More stories

  • in

    An under-ice bloom of mixotrophic haptophytes in low nutrient and freshwater-influenced Arctic waters

    1.
    Arrigo, K. R. & Dijken, G. L. Secular trends in Arctic Ocean net primary production. J. Geophys. Res. Oceans. 116, C09011 (2011).
    ADS  Google Scholar 
    2.
    Thomas, D. N. Sea Ice Ch 4 (Wiley Blackwell, Oxford, 2017).
    Google Scholar 

    3.
    Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408–1408 (2012).
    ADS  CAS  Article  Google Scholar 

    4.
    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2016).
    ADS  Article  Google Scholar 

    5.
    Horvat, C. et al. The frequency and extent of sub-ice phytoplankton bloom in the Arctic Ocean. Sci. Adv. 3, e1601191 (2017).
    ADS  Article  Google Scholar 

    6.
    Ardyna, M. et al. Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean. Elem. Sci. Anth. 8, 30 (2020).
    Article  Google Scholar 

    7.
    Ardyna, M. et al. Under-ice phytoplankton blooms: Shedding light on the “invisible” part of Arctic primary production. Front. Mar. Sci. 7, 608032 (2020).
    Article  Google Scholar 

    8.
    Rysgaard, S. & Glud, R. N. Carbon cycling in Arctic marine ecosystems: Case study Young Sound (ed. Rysgaard, S. & Glud, R. N.) 62–94 (Meddelelser om Grønland, Bioscience Vol 58, Copenhagen, Denmark, the Commission for Scientific Research in Greenland, 2007).

    9.
    Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Chang. Biol. 23, 5344–5357 (2017).
    ADS  Article  Google Scholar 

    10.
    Randelhoff, A. et al. Pan-Arctic Ocean primary production constrained by turbulent nitrate fluxes. Front. Mar. Sci. 7, 150 (2020).
    Article  Google Scholar 

    11.
    Holding, J. M. et al. Seasonal and spatial patterns of primary production in a high-latitude fjord affected by Greenland Ice Sheet run-off. Biogeosciences 16, 3777–3792 (2019).
    ADS  CAS  Article  Google Scholar 

    12.
    Juul-Pedersen, T. et al. Seasonal and interannual phytoplankton production in a sub-Arctic tidewater outlet glacier fjord, SW Greenland. Mar. Ecol. Prog. Ser. 524, 27–38 (2015).
    ADS  Article  Google Scholar 

    13.
    Sejr, M. K. et al. Evidence of local and regional freshening of Northeast Greenland coastal waters. Sci. Rep. 7, 13183 (2017).
    ADS  Article  Google Scholar 

    14.
    Boone, W. et al. Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northeast Greenland (74°N). Estuar. Coast. Shelf Sci. 194, 205–216 (2017).
    ADS  Article  Google Scholar 

    15.
    Haine, T. W. N. et al. Arctic freshwater export: Status, mechanisms, and prospects. Glob. Planet Change 125, 13–35 (2015).
    ADS  Article  Google Scholar 

    16.
    Carmack, E. C. et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage export, and physical and biogeochemical consequences in the Arctic and global ocean. J. Geophys. Res. Biogeosci. 121, 675–717 (2015).
    Article  Google Scholar 

    17.
    Lund-Hansen, L. C. et al. Will low primary production rates in the Amundsen Basin (Arctic Ocean) remain low in a future ice-free setting, and what governs this production?. J. Mar. Syst. 205, 103287 (2020).
    Article  Google Scholar 

    18.
    Dahl, E., Bagøien, E., Edvardsen, B. & Stenseth, N. C. The dynamics of Chrysochromulina species in the Skagerrak in relation to environmental conditions. J. Sea. Res. 54, 15–24 (2005).
    ADS  Article  Google Scholar 

    19.
    Hansen, P. J., Nielsen, T. G. & Kaas, H. Distribution and growth of protists and mesozooplankton during a bloom of Chrysochromulina spp. (Prymnesiophyceae, Prymnesiales). Phycologia 34, 409–416 (1995).
    Article  Google Scholar 

    20.
    Nielsen, T. G., Kiørboe, T. & Bjørnsen, P. K. Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community. Mar. Ecol. Prog. Ser. 62, 21–35 (1990).
    ADS  Article  Google Scholar 

    21.
    Hällfors, G. & Niemi, Å. A Chrysochromulina (Haptophyceae) bloom under the ice in the Tvärminne Archipelago, southern coast of Finland. Acta Soc. Fauna Flora Fenn. 50, 89–104 (1974).
    Google Scholar 

    22.
    Manton, I. Chrysochromulina tenuispine sp. nov. from arctic Canada. Br. Phycol. J. 13, 227–234 (1978).
    Article  Google Scholar 

    23.
    Green, J. C. & Leadbeater, B. S. C. The Haptophyte Algae ch. 13 (Systematics Association, London, 1994).
    Google Scholar 

    24.
    Hansen, P. J. & Hjorth, M. Growth and grazing responses of Chrysochromulina ericina (Prymnesiophyceae): The role of irradiance, prey concentration and pH. Mar. Biol. 141, 975–983 (2002).
    CAS  Article  Google Scholar 

    25.
    Anderson, R., Charvet, S. & Hansen, P. J. Mixotrophy in chlorophytes and haptophytes—Effect of irradiance, macronutrient micronutrient and vitamin limitation. Front. Microbiol. 9, 1704 (2018).
    Article  Google Scholar 

    26.
    Anderson, R. & Hansen, P. J. Meteorological conditions induce strong shifts in mixotrophic and heterotrophic flagellate bacterivory over small spatio-temporal scales. Limnol. Oceanogr. 9999, 1–11 (2019).
    Google Scholar 

    27.
    McKie-Krisberg, Z. M., Gast, R. J. & Sanders, R. W. Physiological responses of three species of Antarctic mixotrophic phytoflagellates to changes in light and dissolved nutrients. Microbiol. Ecol 70, 21–29 (2015).
    CAS  Article  Google Scholar 

    28.
    McKie-Krisberg, Z. M., Sanders, R. W. & Gast, R. J. Evaluation of mixotrophy-associated gene expression in two species of polar marine algae. Front. Mar. Sci. 5, 273 (2018).
    Article  Google Scholar 

    29.
    Rysgaard, S., Nielsen, T. G. & Hansen, B. W. Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland. Mar. Ecol. Prog. Ser. 179, 13–25 (1999).
    ADS  CAS  Article  Google Scholar 

    30.
    Bendtsen, J., Mortensen, J. & Rysgaard, S. Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74°N). J. Geophys. Res. Oceans. 119, 1–18 (2014).
    Article  Google Scholar 

    31.
    Krawczyk, D. W. et al. Spatial and temporal distribution of planktonic protists in the East Greenland fjord and offshore waters. Mar. Ecol. Prog. Ser. 538, 99–116 (2015).
    ADS  CAS  Article  Google Scholar 

    32.
    Søgaard, D. H., Deming, J. W., Meire, L. & Rysgaard, S. Effects of microbial processes and CaCO3 dynamics on inorganic carbon cycling in snow-covered Arctic winter sea ice. Mar. Ecol. Prog. Ser. 611, 31–44 (2019).
    ADS  Article  Google Scholar 

    33.
    Rysgaard, S. et al. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics. Cryosphere 7, 707–718 (2013).
    ADS  Article  Google Scholar 

    34.
    Søgaard, D. H. et al. Autotrophic and heterotrophic activity in Arctic first-year sea ice: Seasonal study from Malene Bight, SW Greenland. Mar. Ecol. Prog. Ser. 419, 31–45 (2010).
    ADS  Article  Google Scholar 

    35.
    Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (WILEY-VCH Verlag GmbH, Weinheim, 1999).
    Google Scholar 

    36.
    Steemann-Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).
    Article  Google Scholar 

    37.
    Søgaard, D. H. et al. The relative contributions of biological and abiotic processes to carbon dynamics in subarctic sea ice. Polar Biol. 36, 1761–1777 (2013).
    Article  Google Scholar 

    38.
    Platt, T., Gallegos, C. L. & Harrison, W. G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38, 687–701 (1980).
    Google Scholar 

    39.
    Jespersen, A. M. & Christoffersen, K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol. 109, 445–454 (1987).
    CAS  Google Scholar 

    40.
    Ralph, P. J. & Gademann, R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237 (2005).
    CAS  Article  Google Scholar 

    41.
    Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).
    ADS  CAS  Article  Google Scholar  More

  • in

    Primer evaluation and development of a droplet digital PCR protocol targeting amoA genes for the quantification of Comammox in lakes

    1.
    Vitousek, P. M. et al. The Nitrogen Cycle at Regional to Global Scales 1–45 (Springer, New York, 2002).
    Google Scholar 
    2.
    Stein, L. Y. & Klotz, M. G. The nitrogen cycle. Curr. Biol. CB 26, R94–R98 (2016).
    CAS  PubMed  Article  Google Scholar 

    3.
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).
    CAS  PubMed  Article  Google Scholar 

    4.
    Winogradsky, S. On the nitrifying organisms. Sciences 110, 1013–1016 (1890).
    Google Scholar 

    5.
    Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).
    ADS  PubMed  Article  CAS  Google Scholar 

    6.
    Hatzenpichler, R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–7510 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Pester, M. et al. NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing Nitrospira. Environ. Microbiol. 16, 3055–3071 (2014).
    CAS  PubMed  Article  Google Scholar 

    10.
    Gruber-Dorninger, C. et al. Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J. 9, 643–655 (2015).
    CAS  PubMed  Article  Google Scholar 

    11.
    Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Bartelme, R. P., McLellan, S. L. & Newton, R. J. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and Comammox Nitrospira. Front. Microbiol. 8, 101 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Wang, Y. et al. Comammox in drinking water systems. Water Res. 116, 332–341 (2017).
    CAS  PubMed  Article  Google Scholar 

    14.
    Pinto, A. J. et al. Metagenomic evidence for the presence of Comammox Nitrospira-like bacteria in a drinking water system. mSphere 1 (2016).

    15.
    Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).
    CAS  PubMed  Article  Google Scholar 

    16.
    Beach, N. K. & Noguera, D. R. Design and assessment of species-level qPCR primers targeting Comammox. Front. Microbiol. 10, 36 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Hu, H.-W. & He, J.-Z. Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J. Soils Sediments 17, 2709–2717 (2017).
    CAS  Article  Google Scholar 

    18.
    Xia, F. et al. Ubiquity and diversity of complete ammonia oxidizers (Comammox). Appl. Environ. Microbiol. 84, e01390-18 (2018).

    19.
    Jiang, Q., Xia, F., Zhu, T., Wang, D. & Quan, Z. Distribution of comammox and canonical ammonia-oxidizing bacteria in tidal flat sediments of the Yangtze River estuary at different depths over four seasons. J. Appl. Microbiol. 127, 533–543 (2019).
    CAS  PubMed  Article  Google Scholar 

    20.
    Liu, S. et al. Comammox Nitrospira within the Yangtze River continuum: Community, biogeography, and ecological drivers. ISME J. 14, 2488–2504 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Xu, Y. et al. Diversity and abundance of comammox bacteria in the sediments of an urban lake. J. Appl. Microbiol. 128, 1647–1657 (2020).
    CAS  PubMed  Article  Google Scholar 

    22.
    Lu, S., Sun, Y., Lu, B., Zheng, D. & Xu, S. Change of abundance and correlation of Nitrospira inopinata-like comammox and populations in nitrogen cycle during different seasons. Chemosphere 241, 125098 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Boehrer, B. & Schultze, M. Stratification of lakes. Rev. Geophys. 46, RG2005 (2008).

