More stories

  • in

    Extreme temperatures compromise male and female fertility in a large desert bird

    1.
    Angilletta, M. J. Thermal Adaptation: A Theoretical And Empirical Analysis (Oxford University Press, 2009).
    2.
    Chown, S. L., Sinclair, B. J., Leinaas, H. P. & Gaston, K. J. Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol. 2, e406 (2004).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    ADS  Article  Google Scholar 

    4.
    Kellermann, V., van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Article  Google Scholar 

    6.
    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl Acad. Sci. USA 113, 680–685 (2016).
    ADS  PubMed  Article  CAS  Google Scholar 

    7.
    Geerts, A. N. et al. Rapid evolution of thermal tolerance in the water flea, Daphnia. Nat. Clim. Change 5, 665–668 (2015).
    ADS  Article  Google Scholar 

    8.
    Iossa, G. Sex-specific differences in thermal fertility limits. Trends Ecol. Evol. 34, 490–492 (2019).
    PubMed  Article  Google Scholar 

    9.
    Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).
    PubMed  Article  Google Scholar 

    10.
    Vasudeva, R. et al. Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife 8, e49452 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Hurley, L. L., McDiarmid, C. S., Friesen, C. R., Griffith, S. C. & Rowe, M. Experimental heatwaves negatively impact sperm quality in the zebra finch. Proc. R. Soc. B 285, 20172547 (2018).
    PubMed  Article  Google Scholar 

    12.
    Dahlke, F., Wohlrab, S., Butzin, M. & Pörtner, H. Thermal bottlenecks in the lifecycle define climate vulnerability of fish. Science 369, 65–70 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 4, 1–11 (2018).
    Article  Google Scholar 

    14.
    Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42 (2017).
    PubMed  Article  Google Scholar 

    15.
    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Sgrò, C. M. & Hoffmann, A. A. Genetic correlations, tradeoffs and environmental variation. Heredity 93, 241–248 (2004).
    PubMed  Article  Google Scholar 

    17.
    Wood, C. W. & Brodie, E. D. Environmental effects on the structure of the G-matrix. Evolution 69, 2927–2940 (2015).
    PubMed  Article  Google Scholar 

    18.
    Brommer, J. E., Merila, J., Sheldon, B. C. & Gustavsson, L. Natural selection and genetic variation for reproductive reaction norms in a wild bird population. Evolution 59, 1362–1371 (2005).
    PubMed  Article  Google Scholar 

    19.
    Brommer, J. E., Rattiste, K. & Wilson, A. J. Exploring plasticity in the wild: laying date–temperature reaction norms in the common gull Larus canus. Proc. R. Soc. B 275, 687–693 (2008).
    PubMed  Article  Google Scholar 

    20.
    Nussey, D. H., Postma, E., Gienapp, P., Visser, M. E. & Gienapp, P. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Matthysen, E., Adriaensen, F. & Dhondt, A. A. Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob. Change Biol. 17, 1–16 (2011).
    ADS  Article  Google Scholar 

    23.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Schiegg, K., Pasinelli, G., Walters, J. R. & Daniels, S. J. Inbreeding and experience affect response to climate change by endangered woodpeckers. Proc. R. Soc. B 269, 1153–1159 (2002).
    PubMed  Article  Google Scholar 

    25.
    Wilson, S., Norris, D. R., Wilson, A. G. & Arcese, P. Breeding experience and population density affect the ability of a songbird to respond to future climate variation. Proc. R. Soc. B 274, 2539–2545 (2007).
    PubMed  Article  Google Scholar 

    26.
    Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. B 266, 2487–2490 (1999).
    CAS  Article  Google Scholar 

    27.
    Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA 117, 18557–18565 (2020).
    PubMed  Article  CAS  Google Scholar 

    28.
    Gienapp, P., Postma, E. & Visser, M. E. Why breeding time has not responded to selection for earlier breeding in a songbird population. Evolution 60, 2381 (2006).
    PubMed  Article  Google Scholar 

    29.
    Jàrvinen, A. Global warming and egg size of birds. Ecography 17, 108–110 (1994).
    Article  Google Scholar 

    30.
    Kitaysky, A. S. & Golubova, E. G. Climate change causes contrasting trends in reproductive performance of planktivorous and piscivorous alcids. J. Anim. Ecol. 69, 248–262 (2000).
    Article  Google Scholar 

    31.
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).
    PubMed  Article  Google Scholar 

    32.
    Weatherhead, P. J. Effects of climate variation on timing of nesting, reproductive success, and offspring sex ratios of red-winged blackbirds. Oecologia 144, 168–175 (2005).
    ADS  PubMed  Article  Google Scholar 

    33.
    Auer, S. K. & Martin, T. E. Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success. Glob. Change Biol. 19, 411–419 (2013).
    ADS  Article  Google Scholar 

    34.
    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA116, 21609–21615 (2019).
    CAS  PubMed  Article  Google Scholar 

    35.
    Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870 (1998).
    Article  Google Scholar 

    36.
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Magige, F. J., Stokke, B. G., Sortland, R. & Røskaft, E. Breeding biology of ostriches (Struthio camelus) in the Serengeti ecosystem, Tanzania. Afr. J. Ecol. 47, 400–408 (2009).
    Article  Google Scholar 

