More stories

  • in

    Dental microwear texture analysis as a tool for dietary discrimination in elasmobranchs

    Given that elasmobranchs are well known for the rate at which they replace their teeth, it is perhaps surprising that anterior teeth are retained long enough for dietarily informative microwear textures to develop. Yet our results demonstrate that tooth microwear textures vary with diet in C. taurus, and show that DMTA can provide an additional, potentially powerful tool for dietary discrimination in elasmobranchs. Furthermore, recent analysis indicates that C. taurus mostly consume prey in one piece30, implying less interaction of teeth with prey than would the case in animals that process their food before swallowing. We predict that for elasmobranchs that bite their prey the relationship between diet and microwear texture will be even stronger than that reported here.
    Sampling individuals with different diets reveals increases in PC 1 values that in turn correspond to changes in a number of different ISO texture parameters. In general terms, as noted above, there is a trend towards ‘rougher’ surfaces with increases in the proportion of elasmobranchs in C. taurus diets, and with increasing consumption of benthic elasmobranchs30,31,32 (which may be associated with an increase in the amount of sediment consumed with prey). The increase in variance of PC1 values may also reflect increased diversity of prey types30,31,32 in larger individuals. To a degree, the greater variance might reflect the greater difference between maximum development of ‘rough’ microwear texture in a tooth near the end of its functional life compared to a smooth, recently erupted tooth. Either way, our results indicate that microwear texture tracks diet, but more work will be required to tease apart these additional factors.
    Our analyses indicate that the tooth microwear textures of Specimen 5, from a different geographic area to other specimens, and for which we have no dietary data, are closely comparable to those of samples 1, 2 and 3, in terms of both values and variances. On this basis we interpret specimen 5 to have had a diet dominated by fish. The larger size of this specimen (at ca. 335 cm, larger than any other specimens analysed) lends further support to the hypothesis that microwear texture is tracking diet, and not size. Our dietary predictions regarding C. taurus from this area could be tested using traditional stomach contents, or stable isotope analyses, but this is outside the scope of the present study.
    Our results also suggest that application of DMTA to analysis of the diet of individual sharks will produce more reliable results if multiple teeth are sampled rather than a single tooth. Comparing the six teeth of the aquarium individuals (fed only fish) with six teeth sampled randomly from the wild individuals (which had more varied diets) revealed significant differences in every sub-sampling (Supplementary Table S5). However the number of parameters displaying a significant difference between wild and aquarium teeth varied, and fewer significant differences than were found than analyses comparing the aquarium teeth to multiple teeth from each wild individual. This suggests that analyses based on single isolated teeth rather than those from jaws, a situation that would commonly arise in analyses of fossil teeth, have the potential to detect differences between populations and species with different diets, but will be less sensitive than analyses based on multiple teeth per individual. To a certain extent, this will be offset in collections of isolated fossil teeth because the vast majority are teeth that were shed at the end of the functional cycle, so there will be much less sampling of recently erupted teeth with less well-developed microwear textures. (Due to the rate of tooth replacement in elasmobranchs, the number of teeth shed by an individual in its lifetime outnumber the number of teeth in the individuals jaw at time of death by several orders of magnitude).
    Drawing wider comparisons with microwear texture analyses in other groups of vertebrates, of the relationship between diet and 3D microwear texture based on ISO parameters, the number of parameters that differ between samples of C. taurus is larger than most previous studies, probably due to greater differences in material properties of food between the samples compared. Wild C. taurus consume a wider variety of prey than aquarium fed C. taurus. Wild individuals consume ‘harder’ prey items, whilst interacting with the natural environment. A wild individual consuming a benthic elasmobranch will have to bite through dermal denticles, a larger cartilage skeleton and inevitably will ingest some sediment during the process. In contrast aquarium individuals are largely fed whole and partial fish within the water column, a much ‘softer’ diet. Comparison of this study to others analysing vertebrate diet, repeatedly display significant differences in certain parameters when comparing groups with harder/softer diets. Purnell and Darras23 found that Sdq, Sdr, Vmc, Vvv, Sk and Sa discriminated best between the specialist durophagous and more opportunist durophagous fish in their study (based on ANOVA and PCA), with these parameters also differing between populations of the opportunist durophage Archosargus probatocephalus with different proportions of hard prey in their diets. Of these parameters, Sk, Sa, Vmc, and Vvv produce pairwise differences between C. taurus samples (between 1 and 4). These parameters capture aspects of surface heights and the volumes of material within the core and voids in valleys, respectively (Supplementary Table S1 online). All increase in value as the proportion of elasmobranchs in the diet increases, the same as the pattern of increase with durophagy seen in Archosargus probatocephalus and Anarhichas lupus23. Vmc, Vvv, and Sk were also found to increase with the amount of hard-shelled prey in the diet of cichlids24. This means that ‘harder’ diets produce tooth surface textures with greater core depth and an increase in the volumes of core material and valleys. In short ‘harder’ diets produce rougher tooth surfaces.
    This conclusion is also supported by a recent DMTA study on reptiles29, which exhibit significant overlap with sharks in the parameter trends correlating with ‘harder’ diets. Of the parameters correlating with increasing PC 1 values in sharks, parameters correlated with increasing dietary ‘hardness’ in reptiles include those capturing aspects of texture height (Sa, Sq, S5z), the number of peaks (Spk), and the depth, void volume and material volume of the core (Sk, Vvc, Vmc). Once again ‘harder’ diets produce rougher tooth surfaces.
    Other studies, although focussed on terrestrial rather than aquatic vertebrates, have found similar patterns. Vmc, Vvc, Vvv, and Sa increase with more abrasive diets in grazing ungulate mammals34; Vmc, Vvv and Sk increase with increasingly ‘hard’ prey in insectivorous bats21. Unlike other studies, the latter found Sa (the average surface height) to decrease with harder diets26. A recent study of bats and moles35 found that, like sharks, increasing the ‘hardness’ of the prey creates rougher tooth surfaces that can be defined by increases in Sa, Vmc, VVc values (amongst others) and a decrease in Sds values (amongst others). More

