More stories

  • in

    Hydro-climatic changes of wetlandscapes across the world

    1.
    Mitsch, W. J. & Gosselink, J. G. Wetlands [Elektronisk Resurs] (Wiley, Hoboken, 2015).
    Google Scholar 
    2.
    Sieben, E. J. J., Khubeka, S. P., Sithole, S., Job, N. M. & Kotze, D. C. The classification of wetlands: Integration of top-down and bottom-up approaches and their significance for ecosystem service determination. Wetl. Ecol. Manage. 26, 441–458 (2018).
    Article  Google Scholar 

    3.
    Seifollahi-Aghmiuni, S., Nockrach, M. & Kalantari, Z. The potential of wetlands in achieving the sustainable development goals of the 2030 Agenda. Water 11, 609 (2019).
    Article  Google Scholar 

    4.
    Jaramillo, F. et al. Priorities and interactions of sustainable development goals (SDGs) with focus on wetlands. Water 11, 619 (2019).
    Article  Google Scholar 

    5.
    Thorslund, J. et al. Solute evidence for hydrological connectivity of geographically isolated wetlands. Land Degrad. Dev. 29, 3954–3962 (2018).
    Article  Google Scholar 

    6.
    Quin, A., Jaramillo, F. & Destouni, G. Dissecting the ecosystem service of large-scale pollutant retention: The role of wetlands and other landscape features. Ambio 44, 127–137 (2015).
    Article  Google Scholar 

    7.
    Thorslund, J. et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 108, 489–497 (2017).
    Article  Google Scholar 

    8.
    Åhlén, I. et al. Wetlandscape size thresholds for ecosystem service delivery: Evidence from the Norrström drainage basin, Sweden. Sci. Total Environ. 704, 135452 (2020).
    ADS  Article  Google Scholar 

    9.
    Moomaw, W. R. et al. Wetlands in a changing climate: Science, policy and management. Wetlands 38, 183–205 (2018).
    Article  Google Scholar 

    10.
    Erwin, K. L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manage. 17, 71 (2008).
    Article  Google Scholar 

    11.
    Jaramillo, F., Prieto, C., Lyon, S. W. & Destouni, G. Multimethod assessment of evapotranspiration shifts due to non-irrigated agricultural development in Sweden. J. Hydrol. 484, 55–62 (2013).
    ADS  Article  Google Scholar 

    12.
    Bring, A. et al. Implications of freshwater flux data from the CMIP5 multimodel output across a set of Northern Hemisphere drainage basins: Implications of freshwater flux data from the CMIP5 multimodel output across. Earths Future 3, 206–217 (2015).
    ADS  Article  Google Scholar 

    13.
    Jarsjö, J., Asokan, S. M., Prieto, C., Bring, A. & Destouni, G. Hydrological responses to climate change conditioned by historic alterations of land-use and water-use. Hydrol. Earth Syst. Sci. 16, 1335–1347 (2012).
    ADS  Article  Google Scholar 

    14.
    Moor, H., Hylander, K. & Norberg, J. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio 44, 113–126 (2015).
    Article  Google Scholar 

    15.
    Jaramillo, F. et al. Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the Ciénaga Grande de Santa Marta, Colombia. Wetlands 38, 755–767 (2018).
    Article  Google Scholar 

    16.
    Jarsjö, J. et al. Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater level. Sci. Total Environ. 712, 135560 (2020).
    ADS  Article  Google Scholar 

    17.
    Ghajarnia, N. et al. Wetlandscape change information database (WetCID). Earth Syst. Sci. Data 12(2), 1083–1083. https://doi.org/10.1594/PANGAEA.907398 (2019).
    ADS  Article  Google Scholar 

    18.
    Karlsson, J. M., Jaramillo, F. & Destouni, G. Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J. Hydrol. 529, 134–145 (2015).
    ADS  Article  Google Scholar 

    19.
    Hofstede, R. G. M. Effects of livestock farming and recommendations for management and conservation of páramo grasslands (Colombia). Land Degrad. Dev. 6, 133–147 (1995).
    Article  Google Scholar 

    20.
    Agudelo, C. & Fernanda, M. Ecohydrology of Paramos in Colombia: Vulnerability to Climate Change and Land Use (Universidad Nacional de Colombia, Medellín, 2019).
    Google Scholar 

