More stories

  • in

    Susceptibility of Pimephales promelas and Carassius auratus to a strain of koi herpesvirus isolated from wild Cyprinus carpio in North America

    Collection of wild carp from a CyHV-3-exposed population
    This study was carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All protocols for sampling, procedures and experimental endpoints involving live fish conducted in this study were approved by the Institutional Animal Care & Use Committee (IACUC), University of Minnesota (St. Paul, Minnesota, USA), under the approval numbers IACUC-1806-36036A and 1808-36276A. Experiments were performed in compliance with the ARRIVE guidelines on animal research32.
    Wild carp were sampled from Lake Elysian (Waseca County, Minnesota, Coordinates: 44.178144, − 93.69066) by boat electrofishing from September 3 to 9, 2019 (Fig. 1a). This lake was expected to have a CyHV-3-exposed carp population following a confirmed outbreak in 20173. Captured wild adult carp (n = 116) were euthanized by immersion in a solution of ~ 3 mL/L pure clove oil (90% Eugenol; Velona, Elk Grove Village, IL, USA) for 15 min and transported on ice to the University of Minnesota for necropsy. Brain, gill and kidney tissues from up to three carp were pooled in a 1:5 (weight:volume) dilution of Hank’s Balanced Salt Solution (HBSS; Cellgro, Lincoln, NE, USA) containing 100 IU/mL of Penicillin and Streptomycin and maintained at a pH of 7.4 at 4 °C for 24 h prior to preparation for qPCR and cell culture screening for CyHV-3 (described below). Gill tissues from ten freshly-dead carp obtained from a shallow bay in the Southern portion of the lake were also obtained and pooled by five individuals for a total of two sample pools.
    Figure 1

    (a) Generated using ArcMap (v10.8.1, https://desktop.arcgis.com/en/arcmap/), shows the approximate locations of sampling effort and mortality observations on Lake Elysian. Bathymetric contours indicate depth in 5 ft increments. (b, c) Pathology of a representative individual wild carp sampled from Lake Elysian. Arrows on (b, c) denote frayed fins (vermillion), loss of mucosal layer (white), loss of scales and epidermis (black), enopthalmia (bluish green), gill necrosis (sky blue).

    Full size image

    An additional 17 wild carp collected as part of the previously described sampling event were placed in an aerated live well and transferred to the Minnesota Aquatic Invasive Species Research Center’s Containment Laboratory (MCL). These carp were housed in a ~ 1400 L tank with flow through well water at 20 °C and treated with 0.6% aquarium salt once per day. Carp were acclimated for 1 day and then anesthetized via immersion in a solution of 100 µL/L of clove oil and uniquely marked using colored injectable elastomer (Northwest Marine Technology, Anacortes, WA, USA). Additionally, a small portion (~ 0.2 cm2) of each carp’s gills were sampled for qPCR screening for CyHV-3 and tested immediately. Carp determined to be CyHV-3 negative (n = 12) were euthanized following testing. Carp determined to be CyHV-3-positive (n = 5) by specific qPCR were held for a total of 5 days, during which, water temperature was gradually increased to 26 °C in order to increase viral shedding. CyHV-3-positive carp gill biopsies were again sampled and screened on the fifth day to identify carp with high qPCR copy numbers. All CyHV-3-positive carp were then euthanized, and the brain, gill and kidney tissues were removed as previously described. Pooled tissues from two wild carp with clinical signs consistent with KHVD (Fig. 1b,c) and with high qPCR copy numbers, were subjected to cell culture immediately following necropsy. In addition, a 10 g portion of this pooled tissue was processed and used to challenge naive carp in the in-vivo infection model. Tissues were homogenized in a 1:5 volume of HBSS containing 100 IU/mL Penicillin and Streptomycin (pH = 7.4). The sample was centrifuged at 2360 × g at 25 °C for 10 min, then the supernatant was passed through a 0.45 µm syringe filter.
    In-vivo infection trial
    To increase the potential of obtaining an isolate of CyHV-3, naïve carp previously determined to be CyHV-3 negative by qPCR, were challenged with CyHV-3-positive tissue homogenates obtained from wild carp. Two naïve carp, purchased from Osage Catfisheries (Osage Beach, MO, USA), were pair housed in a 60 L aquarium with flow through well water (flow rate = 3–4 tank volumes/h) at 21–22 °C. Aquaria were set up with a standpipe drain covered by a cylindrical wire screen filter of approximately 15 cm in length and 4.4 cm in diameter. Additionally, a PVC pipe section of 15 cm in length and 10 cm in diameter was added to each tank for shelter. Each carp was exposed to 0.5 mL of CyHV-3-positive tissue homogenate by IP-injection and monitored for signs of disease for 6 days and then euthanized. Pooled samples of brain, gill and kidney tissue were subjected to qPCR and cell culture analysis. Following cell culture analysis (below) a second infection trial was performed to satisfy River’s postulates (i.e. that CyHV-3 isolated from wild diseased carp would cause similar disease in naïve carp)33. Two additional naïve carp purchased from Osage Catfisheries were IP-injected with 0.5 mL of CyHV-3-positive (qPCR and cell culture positive) cell culture supernatant. Carp were housed and observed for disease signs as previously described for 11 days and then sacrificed. Pooled samples of brain, gill, and kidney then were tested by CyHV-3-specific qPCR to confirm the presence of CyHV-3.
    Cell culture analysis
    CCB cells were maintained in Eagle’s Minimum Essential Medium (EMEM) containing Eagles’s salts (Sigma, St. Louis, MO, USA), 10% fetal bovine serum (FBS), 1% non-essential amino acids (NEAA, Sigma), 2 mM l-glutamine and glucose (Sigma) up to 4.5 g/L. The KF-1 cells were cultured in EMEM containing Eagles’s salts (Sigma), 10% FBS and 0.025 M HEPES. Penicillin 100 U/L and streptomycin 0.1 mg/L (Sigma) were used as an anti-bacterial agent in both cell culture media and the cells were maintained at 25 °C.
    Cell culture methods to isolate CyHV-3 were performed according to the US Fish and Wildlife Service and American Fisheries Society-Fish Health Section Blue Book34. Briefly, pooled tissues were homogenized in Hank’s Balanced Salt Solution (HBSS; Cellgro) and centrifuged at 2360 × g for 15 min. The inoculum was added to the 24-well plates with 80% confluent cell cultures in two dilutions, (1/10 and 1/100) and incubated at 25 °C for 14 days. A blind passage was performed for an additional 14 days if no cytopathic effects (CPE) were observed on the first passage. If CPE was observed during the first passage, then the second passage was performed in a 25 cm2 flask. The virus was harvested when CPE reached 70–80% of the monolayer. The infected cultures were exposed to two freeze/thaw cycles at − 80 °C, and then centrifuged at 3800 × g for 15 min at 4 °C. The clarified supernatants and pellets were collected and stored at − 80 °C.
    Whole-genome sequencing and sequence analysis
    Whole-genome sequencing was performed at the University of Minnesota Veterinary Diagnostic Laboratory for genetic characterization of the CyHV-3 isolate (KHV/Elysian/2019) obtained from wild carp. In brief, after CCB cells, infected with wild carp tissues, reached 80% CPE, the supernatant was collected and stored at − 80 °C. The frozen supernatant was freeze-thawed three times, and centrifuged at 2896 × g for 25 min at 4 °C. Nucleic acid purification of CCB cell culture supernatant was done using a QIAamp MinElute Virus Spin Kit (Qiagen, Hilden, Germany) following manufacturer instructions. The extracted nucleic acids were subjected to library preparation using Nextera Flex DNA library kit (Illumina, San Diego, CA, USA) following manufacturer instructions. The library was normalized according to the median fragment size measured by Tape Station 2.0 (Agilent, Santa Clara, CA, USA) and library concentration measured by Qubit. The library was submitted to the University of Minnesota Genomic Center (UMGC) for sequencing via MiSeq V3 (2X75-bp) paired end chemistry.
    Raw fastq files were trimmed to remove Illumina adapters using Trimmomatic (v 0.39) with a minimum quality score of 20. Then, bowtie2 (v 2.3.5) was used to remove host contamination and unmapped reads were used for assembly with SPAdes (v3.13.0) with k-mer values of 29, 33 and 55 with the options “careful with a minimum coverage of 5 reads per contig”. Then contigs were searched into the RefSeq viral and non-redundant protein reference databases using Diamond BLASTx with an e-value of 1e − 5 for significant hits. Taxon assignments were made with MEGAN6 Community Edition according to the lowest-common-ancestor algorithm. ORFs prediction and genome annotation were done using Prokka (v1.14.5). The resulting alignment (GenBank accession no. MT914509) was aligned with 19 other CyHV-3 genomes available on NCBI using Mafft (v7) with the FFT-NS-2 alignment strategy and the following parameters: scoring matrix BLOUSUM62, gap open penalty 1.53, offset value 0. Model selection, maximum likelihood (ML) tree construction, and calculation of bootstrap values were done with R 4.0 (R Software) using phangorn (v2.5.5). ML trees were constructed using the top scoring model (GTR + G + I) and 100 bootstrap replicates were generated to assess the reliability of clades obtained in the tree. Additionally, this genome assembly was compared with the previously reported thymidine kinase gene sequence obtained from carp sampled during a large mortality event in Lake Elysian in 2017 (F36, GenBank accession no. MK987089).
    Investigation of species specificity
    To investigate the host range of KHV/Elysian/2019, six carp purchased from Osage Catfisheries, previously determined to be CyHV-3-negative by qPCR, were intraperitoneally (IP) injected with 0.5 mL of the filtered tissue homogenate material (Fig. 2a). The IP-injected carp (IP-carp) were housed as previously described for 9 days prior to their use in the cohabitation trial (Fig. 2b). The IP-carp were monitored twice daily for signs of disease. After 9 days the gills, skin and vent of each IP-carp was swabbed aseptically with a single sterile cotton swab (Dynarex, Orangeburg, NY, USA) for determination of viral load by qPCR. FHM and goldfish were challenged with CyHV-3 via cohabitation. One cohabitation tank (tank A) contained ten naïve FHM, five naïve sentinel carp (S-carp) and three IP-carp (Fig. 2a). One cohabitation tank (tank B) contained ten naïve goldfish, five naive S-carp and three of the IP-carp. S-carp were included in each tank setup to act as a positive control for within-tank transmission of CyHV-3. Two additional negative control tanks with the same stocking density and conditions contained ten naïve FHM (tank D) and ten naïve goldfish (tank E), as well as eight naïve carp (confirmed to be CyHV-3-negative by specific qPCR). Average standard length and weight for fishes used in these experiments was 13 cm and 64 g for carp, 7 cm and 13 g for FHM, and 10 cm and 38 g for goldfish. All tanks consisted of ~ 60 L aquaria with flow-through well water as previously described. Fishes were fed a commercial feed (Skretting classic trout, Skretting, Tooele, UT, USA) daily and monitored twice daily to observe changes to fish health. IP-carp that died during the trial were allowed to remain in the tank for 24 h prior to removal for necropsy, but any morbidity or mortality of other experimental groups were immediately removed and necropsied.
    Figure 2

    (a) Shows a schematic of the cohabitation disease trial. Vermillion arrows denote inoculation of IP-carp with CyHV-3 positive tissue homogenate, blue arrows denote introduction of IP carp for cohabitation with fishes in experimental tanks, and the reddish purple arrow indicates the tissue origin of CyHV-3-positive S-carp. (b) Shows a schematic of experimental flow through chambers with black arrows indicating the direction of water flow. (c) Shows a time-line of various samples.

    Full size image

    At 0, 3, 6, 9, 12, and 15 days post exposure (dpe) by cohabitation, five FHM, five goldfish, and all IP-carp and S-carp from each tank were anesthetized by immersion in a buffered solution of 100 mg/L of MS-222 and the gills, skin and vent of each fish was swabbed with a sterile swab for determination of viral load by qPCR (Fig. 2c). For FHM and goldfish, the five individuals were randomly sampled at each time-point. Additionally, the wire screen filter of the outflow standpipe was swabbed at the same intervals during the course of the trial to evaluate loading of CyHV-3 DNA in the environment. All swabs were stored at − 20 °C in individual plastic bags until nucleic acid extraction could be performed. At 11 dpe, half of the FHM and goldfish from cohabitation tanks were euthanized by immersion in a buffered solution of 3 g/L of MS-222 and necropsied (Fig. 2c). The remaining FHM and goldfish were maintained until 20 dpe and then euthanized and necropsied. To visually record the presence of gross pathology, representative IP carp, and fish from cohabitation groups (S-carp, FHM, and goldfish) were randomly selected and photographed at 0 and 6 dpe in a small glass aquarium (Fig. 3).
    Figure 3

    Representative fishes photographed before and after exposure to CyHV-3. Note, fishes photographed at 0 dpe may not be the same individual as those at 6 dpe. dpe days post exposure via cohabitation, IP-carp intraperitoneally injected carp, S-carp cohabitated sentinel carp, FHM fathead minnow. Arrows denote frayed fins (vermillion), loss of mucosal layer (white), scale pocket edema (black). Additionally, normal morphological features of mature male fathead minnows are indicated for nuptial tubercles (bluish green), and nape pads varying in prominence (reddish purple).

    Full size image

    For each necropsied fish, wet mounts of gill and skin scrapes were viewed at 40× magnification to identify potential parasitic infections. Then the skin of each necropsied fish was rinsed briefly with 70% ETOH and clean water. Brain, gill, kidney and skin tissue were collected individually for each fish and split into two duplicate samples. The first sample duplicates were placed in Whirl–Pak sample bags (Nasco, Fort Atkinson, WI, USA) and preserved at − 20 °C until nucleic acid extraction and screening for CyHV-3 DNA was performed. The second sample duplicates were placed in 1 mL of RNAlater solution (Ambion) in 1.5 mL microcentrifuge tubes (Globe Scientific, Mahwah, NJ, USA) and frozen at − 20 °C. An individual FHM and goldfish from each time-point (11- and 20-dpe) was preserved in 10% NBF (TissuePro, Gainesville, FL, USA) for histological analysis. Individual representatives of each species from control tanks and moribund S-carps from each experimental tank were also preserved for histological analysis.
    Due to the detection of CyHV-3 DNA in a single FHM in tank A, a second trial with FHM (tank C) was performed as described previously (Fig. 2a). Brain, gill, kidney, and skin tissue from two S-carp exposed in the first trial with disease signs and positive qPCR test for CyHV-3 (tank A) were pooled, homogenized and filtered as previously described. Three new carp purchased from Osage Catfisheries were IP injected with 0.5 mL of this tissue homogenate and maintained as previously described for 9 days prior to screening for CyHV-3 by qPCR and used in the cohabitation trial. All other conditions and procedures were done as described for the first cohabitation trial with the following exceptions. In the second trial, portions of brain, gill, kidney and skin tissues obtained from a moribund S-carp at 5 dpe and four FHM at 11 dpe, respectively, were pooled as previously described and subjected to cell culture. Additionally, duplicate swabs from the tank C outflow standpipe filter were obtained and preserved in 1 mL of RNAlater solution (Sigma) as previously described for tissue samples.
    Nucleic acid purification using chelex resin and detection of CyHV-3 by qPCR
    For nucleic acid purification, chelex resin (Sigma) was used as described by Zida et al.35 and briefly summarized here. For pooled tissue samples, approximately 100 mg of each tissue was homogenized in 1 mL of nuclease free water (NFW) and then centrifuged, with 50 μL of the resulting supernatant later used as starting material. For swabs, the cotton end was cut off and vortexed, then centrifuged and finally the cotton was removed leaving the supernatant. For each sample type, 150 μL of chilled 80% ETOH was added, then centrifuged and the supernatant removed. Samples were allowed to air dry for 10 min to remove residual ETOH. 150 μL of 20% Chelex was added to each sample and vortexed. Samples were then incubated at 90 °C for 20 min and centrifuged and immediately used for qPCR.
    A Taqman probe-based qPCR was used for the detection of CyHV-3 DNA targeting the ORF89 gene36 using a StepOnePlus thermocycler with default settings (Applied Biosystems). Nucleic acid purifications from all samples were screened for CyHV-3 using a PrimeTime gene expression master mix kit (Integrated DNA Technologies, Coralville, IA, USA), with each reaction containing 400 nM of primers (KHV-86f: GAC-GCC-GGA-GAC-CTT-GTG, KHV-163r: CGG-GTT-GTT-ATT-TTT-GTC-CTT-GTT) and 250 nM of the probe (KHV-109p: [TAMRA] CTT-CCT-CTG-CTC-GGC-GAG-CAC-G-[IBRQ]. The reaction mix was subjected to an initial denaturation at 95 °C for 3 min, followed by 40 cycles of denaturation at 95 °C for five sec and annealing at 60 °C for 30 s. A threshold cycle of 38 was used as a cut off. The standard curve for quantification of CyHV-3 genomes was performed using a laboratory synthesized DNA fragment containing the ORF89 sequence as previously described by Padhi et al.3. The results for virus load are presented as the number of viral copies per mL of tissue supernatant. All samples obtained from FHM and goldfish were tested in triplicate with the exception of samples that had positive qPCR Ct values, which were re-tested up to six times.
    RNA purification and reverse transcription polymerase chain reaction (RT-PCR)
    Individual tissues of preserved brain, gill, kidney, and skin from one representative S-carp from each experimental tank (A, B and C) were selected as positive controls for CyHV-3 mRNA detection (total of 12 tissue samples). All preserved tissue samples from FHM or goldfish which had at least one positive qPCR test were also screened for CyHV-3 mRNA to determine if replicating virus was present (total of eight tissue samples). Additionally, preserved swabs of the outflow standpipe filter were also screened. For RNA purification, RNA was extracted from tissues using the RNeasy Mini Kit (Qiagen) according to the manufacturer instructions for animal tissues, using ~ 30 mg tissue samples preserved in RNAlater. For swabs, cotton was cut from the end of the swab and used as the starting material. CyHV-3 mRNA was detected using the RT-PCR developed by Yuasa et al.29 with the primers, (KHV RT F3: GCC-ATC-GAC-ATC-ATG-GTG-CA, KHV RT R1: AAT-GCC-GCT-GGA-AGC-CAG-GT). The RT-PCR was performed using a One-step RT-PCR kit (Qiagen) according to the manufacturer instructions. The reaction mix was subjected to a single step of reverse transcription at 50 °C for 30 min and denaturation at 95 °C for 15 min, followed by 40 cycles of: 94 °C for 30 s, 65 °C for 30 s, 72 °C for one minute and a final extension step was 72 °C for 10 min. PCR products were separated and visualized on 2% agarose gels containing 0.75 μg/mL ethidium bromide (Genesee Scientific, San Diego, CA, USA). PCR products for carp, FHM and goldfish templates (clear band at the 219 bp location) were cut from gels and purified by precipitation with a 20% PEG, 2.5 M NaCl solution. Purified RT-PCR products were subjected to Sanger sequencing at the University of Minnesota Genomics Center (UMGC). Sequences were trimmed and analyzed using 4 peaks (v1.8) and consensus sequences were generated using BioEdit (v7.2.1). Sequence identities were compared with available reference sequences by BLASTn analysis of the National Center of Biotechnology sequence database.
    Histology
    Histology was used to demonstrate the presence or absence of lesions in cohabitation disease trial specimens. Histological samples of gill tissue were prepared from formalin-fixed samples of representative fishes of each species from trial and control tanks. Gill samples were dissected from formalin-fixed specimens and decalcified in 10% ethylenediaminetetraacetic acid (EDTA) for 10 days. Following decalcification, samples were dehydrated in an ethanol series to 100% ethanol, infiltrated with toluene, and subsequently embedded in paraffin. Paraffin sections were cut at 6 µm thickness using a Leica Jung 820 Histocut Rotary Microtome and mounted on slides. Sections were stained with Hematoxylin and Eosin using a protocol modified from Humasson37.
    Statistical analysis
    R 4.0 (R Software) was used for statistical analysis and data presentation. CyHV-3 qPCR copy numbers are presented as averages of all positive tests for samples with duplicate tests and were Log transformed prior to statistical testing. Significant differences (p  More

  • in

    The 20-million-year old lair of an ambush-predatory worm preserved in northeast Taiwan

    1.
    Baird, W. Remarks on several Genera of Annelides, belonging to the Group Eunicea, with a notice of such Species as are contained in the Collection of the British Museum, and a description of some others hitherto undescribed. Zool. J. Linn. Soc. 10, 341–361 (1869).
    Article  Google Scholar 
    2.
    Winterbourn, M. A freshwater nereid polychaete from New Zealand. NZ J. Mar. Freshw. Res. 3, 281–285 (1969).
    Article  Google Scholar 

    3.
    Uchida, H., Tanase, H. & Kubota, S. An extraordinarily large specimen of the polychaete worm Eunice aphroditois (Pallas) (Order Eunicea) from Shirahama, Wakayama, central Japan. (2009).

    4.
    Salazar-Vallejo, S. I., Carrera-Parra, L. F. & de León-González, J. A. Giant Eunicid Polychaetes (Annelida) in shallow tropical and temperate seas. Rev. Biol. Trop. 59, 1463–1474 (2011).
    PubMed  Google Scholar 

    5.
    Fauchald, K. A review of the genus Eunice (Polychaeta: Eunicidae) based upon type material. Smithsonian Contributions to Zoology (1992).

    6.
    Fauchald, K. & Jumars, P. A. The diet of worms: A study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev. 17, 193–284 (1979).

    7.
    Lachat, J. & Haag-Wackernagel, D. Novel mobbing strategies of a fish population against a sessile annelid predator. Sci. Rep. 6, 33187 (2016).
    ADS  CAS  Article  Google Scholar 

    8.
    Day, J.H. A monograph on the Polychaeta of Southern Africa. British Museum of Natural History, Publication, 1–878 (1967).

    9.
    Eriksson, M. E., Parry, L. A. & Rudkin, D. M. Earth’s oldest ‘Bobbit worm’—Gigantism in a Devonian eunicidan polychaete. Sci. Rep. 7, 43061 (2017).
    ADS  CAS  Article  Google Scholar 

    10.
    Kielan-Jaworowska, Z. New Ordovician genera of polychaete jaw apparatuses. Acta Palaeontol. Pol. 7(3–4), 291–332 (1962).

    11.
    Pemberton, S. G. & Frey, R. W. Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. J. Paleontol. 56(4), 843–881 (1982).

    12.
    Nara, M. Rosselia socialis: A dwelling structure of a probable terebellid polychaete. Lethaia 28, 171–178 (1995).
    Article  Google Scholar 

    13.
    Belaústegui, Z. & de Gibert, J. M. Bow-shaped, concentrically laminated polychaete burrows: A Cylindrichnus concentricus ichnofabric from the Miocene of Tarragona, NE Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 381, 119–127 (2013).
    Article  Google Scholar 

    14.
    Rindsberg, A. K. & Kopaska-Merkel, D. C. Treptichnus and Arenicolites from the Steven C. Minkin paleozoic footprint site (Langsettian, Alabama, USA). Pennsylvanian Footprints in the Black Warrior Basin of Alabama. 1, 121–141 (2005).

    15.
    Gingras, M. K., Armitage, I. A., Pemberton, S. G. & Clifton, H. E. Pleistocene walrus herds in the Olympic Peninsula area: Trace-fossil evidence of predation by hydraulic jetting. Palaios 22, 539–545 (2007).
    ADS  Article  Google Scholar 

    16.
    Pearson, N. J., Gingras, M. K., Armitage, I. A. & Pemberton, S. G. Significance of Atlantic sturgeon feeding excavations, Mary’s Point, Bay of Fundy, New Brunswick, Canada. Palaios 22, 457–464 (2007).
    ADS  Article  Google Scholar 

    17.
    Gregory, M. R., Ballance, P. F., Gibson, G. W. & Ayling, A. M. On how some rays (Elasmobranchia) excavate feeding depressions by jetting water. J. Sediment. Res. 49, 1125–1129 (1979).
    Google Scholar 

    18.
    Uchman, A. et al. Feeding traces of recent ray fish and occurrences of the trace fossil Piscichnus waitemata from the Pliocene of Santa Maria Island, Azores (Northeast Atlantic). Palaios 33, 361–375 (2018).
    ADS  Article  Google Scholar 

    19.
    Jensen, S. Predation by early Cambrian trilobites on infaunal worms-evidence from the Swedish Mickwitzia Sandstone. Lethaia 23, 29–42 (1990).
    Article  Google Scholar 

    20.
    Kong, D.-Y., Lee, M.-H. & Lee, S.-J. Traces (ichnospecies Oichnus paraboloides) of predatory gastropods on bivalve shells from the Seogwipo Formation, Jejudo, Korea. J. Asia-Pac. Biodivers. 8, 330–336 (2015).
    Article  Google Scholar 

    21.
    Suppe, J. Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Geot. Soc. China Mem. 6, 21–33 (1984).
    Google Scholar 

    22.
    Teng, L. S. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183, 57–76 (1990).
    ADS  Article  Google Scholar 

    23.
    Hong, E. & Wang, Y. Basin analysis of the Upper Miocene-Lower Pliocene series in northwestern foothills of Taiwan. Ti-Chih 8, 1–20 (1988).
    Google Scholar 

    24.
    Ho, C., Hsu, M. Y., Jen, L. S. & Fong, G. Geology and coal resources of the northern coastal area of Taiwan. Bull. Geol. Surv. Taiwan 15, 1–23 (1964).
    Google Scholar 

    25.
    Teng, L. S., Hsiehz, Y. W., Tanghz, C. H., Huanghz, C. Y. & Huang, T. C. Tectonic aspects of the Paleogene depositional basin of northern Taiwan. Proce. Geol. Soc. China 34, 313–336 (1991).
    Google Scholar 

    26.
    Huang, C.S. Geological map of Taiwan scale 1:50,000-Taipei. Geological map of Taiwan scale 1:50,000 (2005).

    27.
    Huang, C.S. & Liu, H.C. Geological map of Taiwan scale 1:50,000-Shuanghsi. Geological map of Taiwan scale 1:50,000 (1988).

    28.
    Hong, E. The sedimentary environments of the Miocene-lower Pliocene series in northwestern foothills of Taiwan based on lithofacies and ichnofacies analyses. PhD thesis, 1–114 (National Taiwan University Department of Geology, 1988)

    29.
    Yu, N. & Teng, L. Depositional environments of the Taliao and Shihti Formations, northern Taiwan. Bull. Central Geol. Surv. Taiwan 12, 99–132 (1999).
    Google Scholar 

    30.
    Miguez-Salas, O., Löwemark, L., Pan, Y. Y. & Rodríguez-Tovar, F. J. Selective colonization after storm events in a delta environment: applied ichnology from the early Miocene of Taiwan. Ichnos (in Press).