  • in

    Automated design of synthetic microbial communities

    1.
    Pantoja-Hernández, L. & Martínez-García, J. C. Retroactivity in the context of modularly structured biomolecular systems. Front. Bioeng. Biotechnol. 3, 85 (2015).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Jayanthi, S. & Del Vecchio, D. Retroactivity attenuation in bio-molecular systems based on timescale separation. IEEE Trans. Autom. Control 56, 748–761 (2011).
    MathSciNet  Article  Google Scholar 

    3.
    Gyorgy, A. et al. Isocost lines describe the cellular economy of genetic circuits. Biophys. J. 109, 639–646 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Summers, D. The kinetics of plasmid loss. Trends Biotechnol 9, 273–278 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Mishra, D., Rivera, P. M., Lin, A., Del Vecchio, D. & Weiss, R. A load driver device for engineering modularity in biological networks. Nat. Biotechnol. 32, 1268–1275 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Weiße, A. Y., Oyarzún, D. A., Danos, V. & Swain, P. S. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA 112, E1038–E1047 (2015).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    7.
    Brenner, K., You, L. & Arnold, F. H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26, 483–489 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Kennedy, T. A. et al. Biodiversity as a barrier to ecological invasion. Nature 417, 636–638 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Beyter, D. et al. Diversity, productivity, and stability of an industrial microbial ecosystem. Appl. Environ. Microbiol. 82, 2494–2505 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Butler, G. J. & Wolkowicz, G. S. K. A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45, 138–151 (1985).
    MathSciNet  Article  Google Scholar 

    11.
    Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microb. 8, 15–25 (2010).
    CAS  Article  Google Scholar 