    24.
    Hou, J., Song, C., Cao, X. & Zhou, Y. Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Water Res. 47, 2285–2296 (2013).
    CAS  PubMed  Article  Google Scholar 

    25.
    Alfreider, A. et al. CO2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs. Environ. Microbiol. 19, 2754–2768 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Alfreider, A. et al. Autotrophic carbon fixation strategies used by nitrifying prokaryotes in freshwater lakes. FEMS Microbiol. Ecol. 94, fiy163 (2018).

    27.
    Herber, J. et al. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ. Microbiol. 22, 212–228 (2020).
    CAS  PubMed  Article  Google Scholar 

    28.
    Rotthauwe, J.-H., Witzel, K.-P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Junier, P. et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl. Microbiol. Biotechnol. 85, 425–440 (2010).
    CAS  PubMed  Article  Google Scholar 

    30.
    Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529 (2001).
    CAS  PubMed  Article  Google Scholar 

    31.
    Alves, R. J. E., Minh, B. Q., Urich, T., von Haeseler, A. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, 1517 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Linhart, C. & Shamir, R. The degenerate primer design problem: Theory and applications. J. Comput Biol. 12, 431–456 (2005).

    33.
    Alfreider, A. & Tartarotti, B. Spatiotemporal dynamics of different CO2 fixation strategies used by prokaryotes in a dimictic lake. Sci. Rep. 9, 15068 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Luesken, F. A. et al. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl. Microbiol. Biotechnol. 92, 845–854 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Wu, D. Y., Ugozzoli, L., Pal, B. K., Qian, J. I. N. & Wallace, R. B. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 10, 233–238 (1991).
    CAS  PubMed  Article  Google Scholar 

    36.
    Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Daims, H., Lücker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Callieri, C., Hernández-Avilés, S., Salcher, M. M., Fontaneto, D. & Bertoni, R. Distribution patterns and environmental correlates of Thaumarchaeota abundance in six deep subalpine lakes. Aquat. Sci. 78, 215–225 (2016).
    CAS  Article  Google Scholar 

    40.
    Coci, M., Odermatt, N., Salcher, M. M., Pernthaler, J. & Corno, G. Ecology and distribution of Thaumarchaea in the deep hypolimnion of Lake Maggiore. Archaea 2015, 1–11 (2015).
    Article  Google Scholar 

    41.
    Auguet, J.-C., Triadó-Margarit, X., Nomokonova, N., Camarero, L. & Casamayor, E. O. Vertical segregation and phylogenetic characterization of ammonia-oxidizing archaea in a deep oligotrophic lake. ISME J. 6, 1786–1797 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Vissers, E. W. et al. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake. FEMS Microbiol. Ecol. 83, 515–526 (2013).
    CAS  PubMed  Article  Google Scholar 

    43.
    Vissers, E. W. Spatial and Temporal Dynamics of Thaumarchaeota in Deep European Lakes (Netherlands Institute of Ecology, 2012).

    44.
    Small, G. E. et al. Rates and controls of nitrification in a large oligotrophic lake. Limnol. Oceanogr. 58, 276–286 (2013).
    ADS  CAS  Article  Google Scholar 

    45.
    Lavrentyev, P. J., Gardner, W. S. & Johnson, J. R. Cascading trophic effects on aquatic nitrification: Experimental evidence and potential implications. Aquat. Microb. Ecol. 13, 161–175 (1997).
    Article  Google Scholar 

    46.
    Costa, E., Pérez, J. & Kreft, J.-U. Why is metabolic labour divided in nitrification?. Trends Microbiol. 14, 213–219 (2006).
    CAS  PubMed  Article  Google Scholar 

    47.
    Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: Insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189 (2019).
    CAS  PubMed  Article  Google Scholar 

    48.
    Schramm, A., de Beer, D., Gieseke, A. & Amann, R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ. Microbiol. 2, 680–686 (2000).
    CAS  PubMed  Article  Google Scholar 

    49.
    Nowka, B., Off, S., Daims, H. & Spieck, E. Improved isolation strategies allowed the phenotypic differentiation of two Nitrospira strains from widespread phylogenetic lineages. FEMS Microbiol. Ecol. 91, fiu031 (2015).

    50.
    Ushiki, N., Fujitani, H., Aoi, Y. & Tsuneda, S. Isolation of Nitrospira belonging to sublineage II from a wastewater treatment plant. Microbes Environ. ME13042 (2013).

    51.
    Cotto, I. et al. Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. Water Res. 169, 115268 (2020).
    CAS  PubMed  Article  Google Scholar 

    52.
    Koch, H. et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc. Natl. Acad. Sci. U.S.A. 112, 11371–11376 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat. Geosci. 6, 228–234 (2013).
    ADS  CAS  Article  Google Scholar 

    54.
    Bristow, L. A. et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc. Natl. Acad. Sci. U.S.A. 113, 10601–10606 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    CAS  PubMed  Article  Google Scholar 

    57.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).
    CAS  Article  Google Scholar 

    59.
    Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England) 25, 1189–1191 (2009).
    CAS  Article  Google Scholar  More

  • in

    Climate change vulnerability assessment of the main marine commercial fish and invertebrates of Portugal

    Selection of species
    The list of species for the vulnerability assessment was based on five different criteria. First, we considered the proportion of each species in the total Portuguese landings between 1989 and 2015, using public landings data from the Direção Geral dos Recursos Marinhos de Portugal (DGRM). The most landed species, accounting for 95% of purse seine, 70% of trawling and 70% of the multigear landings, were included. This selection was carried out separately for each combination of gear and region (Supplementary Table SI1-1). Second, species were chosen in regards of their economic relevance, considering the species representing more than 3% of the total economic revenue of the marine landings within each combination of region and gear (DGRM, Supplementary Table SI1-2). Third, we included the most frequent species in the discards of Portuguese fisheries, according to the work of Leitão et al.42, where the top-ten discarded species per métier are listed (Supplementary Table SI1-3). Fourth, we included the species of importance for the canning industry, obtained by means of a survey covering the main can enterprises of Portugal (Supplementary Table SI1-5). Fifth, a selection of the species of relevance for the Moroccan fisheries sector was carried out, using the reports from the Department of Marine Fisheries of the Kingdom of Morocco43 and the FAO software FishStatJ (most captured species between 2007 and 201744) (Supplementary Table SI1-6). Additionally, due to their importance for specific fleet segments, we included some shark species of interest that were not included by the previous criteria. The selection of shark species was based on reports from the Instituto Português do Mar e as Pescas (IPMA) and included: Galeus melastomus, Prionace glauca, Squalus acanthias, Scyliorhinus canicula, and Hexanchus griseus. Some riverine species were finally removed from the list (Petromyzon marinus, Salmo trutta), as well as cod (Gadus morhua), since it is not captured within the area of study. Finally, some extra species were pointed out by experts during the evaluation process as species with economic interest (Pollicipes pollicipes) or with potential distribution shift into/from the area of study in the context of climate change such as the bivalves Callista chione and Ruditapes philippinarum, and the crabs Callinectes sapidus and Carcinus maenas. The final list of species considered, and their functional group are shown in Table 1.
    Table 1 Species and functional groups considered during the climate change vulnerability assessment.
    Full size table

    Environmental change
    RCP (representative concentration pathway) scenarios of atmospheric greenhouse gas concentration have been proposed by the IPCC for use in research to project the evolution of environmental variables. Using scenarios RCP 4.5 and RCP 8.5 (predicting a global warming of 1.8 and 3.7 °C respectively by the end of the twenty-first century) as forcing, the POLCOMS-ERSEM model45 forecasted a wide array of physical, chemical and biological variables for the Northeast Atlantic and adjacent seas at a resolution of 0.1 degree (approximately 11 km). For the evaluation of the vulnerability of the species of interest, a selection of the most cited variables with impact on the ecology of marine organisms in the Portuguese marine environment was carried out (e.g. Refs.7,8,9). As a result, these variables were finally considered: sea surface temperature (SST, °C), surface pH, surface salinity (psu), surface zooplankton biomass (mol m−3), surface phytoplankton biomass (mol m−3), surface northward and eastward current velocities (m s−1) and river discharge (m−3 year−1). The zooplankton and phytoplankton biomass were summed to obtain an overall plankton biomass (mol m−3) which was finally used in the assessment of vulnerability. Surface variables were calculated using the top sigma layer of the outputs of the model.
    Two time slices of the POLCOMS-ERSEM outputs were used to define two periods for comparison. The first was between 2000 and 2019 setting a reference point for the state of the environment at the beginning of the century (hereafter “reference”), then, the period between 2040 and 2059 served to define the likely state of the environment in the near future (hereafter “future”). Defining the future and reference periods allowed us to compare the expected degree of change of the environmental variables between both periods. To do this on a regional basis, we considered the outputs of the model for each region of Portugal (North, Centre, and South; Fig. 1) and calculated a dimensionless variation index (VI) using the mean of each variable during the reference and future periods, and the standard deviation of the reference period:

    $$ {text{VI}} = frac{{left( {mu ,future – mu ,reference} right)}}{sigma ,reference} , $$
    (1)

    where µ future and µ reference represent the regional average values of the corresponding time slice of the variable, and σ reference is the standard deviation of the regional values in the reference time slice (except for the variable river discharge, for which the average and standard deviation are calculated on a temporal basis) VI takes theoretical values between 0 (when there is no variation between future and reference) and ± infinite (when reference shows no variation all over the region of study). VI was used to weight the influence of each variable in the assessment of the exposure of the species to climate change n Table 2. The idea was to capture the degree of variability of each physical variable, so species exposed to the most variable environmental conditions would be more exposed to the effects of climate change. Then, a weight factor was calculated normalizing between 1 and 2 the absolute values of the VI defined above (“weight factor 1” in Table 2).
    Table 2 Expected physical variability between 2000–2019 (reference) and 2040–2059 (future) according to POLCOMS-ERSEM physical-biogeochemical model. Outputs are shown considering three regions of Portugal (North, Centre, South) and two scenarios of climate change (RCP 4.5 and RCP 8.5). Weight factor 1 captures the degree of variability of the physical variables (see “Methods”). Weight factor 2 represents the likely impact on the physiology of the marine organisms and was obtained from the experts’ criteria. The final weight factor, used in the vulnerability assessment, is the average between weight factor 1 and 2.
    Full size table

