Ecology
Subterms
More stories
113 Shares199 Views
in EcologyEnsuring effective implementation of the post-2020 global biodiversity targets
113 Shares189 Views
in EcologyGlobal patterns and climatic controls of forest structural complexity
1.
Ali, A. et al. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests. Sci. Total Environ. 706, 135719 (2020).
ADS CAS PubMed Article Google Scholar
2.
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015).
ADS CAS PubMed Article Google Scholar3.
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).
ADS Article Google Scholar4.
Penone, C. et al. Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol. Lett. 22, 170–180 (2019).
PubMed Article Google Scholar5.
Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).
PubMed Article Google Scholar6.
Gough, C. M., Atkins, J. W., Fahey, R. T. & Hardiman, B. S. High rates of primary production in structurally complex forests. Ecology 100, e02864 (2019).
PubMed Article Google Scholar7.
Stark, S. C. et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett. 15, 1406–1414 (2012).
PubMed Article Google Scholar8.
Ammer, C. et al. Key ecological research questions for Central European forests. Basic Appl. Ecol. 32, 3–25 (2018).
Article Google Scholar9.
Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).
ADS CAS PubMed Article Google Scholar10.
Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).
CAS PubMed Article Google Scholar11.
Ehbrecht, M., Schall, P., Ammer, C. & Seidel, D. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric. Meteorol. 242, 1–9 (2017).
Article Google Scholar12.
Seidel, D., Ehbrecht, M., Annighöfer, P. & Ammer, C. From tree to stand-level structural complexity—Which properties make a forest stand complex? Agric. Meteorol. 278, 107699 (2019).
Article Google Scholar13.
Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681–691 (2014).
PubMed Article Google Scholar14.
Gough, C. M., Atkins, J. W., Fahey, R. T., Hardiman, B. S. & LaRue, E. A. Community and structural constraints on the complexity of eastern North American forests. Glob. Ecol. Biogeogr. 29, 2107–2118 (2020).15.
MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).
Article Google Scholar16.
Ishii, H. T., Tanabe, S. & Hiura, T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. Science 50, 342–355 (2004).
Google Scholar17.
Pretzsch, H. Forest dynamics, growth, and yield. In Forest Dynamics, Growth and Yield: From Measurement to Model (ed. Pretzsch, H.) 1–39 (Springer, 2009).18.
Dassot, M., Constant, T. & Fournier, M. The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges. Ann. Sci. 68, 959–974 (2011).
Article Google Scholar19.
Ehbrecht, M., Schall, P., Juchheim, J., Ammer, C. & Seidel, D. Effective number of layers: a new measure for quantifying three-dimensional stand structure based on sampling with terrestrial LiDAR. Ecol. Manag. 380, 212–223 (2016).
Article Google Scholar20.
Juchheim, J., Ammer, C., Schall, P. & Seidel, D. Canopy space filling rather than conventional measures of structural diversity explains productivity of beech stands. Ecol. Manag. 395, 19–26 (2017).
Article Google Scholar21.
Atkins, J. W., Fahey, R. T., Hardiman, B. S. & Gough, C. M. Forest canopy structural complexity and light absorption relationships at the subcontinental scale. J. Geophys. Res. Biogeosci. 123, 1387–1405 (2018).
Article Google Scholar22.
Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).
Article Google Scholar23.
Fotis, A. T. et al. Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agric. Meteorol. 250–251, 181–191 (2018).
Article Google Scholar24.
Juchheim, J., Ehbrecht, M., Schall, P., Ammer, C. & Seidel, D. Effect of tree species mixing on stand structural complexity. Int. J. Res. 93, 75–83 (2020).
Google Scholar25.
Zemp, D. C. et al. Mixed-species tree plantings enhance structural complexity in oil palm plantations. Agric. Ecosyst. Environ. 283, 106564 (2019).
Article Google Scholar26.
Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086 (2015).
Article Google Scholar27.
Morin, X. Species richness promotes canopy packing: a promising step towards a better understanding of the mechanisms driving the diversity effects on forest functioning. Funct. Ecol. 29, 993–994 (2015).
Article Google Scholar28.
McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 851–869 https://doi.org/10.1111/nph.15027@10.1111/(ISSN)1469-8137. (2018).29.
Pretzsch, H. Size-structure dynamics in mixed versus monospecific stands. In Mixed-Species Forests: Ecology and Management (eds. Pretzsch, H., Forrester, D. I. & Bauhus, J.) 211–269 (Springer, 2017).30.
Moncrieff, G. R., Bond, W. J. & Higgins, S. I. Revising the biome concept for understanding and predicting global change impacts. J. Biogeogr. 43, 863–873 (2016).
Article Google Scholar31.
Stegen, J. C. et al. Variation in above-ground forest biomass across broad climatic gradients. Glob. Ecol. Biogeogr. 20, 744–754 (2011).
Article Google Scholar32.
Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).
Article Google Scholar33.
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Article Google Scholar34.
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
Article Google Scholar35.
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
Article Google Scholar36.
Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).
Article Google Scholar37.
Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257 (2008).
Article Google Scholar38.
Ryan, M. G., Phillips, N. & Bond, B. J. The hydraulic limitation hypothesis revisited. Plant Cell Environ. 29, 367–381 (2006).
PubMed Article Google Scholar39.
Klein, T., Randin, C. & Körner, C. Water availability predicts forest canopy height at the global scale. Ecol. Lett. 18, 1311–1320 (2015).
PubMed Article Google Scholar40.
Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389 (2017).
ADS CAS PubMed Article Google Scholar41.
Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar42.
Thonicke, K. et al. Simulating functional diversity of European natural forests along climatic gradients. J. Biogeogr. 47, 1069–1085 (2020).
Article Google Scholar43.
Willim, K. et al. Assessing understory complexity in beech-dominated Forests (Fagus sylvatica L.) in Central Europe—from managed to primary forests. Sensors 19, 1684 (2019).
Article Google Scholar44.
Eggeling, W. J. Observations on the Ecology of the Budongo Rain Forest, Uganda. J. Ecol. 34, 20–87 (1947).
Article Google Scholar45.
Stephens, S. L. & Gill, S. J. Forest structure and mortality in an old-growth Jeffrey pine-mixed conifer forest in north-western Mexico. Ecol. Manag. 205, 15–28 (2005).
Article Google Scholar46.
Senf, C., Mori, A. S., Müller, J. & Seidl, R. The response of canopy height diversity to natural disturbances in two temperate forest landscapes. Landsc. Ecol. https://doi.org/10.1007/s10980-020-01085-7. (2020)47.
Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 1–8 https://doi.org/10.1038/s41893-020-00609-y. (2020).48.
Krug, J. H. A. Adaptation of Colophospermum mopane to extra-seasonal drought conditions: site-vegetation relations in dry-deciduous forests of Zambezi region (Namibia). Ecosystems 4, 25 (2017).
Google Scholar49.
Stovall, A. E. L., Shugart, H. & Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 10, 4385 (2019).
ADS CAS PubMed PubMed Central Article Google Scholar50.
Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 1–10 (2017).
Article CAS Google Scholar51.
Schuldt, B. et al. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? N. Phytol. 210, 443–458 (2016).
Article Google Scholar52.
Astrup, R., Bernier, P. Y., Genet, H., Lutz, D. A. & Bright, R. M. A sensible climate solution for the boreal forest. Nat. Clim. Change 8, 11–12 (2018).
ADS Article Google Scholar53.
Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).
ADS CAS PubMed Article PubMed Central Google Scholar54.
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
ADS CAS PubMed PubMed Central Article Google Scholar55.
Klein, T. & Hartmann, H. Climate change drives tree mortality. Science 362, 758–758 (2018).
ADS CAS PubMed Google Scholar56.
Puettmann, K. J., Coates, K. D. & Messier, C. C. A Critique of Silviculture: Managing for Complexity. (Island Press, 2012).57.
Camarretta, N. et al. Monitoring forest structure to guide adaptive management of forest restoration: a review of remote sensing approaches. New For. https://doi.org/10.1007/s11056-019-09754-5. (2019).58.
Chiarucci, A. & Piovesan, G. Need for a global map of forest naturalness for a sustainable future. Conserv. Biol. 34, 368–372 (2020).
PubMed Article Google Scholar59.
Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).
ADS PubMed PubMed Central Article Google Scholar60.
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar61.
Keane, R. E., Holsinger, L. M. & Loehman, R. Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates. Ecol. Manag. 477, 118498 (2020).
Article Google Scholar62.
Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).
Article Google Scholar63.
Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab9e99. (2020).64.
Campbell, N. A. Biology. (Pearson Education, 1996).65.
Buchwald, E. A hierarchical terminology for more or less natural forests in relation to sustainable management and biodiversity conservation. In Proc. Third Expert Meeting on Harmonizing Forest-related Definitions for Use by Various Stakeholders. Vol. 18 (Food and Agriculture Organization of the United Nations, 2005).66.
Frey, J., Asbeck, T. & Bauhus, J. Predicting tree-related microhabitats by multisensor close-range remote sensing structural parameters for the selection of retention elements. Remote Sens. 12, 867 (2020).
ADS Article Google Scholar67.
Ehbrecht, M., Schall, P., Ammer, C., Fischer, M. & Seidel, D. Effects of structural heterogeneity on the diurnal temperature range in temperate forest ecosystems. Ecol. Manag. 432, 860–867 (2019).
Article Google Scholar68.
Ehbrecht et al. ehbrechtetal/Stand-structural-complexity-index–SSCI: R-code to compute the stand structural complexity index (SSCI). https://doi.org/10.5281/zenodo.4295910. (2017).69.
Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. https://doi.org/10.6084/m9.figshare.7504448.v3. (2019)70.
Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
PubMed PubMed Central Article CAS Google Scholar71.
Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2. ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1247 (2014).72.
Fehrmann, L. et al. A unified framework for land cover monitoring based on a discrete global sampling grid (GSG). Environ. Monit. Assess. 191, 46 (2019).
PubMed Article Google Scholar More200 Shares189 Views
in EcologyEffects of a commercially formulated glyphosate solutions at recommended concentrations on honeybee (Apis mellifera L.) behaviours
1.
Gallai, N., Salles, J., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
Article Google Scholar
2.
Carreck, N. L. & Ratnieks, F. L. W. The dose makes the poison: have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies?. J. Apicult. Res. 53, 607–614 (2014).
Article Google Scholar3.
Gross, M. New fears over bee declines. Curr. Biol. 21, 137–139 (2011).
Article CAS Google Scholar4.
Lundin, O., Smith, H. G., Fries, I. & Bommarco, R. Neonicotinoid insecticides and their impacts on bees: A systematic review of research approaches and identification of knowledge gaps. PLoS ONE 10, 2 (2015).
Google Scholar5.
Rucker, R. R., Thurman, W. N. & Burgett, M. Honey bee pollination markets and the internalization of reciprocal benefits. Am. J. Agr. Econ. 94, 956–977 (2012).
Article Google Scholar6.
Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA. 99, 16812–16816 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar7.
Koh, I., Lonsdorf, E. V., Artz, D. R., Pitts-Singer, T. L. & Ricketts, T. H. Ecology and economics of using native managed bees for almond pollination. J. Econ. Entomol. 111, 16–25 (2018).
PubMed Article PubMed Central Google Scholar8.
Stein, K. et al. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Sci. Rep.-UK 7, 17610–17691 (2017).
Article CAS Google Scholar9.
Claudianos, C. et al. A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 15, 615–636 (2006).
CAS PubMed PubMed Central Article Google Scholar10.
Abraham, J. et al. Commercially formulated glyphosate can kill non-target pollinator bees under laboratory conditions. Entomol. Exp. Appl. 166, 695–702 (2018).
CAS Article Google Scholar11.
Polyzou, A., Froment, M., Masson, P. & Belzunces, L. P. Absence of a protective effect of the oxime 2-PAM toward paraoxon-poisoned honey bees: Acetylcholinesterase reactivation not at fault. Toxicol. Appl. Pharm. 152, 184–192 (1998).
CAS Article Google Scholar12.
Stanley, J., Sah, K., Jain, S. K., Bhatt, J. C. & Sushil, S. N. Evaluation of pesticide toxicity at their field recommended doses to honeybees, Apis cerana and A. mellifera through laboratory, semi-field and field studies. Chemosphere 119, 668–674 (2015).
ADS CAS PubMed Article PubMed Central Google Scholar13.
Christen, V. & Fent, K. Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination. Environ. Pollut. 226, 48–59 (2017).
CAS PubMed Article PubMed Central Google Scholar14.
Friol, P. S., Catae, A. F., Tavares, D. A., Malaspina, O. & Roat, T. C. Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees?. Chemosphere 185, 56–66 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar15.
Fulton, C. A. et al. An assessment of pesticide exposures and land use of honey bees in Virginia. Chemosphere 222, 489–493 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar16.
Report, C. R. I. Glyphosate industry overview in China, 2011–2020 (CRI, Shanghai, 2018).
Google Scholar17.
Herbert, L. T., Vazquez, D. E., Arenas, A. & Farina, W. M. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J. Exp. Biol. 217, 3457–3464 (2014).
PubMed Article PubMed Central Google Scholar18.
Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA. 115, 10305–10310 (2018).
CAS PubMed Article PubMed Central Google Scholar19.
Rahimian, Y. Effect of glyphosate on honey bee (Apis mellifera) performance. Arthropods. 7, 77–81 (2018).
Google Scholar20.
Thompson, H. M. et al. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example. Integr. Environ. Asses. 10, 463–470 (2014).
ADS CAS Article Google Scholar21.
FAO, China at a glance. http://www.fao.org/china/fao-in-china/china-at-a-glance/en/. (2019) Available.22.
Hou, J. H. Path construction for the reform of the rural land property system. J. Huaiyin Inst. Technol. (2019).23.