    38.
    Bertram, B. C. R. The Ostrich Communal Nesting System (Princeton University Press, New Jersey, 1992).

    39.
    Kimwele, C. N. & Graves, J. A. A molecular genetic analysis of the communal nesting of the ostrich (Struthio camelus). Mol. Ecol. 12, 229–236 (2003).
    CAS  PubMed  Article  Google Scholar 

    40.
    Maloney, S. K. Thermoregulation in ratites: a review. Aust. J. Exp. Agric. 48, 1293–1301 (2008).
    Article  Google Scholar 

    41.
    Hassan, S. M., Siam, A. A., Mady, M. E. & Cartwright, A. L. Egg storage period and weight effects on hatchability of ostrich (Struthio camelus) eggs. Poult. Sci. 84, 1908–1912 (2005).
    CAS  PubMed  Article  Google Scholar 

    42.
    Gonzalez, A., Satterlee, D. G., Moharer, F. & Cadd, G. G. Factors affecting ostrich egg hatchability. Poult. Sci. 78, 1257–1262 (1999).
    CAS  PubMed  Article  Google Scholar 

    43.
    Roff, D. A. & Wilson, A. J. Quantifying genotype-by-environment interactions in laboratory systems. In Genotype‐by‐Environment Interactions and Sexual Selection (eds. Hunt, J. & Hosken, D.) 100–136 (John Wiley & Sons, Ltd, 2014).

    44.
    Christians, J. K. Avian egg size: variation within species and inflexibility within individuals. Biol. Rev. Camb. Philos. Soc. 77, 1–26 (2002).
    PubMed  Article  Google Scholar 

    45.
    Lack, D. The Natural Regulation of Animal Numbers (Clarendon Press, 1954).

    46.
    Perrins, C. M. The timing of birds‘ breeding seasons. Ibis 112, 242–255 (1970).
    Article  Google Scholar 

    47.
    Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 9, 1–11 (2018).
    ADS  CAS  Article  Google Scholar 

    48.
    McAfee, A. et al. Vulnerability of honey bee queens to heat-induced loss of fertility. Nat. Sustain 3, 367–376 (2020).
    Article  Google Scholar 

    49.
    Pérez-Crespo, M., Pintado, B. & Gutiérrez-Adán, A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol. Reprod. Dev. 75, 40–47 (2008).
    PubMed  Article  CAS  Google Scholar 

    50.
    Hansen, P. J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. B 364, 3341–3350 (2009).
    Article  Google Scholar 

    51.
    Moreno, R. D., Lagos-Cabre, R., Bunay, J., Urzua, N. & Bustamante-Marin, X. Molecular basis of heat stress damage in mammalian testis. In Testis: Anatomy, Physiology and Pathology (eds. Nemoto, Y. & Inaba, N.) 127–155 (Nova Science, 2012).

    52.
    Karaca, A. G., Parker, H. M., Yeatman, J. B. & McDaniel, C. D. The effects of heat stress and sperm quality classification on broiler breeder male fertility and semen ion concentrations. Br. Poult. Sci. 43, 621–628 (2002).
    CAS  PubMed  Article  Google Scholar 

    53.
    Mita, P., Hinton, B. T. & Dufour, J. M. The blood–testis and blood–epididymis barriers are more than just their tight junctions. Biol. Reprod. 84, 851–858 (2011).
    Article  CAS  Google Scholar 

    54.
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).
    Article  Google Scholar 

    55.
    Ojanen, M. Composition of the eggs of the great tit (Parus major) and pied flycatcher (Ficedula hypoleuca). Ann. Zool. Fenn. 20, 57–63 (1983).
    Google Scholar 

    56.
    Krist, M. Egg size and offspring quality: a meta-analysis in birds. Biol. Rev. 86, 692–716 (2011).
    PubMed  Article  Google Scholar 

    57.
    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Pearson, 1996).

    58.
    Lynch, M. & Gabriel, W. Environmental tolerance. Am. Nat. 129, 283–303 (1987).
    Article  Google Scholar 

    59.
    Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).
    Article  Google Scholar 

    60.
    Whitlock, M. C. The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148, S65 (1996).
    Article  Google Scholar 

    61.
    Pen, I. & Weissing, F. J. Towards a unified theory of cooperative breeding: the role of ecology and life history re-examined. Proc. R. Soc. B 267, 2411–2418 (2000).
    Article  Google Scholar 

    62.
    Emlen, S. T. The evolution of helping. I. An ecological constraints model. Am. Nat. 119, 29–39 (1982).
    Article  Google Scholar 

    63.
    Rubenstein, D. R. Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy. Proc. Natl Acad. Sci. USA 108, 10816–10822 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    64.
    Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 0057 (2017).
    Article  Google Scholar 

    65.
    Rubenstein, D. R. & Lovette, I. J. Temporal environmental variability drives the evolution of cooperative breeding in birds. Curr. Biol. 17, 1414–1419 (2007).
    CAS  PubMed  Article  Google Scholar 

    66.
    Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 201613625 (2017).
    Google Scholar 

    67.
    Vincze, O. et al. Parental cooperation in a changing climate: fluctuating environments predict shifts in care division. Glob. Ecol. Biogeogr. 26, 347–358 (2017).
    Article  Google Scholar 

    68.
    Nord, A. & Nilsson, J. Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 33, 250–259 (2019).
    Article  Google Scholar 

    69.
    Cloete, S. W. P. et al. Variance components for live weight, body measurements and reproductive traits of pair-mated ostrich females. Br. Poult. Sci. 47, 147–158 (2006).
    CAS  PubMed  Article  Google Scholar 