    21.
    Fallah, M. & Zamani-Ahmadmahmoodi, R. Assessment of water quality in Iran’s Anzali Wetland, using qualitative indices from 1985, 2007, and 2014. Wetl. Ecol. Manage. 25, 597–605 (2017).
    CAS  Article  Google Scholar 

    22.
    Khazaei, B. et al. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. J. Hydrol. 569, 203–217 (2019).
    ADS  Article  Google Scholar 

    23.
    Shibuo, Y., Jarsjö, J. & Destouni, G. Hydrological responses to climate change and irrigation in the Aral Sea drainage basin. Geophys. Res. Lett. https://doi.org/10.1029/2007GL031465 (2007).
    Article  Google Scholar 

    24.
    Jarsjö, J., Törnqvist, R. & Su, Y. Climate-driven change of nitrogen retention–attenuation near irrigated fields: Multi-model projections for Central Asia. Environ. Earth Sci. 76, 117 (2017).
    Article  Google Scholar 

    25.
    Marjani, A. & Jamali, M. Role of exchange flow in salt water balance of Urmia Lake. Dyn. Atmos. Oceans 65, 1–16 (2014).
    ADS  Article  Google Scholar 

    26.
    Törnqvist, R. et al. Evolution of the hydro-climate system in the Lake Baikal basin. J. Hydrol. 519, 1953–1962 (2014).
    ADS  Article  Google Scholar 

    27.
    Pietroń, J. et al. Sedimentation patterns in the Selenga River delta under changing hydroclimatic conditions. Hydrol. Process. 32, 278–292 (2018).
    ADS  Article  Google Scholar 

    28.
    Foufoula-Georgiou, E., Takbiri, Z., Czuba, J. A. & Schwenk, J. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions. Water Resour. Res. 51, 6649–6671 (2015).
    ADS  Article  Google Scholar 

    29.
    Meter, K. J. V. & Basu, N. B. Signatures of human impact: Size distributions and spatial organization of wetlands in the Prairie Pothole landscape. Ecol. Appl. 25, 451–465 (2015).
    Article  Google Scholar 

    30.
    McCartney, M., Morardet, S., Rebelo, L.-M., Finlayson, C. M. & Masiyandima, M. A study of wetland hydrology and ecosystem service provision: GaMampa wetland, South Africa. Hydrol. Sci. J. 56, 1452–1466 (2011).
    Article  Google Scholar 

    31.
    Wolf, K. L., Noe, G. B. & Ahn, C. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands. J. Environ. Qual. 42, 1245–1255 (2013).
    CAS  Article  Google Scholar 

    32.
    Kasimov, N., Karthe, D. & Chalov, S. Environmental change in the Selenga River—Lake Baikal Basin. Reg. Environ. Change 17, 1945–1949 (2017).
    Article  Google Scholar 

    33.
    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).
    Article  Google Scholar 

    34.
    Ghajarnia, N. et al. Data for wetlandscapes and their changes around the world. Earth Syst. Sci. Data 12, 1083–1100 (2020).
    ADS  Article  Google Scholar 

    35.
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Article  Google Scholar 

    36.
    Budyko, M. I. & Miller, D. H. Climate and Life (Academic Press, New York, 1974).
    Google Scholar 

    37.
    Roderick, M. L. & Farquhar, G. D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. https://doi.org/10.1029/2010WR009826 (2011).
    Article  Google Scholar 

    38.
    Yang, H., Yang, D., Lei, Z. & Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. https://doi.org/10.1029/2007WR006135 (2008).
    Article  Google Scholar 

    39.
    Zhang, D., Cong, Z., Ni, G., Yang, D. & Hu, S. Effects of snow ratio on annual runoff within the Budyko framework. Hydrol. Earth Syst. Sci. 19, 1977–1992 (2015).
    ADS  Article  Google Scholar 

    40.
    Wen, X., Tang, G., Wang, S. & Huang, J. Comparison of global mean temperature series. Adv. Clim. Change Res. 2, 187–192 (2011).
    Article  Google Scholar  More

  • in

    Impact of root-associated strains of three Paraburkholderia species on primary and secondary metabolism of Brassica oleracea