Zhang, C. et al. Health effect of agricultural pesticide use in China: Implications for the development of GM crops. Sci. Rep.-UK 6, 2 (2016).
Article CAS Google Scholar24.
Michalková, V. & Pekár, S. How glyphosate altered the behaviour of agrobiont spiders (Araneae: Lycosidae) and beetles (Coleoptera: Carabidae). Biol. Control. 51, 444–449 (2009).
Article CAS Google Scholar25.
Janssens, L. & Stoks, R. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquat. Toxicol. 193, 210–216 (2017).
CAS PubMed Article Google Scholar26.
García-Espiñeira, M., Tejeda-Benitez, L. & Olivero-Verbel, J. Toxicity of atrazine- and glyphosate-based formulations on Caenorhabditis elegans. Ecotox. Environ. Safe. 156, 216–222 (2018).
Article CAS Google Scholar27.
Tierney, K. B., Singh, C. R., Ross, P. S. & Kennedy, C. J. Relating olfactory neurotoxicity to altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides. Aquat. Toxicol. 81, 55–64 (2007).
CAS PubMed Article PubMed Central Google Scholar28.
Tierney, K. B., Ross, P. S., Jarrard, H. E., Delaney, K. R. & Kennedy, C. J. Changes in juvenile coho salmon electro-olfactogram during and after short-term exposure to current-use pesticides. Environ. Toxicol. Chem. 25, 2809–2817 (2006).
CAS PubMed Article PubMed Central Google Scholar29.
Cattani, D. et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: implication of glutamate excitotoxicity and oxidative stress. Toxicology 387, 67–80 (2017).
CAS PubMed Article PubMed Central Google Scholar30.
Zaluski, R., Kadri, S. M., Alonso, D. P., Martins Ribolla, P. E. & de Oliveira, O. R. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses. Environ. Toxicol. Chem. 34, 1062–1069 (2015).
CAS PubMed Article PubMed Central Google Scholar31.
El Hassani, A. K. et al. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch. Environ. Con. Tox. 54, 653–661 (2008).
Article CAS Google Scholar32.
Balbuena, M. S. et al. Effects of sublethal doses of glyphosate on honeybee navigation. J. Exp. Biol. 218, 2799–2805 (2015).
PubMed Article PubMed Central Google Scholar33.
Company, Monsanto. Material safety data sheet for Roundup Original Herbicide. https://www.fumigationzone.com/files/53/Roundup+Original+-+EPA. (2006).34.
Decourtye, A., Lacassie, E. & Pham-Delègue, M. Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest. Manag. Sci. 59, 269–278 (2003).
CAS PubMed Article PubMed Central Google Scholar35.
Haydak, M. H. Honey bee nutrition. Annu. Rev. Entomol. 15, 143–156 (1970).
Article Google Scholar36.
Winston, M. L. The biology of the honey bee. Q. Rev. Biol. 27, 239–243 (1987).
Google Scholar37.
Wang, N. et al. Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms. Chemosphere 59, 545–551 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar38.
Brausch, J. M., Beall, B. & Smith, P. N. Acute and sub-lethal toxicity of three POEA surfactant formulations to Daphnia magna. Bull. Environ. Contam. Toxicol. 78, 510–514 (2007).
CAS PubMed Article PubMed Central Google Scholar39.
Brausch, J. M., Brausch, J. M., Smith, P. N. & Smith, P. N. Toxicity of three polyethoxylated tallowamine surfactant formulations to laboratory and field collected fairy shrimp Thamnocephalus platyurus. Arch. Environ. Con. Tox. 52, 217–221 (2007).
CAS Article Google Scholar40.
Benachour, N. & Seralini, G. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem. Res. Toxicol. 22, 97–105 (2009).
CAS PubMed Article PubMed Central Google Scholar41.
Gasnier, C. et al. Dig1 protects against cell death provoked by glyphosate-based herbicides in human liver cell lines. J. Occup. Med. Toxicol. 5, 29 (2010).
PubMed PubMed Central Article CAS Google Scholar42.
Tsui, M. T. K. & Chu, L. M. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere 52, 1189–1197 (2003).
ADS CAS PubMed Article PubMed Central Google Scholar43.
Marc, J. et al. A glyphosate-based pesticide impinges on transcription. Toxicol. Appl. Pharm. 203, 1–8 (2005).
CAS Article Google Scholar44.
Defarge, N. et al. Co-Formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. Int. J. Env. Res. Pub. He. 13, 264 (2016).
Article CAS Google Scholar45.
NPIC., Techincal fact sheet for glyphosate. http://npic.orst.edu/factsheets/archive/glyphotech.html (2011).46.
Mengoni, G. C. & Farina, W. M. Impaired associative learning after chronic exposure to pesticides in young adult honey bees. J. Exp. Biol. 221, 2 (2018).
Google Scholar47.
Balbuena, M. S., Arenas, A. & Farina, W. M. Floral scents learned inside the honeybee hive have a long-lasting effect on recruitment. Anim. Behav. 84, 77–83 (2012).
Article Google Scholar48.
Goyret, J. & Farina, W. M. Non-random nectar unloading interactions between foragers and their receivers in the honeybee hive. Sci. Nat.-Heidelberg. 92, 440–443 (2005).
CAS Article Google Scholar49.
Faita, M. R., Oliveira, E. D. M., Alves, V. V., Orth, A. I. & Nodari, R. O. Changes in hypopharyngeal glands of nurse bees (Apis mellifera) induced by pollen-containing sublethal doses of the herbicide Roundup. Chemosphere 211, 566–572 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar50.
Mesnage, R. et al. Glyphosate exposure in a farmer’s family. J. Environ. Prot. 03, 1001–1003 (2012).
CAS Article Google Scholar51.
Samsel, A. & Seneff, S. Glyphosate’s suppression of cytochrome p450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy-Switz. 15, 1416–1463 (2013).
ADS CAS Article Google Scholar52.
Ying, C. Brief analysis on the application technique of Roundup. Forest Investig. Des. 2, 39–40 (2007).
MathSciNet Google Scholar53.
Jing, X., Qi, J. & Yang, H. Pesticide residue level and dietary exposure risk assessment of Lycium barbarum in Golmud. Ecol. Environ. 28, 1007–1012 (2019).
Google Scholar54.
Decourtye, A. et al. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Con. Tox. 48, 242–250 (2005).
CAS Article Google Scholar More38 Shares159 Views
in EcologyBeneath the glacier
The frigid environment under glaciers is inhospitable to all but the most intrepid of microscopic life. To eke out a living, these microbes must do without sunlight and the photosynthetically fixed carbon that fuels most other ecosystems on Earth. Instead, such ecosystems are likely supported by chemosynthetic primary production that capitalizes on energy from inorganic reactions to produce biomass, but the exact mechanisms enabling such chemosynthetic life under the ice are unknown.