    Since two versions of the future period were available (climate change scenarios RCP 4.5 and RCP 8.5), the level of exposure to changing environmental variables was calculated separately for both climate change scenarios, making it possible to estimate the overall vulnerability of the species under each scenario separately.
    Beyond the degree of variability of each variable, a panel of experts on the ecology of marine organisms of Portugal was asked to rank, according to the likely impact on the physiology of marine organisms, the physical variables under consideration. Each expert was asked to order the variables independently, but a consensus answer was finally asked from them. The ranking of the physical variables was posteriorly transformed numerically between 1 and 2, being 1 the less relevant variable and 2 the most relevant variable. Intermediate variables got a value between 1 and 2 following equally distanced steps (see “weight factor 2” in Table 2). The final weight given to each physical variable during the vulnerability assessment was calculated as the average between weight factors 1 and 2 (“final weight factor” in Table 2). It was possible to estimate this parameter for all the exposure indicators with exception of the extreme events frequency, which was not included in the POLCOMS-ERSEM outputs. The likely evolution of this parameter is controversial and thus, a final weight factor of 1 was assigned by consensus with the panel of experts. In the case of oceanic currents, considered as a proxy for upwelling, we considered eastward currents in the North and Centre regions (North–South oriented coast) and northward currents in the South region (East–West oriented coast).
    Vulnerability assessment
    Indicators
    The vulnerability of the species to climate change was evaluated following the conceptual framework described in the 4th Assessment Report of the IPCC29. This approach assumes that the vulnerability (V) of species to environmental change is a function of: (1) their exposure (E) to the changing environmental variables (defined as the overlap between the expected geographic range of change of the variables and the area/habitats of occurrence of a given species), (2) their sensitivity (S) to environmental change (considered as the degree to a which extent a given species will be affected—in terms of population dynamics or life-history traits—by a change in the environment), and (3) their adaptive capacity (AC) to environmental change (understood as the mechanisms of a given species to resist to a specific change of the environment and recover to the state prior to the perturbation).
    For each species, the degree of exposure, sensitivity and adaptive capacity was evaluated considering different aspects (hereafter “indicators”) of its biology, ecology, and exploitation (see Supplementary SI2 for a description of the indicators). The selection of the indicators was made considering the context of climate change in the Portuguese marine environment. Hence, for the level of exposure, the most referenced environmental variables with impact on the ecology of the species of interest were chosen. For the analysis of the sensitivity, a selection of life history traits driving the relationship between the species’ population dynamics and the environment was carried out based on existing literature (e.g. Refs.23,26,28,36). The traits finally considered were: trophic level, fecundity, number of reproductive events in a lifetime, egg spawning strategy, individual growth parameters (growth coefficient, k, in Von Bertalanffy’s growth function), age at maturity, longevity, intrinsic population growth rate (r), sexual strategy (gonochorism, hermaphroditism or protogyny/protandry), length of the spawning seasons, planktonic larval duration (PLD), latitudinal range of distribution, temperature range of distribution, adult mobility, seasonal migrations, sociability, and complexity of the reproductive strategy. The adaptive capacity of the species was analysed considering different aspects related to the degree of conservation or exploitation of the species and the kind of fisheries associated, which give an idea of the capacity of response of the populations to environmental change at a national or regional scale. In this case we considered: the ICES stock status (referred to Portuguese or Iberian stocks when available), the general replenishment potential of the species, related to different life-history parameters such as growth and reproduction, the vulnerability degree assigned by the IUCN, the specific vulnerability to fisheries assessed in Cheung et al.26, and the fishing pressure suffered by each species in Portuguese waters.
    Expert’s assessment
    To evaluate each species from the point of view of each indicator, a fuzzy logic expert-judgement method was applied26. This method consists of categorizing the range of possible answers or values of each indicator into three levels (bins) corresponding to low, moderate, or high levels of exposure, sensitivity and adaptive capacity, respectively. The number of levels considered (3) has been found to be sufficient for this kind of study28,46, and their ranges were defined for each indicator following the existing literature, adjusting their values to the reality of the Portuguese marine environment. For a description of the levels within each indicator see Supplementary SI2.
    Assigning each species to each bin of each indicator was carried by a group of experts in marine biology and ecology with experience in the Portuguese marine environment. A variable number of species was assigned to each expert in regards of their field of knowledge and previous experience. Each species received a minimum of three experts and a maximum of four. The number of tallies assigned to each bin of each indicator (variable between 0 and 5) represented the degree of confidence in the answer. In this way, an absolute confidence in the answer provided was represented by allocating 5 tallies in the corresponding bin, while spreading the five tallies among the three bins meant the highest level of uncertainty. In order to avoid biases in the expert evaluations, each expert was provided with the description of the indicators and their bins found in Supplementary SI2, the maps of climate variability found in Supplementary SI3, and a list of online resources to consult. The experts were allowed to consult any other scientific literature for their evaluations if needed.
    After the evaluation of each indicator of exposure, sensitivity and adaptive capacity, each expert was asked to provide a formed opinion on the likely direction of the effects of climate change for each species. This directional effect (DE) evaluation had two steps: (1) the allocation of five tallies among three bins representing negative, neutral, or positive DE, and (2) providing a short rationale text explaining the allocation of tallies among the bins.
    Experts were also asked to score the quality of the data used to distribute the tallies among the bins of each indicator following the methodology of Hare et al.23. In this case, the experts should assign a value between 0 and 3 to describe the quality of the information. These values correspond to (0) No Data. No information is available to provide an opinion; (1) Expert Judgement. The distribution of tallies among the bins reflects the expert judgement, based on knowledge of the general ecology of the species and its role on the ecosystem; (2) Limited Data. The data used to distribute the tallies may come from similar species or from other geographic regions out of the Iberian Peninsula; (3) Adequate Data. The score is based on data observed, modelled or directly measured for the species in question and is provided by scientific work carried out in the Iberian Peninsula.
    After the individual assessments, a 2-day workshop was carried out where the experts were asked to discuss their evaluations and provide a summarizing text on the likely sign of directional effects of climate change on each species. They were also allowed to modify the distribution of tallies of their votes for the directional effects after the discussion.
    Regional evaluation
    Each expert was asked to perform the evaluation of each indicator independently for each region of Portugal (North, Centre and South; Fig. 1). This procedure made it possible to obtain, for a given species, region-specific assessments of E, S, AC and DE, which could be finally translated into region-specific overall vulnerability assessments.
    Calculation of the overall vulnerability score
    For each species, the number of tallies assigned by the experts to each bin of each indicator was averaged. Then, each tally was assigned a different value in regards of the bin where it was assigned: 1-low, 2-moderate, 3-high, making possible to calculate the value of each indicator by summing the value of the tallies. The final score of the indicator (minimum: 5; maximum: 15) was standardized between 0 and 1. To obtain the value of each dimension of the vulnerability (E, S, or AC) the sum of the values of the related indicators standardized between 0 and 1 was computed. All the indicators had the same weight.
    Finally, to calculate the overall vulnerability, the value of each dimension was standardized between 0 and 1, being V calculated as:

    $$ {text{V}}_{{{text{r}} – {text{cc}}}} = , left( {{text{E}}_{{{text{r}} – {text{cc}}}} + {text{ S}}_{{text{r}}} } right) , {-}{text{ Ac}}_{{text{r}}} , $$
    (2)

    where subscripts indicate region (r) and climate change (cc) specificity, respectively.
    The vulnerability score (Vr-cc) obtained was finally categorized as: “very low vulnerability” (Vr-cc  More

  • in

    Water column gradients beneath the summer ice of a High Arctic freshwater lake as indicators of sensitivity to climate change

    1.
    Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).
    Article  Google Scholar 
    2.
    Vincent, W. F., Hobbie, J. E. & Laybourn-Parry, J. Introduction to the limnology of high-latitude lake and river ecosystems. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 1–24 (Oxford, Oxford University Press, 2008).

    3.
    Paquette, M., Fortier, D., Mueller, D. R., Sarrazin, D. & Vincent, W. F. Rapid disappearance of perennial ice on Canada’s most northern lake. Geophys. Res. Lett. 42, 1433–1440 (2015).
    ADS  Article  Google Scholar 

    4.
    Lehnherr, I. et al. The world’s largest High Arctic lake responds rapidly to climate warming. Nat. Commun. 9, 1290. https://doi.org/10.1038/s41467-018-03685-z (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Obryk, M. K., Doran, P. T. & Priscu, J. C. Prediction of ice-free conditions for a perennially ice-covered Antarctic lake. J. Geophys. Res. Earth Surf. 124, 686–694 (2019).
    ADS  Article  Google Scholar 

    6.
    Vincent, W. F. et al. Extreme ecosystems and geosystems in the Canadian High Arctic: Ward Hunt Island and vicinity. Ecoscience 18, 236–261 (2011).
    Article  Google Scholar 

    7.
    Spigel, R. H. & Priscu, J. C. Physical limnology of the McMurdo Dry Valleys lakes. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica (ed. Priscu, J. C.) 153–187 (London, American Geophysical Union, 1998).

    8.
    Pernica, P., North, R. L. & Baulch, H. M. In the cold light of day: The potential importance of under-ice convective mixed layers to primary producers. Inland Waters 7, 138–150 (2017).
    CAS  Article  Google Scholar 

    9.
    Kelly, J. R. & Scheibling, R. E. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 446, 1–22 (2012).
    ADS  CAS  Article  Google Scholar 

    10.
    Taipale, S. et al. Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat. Microb. Ecol. 71, 165–178 (2013).
    Article  Google Scholar 

    11.
    Mohit, V., Culley, A., Lovejoy, C., Bouchard, F. & Vincent, W. F. Hidden biofilms in a far northern lake and implications for the changing Arctic. NPJ Biofilms Microbiomes 3, 17. https://doi.org/10.1038/s41522-017-0024-3 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Paquette, M., Fortier, D. & Vincent, W. F. Water tracks in the High Arctic: a hydrological network dominated by rapid subsurface flow through patterned ground. Arct. Sci. 3, 334–353 (2017).
    Article  Google Scholar 

    13.
    Vincent, W. F. & Mueller, D. Witnessing ice habitat collapse in the Arctic. Science 370, 1031–1032 (2020).
    ADS  CAS  Article  Google Scholar 

    14.
    MacIntyre, S., Cortés, A. & Sadro, S. Sediment respiration drives circulation and production of CO2 in ice-covered Alaskan arctic lakes. Limnol. Oceanogr. Lett. 3, 302–310 (2018).
    CAS  Article  Google Scholar 

    15.
    Cortés, A. & MacIntyre, S. Mixing processes in small arctic lakes during spring. Limnol. Oceanogr. 65, 260–288 (2020).
    ADS  Article  Google Scholar 

    16.
    Bégin, P. N. et al. The littoral zone of polar lakes: Inshore-offshore contrasts in an ice-covered High Arctic lake. Arct. Sci. 7, 1–24. https://doi.org/10.1139/as-2020-0026 (2021).
    Article  Google Scholar 

    17.
    Bégin, P. N. et al. Extreme warming and regime shift toward amplified variability in a far northern lake. Limnol. Oceanogr. 65, 1–23. https://doi.org/10.1002/lno.11546 (2020).
    Article  Google Scholar 

    18.
    Spaulding, S. A., MCKnight, D. M., Smith, R. L. & Dufford, R. Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J. Plankton Res. 16, 527–541 (1994).