    Paraburkholderia species promote Broccoli growth in a cultivar-dependent manner
    Root tip inoculation of the two Broccoli cultivars with strains of three different Paraburkholderia species led to changes in leaf color (deep green leaves), shoot biomass, root biomass and root architecture (Fig. 1a). Percent change in biomass was used as a measure to assess the growth-promoting effects of the Paraburkholderia species in the two Broccoli cultivars. Two-way analysis of variance (ANOVA) was conducted to assess the influence of the two independent variables (strains of Paraburkholderia species and Broccoli cultivars) on both shoot and root biomass. The Paraburkholderia species included three levels (Pbg, Pbh, Pbt) and the Broccoli cultivars consisted of two levels (Coronado, Malibu). For shoots, all interactions, except Pbt-Malibu, resulted in significant increases in biomass relative to the non-treated control plants, while for roots all three Paraburkholderia species significantly increased the biomass in both Broccoli cultivars (Fig. 1b). In general, the relative impact of Paraburkholderia species was up to 3 times higher for root biomass than for shoot biomass (Fig. 1b). Two-way ANOVA showed highly significant interactions between the strains of Paraburkholderia species and Broccoli cultivars regarding the percent changes in shoot and root biomass (Supplementary Table S1). Overall, for cultivar Coronado the percent change in shoot biomass was about 40% compared to the control, and not significantly different between the different strains of Paraburkholderia species, whereas in cultivar Malibu the percent change in shoot biomass was significantly higher for Pbg (~ 70%) and Pbh (~ 90%) as compared to Pbt. Furthermore, inoculation with Pbh led to a significantly higher increase in shoot biomass in cultivar Malibu than in Coronado. Regarding the percent change in root biomass, only inoculation of Pbt showed significant differences between the two Broccoli cultivars. As indicated above, the shoot biomass of cultivar Malibu inoculated with Pbt was not significantly different from the control plants (Fig. 1b). Over a period of 11 days, both Pbg and Pbh-treated Broccoli cultivars showed significantly higher shoot and root biomass from 7 days post inoculation (dpi) onwards, while Pbt-treated plants showed higher shoot biomass in Coronado from 9 dpi onwards (Fig. 1c).
    Figure 1

    Biomass and phenotypic changes in Broccoli cultivars in response to root tip inoculation with strains of three Paraburkholderia species. (a) Pictures of MS agar plate with two Broccoli cultivars (Coronado and Malibu) at 11 days post inoculation with strains of three Paraburkholderia species (Pbg: Paraburkholderia graminis PHS1, Pbh: P. hospita mHSR1, and Pbt: P. terricola mHS1). (b) Percent changes in shoot and root biomass (mean ± standard error, n = 4 (shoot) and n = 6 (root)) of two Broccoli cultivars inoculated with the strains of the Paraburkholderia species. Treatments sharing the same letters are not significantly different (Two-way ANOVA, Tukey’s HSD post hoc test, P  More

  • in

    Forging a Bayesian link between habitat selection and avoidance behavior in a grassland grouse