Eric Dunham, from Montana State University, USA, and colleagues collected sediments from a glacial system in Iceland that overlays a silicate mineral-rich basaltic catchment, conditions that are prevalent across glacial systems. High concentrations of the reductant hydrogen (H2) were detected, which likely formed when silicate minerals pulverized by the glacier reacted with water. In microcosms seeded with the sediments and amended with H2 and 14CO2, subglacial microbes could oxidize H2, using the resulting energy for chemosynthetic carbon fixation. Metagenomic sequencing from enrichment cultures revealed two prominent autotrophic hydrogenotroph populations, one likely restricted to H2-based chemoautotrophy and one with genomic potential for mixotrophy. The populations exhibited rates of H2 oxidation and carbon fixation approximately tenfold higher than those taken from a Canadian glacier overlying carbonate and shale, suggesting specialization to H2-rich conditions in basalt-glacier systems.
Credit: Natthawat/Getty Images
Interactions between glaciers and rock that can turn an otherwise inhospitable environment into a home for microbes could have implications beyond present-day Earth. Icy H2-dependent primary production could have sustained life during Snowball Earth episodes in our planet’s distant past, or could pave the way for life to evolve on Saturn’s frozen moon Enceladus. More
213 Shares109 Views
in EcologyDevelopmental stages of peach, plum, and apple fruit influence development and fecundity of Grapholita molesta (Lepidoptera: Tortricidae)
Stage development and survival rates
Egg duration of G. molesta was not affected by fruit species (F = 0.54, df = 2, 261, P = 0.581), by collection date (F = 0.06, df = 2, 261, P = 0.941), or by fruit species by collection date interaction (F = 0.24, df = 4, 261, P = 0.914) (Table 1). Durations of other life stages were all significantly affected by fruit species (larva F = 28.16, df = 2, 144, P More125 Shares99 Views
in EcologyGroup-level cooperation in chimpanzees is shaped by strong social ties
1.
House, J. S., Landis, K. R. & Umberson, D. Social relationships and health. Science 241, 540–545 (1988).
ADS CAS PubMed Article PubMed Central Google Scholar
2.
Holt-Lunstad, J., Smith, T. B. & Layton, J. B. Social relationships and mortality risk: a meta-analytic review. PLoS Med. 7, e1000316 (2010).
PubMed PubMed Central Article Google Scholar3.
Silk, J. B., Alberts, S. C. & Altmann, J. Social bonds of female baboons enhance infant survival. Science 302, 1231–1234 (2003).
ADS CAS PubMed PubMed Central Article Google Scholar4.
Wittig, R. M. et al. Social support reduces stress hormone levels in wild chimpanzees across stressful events and everyday affiliations. Nat. Commun. 7, 13361 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar5.
Schülke, O., Bhagavatula, J., Vigilant, L. & Ostner, J. Social bonds enhance reproductive success in male macaques. Curr. Biol. 20, 2207–2210 (2010).
PubMed Article CAS PubMed Central Google Scholar6.
Cameron, E. Z., Setsaas, T. H. & Linklater, W. L. Social bonds between unrelated females increase reproductive success in feral horses. Proc. Natl Acad. Sci. USA 106, 13850–13853 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar7.
Silk, J. B. et al. Strong and consistent social bonds enhance the longevity of female baboons. Curr. Biol. 20, 1359–1361 (2010).
CAS PubMed Article PubMed Central Google Scholar8.
Barocas, A., Ilany, A., Koren, L., Kam, M. & Geffen, E. Variance in centrality within rock Hyrax social networks predicts adult longevity. PLoS ONE 6, e22375 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar9.
Riehl, C. & Strong, M. J. Stable social relationships between unrelated females increase individual fitness in a cooperative bird. Proc. R. Soc. B 285, 20180130 (2018).
PubMed Article Google Scholar10.
Cheney, D. L. Extent and limits of cooperation in animals. Proc. Natl. Acad. Sci. USA 201100291 (2011) https://doi.org/10.1073/pnas.1100291108.11.
Boyd, R. & Richerson, P. J. The evolution of indirect reciprocity. Soc. Netw. 11, 213–236 (1989).
MathSciNet Article Google Scholar12.
Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).
Article Google Scholar13.
Nowak, M. A., Tarnita, C. E. & Wilson, E. O. The evolution of eusociality. Nature 466, 1057–1062 (2010).
ADS CAS PubMed PubMed Central Article Google Scholar14.
Apicella, C. L., Marlowe, F. W., Fowler, J. H. & Christakis, N. A. Social networks and cooperation in hunter-gatherers. Nature 481, 497–501 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar15.
Dyble, M. et al. Networks of food sharing reveal the functional significance of multilevel sociality in two hunter-gatherer groups. Curr. Biol. 26, 2017–2021 (2016).
CAS PubMed Article Google Scholar16.
Samuni, L. et al. Social bonds facilitate cooperative resource sharing in wild chimpanzees. Proc. R. Soc. B 285, 20181643 (2018).
PubMed Article Google Scholar17.
Mitani, J. C. Male chimpanzees form enduring and equitable social bonds. Anim. Behav. 77, 633–640 (2009).
Article Google Scholar18.
Langergraber, K. E., Mitani, J. C. & Vigilant, L. The limited impact of kinship on cooperation in wild chimpanzees. Proc. Natl Acad. Sci. USA 104, 7786–7790 (2007).
ADS CAS PubMed Article Google Scholar19.
Kern, J. M. & Radford, A. N. Social-bond strength influences vocally mediated recruitment to mobbing. Biol. Lett. 12, (2016).20.
Gero, S., Engelhaupt, D., Rendell, L. & Whitehead, H. Who cares? Between-group variation in alloparental caregiving in sperm whales. Behav. Ecol. 20, 838–843 (2009).
Article Google Scholar21.
Wilkinson, G. S., Carter, G. G., Bohn, K. M. & Adams, D. M. Non-kin cooperation in bats. Philos. Trans. R. Soc. B 371, 20150095 (2016).
Article Google Scholar22.
Langergraber, K. E., Watts, D. P., Vigilant, L. & Mitani, J. C. Group augmentation, collective action, and territorial boundary patrols by male chimpanzees. Proc. Natl Acad. Sci. USA 114, 7337–7342 (2017).
CAS PubMed Article PubMed Central Google Scholar23.
Samuni, L., Mielke, A., Preis, A., Crockford, C. & Wittig, R. M. Intergroup competition enhances chimpanzee (Pan troglodytes verus) in-group cohesion. Int. J. Primatol. (2019).24.
Majolo, B., deBortoli Vizioli, A., Martínez-Íñigo, L. & Lehmann, J. Effect of group size and individual characteristics on intergroup encounters in primates. Int. J. Primatol. (2020), https://doi.org/10.1007/s10764-019-00119-5.25.
Mirville, M. O. et al. Factors influencing individual participation during intergroup interactions in mountain gorillas. Anim. Behav. 144, 75–86 (2018).
Article Google Scholar26.
Arseneau-Robar, T. J. M., Taucher, A. L., Schnider, A. B., van Schaik, C. P. & Willems, E. P. Intra- and interindividual differences in the costs and benefits of intergroup aggression in female vervet monkeys. Anim. Behav. 123, 129–137 (2017).
Article Google Scholar27.
