Hydro-climatic changes of wetlandscapes across the world
1.
Mitsch, W. J. & Gosselink, J. G. Wetlands [Elektronisk Resurs] (Wiley, Hoboken, 2015).
Google Scholar
2.
Sieben, E. J. J., Khubeka, S. P., Sithole, S., Job, N. M. & Kotze, D. C. The classification of wetlands: Integration of top-down and bottom-up approaches and their significance for ecosystem service determination. Wetl. Ecol. Manage. 26, 441–458 (2018).
Article Google Scholar
3.
Seifollahi-Aghmiuni, S., Nockrach, M. & Kalantari, Z. The potential of wetlands in achieving the sustainable development goals of the 2030 Agenda. Water 11, 609 (2019).
Article Google Scholar
4.
Jaramillo, F. et al. Priorities and interactions of sustainable development goals (SDGs) with focus on wetlands. Water 11, 619 (2019).
Article Google Scholar
5.
Thorslund, J. et al. Solute evidence for hydrological connectivity of geographically isolated wetlands. Land Degrad. Dev. 29, 3954–3962 (2018).
Article Google Scholar
6.
Quin, A., Jaramillo, F. & Destouni, G. Dissecting the ecosystem service of large-scale pollutant retention: The role of wetlands and other landscape features. Ambio 44, 127–137 (2015).
Article Google Scholar
7.
Thorslund, J. et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 108, 489–497 (2017).
Article Google Scholar
8.
Åhlén, I. et al. Wetlandscape size thresholds for ecosystem service delivery: Evidence from the Norrström drainage basin, Sweden. Sci. Total Environ. 704, 135452 (2020).
ADS Article Google Scholar
9.
Moomaw, W. R. et al. Wetlands in a changing climate: Science, policy and management. Wetlands 38, 183–205 (2018).
Article Google Scholar
10.
Erwin, K. L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manage. 17, 71 (2008).
Article Google Scholar
11.
Jaramillo, F., Prieto, C., Lyon, S. W. & Destouni, G. Multimethod assessment of evapotranspiration shifts due to non-irrigated agricultural development in Sweden. J. Hydrol. 484, 55–62 (2013).
ADS Article Google Scholar
12.
Bring, A. et al. Implications of freshwater flux data from the CMIP5 multimodel output across a set of Northern Hemisphere drainage basins: Implications of freshwater flux data from the CMIP5 multimodel output across. Earths Future 3, 206–217 (2015).
ADS Article Google Scholar
13.
Jarsjö, J., Asokan, S. M., Prieto, C., Bring, A. & Destouni, G. Hydrological responses to climate change conditioned by historic alterations of land-use and water-use. Hydrol. Earth Syst. Sci. 16, 1335–1347 (2012).
ADS Article Google Scholar
14.
Moor, H., Hylander, K. & Norberg, J. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio 44, 113–126 (2015).
Article Google Scholar
15.
Jaramillo, F. et al. Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the Ciénaga Grande de Santa Marta, Colombia. Wetlands 38, 755–767 (2018).
Article Google Scholar
16.
Jarsjö, J. et al. Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater level. Sci. Total Environ. 712, 135560 (2020).
ADS Article Google Scholar
17.
Ghajarnia, N. et al. Wetlandscape change information database (WetCID). Earth Syst. Sci. Data 12(2), 1083–1083. https://doi.org/10.1594/PANGAEA.907398 (2019).
ADS Article Google Scholar
18.
Karlsson, J. M., Jaramillo, F. & Destouni, G. Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J. Hydrol. 529, 134–145 (2015).
ADS Article Google Scholar
19.
Hofstede, R. G. M. Effects of livestock farming and recommendations for management and conservation of páramo grasslands (Colombia). Land Degrad. Dev. 6, 133–147 (1995).
Article Google Scholar
20.