    Focal species
    The Lesser Prairie-Chicken is a medium-sized grouse endemic to, broadly, the shortgrass prairie ecosystem of the south-central United States, where it is found only in southwestern Colorado, western Kansas, northwestern Oklahoma, the Texas panhandle, and eastern New Mexico. As with almost all open-country grouse of temperate environments, the Lesser Prairie-Chicken forms leks at which a cluster of males (in this species, usually 5–12 individuals) display vigorously and female visit to assess males with an intent to secure sperm to fertilize her eggs, which she will lay and raise without male help. Outside of male lekking (mid-March to mid-May) and female nesting (late April to early July), birds congregate is small flocks to forage, at times on grain remains in farmed fields but typically, as through the rest of the life cycle, restricting themselves to native prairie. Accordingly, this species has three distinct aspects of habitat selection: general occurrence, lek placement, and nest placement.
    Data
    Lesser Prairie-Chicken were tracked at two study sites, one in Roosevelt County in east-central New Mexico, U.S.A., the other in Beaver, Harper, and Ellis Counties in northwestern Oklahoma, U.S.A. Birds tagged with VHF transmitters were tracked from April 1999–March 2006 in New Mexico and from March 1999–July 2013 in Oklahoma11,12,13,14. Study periods differed chiefly because of funding, which for New Mexico was insufficient after 2006. The study sites differ markedly in land tenure history. Parcel size in New Mexico averages 1300 ha versus 180 ha in Oklahoma11. The difference largely stems from settlement patterns over the past two centuries. New Mexico was part of the Spanish land grant system, which tended to yield huge parcels. In our study area, parcels approach 8 km2 ( > 1900 acres). By contrast, during the “land rush” era of the late 19th Century most of northwestern Oklahoma was parceled into 65-ha (160-acre) plots as part of the United States’ Homestead Act. Smaller parcels translate to a higher density of roads, fences, buildings, and powerlines11.
    Radiotracking typically yielded a triplet of coordinate readings, from which we had to triangulate a grouse’s location. We estimated latitude and longitude using a maximum likelihood estimator (MLE), although it some cases the MLE algorithm failed to converge. If it failed, we instead used the Andrew and Huber methods15. R code for the estimation procedure can be found at https://github.com/henry-dang/triangulation/blob/master/lenth_triang.R.
    From these data we used kernel density methods (R package ks16) to estimate annual home ranges (235 in New Mexico, 263 in Oklahoma). Tracking data included lek (12 in New Mexico, 23 in Oklahoma) and nest (122 in New Mexico, 128 Oklahoma) locations. For home range centroids, the outer contour of home ranges, leks, and nests, we estimated distance to seven anthropogenic features: roads (highways, primary, and secondary roads only; small farm roads or one-lane gravel roads were excluded), powerlines (overhead only, with buried or trunk lines excluded; https://hifld-geoplatform.opendata.arcgis.com/datasets/electric-power-transmission-lines), oil wells, gas wells (for both types of wells, http://www.occeweb.com and http://www.emnrd.state.nm.us/ocd), outbuildings (barns, grain silos, poultry houses, and similar large structures; chiefly the TIGER database), and fences (Bureau of Land Management) in both states, plus private houses in New Mexico and railroad tracks in Oklahoma. We placed 2000 random points on each study area to estimate distances to each of these same anthropogenic features, which provided an estimate of feature density on the landscape.
    Analyses
    The initial step was to estimate the probability of a grouse occurring a certain distance from a feature. We treated New Mexico and Oklahoma data separately, giving us a replicate assessment because these populations have been isolated from each other for  > 100 years17 and, as noted above, land tenure history differs strikingly between the states11. We estimated probabilities of grouse occurrence, πi, via a Bayesian model with binomial likelihood and flat prior (i.e., no assumption of the central tendency of occurrence probability at a given distance from a feature):
    yi ~ binomial (πi, n) with yi the cumulative count of grouse at distance i (i.e., the data) and n the total number of home ranges, leks, or nests. Distances, i, were binned to the smallest extent possible, from 10 to 100 m, to allow the Markov chain Monte Carlo (MCMC) algorithm to converge in a reasonable number of iterations (e.g.,  More

  • in

    Environmental (e)RNA advances the reliability of eDNA by predicting its age

    1.
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425. https://doi.org/10.1098/rsbl.2008.0118 (2008).
    Article  PubMed  PubMed Central  Google Scholar 
    2.
    Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, Oxford, 2018).
    Google Scholar 

    3.
    Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087. https://doi.org/10.1038/ncomms14087 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585. https://doi.org/10.1038/s41467-020-17337-8 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. 11, 254. https://doi.org/10.1038/s41467-019-14105-1 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Klymus, K. E. et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ. DNA 2, 271–282. https://doi.org/10.1002/edn3.29 (2020).
    Article  Google Scholar 

    7.
    Sepulveda, A. J. et al. A round-robin evaluation of the repeatability and reproducibility of environmental DNA assays for dreissenid mussels. Environ. DNA 2, 446–459. https://doi.org/10.1002/edn3.68 (2020).
    Article  Google Scholar 

    8.
    Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are Environmental DNA methods ready for aquatic invasive species management?. Trends Ecol. Evol. 35, 668–678. https://doi.org/10.1016/j.tree.2020.03.011 (2020).
    Article  PubMed  Google Scholar 

    9.
    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17. https://doi.org/10.1007/s10592-015-0775-4 (2016).
    CAS  Article  Google Scholar 

    10.
    Lacoursière-Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions. Mol. Ecol. Resour. 16, 1401–1414. https://doi.org/10.1111/1755-0998.12522 (2016).
    CAS  Article  PubMed  Google Scholar 

    11.
    Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J. C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544. https://doi.org/10.1038/ncomms12544 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Shogren, A. J. et al. Controls on eDNA movement in streams: Transport, retention, and resuspension. Sci. Rep. 7, 5065. https://doi.org/10.1038/s41598-017-05223-1 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 10361. https://doi.org/10.1038/s41598-018-28424-8 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92. https://doi.org/10.1016/j.biocon.2014.11.038 (2015).
    Article  Google Scholar 