Willems, E. P. & van Schaik, C. P. Collective action and the intensity of between-group competition in nonhuman primates. Behav. Ecol. 26, 625–631 (2015).
Article Google Scholar28.
Schel, A. M., Townsend, S. W., Machanda, Z., Zuberbühler, K. & Slocombe, K. E. Chimpanzee alarm call production meets key criteria for intentionality. PLoS ONE 8, e76674 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar29.
Fuong, H., Maldonado-Chaparro, A. & Blumstein, D. T. Are social attributes associated with alarm calling propensity? Behav. Ecol. 26, 587–592 (2015).
Article Google Scholar30.
Crockford, C., Wittig, R. M., Mundry, R. & Zuberbühler, K. Wild chimpanzees inform ignorant group members of danger. Curr. Biol. 22, 142–146 (2012).
CAS PubMed Article PubMed Central Google Scholar31.
Nam, K.-B., Simeoni, M., Sharp, S. P. & Hatchwell, B. J. Kinship affects investment by helpers in a cooperatively breeding bird. Proc. R. Soc. B 277, 3299–3306 (2010).
PubMed Article PubMed Central Google Scholar32.
Samuni, L., Wittig, R. & Crockford, C. Adoption in the Taï chimpanzees: costs, benefits and strong social relationships. In The Chimpanzees of the Taï Forest: 40 Years of Research (eds Boesch, C. & Wittig, R.) 141–158 (Cambridge University Press, 2019).33.
Bowles, S. Did warfare among ancestral hunter-gatherers affect the evolution of human social behaviors? Science 324, 1293–1298 (2009).
ADS CAS PubMed Article Google Scholar34.
Puurtinen, M. & Mappes, T. Between-group competition and human cooperation. Proc. R. Soc. Lond. B 276, 355–360 (2009).
Google Scholar35.
Mitani, J. C., Watts, D. P. & Amsler, S. J. Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Curr. Biol. 20, R507–R508 (2010).
CAS PubMed Article PubMed Central Google Scholar36.
Lemoine, S. et al. Between-group competition impacts reproductive success in wild chimpanzees. Curr. Biol. (2020).37.
Wilson, M. L. et al. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar38.
Williams, J. M., Oehlert, G. W., Carlis, J. V. & Pusey, A. E. Why do male chimpanzees defend a group range? Anim. Behav. 68, 523–532 (2004).
Article Google Scholar39.
Wrangham, R.W. Evolution of coalitionary killing. Yrbk. Phys. Anthropol. 42, 1–30 (1999).
Article Google Scholar40.
Wilson, M. L., Hauser, M. D. & Wrangham, R. W. Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees? Anim. Behav. 61, 1203–1216 (2001).
Article Google Scholar41.
McComb, K., Packer, C. & Pusey, A. Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim. Behav. 47, 379–387 (1994).
Article Google Scholar42.
Langergraber, K. E., Mitani, J. & Vigilant, L. Kinship and social bonds in female chimpanzees (Pan troglodytes). Am. J. Primatol. 71, 840–851 (2009).
PubMed Article Google Scholar43.
Wittig, R. M., Crockford, C., Langergraber, K. & Zuberbühler, K. Triadic social interactions operate across time: a field experiment with wild chimpanzees. Proc. R. Soc. B 281, 20133155 (2014).
PubMed Article Google Scholar44.
Watts, D. P. & Mitani, J. C. Boundary patrols and intergroup encounters in wild chimpanzees. Behaviour 138, 299–327 (2001).
Article Google Scholar45.
Samuni, L. et al. Oxytocin reactivity during intergroup conflict in wild chimpanzees. Proc. Natl Acad. Sci. USA 114, 268–273 (2017).
CAS PubMed Article Google Scholar46.
De Dreu, C. K. W. et al. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science 328, 1408–1411 (2010).
ADS PubMed Article CAS Google Scholar47.
Wrangham, R. W. Why are male chimpanzees more gregarious than mothers? in Primate Males: Causes and Consequences of Variation in Group Composition (ed. Kappeler, P. M.) (Cambridge University Press, 2000).48.
Boesch, C. et al. Intergroup conflicts among chimpanzees in Taï National Park: lethal violence and the female perspective. Am. J. Primatol. 70, 519–532 (2008).
PubMed Article Google Scholar49.
Van Belle, S., Garber, P. A., Estrada, A. & Di Fiore, A. Social and genetic factors mediating male participation in collective group defence in black howler monkeys. Anim. Behav. 98, 7–17 (2014).
Article Google Scholar50.
Thompson, F. J., Marshall, H. H., Vitikainen, E. I. K. & Cant, M. A. Causes and consequences of intergroup conflict in cooperative banded mongooses. Anim. Behav. 126, 31–40 (2017).
Article Google Scholar51.
Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).
ADS MathSciNet CAS PubMed MATH Article Google Scholar52.
Smith, D. et al. Camp stability predicts patterns of hunter-gatherer cooperation. R. Soc. Open Sci. 3, 160131 (2016).
ADS PubMed PubMed Central Article Google Scholar53.
Samuni, L., Preis, A., Deschner, T., Wittig, R. M. & Crockford, C. Cortisol and oxytocin show independent activity during chimpanzee intergroup conflict. Psychoneuroendocrinology 104, 165–173 (2019).
CAS PubMed Article Google Scholar54.
Surbeck, M. et al. Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees. Curr. Biol. 29, R354–R355 (2019).
CAS PubMed PubMed Central Article Google Scholar55.
Crockford, C., Samuni, L., Vigilant, L. & Wittig, R. M. Postweaning maternal care increases male chimpanzee reproductive success. Sci. Adv. 6, eaaz5746 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar56.
McDonald, M. M., Navarrete, C. D. & Vugt, M. V. Evolution and the psychology of intergroup conflict: the male warrior hypothesis. Philos. Trans. R. Soc. B 367, 670–679 (2012).
Article Google Scholar57.
Bernhard, H., Fischbacher, U. & Fehr, E. Parochial altruism in humans. Nature 442, 912–915 (2006).
ADS CAS PubMed Article Google Scholar58.
Kaplan, H. S., Hill, K., Lancaster, J. & Hurtado, A. M. A theory of human life history evolution: diet, intelligence, and longevity. Evol. Anthropol. Issues News Rev. 9, 156–185 (2000).
Article Google Scholar59.
Boesch, C. Cooperative hunting in wild chimpanzees. Anim. Behav. 48, 653–667 (1994).
Article Google Scholar60.
Samuni, L., Preis, A., Deschner, T., Crockford, C. & Wittig, R. M. Reward of labor coordination and hunting success in wild chimpanzees. Commun. Biol. 1, 138 (2018).
PubMed PubMed Central Article Google Scholar61.
Boesch, C. & Boesch-Achermann, H. The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution (Oxford University Press, 2000).62.
Altmann, J. Observational study of behavior: sampling methods. Behaviour 49, 227–266 (1974).
CAS PubMed PubMed Central Article Google Scholar63.