    31.
    MacEachern, J. et al. The role of ichnology in refining shallow marine facies models. In Recent advances in models of siliciclastic shallow-marine stratigraphy, Vol. 90, 73–116 (Society for Sedimentary Geology (SEPM), Tulsa, 2008).

    32.
    Pemberton, S.G. et al. Shorefaces. In Developments in sedimentology, Vol. 64, 563–603 (Elsevier, Amsterdam, 2012).

    33.
    Frey, R. W. & Pemberton, S. G. Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bull. Can. Petrol. Geol. 33, 72–115 (1985).
    Google Scholar 

    34.
    Lalonde, S., Dafoe, L., Pemberton, S., Gingras, M. & Konhauser, K. Investigating the geochemical impact of burrowing animals: Proton and cadmium adsorption onto the mucus lining of Terebellid polychaete worms. Chem. Geol. 271, 44–51 (2010).
    ADS  CAS  Article  Google Scholar 

    35.
    Zorn, M., Gingras, M. & Pemberton, S. Variation in burrow-wall micromorphologies of select intertidal invertebrates along the Pacific Northwest coast, USA: Behavioral and diagenetic implications. Palaios 25, 59–72 (2010).
    ADS  Article  Google Scholar 

    36.
    Jørgensen, B.B. & Nelson, D.C. Sulfi de oxidation in marine sediments: Geochemistry meets microbiology. In Sulfur biogeochemistry: past and present, Vol. 379, 63–81 (Geological Society of America, 2004).

    37.
    Schoonen, M.A. Mechanisms of sedimentary pyrite formation. Special papers-Geological Society of America 117–134 (2004).

    38.
    Frey, R. W., Howard, J. D. & Pryor, W. A. Ophiomorpha: Its morphologic, taxonomic, and environmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 23, 199–229 (1978).
    Article  Google Scholar 

    39.
    Hester, N. & Pryor, W. Blade-shaped crustacean burrows of Eocene age: A composite form of Ophiomorpha. Geol. Soc. Am. Bull. 83, 677–688 (1972).
    ADS  Article  Google Scholar 

    40.
    Löwemark, L., Zheng, Y.-C., Das, S., Yeh, C.-P. & Chen, T.-T. A peculiar reworking of Ophiomorpha shafts in the Miocene Nangang Formation, Taiwan. Geodin. Acta 28, 71–85 (2016).
    Article  Google Scholar 

    41.
    Shimoda, K. & Tamaki, A. Burrow morphology of the ghost shrimp Nihonotrypaea petalura (Decapoda: Thalassinidea: Callianassidae) from western Kyushu, Japan. Mar. Biol. 144, 723–734 (2004).
    Article  Google Scholar 

    42.
    Bird, F. & Poore, G. Functional burrow morphology of Biffarius arenosus (Decapoda: Callianassidae) from southern Australia. Mar. Biol. 134, 77–87 (1999).
    Article  Google Scholar 

    43.
    Bromley, R. G. Trace Fossils: Biology, Taxonomy and Applications (Chapman & Hall, London, 1996).
    Google Scholar 

    44.
    Winter, A.G., Deits, R.L. & Dorsch, D.S. Critical timescales for burrowing in undersea substrates via localized fluidization, demonstrated by RoboClam: a robot inspired by Atlantic razor clams. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference DETC2013-12798, V06AT07A007 (American Society of Mechanical Engineers Digital Collection, 2013).

    45.
    Winter, A., Deits, R., Dorsch, D., Slocum, A. & Hosoi, A. Razor clam to RoboClam: Burrowing drag reduction mechanisms and their robotic adaptation. Bioinspiration Biomimetics 9, 036009 (2014).
    ADS  CAS  Article  Google Scholar 

    46.
    Holland, A. & Dean, J. The biology of the stout razor clam Tagelus plebeius: I. Animal-sediment relationships, feeding mechanism, and community biology. Chesapeake Sci. 18, 58–66 (1977).
    Article  Google Scholar 

    47.
    Dashtgard, S.E. & Gingras, M.K. Marine invertebrate neoichnology. In Developments in Sedimentology, Vol. 64, 273–295 (Elsevier, Amsterdam, 2012).

    48.
    Winter, A. G., Deits, R. L. & Hosoi, A. E. Localized fluidization burrowing mechanics of Ensis directus. J. Exp. Biol. 215, 2072–2080 (2012).
    Article  Google Scholar 

    49.
    Gingras, M. K., Dashtgard, S. E., MacEachern, J. A. & Pemberton, S. G. Biology of shallow marine ichnology: A modern perspective. Aquat. Biol. 2, 255–268 (2008).
    Article  Google Scholar 

    50.
    Law, C. J., Dorgan, K. M. & Rouse, G. W. Relating divergence in polychaete musculature to different burrowing behaviors: A study using Opheliidae (Annelida). J. Morphol. 275, 548–571 (2014).
    PubMed  Google Scholar 

    51.
    Kier, W. M. The diversity of hydrostatic skeletons. J. Exp. Biol. 215, 1247–1257 (2012).
    Article  Google Scholar 

    52.
    Clark, R. Locomotion and the phylogeny of the Metazoa. Italian J. Zool. 48, 11–28 (1981).
    Google Scholar 

    53.
    Verdonschot, P.F.M. Introduction to Annelida and the Class Polychaeta. In Thorp and Covich’s Freshwater Invertebrates 509–528 (2015).

    54.
    Paxton, H. Phylogeny of Eunicida (Annelida) based on morphology of jaws. Zoosymposia 2, 241–264 (2009).
    Article  Google Scholar 

    55.
    Hints, O. & Eriksson, M. E. Diversification and biogeography of scolecodont-bearing polychaetes in the Ordovician. Palaeogeogr. Palaeoclimatol. Palaeoecol. 245, 95–114 (2007).
    Article  Google Scholar 

    56.
    Taylor, A. & Goldring, R. Description and analysis of bioturbation and ichnofabric. J. Geol. Soc. 150, 141–148 (1993).
    ADS  Article  Google Scholar 

    57.
    Nomenclature, I.C.o.Z. Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Bull. Zool. Nomencl. 69, 161–169 (2012).
    Article  Google Scholar  More

  • in

    Mating and starvation modulate feeding and host-seeking responses in female bed bugs, Cimex lectularius

    The bed bug Cimex lectularius is an obligate ectoparasite that engages in recurrent blood-feeding events throughout its lifetime, punctuated by sheltering some distance from the host. This complex lifestyle requires coordination of diverse on-host and off-host behavioral repertoires, including host-seeking, blood-feeding, mating, oviposition, and aggregation to sustain development, reproduction, and survival11,13. Adult female bed bugs are expected to monitor their changing physiological state and nutritional and reproductive needs, as well as environmental cues such as host availability, and express specific behaviors in an adaptive coordinated manner that supports reproductive success while minimizing fitness costs. While developing and validating a vertical Y-olfactometer for bed bugs, we observed a mating-dependent behavioral shift where 47% of mated females responded to human skin odor, but none of 20 unmated females responded to the same olfactory stimuli23. In the present report, we followed-up on this observation because, to our knowledge, no experimental studies have investigated whether bed bugs modulate host-seeking and blood-feeding behaviors with changes in their mating and nutritional states.
    Consistent with our previous results 23, we found that 64–69% of mated females responded to human skin odor 8 days after their last blood meal (Fig. 3). In contrast, only 24% of unmated females responded, revealing again that host-seeking behavior is profoundly modulated by the mating state of the bed bug. We observed higher host-seeking response rates in this study than in the previous report23, possibly because we used slightly different durations of starvation and olfactometer conditions.
    We speculated that the behavioral differences between unmated and mated females were related to the rate of processing of the blood meal, which would be affected in turn by the rate of oocyte maturation and oviposition. Specifically, we hypothesized that because unmated females resorb their eggs24, they have lower nutritional requirements and reduced metabolic rate25, and therefore engage in less host-seeking and blood-feeding. To test this hypothesis, we extended the starvation period for both mated and unmated females. We found that the length of starvation had different effects on the host-seeking and feeding responses of mated and unmated females. Whereas host-seeking gradually increased in unmated females (24 to 60%) through 40 days of starvation, mated females became less responsive to host cues with longer starvation. These observations were consistent with the blood-feeding assays—with longer starvation, more unmated females fed and they took larger blood meals, even though they did not fully process some of their previous blood meal, as evidenced by their unfed body mass (Fig. 1b).
    These results are consistent with the hypothesis that the differences between mated and unmated females are driven by the accelerated egg maturation and oviposition cycle of mated females. Mated females initiated egg laying 4 days after ingesting a blood meal, oviposited on average 15.3 eggs per female, and ceased oviposition 6 days later, 10 days after ingesting a blood meal (Fig. 4). Thus, 8 days after a blood meal, mated females digested most of the blood (Fig. 1b), oviposited most of their eggs, and became highly motivated to host-seek to support a second oviposition cycle. Indeed, both laboratory and field observations showed that, given the opportunity, mated females accept a second blood meal while the first blood meal is still being digested and females feed every 2.5 days on average11,13,26. This is in contrast with other hematophagous insects, such as mosquitoes, where female host-seeking and feeding are suppressed for several days after a blood meal, until she completes laying a batch of eggs18,27.
    The strategy of unmated females was to feed little when the host is available, but with longer starvation periods, they became more stimulated to host-seek and ingest increasingly larger blood meals. This strategy is likely driven by much-reduced nutritional demands related to resorption of oocytes, which allow unmated females to digest the blood meal more slowly and use it for somatic maintenance rather than egg maturation. As stated by Davis in24: “If the female has fed but has not been inseminated, egg maturation will proceed to an early stage and then the yolk material will be resorbed; thus virgin females avoid the waste of producing unfertilized eggs.” Metabolic differences between mated and unmated females also support the idea that unmated females avoid wasting resources—unmated females have reduced metabolic rates after feeding compared with mated females25,28. Overall, this strategy would result in fewer host-seeking forays and less blood ingested by unmated females (Fig. 1b,c), until they mate and are stimulated to mature and oviposit fertile eggs. A similar strategy appears to operate in the closely related kissing bug R. prolixus, where virgin females remained unresponsive or even repelled by host-associated cues (CO2 and heat) until 20 days after ingesting a blood meal19. Rhodnius is a much larger hemipteran than C. lectularius, it takes larger blood meals, and likely requires more time to digest the blood.
    Surprisingly, host-seeking declined in mated females that were starved for 30 or 40 days, and this was especially apparent in females housed with fertile males (mated-long treatment) (Fig. 3). Two factors might account for this observation. The first is female aging and senescence, as 40 days of starvation in these females was beyond the 35-day median survival of females in this treatment group, and 100% of these females died by day 49 (Fig. 5). Thus, the females that we bioassayed 40 days after they ingested a blood meal were likely weak and less responsive to olfactory stimuli. This reduction in the host-seeking and blood-feeding responses of older mated females might be associated with their higher metabolic rate, senescence, or aging that could negatively affect olfactory responses, as shown in the D. melanogaster29.
    The second factor that likely underlies their early senescence is the unusual extra-genitalic, hemocoelic (traumatic) insemination in C. lectularius. Females housed with fertile males would receive multiple copulations that represent constant harassment, stress, and physical damage. These interactions with sexually aggressive males reduced their median adult lifespan by 63% (mated-long treatment) relative to females that were housed with fertile males for only 24 h and then with another female (mated-short treatment) (Fig. 5). These findings are consistent with previous studies in bed bugs on the adverse effects of multiple copulations on female lifespan13,14,17,30,31. We also observed that mated-long females assumed a “refusal” posture, protecting the ectospermalege from the males (Fig. 6a, Supplementary Video S1). It is possible, however, that males might circumvent these defensive postures by puncturing the intersegmental membranes away from the specialized ectospermalege, as shown in the closely related Cimex hemipterus32, and thus cause substantial damage to the female. This injurious effect of males on females might shape female behavioral responses in the field, but these responses were obviously constrained under our experimental conditions. For example, mated females might leave aggregations to avoid males, as demonstrated experimentally in laboratory assays33. Mated females might also seek refugia that are too narrow to accommodate themselves as well as courting males. Whether these evasive behaviors occur under field conditions will require further observations.
    We found no significant difference in female fecundity in the first oviposition cycle (~ 10 days post blood meal) between two treatment groups—females with long- and short-term presence of fertile males that represented high and low mating rates, respectively (Fig. 4). It is important to emphasize, however, that this experiment was limited to a single feeding and only one oviposition cycle. The lifespan of mated females was dramatically reduced by both the high and low mating rates, but significantly more so by high mating rate (Fig. 5), consistent with previous observations30. Morrow and Arnqvist30 also found that while elevated mating rate shortened female lifespan, it did not affect lifetime egg production. Although we used a different experimental design and did not measure lifetime fecundity, these findings suggest that mated females preferentially direct resources to egg maturation at the risk of significantly reduced lifespan, a strategy that requires close monitoring of physiological state and environmental conditions34.
    Remarkably, we also detected a significant effect on females of non-copulatory harassment by males. Females housed with a male that could not copulate (intromittent organ ablated) for only 24 h and then with another female (unmated-short treatment) lived to a median age of 111 days (100% dead by day 142), whereas females housed continuously with an infertile male (unmated-long treatment) lived to a median age of only 73 days (100% died by day 104). This 34% decline in expected lifespan, independent of copulation and egg production, can be attributed to male-specific harassment (Fig. 5). Males engage in a stereotyped behavior where the male repeatedly mounts the female’s dorsum, bends his abdomen to her ventral surface, and probes the female’s sternites with the paramere. We observed that 50% of the unmated-long and 62.5% of mated-long females exhibited a ‘refusal’ posture at least once in their lifetime thereby making the ectospermalege inaccessible to males, while none of the unmated-short or mated-short females displayed this behavior (Fig. 6b). This behavior may be similar to a behavior noted by N. Davis [in11, p. 171], but not described, that “starved females exhibit a distinct avoidance of mating”. The expression of this refusal behavior in virgin females that obviously need to mate is particularly surprising, suggesting that male harassment may be especially detrimental to the metabolic budget of starved females that feed less and endeavor to conserve energy. Unfortunately, our experimental design did not enable us to determine whether co-habitation with a female also would decrease survivorship of starved females relative to solitary females. It is possible that general disturbance of the starved female causes her to move and expend energy, which in turn reduces her lifespan. In this context, it is worth noting that by adding a female to the mated-short treatment, after the male was removed, the presence of the extra female might have decreased survivorship and thus resulted in underestimating the difference between the mated-long and mated-short treatments. More

  • in

    Family graveyards form underappreciated local plant diversity hotspots in China's agricultural landscapes

    1.
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493. https://doi.org/10.1146/annurev-ecolsys-120213-091917 (2014).
    Article  Google Scholar 
    2.
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577. https://doi.org/10.1038/nature15374 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    3.
    Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539. https://doi.org/10.1016/j.tree.2015.06.013 (2015).
    Article  PubMed  Google Scholar 

    4.
    Salek, M. et al. Bringing diversity back to agriculture: smaller fields and non-crop elements enhance biodiversity in intensively managed arable farmlands. Ecol. Ind. 90, 65–73. https://doi.org/10.1016/j.ecolind.2018.03.001 (2018).
    Article  Google Scholar 

    5.
    Bianchi, F. J., Booij, C. J. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Biol. Sci. 273, 1715–1727. https://doi.org/10.1098/rspb.2006.3530 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).
    ADS  CAS  Article  Google Scholar 

    7.
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574. https://doi.org/10.1126/science.1111772 (2005).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555. https://doi.org/10.1126/science.1106049 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Carvalheiro, L. G., Seymour, C. L., Nicolson, S. W., Veldtman, R. & Clough, Y. Creating patches of native flowers facilitates crop pollination in large agricultural fields: mango as a case study. J. Appl. Ecol. 49, 1373–1383. https://doi.org/10.1111/j.1365-2664.2012.02217.x (2012).
    Article  Google Scholar 

    10.
    Lindborg, R., Plue, J., Andersson, K. & Cousins, S. A. O. Function of small habitat elements for enhancing plant diversity in different agricultural landscapes. Biol. Conserv. 169, 206–213. https://doi.org/10.1016/j.biocon.2013.11.015 (2014).
    Article  Google Scholar 

    11.
    Knappova, J., Hemrova, L. & Muenzbergova, Z. Colonization of central European abandoned fields by dry grassland species depends on the species richness of the source habitats: a new approach for measuring habitat isolation. Landsc. Ecol. 27, 97–108. https://doi.org/10.1007/s10980-011-9680-5 (2012).
    Article  Google Scholar 

    12.
    Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213. https://doi.org/10.1038/nature13139 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    Hunter, M. L. et al. Conserving small natural features with large ecological roles: a synthetic overview. Biol. Conserv. 211, 88–95. https://doi.org/10.1016/j.biocon.2016.12.020 (2017).
    Article  Google Scholar 

    14.
    Batáry, P. et al. Effect of conservation management on bees and insect-pollinated grassland plant communities in three European countries. Agric. Ecosyst. Environ. 136, 35–39. https://doi.org/10.1016/j.agee.2009.11.004 (2010).
    Article  Google Scholar 

    15.
    McGlaughlin, M. E. et al. Do the island biogeography predictions of MacArthur and Wilson hold when examining genetic diversity on the near mainland California Channel Islands? Examples from endemic Acmispon (Fabaceae). Bot. J. Linn. Soc. 174, 289–304. https://doi.org/10.1111/boj.12122 (2014).
    Article  Google Scholar 

    16.
    Wilcove, D. S., McLellan, C. H. & Dobson, A. P. Habitat Fragmentation in the Temperate Zone (Sinauer Associates Inc, Sunderland, Massachusetts, 1986).
    Google Scholar 

    17.
    Baur, B. & Erhardt, A. Habitat fragmentation and habitat alterations: principal threats to most animal and plant species. GAIA Ecol. Perspect. Sci. Soc. 4, 221–226 (1995).
    Google Scholar 

    18.
    Mac Arthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. Monographs in Population Biology. (Princeton University Press, Princeton, N. J., 1967).

    19.
    Lindgren, J. P. & Cousins, S. A. O. Island biogeography theory outweighs habitat amount hypothesis in predicting plant species richness in small grassland remnants. Landsc. Ecol. 32, 1895–1906. https://doi.org/10.1007/s10980-017-0544-5 (2017).
    Article  Google Scholar 

    20.
    Li, L. Distribution pattern of plant diversity and vegetation construction in field margins and homegardens Doctor thesis, China Agriculture University, (2014).

    21.
    Li, P. et al. Possibilities and requirements for introducing agri-environment measures in land consolidation projects in China, evidence from ecosystem services and farmers’ attitudes. Sci. Total Environ. 650, 3145–3155. https://doi.org/10.1016/j.scitotenv.2018.10.051 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    22.
    Haddad, N. M. et al. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039. https://doi.org/10.1111/j.1461-0248.2009.01356.x (2009).
    Article  PubMed  Google Scholar 

    23.
    Haddad, N. M., Tilman, D., Haarstad, J., Ritchie, M. & Knops, J. M. H. Contrasting effects of plant diversity and composition on insect communities: a field experiment. Am. Nat. 158, 17–35 (2001).
    CAS  Article  Google Scholar 

    24.
    Hertzog, L. R., Meyer, S. T., Weisser, W. W. & Ebeling, A. Experimental manipulation of grassland plant diversity induces complex shifts in aboveground arthropod diversity. PLoS ONE 11, e0148768. https://doi.org/10.1371/journal.pone.0148768 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    25.
    Southwood, T. R. E., Brown, V. K. & Reader, P. M. The relationships of plant and insect diversities in succession. Biol. J. Lin. Soc. 12, 327–348. https://doi.org/10.1111/j.1095-8312.1979.tb00063.x (1979).
    Article  Google Scholar 

    26.
    Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127. https://doi.org/10.1126/science.286.5442.1123 (1999).
    CAS  Article  PubMed  Google Scholar 

    27.
    Tilman, D., Hill, J. & Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314, 1598–1600. https://doi.org/10.1126/science.1133306 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. U. S. A. 104, 18123–18128. https://doi.org/10.1073/pnas.0709069104 (2007).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340. https://doi.org/10.1126/science.aaa1788 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632. https://doi.org/10.1038/nature04742 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    31.
    Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).
    Article  PubMed  Google Scholar 

    32.
    Hoehn, P., Tscharntke, T., Tylianakis, J. M. & Steffan-Dewenter, I. Functional group diversity of bee pollinators increases crop yield. Proc. R. Soc. B Biol. Sci. 275, 2283–2291. https://doi.org/10.1098/rspb.2008.0405 (2008).
    Article  Google Scholar 

    33.
    Kleijn, D. et al. Ecological effectiveness of agri-environment schemes in different agricultural landscapes in the Netherlands. Conserv. Biol. 18, 775–786. https://doi.org/10.1111/j.1523-1739.2004.00550.x (2004).
    Article  Google Scholar 

    34.
    Steffan-Dewenter, I. & Tscharntke, T. Succession of bee communities on fallows. Ecography 24, 83–93 (2001).
    Article  Google Scholar 

    35.
    Steffan-Dewenter, I., Klein, A.-M., Gaebele, V., Alfert, T. & Tscharntke, T. Bee Diversity and Plant-Pollinator Interactions in Fragmented Landscapes (UNIV Chicago Press, 2006).

    36.
    Bruun, H. H. Patterns of species richness in dry grassland patches in an agricultural landscape. Ecography 23, 641–650. https://doi.org/10.1034/j.1600-0587.2000.230601.x (2000).
    Article  Google Scholar 

    37.
    Öster, M., Cousins, S. A. O. & Eriksson, O. Size and heterogeneity rather than landscape context determine plant species richness in semi-natural grasslands. J. Veg. Sci. 18, 859–868 (2007).
    Article  Google Scholar 

    38.
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).
    Article  Google Scholar 

    39.
    Kiviniemi, K. & Eriksson, O. Size-related deterioration of semi-natural grassland fragments in Sweden. Divers. Distrib. 8, 21–29 (2002).
    Article  Google Scholar 

    40.
    Cousins, S. A. O. & Lindborg, R. Remnant grassland habitats as source communities for plant diversification in agricultural landscapes. Biol. Conserv. 141, 233–240. https://doi.org/10.1016/j.biocon.2007.09.016 (2008).
    Article  Google Scholar 

    41.
    Knapp, M. & Rezac, M. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape. PLoS ONE 10, e0123052. https://doi.org/10.1371/journal.pone.0123052 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Oksuz, D. P. et al. Increasing biodiversity in wood-pastures by protecting small shrubby patches. For. Ecol. Manag. 464, 118041. https://doi.org/10.1016/j.foreco.2020.118041 (2020).
    Article  Google Scholar 

    43.
    Herzon, I. & Mikk, M. Farmers’ perceptions of biodiversity and their willingness to enhance it through agri-environment schemes: a comparative study from Estonia and Finland. J. Nat. Conserv. 15, 10–25 (2007).
    Article  Google Scholar 

    44.
    Wu, P. et al. Contrasting effects of natural shrubland and plantation forests on bee assemblages at neighboring apple orchards in Beijing, China. Biol. Conserv. 237, 456–462. https://doi.org/10.1016/j.biocon.2019.07.029 (2019).
    Article  Google Scholar 

    45.
    Liu, Y., Axmacher, J. C., Wang, C., Li, L. & Yu, Z. Ground beetles (Coleoptera: Carabidae) in the intensively cultivated agricultural landscape of Northern China—implications for biodiversity conservation. Insect Conserv. Divers. 3, 34–43. https://doi.org/10.1111/j.1752-4598.2009.00069.x (2010).
    Article  Google Scholar 

    46.
    Hodge, I. & Reader, M. The introduction of Entry Level Stewardship in England: extension or dilution in agri-environment policy?. Land Use Policy 27, 270–282. https://doi.org/10.1016/j.landusepol.2009.03.005 (2010).
    Article  Google Scholar 

    47.
    Landis, D. A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 18, 1–12. https://doi.org/10.1016/j.baae.2016.07.005 (2017).
    Article  Google Scholar 

    48.
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. Camb. Philos. Soc. 87, 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).
    Article  PubMed  Google Scholar 

    49.
    ESRI. ArcGIS 10.2 for Desktop. (2014).

    50.
    Han, Y. Study on Spatial and Temporal Patterns of Biodiversity in Intensive Agricultural Landscape of Quzhou County Master thesis (China Agricultural University, 2015).

    51.
    Hurlbert, A. H. Species-energy relationships and habitat complexity in bird communities. Ecol. Lett. 7, 714–720. https://doi.org/10.1111/j.1461-0248.2004.00630.x (2004).
    Article  Google Scholar 

    52.
    Zou, Y. et al. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China. Ecol. Evol. 5, 531–542. https://doi.org/10.1002/ece3.1367 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Jari, O. et al. In Package‘vegan’, Community Ecology Package 221 (2019).

    54.
    Faith, D. P., Minchin, P. R. & Belbin, L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 57–68. https://doi.org/10.1007/bf00038687 (1987).
    Article  Google Scholar 

    55.
    Ripley, B. et al. In Support Functions and Datasets for Venables and Ripley’s MASS (2019).

    56.
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (2009).

    57.
    Roger, B. et al. In Spatial Dependence: Weighting Schemes, Statistics and Models 131–133 (2018).

    58.
    W. N. Venables, D. M. Smith & the_R_Core_Team. In Notes on R: A Programming Environment for Data Analysis and Graphics (Version 4.0.2, 2020).