    13.
    Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2, 589 (2011).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    14.
    Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl. Acad. Sci. USA 112, 6449–6454 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    May, A. et al. Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ 7, e7565 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Czaran, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 99, 786–790 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Dinh, C. V., Chen, X. & Prather, K. L. J. Development of a quorum-sensing based circuit for control of coculture population composition in a naringenin production system. ACS Synth. Biol. 9, 590–597 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Stephens, K., Pozo, M., Tsao, C.-Y., Hauk, P. & Bentley, W. E. Bacterial coculture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nat. Commun. 10, 4129 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Liu, F., Mao, J., Lu, T. & Hua, Q. Synthetic, context-dependent microbial consortium of predator and prey. ACS Synth. Biol. 8, 1713–1722 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Gupta, A., Reizman, I. M. B., Reisch, C. R. & Prather, K. L. J. Dynamic regulation of metabolic flux in engineered bacteria using a pathwayindependent quorum-sensing circuit. Nat. Biotechnol. 35, 273–279 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Scott, S. R. & Hasty, J. Quorum sensing communication modules for microbial consortia. ACS Synth. Biol. 5, 969–977 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Balagaddé, F. K. et al. A synthetic Escherichia coli predator–prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Kong, W., Meldgin, D. R., Collins, J. J. & Lu, T. Designing microbial consortia with defined social interactions. Nat. Chem. Biol. 14, 821–829 (2018).
    CAS  PubMed  Article  Google Scholar 

    24.
    Rebuffat S. M. (ed. Kastin, A. J.) In Handbook of Biologically Active Peptides 129–137 (Elsevier, 2013).

    25.
    Geldart, K., Forkus, B., McChesney, E., McCue, M. & Kaznessis, Y. pMPES: a modular peptide expression system for the delivery of antimicrobial peptides to the site of gastrointestinal infections using probiotics. Pharmaceuticals 9, 60 (2016).
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    26.
    Fedorec, A. J. H. et al. Two new plasmid post-segregational killing mechanisms for the implementation of synthetic gene networks in Escherichia coli. iScience 14, 323–334 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    MacDonald, J. T., Barnes, C., Kitney, R. I., Freemont, P. S. & Stan, G.-B. V. Computational design approaches and tools for synthetic biology. Integr. Biol. 3, 97 (2011).
    Article  Google Scholar 

    28.
    Kirk, P., Thorne, T. & Stumpf, M. P. H. Model selection in systems and synthetic biology. Curr. Opin. Biotechnol. 24, 767–774 (2013).
    CAS  PubMed  Article  Google Scholar 

    29.
    Barnes, C. P., Silk, D., Sheng, X. & Stumpf, M. P. H. Bayesian design of synthetic biological systems. Proc. Natl. Acad. Sci. USA 108, 15190–15195 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    30.
    Woods, M. L., Leon, M., Perez-Carrasco, R. & Barnes, C. P. A Statistical approach reveals designs for the most robust stochastic gene oscillators. ACS Synth. Biol. 5, 459–470 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Leon, M., Woods, M. L., Fedorec, A. J. H. & Barnes, C. P. A computational method for the investigation of multistable systems and its application to genetic switches. BMC Syst. Biol. 10, 130 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Yeoh, J. W. et al. An automated biomodel selection system (BMSS) for gene circuit designs. ACS Synth. Biol. 8, 1484–1497 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Beal, J. et al. An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Synth. Biol. 1, 317–331 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Rodrigo, G. & Jaramillo, A. AutoBioCAD: full biodesign automation of genetic circuits. ACS Synth. Biol. 2, 230–236 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Friedman, J. & Gore, J. Ecological systems biology: the dynamics of interacting populations. Current Opinion in Systems Biology 1, 114–121 (2017).
    Article  Google Scholar 

    36.
    Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P. H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
    MathSciNet  Article  Google Scholar 