Wittig, R. M. & Boesch, C. Observation protocol and long-term data collection in Taï. In The Taï Chimpanzees: 40 years of Research (Cambridge University Press, 2019).64.
Goodall. The Chimpanzees of Gombe: Patterns of Behavior (Harvard University Press, 1986).65.
Schubert, G. et al. Co-residence between males and their mothers and grandmothers is more frequent in bonobos than chimpanzees. PLoS ONE 8, e83870 (2013).
ADS PubMed PubMed Central Article CAS Google Scholar66.
Arandjelovic, M. et al. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol. Ecol. Resour. 9, 28–36 (2009).
CAS PubMed Article PubMed Central Google Scholar67.
Neumann, C. et al. Assessing dominance hierarchies: validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. 82, 911–921 (2011).
Article Google Scholar68.
Foerster, S. et al. Chimpanzee females queue but males compete for social status. Sci. Rep. 6, 1–11 (2016).
Article CAS Google Scholar69.
Mielke, A. et al. Bystanders intervene to impede grooming in Western chimpanzees and sooty mangabeys. R. Soc. Open Sci. 4, 171296 (2017).
PubMed PubMed Central Article Google Scholar70.
Kulik, L. Development and Consequences of Social Behavior in Rhesus Macaques (Macaca mulatta) (University of Leipzig, 2015).71.
Tkaczynski, P. J. et al. Long-term repeatability in social behaviour suggests stable social phenotypes in wild chimpanzees. R. Soc. Open Sci. 7, 200454 (2020).
ADS PubMed PubMed Central Article Google Scholar72.
Anderson, D. P., Nordheim, E. V., Boesch, C. & Moermond, C. Factors influencing fission-fusion grouping in chimpanzees in the Taï National Park, Côte D’Ivoire. In Behavioural Diversity in Chimpanzees and Bonobos (eds Boesch, C., Hohmann, G. & Marchant, L. F.) 90–101 (Cambridge University Press, 2002).73.
Baayen, R. H. Analyzing Linguistic Data: A Practical Introduction to Statistics using R (Cambridge University Press, 2008).74.
Goodall, J. Population dynamics during a 15 year period in one community of free-living chimpanzees in the Gombe National Park, Tanzania. Z. Tierpsychol. 61, 1–60 (1983).
Article Google Scholar75.
Behringer, V., Deschner, T., Deimel, C., Stevens, J. M. G. & Hohmann, G. Age-related changes in urinary testosterone levels suggest differences in puberty onset and divergent life history strategies in bonobos and chimpanzees. Horm. Behav. 66, 525–533 (2014).
CAS PubMed Article Google Scholar76.
Emery Thompson, M., Muller, M. N. & Wrangham, R. W. The energetics of lactation and the return to fecundity in wild chimpanzees. Behav. Ecol. 23, 1234–1241 (2012).
Article Google Scholar77.
Nissen, H. W. & Yerkes, R. M. Reproduction in the chimpanzee: report on forty-nine births. Anat. Rec. 86, 567–578 (1943).
Article Google Scholar78.
Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
Article Google Scholar79.
Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).
Article Google Scholar80.
Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20, 416–420 (2009).
PubMed Article Google Scholar81.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016).82.
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar83.
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
Article Google Scholar84.
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications, 2011).85.
Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).86.
Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65, 47–55 (2011).
PubMed Article Google Scholar87.
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Article Google Scholar More188 Shares99 Views
in EcologyLife history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations
1.
Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).
ADS CAS PubMed Article PubMed Central Google Scholar
2.
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar3.
Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).
ADS PubMed PubMed Central Article CAS Google Scholar4.
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
ADS PubMed PubMed Central Article Google Scholar5.
Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar6.
Mittell, E. A., Nakagawa, S. & Hadfield, J. D. Are molecular markers useful predictors of adaptive potential? Ecol. Lett. 18, 772–778 (2015).
PubMed Article PubMed Central Google Scholar7.
Vilas, A., Pérez-Figueroa, A., Quesada, H. & Caballero, A. Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. Mol. Ecol. 24, 4419–4432 (2015).
PubMed Article PubMed Central Google Scholar8.
Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
CAS PubMed Article PubMed Central Google Scholar9.
Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B Biol. Sci. 285, 20172746 (2018).
Article Google Scholar10.
Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).
CAS PubMed Article Google Scholar11.
Attard, C. R. M. et al. Low genetic diversity in pygmy blue whales is due to climate-induced diversification rather than anthropogenic impacts. Biol. Lett. 11, 20141037 (2015).
PubMed PubMed Central Article Google Scholar12.
Ma, G., Rudolf, V. H. W. & Ma, C. Extreme temperature events alter demographic rates, relative fitness, and community structure. Glob. Chang. Biol. 21, 1794–1808 (2015).
ADS PubMed Article Google Scholar13.
Johnson, D. W., Freiwald, J. & Bernardi, G. Genetic diversity affects the strength of population regulation in a marine fish. Ecology 97, 627–639 (2016).
CAS PubMed Google Scholar14.
Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).
Article Google Scholar15.
Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Conserv. 191, 495–503 (2015).
Article Google Scholar16.
Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017).
CAS PubMed Article Google Scholar17.
Bruford, M. W., Davies, N., Dulloo, M. E., Faith, D. P. & Walters, M. In The GEO Handbook on Biodiversity Observation Networks 107–128 (Springer International Publishing, 2017).18.
Hamrick, J. L. & Godt, M. J. W. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. B Biol. Sci. 351, 1291–1298 (1996).
ADS Article Google Scholar19.
Cahill, A. E. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).
PubMed Article Google Scholar20.
Gelmi-Candusso, T. A., Heymann, E. W. & Heer, K. Effects of zoochory on the spatial genetic structure of plant populations. Mol. Ecol. 26, 5896–5910 (2017).
PubMed Article Google Scholar21.
Vranckx, G., Jacquemyn, H., Muys, B. & Honnay, O. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv. Biol. 26, 228–237 (2012).
PubMed Article PubMed Central Google Scholar22.
Eo, S. H., Doyle, J. M. & DeWoody, J. A. Genetic diversity in birds is associated with body mass and habitat type. J. Zool. 283, 220–226 (2011).
Article Google Scholar23.
Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. Rise of the generalists: evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578 (2012).
Article Google Scholar24.
Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar25.
Doyle, J. M., Hacking, C. C., Willoughby, J. R., Sundaram, M. & DeWoody, J. A. Mammalian genetic diversity as a function of habitat, body size, trophic class, and conservation status. J. Mammal. 96, 564–572 (2015).
Article Google Scholar26.
Miller, J. E. D., Damschen, E. I., Harrison, S. P. & Grace, J. B. Landscape structure affects specialists but not generalists in naturally fragmented grasslands. Ecology 96, 3323–3331 (2015).
PubMed Article PubMed Central Google Scholar27.
Dalongeville, A., Andrello, M., Mouillot, D., Albouy, C. & Manel, S. Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes. J. Biogeogr. 43, 845–857 (2016).
Article Google Scholar28.