    19.
    Charvet, S., Vincent, W. F. & Lovejoy, C. Chrysophytes and other protists in High Arctic lakes: molecular gene surveys, pigment signatures and microscopy. Polar Biol. 35, 733–748 (2012).
    Article  Google Scholar 

    20.
    Jones, R. I. Mixotrophy in planktonic protists: an overview. Freshw. Biol. 45, 219–226 (2000).
    Article  Google Scholar 

    21.
    Bonilla, S., Villeneuve, V. & Vincent, W. F. Benthic and planktonic algal communities in a High Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J. Phycol. 41, 1120–1130 (2005).
    CAS  Article  Google Scholar 

    22.
    Quesada, A., Fernández-Valiente, E., Hawes, I. & Howard-Williams, C. Benthic primary production in polar lakes and rivers. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 179–196 (Oxford University Press, Oxford, 2008).
    Google Scholar 

    23.
    Rautio, M. et al. Shallow freshwater ecosystems of the circumpolar Arctic. Ecoscience 18, 204–222 (2011).
    Article  Google Scholar 

    24.
    Markager, S. & Vincent, W. F. Light absorption by phytoplankton: development of a matching parameter for algal photosynthesis under different spectral regimes. J. Plankton Res. 23, 1373–1384 (2001).
    Article  Google Scholar 

    25.
    Duarte, C. M. & Prairie, Y. T. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8, 862–870 (2005).
    CAS  Article  Google Scholar 

    26.
    Denfeld, B. A., Baulch, H. M., del Giorgio, P. A., Hampton, S. E. & Karlsson, J. A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes: Under-ice CO 2 and CH 4 dynamics. Limnol. Oceanogr. Lett. 3, 117–131 (2018).
    CAS  Article  Google Scholar 

    27.
    Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991).
    ADS  CAS  Article  Google Scholar 

    28.
    Matveev, A., Laurion, I. & Vincent, W. F. Winter accumulation of methane and its variable timing of release from thermokarst lakes in subarctic peatlands. J. Geophys. Res. Biogeosci. 124, 3521–3535 (2019).
    CAS  Article  Google Scholar 

    29.
    Paquette, M., Fortier, D., Lafrenière, M. & Vincent, W. F. Periglacial slopewash dominated by solute transfers and subsurface erosion on a High Arctic slope. Permafr. Periglac. Process. 31, 472–486 (2020).
    Article  Google Scholar 

    30.
    Negandhi, K. et al. Small thaw ponds: an unaccounted source of methane in the Canadian High Arctic. PLoS ONE 8, e78204. https://doi.org/10.1371/journal.pone.0078204 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Lyons, W. B. & Finlay, J. Biogeochemical processes in high-latitude lakes and rivers. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 137–156 (Oxford University Press, Oxford, 2008).
    Google Scholar 

    32.
    Watanabe, S., Laurion, I., Chokmani, K., Pienitz, R. & Vincent, W. F. Optical diversity of thaw ponds in discontinuous permafrost: a model system for water color analysis. J. Geophys. Res. Biogeosci. 116, G02003. https://doi.org/10.1029/2010jg001380 (2011).
    ADS  Article  Google Scholar 

    33.
    Retamal, L., Vincent, W. F., Martineau, C. & Osburn, C. L. Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic. Estuar. Coast. Shelf Sci. 72, 261–272 (2007).
    ADS  Article  Google Scholar 

    34.
    Wauthy, M. et al. Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw. Limnol. Oceanogr. Lett. 3, 186–198 (2018).
    CAS  Article  Google Scholar 

    35.
    Murphy, K. R., Stedmon, C. A., Waite, T. D. & Ruiz, G. M. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 108, 40–58 (2008).
    CAS  Article  Google Scholar 

    36.
    Jakkila, J., Leppäranta, M., Kawamura, T., Shirasawa, K. & Salonen, K. Radiation transfer and heat budget during the ice season in Lake Pääjärvi Finland. Aquat. Ecol. 43, 681–692 (2009).
    Google Scholar 

    37.
    CEN. Climate station data from Northern Ellesmere Island in Nunavut, Canada, v. 1.7 (2002–2019). Nordicana D1. https://doi.org/10.5885/44985SL-8F203FD3ACCD4138 (2020).

    38.
    Pawlowicz, R. Calculating the conductivity of natural waters. Limnol. Oceanogr. Methods 6, 489–501 (2008).
    CAS  Article  Google Scholar 

    39.
    Prėskienis, V. et al. Seasonal patterns in greenhouse gas emissions from lakes and ponds in a High Arctic polygonal landscape. Limnol. Oceanogr. https://doi.org/10.1002/lno.11660 (2021).
    Article  Google Scholar 

    40.
    Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).
    CAS  Article  Google Scholar 

    41.
    Helms, J. R. et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53, 955–969 (2008).
    ADS  Article  Google Scholar 

    42.
    Weishaar, J. L. et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37, 4702–4708 (2003).
    ADS  CAS  Article  Google Scholar 

    43.
    Loiselle, S. A. et al. Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes. J. Photochem. Photobiol. Biol. 95, 129–137 (2009).
    CAS  Article  Google Scholar 

    44.
    McKnight, D. M. et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46, 38–48 (2001).
    ADS  CAS  Article  Google Scholar 

    45.
    Murphy, K. R., Stedmon, C. A., Graeber, D. & Bro, R. Fluorescence spectroscopy and multi-way techniques PARAFAC. Anal. Methods 5, 6557–6566 (2013).
    Google Scholar 

    46.
    Murphy, K. R. et al. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ. Sci. Technol. 44, 9405–9412 (2010).
    ADS  CAS  Article  Google Scholar 

    47.
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, Berlin, 2011).
    Google Scholar 

    48.
    IOCCG Protocol Series. Inherent optical property measurements and protocols: absorption coefficient. In Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation (eds. Neeley, A. R. & Mannino, A.) vol. 1.0. https://doi.org/10.25607/OBP-119 (2018).

    49.
    Roy, S. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    50.
    Glew, J. R. Miniature gravity corer for recovering short sediment cores. J. Paleolimnol. 5, 285–287 (1991).
    ADS  Article  Google Scholar 

    51.
    Schneider, T., Grosbois, G., Vincent, W. F. & Rautio, M. Saving for the future: Pre-winter uptake of algal lipids supports copepod egg production in spring. Freshw. Biol. 62, 1063–1072 (2017).
    CAS  Article  Google Scholar 

    52.
    Grosbois, G., Mariash, H., Schneider, T. & Rautio, M. Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival. Sci. Rep. 7, 11543. https://doi.org/10.1038/s41598-017-10956-0 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies

    1.
    Dreyer, D. et al. The Earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian Bogong Moth. Curr. Biol. 28, 2160–2166 (2018).
    CAS  Article  Google Scholar 
    2.
    Guerra, P. A., Gegear, R. J. & Reppert, S. M. A magnetic compass aids monarch butterfly migration. Nat. Commun. 5, 4164 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59 (2018).
    ADS  CAS  Article  Google Scholar 

    4.
    Uebe, R. & Schuler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).
    CAS  Article  Google Scholar 

    5.
    Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).
    CAS  Article  Google Scholar 

    6.
    Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000).
    CAS  Article  Google Scholar 

    7.
    Schulten, K., Swenberg, C. E. & Weller, A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. 111, 1–5 (1978).
    Article  Google Scholar 

    8.
    Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009).
    ADS  CAS  Article  Google Scholar 

    9.
    Kerpal, C. et al. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception. Nat. Commun. 10, 3707 (2019).
    ADS  Article  Google Scholar 

    10.
    Maeda, K. et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl Acad. Sci. USA 109, 4774–4779 (2012).
    ADS  CAS  Article  Google Scholar 

    11.
    Emery, P. et al. Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26, 493–504 (2000).
    CAS  Article  Google Scholar 

    12.
    Zhu, H. et al. The two CRYs of the butterfly. Curr. Biol. 15, R953–R954 (2005).
    CAS  Article  Google Scholar 

    13.
    Zoltowski, B. D. et al. Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proc. Natl Acad. Sci. USA 116, 19449–19457 (2019).
    CAS  Article  Google Scholar 

    14.
    Merlin, C., Beaver, L. E., Taylor, O. R., Wolfe, S. A. & Reppert, S. M. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res. 23, 159–168 (2013).
    CAS  Article  Google Scholar 

    15.
    Michael, A. K., Fribourgh, J. L., Van Gelder, R. N. & Partch, C. L. Animal cryptochromes: divergent roles in light perception, circadian timekeeping and beyond. Photochem. Photobiol. 93, 128–140 (2017).
    CAS  Article  Google Scholar 

    16.
    Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).
    CAS  Article  Google Scholar 

    17.
    Zhang, Y., Markert, M. J., Groves, S. C., Hardin, P. E. & Merlin, C. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc. Natl Acad. Sci. USA 114, E7516–E7525 (2017).
    CAS  Article  Google Scholar 

    18.
    Fedele, G. et al. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 10, e1004804 (2014).
    Article  Google Scholar 

    19.
    Fedele, G., Green, E. W., Rosato, E. & Kyriacou, C. P. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat. Commun. 5, 4391 (2014).
    ADS  CAS  Article  Google Scholar 

    20.
    Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018 (2008).
    ADS  CAS  Article  Google Scholar 

    21.
    Gegear, R. J., Foley, L. E., Casselman, A. & Reppert, S. M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804–807 (2010).
    ADS  CAS  Article  Google Scholar 

    22.
    Foley, L. E., Gegear, R. J. & Reppert, S. M. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2, 356 (2011).
    ADS  Article  Google Scholar 

    23.
    Kutta, R. J., Archipowa, N., Johannissen, L. O., Jones, A. R. & Scrutton, N. S. Vertebrate cryptochromes are vestigial flavoproteins. Sci. Rep. 7, 44906 (2017).
    ADS  CAS  Article  Google Scholar 

    24.
    Zhu, H., Gegear, R. J., Casselman, A., Kanginakudru, S. & Reppert, S. M. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol. 7, 14 (2009).
    Article  Google Scholar 

    25.
    Lin, C., Top, D., Manahan, C. C., Young, M. W. & Crane, B. R. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction. Proc. Natl Acad. Sci. USA 115, 3822–3827 (2018).
    CAS  Article  Google Scholar 

    26.
    Nohr, D. et al. Extended electron-transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids. Biophys. J. 111, 301–311 (2016).
    ADS  CAS  Article  Google Scholar 

    27.
    Nohr, D. et al. Determination of radical-radical distances in light-active proteins and their implication for biological magnetoreception. Angew. Chem. Int. Ed. Engl. 56, 8550–8554 (2017).
    CAS  Article  Google Scholar 

    28.
    Palomares, L. A., Joosten, C. E., Hughes, P. R., Granados, R. R. & Shuler, M. L. Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol. Prog. 19, 185–192 (2003).
    CAS  Article  Google Scholar 

    29.
    Bazalova, O. et al. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl Acad. Sci. USA 113, 1660–1665 (2016).
    ADS  CAS  Article  Google Scholar 

    30.
    Merlin, C., Gegear, R. J. & Reppert, S. M. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science 325, 1700–1704 (2009).
    ADS  CAS  Article  Google Scholar 

    31.
    Yoshii, T., Ahmad, M. & Helfrich-Forster, C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 7, e1000086 (2009).
    Article  Google Scholar 

    32.
    Worster, S., Mouritsen, H. & Hore, P. J. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J. R. Soc. Interface 14, (2017).