Agudelo, C. & Fernanda, M. Ecohydrology of Paramos in Colombia: Vulnerability to Climate Change and Land Use (Universidad Nacional de Colombia, Medellín, 2019).
Google Scholar
21.
Fallah, M. & Zamani-Ahmadmahmoodi, R. Assessment of water quality in Iran’s Anzali Wetland, using qualitative indices from 1985, 2007, and 2014. Wetl. Ecol. Manage. 25, 597–605 (2017).
CAS Article Google Scholar
22.
Khazaei, B. et al. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. J. Hydrol. 569, 203–217 (2019).
ADS Article Google Scholar
23.
Shibuo, Y., Jarsjö, J. & Destouni, G. Hydrological responses to climate change and irrigation in the Aral Sea drainage basin. Geophys. Res. Lett. https://doi.org/10.1029/2007GL031465 (2007).
Article Google Scholar
24.
Jarsjö, J., Törnqvist, R. & Su, Y. Climate-driven change of nitrogen retention–attenuation near irrigated fields: Multi-model projections for Central Asia. Environ. Earth Sci. 76, 117 (2017).
Article Google Scholar
25.
Marjani, A. & Jamali, M. Role of exchange flow in salt water balance of Urmia Lake. Dyn. Atmos. Oceans 65, 1–16 (2014).
ADS Article Google Scholar
26.
Törnqvist, R. et al. Evolution of the hydro-climate system in the Lake Baikal basin. J. Hydrol. 519, 1953–1962 (2014).
ADS Article Google Scholar
27.
Pietroń, J. et al. Sedimentation patterns in the Selenga River delta under changing hydroclimatic conditions. Hydrol. Process. 32, 278–292 (2018).
ADS Article Google Scholar
28.
Foufoula-Georgiou, E., Takbiri, Z., Czuba, J. A. & Schwenk, J. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions. Water Resour. Res. 51, 6649–6671 (2015).
ADS Article Google Scholar
29.
Meter, K. J. V. & Basu, N. B. Signatures of human impact: Size distributions and spatial organization of wetlands in the Prairie Pothole landscape. Ecol. Appl. 25, 451–465 (2015).
Article Google Scholar
30.
McCartney, M., Morardet, S., Rebelo, L.-M., Finlayson, C. M. & Masiyandima, M. A study of wetland hydrology and ecosystem service provision: GaMampa wetland, South Africa. Hydrol. Sci. J. 56, 1452–1466 (2011).
Article Google Scholar
31.
Wolf, K. L., Noe, G. B. & Ahn, C. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands. J. Environ. Qual. 42, 1245–1255 (2013).
CAS Article Google Scholar
32.
Kasimov, N., Karthe, D. & Chalov, S. Environmental change in the Selenga River—Lake Baikal Basin. Reg. Environ. Change 17, 1945–1949 (2017).
Article Google Scholar
33.
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).
Article Google Scholar
34.
Ghajarnia, N. et al. Data for wetlandscapes and their changes around the world. Earth Syst. Sci. Data 12, 1083–1100 (2020).
ADS Article Google Scholar
35.
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Article Google Scholar
36.
Budyko, M. I. & Miller, D. H. Climate and Life (Academic Press, New York, 1974).
Google Scholar
37.
Roderick, M. L. & Farquhar, G. D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. https://doi.org/10.1029/2010WR009826 (2011).
Article Google Scholar
38.
Yang, H., Yang, D., Lei, Z. & Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. https://doi.org/10.1029/2007WR006135 (2008).
Article Google Scholar
39.
Zhang, D., Cong, Z., Ni, G., Yang, D. & Hu, S. Effects of snow ratio on annual runoff within the Budyko framework. Hydrol. Earth Syst. Sci. 19, 1977–1992 (2015).
ADS Article Google Scholar
40.
Wen, X., Tang, G., Wang, S. & Huang, J. Comparison of global mean temperature series. Adv. Clim. Change Res. 2, 187–192 (2011).
Article Google Scholar More