Mitton, J. B. & Lewis, W. M. Relationships between genetic variability and life history features of bony fishes. Evolution 43, 1712–1723 (1989).
PubMed Article PubMed Central Google Scholar29.
Vachon, F., Whitehead, H. & Frasier, T. R. What factors shape genetic diversity in cetaceans? Ecol. Evol. 8, 1554–1572 (2018).
PubMed PubMed Central Article Google Scholar30.
Jackson, J. M. et al. Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Mol. Ecol. 27, 2926–2942 (2018).
PubMed Article PubMed Central Google Scholar31.
Yannic, G. et al. Genetic diversity in caribou linked to past and future climate change. Nat. Clim. Chang. 4, 132–137 (2014).
ADS Article Google Scholar32.
Lira-Noriega, A. & Manthey, J. D. Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68, 1082–1093 (2014).
PubMed Article PubMed Central Google Scholar33.
Duncan, S. I., Crespi, E. J., Mattheus, N. M. & Rissler, L. J. History matters more when explaining genetic diversity within the context of the core-periphery hypothesis. Mol. Ecol. 24, 4323–4336 (2015).
PubMed Article PubMed Central Google Scholar34.
Garner, T. W. J., Pearman, P. B. & Angelone, S. Genetic diversity across a vertebrate species’ range: a test of the central-peripheral hypothesis. Mol. Ecol. 13, 1047–1053 (2004).
CAS PubMed Article PubMed Central Google Scholar35.
Munwez, I. et al. The change in genetic diversity down the core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol. Ecol. 19, 2675–2689 (2010).
Article CAS Google Scholar36.
Jones, M. E., Paetkau, D., Geffen, E. & Moritz, C. Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol. Ecol. 13, 2197–2209 (2004).
CAS PubMed Article PubMed Central Google Scholar37.
White, T. A. & Searle, J. B. Genetic diversity and population size: island populations of the common shrew, Sorex araneus. Mol. Ecol. 16, 2005–2016 (2007).
CAS PubMed Article PubMed Central Google Scholar38.
Conord, C., Gurevitch, J. & Fady, B. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol. Evol. 2, 2600–2614 (2012).
PubMed PubMed Central Article Google Scholar39.
Whitlock, R. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis. J. Ecol. 102, 857–872 (2014).
PubMed PubMed Central Article Google Scholar40.
García-Verdugo, C. et al. Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates. Mol. Ecol. 24, 726–741 (2015).
PubMed Article CAS PubMed Central Google Scholar41.
Patiño, J. et al. A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. J. Biogeogr. 44, 963–983 (2017).
Article Google Scholar42.
Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).
ADS CAS PubMed Article PubMed Central Google Scholar43.
Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar44.
Miraldo, A. et al. An Anthropocene map of genetic diversity. Sci 353, 1532–1535 (2016).
ADS CAS Article Google Scholar45.
Hirao, A. S. et al. Genetic diversity within populations of an arctic-alpine species declines with decreasing latitude across the Northern Hemisphere. J. Biogeogr. 44, 2740–2751 (2017).
Article Google Scholar46.
Kim, M.-S., Richardson, B. A., McDonald, G. I. & Klopfenstein, N. B. Genetic diversity and structure of western white pine (Pinus monticola) in North America: a baseline study for conservation, restoration, and addressing impacts of climate change. Tree Genetics & Genomes, 7. PLoS Genet. 1, 11–21 (2011).
Google Scholar47.
Adams, R. I. & Hadly, E. A. Genetic diversity within vertebrate species is greater at lower latitudes. Evol. Ecol. 27, 133–143 (2013).
Article Google Scholar48.
Gratton, P. et al. Which latitudinal gradients for genetic diversity? Trends Ecol. Evol. 32, 724–726 (2017).
PubMed Article PubMed Central Google Scholar49.
Lumibao, C. Y., Hoban, S. M. & McLachlan, J. Ice ages leave genetic diversity ‘hotspots’ in Europe but not in Eastern North America. Ecol. Lett. 20, 1459–1468 (2017).
PubMed Article PubMed Central Google Scholar50.
Schoville, S. D. et al. Adaptive genetic variation on the landscape: methods and cases. Annu. Rev. Ecol. Evol. Syst. 43, 23–43 (2012).
Article Google Scholar51.
Manel, S. et al. Global determinants of freshwater and marine fish genetic diversity. Nat. Commun. 11, 1–9 (2020).
ADS Article CAS Google Scholar52.
Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).
PubMed Article PubMed Central Google Scholar53.
Browne, L., Ottewell, K., Sork, V. L. & Karubian, J. The relative contributions of seed and pollen dispersal to gene flow and genetic diversity in seedlings of a tropical palm. Mol. Ecol. 27, 3159–3173 (2018).
PubMed Article PubMed Central Google Scholar54.
Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).
PubMed Article PubMed Central Google Scholar55.
Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol. Rev. 94, 648–661 (2018).
PubMed Article PubMed Central Google Scholar56.
Nybom, H. & Bartish, I. V. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect. Plant Ecol. Evol. Syst. 3, 93–114 (2000).
Article Google Scholar57.
Honnay, O. & Jacquemyn, H. Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv. Biol. 21, 823–831 (2007).
PubMed Article PubMed Central Google Scholar58.
Jarne, P. & Auld, J. R. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816–1824 (2006).
PubMed Article PubMed Central Google Scholar59.
Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717 (2018).
ADS Article Google Scholar60.
Lawrence, E. R. & Fraser, D. J. Latitudinal biodiversity gradients at three levels: linking species richness, population richness and genetic diversity. Glob. Ecol. Biogeogr. 29, 770–788 (2020).
Article Google Scholar61.
Mariette, S., Le Corre, V., Austerlitz, F. & Kremer, A. Sampling within the genome for measuring within-population diversity: trade-offs between markers. Mol. Ecol. 11, 1145–1156 (2002).
CAS PubMed Article PubMed Central Google Scholar62.
Chapman, J. R., Nakagawa, S., Coltman, D. W., Slate, J. & Sheldon, B. C. A quantitative review of heterozygosity-fitness correlations in animal populations. Mol. Ecol. 18, 2746–2765 (2009).
CAS PubMed Article PubMed Central Google Scholar63.
Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Chang. 10, 244–248 (2020).
ADS Article Google Scholar64.
Storey, J., Bass, A., Dabney, A. & Robinson, D. qvalue: Q-value estimation for false discovery rate control. R package version 2.14.1. https://doi.org/10.1111/ele.12303 (2019).65.
Nowakowski, A. J. et al. Thermal biology mediates responses of amphibians and reptiles to habitat modification. Ecol. Lett. 21, 345–355 (2018).
PubMed Article PubMed Central Google Scholar66.
Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).
PubMed Article PubMed Central Google Scholar67.
Bilton, D. T., Freeland, J. R. & Okamura, B. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. 32, 159–181 (2001).
Article Google Scholar68.
Kappes, H. & Haase, P. Slow, But Steady: Dispersal of Freshwater Molluscs (Springer, 2012).69.
Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
ADS CAS PubMed Article PubMed Central Google Scholar70.