    33.
    Oztürk, N., Song, S.-H., Selby, C. P. & Sancar, A. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem. 283, 3256–3263 (2008).
    Article  Google Scholar 

    34.
    Wu, H., Scholten, A., Einwich, A., Mouritsen, H. & Koch, K.-W. Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina. Sci. Rep. 10, 7364 (2020).
    ADS  CAS  Article  Google Scholar 

    35.
    Wan, G.-J. et al. Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper. Anim. Behav. 121, 107–116 (2016).
    Article  Google Scholar 

    36.
    Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).
    CAS  Article  Google Scholar 

    37.
    Iiams, S. E., Lugena, A. B., Zhang, Y., Hayden, A. N. & Merlin, C. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc. Natl Acad. Sci. USA 116, 25214–25221 (2019).
    CAS  Article  Google Scholar 

    38.
    Markert, M. J. et al. Genomic access to monarch migration using TALEN and CRISPR/Cas9-mediated targeted mutagenesis. G3 (Bethesda) 6, 905–915 (2016).
    CAS  Article  Google Scholar 

    39.
    Jao, L. E., Wente, S. R. & Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl Acad. Sci. USA 110, 13904–13909 (2013).
    ADS  CAS  Article  Google Scholar 

    40.
    Kim, J. M., Kim, D., Kim, S. & Kim, J. S. Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat. Commun. 5, 3157 (2014).
    ADS  Article  Google Scholar 

    41.
    Zhu, H. et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 6, e4 (2008).
    Article  Google Scholar  More

  • in

    Physical and ecological isolation contribute to maintain genetic differentiation between fire salamander subspecies

    Abellán P, Svenning JC (2014) Refugia within refugia–patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biol J Linn Soc 113:13–28
    Article  Google Scholar 

    Alarcón-Ríos L, Nicieza AG, Kaliontzopoulou A, Buckley D, Velo-Antón G (2020) Evolutionary history and not heterochronic modifications associated with viviparity drive head shape differentiation in a reproductive polymorphic species, Salamandra salamandra. Evol Biol 47:43–55
    Article  Google Scholar 

    Alcobendas M, Castanet J (2000) Bone growth plasticity among populations of Salamandra salamandra: interactions between internal and external factors. Herpetologica 56:14–26
    Google Scholar 

    Alcobendas M, Buckley D, Tejedo M (2004) Variability in survival, growth and metamorphosis in the larval fire salamander (Salamandra salamandra): effects of larval birth size, sibship and environment. Herpetologica 60:232–245
    Article  Google Scholar 

    Antunes B, Lourenço A, Caeiro-Dias G, Dinis M, Gonçalves H, Martínez-Solano I et al. (2018) Combining phylogeography and landscape genetics to infer the evolutionary history of a short-range Mediterranean relict, Salamandra salamandra longirostris. Conserv Genet 19:1411–1424
    CAS  Article  Google Scholar 

    Arntzen JW, van Belkom J (2020) ‘Mainland-island’ population structure of a terrestrial salamander in a forest-bocage landscape with little evidence for in situ ecological speciation. Sci Rep 10:1–15
    Article  CAS  Google Scholar 

    Balkenhol N, Cushman SA, Waits LP, Storfer A (2016) Current status, future opportunities, and remaining challenges in landscape genetics. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP (eds) Landscape genetics: concepts, methods, applications, John Wiley and Sons Ltd, Chichester, pp 247–255.

    Barton NH, Gale KS (1993) Genetic analysis of hybrid zones. Hybrid zones and the evolutionary process. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, p 13–45
    Google Scholar 

    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300
    Google Scholar 

    Beukema W, Nicieza AG, Lourenço A, Velo‐Antón G (2016) Colour polymorphism in Salamandra salamandra (Amphibia: Urodela), revealed by a lack of genetic and environmental differentiation between distinct phenotypes. J Zool Syst Evol 54:127–136
    Article  Google Scholar 

    Bisconti R, Porretta D, Arduino P, Nascetti G, Canestrelli D (2018) Hybridization and extensive mitochondrial introgression among fire salamanders in peninsular Italy. Sci Rep 8:13187
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Bosch J, López-Bueis I (1994) Comparative study of the dorsal pattern in Salamandra salamandra bejarae (Wolterstorff, 1934) and S. s. almanzoris (Müller & Hellmich, 1935). Herpetol J 4:46–48
    Google Scholar 

    Burgon JD, Vieites DR, Jacobs A, Weidt SK, Gunter HM, Steinfartz S et al. (2020) Functional colour genes and signals of selection in colour polymorphic salamanders. Mol Ecol 29:1284–1299
    CAS  PubMed  Article  Google Scholar 

    Burgon JD, Vences M, Steinfartz S, Bogaerts S, Bonato L, Donaire-Barroso D, Martínez-Solano I, Velo-Antón G, Vieites DR, Mable BK, Elmer KR (2021) Phylogenomic inference of species and subspecies diversity in the Pal earctic salamander genus Salamandra. Molecular Phylogenetics and Evolution 157:107063

    Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113
    CAS  PubMed  Article  Google Scholar 

    Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. JABES 7:361
    Google Scholar 

    Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240
    Article  Google Scholar 

    Czypionka T, Goedbloed DJ, Steinfartz S, Nolte AW (2018) Plasticity and evolutionary divergence in gene expression associated with alternative habitat use in larvae of the European Fire Salamander. Mol Ecol 27:2698–2713
    PubMed  Article  Google Scholar 

    Dinis M, Joger U, Slimani T, Martínez-Freiría F, Merabet K, Donaire D et al. (2018) Allopatric diversification and evolutionary melting pot in a North African Palearctic relict: the biogeographic history of Salamandra algira. Mol Phylogenet Evol 130:81–91
    PubMed  Article  Google Scholar 

    Domínguez-Villar D, Carrasco RM, Pedraza J, Cheng H, Edwards R, Willenbring JK (2013) Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci Rep. 3:2034
    PubMed  PubMed Central  Article  Google Scholar 

    Dufresnes C, Pribille M, Alard B, Dubey S, Perrin N, Gonçalves H et al. (2020) Integrating hybrid zone analyses in species delimitation: lessons from two anuran radiations of the Western Mediterranean. Heredity 124:423–438
    CAS  PubMed  Article  Google Scholar 

    Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361
    Article  Google Scholar 

    Emel SL, Olson DH, Knowles LL, Storfer A (2019) Comparative landscape genetics of two endemic torrent salamander species, Rhyacotriton kezeri and R. variegatus: implications for forest management and species conservation. Conserv Genet 20:801–815
    CAS  Article  Google Scholar 

    Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040
    PubMed  Article  Google Scholar 

    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Ficetola GF, Colleoni E, Renaud J, Scali S, Padoa‐Schioppa E, Thuiller W (2016) Morphological variation in salamanders and their potential response to climate change. Glob Chang Biol 22:2013–2024
    PubMed  PubMed Central  Article  Google Scholar 

    Fletcher R, Fortin M (2018) Spatial ecology and conservation modeling. Springer International Publishing, Cham
    Google Scholar 

    Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Francis RM (2016) pophelper: An r package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32
    PubMed  Article  CAS  Google Scholar 

    García-París M, Alcobendas M, Alberch P (1998) Influence of the Guadalquivir river basin on mitochondrial DNA evolution of Salamandra salamandra (Caudata: Salamandridae) from southern Spain. Copeia 1998:173–176
    Article  Google Scholar 

    García-París M, Alcobendas M, Buckley D, Wake DB (2003) Dispersal of viviparity across contact zones in iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57:129–143

    Gomez A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds). Phylogeography of Southern European Refugia. Springer: Dordrecht. pp 155–188

    Gray LN, Barley AJ, Poe S, Thomson RC, Nieto‐Montes de Oca A, Wang IJ (2019) Phylogeography of a widespread lizard complex reflects patterns of both geographic and ecological isolation. Mol Ecol 28:644–657
    PubMed  Article  Google Scholar 

    Gutiérrez-Rodríguez J, Barbosa AM, Martínez-Solano I (2017a) Present and past climatic effects on the current distribution and genetic diversity of the Iberian spadefoot toad (Pelobates cultripes): an integrative approach. J Biogeogr 44:245–258
    Article  Google Scholar 

    Gutiérrez-Rodríguez J, Barbosa AM, Martínez-Solano I (2017b) Integrative inference of population history in the Ibero-Maghrebian endemic Pleurodeles waltl (Salamandridae). Mol Phylogenet Evol 112:122–137
    PubMed  Article  Google Scholar 

    Hendrix R, Schmidt BR, Schaub M, Krause ET, Steinfartz S (2017) Differentiation of movement behaviour in an adaptively diverging salamander population. Mol Ecol 26:6400–6413
    PubMed  Article  Google Scholar 

    Hendrix R, Susanne Hauswaldt J, Veith M, Steinfartz S (2010) Strong correlation between cross-amplification success and genetic distance across all members of “True Salamanders” (Amphibia: Salamandridae) revealed by Salamandra salamandra-specific microsatellite loci. Mol Ecol Resour 10:1038–1047
    CAS  PubMed  Article  Google Scholar 

    Hendry AP (2017) Eco-evolutionary dynamics. Princeton University Press, Princeton
    Google Scholar 

    Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913
    CAS  Article  Google Scholar 

    Hijmans RJ, Van Etten J (2016) raster: Geographic Data Analysis and Modeling. R package version 2.5-8. Available from: http://CRAN.R-project.org/package=raster

    Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:1–94
    Article  Google Scholar 

    Kalinowski ST (2005) HP-RARE 10: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189
    CAS  Article  Google Scholar 

    Keenan K, Mcginnity P, Cross TF, Crozier WW, Prodöhl PA (2013) DiveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788
    Article  Google Scholar 

    Linnaeus C (1758) Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. 10th Edition. Volume 1. Stockholm, Sweden: L. Salvii

    Lourenço A, Gonçalves J, Carvalho F, Wang IJ, Velo-Antón G (2019) Comparative landscape genetics reveals the evolution of viviparity reduces genetic connectivity in fire salamanders. Mol Ecol 28:4573–4591
    PubMed  Article  CAS  Google Scholar 

    Maia-Carvalho B, Vale CG, Sequeira F, Ferrand N, Martínez-Solano I, Gonçalves H (2018) The roles of allopatric fragmentation and niche divergence in intraspecific lineage diversification in the common midwife toad (Alytes obstetricans). J Biogeogr 45:2146–2158
    Article  Google Scholar 

    Martínez-Freiría F, Freitas I, Zuffi MAL, Golay P, Ursenbacher S, Velo-Antón G (2020) Climatic refugia boosted allopatric diversification in Western Mediterranean vipers. J Biogeogr 47:1698–1713
    Article  Google Scholar 

    Martínez-Solano I (2006) Atlas de distribución y estado de conservación de los anfibios de la Comunidad de Madrid. Graellsia 62:253–291
    Article  Google Scholar 

    Martínez-Solano I, Alcobendas M, Buckley D, García-París M (2005) Molecular characterisation of the endangered Salamandra salamandra almanzoris (Caudata, Salamandridae). Ann Zool Fenn 42:57–68
    Google Scholar 

    McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561
    PubMed  PubMed Central  Article  Google Scholar 

    McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Concepts and synthesis emphasizing new ideas to stimulate research in ecology using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724
    PubMed  Article  Google Scholar 

    Méndez L, Perdices A, Machordom A (2019) Genetic structure and diversity of the Iberian populations of the freshwater blenny Salaria fluviatilis (Asso, 1801) and its conservation implications. Conserv Genet 20:1223–1236
    Article  Google Scholar 

    Miraldo A, Hewitt GM, Paulo OS, Emerson BC (2011) Phylogeography and demographic history of Lacerta lepida in the Iberian Peninsula: multiple refugia, range expansions and secondary contact zones. BMC Evol Biol 11:170
    PubMed  PubMed Central  Article  Google Scholar 

    Mulder KP, Rodriguez NC, Grant EHC, Brand A, Fleischer RC (2019) North ‐ facing slopes and elevation shape asymmetric genetic structure in the range ‐ restricted salamander Plethodon shenandoah. Ecol Evol 9:5094–5105
    PubMed  PubMed Central  Article  Google Scholar 

    Noguerales V, Cordero PJ, Ortego J (2017) Testing the role of ancient and contemporary landscapes on structuring genetic variation in a specialist grasshopper. Ecol Evol 7:3110–3122
    PubMed  PubMed Central  Article  Google Scholar 

    Nosil P (2012) Ecological speciation. Oxford University Press, New York
    Google Scholar 

    Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
    Article  Google Scholar 

    Pereira RJ, Martínez-Solano I, Buckley D (2016) Hybridization during altitudinal range shifts: nuclear introgression leads to extensive cyto-nuclear discordance in the fire salamander. Mol Ecol 25:1551–1565
    CAS  PubMed  Article  Google Scholar 

