Population genetics and evolutionary history of the endangered Eld’s deer (Rucervus eldii) with implications for planning species recovery
1.
Banks, S. C. et al. How does ecological disturbance influence genetic diversity?. Trends Ecol. Evol. 28, 670–679 (2013).
PubMed Article Google Scholar
2.
Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred soay sheep in a free living island population. Evolution 53, 1259–1267 (1999).
PubMed Google Scholar
3.
Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Cons. Genet. 11, 615–626 (2010).
Article Google Scholar
4.
Frankham, R. Genetics and extinction. Biol. Cons. 126, 131–140 (2005).
Article Google Scholar
5.
Markert, J. A. et al. Population genetic diversity and fitness in multiple environments. BMC. Evol Biol. 10, 205 (2010).
PubMed PubMed Central Article CAS Google Scholar
6.
Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Cons. 191, 495–503 (2015).
Article Google Scholar
7.
Gray, T. N. E. et al. Rucervus eldii. The IUCN red list of threatened species. e.T4265A22166803 (2015). https://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T4265A22166803.en. Downloaded on 19 January 2020.
8.
Grubb, P. Artiodactyla. In Mammal Species of the World (eds Wilson, D. E. & Reeder, D. M.) 637–722 (Johns Hopkins University Press, Baltimore, 2005).
Google Scholar
9.
Salter, R. E. & Sayer, J. A. The brow-antlered deer in Myanmar—Its distribution and status. Oryx. 20, 241–245 (1986).
Article Google Scholar
10.
McShea, W. J., Leimgruber, P., Aung, M., Monfort, S. L. & Wemmer, C. Range collapse of a tropical cervid (Cervus eldi) and the extent of remaining habitat in central Myanmar. Anim. Conserv. 2, 173–183 (1999).
Article Google Scholar
11.
Zhang, Q., Zeng, Z., Ji, Y., Zhang, D. & Song, Y. Microsatellite variation in China’s Hainan Eld’s deer (Cervus eldi hainanus) and implications for their conservation. Cons. Genet. 9, 507–514 (2008).
CAS Article Google Scholar
12.
Zhang, Q., Zeng, Z., Sun, L. & Song, Y. The origin and phylogenetics of Hainan Eld’s deer and implications for Eld’ s deer conservation. Acta. Ther. Sin. 29, 365–371 (2009).
CAS Google Scholar
13.
Ranjitsinh, M. K. Keibul Lamjao Sanctuary and the Brow-antlered deer—1972 with notes on a visit in 1975. J. Bom. Nat. His. Soc. 72, 243–255 (1975).
Google Scholar
14.
Hussain, S. A. & Badola, R. Conservation Ecology of Sangai and Its Wetland Habitat. Study Report Vol. I (Wildlife Institute of India, Dehra Dun, 2013).
Google Scholar
15.
McShea, W. J., Aung, M., Songer, M. & Connette, G. M. The challenges of protecting an endangered species in the developing world: A case history of Eld’s Deer conservation in Myanmar. Case Stud. Environ. 2, 1–9 (2018).
Article Google Scholar
16.
Ginsburg, L., Ingavat, R. & Sen, S. A Middle Pleistocene (Loagian) cave fauna in Northern Thailand. Comptes Rendus de l’Académie des Sciences Paris. 294, 295–297 (1982).
Google Scholar
17.
Tougard, C. Y., Chaimanee, V., Sutheethron, S. & Triamwichanon, Jaeger, J. J. Extension of the geographic distribution of the giant panda (Ailuropoda) and reasons for its progressive disappearance in Southeast Asia during the Latest Middle Pleistocene. C. R. Acad. Sci. Paris. 323, 973–979 (1996).
CAS Google Scholar
18.
Corbett, G. B. & Hill, J. E. The Mammals of the Indomalay Region: A Systematic Review. Natural History Museum Publications (Oxford University Press, Oxford, 1992).
Google Scholar
19.
Woodruff, D. S. & Turner, L. M. The Indochinese-Sundaic zoogeographic transition: A description and analysis of terrestrial mammal species distributions. J. Biogeo. 36, 803–821 (2009).
Article Google Scholar
20.
Hassanin, A. & Ropiquet, A. Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the kouprey, Bos sauveli Urbain, 1937. Mol. Phylo. Evol. 33, 896–907 (2004).
CAS Article Google Scholar
21.
Meijaard, E. Solving mammalian riddles. A reconstruction of the Tertiary and Quaternary distribution of mammals and their palaeoenvironments in island South-East Asia. PhD Thesis, The Australian National University, Canberra (2004).
22.
Ropiquet, A. & Hassanin, A. Molecular evidence for the polyphyly of the genus Hemitragus (Mammalia, Bovidae). Mol. Phylo. Evol. 36, 154–168 (2005).
CAS Article Google Scholar
23.
Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: A Savanna corridor in Sundaland?. Quat. Sci. Rev. 24, 2228–2242 (2005).
ADS Article Google Scholar
24.
Geist, V. Deer of the World: Their Evolution, Behaviour, and Ecology (Stackpole Books, Mechanicsburg, 1998).
Google Scholar
25.
Ellerman, J. R. & Morrison-Scott, T. C. S. Checklist of Palaearctic and Indian Mammals, 1758 to 1947 (British Museum Natural History, London, 1951).
Google Scholar
26.
Gilbert, C., Ropiquet, A. & Hassanin, A. Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): Systematics, morphology, and biogeography. Mol. Phylo. Evol. 40, 101–117 (2006).
CAS Article Google Scholar
27.
Hassanin, A. et al. Pattern and timing of diversification of cetartiodactyla (mammalia, laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335, 32–50 (2012).
PubMed Article Google Scholar
28.
Pitra, C., Fickel, J., Meijaard, E. & Groves, C. P. Evolution and phylogeny of old world deer. Mol. Phyl. Evol. 33, 880–895 (2004).
CAS Article Google Scholar
29.
Balakrishnan, C. N., Monfort, S. L., Gaur, A., Singh, L. & Sorenson, M. D. Phylogeography and conservation genetics of Eld’s deer (Cervus eldi). Mol. Ecol. 12, 1–10 (2003).
CAS PubMed Article Google Scholar
30.
Thomas, O. The nomenclature and the geographical forms of the panolia deer (Rucervus eldi) and its relatives. J. Bom. Nat. His. Soci. 23, 363–367 (1918).
Google Scholar
31.
Angom, S., Kumar, A., Gupta, S. K. & Hussain, S. A. Analysis of mtDNA control region of an isolated population of Eld’s deer (Rucervus eldii) reveals its vulnerability to inbreeding. Mito. DNA. Part B. 2, 277–280 (2017).
Article Google Scholar
32.
Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylo. Evol. 26, 1–7 (2002).
Article Google Scholar
33.
Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).
PubMed Article Google Scholar
34.
Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).
PubMed Article Google Scholar
35.
Haq, B. U., Hardenbol, J. & Vail, P. R. The chronology of fluctuating sea level since the Triassic. Sci. 235, 1156–1165 (1987).
ADS CAS Article Google Scholar
36.
Suraprasit, K., Jongautchariyakul, S., Yamee, C., Pothichaiya, C. & Bocherens, H. New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quat. Sci. Rev. 221, 105861 (2019).
Article Google Scholar
37.
Suraprasit, K. et al. The middle Pleistocene vertebrate fauna from Khok Sung (Nakhon Ratchasima, Thailand): Biochronological and paleobiogeographical implications. Zoo Keys. 613, 1–157 (2016).
Google Scholar
38.
Nautiyal, C. M. & Chauhan, M. S. Late Holocene vegetation and climate change in Loktak Lake region, Manipur, based on pollen and chemical evidence. Palaeob. 58, 21–28 (2009).
Google Scholar
39.
Tripathi, S., Singh, Y. R., Nautiyal, C. M. & Thakur, B. Vegetation history, monsoonal fluctuations and anthropogenic impact during the last 2330 years from Loktak Lake (Ramsar site), Manipur, Northeast India: A pollen-based study. Palynology 42, 406–419 (2017).
Article Google Scholar
40.
Leonard, J. A. et al. Phylogeography of vertebrates on the Sunda Shelf: A multi-species comparison. J. Biogeogr. 42, 871–879 (2015).
Article Google Scholar
41.
Naish, D. Eld’s deer: Endangered, persisting in fragmented populations, and morphologically weird… but it wasn’t always so. Scientific American Blog Network. https://blogs.scientificamerican.com/tetrapod-zoology/elds-deer-endangered-fragmented-weird/. Accessed on 20 April, 2020 (2015).
42.
National Studbook of Sangai (Rucervus eldii eldii), Wildlife Institute of India, Dehradun and Central Zoo Authority (2018) New Delhi. TR. No. 2018/07. https://wii.gov.in/research_report2018.
43.
Angom, S., Tuboi, C., Ghazi, M. G. U., Badola, R. & Hussain, S. A. Demographic and genetic structure of a severely fragmented population of the endangered hog deer (Axis porcinus) in the Indo Burma biodiversity hotspot. PLoS ONE 15, e0210382 (2020).
CAS PubMed PubMed Central Article Google Scholar
44.
Hartl, D. L. & Clark, A. G. Organisation of genetic variation. In Principles of Population Genetics (eds Hartl, D. L. & Clark, A. G.) 74–110 (Sinauer Associates, Sunderland, 1997).
Google Scholar
45.