    70.
    Rybnik, P. K., Horbanczuk, J. O., Naranowicz, H., Lukaszewicz, E. & Malecki, I. A. Semen collection in the ostrich (Struthio camelus) using a dummy or a teaser female. Br. Poult. Sci. 48, 635–643 (2007).
    CAS  PubMed  Article  Google Scholar 

    71.
    Brand, T. S., Olivier, T. R. & Gous, R. M. The response in food intake and reproductive parameters of breeding ostriches to increasing dietary energy. South Afr. J. Anim. Sci. 40, 434–437 (2010).
    Google Scholar 

    72.
    Brand, T. S., Olivier, T. R. & Gous, R. M. The reproductive response of female ostriches to dietary protein. Br. Poult. Sci. 56, 232–238 (2015).
    CAS  PubMed  Article  Google Scholar 

    73.
    Martin, P. A., Reimers, T. J., Lodge, J. R. & Dziuk, P. J. The effect of ratios and numbers of spermatozoa mixed from two males on proportions of offspring. J. Reprod. Fertil. 39, 251–258 (1974).
    CAS  PubMed  Article  Google Scholar 

    74.
    Birkhead, T. R. & Møller, A. P. Sperm Competition and Sexual Selection (Academic Press, 1998).

    75.
    Birkhead, T. R. & Biggins, J. D. Sperm competition mechanisms in birds: models and data. Behav. Ecol. 9, 253–260 (1998).
    Article  Google Scholar 

    76.
    Soley, J. T. & Roberts, J. C. Ultrastructure of ostrich (Struthio camelus) spermatozoa. II. Scanning electron microscopy. Onderstepoort J. Vet. Res. 61, 239–246 (1994).
    CAS  PubMed  Google Scholar 

    77.
    Lake, P. E. & Stewart, J. M. Artificial Insemination in Poultry. Ministry of Agriculture Fisheries and Food, Bulletin 213 (Her Majesty’s Stationery Office, 1978).

    78.
    Bonato, M., Malecki, I. A., Rybnik-Trzaskowska, P. K., Cornwallis, C. K. & Cloete, S. W. P. Predicting ejaculate quality and libido in male ostriches: effect of season and age. Anim. Reprod. Sci. 151, 49–55 (2014).
    PubMed  Article  Google Scholar 

    79.
    Bonato, M., Rybnik, P. K., Malecki, I. A., Cornwallis, C. K. & Cloete, S. W. P. Twice daily collection yields greater semen output and does not affect male libido in the ostrich. Anim. Reprod. Sci. 123, 258–264 (2011).
    PubMed  Article  Google Scholar 

    80.
    Muvhali, P. T. et al. Ostrich ejaculate characteristics and male libido around equinox and solstice dates. Trop. Anim. Health and Prod. 52, 2609–2619 (2020).
    CAS  Article  Google Scholar 

    81.
    Brand, Z., Cloete, S. W. P., Brown, C. R. & Malecki, I. A. Systematic factors that affect ostrich egg incubation traits. South Afr. J. Anim. Sci. 38, 315–325 (2008).
    Google Scholar 

    82.
    Bronneberg, R. G. G. et al. The relation between ultrasonographic observations in the oviduct and plasma progesterone, luteinizing hormone and estradiol during the egg laying cycle in ostriches. Domest. Anim. Endocrinol. 32, 15–28 (2007).
    CAS  PubMed  Article  Google Scholar 

    83.
    Van Schalkwyk, S. J., Cloete, S. W. P. & De Kock, J. A. Repeatability and phenotypic correlations for body weight and reproduction in commercial ostrich breeding pairs. Br. Poult. Sci. 37, 953–962 (1996).
    PubMed  Article  Google Scholar 

    84.
    Jones, R. C. & Lin, M. Spermatogenesis in birds. In Oxford Reviews of Reproductive Biology, Vol. 15 (ed. Milligan, S. R.) (Oxford University Press, 1993).

    85.
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2020).

    86.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Article  Google Scholar 

    87.
    Araya-Ajoy, Y. G. & Dingemanse, N. J. Repeatability, heritability, and age-dependence of seasonal plasticity in aggressiveness in a wild passerine bird. J. Anim. Ecol. 86, 227–238 (2017).
    PubMed  Article  Google Scholar 

    88.
    Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).
    Article  Google Scholar 

    89.
    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
    Article  Google Scholar 

    90.
    Wilson, A. J. Why h2 does not always equal VA/VP. J. Evol. Biol. 21, 647–650 (2008).
    CAS  PubMed  Article  Google Scholar 

    91.
    de Villemereuil, P., Morrissey, M. B., Nakagawa, S. & Schielzeth, H. Fixed-effect variance and the estimation of repeatabilities and heritabilities: Issues and solutions. J. Evol. Biol. 31, 621–632 (2018).
    PubMed  Article  Google Scholar 

    92.
    de Villemereuil, P., Schielzeth, H., Nakagawa, S. & Morrissey, M. General methods for evolutionary quantitative genetic inference from generalized mixed models. Genetics 204, 1281–1294 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    93.
    BirdLife International. BirdLife International and Handbook of the Birds of the World. Bird Species Distribution Maps of the World (BirdLife International, 2019).