    Peterman WE (2018) ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9:1638–1647
    Article  Google Scholar 

    Phillips SB, Aneja VP, Kang D, Arya SP (2006) Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. IJGEI 6:231–252
    Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
    CAS  PubMed  PubMed Central  Google Scholar 

    Prunier JG, Colyn M, Legendre X, Nimon KF, Flamand MC (2015) Multicollinearity in spatial genetics: Separating the wheat from the chaff using commonality analyses. Mol Ecol 24:263–283
    CAS  Article  Google Scholar 

    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://wwwR-project.org/
    Google Scholar 

    Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106
    PubMed  PubMed Central  Article  Google Scholar 

    Sánchez‐Montes G, Wang J, Ariño AH, Martínez‐Solano I (2018) Mountains as barriers to gene flow in amphibians: quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits. J Biogeogr 45:318–331
    Article  Google Scholar 

    Sánchez-Montes G, Recuero E, Barbosa AM, Martínez-Solano I (2019) Complementing the Pleistocene biogeography of European amphibians: testimony from a southern Atlantic species. J Biogeogr 46:568–583
    Article  Google Scholar 

    Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15
    CAS  Article  Google Scholar 

    Silva P, López-Bao JV, Llaneza L, Álvares F, Lopes S, Blanco JC et al. (2018) Cryptic population structure reveals low dispersal in Iberian wolves. Sci Rep 8:14108
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Steinfartz S, Küsters D, Tautz D (2004) Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the fire salamander Salamandra salamandra (Amphibia: Caudata). Mol Ecol Notes 4:626–628
    CAS  Article  Google Scholar 

    Velo-Antón G, García-París M, Galán P, Cordero Rivera A (2007) The evolution of viviparity in Holocene islands: ecological adaptation versus phylogenetic descent along the transition from aquatic to terrestrial environments. J Zool Syst Evol 45:345–352
    Article  Google Scholar 

    Velo‐Antón G, Parra JL, Parra‐Olea G, Zamudio KR (2013) Tracking climate change in a dispersal‐limited species: reduced spatial and genetic connectivity in a montane salamander. Mol Ecol 22:3261–3278
    PubMed  Article  Google Scholar 

    Velo-Antón G, Buckley D (2015) Salamandra común—Salamandra salamandra. In: Salvador A, Martínez-Solano I (eds), Enciclopedia Virtual de los Vertebrados Españoles, Museo Nacional de Ciencias Naturales, CSIC www.vertebradosibericos.org

    Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67:3403–3411
    PubMed  Article  Google Scholar 

    Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662
    PubMed  PubMed Central  Article  Google Scholar 

    Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16:175–182
    PubMed  Article  Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370
    CAS  Google Scholar 

    Winiarski KJ, Peterman WE, Whiteley AR, McGarigal K (2020) Multiscale resistant kernel surfaces derived from inferred gene flow: an application with vernal pool breeding salamanders. Mol Ecol Resour 20:97–113
    CAS  PubMed  Article  Google Scholar 

    Wogan GOU, Yuan ML, Mahler DL, Wang IJ (2020) Genome-wide epigenetic isolation by environment in a widespread Anolis lizard. Mol Ecol 29:40–55
    CAS  PubMed  Article  Google Scholar 

    Wright S (1943) Isolation by distance. Genetics 28:114–138
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Functional traits explain crayfish invasive success in the Netherlands

    1.
    Keller, R. P., Geist, J., Jeschke, J. M. & Kühn, I. Invasive species in Europe: ecology, status, and policy. Environ. Sci. Eur. 23, 1–17 (2011).
    Article  Google Scholar 
    2.
    Parker, M., Thompson, J. N. & Weller, S. G. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).
    Article  Google Scholar 

    3.
    Allendorf, F. W. & Lundquist, L. L. Introduction: population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).
    Article  Google Scholar 

    4.
    Crowl, T. A., Crist, T. O., Parmenter, R. R., Belovsky, G. & Lugo, A. E. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 6, 238–246 (2008).
    Article  Google Scholar 

    5.
    van der Veer, G. & Nentwig, W. Environmental and economic impact assessment of alien and invasive fish species in Europe using the generic impact scoring system. Ecol. Freshw. Fish 24, 646–656 (2015).
    Article  Google Scholar 

    6.
    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Scalera, R. How much is Europe spending on invasive alien species?. Biol. Invasions 12, 173–177 (2010).
    Article  Google Scholar 

    8.
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    McLellan, R., Iyengar, L., Jeffries, B. & Oerlemans, N. Living Planet Report 2014: Species and Spaces, People and Places (WWF International, Gland, 2014).
    Google Scholar 

    10.
    García-Berthou, E. et al. Introduction pathways and establishment rates of invasive aquatic species in Europe. Can. J. Fish. Aquat. Sci. 62, 453–463 (2005).
    Article  Google Scholar 

    11.
    Karatayev, A. Y., Burlakova, L. E., Padilla, D. K., Mastitsky, S. E., & Olenin, S. Invaders are not a random selection of species. Biol. Invasions, 11, 2009. https://doi.org/10.1007/s10530-009-9498-0 (2009).
    Article  Google Scholar 

    12.
    Verdonschot, R. C. M., Vos, J. H., & Verdonschot, P. F. M. Exotische macrofauna en macrofyten in de Nederlandse zoete wateren: voorkomen en beleid in 2012. (WOt-werkdocument 334) (Wettelijke Onderzoekstaken Natuur & Milieu, 2013).

    13.
    Holdich, D. M., Reynolds, J. D., Souty-Grosset, C. & Sibley, P. J. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 394–395, 11 (2009).
    Article  Google Scholar 

    14.
    Chucholl, C. Invaders for sale: trade and determinants of introduction of ornamental freshwater crayfish. Biol. Invasions 15, 125–141 (2013).
    Article  Google Scholar 

    15.
    Barbaresi, S. & Gherardi, F. The invasion of the alien crayfish Procambarus clarkii in Europe, with particular reference to Italy. Biol. Invasions 2, 259–264 (2000).
    Article  Google Scholar 

    16.
    Gherardi, F. Crayfish invading Europe: the case study of Procambarus clarkii. Mar. Freshw. Behav. Physiol. 39, 175–191 (2006).
    Article  Google Scholar 

    17.
    Kouba, A., Petrusek, A. & Kozák, P. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Manag. Aquat. Ecosyst. 413, 5 (2014).
    Article  Google Scholar 

    18.
    Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. 100 of the world’s worst invasive alien species: a selection from the global invasive species database in Aliens vol. 12 (Invasive Species Specialist Group, 2000).

    19.
    Padilla, D. K. & Williams, S. L. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front. Ecol. Environ. 2, 131–138 (2004).
    Article  Google Scholar 

    20.
    Faulkes, Z. The global trade in crayfish as pets. Crustacean Res. 44, 75–92 (2015).
    Article  Google Scholar 

    21.
    Soes, D. M., & Koese, B. Invasive Crayfish in the Netherlands: A Preliminary Risk Analysis. (Bureau Waardenburg bv, Stichting EIS-Nederland, Invasive Alien Species Team, 2010).

    22.
    Chucholl, C. & Wendler, F. Positive selection of beautiful invaders: long-term persistence and bio-invasion risk of freshwater crayfish in the pet trade. Biol. Invasions 19, 197–208 (2017).
    Article  Google Scholar 

    23.
    Zeng, Y., Chong, K. Y., Grey, E. K., Lodge, D. M. & Yeo, D. C. Disregarding human pre-introduction selection can confound invasive crayfish risk assessments. Biol. Invasions 17, 2373–2385 (2015).
    Article  Google Scholar 

    24.
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).
    PubMed  Article  Google Scholar 

    25.
    Statzner, B., Bonada, N. & Dolédec, S. Biological attributes discriminating invasive from native European stream macroinvertebrates. Biol. Invasions 10, 517–530 (2008).
    Article  Google Scholar 

    26.
    Whitney, K. D. & Gabler, C. A. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers. Distrib. 14, 569–580 (2008).
    Article  Google Scholar 

    27.
    Kolar, C. S. & Lodge, D. M. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16, 199–204 (2001).
    PubMed  Article  Google Scholar 

    28.
    Marchetti, M. P., Moyle, P. B. & Levine, R. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshw. Biol. 49, 646–661 (2004).
    Article  Google Scholar 

    29.
    Grabowski, M., Bacela, K. & Konopacka, A. How to be an invasive gammarid (Amphipoda: Gammaroidea)-comparison of life history traits. Hydrobiologia 590, 75–84 (2007).
    Article  Google Scholar 

    30.
    Thiébaut, G. Invasion success of non-indigenous aquatic and semi-aquatic plants in their native and introduced ranges. A comparison between their invasiveness in North America and in France. Biol. Invasions 9, 1–12 (2007).
    Article  Google Scholar 

    31.
    Swart, C., Visser, V. & Robinson, T. B. Patterns and traits associated with invasions by predatory marine crabs. NeoBiota 39, 79 (2018).
    Article  Google Scholar 

    32.
    Larson, E. R. & Olden, J. D. Latent extinction and invasion risk of crayfishes in the southeastern United States. Conserv. Biol. 24, 1099–1110 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Tricarico, E., Vilizzi, L., Gherardi, F. & Copp, G. H. Calibration of FI-ISK, an invasiveness screening tool for nonnative freshwater invertebrates. Risk Anal. Int. J. 30, 285–292 (2010).
    Article  Google Scholar 

    34.
    Larson, E. R. & Olden, J. D. Using avatar species to model the potential distribution of emerging invaders. Glob Ecol. Biogeogr. 21, 1114–1125 (2012).
    Article  Google Scholar 

    35.
    Veselý, L., Buřič, M. & Kouba, A. Hardy exotics species in temperate zone: can “warm water” crayfish invaders establish regardless of low temperatures?. Sci. Rep. 5, 16340 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Jaklič, M. & Vrezec, A. The first tropical alien crayfish species in European waters: the redclaw Cherax quadricarinatus (Von Martens, 1868) (Decapoda, Parastacidae). Crustaceana 84, 651–665 (2011).
    Article  Google Scholar 

    37.
    Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: a null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).
    Article  Google Scholar 

    38.
    Marchetti, M. P., Moyle, P. B. & Levine, R. Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecol. Appl. 14, 587–596 (2004).
    Article  Google Scholar 

    39.
    Bennett, S. N., Olson, J. R., Kershner, J. L. & Corbett, P. Propagule pressure and stream characteristics influence introgression: cutthroat and rainbow trout in British Columbia. Ecol. Appl. 20, 263–277 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Cruz, M. J. & Rebelo, R. Colonization of freshwater habitats by an introduced crayfish, Procambarus clarkii Southwest Iberian Peninsula. Hydrobiologia 575, 191–201 (2007).
    Article  Google Scholar 

    41.
    Lynas, J., Storey, A. W. & Knott, B. Aggressive interactions between three species of freshwater crayfish of the genus Cherax (Decapoda: Parastacidae). Mar. Freshw. Behav. Physiol. 40, 105–116 (2007).
    Article  Google Scholar 

    42.
    Corey, S. Comparative fecundity of four species of crayfish in southwestern Ontario, Canada (Decapoda, Astacidea). Crustaceana 52(3), 276–286 (1987).
    Article  Google Scholar 

    43.
    Somers, K. M. Characterizing size-specific fecundity in crustaceans. Crustacean Egg Prod. 7, 357–378 (1991).
    Google Scholar 

    44.
    Maguire, I., Klobučar, G. I. V. & Erben, R. The relationship between female size and egg size in the freshwater crayfish Austropotamobius torrentium. Bulletin Français de la Pêche et de la Pisciculture 376–377, 777–785 (2005).
    Article  Google Scholar 

    45.
    Pilotto, F. et al. The invasive crayfish Faxonius limosus in Lake Varese: estimating abundance and population size structure in the context of habitat and methodological constraints. J. Crustacean Biol. 28, 633–640 (2008).
    Article  Google Scholar 

    46.
    Hobbs Jr, H. H. A checklist of the North and Middle American crayfishes (Decapoda: Astacidae and Cambaridae). Smithsonian Contrib. Zool. 166, 1–161 (1974).
    Google Scholar 

    47.
    Mrugała, A. et al. Trade of ornamental crayfish in Europe as a possible introduction pathway for important crustacean diseases: crayfish plague and white spot syndrome. Biol. Invasions 17, 1313–1326 (2015).
    Article  Google Scholar 

    48.
    Svoboda, J., Mrugała, A., Kozubíková-Balcarová, E. & Petrusek, A. Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: a review. J. Fish Dis. 40, 127–140 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Grandjean, F. et al. Status of Pacifastacus leniusculus and its role in recent crayfish plague outbreaks in France: improving distribution and crayfish plague infection patterns. Aquat. Invasions, 12, 541–549 (2017).
    Article  Google Scholar 

    50.
    Crandall, K. A. & De Grave, S. An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. J. Crustacean Biol. 37, 615–653 (2017).
    Article  Google Scholar 

    51.
    Freshwater Crayfish: A Global Overview. (ed. Kawai, T., Faulkes, Z., & Scholtz, G.) (CRC Press, Boca Raton, 2015).