Sharma, C. & Chauhan, M. S. Vegetation and climate since Last Glacial Maxima in Darjeeling (Mirik Lake), Eastern Himalaya. in Proc. 29th Int. Geol. Congr. Part B, 279.e288 (1994).
46.
Tripathi, S., Thakur, B., Nautiyal, C. M. & Bera, S. K. Floristic and climatic reconstruction in the Indo-Burma region for the last 13,000 cal. yr: A palynological interpretation from the endangered wetlands of Assam, northeast India. The Holocene. 30, 1–17 (2019).
Google Scholar
47.
Mehrotra, N., Shah, S. K. & Bhattacharyya, A. Review of palaeoclimate records from Northeast India based on pollen proxy data of Late Pleistocene-Holocene. Quat. Inter. 325, 41–54 (2014).
Article Google Scholar
48.
Singh, N. R. Fluvial regime of the Manipur river basin and Loktak Lake with study of backflow. M. Tech thesis. Indian Institute of Technology (2006).
49.
Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).
Article Google Scholar
50.
Slatkin, M. & Excoffier, L. Serial founder effects during range expansion: A spatial analog of genetic drift. Genetics 191, 171–181 (2012).
CAS PubMed PubMed Central Article Google Scholar
51.
Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Cons. 170, 56–63 (2014).
Article Google Scholar
52.
Hassanin, A., Ropiquet, A., Couloux, A. & Cruaud, C. Evolution of the mitochondrial genome in mammals living at high altitude: New insights from a study of the tribe Caprini (Bovidae, Antilopinae). J. Mol. Evol. 68, 293–310 (2009).
ADS CAS PubMed Article Google Scholar
53.
Moore, S. S., Barendse, W., Berger, K. T., Armitage, S. M. & Hetzel, D. J. S. Bovine and ovine DNA microsatellites from the EMBL and GenBank databases. Anim. Genet. 23, 463–467 (1992).
CAS PubMed Article Google Scholar
54.
Gaur, A. et al. Development and characterisation of 10 novel microsatellite markers from chital deer (Cervus axis) and their cross-amplification in other related species. Mol. Ecol. Not. 3, 607–609 (2003).
CAS Article Google Scholar
55.
Bishop, M. D. et al. A genetic linkage map for cattle. Genet. 136, 619–639 (1994).
CAS Article Google Scholar
56.
Marshall, T. C., Slate, J., Kruuk, L. E. & Pemberton, J. M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639–655 (1998).
CAS PubMed Article Google Scholar
57.
DeWoody, J. A., Honeycutt, R. L. & Skow, L. C. Microsatellite markers in white-tailed deer. J. Hered. 86, 317–319 (1995).
CAS PubMed Article Google Scholar
58.
Jones, K. C., Levine, K. F. & Banks, J. D. DNA-based genetic markers in black-tailed and mule deer for forensic applications. California Dept Fish Game. 86, 115–126 (2000).
Google Scholar
59.
Vaiman, D., Osta, R., Mercier, D., Grohs, C. & Leveziel, H. Characterization of five new bovine dinucleotide repeats. Anim. Genet. 23, 537–541 (1992).
CAS PubMed Article Google Scholar
60.
Brezinsky, L., Kemp, S. J. & Teale, A. J. ILSTS005: A polymorphic bovine microsatellite. Anim. Genet. 24, 75–76 (1993).
CAS PubMed Article Google Scholar
61.
Zhang, Q., Ji, Y. J., Zeng, Z. G., Song, Y. L. & Zhang, D. X. Polymorphic microsatellite DNA markers for the vulnerable Hainan Eld’s deer (Cervus eldi hainanus) in China. Act. Zoo. Sin. 51, 530–534 (2005).
CAS Google Scholar
62.
Buchanan, F. C. & Crawford, A. M. Ovine dinucleotide repeat polymorphism at the MAF70 locus. Anim. Genet. 23, 185 (1992).
CAS PubMed Article Google Scholar
63.
Poetsch, M., Seefeldt, S., Maschke, M. & Lignitz, E. Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer possible employment in forensic applications. Foren. Sci. Int. 6, 1–8 (2001).
Article Google Scholar
64.
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Aci. Res. 22, 4673–4680 (1994).
CAS Article Google Scholar
65.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
CAS PubMed PubMed Central Article Google Scholar
66.
Librado, P. & Rozas, J. DnaSPv5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
CAS Article Google Scholar
67.
Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
Article Google Scholar
68.
Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).
CAS PubMed PubMed Central Article Google Scholar
69.
Corander, J., Marttinen, P., Siren, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC. Bioinf. 9, 539 (2008).
Article CAS Google Scholar
70.
Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
PubMed PubMed Central Article Google Scholar
71.
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 19, 716-723 (1974).
ADS MathSciNet MATH Article Google Scholar
72.
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Meth. 9, 772 (2012).
CAS Article Google Scholar
73.
Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).
CAS PubMed Article Google Scholar
74.
Grant, J. R. & Stothard, P. The CG View Server: A comparative genomics tool for circular genomes. Nucl. Aci. Res. 36, 181–184 (2008).
Article CAS Google Scholar
75.
Xia, X. & Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 92, 371–373 (2001).
CAS PubMed Article Google Scholar
76.
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
CAS PubMed PubMed Central Article Google Scholar
77.
Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).
CAS PubMed Article Google Scholar
78.
Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (artiodactyla, ruminantia) and the importance of the fossil record to systematics. BMC. Evol. Biol. 13, 166 (2013).
PubMed PubMed Central Article Google Scholar
79.
Dong, W., Pan, Y. & Liu, J. The earliest Muntiacus (Artiodactyla, Mammalia) from the Late Miocene of Yuanmou, southwestern, China. C. R. Palevol. 3, 379–386 (2004).
Article Google Scholar
80.
Hulce, D., Li, X., Snyder-Leiby, T. & Liu, C. S. J. GeneMarker® genotyping software: Tools to increase the statistical power of DNA fragment analysis. J. Biomol. Tech. 22, S35–S36 (2011).
PubMed Central PubMed Google Scholar
81.
Valiere, N. GIMLET: A computer program for analysing genetic individual identification data. Mol. Ecol. Not. 2, 377–379 (2002).
CAS Google Scholar
82.
Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).
CAS PubMed PubMed Central Article Google Scholar
83.
Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 099–1106 (2007).
Article Google Scholar
84.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genet. 155, 945–959 (2000).
CAS Google Scholar
85.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
CAS PubMed Article Google Scholar
86.
Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualising STRUCTURE output and implementing the Evanno method. Cons. Genet. Res. 4, 359–361 (2012).
Article Google Scholar
87.
Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Not. 4, 137–138 (2004).
Article Google Scholar
88.
Archer, F. I., Adams, P. E. & Schneiders, B. B. strataG: An r package for manipulating, summarising and analysing population genetic data. Mol. Ecol. Res. 17, 5–11 (2017).
CAS Article Google Scholar
89.
Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A program for detecting recent effective population size reductions from allele data frequencies. J. Hered. 90, 502–503 (1999).
Article Google Scholar
90.
Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genet. 144, 2001–2014 (1996).
CAS Article Google Scholar
91.
Luikart, G., Allendorf, F. W., Cornuet, J. M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247 (1998).
CAS PubMed Article Google Scholar
92.
Peel, D., Waples, R. S., Macbeth, G. M., Do, C. & Ovenden, J. R. Accounting for missing data in the estimation of contemporary genetic effective population size (Ne). Mol. Ecol. Res. 13, 243–253 (2013).
CAS Article Google Scholar
93.
Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Cons. Genet. 7, 167–184 (2006).
Article Google Scholar
94.
Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).
PubMed Article Google Scholar
95.
Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size from genetic data. Mol. Ecol. Res. 14, 209–214 (2014).
CAS Article Google Scholar
96.
Nikolic, N. & Chevalet, C. Detecting past changes in effective population size. Evol. Appl. 7, 663–681 (2014).
PubMed PubMed Central Article Google Scholar
97.
Chevalet, C. & Nikolic, N. The distribution of coalescence times and distances between microsatellite alleles with changing effective population size. Theor. Popul. Biol. 77, 152–163 (2010).
PubMed MATH Article Google Scholar
98.
Dallas, J. F. Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mam. Gen. 3, 452–456 (1992).
CAS Article Google Scholar
99.
Weber, J. L. & Wong, C. C. Mutation of human short tandem repeats. Hum. Mol. Genet. 2, 1123–1128 (1993).
CAS PubMed Article Google Scholar
100.
Brinkmann, B., Klintschar, M., Neuhuber, F., Huhne, J. & Rolf, B. Mutation rate in human microsatellites: Influence of the structure and length of the tandem repeat. Am. J. Hum. Genet. 62, 1408–1415 (1998).
CAS PubMed PubMed Central Article Google Scholar
101.
Sajantila, A., Lukka, M. & Syvänen, A. Experimentally observed germline mutations at human micro- and minisatellite loci. Eur. J. Hum. Genet. 7, 263–266 (1999).
CAS PubMed Article Google Scholar
102.
Ellegren, H. Microsatellite mutations in the germline: Implications for evolutionary inference. Trends. Genet. 16, 551–558 (2000).
CAS PubMed Article Google Scholar
103.
Hrbek, T., de Brito, R. A., Wang, B., Pletscher, L. S. & Cheverud, J. M. Genetic characterisation of a new set of recombinant inbred lines (LGXSM) formed from the intercross of SM/J and LG/J inbred mouse strains. Mam. Gen. 17, 417–429 (2006).
CAS Article Google Scholar More