    94.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar  More

  • in

    Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism

    1.
    Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Arnold, M. L. & Kunte, K. Adaptive genetic exchange: a tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 32, 601–611 (2017).
    PubMed  Article  Google Scholar 

    4.
    Mallet, J. Hybrid speciation. Nature 446, 279–283 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Abbott, R. et al. Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013).
    CAS  PubMed  Article  Google Scholar 

    6.
    Gross, B. L. & Rieseberg, L. H. The ecological genetics of homoploid hybrid speciation. J. Hered. 96, 241–252 (2005).
    CAS  PubMed  Article  Google Scholar 

    7.
    Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).
    PubMed  Article  Google Scholar 

    8.
    Grant, V. Pollination systems as isolating mechanisms in angiosperms. Evolution 3, 82–97 (1949).
    CAS  PubMed  Article  Google Scholar 

    9.
    Kay, K. M. & Sargent, R. D. The role of animal pollination in plant speciation: Integrating ecology, geography, and genetics. Annu. Rev. Ecol. Evol. Syst. 40, 637–656 (2009).
    Article  Google Scholar 

    10.
    Serrano-Serrano, M. L., Rolland, J., Clark, J. L., Salamin, N. & Perret, M. Hummingbird pollination and the diversification of angiosperms: an old and successful association in Gesneriaceae. Proc. R. Soc. B Biol. Sci. 284, https://doi.org/10.1098/rspb.2016.2816 (2017).

    11.
    Thompson, J. N. Specific hypotheses on the geographic mosaic of coevolution. Am. Nat. 153, S1–S14 (1999).
    Article  Google Scholar 

    12.
    Van der Niet, T., Peakall, R. & Johnson, S. D. Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Ann. Bot. 113, 199–211 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Armbruster, W. S. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 31, 88–100 (2017).
    Article  Google Scholar 

    14.
    Ayasse, M., Stokl, J. & Francke, W. Chemical ecology and pollinator-driven speciation in sexually deceptive orchids. Phytochemistry 72, 1667–1677 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Machado, C. A., Robbins, N., Gilbert, M. T. P. & Herre, E. A. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc. Natl Acad. Sci. USA 102, 6558–6565 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Kawakita, A. Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Species Biol. 25, 3–19 (2010).
    Article  Google Scholar 

    17.
    Ramirez, W. Host specificity of fig wasps (Agaonidae). Evolution 24, 680–691 (1970).
    Article  Google Scholar 

    18.
    Schiestl, F. P. & Schluter, P. M. Floral isolation, specialized pollination, and pollinator behavior in orchids. Annu. Rev. Entomol. 54, 425–446 (2009).
    CAS  PubMed  Article  Google Scholar 

    19.
    Ramirez, S. R. et al. Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333, 1742–1746 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    20.
    Cruaud, A. et al. An extreme case of plant-insect co-diversification: figs and fig-pollinating wasps. Syst. Biol. 61, 1029–1047 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Berg, C. C. & Corner, E. J. H. in Flora Malesiana Series I -Seed Plants Vol. 17 (ed. Nooteboom, H. P.) 1–702 (Nationaal Herbarium, Nederland, 2005).

    22.
    Wang, G., Cannon, C. H. & Chen, J. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc. R. Soc. B Biol. Sci. 283, https://doi.org/10.1098/rspb.2015.2963 (2016).

    23.
    Machado, C. A., Jousselin, E., Kjellberg, F., Compton, S. G. & Herre, E. A. Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc. R. Soc. B Biol. Sci. 268, 685–694 (2001).
    CAS  Article  Google Scholar 

    24.
    Harrison, R. D. Figs and the diversity of tropical rainforests. Bioscience 55, 1053–1064 (2005).
    Article  Google Scholar 

    25.
    Grison-Pigé, L., Bessière, J. M. & Hossaert-McKey, M. Specific attraction of fig-pollinating wasps: Role of volatile compounds released by tropical figs. J. Chem. Ecol. 28, 283–295 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Herre, E. A. et al. Molecular phylogenies of figs and their pollinator wasps. J. Biogeogr. 23, 521–530 (1996).
    Article  Google Scholar 

    27.
    Molbo, D., Machado, C. A., Sevenster, J. G., Keller, L. & Herre, E. A. Cryptic species of fig-pollinating wasps: Implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proc. Natl Acad. Sci. USA 100, 5867–5872 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Rasplus, J. Y. in The Biodiversity of African Plants (eds van der Maesen, L. J. G. et al.) 639–649 (Springer, 1996).

    29.
    Yang, L.-Y. et al. The incidence and pattern of co-pollinator diversification in dioecious and monoecious figs. Evolution 69, 294–304 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Cornille, A. et al. Floral volatiles, pollinator sharing and diversification in the fig-wasp mutualism: insights from Ficus natalensis, and its two wasp pollinators (South Africa). Proc. R. Soc. B Biol. Sci. 279, 1731–1739 (2012).
    CAS  Article  Google Scholar 

    31.
    Compton, S. G. A collapse of host specificity in some African fig wasps. S. Afr. J. Sci. 86, 39–40 (1990).
    Google Scholar 

    32.
    Renoult, J. P., Kjellberg, F., Grout, C., Santoni, S. & Khadari, B. Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations. BMC Evol. Biol. 9, 248 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    33.
    Satler, J. D. et al. Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps. Evolution 73, 2295–2311 (2019).