    52.
    Buřič, M., Kouba, A. & Kozak, P. Reproductive plasticity in freshwater invader: from long-term sperm storage to parthenogenesis. PLoS ONE 8, e77597. https://doi.org/10.1371/journal.pone.0077597 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Kaldre, K., Meženin, A., Paaver, T., & Kawai, T. A preliminary study on the tolerance of marble crayfish Procambarus fallax f. virginalis to low temperature in Nordic climate in Freshwater crayfish: global overview, 54–62 (2016).

    54.
    Vogt, G. Marmorkrebs: natural crayfish clone as emerging model for various biological disciplines. J. Biosci. 36, 377–382 (2011).
    PubMed  Article  Google Scholar 

    55.
    Chucholl, C. Predicting the risk of introduction and establishment of an exotic aquarium animal in Europe: insights from one decade of Marmorkrebs (Crustacea, Astacida, Cambaridae) releases. Biol. Invasions 5, 309–318 (2014).
    Article  Google Scholar 

    56.
    Chucholl, C., Morawetz, K. & Groß, H. The clones are coming–strong increase in Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] records from Europe. Aquat. Invasions 7, 511–519 (2012).
    Article  Google Scholar 

    57.
    Soes, D. M. & van Eekelen, R. Rivierkreeften, een oprukkend probleem?. De Levende Natuur 107, 56–59 (2006).
    Google Scholar 

    58.
    Mauvisseau, Q., Tönges, S., Andriantsoa, R., Lyko, F. & Sweet, M. Early detection of an emerging invasive species: eDNA monitoring of a parthenogenetic crayfish in freshwater systems. Manag. Biol. Invasions 10, 461 (2019).
    Article  Google Scholar 

    59.
    Strand, D. A. et al. Monitoring a Norwegian freshwater crayfish tragedy: eDNA snapshots of invasion, infection and extinction. J. Appl. Ecol. 56, 1661–1673 (2019).
    CAS  Article  Google Scholar 

    60.
    Beentjes, K. K., Speksnijder, A. G., Schilthuizen, M., Schaub, B. E. & van der Hoorn, B. B. The influence of macroinvertebrate abundance on the assessment of freshwater quality in The Netherlands. Metabarcoding Metagenom. 2, e26744 (2018).
    Article  Google Scholar 

    61.
    Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: a literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).
    Article  Google Scholar 

    62.
    Zhang, Z. et al. Impacts of climate change on the global potential distribution of two notorious invasive crayfishes. Freshw. Biol. 65, 353–365 (2020).
    Article  Google Scholar 

    63.
    Capinha, C., Leung, B. & Anastácio, P. Predicting worldwide invasiveness for four major problematic decapods: an evaluation of using different calibration sets. Ecography 34, 448–459 (2011).
    Article  Google Scholar 

    64.
    Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S. & Kats, L. B. Aquatic invasive species: challenges for the future. Hydrobiologia 750, 147–170 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Früh, D., Stoll, S. & Haase, P. Physicochemical and morphological degradation of stream and river habitats increases invasion risk. Biol. Invasions 14, 2243–2253 (2012).
    Article  Google Scholar 

    66.
    Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).
    Article  Google Scholar 

    67.
    Scalici, M. et al. The new threat to Italian inland waters from the alien crayfish “gang”: the Australian Cherax destructor Clark, 1936. Hydrobiologia 632, 341–345 (2009).
    Article  Google Scholar 

    68.
    Koese, B. & Evers, C. H. M. A National Inventory of Invasive Freshwater Crayfish in the Netherlands in 2010 (EIS, Stichting European Invertebrate Survey Nederland, 2011).
    Google Scholar 

    69.
    Clement, J., & van Puijenbroek, P. Basiskaart Aquatisch: de Watertypenkaart Het oppervlaktewater in de TOP10NL geclassificeerd naar watertype (No. 500067004). (Planbureau voor de Leefomgeving 2010).

    70.
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).
    ADS  Google Scholar 

    71.
    Lyko, F. The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa 4363(4), 544–552 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    72.
    Usseglio-Polatera, P. & Tachet, H. Theoretical habitat templets, species traits, and species richness: Plecoptera and Ephemeroptera in the Upper Rhône River and its floodplain. Freshw. Biol. 31, 357–375 (1994).
    Article  Google Scholar 

    73.
    Poff, N. L. et al. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J. North Am. Benthological. Soc. 25, 730–755 (2006).
    Article  Google Scholar 

    74.
    Wyse, S. V. et al. A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion. Int. J. Wildland Fire 25, 466–477 (2016).
    Article  Google Scholar 

    75.
    Hill, M. O. TWINSPAN. A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. (Ecology and Systematics, Cornell University, 1979).

    76.
    Hu, G. et al. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease. PLoS ONE 7, e36432. https://doi.org/10.1371/journal.pone.0036432 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    77.
    Agir, S. U., Kutbay, H. G. & Surmen, B. Plant diversity along coastal dunes of the Black Sea (North of Turkey). Rendiconti Lincei 27, 443–453 (2016).
    Article  Google Scholar 

    78.
    Andrej, P. & Andraž, Č. Functional response traits and plant community strategy indicate the stage of secondary succession. Hacquetia 11, 209–225 (2012).
    Article  Google Scholar 

    79.
    Hill, M.O. & Šmilauer, P. TWINSPAN for Windows version 2.3. (Centre for Ecology and Hydrology & University of South Bohemia, Huntingdon & Ceske Budejovice, 2005).

    80.
    Roleček, J., Tichý, L., Zelený, D. & Chytrý, M. Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. J. Veg. Sci. 20, 596–602 (2009).
    Article  Google Scholar  More

  • in

    Extreme temperatures compromise male and female fertility in a large desert bird

    1.
    Angilletta, M. J. Thermal Adaptation: A Theoretical And Empirical Analysis (Oxford University Press, 2009).
    2.
    Chown, S. L., Sinclair, B. J., Leinaas, H. P. & Gaston, K. J. Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol. 2, e406 (2004).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    ADS  Article  Google Scholar 

    4.
    Kellermann, V., van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    PubMed  Article  Google Scholar 

    6.
    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl Acad. Sci. USA 113, 680–685 (2016).
    ADS  PubMed  Article  CAS  Google Scholar 

    7.
    Geerts, A. N. et al. Rapid evolution of thermal tolerance in the water flea, Daphnia. Nat. Clim. Change 5, 665–668 (2015).
    ADS  Article  Google Scholar 

    8.
    Iossa, G. Sex-specific differences in thermal fertility limits. Trends Ecol. Evol. 34, 490–492 (2019).
    PubMed  Article  Google Scholar 

    9.
    Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).
    PubMed  Article  Google Scholar 

    10.
    Vasudeva, R. et al. Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife 8, e49452 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Hurley, L. L., McDiarmid, C. S., Friesen, C. R., Griffith, S. C. & Rowe, M. Experimental heatwaves negatively impact sperm quality in the zebra finch. Proc. R. Soc. B 285, 20172547 (2018).
    PubMed  Article  Google Scholar 

    12.
    Dahlke, F., Wohlrab, S., Butzin, M. & Pörtner, H. Thermal bottlenecks in the lifecycle define climate vulnerability of fish. Science 369, 65–70 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 4, 1–11 (2018).
    Article  Google Scholar 

    14.
    Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42 (2017).
    PubMed  Article  Google Scholar 

    15.
    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Sgrò, C. M. & Hoffmann, A. A. Genetic correlations, tradeoffs and environmental variation. Heredity 93, 241–248 (2004).
    PubMed  Article  Google Scholar 

    17.
    Wood, C. W. & Brodie, E. D. Environmental effects on the structure of the G-matrix. Evolution 69, 2927–2940 (2015).
    PubMed  Article  Google Scholar 

    18.
    Brommer, J. E., Merila, J., Sheldon, B. C. & Gustavsson, L. Natural selection and genetic variation for reproductive reaction norms in a wild bird population. Evolution 59, 1362–1371 (2005).
    PubMed  Article  Google Scholar 

    19.
    Brommer, J. E., Rattiste, K. & Wilson, A. J. Exploring plasticity in the wild: laying date–temperature reaction norms in the common gull Larus canus. Proc. R. Soc. B 275, 687–693 (2008).
    PubMed  Article  Google Scholar 

    20.
    Nussey, D. H., Postma, E., Gienapp, P., Visser, M. E. & Gienapp, P. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Matthysen, E., Adriaensen, F. & Dhondt, A. A. Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob. Change Biol. 17, 1–16 (2011).
    ADS  Article  Google Scholar 

    23.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    24.
    Schiegg, K., Pasinelli, G., Walters, J. R. & Daniels, S. J. Inbreeding and experience affect response to climate change by endangered woodpeckers. Proc. R. Soc. B 269, 1153–1159 (2002).
    PubMed  Article  Google Scholar 

    25.
    Wilson, S., Norris, D. R., Wilson, A. G. & Arcese, P. Breeding experience and population density affect the ability of a songbird to respond to future climate variation. Proc. R. Soc. B 274, 2539–2545 (2007).
    PubMed  Article  Google Scholar 

    26.
    Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. B 266, 2487–2490 (1999).
    CAS  Article  Google Scholar 

    27.
    Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA 117, 18557–18565 (2020).
    PubMed  Article  CAS  Google Scholar 

    28.
    Gienapp, P., Postma, E. & Visser, M. E. Why breeding time has not responded to selection for earlier breeding in a songbird population. Evolution 60, 2381 (2006).
    PubMed  Article  Google Scholar 

    29.
    Jàrvinen, A. Global warming and egg size of birds. Ecography 17, 108–110 (1994).
    Article  Google Scholar 

    30.
    Kitaysky, A. S. & Golubova, E. G. Climate change causes contrasting trends in reproductive performance of planktivorous and piscivorous alcids. J. Anim. Ecol. 69, 248–262 (2000).
    Article  Google Scholar 

    31.
    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).
    PubMed  Article  Google Scholar 