    15.
    Lance, R. F. et al. Experimental observations on the decay of environmental DNA from bighead and silver carps. Manag. Biol. Invasion 8, 343. https://doi.org/10.3391/mbi.2017.8.3.08 (2017).
    Article  Google Scholar 

    16.
    Tsuji, S., Ushio, M., Sakurai, S., Minamoto, T. & Yamanaka, H. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLoS ONE 12, e0176608. https://doi.org/10.1371/journal.pone.0176608 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Cristescu, M. E. Can environmental RNA revolutionize biodiversity science?. Trends Ecol. Evol. 34, 694–697. https://doi.org/10.1016/j.tree.2019.05.003 (2019).
    Article  PubMed  Google Scholar 

    18.
    Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121. https://doi.org/10.1007/s10531-020-01980-0 (2020).
    Article  Google Scholar 

    19.
    Allan, E. A., Zhang, W. G., Lavery, A. C. & Govindarajan, A. F. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA. https://doi.org/10.1002/edn3.141 (2020).
    Article  Google Scholar 

    20.
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x (2012).
    CAS  Article  PubMed  Google Scholar 

    21.
    Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459. https://doi.org/10.1111/1365-2664.12306 (2014).
    CAS  Article  Google Scholar 

    22.
    Minamoto, T. et al. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio. Mol. Ecol. Resour. 17, 324–333. https://doi.org/10.1111/1755-0998.12586 (2017).
    CAS  Article  PubMed  Google Scholar 

    23.
    Stewart, K. A. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers. Conserv. 28, 983–1001. https://doi.org/10.1007/s10531-019-01709-8 (2019).
    Article  Google Scholar 

    24.
    Foran, D. R. Relative degradation of nuclear and mitochondrial DNA: An experimental approach. J. Forensic Sci. 51, 766–770. https://doi.org/10.1111/j.1556-4029.2006.00176.x (2006).
    CAS  Article  PubMed  Google Scholar 

    25.
    Dysthe, J. C., Franklin, T. W., McKelvey, K. S., Young, M. K. & Schwartz, M. K. An improved environmental DNA assay for bull trout (Salvelinus confluentus) based on the ribosomal internal transcribed spacer I. PLoS ONE 13, e0206851. https://doi.org/10.1371/journal.pone.0206851 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    26.
    Li, Y. & Breaker, R. R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2’-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372. https://doi.org/10.1021/ja990592p (1999).
    CAS  Article  Google Scholar 

    27.
    Fontaine, M. & Guillot, E. Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts. FEMS Microbiol. Lett. 226, 237–243. https://doi.org/10.1016/S0378-1097(03)00538-X (2003).
    CAS  Article  PubMed  Google Scholar 

    28.
    Voet, D. & Voet, J. G. Biochemistry 492–496 (Wiley, New York, 2011).
    Google Scholar 

    29.
    Eigner, J., Boedtker, H. & Michaels, G. The thermal degradation of nucleic acids. Biochem. Biophys. Acta. 51, 165–168. https://doi.org/10.1016/0006-3002(61)91028-9 (1961).
    CAS  Article  PubMed  Google Scholar 

    30.
    Mengoni, A. et al. Comparison of 16S rRNA and 16S rDNA T-RFLP approaches to study bacterial communities in soil microcosms treated with chromate as perturbing agent. Micro. Ecol. 50, 375–384. https://doi.org/10.1007/s00248-004-0222-4 (2005).
    CAS  Article  Google Scholar 

    31.
    Westermann, A. J., Gorski, S. A. & Vogel, J. Dual RNA-seq of pathogen and host. Nat. Rev. Microbiol. 10, 618–630. https://doi.org/10.1038/nrmicro2852 (2012).
    CAS  Article  PubMed  Google Scholar 

    32.
    Blanco, G. & Blanco, A. Medical Biochemistry (Academic Press, Cambridge, 2017). https://doi.org/10.1016/B978-0-12-803550-4.00006-9.
    Google Scholar 

    33.
    Sidova, M., Tomankova, S., Abaffy, P., Kubista, M. & Sindelka, R. Effects of post-mortem and physical degradation on RNA integrity and quality. Biomol. Detect. Quantif. 5, 3–9. https://doi.org/10.1016/j.bdq.2015.08.002 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Vanderploeg, H. A., Liebig, J. R., Nalepa, T. F., Fahnenstiel, G. L. & Pothoven, S. A. Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. J. Great Lakes Res. 36, 50–59. https://doi.org/10.1016/j.jglr.2010.04.005 (2010).
    Article  Google Scholar 