    34.
    Jackson, A. P., Machado, C. A., Robbins, N. & Herre, E. A. Multi-locus phylogenetic analysis of neotropical figs does not support co-speciation with the pollinators: the importance of systematic scale in fig/wasp cophylogenetic studies. Symbiosis 45, 57–72 (2008).
    CAS  Google Scholar 

    35.
    Parrish, T. L., Koelewijn, H. P., van Dijk, P. J. & Kruijt, M. Genetic evidence for natural hybridization between species of dioecious Ficus on island populations. Biotropica 35, 333–343 (2003).
    Article  Google Scholar 

    36.
    Ramirez, W. Hybridization of Ficus religiosa with F. septica and F. aurea (Moraceae). Rev. Biol. Trop. 42, 339–342 (1994).
    Google Scholar 

    37.
    Wei, Z. D., Kobmoo, N., Cruaud, A. & Kjellberg, F. Genetic structure and hybridization in the species group of Ficus auriculata: can closely related sympatric Ficus species retain their genetic identity while sharing pollinators? Mol. Ecol. 23, 3538–3550 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Bruun-Lund, S., Clement, W. L., Kjellberg, F. & Rønsted, N. First plastid phylogenomic study reveals potential cyto-nuclear discordance in the evolutionary history of Ficus L. (Moraceae). Mol. Phylogenet. Evol. 109, 93–104 (2017).
    PubMed  Article  Google Scholar 

    39.
    Zhang, X. et al. Genomes of the Banyan tree and pollinator wasp provide insights into fig-wasp coevolution. Cell 183, 875–889 (2020).
    CAS  PubMed  Article  Google Scholar 

    40.
    Mirarab, S. & Warnow, T. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31, 44–52 (2015).
    Article  CAS  Google Scholar 

    41.
    Rønsted, N., Weiblen, G. D., Clement, W. L., Zerega, N. J. C. & Savolainen, V. Reconstructing the phylogeny of figs (Ficus, Moraceae) to reveal the history of the fig pollination mutualism. Symbiosis 45, 45–55 (2008).
    Google Scholar 

    42.
    Ane, C., Larget, B., Baum, D. A., Smith, S. D. & Rokas, A. Bayesian estimation of concordance among gene trees. Mol. Biol. Evol. 24, 412–426 (2007).
    CAS  PubMed  Article  Google Scholar 

    43.
    Larget, B. R., Kotha, S. K., Dewey, C. N. & Ane, C. BUCKy: Gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26, 2910–2911 (2010).
    CAS  PubMed  Article  Google Scholar 

    44.
    Baum, D. A. Concordance trees, concordance factors, and the exploration of reticulate genealogy. Taxon 56, 417–426 (2007).
    Article  Google Scholar 

    45.
    Solis-Lemus, C., Bastide, P. & Ane, C. PhyloNetworks: a package for phylogenetic networks. Mol. Biol. Evol. 34, 3292–3298 (2017).
    CAS  PubMed  Article  Google Scholar 

    46.
    Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful inference with the D-statistic on low-coverage whole-genome data. G3 (Bethesda) 8, 551–566 (2018).

    47.
    Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009).
    PubMed  Article  Google Scholar 

    49.
    Conow, C., Fielder, D., Ovadia, Y. & Libeskind-Hadas, R. Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol. Biol. 5, https://doi.org/10.1186/1748-7188-5-16 (2010).

    50.
    Ramsey, A. J. & Mandel, J. R. When one genome is not enough: organellar heteroplasmy in plants. Annual Plant Reviews 2, 619–658 (2019).
    Article  Google Scholar 

    51.
    Zhang, Q. & Liu, Y. & Sodmergen. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol. 44, 941–951 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Hu, Y. C., Zhang, Q. & Rao, G. Y. & Sodmergen. Occurrence of plastids in the sperm cells of Caprifoliaceae: Biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance. Plant Cell Physiol. 49, 958–968 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Mayr, E. Animal Species and Evolution 1–811 (Belknap Press, 1963).

    54.
    Wu, C. I. The genic view of the process of speciation. J. Evol. Biol. 14, 851–865 (2001).
    Article  Google Scholar 

    55.
    Sun, M. et al. Deep phylogenetic incongruence in the angiosperm clade Rosidae. Mol. Phylogenet. Evol. 83, 156–166 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    Folk, R. A., Soltis, P. S., Soltis, D. E. & Guralnick, R. New prospects in the detection and comparative analysis of hybridization in the tree of life. Am. J. Bot. 105, 364–375 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Jiao, X., Flouri, T., Rannala, B. & Yang, Z. The impact of cross-species gene flow on species tree estimation. Syst. Biol. 69, 830–847 (2020).

    58.
    Jousselin, E. et al. One fig to bind them all: host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps. Evolution 62, 1777–1797 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Moe, A. M. & Weiblen, G. D. Pollinator-mediated reproductive isolation among dioecious fig species (Ficus, Moraceae). Evolution 66, 3710–3721 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Wang, G., Compton, S. G. & Chen, J. The mechanism of pollinator specificity between two sympatric fig varieties: a combination of olfactory signals and contact cues. Ann. Bot. 111, 173–181 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Bronstein, J. L. Maintenance of species-specificity in a neotropical fig – pollinator wasp mutualism. Oikos 48, 39–46 (1987).
    Article  Google Scholar 

    62.
    Ware, A., Kaye, P., Compton, S. & Noort, S. Fig volatiles: their role in attracting pollinators and maintaining pollinator specificity. Plant Syst. Evol. 186, 147–156 (1993).
    Article  Google Scholar 