    59.
    Lin, S. Honey Source Plant (China Forestry Publishing House, 1989).

    60.
    Xu, W. Chinese Honey Source Plant (Heilongjiang Science and Technology Press, 1983).

    61.
    Ke, X. Honey Powder Botanical (China Agriculture Press, 1995).

    62.
    Ma, D. & Liang, S. Chinese Honey Powder Source Plants and Their Utilization (1993). More

  • in

    On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors

    1.
    Chavez, F. P. & Messié, M. A comparison of eastern boundary upwelling ecosystems. Prog. Oceanogr. 83, 80–96 (2009).
    ADS  Article  Google Scholar 
    2.
    Auger, P.-A., Gorgues, T., Machu, E., Aumont, O. & Brehmer, P. What drives the spatial variability of primary productivity and matter fluxes in the north-west African upwelling system? A modelling approach. Biogeosciences 13, 6419–6440 (2016).
    ADS  Article  Google Scholar 

    3.
    Benazzouz, A. et al. An improved coastal upwelling index from sea surface temperature using satellite-based approach—The case of the Canary Current upwelling system. Cont. Shelf Res. 81, 38–54 (2014).
    ADS  Article  Google Scholar 

    4.
    Citeau, J., Finaud, L., Cammas, J. & Demarcq, H. Questions relative to ITCZ migrations over the tropical Atlantic ocean, sea surface temperature and Senegal River runoff. Meteorol. Atmos. Phys. 41, 181–190 (1989).
    ADS  Article  Google Scholar 

    5.
    Maloney, E. & Shaman, J. Intraseasonal variability of the West African Monsoon and Atlantic ITCZ. J. Clim. 21, 2898–2918 (2008).
    ADS  Article  Google Scholar 

    6.
    Herbland, A. & Voituriez, B. L. production primaire dans l’upwelling mauritanien en mars 1973. Cahiers ORSTOM 12, 187–201 (1974).
    CAS  Google Scholar 

    7.
    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).
    Article  Google Scholar 

    8.
    Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Competition among fishermen and fish causes the collapse of Barents Sea capelin. PNAS 101, 11679–11684 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Fréon, P., Cury, P., Shannon, L. & Roy, C. Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: A review. Bull. Mar. Sci. 76, 385–462 (2005).
    Google Scholar 

    10.
    Schwartzlose, R. A. et al. Worldwide large-scale fluctuations of sardine and anchovy populations. Afr. J. Mar. Sci. 21, 289–347 (1999).
    Article  Google Scholar 

    11.
    Hofstede, R. T., Dickey-Collas, M., Mantingh, I. T. & Wague, A. The link between migration, the reproductive cycle and condition of Sardinella aurita off Mauritania, north-west Africa. J. Fish Biol. 71, 1293–1302 (2007).
    Article  Google Scholar 

    12.
    Zeeberg, J., Corten, A., Tjoe-Awie, P., Coca, J. & Hamady, B. Climate modulates the effects of Sardinella aurita fisheries off Northwest Africa. Fish. Res. 1, 65–75 (2008).
    Article  Google Scholar 

    13.
    Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M. Oceanography and Marine Biology, Vol. 47 (2009).

    14.
    Hays, G. C., Richardson, A. J. & Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 20, 337–344 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Ndoye, S. et al. Dynamics of a “low-enrichment high-retention” upwelling center over the southern Senegal shelf. Geophys. Res. Lett. 44, 5034–5043 (2017).
    ADS  Article  Google Scholar 

    16.
    Behagle, N. et al. Acoustic distribution of discriminated micronektonic organisms from a bi-frequency processing: The case study of eastern Kerguelen oceanic waters. Prog. Oceanogr. 156, 276–289 (2017).
    Article  Google Scholar 

    17.
    Benoit-Bird, K. & Au, W. Diel migration dynamics of an island-associated sound-scattering layer. Deep Sea Res. Part I 51, 707–719 (2004).
    Article  Google Scholar 

    18.
    Sato, M. & Benoit-Bird, K. J. Spatial variability of deep scattering layers shapes the Bahamian mesopelagic ecosystem. Mar. Ecol. Prog. Ser. 580, 69–82 (2017).
    ADS  Article  Google Scholar 

    19.
    Algueró-Muñiz, M. et al. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment. PLoS ONE 12, e0175851 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Matlab R 2018a. The Math Works, Inc. (MATLAB & Simulink – MathWorks., 2018).

    21.
    Hegerl, G. C. et al. Causes of climate change over the historical record. Environ. Res. Lett. 14, 123006 (2019).
    ADS  CAS  Article  Google Scholar 

    22.
    Belkin, I. M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81, 207–213 (2009).
    ADS  Article  Google Scholar 

    23.
    Valdés, L. & Déniz-González, I. Oceanographic and biological features in the Canary Current Large Marine Ecosystem, Vol. 115 (2015).

    24.
    Gómez-Letona, M., Ramos, A. G., Coca, J. & Arístegui, J. Trends in primary production in the canary current upwelling system—A regional perspective comparing remote sensing models. Front. Mar. Sci. 4, 370 (2017).
    Article  Google Scholar 

    25.
    Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).
    ADS  CAS  PubMed  Article  Google Scholar 

    26.
    Benazzouz, A., Demarcq, H. & González-Nuevo, G. Oceanographic and biological features in the Canary current large marine ecosystem. (2015).

    27.
    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).
    ADS  CAS  PubMed  Article  Google Scholar 

    28.
    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Hofmann, M., Worm, B., Rahmstorf, S. & Schellnhuber, H. J. Declining ocean chlorophyll under unabated anthropogenic CO2 emissions. Environ. Res. Lett. 6, 034035 (2011).
    ADS  Article  CAS  Google Scholar 

    30.
    Lewandowska, A. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614–623 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Arístegui, J. et al. Sub-regional ecosystem variability in the Canary Current upwelling. Prog. Oceanogr. 83, 33–48 (2009).
    ADS  Article  Google Scholar 

    32.
    Demarcq, H. Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr. 83, 376–385 (2009).
    ADS  Article  Google Scholar 

    33.
    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. PNAS 113, 2964–2969 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    Jacob, B. G. et al. Major changes in diatom abundance, productivity, and net community metabolism in a windier and dryer coastal climate in the southern Humboldt Current. Prog. Oceanogr. 168, 196–209 (2018).
    ADS  Article  Google Scholar 

    35.
    Jacox, M. G., Hazen, E. L. & Bograd, S. J. optimal environmental conditions and anomalous ecosystem responses: Constraining bottom-up controls of phytoplankton biomass in the California current system. Sci. Rep. 6, 27612 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Botsford, L. W., Lawrence, C. A., Dever, E. P., Hastings, A. & Largier, J. Wind strength and biological productivity in upwelling systems: An idealized study. Fish. Oceanogr. 12, 245–259 (2003).
    Article  Google Scholar 

    37.
    García-Reyes, M., Largier, J. L. & Sydeman, W. J. Synoptic-scale upwelling indices and predictions of phyto- and zooplankton populations. Prog. Oceanogr. 120, 177–188 (2014).
    ADS  Article  Google Scholar 

    38.
    Libralato, S., Coll, M., Tudela, S., Palomera, I. & Pranovi, F. Novel index for quantification of ecosystem effects of fishing as removal of secondary production. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps07224 (2008).
    Article  Google Scholar 

    39.
    Gasol, J. M., del Giorgio, P. A. & Duarte, C. M. Biomass distribution in marine planktonic communities. Limnol. Oceanogr. 42, 1353–1363 (1997).
    ADS  CAS  Article  Google Scholar 

    40.
    Harfoot, M. B. J. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Wang, H., Morrison, W., Singh, A. & Weiss, H. General Mechanisms for Inverted Biomass Pyramids in Ecosystems. arXiv:0811.3657. [q-bio] (2008).

    42.
    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Ann. Rev. Mar. Sci. 8, 463–490 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Alcaraz, M., Felipe, J., Grote, U., Arashkevich, E. & Nikishina, A. Life in a warming ocean: Thermal thresholds and metabolic balance of arctic zooplankton. J. Plankton Res. 36, 3–10 (2014).
    Article  Google Scholar 

    44.
    Brochier, T. et al. Complex small pelagic fish population patterns arising from individual behavioral responses to their environment. Prog. Oceanogr. 164, 12–27 (2018).
    ADS  Article  Google Scholar 

    45.
    Richardson, A., Schoeman, D., Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305, 1609–1612 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Braham, C.-B. & Corten, A. Pelagic fish stocks and their response to fisheries and environmental variation in the Canary Current large marine ecosystem. Oceanographic and biological features in the Canary Current Large Marine Ecosystem 197–213 (2015).

    47.
    Ba, K. et al. Resilience of key biological parameters of the Senegalese flat sardinella to overfishing and climate change. PLoS ONE 11, e0156143 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Thiaw, M. et al. Effect of environmental conditions on the seasonal and inter-annual variability of small pelagic fish abundance off North-West Africa: The case of both Senegalese sardinella. Fish. Oceanogr. https://doi.org/10.1111/fog.12218 (2017).
    Article  Google Scholar 

    49.
    Sarré, A. et al. Climate-driven shift of Sardinella aurita stock in Northwest Africa ecosystem as evidenced by robust spatial indicators [résumé]. In International conference ICAWA 2016 : extended book of abstract : the AWA project : ecosystem approach to the management of fisheries and the marine environment in West African waters (eds. Brehmer, P. et al.) 67–68 (SRFC/CSRP, 2017).

    50.
    Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).
    Article  Google Scholar 

    51.
    Beaugrand, G., Reid, P., Ibañez, F., Lindley, J. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    52.
    Lindley, J. A. & Daykin, S. Variations in the distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the north-eastern Atlantic Ocean and western European shelf waters. ICES J. Mar. Sci. 62, 869–877 (2005).
    Article  Google Scholar 

    53.
    Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).
    PubMed  Article  Google Scholar 

    54.
    Diogoul, N. et al. Fine-scale vertical structure of sound-scattering layers over an east border upwelling system and its relationship to pelagic habitat characteristics. Ocean Sci. 16, 65–81 (2020).
    ADS  CAS  Article  Google Scholar 

    55.
    Brehmer, P. et al. Schooling behaviour of small pelagic fish: Phenotypic expression of independent stimuli. Mar. Ecol. Prog. Ser. 334, 263–272 (2007).
    ADS  Article  Google Scholar 

    56.
    Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish Fish. 9, 261–285 (2008).
    Article  Google Scholar 

    57.
    Costello, J. H., Sullivan, B. K. & Gifford, D. J. A physical–biological interaction underlying variable phenological responses to climate change by coastal zooplankton. J. Plankton Res. 28, 1099–1105 (2006).
    Article  Google Scholar 

    58.
    Garzke, J., Ismar, S. M. H. & Sommer, U. Climate change affects low trophic level marine consumers: Warming decreases copepod size and abundance. Oecologia 177, 849–860 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiørboe, T. A global synthesis of seasonal temperature–size responses in copepods. Glob. Ecol. Biogeogr. 25, 988–999 (2016).
    Article  Google Scholar 

    60.
    Clark, C. W. & Levy, D. A. Diel vertical migrations by juvenile sockeye salmon and the antipredation window. Am. Nat. 131, 271–290 (1988).
    Article  Google Scholar 

    61.
    Lampert, W. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989).
    Article  Google Scholar 

    62.
    Hansson, S. Variation in hydroacoustic abundance of pelagic fish. Fish. Res. 16, 203–222 (1993).
    Article  Google Scholar 

    63.
    Tiedemann, M. & Brehmer, P. Larval fish assemblages across an upwelling front: Indication for active and passive retention. Estuar. Coast. Shelf Sci. 187, 118–133 (2017).
    ADS  Article  Google Scholar 

    64.
    CCLME. Analyse diagnostique transfrontalière du Grand écosystème marin du courant des Canaries 144 (2016).

    65.
    Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Annu. Rev. Mar. Sci. 5, 371–392 (2013).
    Article  Google Scholar 

    66.
    Baldé, B. S. et al. Variability of key biological parameters of round sardinella Sardinella aurita and the effects of environmental changes. J. Fish Biol. 94, 391–401 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    67.
    Binet, D. Rôle possible d’une intensification des alizés sur le changement de répartition des sardines et sardinelles le long de la côte Ouest africaine. Aquat. Living Resour. 1, 115–132 (1988).
    Article  Google Scholar 

    68.
    Berraho, A., Somoue, L., Hernández‐León, S. & Valdés, L. Zooplankton in the canary current large marine ecosystem. In Oceanographic and biological features in the Canary Current Large Marine Ecosystem Vol. 115, 183‐195 (IOC Technical Series, 2015).

    69.
    Ndour, I., Berraho, A., Fall, M., Ettahiri, O. & Sambe, B. Composition, distribution and abundance of zooplankton and ichthyoplankton along the Senegal-Guinea maritime zone (West Africa). Egypt. J. Aquat. Res. 44, 109–124 (2018).
    Article  Google Scholar 

    70.
    Sarré, A., Krakstad, J.-O., Brehmer, P. & Mbye, E. M. Spatial distribution of main clupeid species in relation to acoustic assessment surveys in the continental shelves of Senegal and The Gambia. Aquat. Living Resour. 31, 9 (2018).
    Article  Google Scholar 

    71.
    Foote, K. G., Knudsen, H. P., Vestnes, G., MacLennan, D. N. & Simmonds, E. J. Technical Report: ‘“Calibration of acoustic instruments for fish density estimation: A practical guide”’. J. Acoust. Soc. Am. 83, 831–832 (1987).
    Google Scholar 

    72.
    Perrot, Y. et al. Matecho: An open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).
    Article  Google Scholar 

    73.
    MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).
    Article  Google Scholar 

    74.
    Jech, J. M., Lawson, G. L. & Lavery, A. C. Wideband (15–260 kHz) acoustic volume backscattering spectra of Northern krill (Meganyctiphanes norvegica) and butterfish (Peprilus triacanthus). ICES J. Mar. Sci. 74, 2249–2261 (2017).
    Article  Google Scholar 

    75.
    Madureira, L. S. P., Everson, I. & Murphy, E. J. Interpretation of acoustic data at two frequencies to discriminate between Antarctic krill (Euphausia superba Dana) and other scatterers. J. Plankton Res. 15, 787–802 (1993).
    Article  Google Scholar 

    76.
    Brehmer, P., Georgakarakos, S., Josse, E., Trygonis, V. & Dalen, J. Adaptation of fisheries sonar for monitoring schools of large pelagic fish: Dependence of schooling behaviour on fish finding efficiency. Aquat. Living Resour. 20, 377–384 (2007).
    Article  Google Scholar 

    77.
    D’Elia, L. et al. A longitudinal study of the teacch program in different settings: The potential benefits of low intensity intervention in preschool children with autism spectrum disorder. J. Autism Dev. Disord. 44, 615–626 (2014).
    PubMed  Article  Google Scholar 

    78.
    Zwolinski, J., Morais, A., Marques, V., Stratoudakis, Y. & Fernandes, P. G. Diel variation in the vertical distribution and schooling behaviour of sardine (Sardina pilchardus) off Portugal. ICES J. Mar. Sci. 64, 963–972 (2007).
    Article  Google Scholar 

    79.
    Ayoubi, S. E. et al. Estimation of target strength of Sardina pilchardus and Sardinella aurita by theoretical approach. Fish. Sci. 82, 417–423 (2016).
    Article  CAS  Google Scholar 

    80.
    Saunders, R. A., Fielding, S., Thorpe, S. E. & Tarling, G. A. School characteristics of mesopelagic fish at South Georgia. Deep Sea Res. Part I 81, 62–77 (2013).
    Article  Google Scholar 

    81.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

    82.
    Suppiah, R. & Hennessy, K. J. Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990. Int. J. Climatol. 18, 1141–1164 (1998).
    Article  Google Scholar 

    83.
    Cotter, J. A selection of nonparametric statistical methods for assessing trends in trawl survey indicators as part of an ecosystem approach to fisheries management (EAFM). Aquat. Living Resour. 22, 173–185 (2009).
    Article  Google Scholar  More

  • in

    A complete dietary review of Japanese birds with special focus on molluscs

    Classification of dietary preferences and habitats for bird species in Japan via literature
    We reviewed the food habits of 633 native avian species listed in the Check-list of Japanese Birds, 7th Revised Edition39 in attempting to represent the whole avian fauna of Japan. Nine ecological traits related to distribution, habitat and diet are listed in our database along with references as shown below (Table 1): (1) the distribution and breeding status in each region of Japan (Fig. 1), (2) the endemicity in Japan (Endemic, or −: not endemic to Japan)39, (3) the species status in the Red List of Threatened Species of Japan, (4) main habitat (Terrestrial, Freshwater, and/or Marine, or Unknown), (5) dietary categories (I: carnivore, II: herbivore, IV: omnivore, or Unknown; Fig. 2), (6) main diet(s) (I: some animals, II: some plants, I-i: fishes, I-ii: vertebrates, I-iii: arthropods, I-iv: molluscs, I-v: unknown or other animals, II-fr: plants [fruits and/or seeds], and/or III: scavenger, or Unknown; Fig. 2), (7) all recorded food habits (I-i, I-ii, I-iii, I-iv, I-v, II-fr, II-le: plants [leaves and/or others], or III; Fig. 2), (8) molluscs as avian food resources (iv-t: terrestrial molluscs, iv-f: freshwater molluscs, iv-mg: marine gastropods, iv-mb: marine bivalves, iv-mc: marine cephalopods, or iv-o: others or unknown molluscs; Fig. 2), (9) descriptions of molluscan prey in literature, and (10) referenced bibliographies.
    Table 1 Description of each variable, and factor levels.
    Full size table

    Fig. 1

    Seven categories of distribution area in this study.

    Full size image

    Fig. 2

    The categories of preferred foods in this study. Food preferences were first categorized into four big groups (I. carnivore, II. herbivore, III. scavenger and IV. omnivore), and two of them (I and II) were further separated. In particular, molluscs were classified in detail.

    Full size image

    To keep our findings relevant, we reviewed the validity of species binomial names listed in our database and provide updates reflective of current taxonomic knowledge in 2020. A review was conducted using the Birds of the World online research database36 and apparent updates to binomials were cross-referenced using the International Union for Conservation of Nature’s Red List of Threatened Species (https://www.iucnredlist.org). The updated binomial information is included in Online-only Table 1.
    We roughly categorised seven regions for avian distribution in the Japanese archipelago (Hok: Hokkaido Island and/or surrounding islands, Hon: Honshu Island and/or surrounding islands, Shi: Shikoku Island and/or surrounding islands, Kyu: Kyushu Island and/or surrounding islands, Ryu: Ryukyu archipelago, Izu: Izu islands, Oga: Ogasawara islands; Fig. 1), and classified six categories for residency in each region of Japan (RB: resident breeder, MB: migrant breeder, WV: winter visitor, PV: passage visitor, FB: former breeder, or −: not distributed, rare, or unknown) based on the Check-list of Japanese Birds, 7th Revised Edition39, and added seven categories for the species status in Japan based on the 2020, 4th Version of the Japanese Red Lists (EX: extinct, CR: critically endangered, EN: endangered, VU: vulnerable, NT: near threatened, DD: data deficient, or −: common species or not listed)5. To determine each species’ main diet, we primarily focused on literature describing “preferred” or “main” food habits, although we also utilized information about the frequency of target foods in crop and gizzard contents. The taxonomies of molluscan prey written in the database were mainly based on MolluscaBase (http://www.molluscabase.org), the online database of world mollusc classifications. While our database does not contain perfect information on distribution, residency, and conservation status in terms of current knowledge, we believe it represents a high degree of accuracy and usefulness in pulling together comprehensive information from different sources.
    The diet data in this study was collected from 165 scientific articles and books including dietary information on Japanese birds. We searched for the following two series of keywords in Google Scholar for each bird species: {“scientific name” AND [“food habits” OR “diet” OR “food habits (in Japanese)” OR “crop and gizzard contents (in Japanese)”]} and {“standard Japanese name (in Japanese)” AND [“food habits” OR “diet” OR “food habits (in Japanese)” OR “crop and gizzard contents (in Japanese)”]}. Keyword searching and browsing was conducted between 2nd May and 27th December in 2017, and the top one-hundred and all results for each series of keywords was checked, respectively. Moreover, we manually reviewed additional several literatures and books as possible. These included publications in English and Japanese and were published between 1913 and 2018. All 165 references citing the food habits for each bird species are recorded in the database, and listed on the reference list in Zenodo40.
    Land snails detected from the crop and gizzard of two bird species in Hokkaido, Japan
    Crop and gizzard samples were obtained from two juvenile Oriental Turtle-Doves (Streptopelia orientalis; Columbidae, Columbiformes; Fig. 3A) and one juvenile Hazel Grouse (Tetrastes bonasia; Phasianidae, Galliformes; Fig. 3B). An individual T. bonasia was hunted at Ubaranai site no. 1 (Abashiri City, Hokkaido, Japan; N 43.9678°, E 144.0414°) on 7 November 2013, and two S. orientalis were shot at Ubaranai site no. 2 (Abashiri City, Hokkaido, Japan; N 43.9261°, E 144.0406°) on 28 October 2016. These birds were shot by a professional hunter for food and stored in a freezer; we then received them from the hunter and carefully extracted the crop and gizzard contents. Crop and gizzard contents of T. bonasia were identified from a photograph, while those of S. orientalis were identified directly from samples. In addition, the combined weight of crop and gizzard contents were measured for both S. orientalis individuals using an electronic scale (wet and dry weights for one, and dry weight only for the other; Online-only Table 2). The data collected from these samples is also included in our database.
    Fig. 3

    (A,B) Two bird species investigated in this study, Streptopelia orientalis (A), and Tetrastes bonasia (B). (C–H) The prey items detected from avian crops and gizzards of S. orientalis, (C) Cochlicopa lubrica (Cochlicopidae, Stylommatophora), (D) Discus pauper (Discidae, Stylommatophora), (E) Karaftohelix (Ezohelix) gainesi (Camaenidae, Stylommatophora), (F) Parakaliella affinis (Helicarionidae, Stylommatophora), (G) Persicaria thunbergii (Polygonaceae, Caryophyllales), and (H) Schizopepon bryoniifolius (Cucurbitaceae, Cucurbitales). I. The photograph of crop and gizzard contents of T. bonasia.

    Full size image More

  • in

    Sounding out life in the deep using acoustic data from ships of opportunity

    The terminology used in this data descriptor follows Demer, et al.3, based mostly on Maclennan, et al.64. All symbols signifying variables are italicized. Any symbol for a variable (x) that is not logarithmically transformed is in lower case. Any symbol for a logarithmically transformed variable, e.g. (X=1{0log }_{10}left(x/{x}_{ref}right)), with units of decibels referred to xref  (dB re xref) is capitalized.
    Echosounder data
    In a widely used Simrad echosounder (Table 1), the proprietary format raw data (.raw) from each transmission and reception cycle (here onwards ping) includes received echo power per (W), with the General Purpose Transceiver (GPT) settings: frequency f (kHz), transmit power pet (W), pulse duration (tau ) (s), transducer on-axis gain G0 (dB re 1), area backscattering coefficient sa (m2 m–2) correction factor Sa corr (dB re 1), and equivalent two-way beam angle Ψ (dB re 1 sr) of the transducer. These data and associated settings were used to calculate and display volume backscattering strength ({S}_{v}) (dB re 1 m2 m−3) for one or more frequency channels as3:

    $${S}_{v}[i,j]={P}_{er}[i,j]+20,{log }_{10}r[i,j]+2{alpha }_{a}r[i,j]-10,{log }_{10}left(frac{({p}_{et}{lambda }^{2}{g}_{0}^{2}{c}_{w}tau psi )}{32{pi }^{2}}right)-2{S}_{a{rm{c}}{rm{o}}{rm{r}}{rm{r}}},$$
    (1)

    where ({P}_{er}) (dB re 1 W) is the received power, (r) (m) is the range to the target, ({alpha }_{a}) (dB m–1) is the absorption coefficient, (lambda ) (m) is the wavelength, ({g}_{0}) (dimensionless) is the transducer on-axis gain, ({c}_{w}) (m s–1) is the sound speed in water, (psi ) (sr) is the equivalent two-way beam angle, and the index i and j represent vertical sample number and horizontal ping number respectively.
    Echosounder calibration
    Echosounder calibration is a prerequisite for quantitative bioacoustic studies. The overall on-axis performance of echosounders installed on the participating platforms was routinely evaluated by established sphere calibration method3,4. This method provides calibrated ({G}_{0}) and ({S}_{a{rm{c}}{rm{o}}{rm{r}}{rm{r}}}) required for standardizing ({S}_{v}) data (Eq. 1) collected by diverse platforms with a traceable calibration history. The sphere calibration also provides a check for transducer beam-pattern characteristics and related Ψ. The manufacturer-specified Ψ adjusting for the local sound speed variation at the calibration location was used due to the difficulty in obtaining an independent measurement of hull-mounted transducer beam pattern.
    The raw data acquired using ES60 and ES70 echosounders were modulated with a triangle wave error sequence65. The triangle wave error (with a 1 dB peak-to-peak amplitude and a 2720 ping period) was removed from calibration data before calculating ({G}_{0}) and ({S}_{a{rm{c}}{rm{o}}{rm{r}}{rm{r}}}). Open ocean transit (here onwards transect) data were not corrected for the triangle wave error due to data management and storage constraints at the start of the program. Generally, this error will average to zero over a full period of 2720 pings for normal operations and 1 km horizontal resolution of the processed data. To facilitate the processing of high-resolution data (e.g. 100 m horizontal resolution) and slow ping rate systems, transect data files were corrected for this error (if applicable) with associated metadata, since September 2020.
    Data acquisition
    Ensuring the operational need of participating platforms (e.g. fishing), the data acquisition settings in Table 2 were used to optimize quality and practical utility of collected data. The transmit power was selected based on the recommended20 settings for commonly used Simrad echosounders. The pulse duration was chosen as a trade-off between sample resolution and acceptable signal-to-noise ratio (SNR, dB re 1) in the mesopelagic zone, and the logging range was set to provide robust estimates of echosounder background noise (dB re 1 W) levels66.
    Table 2 Commonly used data acquisition settings for IMOS Bioacoustics sub-Facility platforms.
    Full size table

    Data registration and management
    Depending on the primary purpose of participating platforms, raw data received from operators (Table 1) may cover transects and periods of fishing or scientific activities. A custom Java software suite was developed to assist data management and help identify transects for post processing (Fig. 5). These tools were used to create information (inf) files. The inf file is in plain text format that contains user-defined metadata (platform name, relevant platform call sign, voyage name, transect attributes, and relevant comments). It also includes key data acquisition settings extracted from the raw data files including frequency, transmit power, pulse duration, and echosounder details (GPT channel identifier and transducer model). The platform navigation details (total travel time, total distance covered, and average platform speed), temporal extent (start and end time of data volume), and geographic extent (limits of latitude and longitude) were also captured in the inf files. These inf files were checked for consistent data acquisition settings, transect selection, and excluding continental shelf water column backscatter data. Raw data files with inconsistent data acquisition or unknown calibration settings were not considered for further processing and archived locally.
    Fig. 5

    Flowchart of methods implemented to produce quality-controlled bioacoustic data, providing an overview of data processing sequences in the context of key data variables present in a NetCDF file. Note that before transducer motion correction and filtering steps, calibrated ({S}_{v}) values within each ping were resampled (by taking mean in the linear domain) to a specified vertical resolution of 2 m to smooth out vertical sample-to-sample variations in ({S}_{v}).