    38.
    Salis, H. M., Mirsky, E. A. & Christopher, C. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Marisch, K. et al. A Comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptomeand proteome level. PLoS ONE 8, e70516 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Treloar, N. J., Fedorec, A. J. H., Ingalls, B. & Barnes, C. P. Deep reinforcement learning for the control of microbial co-cultures in bioreactors. PLOS Comput. Biol. 16, e1007783 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Kerner, A., Park, J., Williams, A. & Lin, X. N. A programmable Escherichia coli consortium via tunable symbiosis. PLoS ONE 7, e34032 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Shou, W., Ram, S. & Vilar, J. M. G. Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. USA 104, 1877–1882 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J 8, 953–962 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial crossprotection mutualism. Proc. Natl. Acad. Sci. USA 113, 6236–6241 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Hosoda, K. et al. Cooperative adaptation to establishment of a synthetic bacterial mutualism. PLoS ONE 6, e17105 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Zhang, X. & Reed, J. L. Adaptive evolution of synthetic cooperating communities improves growth performance. PLoS ONE 9, e108297 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Chen, Y., Kim, J. K., Hirning, A. J., Josi, K. & Bennett, M. R. Emergent genetic oscillations in a synthetic microbial consortium. Science 349, 986–989 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Bernstein, H. C., Paulson, S. D. & Carlson, R. P. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157, 159–166 (2012).
    CAS  PubMed  Article  Google Scholar 

    51.
    Scott, S. R. et al. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis. Nat. Microbiol. 2, 17083 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Ziesack, M. et al. Engineered Interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium. mSystems 4, e00352–19 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Liao, M. J., Din, M. O., Tsimring, L. & Hasty, J. Rock-paper-scissors: engineered population dynamics increase genetic stability. Science 365, 1045–1049 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Ahn, J. et al. Human gut microbiome and risk for colorectal cancer. J. Natl Cancer Inst 105, 1907–1911 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Stokell, J. R. et al. Analysis of changes in diversity and abundance of the microbial community in a cystic fibrosis patient over a multiyear period. J. Clin. Microbiol. 53, 237–247 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Wang, X., Policarpio, L., Prajapati, D., Li, Z. & Zhang, H. Developing E. coli– E. coli co-cultures to overcome barriers of heterologous tryptamine biosynthesis. Metab. Eng. Commun. 10, e00110 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Yuan, S. F., Yi, X., Johnston, T. G. & Alper, H. S. De novo resveratrol production through modular engineering of an Escherichia coli–Saccharomyces cerevisiae co-culture. Microb. Cell Factor 19, 143 (2020).
    CAS  Article  Google Scholar 

    60.
    Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol 1, 109 (2017).
    PubMed  Article  Google Scholar 

    61.
    Carmona-Fontaine, C. & Xavier, J. B. Altruistic cell death and collective drug resistance. Molecular Systems Biology 8, 627 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Tanouchi, Y., Pai, A., Buchler, N. E. & You, L. Programming stress-induced altruistic death in engineered bacteria. Mol. Syst. Biol. 8, 626 (2012).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    64.
    Williams, G. T. Programmed cell death: a fundamental protective response to pathogens. Trends Microbiol 2, 463–464 (1994).
    CAS  PubMed  Article  Google Scholar 

    65.
    Calles, B., Goñi-Moreno, Á. & Lorenzo, V. Digitalizing heterologous gene expression in Gram-negative bacteria with a portable ON/OFF module. Mol. Syst. Biol. 15, e8777 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Fedorec, A., Karkaria, B., Sulu, M. & Barnes, C. Single strain control of microbial consortia. bioRxiv, https://doi.org/10.1101/2019.12.23.887331 (2019).

    67.
    Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    68.
    Hsu, R. H. et al. Venturelli. Microbial interaction network inference in microfluidic droplets. Cell Syst 9, 229–242.e4 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Doekes, H. M., De Boer, R. J. & Hermsen, R. Toxin production spontaneously becomes regulated by local cell density in evolving bacterial populations. PLoS Comput. Biol. 15, e1007333 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    McNaughton, S. J. Stability and diversity of ecological communities. Nature 274, 251–253 (1978).
    ADS  Article  Google Scholar 

    71.
    Sterner, R. W., Bajpai, A. & Adams, T. The enigma of food chain length: absence of theoretical evidence for dynamic constraints. Ecology 78, 2258–2262 (1997).
    Article  Google Scholar 

    72.
    Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    74.
    Tang, S., Pawar, S. & Allesina, S. Correlation between interaction strengths drives stability in large ecological networks. Ecol. Lett. 17, 1094–1100 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    75.
    Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Siek, J. G., Lee, L.-Q., Lumsdaine, A. The Boost Graph Library, 243 (Addison-Wesley, 2002).