    63.
    Soler, C. C. L., Proffit, M., Bessière, J. M., Hossaert-McKey, M. & Schatz, B. Evidence for intersexual chemical mimicry in a dioecious plant. Ecol. Lett. 15, 978–985 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Hossaert-McKey, M., Soler, C., Schatz, B. & Proffit, M. Floral scents: their roles in nursery pollination mutualisms. Chemoecology 20, 75–88 (2010).
    Article  Google Scholar 

    65.
    Knudsen, J. T., Eriksson, R., Gershenzon, J. & Stahl, B. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120 (2006).
    Article  Google Scholar 

    66.
    Herre, E. A., Jander, K. C. & Machado, C. A. Evolutionary ecology of figs and their associates: Recent progress and outstanding puzzles. Annu. Rev. Ecol. Evol. Syst. 39, 439–458 (2008).
    Article  Google Scholar 

    67.
    Kiester, A. R., Lande, R. & Schemske, D. W. Models of coevolution and speciation in plants and their pollinators. Am. Nat. 124, 220–243 (1984).
    Article  Google Scholar 

    68.
    Vereecken, N. J., Cozzolino, S. & Schiestl, F. P. Hybrid floral scent novelty drives pollinator shift in sexually deceptive orchids. BMC Evol. Biol. 10, 103 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Rønsted, N. et al. 60 million years of co-divergence in the fig-wasp symbiosis. Proc. R. Soc. B Biol. Sci. 272, 0962–8452 (2005). 2593-2599.
    Google Scholar 

    70.
    Wiebes, J. T. Co-evolution of figs and their insect pollinators. Annu. Rev. Ecol. Syst. 10, 1–12 (1979).
    Article  Google Scholar 

    71.
    Zhu, H. et al. Native Seed Plants in Xishuangbanna of Yunnan (eds Zhu, H. & Yan, L.) 1–565 (Science Press, 2012).

    72.
    Yang, J. B., Li, D. Z. & Li, H. T. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol. Ecol. Resour. 14, 1024–1031 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Andrews, S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

    75.
    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    77.
    McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Jin, J.-J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 31 (2020).
    Article  Google Scholar 

    79.
    Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinformatics 19, 122 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    81.
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    Yang, Z. H. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
    CAS  PubMed  Article  Google Scholar 

    84.
    Zhu, T. Q., Dos Reis, M. & Yang, Z. H. Characterization of the uncertainty of divergence time estimation under relaxed molecular clock models using multiple loci. Syst. Biol. 64, 267–280 (2015).
    CAS  PubMed  Article  Google Scholar 

    85.
    Gardner, E. M., Sarraf, P., Williams, E. W. & Zerega, N. J. C. Phylogeny and biogeography of Maclura (Moraceae) and the origin of an anachronistic fruit. Mol. Phylogenet. Evol. 117, 49–59 (2017).
    PubMed  Article  Google Scholar 

    86.
    dos Reis, M. & Yang, Z. Approximate likelihood calculation on a phylogeny for bayesian estimation of divergence times. Mol. Biol. Evol. 28, 2161–2172 (2011).
    PubMed  Article  CAS  Google Scholar 

    87.
    Yang, Z. & Rannala, B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 23, 212–226 (2006).
    CAS  PubMed  Article  Google Scholar 

    88.
    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. Syst. Biol. 63, 951–970 (2014).
    PubMed  Article  Google Scholar 

    89.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    90.
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    92.
    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 1–13 (2014).
    Article  Google Scholar 

    93.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    Wang, G. et al. Data from: Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Dryad, Dataset https://doi.org/10.5061/dryad.zcrjdfn7m (2020).

    95.
    Zhang, T. & Zhang, S. C. Code from: Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Github https://doi.org/10.5281/zenodo.4308886 (2020). More

  • in

    Using ecological coexistence theory to understand antibiotic resistance and microbial competition

    1.
    Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Raymond, B. Five rules for resistance management in the antibiotic apocalypse, a road map for integrated microbial management. Evol. Appl. 12, 1079–1091 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Perron, G. G., Inglis, R. F., Pennings, P. S. & Cobey, S. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evol. Appl. 8, 211–222 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    4.
    Andersen, S. B., Shapiro, B. J., Vandenbroucke-Grauls, C. & de Vos, M. G. J. Microbial evolutionary medicine: from theory to clinical practice. Lancet Infect. Dis. 19, e273–e283 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    5.
    Gilbert, J. A. & Lynch, S. V. Community ecology as a framework for human microbiome research. Nat. Med. 25, 884–889 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Huijben, S., Chan, B. H. K., Nelson, W. A. & Read, A. F. The impact of within-host ecology on the fitness of a drug-resistant parasite. Evol. Med. Public Health 2018, 127–137 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Klümper, U. et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 13, 2927–2937 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Hall, A. R., Angst, D. C., Schiessl, K. T. & Ackermann, M. Costs of antibiotic resistance – separating trait effects and selective effects. Evol. Appl. 8, 261–272 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Lehtinen, S. et al. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proc. Natl Acad. Sci. USA 114, 1075–1080 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Colijn, C. et al. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae? J. R. Soc. Interface 7, 905–919 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    12.
    Blanquart, F., Lehtinen, S. & Fraser, C. An evolutionary model to predict the frequency of antibiotic resistance under seasonal antibiotic use, and an application to streptococcus pneumoniae. Proc. R. Soc. B 284, 20170679 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    13.
    Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Blanquart, F. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol. Appl. 12, 365–383 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Davies, N. G., Flasche, S., Jit, M. & Atkins, K. E. Within-host dynamics shape antibiotic resistance in commensal bacteria. Nat. Ecol. Evol. 3, 440–449 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Bjourkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000).
    Article  Google Scholar 