    32.
    Weatherhead, P. J. Effects of climate variation on timing of nesting, reproductive success, and offspring sex ratios of red-winged blackbirds. Oecologia 144, 168–175 (2005).
    ADS  PubMed  Article  Google Scholar 

    33.
    Auer, S. K. & Martin, T. E. Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success. Glob. Change Biol. 19, 411–419 (2013).
    ADS  Article  Google Scholar 

    34.
    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA116, 21609–21615 (2019).
    CAS  PubMed  Article  Google Scholar 

    35.
    Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870 (1998).
    Article  Google Scholar 

    36.
    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Magige, F. J., Stokke, B. G., Sortland, R. & Røskaft, E. Breeding biology of ostriches (Struthio camelus) in the Serengeti ecosystem, Tanzania. Afr. J. Ecol. 47, 400–408 (2009).
    Article  Google Scholar 

    38.
    Bertram, B. C. R. The Ostrich Communal Nesting System (Princeton University Press, New Jersey, 1992).

    39.
    Kimwele, C. N. & Graves, J. A. A molecular genetic analysis of the communal nesting of the ostrich (Struthio camelus). Mol. Ecol. 12, 229–236 (2003).
    CAS  PubMed  Article  Google Scholar 

    40.
    Maloney, S. K. Thermoregulation in ratites: a review. Aust. J. Exp. Agric. 48, 1293–1301 (2008).
    Article  Google Scholar 

    41.
    Hassan, S. M., Siam, A. A., Mady, M. E. & Cartwright, A. L. Egg storage period and weight effects on hatchability of ostrich (Struthio camelus) eggs. Poult. Sci. 84, 1908–1912 (2005).
    CAS  PubMed  Article  Google Scholar 

    42.
    Gonzalez, A., Satterlee, D. G., Moharer, F. & Cadd, G. G. Factors affecting ostrich egg hatchability. Poult. Sci. 78, 1257–1262 (1999).
    CAS  PubMed  Article  Google Scholar 

    43.
    Roff, D. A. & Wilson, A. J. Quantifying genotype-by-environment interactions in laboratory systems. In Genotype‐by‐Environment Interactions and Sexual Selection (eds. Hunt, J. & Hosken, D.) 100–136 (John Wiley & Sons, Ltd, 2014).

    44.
    Christians, J. K. Avian egg size: variation within species and inflexibility within individuals. Biol. Rev. Camb. Philos. Soc. 77, 1–26 (2002).
    PubMed  Article  Google Scholar 

    45.
    Lack, D. The Natural Regulation of Animal Numbers (Clarendon Press, 1954).

    46.
    Perrins, C. M. The timing of birds‘ breeding seasons. Ibis 112, 242–255 (1970).
    Article  Google Scholar 

    47.
    Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 9, 1–11 (2018).
    ADS  CAS  Article  Google Scholar 

    48.
    McAfee, A. et al. Vulnerability of honey bee queens to heat-induced loss of fertility. Nat. Sustain 3, 367–376 (2020).
    Article  Google Scholar 

    49.
    Pérez-Crespo, M., Pintado, B. & Gutiérrez-Adán, A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol. Reprod. Dev. 75, 40–47 (2008).
    PubMed  Article  CAS  Google Scholar 

    50.
    Hansen, P. J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. B 364, 3341–3350 (2009).
    Article  Google Scholar 

    51.
    Moreno, R. D., Lagos-Cabre, R., Bunay, J., Urzua, N. & Bustamante-Marin, X. Molecular basis of heat stress damage in mammalian testis. In Testis: Anatomy, Physiology and Pathology (eds. Nemoto, Y. & Inaba, N.) 127–155 (Nova Science, 2012).

    52.
    Karaca, A. G., Parker, H. M., Yeatman, J. B. & McDaniel, C. D. The effects of heat stress and sperm quality classification on broiler breeder male fertility and semen ion concentrations. Br. Poult. Sci. 43, 621–628 (2002).
    CAS  PubMed  Article  Google Scholar 

    53.
    Mita, P., Hinton, B. T. & Dufour, J. M. The blood–testis and blood–epididymis barriers are more than just their tight junctions. Biol. Reprod. 84, 851–858 (2011).
    Article  CAS  Google Scholar 

    54.
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).
    Article  Google Scholar 

    55.
    Ojanen, M. Composition of the eggs of the great tit (Parus major) and pied flycatcher (Ficedula hypoleuca). Ann. Zool. Fenn. 20, 57–63 (1983).
    Google Scholar 

    56.
    Krist, M. Egg size and offspring quality: a meta-analysis in birds. Biol. Rev. 86, 692–716 (2011).
    PubMed  Article  Google Scholar 

    57.
    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Pearson, 1996).

    58.
    Lynch, M. & Gabriel, W. Environmental tolerance. Am. Nat. 129, 283–303 (1987).
    Article  Google Scholar 

    59.
    Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).
    Article  Google Scholar 

    60.
    Whitlock, M. C. The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148, S65 (1996).
    Article  Google Scholar 

    61.
    Pen, I. & Weissing, F. J. Towards a unified theory of cooperative breeding: the role of ecology and life history re-examined. Proc. R. Soc. B 267, 2411–2418 (2000).
    Article  Google Scholar 

    62.
    Emlen, S. T. The evolution of helping. I. An ecological constraints model. Am. Nat. 119, 29–39 (1982).
    Article  Google Scholar 

    63.
    Rubenstein, D. R. Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy. Proc. Natl Acad. Sci. USA 108, 10816–10822 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    64.
    Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 0057 (2017).
    Article  Google Scholar 

    65.
    Rubenstein, D. R. & Lovette, I. J. Temporal environmental variability drives the evolution of cooperative breeding in birds. Curr. Biol. 17, 1414–1419 (2007).
    CAS  PubMed  Article  Google Scholar 

    66.
    Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 201613625 (2017).
    Google Scholar 

    67.
    Vincze, O. et al. Parental cooperation in a changing climate: fluctuating environments predict shifts in care division. Glob. Ecol. Biogeogr. 26, 347–358 (2017).
    Article  Google Scholar 

    68.
    Nord, A. & Nilsson, J. Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 33, 250–259 (2019).
    Article  Google Scholar 

    69.
    Cloete, S. W. P. et al. Variance components for live weight, body measurements and reproductive traits of pair-mated ostrich females. Br. Poult. Sci. 47, 147–158 (2006).
    CAS  PubMed  Article  Google Scholar 

    70.
    Rybnik, P. K., Horbanczuk, J. O., Naranowicz, H., Lukaszewicz, E. & Malecki, I. A. Semen collection in the ostrich (Struthio camelus) using a dummy or a teaser female. Br. Poult. Sci. 48, 635–643 (2007).
    CAS  PubMed  Article  Google Scholar 

    71.
    Brand, T. S., Olivier, T. R. & Gous, R. M. The response in food intake and reproductive parameters of breeding ostriches to increasing dietary energy. South Afr. J. Anim. Sci. 40, 434–437 (2010).
    Google Scholar 

    72.
    Brand, T. S., Olivier, T. R. & Gous, R. M. The reproductive response of female ostriches to dietary protein. Br. Poult. Sci. 56, 232–238 (2015).
    CAS  PubMed  Article  Google Scholar 

    73.
    Martin, P. A., Reimers, T. J., Lodge, J. R. & Dziuk, P. J. The effect of ratios and numbers of spermatozoa mixed from two males on proportions of offspring. J. Reprod. Fertil. 39, 251–258 (1974).
    CAS  PubMed  Article  Google Scholar 

    74.
    Birkhead, T. R. & Møller, A. P. Sperm Competition and Sexual Selection (Academic Press, 1998).

    75.
    Birkhead, T. R. & Biggins, J. D. Sperm competition mechanisms in birds: models and data. Behav. Ecol. 9, 253–260 (1998).
    Article  Google Scholar 

    76.
    Soley, J. T. & Roberts, J. C. Ultrastructure of ostrich (Struthio camelus) spermatozoa. II. Scanning electron microscopy. Onderstepoort J. Vet. Res. 61, 239–246 (1994).
    CAS  PubMed  Google Scholar 

    77.
    Lake, P. E. & Stewart, J. M. Artificial Insemination in Poultry. Ministry of Agriculture Fisheries and Food, Bulletin 213 (Her Majesty’s Stationery Office, 1978).

    78.
    Bonato, M., Malecki, I. A., Rybnik-Trzaskowska, P. K., Cornwallis, C. K. & Cloete, S. W. P. Predicting ejaculate quality and libido in male ostriches: effect of season and age. Anim. Reprod. Sci. 151, 49–55 (2014).
    PubMed  Article  Google Scholar 

    79.
    Bonato, M., Rybnik, P. K., Malecki, I. A., Cornwallis, C. K. & Cloete, S. W. P. Twice daily collection yields greater semen output and does not affect male libido in the ostrich. Anim. Reprod. Sci. 123, 258–264 (2011).
    PubMed  Article  Google Scholar 

    80.
    Muvhali, P. T. et al. Ostrich ejaculate characteristics and male libido around equinox and solstice dates. Trop. Anim. Health and Prod. 52, 2609–2619 (2020).
    CAS  Article  Google Scholar 

    81.
    Brand, Z., Cloete, S. W. P., Brown, C. R. & Malecki, I. A. Systematic factors that affect ostrich egg incubation traits. South Afr. J. Anim. Sci. 38, 315–325 (2008).
    Google Scholar 

    82.
    Bronneberg, R. G. G. et al. The relation between ultrasonographic observations in the oviduct and plasma progesterone, luteinizing hormone and estradiol during the egg laying cycle in ostriches. Domest. Anim. Endocrinol. 32, 15–28 (2007).
    CAS  PubMed  Article  Google Scholar 

    83.
    Van Schalkwyk, S. J., Cloete, S. W. P. & De Kock, J. A. Repeatability and phenotypic correlations for body weight and reproduction in commercial ostrich breeding pairs. Br. Poult. Sci. 37, 953–962 (1996).
    PubMed  Article  Google Scholar 

    84.
    Jones, R. C. & Lin, M. Spermatogenesis in birds. In Oxford Reviews of Reproductive Biology, Vol. 15 (ed. Milligan, S. R.) (Oxford University Press, 1993).

    85.
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2020).

    86.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Article  Google Scholar 

    87.
    Araya-Ajoy, Y. G. & Dingemanse, N. J. Repeatability, heritability, and age-dependence of seasonal plasticity in aggressiveness in a wild passerine bird. J. Anim. Ecol. 86, 227–238 (2017).
    PubMed  Article  Google Scholar 

    88.
    Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).
    Article  Google Scholar 

    89.
    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
    Article  Google Scholar 

    90.
    Wilson, A. J. Why h2 does not always equal VA/VP. J. Evol. Biol. 21, 647–650 (2008).
    CAS  PubMed  Article  Google Scholar 

    91.
    de Villemereuil, P., Morrissey, M. B., Nakagawa, S. & Schielzeth, H. Fixed-effect variance and the estimation of repeatabilities and heritabilities: Issues and solutions. J. Evol. Biol. 31, 621–632 (2018).
    PubMed  Article  Google Scholar 

    92.
    de Villemereuil, P., Schielzeth, H., Nakagawa, S. & Morrissey, M. General methods for evolutionary quantitative genetic inference from generalized mixed models. Genetics 204, 1281–1294 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    93.
    BirdLife International. BirdLife International and Handbook of the Birds of the World. Bird Species Distribution Maps of the World (BirdLife International, 2019).

    94.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Article  Google Scholar  More