2019).
CAS PubMed PubMed Central Article Google Scholar
70.
McNaughton, S. J. Stability and diversity of ecological communities. Nature 274, 251–253 (1978).
ADS Article Google Scholar
71.
Sterner, R. W., Bajpai, A. & Adams, T. The enigma of food chain length: absence of theoretical evidence for dynamic constraints. Ecology 78, 2258–2262 (1997).
Article Google Scholar
72.
Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).
PubMed Article PubMed Central Google Scholar
73.
Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).
ADS PubMed Article CAS PubMed Central Google Scholar
74.
Tang, S., Pawar, S. & Allesina, S. Correlation between interaction strengths drives stability in large ecological networks. Ecol. Lett. 17, 1094–1100 (2014).
PubMed Article PubMed Central Google Scholar
75.
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
76.
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
CAS PubMed PubMed Central Article Google Scholar
77.
Siek, J. G., Lee, L.-Q., Lumsdaine, A. The Boost Graph Library, 243 (Addison-Wesley, 2002).
78.
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
MathSciNet Google Scholar
79.
Harper, M., et al. python-ternary: ternary plots in python. Zenodo https://doi.org/10.5281/zenodo.594435 (2019).
80.
Wickham, H. ggplot2-Positioning Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).
81.
Kylilis, N., Tuza, Z. A., Stan, G. B. & Polizzi, K. M. Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat. Commun. 9, 2677 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
82.
Senn, H., Lendenmann, U., Snozzi, M., Hamer, G. & Egli, T. The growth of Escherichia coli in glucose-limited chemostat cultures: a re-examination of the kinetics. BBA—Gen. Subj. 1201, 424–436 (1994).
Article Google Scholar
83.
Destoumieux-Garzón, D. The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 β-hairpin region in the recognition mechanism. Biochem. J. 389, 869–876 (2005).
PubMed PubMed Central Article Google Scholar
84.
Kaur, K. et al. Characterization of a highly potent antimicrobial peptide microcin N from uropathogenic Escherichia coli. FEMS Microbiology Letters 363, fnw095 (2016).
PubMed Article CAS PubMed Central Google Scholar
85.
Andersen, K. B. & Meyenburg, K. V. Are growth rates of Escherichia coli in batch cultures limited by respiration? J. Bacteriol. 144, 114–123 (1980).
CAS PubMed PubMed Central Article Google Scholar
86.
Marenda, M., Zanardo, M., Trovato, A., Seno, F. & Squartini, A. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries. Sci. Rep. 6, 39142 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
87.
Destoumieux-Garzón, D. et al. Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol. Microbiol. 49, 1031–1041 (2003).
PubMed Article CAS PubMed Central Google Scholar
88.
Karkaria, B. D., Fedorec, A. J. H. & Barnes, C. P. Automated design of synthetic microbial communities. Zenodo https://doi.org/10.5281/zenodo.4266261 (2020). More