    18.
    Petersen, A., Aarestrup, F. M. & Olsen, J. E. The in vitro fitness cost of antimicrobial resistance in Escherichia coli varies with the growth conditions. FEMS Microbiol. Lett. 299, 53–59 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Paulander, W., Maisnier-Patin, S. & Andersson, D. I. The fitness cost of streptomycin resistance depends on rpsL mutation, carbon source and RpoS (σS). Genetics 183, 539–546 (2009).
    PubMed Central  Article  CAS  Google Scholar 

    20.
    Hall, A. R., Iles, J. C. & MacLean, R. C. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics 187, 817–822 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Trindade, S., Sousa, A. & Gordo, I. Antibiotic resistance and stress in the light of Fisher’s model. Evolution 66, 3815–3824 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).

    23.
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Article  Google Scholar 

    24.
    Chase, J. & Leibold, M. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).

    25.
    Adler, P. B., Hillerislambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    HilleRisLambers, J., Adler, P. B., Harpole, W., Levine, J. M. & Mayfield, M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
    Article  Google Scholar 

    27.
    Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).
    Article  Google Scholar 

    28.
    Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).
    Article  Google Scholar 

    29.
    Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).
    Article  Google Scholar 

    30.
    Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. An expanded modern coexistence theory for empirical applications. Ecol. Lett. 22, 3–18 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Chesson, P. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).
    Article  Google Scholar 

    32.
    Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl Acad. Sci. USA 103, 12793–12798 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Yuan, C. & Chesson, P. The relative importance of relative nonlinearity and the storage effect in the lottery model. Theor. Popul. Biol. 105, 39–52 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Wale, N., Sim, D. G. & Read, A. F. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc. R. Soc. B 284, 20171067 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    35.
    Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Hester, E. R., Jetten, M. S. M., Welte, C. U. & Lücker, S. Metabolic overlap in environmentally diverse microbial communities. Front. Genet. 10, 989 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Smith, V. H. & Holt, R. D. Resource competition and within-host disease dynamics. Trends Ecol. Evol. 11, 386–389 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hurtado, P. J., Hall, S. R. & Ellner, S. P. Infectious disease in consumer populations: dynamic consequences of resource-mediated transmission and infectiousness. Theor. Ecol. 7, 163–179 (2014).
    Article  Google Scholar 

    39.
    Cressler, C. E., Nelson, W. A., Day, T. & McCauley, E. Disentangling the interaction among host resources, the immune system and pathogens. Ecol. Lett. 17, 284–293 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Smith, V. H., Holt, R. D., Smith, M. S., Niu, Y. & Barfield, M. Resources, mortality, and disease ecology: importance of positive feedbacks between host growth rate and pathogen dynamics. Isr. J. Ecol. Evol. 61, 37–49 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Alonso, A. et al. Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. J. Antimicrob. Chemother. 53, 432–434 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Perkins, A. E. & Nicholson, W. L. Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J. Bacteriol. 190, 807–814 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Martínez, J. L. & Rojo, F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 35, 768–789 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    44.
    Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    45.
    Dunphy, L. J., Yen, P. & Papin, J. A. Integrated experimental and computational analyses reveal differential metabolic functionality in antibiotic-resistant Pseudomonas aeruginosa. Cell Syst. 8, 3-14.e3 (2019).
    PubMed  PubMed Central  Google Scholar 

    46.
    Webber, M. A. & Piddock, L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Fitzsimmons, J. M., Schoustra, S. E., Kerr, J. T. & Kassen, R. Population consequences of mutational events: effects of antibiotic resistance on the r/K trade-off. Evol. Ecol. 24, 227–236 (2010).
    Article  Google Scholar 

    48.
    Baltrus, D. A. Exploring the costs of horizontal gene transfer. Trends Ecol. Evol. 28, 489–495 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    San Millan, A. & MacLean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol. Spectrum 5, 65–79 (2017).
    Google Scholar 

    50.
    Dennis, J. J. The evolution of IncP catabolic plasmids. Curr. Opin. Biotechnol. 16, 291–298 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Shintani, M. et al. Response of the Pseudomonas host chromosomal transcriptome to carriage of the IncP-7 plasmid pCAR1. Environ. Microbiol. 12, 1413–1426 (2009).
    PubMed  PubMed Central  Google Scholar 

    52.
    San Millan, A. et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 12, 3014–3024 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Schlüter, A. et al. The 64508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology 149, 3139–3153 (2003).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    54.
    Chen, K. et al. Comparison of four Comamonas catabolic plasmids reveals the evolution of pBHB to catabolize haloaromatics. Appl. Environ. Microbiol. 82, 1401–1411 (2016).
    CAS  PubMed Central  Article  Google Scholar 

    55.
    Douglas, A. E. Fundamentals of Microbiome Science: How Microbes Shape Animal Biology (Princeton Univ. Press, 2018).