Brun, P. et al. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).
ADS CAS PubMed PubMed Central Article Google Scholar71.
McGlynn, T. P., Weiser, M. D. & Dunn, R. R. More individuals but fewer species: testing the ‘more individuals hypothesis’ in a diverse tropical fauna. Biol. Lett. 6, 490–493 (2010).
PubMed PubMed Central Article Google Scholar72.
Binks, R. M., Millar, M. A. & Byrne, M. Not all rare species are the same: contrasting patterns of genetic diversity and population structure in two narrow-range endemic sedges. Biol. J. Linn. Soc. 114, 873–886 (2015).
Article Google Scholar73.
Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).
PubMed Article PubMed Central Google Scholar74.
Cardillo, M. et al. Evolution: multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).
ADS CAS PubMed Article PubMed Central Google Scholar75.
LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar76.
Mittelbach, G. G. A matter of time for tropical diversity. Nature 550, 51–52 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar77.
Usinowicz, J. et al. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550, 105–108 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar78.
Eziz, A. et al. Drought effect on plant biomass allocation: a meta-analysis. Ecol. Evol. 7, 11002–11010 (2017).
PubMed PubMed Central Article Google Scholar79.
Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar80.
Martin, T. E. Age-related mortality explains life history strategies of tropical and temperate songbirds. Science 349, 966–970 (2015).
ADS CAS PubMed Article Google Scholar81.
Winemiller, K. O., Fitzgerald, D. B., Bower, L. M. & Pianka, E. R. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18, 737–751 (2015).
PubMed PubMed Central Article Google Scholar82.
Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
PubMed Article Google Scholar83.
Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 1–6 (2017).
Article Google Scholar84.
Cronk, Q. Plant extinctions take time: many plant species may already be functionally extinct. Science 353, 446–447 (2016).
ADS CAS PubMed Article Google Scholar85.
Aguilar, R. et al. Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecol. Lett. 22, 1163–1173 (2019).
PubMed Article Google Scholar86.
González, A. V., Gómez‐Silva, V., Ramírez, M. J. & Fontúrbel, F. E. Meta‐analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Conserv. Biol. 34, 711–720 (2019).
PubMed Article Google Scholar87.
Wood, J. L. A., Yates, M. C. & Fraser, D. J. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evol. Appl. 9, 640–657 (2016).
PubMed PubMed Central Article Google Scholar88.
Yates, M. C., Bowles, E. & Fraser, D. J. Small population size and low genomic diversity have no effect on fitness in experimental translocations of a wild fish. Proc. R. Soc. B Biol. Sci. 286, 20191989 (2019).
CAS Article Google Scholar89.
De Kort, H., Mergeay, J., Jacquemyn, H. & Honnay, O. Transatlantic invasion routes and adaptive potential in North American populations of the invasive glossy buckthorn, Frangula alnus. Ann. Bot. 118, 1089–1099 (2016).
PubMed PubMed Central Article Google Scholar90.
Jordan, R., Hoffmann, A. A., Dillon, S. K. & Prober, S. M. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change. Mol. Ecol. 26, 6002–6020 (2017).
CAS PubMed Article PubMed Central Google Scholar91.
Wogan, G. O. U., Yuan, M. L., Mahler, D. L. & Wang, I. J. Genome-wide epigenetic isolation by environment in a widespread Anolis lizard. Mol. Ecol. 29, 40–55 (2020).
CAS PubMed Article PubMed Central Google Scholar92.
Schmid, M. W. et al. Contribution of epigenetic variation to adaptation in Arabidopsis. Nat. Commun. 9, 4446 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar93.
Rey, O. et al. Linking epigenetics and biological conservation: towards a conservation epigenetics perspective. Funct. Ecol. 34, 414–427 (2020).
Article Google Scholar94.
Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
Article Google Scholar95.
Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evolution 3, 539–551 (2019).
Article Google Scholar96.
Crandall, E. D., Taffel, J. R. & Barber, P. H. High gene flow due to pelagic larval dispersal among South Pacific archipelagos in two amphidromous gastropods (Neritomorpha: Neritidae). Heredity 104, 563–572 (2010).
CAS PubMed Article Google Scholar97.
Faurby, S. & Barber, P. H. Theoretical limits to the correlation between pelagic larval duration and population genetic structure. Mol. Ecol. 21, 3419–3432 (2012).
PubMed Article Google Scholar98.
Álvarez-Noriega, M. et al. Global biogeography of marine dispersal potential. Nat. Ecol. Evol. 4, 1196–1203, https://doi.org/10.1038/s41559-020-1238-y (2020).
Article PubMed Google Scholar99.
Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—from individual behaviors to population distributions. Oikos 117, 654–664 (2008).
Article Google Scholar100.
Willoughby, J. R. et al. Biome and migratory behaviour significantly influence vertebrate genetic diversity. Biol. J. Linn. Soc. 121, 446–457 (2017).
Article Google Scholar101.
Martin, A. E. & Fahrig, L. Habitat specialist birds disperse farther and are more migratory than habitat generalist birds. Ecology 99, 2058–2066 (2018).
PubMed Article Google Scholar102.
Tellier, A. Persistent seed banking as eco‐evolutionary determinant of plant nucleotide diversity: novel population genetics insights. N. Phytol. 221, 725–730 (2019).
CAS Article Google Scholar103.
Ayre, D., O’Brien, E., Ottewell, K. & Whelan, R. The accumulation of genetic diversity within a canopy-stored seed bank. Mol. Ecol. 19, 2640–2650 (2010).
PubMed Article Google Scholar104.
Campbell, D. R., Brody, A. K., Price, M. V., Waser, N. M. & Aldridge, G. Is plant fitness proportional to seed set? An experiment and a spatial model. Am. Nat. 190, 818–827 (2017).
PubMed Article PubMed Central Google Scholar105.
Angeloni, F., Ouborg, N. J. & Leimu, R. Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol. Conserv. 144, 35–43 (2011).
Article Google Scholar106.
Nei, M., Maruyama, T. & Chakraborty, R. The Bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).
PubMed Article Google Scholar107.
Kimura, M. The neutral theory of molecular evolution (Cambridge University Press: Cambridge [Cambridgeshire], 1983).108.
Nagylaki, T. The effective size of a subdivided population. Genetics 149, 1599–1604 (1997).
Google Scholar109.
Poirier, M.-A., Coltman, D. W., Pelletier, F., Jorgenson, J. & Festa-Bianchet, M. Genetic decline, restoration and rescue of an isolated ungulate population. Evol. Appl. 12, 1318–1328 (2018).
PubMed PubMed Central Article Google Scholar110.
Dures, S. G. et al. A century of decline: loss of genetic diversity in a southern African lion-conservation stronghold. Divers. Distrib. 25, 870–879 (2019).
Article Google Scholar111.
Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).
PubMed Article PubMed Central Google Scholar112.
Burnham, K. P. & Anderson, D. R. In Sociological Methods & Research 33, (Sage PublicationsSage CA, Thousand Oaks, 2002). More