    35.
    Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Particle size distribution of environmental DNA from the nuclei of marine fish. Environ. Sci. Technol. 53, 9947–9956. https://doi.org/10.1021/acs.est.9b02833 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    36.
    Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146. https://doi.org/10.1002/ece3.4802 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    37.
    Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M. & Duncan, R. P. Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA. Environ. Sci. Technol. 52, 6408–6416. https://doi.org/10.1021/acs.est.8b01071 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Doi, H. et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE 10, e0122763. https://doi.org/10.1371/journal.pone.0122763 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Klymus, K. E., Richter, C. A., Chapman, D. C. & Paukert, C. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol. Conserv. 183, 77–84. https://doi.org/10.1016/j.biocon.2014.11.020 (2015).
    Article  Google Scholar 

    40.
    Jo, T. et al. Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Mol. Ecol. Resour. 17, e25–e33. https://doi.org/10.1111/1755-0998.12685 (2017).
    CAS  Article  PubMed  Google Scholar 

    41.
    Raymaekers, M., Smets, R., Maes, B. & Cartuyvels, R. Checklist for optimization and validation of real-time PCR assays. J. Clin. Lab. Anal. 23, 145–151. https://doi.org/10.1002/jcla.20307 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Satoh, M. & Kuroiwa, T. Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp. Cell Res. 196, 137–140. https://doi.org/10.1016/0014-4827(91)90467-9 (1991).
    CAS  Article  PubMed  Google Scholar 

    43.
    Moushomi, R., Wilgar, G., Carvalho, G., Creer, S. & Seymour, M. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Sci. Rep. 9, 12500. https://doi.org/10.1038/s41598-019-48984-7 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environ. DNA 2, 140–151. https://doi.org/10.1002/edn3.51 (2020).
    Article  Google Scholar 

    45.
    Eirín-López, J. M. et al. Molecular evolutionary characterization of the mussel Mytilus histone multigene family: First record of a tandemly repeated unit of five histone genes containing an H1 subtype with “orphon” features. J. Mol. Evol. 58, 131–144. https://doi.org/10.1007/s00239-003-2531-5 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    46.
    Peñarrubia, L. et al. Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples. Sci. Rep. 6, 39067. https://doi.org/10.1038/srep39067 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Gingera, T. D., Bajno, R., Docker, M. & Reist, J. Environmental DNA as a detection tool for zebra mussels Dreissena polymorpha (Pallas, 1771) at the forefront of an invasion event in Lake Winnipeg, Manitoba, Canada. Manag. Biol. Invasion 8, 287. https://doi.org/10.3391/mbi.2017.8.3.03 (2017).
    Article  Google Scholar 

    48.
    Marshall, N. T. & Stepien, C. A. Invasion genetics from eDNA and thousands of larvae: A targeted metabarcoding assay that distinguishes species and population variation of zebra and quagga mussels. Ecol. Evol. 9, 3515–3538. https://doi.org/10.1002/ece3.4985 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Wood, S. A. et al. Release and degradation of environmental DNA and RNA in a marine system. Sci. Total Environ. 704, 135314. https://doi.org/10.1016/j.scitotenv.2019.135314 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    50.
    Osley, M. A. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60, 827–861. https://doi.org/10.1146/annurev.bi.60.070191.004143 (1991).
    CAS  Article  PubMed  Google Scholar 

    51.
    Takeuchi, A. et al. Release of eDNA by different life history stages and during spawning activities of laboratory-reared Japanese eels for interpretation of oceanic survey data. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-42641-9 (2019).
    CAS  Article  Google Scholar 

    52.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2017). www.R-project.org.

    53.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01. (2015).

    54.
    Lenth, R. et al. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.3. (2020). https://CRAN.R-project.org/package=emmeans.

    55.
    Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867. https://doi.org/10.1021/acs.est.5b05672 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    56.
    Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. 1, 1–11. https://doi.org/10.1038/s42003-018-0192-6 (2018).
    CAS  Article  Google Scholar 

    57.
    Kasai, A., Takada, S., Yamazaki, A., Masuda, R. & Yamanaka, H. The effect of temperature on environmental DNA degradation of Japanese eel. Fish. Sci. 86, 465–471. https://doi.org/10.1007/s12562-020-01409-1 (2020).
    CAS  Article  Google Scholar 

    58.
    Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, e0186462 (2019).
    Article  Google Scholar  More