    Full size image

    Data processing routines
    Data sets were initially processed using Echoview® software (Echoview Software Pty Ltd, Hobart, Tasmania, Australia) that includes a sequence of data processing filters5 designed to remove noise and improve data quality. Transect data files applying related time offset to Coordinated Universal Time (UTC) and calibration parameters were visualized (Eq. 1) as frequency-specific echograms in Echoview® for visual inspection, transducer motion correction, and filtering processes (Fig. 5). Subsequent processing and packaging were completed using MATLAB® software (MathWorks, Natick, Massachusetts, USA). All processing steps were semi-automated using a custom MATLAB® Graphical User Interface (GUI) integrated with Component Object Model (COM) objects controlling Echoview® software.
    Visual inspection of data
    Acoustic data quality from different platforms can vary significantly due to signal attenuation (i.e. attenuation of transmit and/or received signal to a level below the analysis threshold), and signal degradation due to combined transducer motion and noise. Data quality control involved visual inspection of echograms (Fig. 5), followed by marking the seabed (if present) and regions of bad data using echogram tools available in Echoview®. Pings with prolonged noise interference or signal attenuation were flagged as bad data. Data shallower than 10 m were removed to exclude echosounder transmit pulse and echoes in the transducer nearfield. Similarly, data deeper than the seabed (if present) were removed from the analyses. Additionally, regions of aliased seabed echoes (i.e. seabed reverberations from preceding pings coinciding with the current ping) were manually flagged as bad data. Valid high scattering from biological sources (e.g. pelagic fish schools that may occur between surface and 250 m depth) causing an apparent transition in backscatter intensities was manually preserved from the transient noise filter described below5.
    Transducer motion correction
    Echo-integration results will be biased if the change in orientation of transducer beam between the times of each ping is not accounted for. The effect of transducer motion on echo-integration was studied by Stanton67 and later Dunford68 developed a single correction function that can be applied for a wide range of circular transducers and related ({s}_{v}) data. To fully characterize platform movement, the Dunford68 algorithm implemented in Echoview® requires motion data (i.e. pitch and roll of a platform) recorded at a rate above the Nyquist rate of platform’s angular motion69 to avoid temporal aliasing due to an inadequate sampling rate. When platform motion data were available at a suitable sampling rate (see ‘Technical Validation’ section), transducer motion effects were corrected using Dunford68 algorithm by ensuring time synchronization with recorded acoustic data (Fig. 5).
    Data processing filters
    Fishing vessels (FV) contributing to IMOS Bioacoustics sub-Facility were not purposely built for collecting high-quality bioacoustic data. Various factors including inclement weather and vessel design can affect data quality that could cause large biases in derived ({s}_{v}) values. To minimize these biases, data processing filters were applied to the raw data (Fig. 5). Transducer motion-corrected data were subject to a sequence of data processing filters5 designed to mitigate impulse noise, signal attenuation, transient noise, and background noise66.
    Data processing filters were applied to each ({S}_{v}) sample in an echogram, identified by a vertical sample number (i) and horizontal ping number (j). The ‘context window’ defined for filters include a current ping, and surrounding pings on either side of the current ping. Depending on the filter used, the context window either centres on the current ping or current sample, and slides over the entire echogram.
    Impulse noise removal
    Impulse noise affects discrete sections of the data with a duration of less than one ping, for example, transmit pulses originated from other unsynchronized acoustic systems. The impulse noise removal algorithm implemented in Echoview® (based on Ryan, et al.5) compares each ({S}_{v}) sample in a current ping to the adjacent ({S}_{v}) samples (at the same depth) in surrounding pings defined by a context window of specified width (W) (see details of context window in Table 3). A smoothed copy of original ({S}_{v}) values (i.e. unfiltered data) within the context window was used to identify impulse noise (see details of smoothing window in Table 3). The original ({S}_{v}) samples were identified as impulse noise if the corresponding smoothed ({S}_{v}) samples satisfy the condition:

    $${S}_{v}[i,j]-{S}_{v}[i,j-m] > delta ,{rm{a}}{rm{n}}{rm{d}},{S}_{v}[i,j]-{S}_{v}[i,j+n] > delta ,$$
    (2)

    where ({S}_{v}[i,j]) (dB re 1 m2 m−3) represents smoothed copy of current ping with a vertical sample number (i) and horizontal ping number (j), (m) and (n) are the positive integer offsets from the current ping determined by the width ((W)) of context window, where (m,nin left{1,ldots ,frac{W-1}{2}right}) and (W) is an odd integer value in the range 3 to 9, and (delta ) (dB re 1 m2 m−3) is an empirically determined impulse noise removal threshold value. Identified noise values were replaced as ‘no data’. The impulse noise removal parameters defined in Echoview® are given in Table 3.
    Table 3 User-defined impulse noise removal parameters in Echoview®.
    Full size table

    Attenuated signal removal
    Signal attenuation is generally caused by air bubbles beneath the transducer that may occur for one ping or can persist over multiple pings. The attenuated signal removal algorithm implemented in Echoview® (based on Ryan, et al.5) compares the percentile score of ({S}_{v}) samples in a current ping with the percentile score of ({S}_{v}) samples in surrounding pings defined by a context window (see details of context window in Table 4). The current ping was removed and replaced as ‘no data’ if:

    $$p({S}_{v}[mtimes n])-p({S}_{v}[i,j])ge delta ,$$
    (3)

    where the symbol (p) denotes the desired percentile value, ({S}_{v}[i,j]) (dB re 1 m2 m−3) is the current ping with a vertical sample number (i) and horizontal ping number (j), ({S}_{v}left[mtimes nright]) (dB re 1 m2 m−3) represents ({S}_{v}) samples in the context window defined by (m) vertical samples and (n) horizontal pings, and (delta ) (dB re 1 m2 m−3) is an empirically determined attenuated signal removal threshold value. The attenuated signal removal parameters defined in Echoview® are given in Table 4.
    Table 4 User-defined attenuated signal removal parameters in Echoview®.
    Full size table

    Transient noise removal
    Transient noise is introduced to the received signal that can occur at irregular intervals and persists over multiple pings. The transient noise removal algorithm implemented in Echoview® (based on Ryan, et al.5) compares each ({S}_{v}) sample in a current ping with the percentile score of ({S}_{v}) samples in surrounding pings defined by a context window (see details of context window in Table 5). A smoothed copy of original ({S}_{v}) values (i.e. unfiltered data) within the context window was used to identify noise (see details of smoothing window in Table 5). The original ({S}_{v}) samples were identified as transient noise if the corresponding smoothed ({S}_{v}) samples satisfy the condition:

    $${S}_{v}[i,j]-pleft({S}_{v}left[mtimes nright]right) > delta ,$$
    (4)

    where the symbol (p) denotes the desired percentile value, ({S}_{v}[i,j]) (dB re 1 m2 m−3) represents smoothed copy of current ping with a vertical sample number (i) and horizontal ping number (j), ({S}_{v}left[mtimes nright]) (dB re 1 m2 m−3) represents smoothed copy of ({S}_{v}) samples in the context window defined by (m) vertical samples and (n) horizontal pings, and (delta ) (dB re 1 m2 m−3) is an empirically determined transient noise removal threshold value. Identified noise values were replaced as ‘no data’. The transient noise removal parameters defined in Echoview® are given in Table 5.
    Table 5 User-defined transient noise removal parameters in Echoview®.
    Full size table

    Background noise removal
    Background noise is introduced to the received signal that can vary in intensity and pattern (see section ‘Technical Validation’). According to De Robertis and Higginbottom66, the calibrated ({S}_{v}) values (Eq. 1) can be expressed as the sum of contributions from the signal and noise as:

    $${S}_{{v}_{{rm{cal}}}}[i,j]=10,{{rm{log }}}_{10}left(1{0}^{left({S}_{{v}_{{rm{signal}}}}[i,j]/10right)}+1{0}^{left({S}_{{v}_{{rm{noise}}}}[i,j]/10right)}right),$$
    (5)

    where ({S}_{{v}_{{rm{cal}}}}) (dB re 1 m2 m−3) is the calibrated ({S}_{v}) samples derived from the raw data (i.e. Eq. 1), ({S}_{{v}_{{rm{signal}}}}) (dB re 1 m2 m−3) is the calibrated ({S}_{v}) samples representing the contribution from signal, ({S}_{{v}_{{rm{noise}}}}) (dB re 1 m2 m−3) is the calibrated ({S}_{v}) samples representing the contribution from noise, and the index i and j represent vertical sample number and horizontal ping number respectively.
    To estimate background noise levels, calibrated received power ({P}_{e{r}_{{rm{cal}}}}[i,j]) (dB re 1 W) values were calculated from ({S}_{{v}_{{rm{cal}}}}[i,j]) values by subtracting the time-varied gain (TVG) function2 (i.e. (2{0log }_{10}r+2{alpha }_{a}r)) from Eq. 1 as:

    $${P}_{e{r}_{{rm{cal}}}}[i,j]={S}_{{v}_{{rm{cal}}}}[i,j]-20,{{rm{log }}}_{10}r[i,j]-2{alpha }_{a}r[i,j].$$
    (6)

    The calibrated ({P}_{e{r}_{{rm{cal}}}}[i,j]) values were averaged66 (in linear domain) within an ‘averaging cell’ of (M) vertical samples (with an index (k)) and (N) horizontal pings (with an index (l)) to estimate noise as:

    $$Noiseleft(lright)={rm{min }}(bar{{P}_{e{r}_{{rm{cal}}}}}[k,l]),$$
    (7)

    where (bar{{P}_{e{r}_{{rm{cal}}}}}[k,l]) (dB re 1 W) is the averaged ({P}_{e{r}_{{rm{cal}}}}[i,j]) values calculated for each averaging cell with a vertical sample interval (k) and horizontal ping interval (l), and (Noiseleft(lright)) (dB re 1 W) is the representative noise estimate for the ‘middle ping’ in each horizontal interval (l). Note that the averaging cell slides over the entire echogram (see details of averaging cell in Table 6).
    Table 6 User-defined background noise removal parameters in Echoview®.
    Full size table

    An empirically determined maximum threshold (Nois{e}_{max}) (dB re 1 W) (see Table 6) was applied to (Noiseleft(lright)) values as an upper limit of background noise levels. Any (Noiseleft(lright)) values exceeding this threshold was replaced with the predefined (Nois{e}_{max}) value.
    The (Noiseleft(lright)) value estimated for a given horizontal ping interval (l) was assigned to all individual pings constituting the interval to establish noise (Noiseleft(jright)) (dB re 1 W) estimate for each ping. The effect of TVG was added to the (Noiseleft(jright)) levels to compute ({S}_{{v}_{{rm{noise}}}}) for each vertical sample number (i) and horizontal ping number (j) as:

    $${S}_{{v}_{{rm{noise}}}}[i,j]=Noiseleft(jright)+20,{{rm{log }}}_{10}rleft[i,jright]+2{alpha }_{a}r[i,j].$$
    (8)

    The background noise corrected volume backscattering strength ({S}_{{v}_{{rm{bnc}}}}[i,j]) (dB re 1 m2 m−3) values for each vertical sample number (i) and horizontal ping number (j) were estimated as:

    $${S}_{{v}_{{rm{bnc}}}}[i,j]=10,{{rm{log }}}_{10}left(1{0}^{left({S}_{{v}_{{rm{cal}}}}[i,j]/10right)}-1{0}^{left({S}_{{v}_{{rm{noise}}}}[i,j]/10right)}right).$$
    (9)

    The SNR, a measure of the relative contribution of signal and noise was estimated as:

    $$SNR[i,j]={S}_{{v}_{{rm{bnc}}}}[i,j]-{S}_{{v}_{{rm{noise}}}}[i,j],$$
    (10)

    where (SNR[i,j]) (dB re 1) is the signal-to-noise ratio for each vertical sample number (i) and horizontal ping number (j).
    An empirically determined threshold (Minimu{m}_{SNR}) (dB re 1) (see Table 6) was used as an acceptable SNR for background noise corrected ({S}_{{v}_{{rm{bnc}}}}[i,j]) data. The ({S}_{{v}_{{rm{bnc}}}}[i,j]) values with corresponding (SNR[i,j]) below this threshold were set to ‘−999’ dB re 1 m2 m−3 (an approximation of zero in the linear domain). The background noise removal parameters defined in Echoview® are given in Table 6.
    Residual noise removal
    In the final stage, a 7 × 7 median filter was applied to remove residual noise retained in the core filtering stages (especially at far ranges). A median filter replaces the current ({S}_{v}) sample with the median value of ({S}_{v}) samples in a (M) × (M) neighbourhood. It is important to note that the output of 7 × 7 median filter was not directly used for echo-integration, rather it was used to flag residual noise retained from the core filtering process. A maximum data threshold of −50 dB re 1 m2 m−3 and a time-varied threshold (TVT(r)) with the reference value of −160 dB re 1 m2 m−3 (defined at 1 m range) was applied to the background noise corrected ({S}_{{v}_{{rm{bnc}}}}[i,j]) data before applying 7 × 7 median filter (see Table 3 for a description of time-varied threshold). ({S}_{{v}_{{rm{bnc}}}}[i,j]) values above the maximum threshold (i.e. −50 dB re 1 m2 m-3) were set to ‘−999’ dB re 1 m2 m−3. Similarly, ({S}_{{v}_{{rm{bnc}}}}[i,j]) values below the calculated (TVT(r)) values were set to ‘−999’ dB re 1 m2 m-3 (note that median filter may replace ‘−999’ with the median of samples in the 7 × 7 neighbourhood). The output of the median filter was used to create a Boolean data range bitmap (between −998 to −20 dB re 1 m2 m−3) with ‘true’ or ‘false’ values for each sample. This Boolean data range bitmap was applied to the background noise corrected ({S}_{{v}_{{rm{bnc}}}}[i,j]) data for removing any residual noise before echo-integration. ({S}_{{v}_{{rm{bnc}}}}[i,j]) values corresponding to ‘false’ values in the data range bitmap were set to ‘−999’ dB re 1 m2 m−3.
    Quality-controlled ({S}_{v}) data along with: (1) calibrated and motion corrected raw data, (2) transducer motion correction factor (i.e. difference between ‘motion corrected’ and ‘calibrated raw’ data), (3) background noise, and (4) SNR were exported from Echoview® as echo-integration cells (i.e. grid on an echogram) with a resolution of 1 km horizontal distance (i.e. ping-axis interval (p)) and 10 m vertical depth (i.e. range-axis interval (r)). Echo-integration values were stored as comma-separated values (CSV) files. Exported ({S}_{v}) data were converted to linear scale for further processing and packaging in MATLAB® (Fig. 5).
    Secondary corrections for sound speed and absorption variation
    Quality-controlled ({S}_{v}) data were echo-integrated and exported using a nominal sound speed ({c}_{w}) (m s−1) and absorption coefficient ({alpha }_{a}) (dB m−1) values estimated using the equations of Mackenzie70 and Francois and Garrison71 respectively (see sound speed and absorption coefficient variables in Eq. 1 used for ({S}_{v}) calculation). However, open ocean transects pass through different hydrographical conditions, so a secondary range dependent correction was required to account for the changes in horizontal and vertical cumulative mean sound speed and absorption as:

    $$bar{{S}_{{v}_{{rm{corr}}}}}[r,p]=bar{{S}_{{v}_{{rm{uncorr}}}}}[r,p]+20,{{rm{log }}}_{10}left(frac{bar{{c}_{w}}left[r,pright]}{{c}_{w}}right)+2{r}_{n}[r,p]left(bar{{alpha }_{a}}[r,p]frac{bar{{c}_{w}}left[r,pright]}{{c}_{w}},-,{alpha }_{a}right)-10,{{rm{log }}}_{10}left(frac{{c}_{w}[r,p]}{{c}_{w}}right),$$
    (11)

    or in linear terms:

    $$bar{{s}_{{v}_{{rm{corr}}}}}[r,p]=frac{bar{{s}_{{v}_{{rm{uncorr}}}}}[r,p]{left(frac{bar{{c}_{w}}[r,p]}{{c}_{w}}right)}^{2}1{0}^{frac{2{r}_{n}[r,p]}{10}left(bar{{alpha }_{a}}[r,p]frac{bar{{c}_{w}}[r,p]}{{c}_{w}}-{alpha }_{a}right)}}{left(frac{{c}_{w}[r,p]}{{c}_{w}}right)},$$
    (12)

    where (bar{{s}_{{v}_{{rm{uncorr}}}}}[r,p]) (m2 m−3) is the uncorrected (but filtered) volume backscattering coefficient values exported from Echoview® at the specified range-axis interval (r) (i.e. 10 m) and ping-axis interval (p) (i.e. 1 km), ({r}_{n}[r,p]) (m) is the regularly spaced depth values for each echo-integration cell, (bar{{c}_{w}}left[r,pright]=frac{{sum }_{r=1}^{n}{c}_{w}left[r,pright]}{n};,forall p) (m s−1) is the cumulative mean sound speed values estimated at each echo-integration cell for the new range ({r}_{a}[r,p]={r}_{n}[r,p]frac{bar{{c}_{w}}[r,p]}{{c}_{w}}) (m) calculation, (bar{{alpha }_{a}}left[r,pright]=10,{{rm{log }}}_{10}left(frac{{sum }_{r=1}^{n}1{0}^{left(frac{{alpha }_{a}left[r,pright]}{10}right)}}{n}right);forall p) (dB m−1) is the cumulative mean absorption coefficient values ‘interpolated’ at the new range ({r}_{a}[r,p]), and (bar{{s}_{{v}_{{rm{corr}}}}}[r,p]) (m2 m−3) is the corrected volume backscattering coefficient values at the new range ({r}_{a}[r,p]).
    Due to changes in cumulative mean sound speed, this correction step creates a grid with irregular ({r}_{a}[r,p]) values. Therefore, the (bar{{s}_{{v}_{{rm{corr}}}}}[r,p]) values at the new ranges ({r}_{a}[r,p]) were interpolated and reported at the regularly spaced ({r}_{n}[r,p]) values.
    The sound speed and absorption coefficient values for secondary corrections were estimated using the equations of Mackenzie70 and Francois and Garrison71 respectively. Francois and Garrison71 estimate their ‘total absorption equation’ to be accurate within 5% for ocean temperature values of −1.8–30 °C, frequencies of 0.4–1000 kHz, and salinity values of 30–35 PSU. The typical hydrographical conditions (temperature values of 0–27 °C and salinity values of 34–36 PSU) present along the open ocean transects are generally within the reliability limits of Francois and Garrison71 equation.
    The temperature and salinity data for sound speed and absorption coefficient calculations were interpolated from either CSIRO Atlas of Regional Seas72 (CARS, http://www.marine.csiro.au/~dunn/cars2009/ version 2009) or Synthetic Temperature and Salinity (SynTS)73 analyses (http://www.marine.csiro.au/eez_data/doc/synTS.html), but can also be derived from oceanographic reanalysis and ocean circulation models. CARS2009 is a digital climatology or atlas of seasonal ocean water properties. It is based on a comprehensive set of quality‐controlled vertical profiles of in situ ocean properties (i.e. temperature, salinity, oxygen, nitrate, silicate, and phosphate) collected between 1950 and 2008. CARS2009 NetCDF files contain a gridded mean of these ocean properties and average seasonal cycles generated from the collated observations. CARS2009 covers global oceans on a 0.5 × 0.5 degree grid spatial resolution, and are mapped onto 79 standard depth levels from the sea surface to 5500 m (from this vertical profiles of ocean properties along a bioacoustic transect can be extracted). SynTS is a daily three-dimensional (3D) temperature and salinity product generated by CSIRO, where the CARS temperature and salinity fields are adjusted with daily satellite sea surface temperature (SST) and gridded sea level anomaly (GSLA). SynTS has a 0.2 × 0.2 degree grid spatial resolution, and is mapped onto 66 standard depth levels from the sea surface to 2000 m. Due to limited spatial coverage (60°S–10°N and 90°E–180°E), the SynTS products may not always cover the transect region (e.g. Southern Indian Ocean), in that case CARS climatology values were used for the secondary corrections (Fig. 5).
    Data review, packaging and submission routines
    For each processed transect, secondary corrections applied (bar{{s}_{{v}_{{rm{corr}}}}}) data together with metrics of data quality and other auxiliary data variables were stored in Network Common Data Form (NetCDF, www.unidata.ucar.edu) file (NetCDF-4 format) with a resolution of 1 km horizontal distance (i.e. ping-axis interval) and 10 m vertical depth (i.e. range-axis interval) (see ‘Data Records’ section for data contents). This NetCDF file conforms standardized naming conventions and metadata content defined by the Climate and Forecast (CF)74, IMOS75, and International Council for the Exploration of the Sea (ICES)76 published over the years (Fig. 6).
    Fig. 6

    Primary components and organization of key variables present in a NetCDF file with illustrations of key metadata categories. A brief description of these key variables is given in Table 7.

    Full size image

    Processed NetCDF files were independently reviewed by both analyst and principal investigator to further investigate data quality. If suitable, the NetCDF file along with ancillary files: (1) acquired raw data (.raw files), (2) platform track in CSV format (containing date, time, latitude, longitude, and time offset to UTC), (3) platform motion data (if recorded) in CSV format (including date, time, pitch, and roll measurements), and (4) a snapshot of processed echogram as Portable Network Graphics (PNG) format were packaged and submitted to the publicly accessible AODN Portal (Fig. 5). More

  • in

    Functional traits of the world’s late Quaternary large-bodied avian and mammalian herbivores

    1.
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75, https://doi.org/10.1126/science.1101476 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J. C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B. 281, 20133254, https://doi.org/10.1098/rspb.2013.3254 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Metcalf, J. L. et al. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Science Advances 2, e1501682 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Science Advances 1, e1400103 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Science Advances 6, eabb8458 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Ripple, W. J. et al. Saving the world’s terrestrial megafauna. Bioscience 66, 807–812 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Zimov, S. A. et al. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. The American Naturalist 146, 765–794 (1995).
    Article  Google Scholar 

    8.
    Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nature Ecology & Evolution 2, 640–649, https://doi.org/10.1038/s41559-018-0481-y (2018).
    Article  Google Scholar 

    9.
    Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nature Geoscience 12, 725–729 (2019).
    ADS  CAS  Article  Google Scholar 

    10.
    Johnson, C. N. et al. Can trophic rewilding reduce the impact of fire in a more flammable world? Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, https://doi.org/10.1098/rstb.2017.0443 (2018).

    11.
    Rule, S. et al. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486, https://doi.org/10.1126/science.1214261 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Smith, F. A., Elliott Smith, R. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313, https://doi.org/10.1126/science.aao5987 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Smith, F. A. et al. Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly. Ecography 39, 223–239, https://doi.org/10.1111/ecog.01779 (2015).
    Article  Google Scholar 

    15.
    Davis, M. What North America’s skeleton crew of megafauna tells us about community disassembly. Proc. R. Soc. B. 284, 20162116 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl. Acad. Sci. USA 113, 847–855 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Bakker, E. S., Arthur, R. & Alcoverro, T. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography 39, 162–179 (2016).
    Article  Google Scholar 

    18.
    Rowan, J. & Faith, J. in The Ecology of Browsing and Grazing II 61–79 (Springer, 2019).

    19.
    Wallach, A. D. et al. Invisible megafauna. Conservation Biology. 32, 962–965 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Sandom, C. J. et al. Trophic rewilding presents regionally specific opportunities for mitigating climate change. Philosophical Transactions of the Royal Society B 375, 20190125 (2020).
    CAS  Article  Google Scholar 

    21.
    Svenning, J. C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. USA 113, 898–906, https://doi.org/10.1073/pnas.1502556112 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    22.
    Guyton, J. A. et al. Trophic rewilding revives biotic resistance to shrub invasion. Nature Ecology & Evolution, https://doi.org/10.1038/s41559-019-1068-y (2020).

    23.
    Derham, T. T., Duncan, R. P., Johnson, C. N. & Jones, M. E. Hope and caution: rewilding to mitigate the impacts of biological invasions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20180127 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Derham, T. & Mathews, F. Elephants as refugees. People and Nature 2, 103–110 (2020).
    Article  Google Scholar 

    25.
    Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl. Acad. Sci. USA, https://doi.org/10.1073/pnas.1915769117 (2020).

    26.
    Lundgren, E. J., Ramp, D., Ripple, W. J. & Wallach, A. D. Introduced megafauna are rewilding the Anthropocene. Ecography 41, 857–866, https://doi.org/10.1111/ecog.03430 (2018).
    Article  Google Scholar 

    27.
    Donlan, C. J. et al. Pleistocene rewilding: an optimistic agenda for twenty-first century conservation. The American Naturalist 168, 660–681 (2006).
    Article  Google Scholar 

    28.
    Luck, G. W., Lavorel, S., McIntyre, S. & Lumb, K. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J. Anim. Ecol. 81, 1065–1076, https://doi.org/10.1111/j.1365-2656.2012.01974.x (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Faurby, S. et al. PHYLACINE 1.2: The Phylogenetic Atlas of Mammal Macroecology. Ecology 99, 2626–2626 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Smith, F. A. et al. Body mass of late Quaternary mammals. Ecology 84, 3403–3403 (2003).
    Article  Google Scholar 

    31.
    Hume, J. P. & Walters, M. Extinct birds. Vol. 217 (A&C Black, 2012).

    32.
    Owen-Smith, R. N. Megaherbivores: the influence of very large body size on ecology. (Cambridge University Press, 1988).

    33.
    Gordon, I. J. & Prins, H. H. Ecology Browsing and Grazing II. (Springer Nature, 2019).

    34.
    Martin, P. S. & Wright, H. E. Pleistocene extinctions; the search for a cause. (National Research Council (U.S.): International Association for Quaternary Research., 1967).

    35.
    Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World Vol. 1-9 (Lynx Publishing, 2009-2019).

    36.
    Hopcraft, J. G. C., Olff, H. & Sinclair, A. R. E. Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 25, 119–128 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    AnAge: The Animal Ageing and Longevity Database. (2020).

    38.
    Clauss, M., Kaiser, T. & Hummel, J. in The ecology of browsing and grazing 47-88 (Springer, 2008).

    39.
    Van Soest, P. J. Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association 15, 455–479 (1996).
    Article  Google Scholar 

    40.
    Davis, M. & Pineda-Munoz, S. The temporal scale of diet and dietary proxies. Ecol. Evol. 6, 1883–1897, https://doi.org/10.1002/ece3.2054 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Kingdon, J. et al. Mammals of Africa. Vol. I-VI (Bloomsbury Natural History, 2013).

    42.
    Kissling, W. D. et al. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecol. Evol. 4, 2913–2930, https://doi.org/10.1002/ece3.1136 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    43.
    Faurby, S. & Svenning, J. C. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84, 14–26, https://doi.org/10.1016/j.ympev.2014.11.001 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation. Methods Ecol. Evol. 8, 22–27 (2017).
    Article  Google Scholar 

    45.
    Bruggeman, J., Heringa, J. & Brandt, B. W. PhyloPars: estimation of missing parameter values using phylogeny. Nucleic Acids Res. 37, W179–W184 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Hume, I. D. Digestive strategies of mammals. Acta Zoologica Sinica 48, 1–19 (2002).
    CAS  Google Scholar 

    47.
    Demment, M. W. & Van Soest, P. J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. The American Naturalist 125, 641–672 (1985).
    Article  Google Scholar 

    48.
    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl. Acad. Sci. USA 113, 868–873, https://doi.org/10.1073/pnas.1502549112 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457 (1989).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Prothero, D. R. & Foss, S. E. The evolution of artiodactyls. (JHU Press, 2007).