    78.
    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
    MathSciNet  Google Scholar 

    79.
    Harper, M., et al. python-ternary: ternary plots in python. Zenodo https://doi.org/10.5281/zenodo.594435 (2019).

    80.
    Wickham, H. ggplot2-Positioning Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).

    81.
    Kylilis, N., Tuza, Z. A., Stan, G. B. & Polizzi, K. M. Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat. Commun. 9, 2677 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    82.
    Senn, H., Lendenmann, U., Snozzi, M., Hamer, G. & Egli, T. The growth of Escherichia coli in glucose-limited chemostat cultures: a re-examination of the kinetics. BBA—Gen. Subj. 1201, 424–436 (1994).
    Article  Google Scholar 

    83.
    Destoumieux-Garzón, D. The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 β-hairpin region in the recognition mechanism. Biochem. J. 389, 869–876 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    84.
    Kaur, K. et al. Characterization of a highly potent antimicrobial peptide microcin N from uropathogenic Escherichia coli. FEMS Microbiology Letters 363, fnw095 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    85.
    Andersen, K. B. & Meyenburg, K. V. Are growth rates of Escherichia coli in batch cultures limited by respiration? J. Bacteriol. 144, 114–123 (1980).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Marenda, M., Zanardo, M., Trovato, A., Seno, F. & Squartini, A. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries. Sci. Rep. 6, 39142 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Destoumieux-Garzón, D. et al. Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Mol. Microbiol. 49, 1031–1041 (2003).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    88.
    Karkaria, B. D., Fedorec, A. J. H. & Barnes, C. P. Automated design of synthetic microbial communities. Zenodo https://doi.org/10.5281/zenodo.4266261 (2020). More

  • in

    3D morphology of nematode encapsulation in snail shells, revealed by micro-CT imaging

    1.
    Frank, S. A. Immunology and Evolution of Infectious Diseases (Princeton, Princeton University Press, 2002).
    Google Scholar 
    2.
    Barker, G. M. Natural Enemies of Terrestrial Molluscs (CABI Publishing, Wallingford, 2004).
    Google Scholar 

    3.
    Grewal, P. S., Grewal, S. K., Tan, L. & Adams, B. J. Parasitism of molluscs by nematodes: types of associations and evolutionary trends. J. Nematol. 35, 146–156 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Blaxter, M. L. et al. A molecular evolutionary framework for the phylum Nematoda. Nature 392, 71–75 (1998).
    ADS  CAS  Article  Google Scholar 

    5.
    Pieterse, A., Malan, A. P. & Ross, J. L. Nematodes that associate with terrestrial molluscs as definitive hosts, including Phasmarhabditis hermaphrodita (Rhabditida: Rhabditidae) and its development as a biological molluscicide. J. Helminthol. 91, 517–527 (2017).
    CAS  Article  Google Scholar 

    6.
    Tillier, S., Masselot, M. & Tillier, A. Phylogenic relationships of the pulmonate gastropods from rRNA sequences, and tempo and age of the Stylommatophoran radiation. In Origin and Evolutionary Radiation of the Mollusca (ed. Taylor, J.D.) 267–284 (Oxford, Oxford University Press, 1996).

    7.
    Félix, M-A. & Braendle, C. The natural history of Caenorhabditis elegans. Curr. Biol. 20, R965-R969 (2010).

    8.
    Bolt, G., Monrad, J., Koch, J. & Jensen, A. L. Canine angiostrongylosis: a review. Vet. Rec. 135, 447–452 (1994).
    CAS  Article  Google Scholar 

    9.
    Loker E.S. Gastropod immunobiology in Invertebrate Immunity (ed. Soderhall, K.) 17–43 (Springer, 2010).

    10.
    South, A. Terrestrial Slugs: Biology, Ecology and Control (Chapman & Hall, London, 1992).
    Google Scholar 

    11.
    Wilson, M. J., Glen, D. M. & George, S. K. The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Sci. Technol. 3, 503–511 (1993).
    Article  Google Scholar 