    56.
    Ibrahim, K. H., Gunderson, B. W., Hermsen, E. D., Hovde, L. B. & Rotschafer, J. C. Pharmacodynamics of pulse dosing versus standard dosing: in vitro metronidazole activity against Bacteroides fragilis and Bacteroides thetaiotaomicron. Antimicrob. Agents Chemother. 48, 4195–4199 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Peña-Miller, R., Lähnemann, D., Schulenburg, H., Ackermann, M. & Beardmore, R. Selecting against antibiotic-resistant pathogens: optimal treatments in the presence of commensal bacteria. Bull. Math. Biol. 74, 908–934 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    58.
    Lin, W.-H. & Kussell, E. Complex interplay of physiology and selection in the emergence of antibiotic resistance. Curr. Biol. 26, 1486–1493 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Bauer, M., Graf, I. R., Ngampruetikorn, V., Stephens, G. J. & Frey, E. Exploiting ecology in drug pulse sequences in favour of population reduction. PLoS Comput. Biol. 13, e1005747 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Baker, C. M., Ferrari, M. J. & Shea, K. Beyond dose: pulsed antibiotic treatment schedules can maintain individual benefit while reducing resistance. Sci. Rep. 8, 5866 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Nev, O. A., Jepson, A., Beardmore, R. E. & Gudelj, I. Predicting community dynamics of antibiotic-sensitive and -resistant species in fluctuating environments. J. R. Soc. Interface 17, 20190776 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Kouyos, R. D. et al. The path of least resistance: aggressive or moderate treatment? Proc. R. Soc. B 281, 20140566 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Day, T. & Read, A. F. Does high-dose antimicrobial chemotherapy prevent the evolution of resistance? PLoS Comput. Biol. 12, e1004689 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Alexander, H. K. & MacLean, R. C. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl Acad. Sci. USA 117, 19455–19464 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Thaiss, C. A., Zeevi, D., Levy, M., Segal, E. & Elinav, E. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 6, 137–142 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Kaczmarek, J. L., Thompson, S. V. & Holscher, H. D. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health. Nutr. Rev. 75, 673–682 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
    CAS  Article  Google Scholar 

    71.
    Venable, E. B. et al. Effects of feeding management on the equine cecal microbiota. J. Equine Vet. Sci. 49, 113–121 (2017).
    Article  Google Scholar 

    72.
    Parris, D. J., Morgan, M. M. & Stewart, F. J. Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut. Appl. Environ. Microbiol. 85, e02479-18 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Chesson, P. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Chesson, P. Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. Theor. Popul. Biol. 64, 345–357 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    75.
    Watson, S. P., Clements, M. O. & Foster, S. J. Characterization of the starvation-survival response of Staphylococcus aureus. J. Bacteriol. 180, 1750–1758 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Grover, J. Resource Competition Vol. 19 (Springer Science & Business Media, 1997).

    77.
    Letten, A. D., Dhami, M. K., Ke, P.-J. & Fukami, T. Species coexistence through simultaneous fluctuation-dependent mechanisms. Proc. Natl Acad. Sci. USA 115, 6745–6750 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Levison, M. E. & Levison, J. H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. N. Am. 23, 791–815 (2009).
    Article  Google Scholar 

    79.
    Maharjan, R. & Ferenci, T. The fitness costs and benefits of antibiotic resistance in drug-free microenvironments encountered in the human body. Environ. Microbiol. Rep. 9, 635–641 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    81.
    Song, T. et al. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β subunit of RNA polymerase. Mol. Microbiol. 91, 1106–1119 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Schreiber, S. J., Levine, J. M., Godoy, O., Kraft, N. J. & Hart, S. P. Does deterministic coexistence theory matter in a finite world? Insights from serpentine annual plants. Preprint at bioRxiv https://doi.org/10.1101/290882 (2020).

    84.
    Data from the ECDC Surveillance Atlas – Antimicrobial Resistance (European Centre for Disease Prevention and Control, 2020); http://go.nature.com/3oLrjOG

    85.
    Matteo, M. J., Granados, G., Olmos, M., Wonaga, A. & Catalano, M. Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates. J. Antimicrob. Chemother. 61, 474–477 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Mongkolrattanothai, K. et al. Simultaneous carriage of multiple genotypes of Staphylococcus aureus in children. J. Med. Microbiol. 60, 317–322 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Folkvardsen, D. B. et al. Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J. Clin. Microbiol. 51, 4220–4222 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    88.
    Kamng’ona, A. W. et al. High multiple carriage and emergence of Streptococcus pneumoniae vaccine serotype variants in Malawian children. BMC Infect. Dis. 15, 234 (2015).

    89.
    Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Chesson, P. & Kuang, J. J. The interaction between predation and competition. Nature 456, 235–238 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    91.
    Gonze, D., Coyte, K. Z., Lahti, L. & Faust, K. Microbial communities as dynamical systems. Curr. Opin. Microbiol. 44, 41–49 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    92.
    Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    93.
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. USA 112, 797–802 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    94.
    Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).
    Article  Google Scholar 

    95.
    Hallinen, K. M., Karslake, J. & Wood, K. B. Delayed antibiotic exposure induces population collapse in enterococcal communities with drug-resistant subpopulations. eLife 9, e52813 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    96.
    Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Torres-Barceló, C. & Hochberg, M. E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 24, 249–256 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    98.
    Burmeister, A. R. et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl Acad. Sci. USA 117, 11207–11216 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    99.
    Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    100.
    Estrela, S. & Brown, S. P. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput. Biol. 14, e1006179 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More