    51.
    Subalusky, A. L., Dutton, C. L., Rosi-Marshall, E. J. & Post, D. M. The hippopotamus conveyor belt: vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in sub-Saharan Africa. Freshw. Biol. 60, 512–525, https://doi.org/10.1111/fwb.12474 (2015).
    CAS  Article  Google Scholar 

    52.
    Kubo, T., Sakamoto, M., Meade, A. & Venditti, C. Transitions between foot postures are associated with elevated rates of body size evolution in mammals. Proc. Natl. Acad. Sci. USA 116, 2618–2623 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Brown, J. C. & Yalden, D. W. The description of mammals-2 limbs and locomotion of terrestrial mammals. Mammal Review 3, 107–134 (1973).
    Article  Google Scholar 

    54.
    Polly, P. D. in Fins into Limbs: Evolution, Development, and Transformation (ed B.K. Hall) 245-268 (2007).

    55.
    Cumming, D. H. M. & Cumming, G. S. Ungulate community structure and ecological processes: body size, hoof area and trampling in African savannas. Oecologia 134, 560–568 (2003).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    te Beest, M., Sitters, J., Ménard, C. B. & Olofsson, J. Reindeer grazing increases summer albedo by reducing shrub abundance in Arctic tundra. Environmental Research Letters 11, 125013, https://doi.org/10.1088/1748-9326/aa5128 (2016).
    ADS  Article  Google Scholar 

    57.
    Bennett, M. Foot areas, ground reaction forces and pressures beneath the feet of kangaroos, wallabies and rat-kangaroos (Marsupialia: Macropodoidea). J. Zool. 247, 365–369 (1999).
    Article  Google Scholar 

    58.
    Beever, E. A., Huso, M. & Pyke, D. A. Multiscale responses of soil stability and invasive plants to removal of non‐native grazers from an arid conservation reserve. Diversity and Distributions 12, 258–268 (2006).
    Article  Google Scholar 

    59.
    Lundgren, E. J. et al. Functional traits of the world’s late Quaternary large-bodied avian and mammalian herbivores. figshare https://doi.org/10.6084/m9.figshare.c.5001971 (2020).

    60.
    Kihwele, E. S. et al. Quantifying water requirements of African ungulates through a combination of functional traits. Ecological Monographs 90, e01404, https://doi.org/10.1002/ecm.1404 (2020).
    Article  Google Scholar 

    61.
    Abbazzi, L. Remarks on the validity of the generic name Praemegaceros portis 1920, and an overview on Praemegaceros species in Italy. Rendiconti Lincei 15, 115 (2004).
    Article  Google Scholar 

    62.
    Acevedo, P. & Cassinello, J. Biology, ecology and status of Iberian ibex Capra pyrenaica: a critical review and research prospectus. Mammal Review 39, 17–32 (2009).
    Article  Google Scholar 

    63.
    Adhikari, P. et al. Seasonal and altitudinal variation in roe deer (Capreolus pygargus tianschanicus) diet on Jeju Island, South Korea. Journal of Asia-Pacific Biodiversity 9, 422–428 (2016).
    Article  Google Scholar 

    64.
    Agenbroad, L. D. Mammuthus exilis from the California Channel Islands: height, mass, and geologic age. CIT 173, 536 (2010).
    Google Scholar 

    65.
    Agetsuma, N., Agetsuma-Yanagihara, Y. & Takafumi, H. Food habits of Japanese deer in an evergreen forest: Litter-feeding deer. Mammalian Biology 76, 201–207 (2011).
    Article  Google Scholar 

    66.
    Ahmad, S. et al. Using an ensemble modelling approach to predict the potential distribution of Himalayan gray goral (Naemorhedus goral bedfordi) in Pakistan. Global Ecology and Conservation 21, e00845 (2020).
    Article  Google Scholar 

    67.
    Ahrestani, F. S., Heitkönig, I. M. & Prins, H. H. Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest. J. Trop. Ecol., 385–394 (2012).

    68.
    Ahrestani, F. S., Heitkönig, I. M., Matsubayashi, H. & Prins, H. H. in The Ecology of Large Herbivores in South and Southeast Asia 99–120 (Springer, 2016).

    69.
    Aiba, K., Miura, S. & Kubo, M. O. Dental Microwear Texture Analysis in Two Ruminants, Japanese Serow (Capricornis crispus) and Sika Deer (Cervus nippon), from Central Japan. Mammal Study 44, 183-192, 110 (2019).

    70.
    Akbari, H., Habibipoor, A. & Mousavi, J. Investigation on Habitat Preferences and Group Sizes of Chinkara (Gazella bennettii) in Dareh-Anjeer Wildlife Refuge, Yazd province. Iranian Journal of Applied Ecology 2, 81–90 (2013).
    Google Scholar 

    71.
    Akbari, H., Moradi, H. V., Rezaie, H.-R. & Baghestani, N. Winter foraging of chinkara (Gazella bennettii shikarii) in Central Iran. Mammalia 80, 163–169 (2016).
    Article  Google Scholar 

    72.
    Akersten, W. A., Foppe, T. M. & Jefferson, G. T. New source of dietary data for extinct herbivores. Quaternary Research 30, 92–97 (1988).
    ADS  Article  Google Scholar 

    73.
    Akram, F., Ilyas, O. & Haleem, A. Food and Feeding Habits of Indian Crested Porcupine in Pench Tiger Reserve, Madhya Pradesh, India. Ambient Sci 4, 0–5 (2017).
    Article  Google Scholar 

    74.
    Al Harthi, L. S., Robinson, M. D. & Mahgoub, O. Diets and resource sharing among livestock on the Saiq Plateau, Jebel Akhdar Mountains, Oman. International journal of ecology and environmental sciences 34, 113–120 (2008).
    Google Scholar 

    75.
    Alberdi, M. T., Prado, J. L. & Ortiz-Jaureguizar, E. Patterns of body size changes in fossil and living Equini (Perissodactyla). Biological Journal of the Linnean Society 54, 349–370 (1995).
    Google Scholar 

    76.
    Alcover, J. A. Vertebrate evolution and extinction on western and central Mediterranean Islands. Tropics 10, 103–123 (2000).
    Article  Google Scholar 

    77.
    Alcover, J. A., Perez-Obiol, R., Yll, E.-I. & Bover, P. The diet of Myotragus balearicus Bate 1909 (Artiodactyla: Caprinae), an extinct bovid from the Balearic Islands: evidence from coprolites. Biological Journal of the Linnean Society 66, 57–74 (1999).
    Google Scholar 

    78.
    Ali, A. et al. An assessment of food habits and altitudinal distribution of the Asiatic black bear (Ursus thibetanus) in the Western Himalayas, Pakistan. Journal of Natural History 51, 689–701 (2017).
    Article  Google Scholar 

    79.
    Cornell Lab of Ornithology. All About Birds. Allaboutbirds.org (Cornell Lab of Ornithology, 2020).

    80.
    Myers, P. et al. (University of Michigan, 2019).

    81.
    Dantas, M. A. T. et al. Isotopic paleoecology of the Pleistocene megamammals from the Brazilian Intertropical Region: Feeding ecology (δ13C), niche breadth and overlap. Quaternary Science Reviews 170, 152–163 (2017).
    ADS  Article  Google Scholar 

    82.
    Arbouche, Y., Arbouche, H., Arbouche, F. & Arbouche, R. Valeur fourragere des especes prelevees par Gazella cuvieri Ogilby, 1841 au niveau du Djebel Metlili (Algerie). Archivos de Zootecnia 61, 145–148 (2012).
    Article  Google Scholar 

    83.
    Arman, S. D. & Prideaux, G. J. Dietary classification of extant kangaroos and their relatives (Marsupialia: Macropodoidea). Austral Ecol. 40, 909–922, https://doi.org/10.1111/aec.12273 (2015).
    Article  Google Scholar 

    84.
    Aryal, A. Habitat ecology of Himalayan serow (Capricornis sumatraensis ssp. thar) in Annapurna Conservation Area of Nepal. Tiger paper 34, 12–20 (2009).
    Google Scholar 

    85.
    Aryal, A., Coogan, S. C., Ji, W., Rothman, J. M. & Raubenheimer, D. Foods, macronutrients and fibre in the diet of blue sheep (Psuedois nayaur) in the Annapurna Conservation Area of Nepal. Ecol. Evol. 5, 4006–4017 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Asevedo, L., Winck, G. R., Mothé, D. & Avilla, L. S. Ancient diet of the Pleistocene gomphothere Notiomastodon platensis (Mammalia, Proboscidea, Gomphotheriidae) from lowland mid-latitudes of South America: Stereomicrowear and tooth calculus analyses combined. Quaternary International 255, 42–52, https://doi.org/10.1016/j.quaint.2011.08.037 (2012).
    ADS  Article  Google Scholar 

    87.
    Asensio, B. A., Méndez, J. R. & Prado, J. L. Patterns of body-size change in large mammals during the Late Cenozoic in the Northwestern Mediterranean. 464-479 (Museo Arqueológico Regional) (2004).

    88.
    Ashraf, N., Anwar, M., Hussain, I. & Nawaz, M. A. Competition for food between the markhor and domestic goat in Chitral, Pakistan. Turkish Journal of Zoology 38, 191–198 (2014).
    Article  Google Scholar 

    89.
    Ashraf, N. et al. Seasonal variation in the diet of the grey goral (Naemorhedus goral) in Machiara National Park (MNP), Azad Jammu and Kashmir, Pakistan. Mammalia 81, 235–244 (2017).
    Article  Google Scholar 

    90.
    The Australian Museum. Animal Fact Sheets. www.australian.museum/learn (New South Wales Government, New South Wales, 2019).

    91.
    Avaliani, N., Chunashvili, T., Sulamanidze, G. & Gurchiani, I. Supporting conservation of West Caucasian Tur (Capra caucasica) in Georgia. Conservation Leadership Pgoramme. Project No: 400206 (2007).

    92.
    Baamrane, M. A. A. et al. Assessment of the food habits of the Moroccan dorcas gazelle in M’Sabih Talaa, west central Morocco, using the trn L approach. PLoS One 7, e35643 (2012).
    ADS  Article  CAS  Google Scholar 

    93.
    Bailey, M., Petrie, S. A. & Badzinski, S. S. Diet of mute swans in lower Great Lakes coastal marshes. The Journal of wildlife Management 72, 726–732 (2008).
    Article  Google Scholar 

    94.
    Ballari, S. A. & Barrios‐García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Review 44, 124–134 (2014).
    Article  Google Scholar 

    95.
    Barboza, P. & Hume, I. Digestive tract morphology and digestion in the wombats (Marsupialia: Vombatidae). Journal of Comparative Physiology B 162, 552–560 (1992).
    CAS  Google Scholar 

    96.
    Bargo, M. S. The ground sloth Megatherium americanum: skull shape, bite forces, and diet. Acta Palaeontologica Polonica 46, 173–192 (2001).
    Google Scholar 

    97.
    Bargo, M. S. & Vizcaíno, S. F. Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45, 175–196 (2008).
    Google Scholar 

    98.
    Bargo, M. S., Toledo, N. & Vizcaíno, S. F. Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J. Morphol. 267, 248–263 (2006).
    PubMed  Article  Google Scholar 

    99.
    Barreto, G. R. & Quintana, R. D. in Capybara. (Springer, 2013).

    100.
    Baskaran, N., Kannan, V., Thiyagesan, K. & Desai, A. A. Behavioural ecology of four-horned antelope (Tetracerus quadricornis de Blainville, 1816) in the tropical forests of southern India. Mammalian Biology 76, 741–747 (2011).
    Article  Google Scholar 

    101.
    Baskaran, N., Ramkumaran, K. & Karthikeyan, G. Spatial and dietary overlap between blackbuck (Antilope cervicapra) and feral horse (Equus caballus) at Point Calimere Wildlife Sanctuary, Southern India: Competition between native versus introduced species. Mammalian Biology 81, 295–302 (2016).
    Article  Google Scholar 

    102.
    Basumatary, S. K., Singh, H., McDonald, H. G., Tripathi, S. & Pokharia, A. K. Modern botanical analogue of endangered Yak (Bos mutus) dung from India: Plausible linkage with extant and extinct megaherbivores. PLoS One 14, e0202723 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    Bedaso, Z. K., Wynn, J. G., Alemseged, Z. & Geraads, D. Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: Implication for Australopithecus afarensis habitat and food resources. J. Hum. Evol. 64, 21–38 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    104.
    Benamor, N., Bounaceur, F., Baha, M. & Aulagnier, S. First data on the seasonal diet of the vulnerable Gazella cuvieri (Mammalia: Bovidae) in the Djebel Messaâd forest, northern Algeria. Folia Zoologica 68, 1–8 (2019).
    Article  Google Scholar 

    105.
    Bennett, C. V. & Goswami, A. Statistical support for the hypothesis of developmental constraint in marsupial skull evolution. BMC Biol. 11 (2013).

    106.
    Bergmann, G. T., Craine, J. M., Robeson, M. S. II & Fierer, N. Seasonal shifts in diet and gut microbiota of the American bison (Bison bison). PLoS One 10, e0142409 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    107.
    Bhat, S. A., Telang, S., Wani, M. A. & Sheikh, K. A. Food habits of Nilgai (Boselaphus tragocamelus) in Van Vihar National Park, Bhopal, Madhya Pradesh, India. Biomedical and Pharmacology Journal 5, 141–147 (2015).
    Article  Google Scholar 

    108.
    Bhattacharya, T., Kittur, S., Sathyakumar, S. & Rawat, G. Diet overlap between wild ungulates and domestic livestock in the greater Himalaya: implications for management of grazing practices in Proceedings of the Zoological Society. 11-21 (Springer).

    109.
    Bibi, F. & Kiessling, W. Continuous evolutionary change in Plio-Pleistocene mammals of eastern. Africa. Proc. Natl. Acad. Sci. USA 112, 10623–10628 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    110.
    Biknevicius, A. R., McFarlane, D. A. & MacPhee, R. D. E. Body size in Amblyrhiza inundata (Rodentia, Caviomorpha), an extinct megafaunal rodent from the Anguilla Bank, West Indies: estimates and implications. American Museum novitates; no. 3079 (1993).

    111.
    Cornell Lab of Ornithology. Birds of the World. https://birdsoftheworld.org/bow Cornell Lab of Ornithology (2020).

    112.
    Biswas, J. et al. The enigmatic Arunachal macaque: its biogeography, biology and taxonomy in Northeastern India. Am. J. Primatol. 73, 458–473, https://doi.org/10.1002/ajp.20924 (2011).
    Article  PubMed  Google Scholar 

    113.
    Bocherens, H. et al. Isotopic insight on paleodiet of extinct Pleistocene megafaunal Xenarthrans from Argentina. Gondwana Research 48, 7–14, https://doi.org/10.1016/j.gr.2017.04.003 (2017).
    ADS  CAS  Article  Google Scholar 

    114.
    Boeskorov, G. G. et al. Woolly rhino discovery in the lower Kolyma River. Quaternary Science Reviews 30, 2262–2272 (2011).
    ADS  Article  Google Scholar 

    115.
    Bojarska, K. & Selva, N. Spatial patterns in brown bear Ursus arctos diet: the role of geographical and environmental factors. Mammal Review 42, 120–143 (2012).
    Article  Google Scholar 

    116.
    Bon, R., Rideau, C., Villaret, J.-C. & Joachim, J. Segregation is not only a matter of sex in Alpine ibex, Capra ibex ibex. Anim. Behav. 62, 495–504 (2001).
    Article  Google Scholar 

    117.
    Bond, W. J., Silander, J. A. Jr, Ranaivonasy, J. & Ratsirarson, J. The antiquity of Madagascar’s grasslands and the rise of C4 grassy biomes. Journal of Biogeography 35, 1743–1758, https://doi.org/10.1111/j.1365-2699.2008.01923.x (2008).
    Article  Google Scholar 

    118.
    Borgnia, M., Vilá, B. L. & Cassini, M. H. Foraging ecology of Vicuña, Vicugna vicugna, in dry Puna of Argentina. Small Rumin. Res. 88, 44–53 (2010).
    Article  Google Scholar 

    119.
    Bowman, D. M., Murphy, B. P. & McMahon, C. R. Using carbon isotope analysis of the diet of two introduced Australian megaherbivores to understand Pleistocene megafaunal extinctions. Journal of Biogeography 37, 499–505 (2010).
    Article  Google Scholar 

    120.
    Bradford, M. G., Dennis, A. J. & Westcott, D. A. Diet and dietary preferences of the southern cassowary (Casuarius casuarius) in North Queensland, Australia. Biotropica 40, 338–343 (2008).
    Article  Google Scholar 

    121.
    Bradham, J. L., DeSantis, L. R., Jorge, M. L. S. & Keuroghlian, A. Dietary variability of extinct tayassuids and modern white-lipped peccaries (Tayassu pecari) as inferred from dental microwear and stable isotope analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 499, 93–101 (2018).
    ADS  Article  Google Scholar 

    122.
    Bravo-Cuevas, V. M., Rivals, F. & Priego-Vargas, J. Paleoecology (δ13C and δ18O stable isotopes analysis) of a mammalian assemblage from the late Pleistocene of Hidalgo, central Mexico and implications for a better understanding of environmental conditions in temperate North America (18°–36° N Lat.). Palaeogeography, Palaeoclimatology, Palaeoecology 485, 632–643 (2017).
    ADS  Article  Google Scholar 

    123.
    Bravo-Cuevas, V. M., Jiménez-Hidalgo, E., Perdoma, M. A. C. & Priego-Vargas, J. Taxonomy and notes on the paleobiology of the late Pleistocene (Rancholabrean) antilocaprids (Mammalia, Artiodactyla, Antilocapridae) from the state of Hidalgo, central Mexico. Revista mexicana de Ciencias Geológicas 30, 601–613 (2013).
    Google Scholar 

    124.
    Buchsbaum, R., Wilson, J. & Valiela, I. Digestibility of plant constitutents by Canada Geese and Atlantic Brant. Ecology 67, 386–393 (1986).
    Article  Google Scholar 

    125.
    Buckland, R. & Guy, G. Goose Production Systems, http://www.fao.org/3/y4359e/y4359e00.htm#Contents (2002).

    126.
    Burness, G. P., Diamond, J. & Flannery, T. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proc. Natl. Acad. Sci. USA 98, 14518–14523 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    127.
    Burton, J., Hedges, S. & Mustari, A. The taxonomic status, distribution and conservation of the lowland anoa Bubalus depressicornis and mountain anoa Bubalus quarlesi. Mammal Review 35, 25–50 (2005).
    Article  Google Scholar 

    128.
    Butler, K., Louys, J. & Travouillon, K. Extending dental mesowear analyses to Australian marsupials, with applications to six Plio-Pleistocene kangaroos from southeast Queensland. Palaeogeography, Palaeoclimatology, Palaeoecology 408, 11–25, https://doi.org/10.1016/j.palaeo.2014.04.024 (2014).
    ADS  Article  Google Scholar 

    129.
    Cain, J. W., Avery, M. M., Caldwell, C. A., Abbott, L. B. & Holechek, J. L. Diet composition, quality and overlap of sympatric American pronghorn and gemsbok. Wildlife Biology 17, wlb.00296, https://doi.org/10.2981/wlb.00296 (2017).
    Article  Google Scholar 

    130.
    Campbell, J. L., Eisemann, J. H., Williams, C. V. & Glenn, K. M. Description of the Gastrointestinal Tract of Five Lemur Species: Propithecus tattersalli, Propithecus verreauxicoquereli, Varecia variegata, Hapalemur griseus, and Lemur catta. Am. J. Primatol. 52, 133–142 (2000).
    CAS  PubMed  Article  Google Scholar 

    131.
    Carey, S. P. et al. A diverse Pleistocene marsupial trackway assemblage from the Victorian Volcanic Plains, Australia. Quaternary Science Reviews 30, 591–610 (2011).
    ADS  Article  Google Scholar 

    132.
    Cartelle, C. & Hartwig, W. C. A new extinct primate among the Pleistocene megafauna of Bahia, Brazil. Proc. Natl. Acad. Sci. USA 93, 6405–6409, https://doi.org/10.1073/pnas.93.13.6405 (1996).
    ADS  CAS  Article  PubMed  Google Scholar 

    133.
    Cassini, G. H., Cerdeño, E., Villafañe, A. L. & Muñoz, N. A. Paleobiology of Santacrucian native ungulates (Meridiungulata: Astrapotheria, Litopterna and Notoungulata) in Early Miocene Paleobiology in Patagonia/Vizcaíno (Cambridge University Press) (2012).

    134.
    Cerdeño, E. Diversity and evolutionary trends of the Family Rhinocerotidae (Perissodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology 141, 13–34, https://doi.org/10.1016/S0031-0182(98)00003-0 (1998).
    ADS  Article  Google Scholar 

    135.
    Cerling, T. E. & Viehl, K. Seasonal diet changes of the forest hog (Hylochoerus meinertzhageni Thomas) based on the carbon isotopic composition of hair. African Journal of Ecology 42, 88–92 (2004).
    Article  Google Scholar 

    136.
    Chaiyarat, R., Saengpong, S., Tunwattana, W. & Dunriddach, P. Habitat and food utilization by banteng (Bos javanicus d’Alton, 1823) accidentally introduced into the Khao Khieo-Khao Chomphu Wildlife Sanctuary, Thailand. Mammalia 82, 23–34 (2017).
    Article  Google Scholar 

    137.
    Chen, Y. et al. Activity Rhythms of Coexisting Red Serow and Chinese Serow at Mt. Gaoligong as Identified by Camera Traps. Animals 9, 1071 (2019).
    Article  Google Scholar 

    138.
    Choudhury, A. The decline of the wild water buffalo in north-east India. Oryx 28, 70–73 (1994).
    Article  Google Scholar 

    139.
    Christiansen, P. What size were Arctodus simus and Ursus spelaeus (Carnivora: Ursidae)? Annales Zoologici Fennici 36, 93–102 (1999).
    Google Scholar 

    140.
    Christiansen, P. Body size in proboscideans, with notes on elephant metabolism. Zoological journal of the Linnean Society 140, 523–549 (2004).
    Article  Google Scholar 

    141.
    Chritz, K. L. et al. Palaeobiology of an extinct Ice Age mammal: Stable isotope and cementum analysis of giant deer teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 282, 133–144 (2009).
    ADS  Article  Google Scholar 

    142.
    Clarke, S. J., Miller, G. H., Fogel, M. L., Chivas, A. R. & Murray-Wallace, C. V. The amino acid and stable isotope biogeochemistry of elephant bird (Aepyornis) eggshells from southern Madagascar. Quaternary Science Reviews 25, 2343–2356 (2006).
    ADS  Article  Google Scholar 

    143.
    Clauss, M. The potential interplay of posture, digestive anatomy, density of ingesta and gravity in mammalian herbivores: Why sloths do not rest upside down. Mammal Review 34, 241–245 (2004).
    Article  Google Scholar 

    144.
    Clauss, M. et al. The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia 136, 14–27 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    145.
    Clauss, M., Hummel, J., Vercammen, F. & Streich, W. J. Observations on the Macroscopic Digestive Anatomy of the Himalayan Tahr (Hemitragus jemlahicus). Anatomia Histologia Embryologia 34, 276–278 (2005).
    CAS  Article  Google Scholar 

    146.
    Clench, M. H. & Mathias, J. R. The avian cecum: a review. The Wilson Bulletin, 93–121 (1995).

    147.
    Cobb, M. A., KHelling, H. & Pyle, B. Summer diet and feeding location selection patterns of an irrupting mountain goat population on Kodiak Island, Alaska. Biennial Symposium of the Northern Wild Sheep and Goat Council 18, 122–135 (2012).
    Google Scholar 

    148.
    Codron, D., Brink, J. S., Rossouw, L. & Clauss, M. The evolution of ecological specialization in southern African ungulates: competition- or physical environmental turnover? Oikos 117, 344–353, https://doi.org/10.1111/j.2007.0030-1299.16387.x (2008).
    Article  Google Scholar 

    149.
    Codron, D., Clauss, M., Codron, J. & Tütken, T. Within trophic level shifts in collagen–carbonate stable carbon isotope spacing are propagated by diet and digestive physiology in large mammal herbivores. Ecol. Evol. 8, 3983–3995 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    150.
    Comparatore, V. & Yagueddú, C. Diet of the Greater Rhea (Rhea americana) in an agroecosystem of the Flooding Pampa, Argentina. Ornitologia Neotropical 18, 187–194 (2007).
    Google Scholar 

    151.
    Cooke, S. B. Paleodiet of extinct platyrrhines with emphasis on the Caribbean forms: three-dimensional geometric morphometrics of mandibular second molars. The Anatatomical Record 294, 2073–2091, https://doi.org/10.1002/ar.21502 (2011).
    Article  Google Scholar 

    152.
    Coombs, M. C. Large mammalian clawed herbivores: a comparative study. Transactions of the American Philosophical Society 73, 1–96 (1983).
    Article  Google Scholar 

    153.
    Cope, E. D. The extinct rodentia of North America. The American Naturalist 17, 43–57 (1883).
    Article  Google Scholar 

    154.
    Corona, A., Ubilla Gutierrez, M. & Perea Negreira, D. New records and diet reconstruction using dental microwear analysis for Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae). Andean Geology, 2019 46(1), 153–167 (2019).
    CAS  Article  Google Scholar 

    155.
    Craine, J. M., Towne, E. G., Miller, M. & Fierer, N. Climatic warming and the future of bison as grazers. Sci. Rep. 5, 16738 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    156.
    Cransac, N., Valet, G., Cugnasse, J.-M. & Rech, J. Seasonal diet of mouflon (Ovis gmelini): comparison of population sub-units and sex-age classes. Revue d’écologie (1997).