    12.
    Williams, A. J. & Rae, R. Susceptibility of the Giant African Snail (Achatina fulica) exposed to the gastropod parasitic nematode Phasmarhabditis hermaphrodita. J. Invertebr. Pathol. 127, 122–126 (2015).
    CAS  Article  Google Scholar 

    13.
    Williams, A. & Rae, R. Cepaea nemoralis uses its shell as a defence mechanism to trap and kill parasitic nematodes. J. Mollus. Stud. 12, 1–2 (2016).
    Google Scholar 

    14.
    Rae, R. The gastropod shell has been co-opted to kill parasitic nematodes. Sci. Rep. 7, 4745. https://doi.org/10.1038/s41598-017-04695-5 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Rae, R., 2018. Shell encapsulation of parasitic nematodes by Arianta arbustorum (Linnaeus, 1758) in the laboratory and in field collections. J. Molluscan Stud. 84, 92–95 (2018).

    16.
    Cowlishaw, R. M., Andrus, P. & Rae, R. An investigation into nematodes encapsulated in shells of wild, farmed and museum specimens of Cornu aspersum and Helix pomatia. J. Conchol. 43, 1–8 (2020).
    Google Scholar 

    17.
    Lowenstam, H. A. & Weiner, S. On Biomineralization (Oxford University Press, Oxford, 1989).
    Google Scholar 

    18.
    Rae, R. G., Robertson, J. F. & Wilson, M. J. Susceptibility and immune response of Deroceras reticulatum, Milax gagates and Limax pseudoflavus exposed to the slug parasitic nematode Phasmarhabditis hermaphrodita. J. Invertebr. Pathol. 97, 61–69 (2008).
    Article  Google Scholar 

    19.
    Littlewood, D. T. J. & Donovan, S. K. Fossil parasites: a case of identity. Geol. Today. 19, 136–142 (2003).
    Article  Google Scholar 

    20.
    Poinar, G. O. Jr. The geological record of parasitic nematode evolution. Adv. Parasitol. 90, 53–92 (2015).
    Article  Google Scholar 

    21.
    Garwood, R., Dunlop, J.A. & Sutton, M.D. High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids. Biol. Lett. 5, 6 https://doi.org/10.1098/rsbl.2009.0464 (2009).

    22.
    Inoue, S. & Kondo, S. Structure pattern formation in ammonites and the unknown rear mantle structure. Sci. Rep. 6, 33689; https://doi.org/10.1038/srep33689 (2016).

    23.
    Shapiro, B. Ancient DNA. In Princeton Guide to Evolution (ed. Losos, J.) 475–481 (Princeton, Princeton University Press, 2013).

    24.
    Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116 (2018).
    ADS  CAS  Article  Google Scholar 

    25.
    Swarts, K. et al. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357, 512–515 (2017).
    ADS  CAS  Article  Google Scholar 

    26.
    Spyrou, M. A. et al. Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze Age origin for bubonic plague. Nat. Commun. 9, 2234. https://doi.org/10.1038/s41467-018-04550-9 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Loreille, O., Roumat, E., Verneau, O., Bouchet, F. & Hänni, C. Ancient DNA from Ascaris: extraction amplification and sequences from eggs collected from coprolites. Int. J. Parasitol. 31, 1101–1106 (2001).
    CAS  Article  Google Scholar 

    28.
    Søe, M. J., Nejsum, P., Fredensborg, B. L. & Kapel, C. M. O. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement. J. Parasitol. 101, 57–63 (2015).
    Article  Google Scholar 

    29.
    Lubell, D. Prehistoric edible land snails in the cicum-Mediterranean: the archaeological evidence. In Petits Animaux et Societes Humaines. Du Complement Alimentaire Aux Resources Utiliaires. XXIVe rencontres internationals d’archeologie et d’histoire d’Antibes (eds. Brugal, J-J & Dess, J.) 77–98 (Editions APDCA, 2004).

    30.
    Eamsobhana, P. Eosinophilic meningitis caused by Angiostrongylus cantonenses – a neglected disease with escalating importance. Trop. Biomed. 31, 569–578 (2014).
    CAS  PubMed  Google Scholar  More