    157.
    Creese, S., Davies, S. J. & Bowen, B. J. Comparative dietary analysis of the black-flanked rock-wallaby (Petrogale lateralis lateralis), the euro (Macropus robustus erubescens) and the feral goat (Capra hircus) from Cape Range National Park, Western Australia. Aust. Mammal. 41, 220–230 (2019).
    Article  Google Scholar 

    158.
    Croitor, R. Systematical position and paleoecology of the endemic deer Megaceroides algericus Lydekker, 1890 (Cervidae, Mammalia) from the late Pleistocene-early Holocene of North Africa. Geobios 49, 265–283, https://doi.org/10.1016/j.geobios.2016.05.002 (2016).
    Article  Google Scholar 

    159.
    Croitor, R., Bonifay, M.-F. & Brugal, J.-P. Systematic revision of the endemic deer Haploidoceros n. gen. mediterraneus (Bonifay, 1967)(Mammalia, Cervidae) from the Middle Pleistocene of Southern France. Paläontologische Zeitschrift 82, 325–346 (2008).
    Article  Google Scholar 

    160.
    Cromsigt, J. P. G. M., Kemp, Y. J. M., Rodrigues, E. & Kivit, H. Rewilding Europe’s large grazer community: how functionally diverse are the diets of European bison, cattle, and horses? Restoration Ecology 26, 891–899 (2017).
    Article  Google Scholar 

    161.
    Crowley, B. E. & Godfrey, L. R. in Leaping Ahead 173-182 (Springer, 2012).

    162.
    Crowley, B. E. & Samonds, K. E. Stable carbon isotope values confirm a recent increase in grasslands in northwestern Madagascar. The Holocene 23, 1066–1073, https://doi.org/10.1177/0959683613484675 (2013).
    ADS  Article  Google Scholar 

    163.
    Crowley, B. E., Godfrey, L. R. & Irwin, M. T. A glance to the past: subfossils, stable isotopes, seed dispersal, and lemur species loss in southern Madagascar. Am. J. Primatol. 73, 25–37 (2011).
    PubMed  Article  Google Scholar 

    164.
    Cunningham, P. L. & Wacher, T. Changes in the distribution, abundance and status of Arabian Sand Gazelle (Gazella subgutturosa marica) in Saudi Arabia: a review. Mammalia 73, 203–210 (2009).
    Article  Google Scholar 

    165.
    Czerwonogora, A., Fariña, R. A. & Tonni, E. P. Diet and isotopes of Late Pleistocene ground sloths: first results for Lestodon and Glossotherium (Xenarthra, Tardigrada). Neues Jahrbuch fur Geologie und Paleontologie – Abhandlungen 262, 257–266, https://doi.org/10.1127/0077-7749/2011/0197 (2011).
    Article  Google Scholar 

    166.
    Domanov, T. A. Musk deer Moschus moschiferus nutrition in the Tukuringra Mountain Range, Russian Far East, during the snow season. Russian Journal of Theriology 12, 91–97 (2013).
    Article  Google Scholar 

    167.
    Dantas, M. A. T. & Cozzuol, M. A. in Marine Isotope Stage 3 in Southern South America, 60 KA B.P.-30 KA B.P. (eds Germán Mariano Gasparini, Jorge Rabassa, Cecilia Deschamps, & Eduardo Pedro Tonni) 207-226 (Springer International Publishing, 2016).

    168.
    Dantas, M. A. T. et al. Paleoecology and radiocarbon dating of the Pleistocene megafauna of the Brazilian Intertropical Region. Quaternary Research 79, 61–65, https://doi.org/10.1016/j.yqres.2012.09.006 (2013).
    ADS  CAS  Article  Google Scholar 

    169.
    Dantas, M. A. T. et al. Isotopic paleoecology (δ 13C) of mesoherbivores from Late Pleistocene of Gruta da Marota, Andaraí, Bahia, Brazil. Hist. Biol., 1–9 (2019).

    170.
    Dantas, M. A. T. et al. Isotopic paleoecology (δ13C) from mammals from IUIU/BA and paleoenvironmental reconstruction (δ13C, δ18O) for the Brazilian intertropical region through the late Pleistocene. Quaternary Science Reviews 242, 106469 (2020).
    Article  Google Scholar 

    171.
    Davids, A. H. Estimation of genetic distances and heterosis in three ostrich (Struthio camelus) breeds for the improvement of productivity, Stellenbosch: University of Stellenbosch, (2011).

    172.
    Davies, P. & Lister, A. M. in The World of Elephants International Congress 479-480 (International Congress, Rome 2001, 2001).

    173.
    Dawson, L. An ecophysiological approach to the extinction of large marsupial herbivores in middle and late Pleistocene Australia. Alcheringa: An Australasian Journal of Palaeontology 30, 89–114, https://doi.org/10.1080/03115510609506857 (2006).
    Article  Google Scholar 

    174.
    Dawson, T. J. et al. in Fauna of Australia (eds D. W. Walton & B. J. Richardson) (AGPS Canberra, 1989).

    175.
    De Iuliis, G., Bargo, M. S. & Vizcaíno, S. F. Variation in skull morphology and mastication in the fossil giant armadillos Pampatherium spp. and allied genera (Mammalia: Xenarthra: Pampatheriidae), with comments on their systematics and distribution. Journal of Vertebrate Paleontology 20, 743–754, https://doi.org/10.1671/0272-4634(2000)020[0743:vismam]2.0.co;2 (2000).
    Article  Google Scholar 

    176.
    de Oliveira, A. M. & Santos, C. M. D. Functional morphology and paleoecology of Pilosa (Xenarthra, Mammalia) based on a two‐dimensional geometric Morphometrics study of the Humerus. J. Morphol. 279, 1455–1467 (2018).
    PubMed  Article  Google Scholar 

    177.
    de Oliveira, K. et al. Fantastic beasts and what they ate: Revealing feeding habits and ecological niche of late Quaternary Macraucheniidae from South America. Quaternary Science Reviews 231, 106178 (2020).
    Article  Google Scholar 

    178.
    DeSantis, L. R. G., Field, J. H., Wroe, S. & Dodson, J. R. Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change. Paleobiology 43, 181–195, https://doi.org/10.1017/pab.2016.50 (2017).
    Article  Google Scholar 

    179.
    Desbiez, A. L. J., Santos, S. A., Alvarez, J. M. & Tomas, W. M. Forage use in domestic cattle (Bos indicus), capybara (Hydrochoerus hydrochaeris) and pampas deer (Ozotoceros bezoarticus) in a seasonal Neotropical wetland. Mammalian Biology 76, 351–357 (2011).
    Article  Google Scholar 

    180.
    Dierenfeld, E., Hintz, H., Robertson, J., Van Soest, P. & Oftedal, O. Utilization of bamboo by the giant panda. The Journal of Nutrition 112, 636–641 (1982).
    CAS  PubMed  Article  Google Scholar 

    181.
    Djagoun, C., Codron, D., Sealy, J., Mensah, G. & Sinsin, B. Stable carbon isotope analysis of the diets of West African bovids in Pendjari Biosphere Reserve, Northern Benin. African Journal of Wildlife Research 43, 33–43 (2013).
    Article  Google Scholar 

    182.
    Domingo, L., Prado, J. L. & Alberdi, M. T. The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. Quaternary Science Reviews 55, 103–113 (2012).
    ADS  Article  Google Scholar 

    183.
    Dong, W. et al. Late Pleistocene mammalian fauna from Wulanmulan Paleolithic Site, Nei Mongol, China. Quaternary International 347, 139–147 (2014).
    ADS  Article  Google Scholar 

    184.
    Doody, J. S., Sims, R. A. & Letnic, M. Environmental Manipulation to Avoid a Unique Predator: Drinking Hole Excavation in the Agile Wallaby, Macropus agilis. Ethology 113, 128–136, https://doi.org/10.1111/j.1439-0310.2006.01298.x (2007).
    Article  Google Scholar 

    185.
    Dookia, S. & Jakher, G. R. Food and Feeding Habit of Indian Gazelle (Gazella bennettii), in the Thar Desert of Rajasthan. The Indian Forester 133 (2007).

    186.
    Downer, C. C. Observations on the diet and habitat of the mountain tapir (Tapirus pinchaque). J. Zool. 254, 279–291 (2001).
    Article  Google Scholar 

    187.
    Dunning, J. B. Jr CRC handbook of avian body masses. (CRC press, 2007).

    188.
    Dunstan, H., Florentine, S. K., Calviño-Cancela, M., Westbrooke, M. E. & Palmer, G. C. Dietary characteristics of Emus (Dromaius novaehollandiae) in semi-arid New South Wales, Australia, and dispersal and germination of ingested seeds. Emu-Austral Ornithology 113, 168–176 (2013).
    Article  Google Scholar 

    189.
    Endo, Y., Takada, H. & Takatsuki, S. Comparison of the Food Habits of the Sika Deer (Cervus nippon), the Japanese Serow (Capricornis crispus), and the Wild Boar (Sus scrofa), Sympatric Herbivorous Mammals from Mt. Asama, Central Japan. Mammal Study 42, 131-140, 110 (2017).

    190.
    Espunyes, J. et al. Seasonal diet composition of Pyrenean chamois is mainly shaped by primary production waves. PLoS One 14, e0210819 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    191.
    Evans, M. C., Macgregor, C. & Jarman, P. J. Diet and feeding selectivity of common wombats. Wildlife Research 33, 321–330 (2006).
    Article  Google Scholar 

    192.
    Faith, J. T. Late Quaternary dietary shifts of the Cape grysbok (Raphicerus melanotis) in southern Africa. Quaternary Research 75, 159–165 (2011).
    ADS  Article  Google Scholar 

    193.
    Faith, J. T. Late Pleistocene and Holocene mammal extinctions on continental Africa. Earth-Science Reviews 128, 105–121 (2014).
    ADS  Article  Google Scholar 

    194.
    Faith, J. T. & Behrensmeyer, A. K. Climate change and faunal turnover: testing the mechanics of the turnover-pulse hypothesis with South African fossil data. Paleobiology 39, 609–627 (2013).
    Article  Google Scholar 

    195.
    Faith, J. T. & Thompson, J. C. Fossil evidence for seasonal calving and migration of extinct blue antelope (Hippotragus leucophaeus) in southern Africa. Journal of Biogeography 40, 2108–2118 (2013).
    Article  Google Scholar 

    196.
    Faith, J. T. et al. New perspectives on middle Pleistocene change in the large mammal faunas of East Africa: Damaliscus hypsodon sp. nov. (Mammalia, Artiodactyla) from Lainyamok, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology 361-362, 84–93, https://doi.org/10.1016/j.palaeo.2012.08.005 (2012).
    ADS  Article  Google Scholar 

    197.
    Fanelli, F., Palombo, M. R., Pillola, G. L. & Ibba, A. Tracks and trackways of “Praemegaceros” cazioti (Depéret, 1897) (Artiodactyla, Cervidae) in Pleistocene coastal deposits from Sardinia (Western Mediterranean, Italy). Bollettino della Società Paleontologica Italiana 46, 47–54 (2007).
    Google Scholar 

    198.
    Farhadinia, M. S. et al. Goitered Gazelle, Gazella subgutturosa: its habitat preference and conservation needs in Miandasht Wildlife Refuge, north-eastern Iran (Mammalia: Artiodactyla). Zoology in the middle east 46, 9–18 (2009).
    Article  Google Scholar 

    199.
    Fariña, R. A., Vizcaíno, S. F. & Bargo, M. S. Body mass estimations in Lujanian (late Pleistocene-early Holocene of South America) mammal megafauna. Mastozoología Neotropical 5, 87–108 (1998).
    Google Scholar 

    200.
    Feranec, R. S. Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology 29, 230–242 (2003).
    Article  Google Scholar 

    201.
    Feranec, R., García, N., Díez, J. & Arsuaga, J. Understanding the ecology of mammalian carnivorans and herbivores from Valdegoba cave (Burgos, northern Spain) through stable isotope analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 263–272 (2010).
    ADS  Article  Google Scholar 

    202.
    Fernández-Olalla, M., Martínez-Jauregui, M., Perea, R., Velamazán, M. & San Miguel, A. Threat or opportunity? Browsing preferences and potential impact of Ammotragus lervia on woody plants of a Mediterranean protected area. J. Arid Environ. 129, 9–15, https://doi.org/10.1016/j.jaridenv.2016.02.003 (2016).
    ADS  Article  Google Scholar 

    203.
    Ferretti, M. P. The dwarf elephant Palaeoloxodon mnaidriensis from Puntali Cave, Carini (Sicily; late Middle Pleistocene): Anatomy, systematics and phylogenetic relationships. Quaternary International 182, 90–108, https://doi.org/10.1016/j.quaint.2007.11.003 (2008).
    ADS  Article  Google Scholar 

    204.
    Figueirido, B. & Soibelzon, L. H. Inferring palaeoecology in extinct tremarctine bears (Carnivora, Ursidae) using geometric morphometrics. Lethaia 43, 209–222 (2010).
    Article  Google Scholar 

    205.
    Flannery, T. F. Pleistocene faunal loss: implications of the aftershock for Australia’s past and future. Archaeology in Oceania 25, 45–55 (1990).
    Article  Google Scholar 

    206.
    Flannery, T. F. Taxonomy of Dendrolagus goodfellowi (Macropodidae: Marsupialia) with description of a new subspecies. Records of the Australian Museum 45, 33–42, https://doi.org/10.3853/j.0067-1975.45.1993.128 (1993).
    Article  Google Scholar 

    207.
    Flannery, T. F. The Pleistocene mammal fauna of Kelangurr Cave, central montane Irian Jaya, Indonesia. Records of the Western Australian Museum 57, 341–350 (1999).
    Google Scholar 

    208.
    Flannery, T. F., Martin, R. & Szalay, A. Tree kangaroos: a curious natural history. (Reed Books, 1996).

    209.
    Fleagle, J. G. & Gilbert, C. C. Elwyn Simons: a search for origins. (Springer Science & Business Media, 2007).

    210.
    Foerster, C. R. & Vaughan, C. Diet and foraging behavior of a female Baird’s tapir (Tapirus bairdi) in a Costa Rican lowland rainforest. Cuadernos de Investigación UNED 7, 259–267 (2015).
    Google Scholar 

    211.
    Fooden, J. Systematic review of the Barbary Macaque, Macaca sylvanus (Linnaeus, 1758). Fieldiana Zoology 113, 1–58 (2007).
    Article  Google Scholar 

    212.
    Forasiepi, A. M. et al. Exceptional skull of Huayqueriana (Mammalia, Litopterna, Macraucheniidae) from the late Miocene of Argentina: anatomy, systematics, and paleobiological implications. Bulletin of the American Museum of Natural History 2016, 1–76 (2016).
    Article  Google Scholar 

    213.
    França, Ld. M. et al. Chronology and ancient feeding ecology of two upper Pleistocene megamammals from the Brazilian Intertropical Region. Quaternary Science Reviews 99, 78–83, https://doi.org/10.1016/j.quascirev.2014.04.028 (2014).
    ADS  Article  Google Scholar 

    214.
    França, Ld. M. et al. Review of feeding ecology data of Late Pleistocene mammalian herbivores from South America and discussions on niche differentiation. Earth-Science Reviews 140, 158–165, https://doi.org/10.1016/j.earscirev.2014.10.006 (2015).
    ADS  CAS  Article  Google Scholar 

    215.
    France, C. A., Zelanko, P. M., Kaufman, A. J. & Holtz, T. R. Carbon and nitrogen isotopic analysis of Pleistocene mammals from the Saltville Quarry (Virginia, USA): Implications for trophic relationships. Palaeogeography, Palaeoclimatology, Palaeoecology 249, 271–282 (2007).
    ADS  Article  Google Scholar 

    216.
    Fuller, B. T. et al. Pleistocene paleoecology and feeding behavior of terrestrial vertebrates recorded in a pre-LGM asphaltic deposit at Rancho La Brea, California. Palaeogeography, Palaeoclimatology, Palaeoecology 537, 109383, https://doi.org/10.1016/j.palaeo.2019.109383 (2020).
    ADS  Article  Google Scholar 

    217.
    Furley, C. W. Potential Use of Gazelles for Game Ranching in the Arabian Peninsula (This lecture was delivered at the Agro-Gulf Exhibition and Conference, Abu Dhabi, 1983.).

    218.
    Gad, S. D. & Shyama, S. K. Diet composition and quality in Indian bison (Bos gaurus) based on fecal analysis. Zoolog. Sci. 28, 264–267 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    219.
    Gagnon, M. & Chew, A. E. Dietary preferences in extant African Bovidae. J. Mammal. 81, 490–511 (2000).
    Article  Google Scholar 

    220.
    García, A., Carretero, E. M. & Dacar, M. A. Presence of Hippidion at two sites of western Argentina: Diet composition and contribution to the study of the extinction of Pleistocene megafauna. Quaternary International 180, 22–29 (2008).
    ADS  Article  Google Scholar 

    221.
    García‐Rangel, S. Andean bear Tremarctos ornatus natural history and conservation. Mammal Review 42, 85–119 (2012).
    Article  Google Scholar 

    222.
    Gardner, P. C., Ridge, S., Wern, J. G. E. & Goossens, B. The influence of logging upon the foraging behaviour and diet of the endangered Bornean banteng. Mammalia 83, 519–529 (2019).
    Article  Google Scholar 

    223.
    Garitano-Zavala, A., Nadal, J. & Ávila, P. The feeding ecology and digestive tract morphometry of two sympatric tinamous of the high plateau of the Bolivian Andes: the Ornate Tinamou (Nothoprocta ornata) and the Darwin’s Nothura (Nothura darwinii). Ornitología Neotropical 14, 173–194 (2003).
    Google Scholar 

    224.
    Garrett, N. D. et al. Stable isotope paleoecology of Late Pleistocene Middle Stone Age humans from the Lake Victoria basin, Kenya. J. Hum. Evol. 82, 1–14 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    225.
    Gasparini, G. M., Kerber, L. & Oliveira, E. V. Catagonus stenocephalus (Lund in Reinhardt, 1880)(Mammalia, Tayassuidae) in the Touro Passo Formation (Late Pleistocene), Rio Grande do Sul, Brazil. Taxonomic and palaeoenvironmental comments. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 254, 261–273 (2009).
    Article  Google Scholar 

    226.
    Gasparini, G. M., Soibelzon, E., Zurita, A. E. & Miño-Boilini, A. R. A review of the Quaternary Tayassuidae (Mammalia, Artiodactyla) from the Tarija Valley, Bolivia. Alcheringa: An Australasian Journal of Palaeontology 34, 7–20, https://doi.org/10.1080/03115510903277717 (2010).
    Article  Google Scholar 

    227.
    Gautier-Hion, A. & Gautier, J.-P. Cephalophus ogilbyi crusalbum Grubb 1978, described from coastal Gabon, is quite common in the Forêt des Abeilles, Central Gabon. Revue d’Écologie 2 (1994).

    228.
    Gautier-Hion, A., Emmons, L. H. & Dubost, G. A comparison of the diets of three major groups of primary consumers of Gabon (primates, squirrels and ruminants). Oecologia 45, 182–189 (1980).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    229.
    Gavashelishvili, A. Habitat selection by East Caucasian tur (Capra cylindricornis). Biol. Conserv. 120, 391–398 (2004).
    Article  Google Scholar 

    230.
    Gebremedhin, B. et al. DNA Metabarcoding Reveals Diet Overlap between the Endangered Walia Ibex and Domestic Goats – Implications for Conservation. PLoS One 11, e0159133, https://doi.org/10.1371/journal.pone.0159133 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    231.
    Geist, V. Deer of the world: their evolution, behaviour, and ecology. (Stackpole books, 1998).

    232.
    Ghosh, A., Thakur, M., Singh, S. K., Sharma, L. K. & Chandra, K. Gut microbiota suggests dependency of Arunachal Macaque (Macaca munzala) on anthropogenic food in Western Arunachal Pradesh, Northeastern India: Preliminary findings. Global Ecology and Conservation, e01030 (2020).

    233.
    Giles, F. H. The riddle of Cervus schomburgki. Journal of the Siam Society Natural History Supplement 10, 1–34 (1937).
    Google Scholar 

    234.
    Gill, F. B. Ornithology. (W.H. Freeman and Company, 2001).

    235.
    Gillette, D. D. & Ray, C. E. Glyptodonts of North America. Vol. 40 (1981).

    236.
    Gingerich, P. D. Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology 29, 429–454, 10.1666/0094-8373(2003)0292.0.CO;2 (2003).

    237.
    Giri, S., Aryal, A., Koirala, R., Adhikari, B. & Raubenheimer, D. Feeding ecology and distribution of Himalayan serow (Capricornis thar) in Annapurna Conservation Area, Nepal. World Journal of Zoology 6, 80–85 (2011).
    Google Scholar 

    238.
    Godfrey, L. R. et al. Dental use wear in extinct lemurs: evidence of diet and niche differentiation. J. Hum. Evol. 47, 145–169, https://doi.org/10.1016/j.jhevol.2004.06.003 (2004).
    Article  PubMed  Google Scholar 

    239.
    González-Guarda, E. et al. Late Pleistocene ecological, environmental and climatic reconstruction based on megafauna stable isotopes from northwestern Chilean Patagonia. Quaternary Science Reviews 170, 188–202 (2017).
    ADS  Article  Google Scholar 

    240.
    Gazzolo, C. & Barrio, J. Feeding ecology of taruca (Hippocamelus antisensis) populations during the rainy and dry seasons in Central Peru. International Journal of Zoology 2016 (2016).

    241.
    Grass, A. D. Inferring lifestyle and locomotor habits of extinct sloths through scapula morphology and implications for convergent evolution in extant sloths PhD thesis, Graduate College of the University of Iowa, (2014).

    242.
    Gray, G. G. & Simpson, C. D. Ammotragus lervia. Mammalian Species 144, 1–7 (1980).
    Article  Google Scholar 

    243.
    Green, J. L. Dental microwear in the orthodentine of the Xenarthra (Mammalia) and its use in reconstructing the palaeodiet of extinct taxa: the case study of Nothrotheriops shastensis (Xenarthra, Tardigrada, Nothrotheriidae). Zoological Journal of the Linnean Society 156, 201–222 (2009).
    Article  Google Scholar 

    244.
    Green, J. L. & Kalthoff, D. C. Xenarthran dental microstructure and dental microwear analyses, with new data for Megatherium americanum (Megatheriidae). J. Mammal. 96, 645–657 (2015).
    Article  Google Scholar 

    245.
    Green, K., Davis, N. & Robinson, W. The diet of the common wombat (Vombatus ursinus) above the winter snowline in the decade following a wildfire. Aust. Mammal. 37, 146–156 (2015).
    Article  Google Scholar 

    246.
    Green, J. L., DeSantis, L. R. G. & Smith, G. J. Regional variation in the browsing diet of Pleistocene Mammut americanum (Mammalia, Proboscidea) as recorded by dental microwear textures. Palaeogeography, Palaeoclimatology, Palaeoecology 487, 59–70, https://doi.org/10.1016/j.palaeo.2017.08.019 (2017).
    ADS  Article  Google Scholar 

    247.
    Grignolio, S., Parrini, F., Bassano, B., Luccarini, S. & Apollonio, M. Habitat selection in adult males of Alpine ibex. Capra ibex ibex. Folia Zoologica-Praha 52, 113–120 (2003).
    Google Scholar 

    248.
    Gröcke, D. R. Distribution of C3 and C4 plants in the late Pleistocene of South Australia recorded by isotope biogeochemistry of collagen in megafauna. Australian Journal of Botany 45, 607–617 (1997).
    Article  Google Scholar 

    249.
    Gröcke, D. & Bocherens, H. Isotopic investigation of an Australian island environment. Comptes Rendus de l’Academie des Sciences. Serie 2. Sciences de la Terre et des Planetes 322, 713–719 (1996).
    Google Scholar 

    250.
    Groves, C. P. & Leslie, D. M. Jr Rhinoceros sondaicus (Perissodactyla: Rhinocerotidae). Mammalian Species 43, 190–208 (2011).
    Article  Google Scholar 

    251.
    Guerrero-Cardenas, I., Gallina, S., del Rio, P. C. M., Cardenas, S. A. & Orduña, R. R. Composición y selección de la dieta del borrego cimarrón (Ovis canadensis) en la Sierra El Mechudo, Baja California Sur, México. Therya (2016).

    252.
    Hadjisterkotis, E. & Reese, D. S. Considerations on the potential use of cliffs and caves by the extinct endemic late pleistocene hippopotami and elephants of Cyprus. European Journal of Wildlife Research 54, 122–133 (2008).
    Article  Google Scholar 

    253.
    Haleem, A. & Ilyas, O. Food and Feeding Habits of Gaur (Bos gaurus) in Highlands of Central India: A Case Study at Pench Tiger Reserve, Madhya Pradesh (India). Zoolog. Sci. 35, 57–68 (2018).
    PubMed  Article  Google Scholar 

    254.
    Halenar, L. B. Reconstructing the Locomotor Repertoire of Protopithecus brasiliensis. II. Forelimb Morphology. The Anatomical Record 294, 2048–2063, https://doi.org/10.1002/ar.21499 (2011).
    Article  PubMed  Google Scholar 

    255.
    Halenar, L. B. Paleobiology of Protopithecus brasiliensis, a plus-size Pleistocene platyrrhine from Brazil, City University of New York, (2012).

    256.
    Hamilton, W. J. III, Buskirk, R. & Buskirk, W. H. Intersexual dominance and differential mortality of Gemsbok Oryx gazella at Namib Desert waterholes. Madoqua 10, 5–19 (1977).
    Google Scholar 

    257.
    Hansen, R. M. Shasta ground sloth food habits, Rampart Cave, Arizona. Paleobiology 4, 302–319 (1978).
    Article  Google Scholar 

    258.
    Hansford, J. P. & Turvey, S. T. Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world’s largest bird. Royal Society open science 5, 181295 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    259.
    Harris, J. M. & Cerling, T. E. Dietary adaptations of extant and Neogene African suids. J. Zool. 256, 45–54 (2002).
    Article  Google Scholar 

    260.
    Hartwig, W. C. & Cartelle, C. A complete skeleton of the giant South American primate Protopithecus. Nature 381, 307–311 (1996).
    ADS  CAS  PubMed  Article  Google Scholar 

    261.
    Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction‐driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2018).
    Article  Google Scholar 

    262.
    Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    263.
    Henry, O., Feer, F. & Sabatier, D. Diet of the lowland tapir (Tapirus terrestris L.) in French Guiana. Biotropica 32, 364–368 (2000).
    Article  Google Scholar 

    264.
    Herd, R. M. & Dawson, T. J. Fiber digestion in the emu, Dromaius novaehollandiae, a large bird with a simple gut and high rates of passage. Physiol. Zool. 57, 70–84 (1984).
    Article  Google Scholar 

    265.
    Herridge, V. L. & Lister, A. M. Extreme insular dwarfism evolved in a mammoth. Proc. R. Soc. B. 279, 3193–3200 (2012).
    PubMed  Article  Google Scholar 

    266.
    Heywood, J. Functional anatomy of bovid upper molar occlusal surfaces with respect to diet. J. Zool. 281, 1–11 (2010).
    Article  Google Scholar 

    267.
    Hofreiter, M. et al. A molecular analysis of ground sloth diet through the last glaciation. Mol. Ecol. 9, 1975–1984 (2000).
    CAS  PubMed  Article  Google Scholar 

    268.
    Hollis, C., Robertshaw, J. & Harden, R. Ecology of the swamp wallaby (Wallabia-Bicolor) in northeastern New-South-Wales. 1. Diet. Wildlife Research 13, 355–365 (1986).
    Article  Google Scholar 

    269.
    Hope, G. & Flannery, T. A preliminary report of changing Quaternary mammal faunas in subalpine New Guinea. Quaternary Research 40, 117–126 (1993).
    ADS  Article  Google Scholar 

    270.
    Hou, R. et al. Seasonal variation in diet and nutrition of the northern‐most population of Rhinopithecus roxellana. Am. J. Primatol. 80, e22755 (2018).
    PubMed  Article  CAS  Google Scholar 

    271.
    Huffman, B. Rucervus schomburgki. Ultimate Ungulate. http://www.ultimateungulate.com/Artiodactyla/Rucervus_schomburgki.html (2020).

    272.
    Hullot, M., Antoine, P.-O., Ballatore, M. & Merceron, G. Dental microwear textures and dietary preferences of extant rhinoceroses (Perissodactyla, Mammalia). Mammal Research 64, 397–409 (2019).
    Article  Google Scholar 

    273.
    Hume, J. P. The history of the Dodo Raphus cucullatus and the penguin of Mauritius. Hist. Biol. 18, 69–93 (2006).
    Article  Google Scholar 

    274.
    Hummel, J. et al. Fluid and particle retention in the digestive tract of the addax antelope (Addax nasomaculatus)—Adaptations of a grazing desert ruminant. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 149, 142–149 (2008).
    Article  CAS  Google Scholar 

    275.
    Iribarren, C. & Kotler, B. P. Foraging patterns of habitat use reveal landscape of fear of Nubian ibex Capra nubiana. Wildlife Biology 18, 194–201 (2012).
    Article  Google Scholar 

    276.
    Ismail, K., Kamal, K., Plath, M. & Wronski, T. Effects of an exceptional drought on daily activity patterns, reproductive behaviour, and reproductive success of reintroduced Arabian oryx (Oryx leucoryx). J. Arid Environ. 75, 125–131 (2011).
    ADS  Article  Google Scholar 

    277.
    IUCN Redlist. The International Union for the Conservation of Nature 2018.

    278.
    Iwaniuk, A. N., Pellis, S. M. & Whishaw, I. Q. The relative importance of body size, phylogeny, locomotion, and diet in the evolution of forelimb dexterity in fissiped carnivores (Carnivora). Can. J. Zool. 78, 1110–1125 (2000).
    Article  Google Scholar 

    279.
    Iwase, A., Hashizume, J., Izuho, M., Takahashi, K. & Sato, H. Timing of megafaunal extinction in the late Late Pleistocene on the Japanese Archipelago. Quaternary International 255, 114–124, https://doi.org/10.1016/j.quaint.2011.03.029 (2012).
    ADS  Article  Google Scholar 

    280.
    Jackson, J. The annual diet of the fallow deer (Dama dama) in the New Forest, Hampshire, as determined by rumen content analysis. J. Zool. 181, 465–473 (1977).
    Article  Google Scholar 

    281.
    Janis, C. M., Napoli, J. G., Billingham, C. & Martín-Serra, A. Proximal humerus morphology indicates divergent patterns of locomotion in extinct giant kangaroos. J. Mamm. Evol., 1–21 (2020).

    282.
    Jankowski, N. R., Gully, G. A., Jacobs, Z., Roberts, R. G. & Prideaux, G. J. A late Quaternary vertebrate deposit in Kudjal Yolgah Cave, south‐western Australia: refining regional late Pleistocene extinctions. Journal of Quaternary Science 31, 538–550 (2016).
    ADS  Article  Google Scholar 

    283.
    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quaternary Science Reviews 144, 145–154 (2016).
    ADS  Article  Google Scholar 

    284.
    Al-Jassim, R. & Hogan, J. in Proc. 3rd ISOCARD Conference. Keynote presentations. 29th January–1st February. 75–86.

    285.
    Jhala, Y. V. & Isvaran, K. in The Ecology of Large Herbivores in South and Southeast Asia 151–176 (Springer, 2016).

    286.
    Jiménez-Hidalgo, E. et al. Species diversity and paleoecology of Late Pleistocene horses from southern Mexico. Frontiers in Ecology and Evolution 7, 394 (2019).
    Article  Google Scholar 

    287.
    Johnson, C. Australia’s mammal extinctions: a 50,000-year history. (Cambridge University Press, 2006).

    288.
    Johnson, C. N. & Prideaux, G. J. Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environmental change as cause of extinction. Austral Ecol. 29, 553–557 (2004).
    Article  Google Scholar 

    289.
    Jones, T. et al. The Highland Mangabey Lophocebus kipunji: A New Species of African Monkey. Science 308, 1161–1164, https://doi.org/10.1126/science.1109191 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    290.
    Jones, K. E. et al. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090‐184. Ecology 90, 2648–2648 (2009).
    Article  Google Scholar 

    291.
    Jones, D. B. & DeSantis, L. R. Dietary ecology of the extinct cave bear: evidence of omnivory as inferred from dental microwear textures. Acta Palaeontologica Polonica 61, 735–742 (2016).
    Article  Google Scholar 

    292.
    Jungers, W. L., Godfrey, L. R., Simons, E. L. & Chatrath, P. S. Phalangeal curvature and positional behavior in extinct sloth lemurs (Primates, Palaeopropithecidae). Proc. Natl. Acad. Sci. USA 94, 11998–12001 (1997).
    ADS  CAS  PubMed  Article  Google Scholar 

    293.
    Jungers, W. L. et al. The hands and feet of Archaeolemur: metrical affinities and their functional significance. J. Hum. Evol. 49, 36–55, https://doi.org/10.1016/j.jhevol.2005.03.001 (2005).
    CAS  Article  PubMed  Google Scholar 

    294.
    Kaczensky, P. et al. Stable isotopes reveal diet shift from pre-extinction to reintroduced Przewalski’s horses. Sci. Rep. 7, 5950, https://doi.org/10.1038/s41598-017-05329-6 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    295.
    Kartzinel, T. R. et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Natl. Acad. Sci. U. S. A. 112, 8019–8024, https://doi.org/10.1073/pnas.1503283112 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    296.
    Kelly, E. M. & Sears, K. E. Limb specialization in living marsupial and eutherian mammals: constraints on mammalian limb evolution. J. Mammal. 92, 1038–1049 (2011).
    Article  Google Scholar 

    297.
    Kelt, D. A. & Meyer, M. D. Body size frequency distributions in African mammals are bimodal at all spatial scales. Glob. Ecol. Biogeogr. 18, 19–29, https://doi.org/10.1111/j.1466-8238.2008.00422.x (2008).
    Article  Google Scholar 

    298.
    Khadka, K. K., Singh, N., Magar, K. T. & James, D. A. Dietary composition, breadth, and overlap between seasonally sympatric Himalayan musk deer and livestock: Conservation implications. Journal for Nature Conservation 38, 30–36 (2017).
    ADS  Article  Google Scholar 

    299.
    Kim, B. J., Lee, N. S. & Lee, S. D. Feeding diets of the Korean water deer (Hydropotes inermis argyropus) based on a 202 bp rbcL sequence analysis. Conservation Genetics 12, 851–856 (2011).
    Article  Google Scholar 

    300.
    Kim, D. B., Koo, K. A., Kim, H. H., Hwang, G. Y. & Kong, W. S. Reconstruction of the habitat range suitable for long-tailed goral (Naemorhedus caudatus) using fossils from the Paleolithic sites. Quaternary International 519, 101–112 (2019).
    ADS  Article  Google Scholar 

    301.
    Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37 (2006).

    302.
    Köhler, M. & Moyà-Solà, S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain. Behav. Evol. 63, 125–140 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    303.
    Kohn, M. J. & McKay, M. P. Paleoecology of late Pleistocene–Holocene faunas of eastern and central Wyoming, USA, with implications for LGM climate models. Palaeogeography, Palaeoclimatology, Palaeoecology 326–328, 42–53 (2012).
    ADS  Article  Google Scholar 

    304.
    Kohn, M. J., McKay, M. P. & Knight, J. L. Dining in the Pleistocene—who’s on the menu? Geology 33, 649–652 (2005).
    ADS  Article  Google Scholar 

    305.
    Koike, S., Nakashita, R., Naganawa, K., Koyama, M. & Tamura, A. Changes in diet of a small, isolated bear population over time. J. Mammal. 94, 361–368, https://doi.org/10.1644/11-mamm-a-403.1 (2013).
    Article  Google Scholar 

    306.
    Kosintsev, P. et al. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nature Ecology & Evolution 3, 31–38 (2019).
    Article  Google Scholar 

    307.
    Kowalczyk, R. et al. Influence of management practices on large herbivore diet—Case of European bison in Białowieża Primeval Forest (Poland). For. Ecol. Manage. 261, 821–828 (2011).
    Article  Google Scholar 

    308.
    Kram, R. & Dawson, T. J. Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 120, 41–49 (1998).
    CAS  Article  Google Scholar 

    309.
    Krishna, Y. C., Clyne, P. J., Krishnaswamy, J. & Kumar, N. S. Distributional and ecological review of the four horned antelope, Tetracerus quadricornis. Mammalia 73, 1–6 (2009).
    Article  Google Scholar 

    310.
    Kropf, M., Mead, J. I. & Scott Anderson, R. Dung, diet, and the paleoenvironment of the extinct shrub-ox (Euceratherium Collinum) on the Colorado Plateau, USA. Quaternary Research 67, 143–151, https://doi.org/10.1016/j.yqres.2006.10.002 (2007).
    ADS  Article  Google Scholar 

    311.
    Kubo, M. O., Yamada, E., Fujita, M. & Oshiro, I. Paleoecological reconstruction of Late Pleistocene deer from the Ryukyu Islands, Japan: Combined evidence of mesowear and stable isotope analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 435, 159–166 (2015).
    ADS  Article  Google Scholar 

    312.
    Kumar, R. S., Mishra, C. & Sinha, A. Foraging ecology and time-activity budget of the Arunachal macaque Macaca munzala – A preliminary study. Curr. Sci. 93, 532–539 (2007).
    Google Scholar 

    313.
    Kuzmin, Y. V. Extinction of the woolly mammoth (Mammuthus primigenius) and woolly rhinoceros (Coelodonta antiquitatis) in Eurasia: review of chronological and environmental issues. Boreas 39, 247–261 (2010).
    Article  Google Scholar 

    314.
    Lambert, J. E. Primate digestion: interactions among anatomy, physiology, and feeding ecology. Evolutionary Anthropology 7, 8–20 (1998).
    Article  Google Scholar 

    315.
    Lamoot, I., Callebaut, J., Demeulenaere, E., Vandenberghe, C. & Hoffmann, M. Foraging behaviour of donkeys grazing in a coastal dune area in temperate climate conditions. Appl. Anim. Behav. Sci. 92, 93–112 (2005).
    Article  Google Scholar 

    316.
    Loponte, D. M. & Corriale, M. J. Isotopic values of diet of Blastocerus dichotomus (marsh deer) in Paraná Basin, South America. Journal of Archaeological Science 40, 1382–1388 (2013).
    Article  Google Scholar 

    317.
    Larramendi, A. Shoulder height, body mass, and shape of proboscideans. Acta Palaeontologica Polonica 61, 537–574 (2015).
    Google Scholar 

    318.
    Latham, A. D. M. et al. A refined model of body mass and population density in flightless birds reconciles extreme bimodal population estimates for extinct moa. Ecography 43, 353–364 (2020).
    Article  Google Scholar 

    319.
    Latrubesse, E. M. et al. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Science Reviews 99, 99–124, https://doi.org/10.1016/j.earscirev.2010.02.005 (2010).
    ADS  CAS  Article  Google Scholar 

    320.
    Law, A., Jones, K. C. & Willby, N. J. Medium vs. short-term effects of herbivory by Eurasian beaver on aquatic vegetation. Aquat. Bot. 116, 27–34 (2014).
    Article  Google Scholar 

    321.
    Lazagabaster, I. A., Rowan, J., Kamilar, J. M. & Reed, K. E. Evolution of craniodental correlates of diet in African Bovidae. J. Mamm. Evol. 23, 385–396 (2016).
    Article  Google Scholar 

    322.
    Lazagabaster, I. A. et al. Fossil Suidae (Mammalia, Artiodactyla) from Lee Adoyta, Ledi-Geraru, lower Awash Valley, Ethiopia: Implications for late Pliocene turnover and paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 504, 186–200 (2018).
    ADS  Article  Google Scholar 

    323.
    Lehmann, D. Dietary and spatial strategies of gemsbok (Oryx g. gazella) and springbok (Antidorcas marsupialis) in response to drought in the desert environment of the Kunene region, Namibia PhD thesis, Freie Universität Berlin (2015).

    324.
    Leslie, D. M. Boselaphus tragocamelus (Artiodactyla: Bovidae). Mammalian Species, 1–16 (2008).

    325.
    Leslie, D. M. Jr Procapra picticaudata (Artiodactyla: Bovidae). Mammalian Species 42, 138–148 (2010).
    Article  Google Scholar 

    326.
    Leslie, D. M. & Schaller, G. B. Pantholops hodgsonii (Artiodactyla: Bovidae). Mammalian Species, 1–13 (2008).

    327.
    Leslie, D. M. & Schaller, G. B. Bos grunniens and Bos mutus (Artiodactyla: Bovidae). Mammalian species, 1–17 (2009).

    328.
    Leslie, D. M. Jr, Groves, C. P. & Abramov, A. V. Procapra przewalskii (Artiodactyla: Bovidae). Mammalian Species 42, 124–137 (2010).
    Article  Google Scholar 

    329.
    Leslie, D. M. Jr, Lee, D. N. & Dolman, R. W. Elaphodus cephalophus (Artiodactyla: Cervidae). Mammalian Species 45, 80–91 (2013).
    Article  Google Scholar 

    330.
    Leus, K., Goodall, G. P. & Macdonald, A. A. Anatomy and histology of the babirusa (Babyrousa babyrussa) stomach. Comptes Rendus de l’Académie des Sciences – Series III – Sciences de la Vie 322, 1081–1092, https://doi.org/10.1016/S0764-4469(99)00107-9 (1999).
    CAS  Article  Google Scholar 

    331.
    Li, Y., Yu, Y.-Q. & Shi, L. Foraging and bedding site selection by Asiatic ibex (Capra sibirica) during summer in Central Tianshan Mountains. Pakistan Journal of Zoology 47, 1–6 (2015).
    ADS  CAS  Google Scholar 

    332.
    Li, B., Xu, W., Blank, D. A., Wang, M. & Yang, W. Diet characteristics of wild sheep (Ovis ammon darwini) in the Mengluoke Mountains, Xinjiang. China Journal of Arid Land (2018).

    333.
    Liang, X., Kang, A. & Pettorelli, N. Understanding habitat selection of the Vulnerable wild yak Bos mutus on the Tibetan Plateau. Oryx 51, 361–369 (2017).
    Article  Google Scholar 

    334.
    Lister, A. M. & Stuart, A. J. The extinction of the giant deer Megaloceros giganteus (Blumenbach): New radiocarbon evidence. Quaternary International 500, 185–203 (2019).
    ADS  Article  Google Scholar 

    335.
    Liu, X., Stanford, C. B., Yang, J., Yao, H. & Li, Y. Foods Eaten by the Sichuan snub‐nosed monkey (Rhinopithecus roxellana) in Shennongjia National Nature Reserve, China, in relation to nutritional chemistry. Am. J. Primatol. 75, 860–871 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    336.
    Livezey, B. C. An ecomorphological review of the dodo (Raphus cucullatus) and solitaire (Pezophaps solitaria), flightless Columbiformes of the Mascarene Islands. J. Zool. 230, 247–292 (1993).
    Article  Google Scholar 

    337.
    Livezey, B. C. & Zusi, R. L. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological journal of the Linnean Society 149, 1–95 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    338.
    Lobo, L. S. Estudo da morfologia dentária de Xenorhinotherium bahiense Cartelle & Lessa, 1988 (Litopterna, Macraucheniidae) Universidade Federal De Viçosa, (2015).

    339.
    Long, J. A., Archer, M., Flannery, T. & Hand, S. Prehistoric mammals of Australia and New Guinea: one hundred million years of evolution. (Johns Hopkins University Press, 2002).

    340.
    Louys, J., Meloro, C., Elton, S., Ditchfield, P. & Bishop, L. C. Mesowear as a means of determining diets in African antelopes. Journal of Archaeological Science 38, 1485–1495, https://doi.org/10.1016/j.jas.2011.02.011 (2011).
    Article  Google Scholar 

    341.
    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quaternary Science Reviews 212, 33–44 (2019).
    ADS  Article  Google Scholar 

    342.
    MacFadden, B. J. Fossil horses from “Eohippus”(Hyracotherium) to Equus: scaling, Cope’s Law, and the evolution of body size. Paleobiology 12, 355–369 (1986).
    Article  Google Scholar 

    343.
    MacFadden, B. J. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quaternary Research 64, 113–124 (2005).
    ADS  Article  Google Scholar 

    344.
    MacFadden, B. J. & Shockey, B. J. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23, 77–100 (1997).
    Article  Google Scholar 

    345.
    MacPhee, R. D. E. & Sues, H.-D. Extinctions in Near Time: Causes, Contexts, and Consequences. (Springer, 1999).

    346.
    Madden, R. H. Hypsodonty in Mammals: Evolution, Geomorphology, and the Role of Earth System Processes. (Cambridge University Press, 2014).

    347.
    Al Majaini, H. Nutritional ecology of the Arabian tahr Hemitragus jayakari Thomas 1984 in Wadi Sareen Reserve area, M. Sc. thesis, Sultan Qaboos University, Oman. 97pages, (1999).

    348.
    Marcolino, C. P., dos Santos Isaias, R. M., Cozzuol, M. A., Cartelle, C. & Dantas, M. A. T. Diet of Palaeolama major (Camelidae) of Bahia, Brazil, inferred from coprolites. Quaternary international 278, 81–86 (2012).
    ADS  Article  Google Scholar 

    349.
    Marin, V. C. et al. Diet of the marsh deer in the Paraná River Delta, Argentina—a vulnerable species in an intensive forestry landscape. European Journal of Wildlife Research 66, 16 (2020).
    Article  Google Scholar 

    350.
    Marinero, N. V., Navarro, J. L. & Martella, M. B. Does food abundance determine the diet of the Puna Rhea (Rhea tarapacensis) in the Austral Puna desert in Argentina? Emu-Austral Ornithology 117, 199–206 (2017).
    Article  Google Scholar 

    351.
    Mayte, G.-B. et al. Diet and habitat of Mammuthus columbi (Falconer, 1857) from two Late Pleistocene localities in central western Mexico. Quaternary International 406, 137–146 (2016).
    ADS  Article  Google Scholar 

    352.
    McAfee, R. K. Feeding mechanics and dietary implications in the fossil sloth Neocnus (Mammalia: Xenarthra: Megalonychidae) from Haiti. J. Morphol. 272, 1204–1216 (2011).
    PubMed  Article  Google Scholar 

    353.
    McDonald, H. G. Palecology of extinct Xenarthrans and the Great American Biotic Interchange. Bulletin of the Florida Museum of Natural History 45, 319–340 (2005).
    Google Scholar 

    354.
    McDonald, H. G. & Pelikan, S. Mammoths and mylodonts: Exotic species from two different continents in North American Pleistocene faunas. Quaternary International 142–143, 229–241, https://doi.org/10.1016/j.quaint.2005.03.020 (2006).
    ADS  Article  Google Scholar 

    355.
    McDonald, H. G., Feranec, R. S. & Miller, N. First record of the extinct ground sloth, Megalonyx jeffersonii,(Xenarthra, Megalonychidae) from New York and contributions to its paleoecology. Quaternary International 530, 42–46 (2019).
    ADS  Article  Google Scholar 

    356.
    McFarlane, D. A., MacPhee, R. D. E. & Ford, D. C. Body Size Variability and a Sangamonian Extinction Model forAmblyrhiza, a West Indian Megafaunal Rodent. Quaternary Research 50, 80–89 (1998).
    ADS  Article  Google Scholar 

    357.
    McNamara, K. & Murray, P. Prehistoric Mammals of Western Australia. (Western Australian Museum, 2010).

    358.
    Mead, J. I., O’Rourke, M. K. & Foppe, T. M. Dung and diet of the extinct Harrington’s mountain goat (Oreamnos harringtoni). J. Mammal. 67, 284–293 (1986).
    Article  Google Scholar 

    359.
    Mead, J. I., Agenbroad, L. D., Phillips, A. M. III & Middleton, L. T. Extinct mountain goat (Oreamnos harringtoni) in southeastern Utah. Quaternary Research 27, 323–331 (1987).
    ADS  Article  Google Scholar 

    360.
    Meijaard, E. & Groves, C. Upgrading three subspecies of babirusa (Babyrousa sp.) to full species level. Asian Wild Pig News 2, 33–39 (2002).
    Google Scholar 

    361.
    Meijaard, E. & Groves, C. P. Morphometrical relationships between South‐east Asian deer (Cervidae, tribe Cervini): Evolutionary and biogeographic implications. J. Zool. 263, 179–196 (2004).
    Article  Google Scholar 

    362.
    Meloro, C. & de Oliveira, A. M. Elbow joint geometry in bears (Ursidae, Carnivora): a tool to infer paleobiology and functional adaptations of Quaternary fossils. J. Mamm. Evol. 26, 133–146 (2019).
    Article  Google Scholar 

    363.
    Mengli, Z., Willms, W. D., Guodong, H. & Ye, J. Bactrian camel foraging behaviour in a Haloxylon ammodendron (C.A. Mey) desert of Inner Mongolia. Appl. Anim. Behav. Sci. 99, 330–343, https://doi.org/10.1016/j.applanim.2005.11.001 (2006).
    Article  Google Scholar 

    364.
    Miller, G. H. et al. Pleistocene extinction of Genyornis newtoni: human impact on Australian megafauna. Science 283, 205–208 (1999).
    CAS  PubMed  Article  Google Scholar 

    365.
    Miller, G. H. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290, https://doi.org/10.1029/2004gl021592 (2005).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    366.
    Milligan, H. E. & Humphries, M. M. The importance of aquatic vegetation in beaver diets and the seasonal and habitat specificity of aquatic-terrestrial ecosystem linkages in a subarctic environment. Oikos 119, 1877–1886, https://doi.org/10.1111/j.1600-0706.2010.18160.x (2010).
    Article  Google Scholar 

    367.
    Milton, S. J., Dean, W. R. J. & Siegfried, W. R. Food selection by ostrich in southern Africa. The Journal of wildlife management, 234–248 (1994).

    368.
    Mimoun, J. B. & Nouira, S. Food habits of the aoudad Ammotragus lervia in the Bou Hedma mountains, Tunisia. South African Journal of Science 111, 1–5 (2015).
    Google Scholar 

    369.
    Mingxing, D., Yanhong, Z. & Jianguo, Z. Cold and/or wet Early Holocene in Shijiazhuang district: Evidences from tooth microwear and stable isotopes analyses. Quaternary Sciences 34, 8–15 (2014).
    Google Scholar 

    370.
    Miranda, M. et al. Contrasting feeding patterns of native red deer and two exotic ungulates in a Mediterranean ecosystem. Wildlife Research 39, 171–182 (2012).
    ADS  Article  Google Scholar 

    371.
    Missagia, R. V., Parisi-Dutra, R. & Cozzuol, M. A. Morphometry of Catagonus stenocephalus (Lund in Reinhardt 1880)(Artiodactyla: Tayassuidae) and taxonomical considerations about Catagonus Ameghino 1904. Lundiana International Journal of Biodiversity 12, 39–44 (2016).
    Google Scholar 

    372.
    Mitchell, D. R. & Wroe, S. Biting mechanics determines craniofacial morphology among extant diprotodont herbivores: dietary predictions for the giant extinct short-faced kangaroo, Simosthenurus occidentalis. Paleobiology 45, 167–181 (2019).
    Article  Google Scholar 

    373.
    Mitchell, K. J. et al. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science 344, 898–900 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    374.
    Moczygemba, J. D. Movements of nilgai antelope (Boselaphus tragocamelus) in southern Texas. (Texas A&M University-Kingsville, 2010).

    375.
    Moore, D. M. Post-glacial vegetation in the South Patagonian territory of the giant ground sloth, Mylodon. Botanical Journal of the Linnean Society 77, 177–202 (1978).
    Article  Google Scholar 

    376.
    Mori, E., Bozzi, R. & Laurenzi, A. Feeding habits of the crested porcupine Hystrix cristata L. 1758 (Mammalia, Rodentia) in a Mediterranean area of Central Italy. The European Zoological Journal 84, 261–265 (2017).
    Article  Google Scholar 

    377.
    Morosi, E. & Ubilla, M. Dietary and palaeoenvironmental inferences in Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay). Hist. Biol. 1–7, https://doi.org/10.1080/08912963.2017.1355914 (2017).

    378.
    Murray, P. F. & Vickers-Rich, P. Magnificent mihirungs: the colossal flightless birds of the Australian dreamtime. (Indiana University Press, 2004).

    379.
    Naish, D. The anatomy of sloths, https://blogs.scientificamerican.com/tetrapod-zoology/the-anatomy-of-sloths/ (2012).

    380.
    Nedin, C. The dietary niche of the extinct Australian marsupial lion: Thylacoleo carnifex Owen. Lethaia 24, 115–118, https://doi.org/10.1111/j.1502-3931.1991.tb01184.x (1991).
    Article  Google Scholar 

    381.
    New Zealand Organisms Register. (New Zealand, 2020).

    382.
    Nijboer, J. & Clauss, M. Fibre intake and feces quality in leaf-eating primates PhD thesis, Utrecht University, (2006).

    383.
    Noe-Nygaard, N., Price, T. D. & Hede, S. U. Diet of aurochs and early cattle in southern Scandinavia: evidence from 15N and 13C stable isotopes. Journal of Archaeological Science 32, 855–871 (2005).
    Article  Google Scholar 

    384.
    Northcote, E. M. Size, form and habit of the extinct Maltese swan Cygnus falconeri. Ibis 124, 148–158 (1982).
    Article  Google Scholar 

    385.
    Nowak, R. M. Walker’s Mammals of the World. (Johns Hopkins University Press, 1999).

    386.
    Nugraha, R. & Mustari, A. H. Habitat Characteristics and Diet of Bear Cuscus (Ailurops ursinus) in Tanjung Peropa Wildlife Reserve, Southeast Sulawesi. Jurnal Wasian 4, 55–68 (2017).
    Article  Google Scholar 

    387.
    Oli, C. B. et al. Dry season diet composition of four-horned antelope Tetracerus quadricornis in tropical dry deciduous forests, Nepal. PeerJ 6, e5102 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    388.
    de Oliveira, J. F., Asevedo, L., Cherkinsky, A. & Dantas, M. A. T. Radiocarbon dating and integrative paleoecology (δ13C, stereomicrowear) of Eremotherium laurillardi (LUND, 1842) from midwest region of the Brazilian intertropical region. Journal of South American Earth Sciences, 102653 (2020).

    389.
    Olson, V. A. & Turvey, S. T. The evolution of sexual dimorphism in New Zealand giant moa (Dinornis) and other ratites. Proc. R. Soc. B. 280, 20130401 (2013).
    PubMed  Article  Google Scholar 

    390.
    Omena, É. C., Silva, J. L. L. d., Sial, A. N., Cherkinsky, A. & Dantas, M. A. T. Late Pleistocene meso-megaherbivores from Brazilian Intertropical Region: isotopic diet (δ 13C), niche differentiation, guilds and paleoenvironmental reconstruction (δ 13C, δ 18O). Hist. Biol., 1–6 (2020).

    391.
    Osawa, R. Feeding strategies of the swamp wallaby, Wallabia bicolor, on North Stradbroke Island, Queensland. I: Composition of diets. Wildlife Research 17, 615–621 (1990).
    Article  Google Scholar 

    392.
    Pacini, N. & Harper, D. M. in Tropical stream ecology 147–197 (Elsevier, 2008).

    393.
    The Paleobiology Database. (University of Wisconsin-Madison, Department of Geosciences 2020).

    394.
    Palmqvist, P., Martínez-Navarro, B. & Arribas, A. Prey selection by terrestrial carnivores in a lower Pleistocene paleocommunity. Paleobiology 22, 514–534 (1996).
    Article  Google Scholar 

    395.
    Palmqvist, P., Gröcke, D. R., Arribas, A. & Fariña, R. A. Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr: Zn) and ecomorphological approaches. Paleobiology 29, 205–229 (2003).
    Article  Google Scholar 

    396.
    Palmqvist, P., Pérez-Claros, J. A., Janis, C. M. & Gröcke, D. R. Tracing the ecophysiology of ungulates and predator–prey relationships in an early Pleistocene large mammal community. Palaeogeography, Palaeoclimatology, Palaeoecology 266, 95–111 (2008).
    ADS  Article  Google Scholar 

    397.
    Palombo, M. R. in Insular Vertebrate Evolution: the Palaeontological Approach Vol. 12 (eds Josep Antoni Alcover & P. Bover) 233–244 (Monografies de la Societat d’História Natural de les Balears, 2005).

    398.
    Palombo, M. R. et al. Coupling tooth microwear and stable isotope analyses for palaeodiet reconstruction: the case study of Late Middle Pleistocene Elephas (Palaeoloxodon) antiquus teeth from Central Italy (Rome area). Quaternary International 126–128, 153–170, https://doi.org/10.1016/j.quaint.2004.04.020 (2005).
    ADS  Article  Google Scholar 

    399.
    Pangau-Adam, M. & Muehlenberg, M. Palm species in the diet of the northern cassowary (Casuarius unappendiculatus) in Jayapura region, Papua, Indonesia. Palms 58, 19–26 (2014).
    Google Scholar 

    400.
    Pansani, T. R., Muniz, F. P., Cherkinsky, A., Pacheco, M. L. A. F. & Dantas, M. A. T. Isotopic paleoecology (δ13C, δ18O) of Late Quaternary megafauna from Mato Grosso do Sul and Bahia States, Brazil. Quaternary Science Reviews 221, 105864 (2019).
    Article  Google Scholar 

    401.
    Pansu, J. et al. Trophic ecology of large herbivores in a reassembling African ecosystem. J. Ecol. 107, 1355–1376 (2019).
    Article  Google Scholar 

    402.
    Paoletti, G. & Puig, S. Diet of the Lesser Rhea (Pterocnemia pennata) and availability of food in the Andean Precordillera (Mendoza, Argentina). Emu-Austral Ornithology 107, 52–58 (2007).
    Article  Google Scholar 

    403.
    Pappa, S., Schreve, D. C. & Rivals, F. The bear necessities: A new dental microwear database for the interpretation of palaeodiet in fossil Ursidae. Palaeogeography, Palaeoclimatology, Palaeoecology 514, 168–188 (2019).
    ADS  Article  Google Scholar 

    404.
    Park, J.-E., Kim, B.-J., Oh, D.-H., Lee, H. & Lee, S.-D. Feeding habit analysis of the Korean water deer. Korean Journal of Environment and Ecology 25, 836–845 (2011).
    Google Scholar 

    405.
    Patnaik, R. Diet and habitat changes among Siwalik herbivorous mammals in response to Neogene and Quaternary climate changes: An appraisal in the light of new data. Quaternary International 371, 232–243 (2015).
    ADS  Article  Google Scholar 

    406.
    Patnaik, R., Singh, N. P., Paul, D. & Sukumar, R. Dietary and habitat shifts in relation to climate of Neogene-Quaternary proboscideans and associated mammals of the Indian subcontinent. Quaternary Science Reviews 224, 105968 (2019).
    Article  Google Scholar 

    407.
    Peigné, S. et al. Predormancy omnivory in European cave bears evidenced by a dental microwear analysis of Ursus spelaeus from Goyet, Belgium. Proc. Natl. Acad. Sci. USA 106, 15390–15393 (2009).
    ADS  PubMed  Article  Google Scholar 

    408.
    Pereira, J. A., Quintana, R. D. & Monge, S. Diets of plains vizcacha, greater rhea and cattle in Argentina. Rangeland Ecology & Management/Journal of Range Management Archives 56, 13–20 (2003).
    Google Scholar 

    409.
    Pereira, I. Cd. S., Dantas, M. A. T. & Ferreira, R. L. Record of the giant sloth Valgipes bucklandi (Lund, 1839) (Tardigrada, Scelidotheriinae) in Rio Grande do Norte state, Brazil, with notes on taphonomy and paleoecology. Journal of South American Earth Sciences 43, 42–45, https://doi.org/10.1016/j.jsames.2012.11.004 (2013).
    ADS  CAS  Article  Google Scholar 

    410.
    Pérez-Crespo, V. A. et al. Geographic variation of diet and habitat of the Mexican populations of Columbian Mammoth (Mammuthus columbi). Quaternary International 276, 8–16 (2012).
    ADS  Article  Google Scholar 

    411.
    Pérez, M. E., Vallejo-Pareja, M. C., Carrillo, J. D. & Jaramillo, C. A new Pliocene capybara (Rodentia, Caviidae) from Northern South America (Guajira, Colombia), and its implications for the great American biotic interchange. J. Mamm. Evol. 24, 111–125 (2017).
    Article  Google Scholar 

    412.
    Pérez-Crespo, V. A., Arroyo-Cabrales, J., Alva-Valdivia, L. M., Morales-Puente, P. & Cienfuegos-Alvarado, E. Diet and habitat definitions for Mexican glyptodonts from Cedral (San Luis Potosí, México) based on stable isotope analysis. Geol. Mag. 149, 153–157, https://doi.org/10.1017/s0016756811000951 (2011).
    ADS  Article  Google Scholar 

    413.
    Pérez-Crespo, V. A. et al. Isotopic paleoecology of a toxodont Mixotoxodon larensis from Michoacan, Mexico. The Southwestern Naturalist 64, 63–66 (2020). 64.
    Article  Google Scholar 

    414.
    Phillips, M. J., Gibb, G. C., Crimp, E. A. & Penny, D. Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst. Biol. 59, 90–107 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    415.
    Pinto-Llona, A. C. Macrowear and occlusal microwear on teeth of cave bears Ursus spelaeus and brown bears Ursus arctos: Inferences concerning diet. Palaeogeography, Palaeoclimatology, Palaeoecology 370, 41–50 (2013).
    ADS  Article  Google Scholar 

    416.
    Plint, T., Longstaffe, F. J. & Zazula, G. Giant beaver palaeoecology inferred from stable isotopes. Sci. Rep. 9, 7179, https://doi.org/10.1038/s41598-019-43710-9 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    417.
    Poinar, H. N. et al. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281, 402–406 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    418.
    Pokharel, K. P., Yohannes, E., Salvarina, I. & Storch, I. Isotopic evidence for dietary niche overlap between barking deer and four-horned antelope in Nepal. Journal of Biological Research-Thessaloniki 22, 6, https://doi.org/10.1186/s40709-015-0029-0 (2015).
    Article  Google Scholar 

    419.
    Pokhrel, K., Poudel, P., Neupane, B. & Paudel, R. Comparative study in habitat suitability analysis of wild water buffalo (Bubalus arnee) in two flood plains of Chitwan National Park (CNP). Nepal. International Journal of Research Studies in Zoology 5, 1–10 (2019).
    Google Scholar 

    420.
    Poole, K. G. & Heard, D. C. Seasonal habitat use and movements of mountain goats, Oreamnos americanus, in east-central British Columbia. The Canadian Field-Naturalist 117, 565–576 (2003).
    Article  Google Scholar 

    421.
    Presslee, S. et al. Palaeoproteomics resolves sloth relationships. Nature Ecology & Evolution 3, 1121–1130, https://doi.org/10.1038/s41559-019-0909-z (2019).
    Article  Google Scholar 

    422.
    Prevosti, F. J. & Martin, F. M. Paleoecology of the mammalian predator guild of Southern Patagonia during the latest Pleistocene: ecomorphology, stable isotopes, and taphonomy. Quaternary International 305, 74–84 (2013).
    ADS  Article  Google Scholar 

    423.
    Prevosti, F. J. & Vizcaíno, S. F. Paleoecology of the large carnivore guild from the late Pleistocene of Argentina. Acta Palaeontologica Polonica 51 (2006).

    424.
    Price, G. J. et al. Seasonal migration of marsupial megafauna in Pleistocene Sahul (Australia-New Guinea). Proc. Biol. Sci. 284, https://doi.org/10.1098/rspb.2017.0785 (2017).

    425.
    Prideaux, G. J. Borungaboodie hatcheri gen. et sp. nov., a very large bettong (Marsupialia: Macropodoidea) from the Pleistocene of southwestern Australia. Records of the Western Australian Museum 57, 317–329 (1999).
    Google Scholar 

    426.
    Prideaux, G. J. et al. An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia. Nature 445, 422–425 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    427.
    Prideaux, G. J. et al. Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo. Proc. Natl. Acad. Sci. USA 106, 11646–11650, https://doi.org/10.1073/pnas.0900956106 (2009).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    428.
    Prideaux, G. J. et al. Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia. Proc. Natl. Acad. Sci. USA 107, 22157–22162 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    429.
    Prothero, D. R. Giants of the Lost World: Dinosaurs and Other Extinct Monsters of South America. (Smithsonian Institution, 2016).

    430.
    Pujaningsih, R. et al. Diet composition of Anoa (Buballus sp.) studied using direct observation and dung analysis method in their habitat. Journal of the Indonesian Tropical Animal Agriculture 34, 223–228 (2009).
    Article  Google Scholar 

    431.
    Pujos, F., Argot, C., De Iuliis, G. & Werdelin, L. A peculiar climbing Megalonychidae from the Pleistocene of Peru and its implication for sloth history. Zoological Journal of the Linnean Society 149, 179–235, https://doi.org/10.1111/j.1096-3642.2007.00240.x (2007).
    Article  Google Scholar 

    432.
    Pujos, F., Gaudin, T. J., De Iuliis, G. & Cartelle, C. Recent Advances on Variability, Morpho-Functional Adaptations, Dental Terminology, and Evolution of Sloths. J. Mamm. Evol. 19, 159–169 (2012).
    Article  Google Scholar 

    433.
    Pushkina, D., Bocherens, H. & Ziegler, R. Unexpected palaeoecological features of the Middle and Late Pleistocene large herbivores in southwestern Germany revealed by stable isotopic abundances in tooth enamel. Quaternary International 339–340, 164–178, https://doi.org/10.1016/j.quaint.2013.12.033 (2014).
    ADS  Article  Google Scholar 

    434.
    Puspaningrum, M. R. et al. in VIth International Conference on Mammoths and their Relatives Vol. 102 (School of Geology, Aristotle University of Thessaloniki, Greece: Aristotle University of Thessaloniki, 2014).

    435.
    Puspaningrum, M. R., van den Bergh, G. D., Chivas, A. R., Setiabudi, E. & Kurniawan, I. Isotopic reconstruction of Proboscidean habitats and diets on Java since the Early Pleistocene: Implications for adaptation and extinction. Quaternary Science Reviews 228, 106007 (2020).
    Article  Google Scholar 

    436.
    Quin, B. Diet and habitat of emus Dromaius novaehollandiae in the Grampians Ranges, south-western Victoria. Emu 96, 114–122 (1996).
    Article  Google Scholar 

    437.
    Rahman, M. M. et al. Feeding ecology of Northern Plains Sacred langur Semnopithecus entellus (Dufresne) in Jessore, Bangladesh: dietary composition, seasonal and age-sex differences. Asian Primates J 5, 24–39 (2015).
    Google Scholar 

    438.
    Raia, P., Carotenuto, F. & Meiri, S. One size does not fit all: no evidence for an optimal body size on islands. Glob. Ecol. Biogeogr. 19, 475–484, https://doi.org/10.1111/j.1466-8238.2010.00531.x (2010).
    Article  Google Scholar 

    439.
    Rayé, G. et al. New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing: chamois diet in autumn as a case study. Ecol. Res. 26, 265–276 (2011).
    Article  Google Scholar 

    440.
    Rduch, V. Diet of the puku antelope (Kobus vardonii) and dietary overlap with selected other bovids in Kasanka National Park, Zambia. Mammal Research 61, 289–297 (2016).
    Article  Google Scholar 

    441.
    Reid, F. A. A Field Guide to the Mammals of Central America & Southeast Mexico. (Oxford University Press, 2009).

    442.
    Remington, T. E. Why do grouse have ceca? A test of the fiber digestion theory. J. Exp. Zool. 252, 87–94 (1989).
    Article  Google Scholar 

    443.
    Repi, T., Masyud, B., Mustari, A. H. & Prasetyo, L. B. Daily activity and diet of Talaud bear cuscus (Ailurops melanotis Thomas, 1898) on Salibabu Island, North Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity 20 (2019).

    444.
    Resar, N. A. Reconstructing the Paleodiet of Ground Sloths Using Microwear Analysis, Kent State University, (2012).

    445.
    Resar, N. A., Green, J. L. & McAfee, R. K. Reconstructing paleodiet in ground sloths (Mammalia, Xenarthra) using dental microwear analysis. Kirtlandia 58, 61–72 (2013).
    Google Scholar 

    446.
    Reus, M. L. et al. Trophic interactions between the native guanaco (Lama guanicoe) and the exotic donkey (Equus asinus) in the hyper-arid Monte desert (Ischigualasto Park, Argentina). Stud. Neotrop. Fauna Environ. 49, 159–168 (2014).
    Article  Google Scholar 

    447.
    Reynolds, P. S. How big is a giant? The importance of method in estimating body size of extinct mammals. J. Mammal. 83, 321–332 (2002).
    Article  Google Scholar 

    448.
    Richards, M. P. et al. Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Peştera cu Oase. Romania. Proc. Natl. Acad. Sci. USA 105, 600–604 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    449.
    Richards, H. L., Wells, R. T., Evans, A. R., Fitzgerald, E. M. G. & Adams, J. W. The extraordinary osteology and functional morphology of the limbs in Palorchestidae, a family of strange extinct marsupial giants. PLoS One 14, e0221824, https://doi.org/10.1371/journal.pone.0221824 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    450.
    Righini, N. & Amato, K. R. in Encyclopedia of Animal Cognition and Behavior 1–6 (Springer, Cham, 2018).

    451.
    Rijsdijk, K. F. et al. Mid-Holocene vertebrate bone Concentration-Lagerstätte on oceanic island Mauritius provides a window into the ecosystem of the dodo (Raphus cucullatus). Quaternary Science Reviews 28, 14–24 (2009).
    ADS  Article  Google Scholar 

    452.
    Rishworth, C., McIlroy, J. & Tanton, M. Diet of the common wombat, Vombatus ursinus, in plantations of Pinus radiata. Wildlife Research 22, 333–339 (1995).
    Article  Google Scholar 

    453.
    Rivals, F. Les petits bovidés (Caprini et Rupicaprini) pléistocènes dans le bassin méditerranéen et le Caucase. (Archaeopress, Oxford, England, 2004).

    454.
    Rivals, F. & Lister, A. M. Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain. Quaternary Science Reviews 146, 116–133 (2016).
    ADS  Article  Google Scholar 

    455.
    Rivals, F., Schulz, E. & Kaiser, T. M. Late and middle Pleistocene ungulates dietary diversity in Western Europe indicate variations of Neanderthal paleoenvironments through time and space. Quaternary Science Reviews 28, 3388–3400 (2009).
    ADS  Article  Google Scholar 

    456.
    Rivals, F., Semprebon, G. & Lister, A. An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quaternary International 255, 188–195, https://doi.org/10.1016/j.quaint.2011.05.036 (2012).
    ADS  Article  Google Scholar 

    457.
    Rivals, F., Rindel, D. & Belardi, J. B. Dietary ecology of extant guanaco (Lama guanicoe) from Southern Patagonia: seasonal leaf browsing and its archaeological implications. Journal of Archaeological Science 40, 2971–2980, https://doi.org/10.1016/j.jas.2013.03.005 (2013).
    Article  Google Scholar 

    458.
    Rivals, F., Takatsuki, S., Albert, R. M. & Macià, L. Bamboo feeding and tooth wear of three sika deer (Cervus nippon) populations from northern Japan. J. Mammal. 95, 1043–1053 (2014).
    Article  Google Scholar 

    459.
    Rivals, F., Sanz, M. & Daura, J. First reconstruction of the dietary traits of the Mediterranean deer (Haploidoceros mediterraneus) from the Cova del Rinoceront (NE Iberian Peninsula). Palaeogeography, Palaeoclimatology, Palaeoecology 449, 101–107 (2016).
    ADS  Article  Google Scholar 

    460.
    Rivals, F., Semprebon, G. M. & Lister, A. M. Feeding traits and dietary variation in Pleistocene proboscideans: A tooth microwear review. Quaternary Science Reviews 219, 145–153 (2019).
    ADS  Article  Google Scholar 

    461.
    Robinson, A. C. & Young, M. C. The Toolache wallaby (Macropus greyi waterhouse). (Department of Environment and Planning, South Australian National Parks and Wildlife Service, 1983).

    462.
    Robu, M. et al. Isotopic evidence for dietary flexibility among European Late Pleistocene cave bears (Ursus spelaeus). Can. J. Zool. 91, 227–234 (2013).
    CAS  Article  Google Scholar 

    463.
    Ross, S., Al Jahdhami, M. H. & Al Rawahi, H. Refining conservation strategies using distribution modelling: a case study of the Endangered Arabian tahr Arabitragus jayakari. Oryx 53, 532–541 (2019).
    Article  Google Scholar 

    464.
    Rotti, A., Mothé, D., dos Santos Avilla, L. & Semprebon, G. M. Diet reconstruction for an extinct deer (Cervidae: Cetartiodactyla) from the Quaternary of South America. Palaeogeography, Palaeoclimatology, Palaeoecology 497, 244–252, https://doi.org/10.1016/j.palaeo.2018.02.026 (2018).
    ADS  Article  Google Scholar 

    465.
    Rowan, J., Faith, J. T., Gebru, Y. & Fleagle, J. G. Taxonomy and paleoecology of fossil Bovidae (Mammalia, Artiodactyla) from the Kibish Formation, southern Ethiopia: Implications for dietary change, biogeography, and the structure of the living bovid faunas of East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 420, 210–222 (2015).
    ADS  Article  Google Scholar 

    466.
    Rowan, J., Martini, P., Likius, A., Merceron, G. & Boisserie, J.-R. New Pliocene remains of Camelus grattardi (Mammalia, Camelidae) from the Shungura Formation, Lower Omo Valley, Ethiopia, and the evolution of African camels. Hist. Biol. 31, 1123–1134, https://doi.org/10.1080/08912963.2017.1423485 (2019).
    Article  Google Scholar 

    467.
    Roy, D., Ashokkumar, M. & Desai, A. A. Foraging ecology of Nilgiri Langur (Trachypithecus johnii) in Parimbikulam Tiger Reserve, Kerala, India. Asian Journal of Conservation Biology 1, 92–102 (2012).
    Google Scholar 

    468.
    Rozzi, R. A new extinct dwarfed buffalo from Sulawesi and the evolution of the subgenus Anoa: An interdisciplinary perspective. Quaternary Science Reviews 157, 188–205, https://doi.org/10.1016/j.quascirev.2016.12.011 (2017).
    ADS  Article  Google Scholar 

    469.
    Ruez, D. R. Diet of Pleistocene Paramylodon harlani (Xenarthra: Mylodontidae): review of methods and preliminary use of carbon isotopes. Texas Journal of Science 57, 329–344 (2005).
    Google Scholar 

    470.
    Ruso, G. E. Beatragus hunteri (Artiodactyla: Bovidae). Mammalian Species 49, 119–127 (2017).
    Article  Google Scholar 

    471.
    Rybczynski, N. Castorid phylogenetics: implications for the evolution of swimming and tree-exploitation in beavers. J. Mamm. Evol. 14, 1–35, https://doi.org/10.1007/s10914-006-9017-3 (2007).
    Article  Google Scholar 

    472.
    Saarinen, J. & Karme, A. Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra) – Applying a new mesowear approach. Palaeogeography, Palaeoclimatology, Palaeoecology 476, 42–54, https://doi.org/10.1016/j.palaeo.2017.03.027 (2017).
    ADS  Article  Google Scholar 

    473.
    Saarinen, J., Eronen, J., Fortelius, M., Seppä, H. & Lister, A. M. Patterns of diet and body mass of large ungulates from the Pleistocene of Western Europe, and their relation to vegetation. Palaeontologia Electronica 19.3.32A, 1–58 (2016).
    Google Scholar 

    474.
    Salas, L. A. & Fuller, T. K. Diet of the lowland tapir (Tapirus terrestris L.) in the Tabaro River valley, southern Venezuela. Can. J. Zool. 74, 1444–1451 (1996).
    Article  Google Scholar 

    475.
    Sales, J. Digestive physiology and nutrition of ratites. Avian and poultry biology reviews 17, 41–55 (2006).
    Article  Google Scholar 

    476.
    Salesa, M. J. et al. Anatomy of the “false thumb” of Tremarctos ornatus (Carnivora, Ursidae, Tremarctinae): phylogenetic and functional implications. Estudios Geologicos 62, 389–394 (2006).
    Article  Google Scholar 

    477.
    Salles, L. O. et al. A new record of a Scelidotheriine ground sloth (Xenarthra, Mylodontidae) from Central Brazil: Quaternary cave stratigraphy, taxonomy and stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 461, 253–260 (2016).
    ADS  Article  Google Scholar 

    478.
    San Diego Zoo Global. San Diego (CA): Tapirs (extant/living species; Tapirus spp.) Fact Sheet, http://ielc.libguides.com/sdzg/factsheets/tapirs (c2009-2019).

    479.
    Sánchez, B., Prado, J. L. & Alberdi, M. T. Feeding ecology, dispersal, and extinction of South American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea). Paleobiology 30, 146–161 (2004).
    Article  Google Scholar 

    480.
    Sánchez, B., Prado, J. L. & Alberdi, M. T. Ancient feeding, ecology and extinction of Pleistocene horses from the Pampean Region, Argentina. Ameghiniana 43, 427–436 (2006).
    Google Scholar 

    481.
    Sankar, K. et al. Home range, habitat use and food habits of re-introduced gaur (Bos gaurus gaurus) in Bandhavgarh Tiger Reserve, central India. Tropical Conservation Science 6, 50–69 (2013).
    Article  Google Scholar 

    482.
    Sarhangzadeh, J., Yavari, A., Hemami, M., Jafari, H. & Shams-Esfandabad, B. Habitat suitability modeling for wild goat (Capra aegagrus) in a mountainous arid area, central Iran. Caspian Journal of Environmental Sciences 11, 41–51 (2013).
    Google Scholar 

    483.
    Scasta, J. D., Beck, J. L. & Angwin, C. J. Meta-Analysis of Diet Composition and Potential Conflict of Wild Horses with Livestock and Wild Ungulates on Western Rangelands of North America. Rangeland Ecology & Management 69, 310–318, https://doi.org/10.1016/j.rama.2016.01.001 (2016).
    Article  Google Scholar 

    484.
    Schaller, G. B. & Khan, S. A. Distribution and status of markhor (Capra falconeri. Biol. Conserv. 7, 185–198 (1975).
    Article  Google Scholar 

    485.
    Schaller, G. et al. Feeding behavior of Sichuan takin (Budorcas taxicolor). Mammalia 50, 311–322 (1986).
    Article  Google Scholar 

    486.
    Schilling, A.-M. & Rössner, G. E. The (sleeping) Beauty in the Beast–a review on the water deer, Hydropotes inermis. Hystrix, the Italian Journal of Mammalogy 28 (2017).

    487.
    Schmidt, C. W. Dental microwear analysis of extinct flat-headed peccary (Platygonus compressus) from Southern Indiana. Proc. Indiana Acad. Sci. 117, 95–106 (2008).
    Google Scholar 

    488.
    Schubert, B. W., Graham, R. W., McDonald, H. G., Grimm, E. C. & Stafford, T. W. Latest Pleistocene paleoecology of Jefferson’s ground sloth (Megalonyx jeffersonii) and elk-moose (Cervalces scotti) in northern Illinois. Quaternary Research 61, 231–240, https://doi.org/10.1016/j.yqres.2003.10.005 (2004).
    ADS  Article  Google Scholar 

    489.
    Schulz, E. et al. Food preferences and tooth wear in the sand gazelle (Gazella marica). Mammalian Biology 78, 55–62 (2013).
    Article  Google Scholar 

    490.
    Seegmiller, R. F. & Ohmart, R. D. Ecological relationships of feral burros and desert bighorn sheep. Wildlife Monographs 78, 3–58 (1981).
    Google Scholar 

    491.
    Semprebon, G. M. & Rivals, F. Trends in the paleodietary habits of fossil camels from the Tertiary and Quaternary of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 131–145, https://doi.org/10.1016/j.palaeo.2010.05.033 (2010).
    ADS  Article  Google Scholar 

    492.
    Semprebon, G. M. et al. Dietary reconstruction of pygmy mammoths from Santa Rosa Island of California. Quaternary International 406, 123–136, https://doi.org/10.1016/j.quaint.2015.10.120 (2015).
    ADS  Article  Google Scholar 

    493.
    Serbent, M., Periago, M. E. & Leynaud, G. C. Mazama gouazoubira (Cervidae) diet during the dry season in the arid Chaco of Córdoba (Argentina). J. Arid Environ. 75, 87–90 (2011).
    ADS  Article  Google Scholar 

    494.
    Severud, W. J., Belant, J. L., Windels, S. K. & Bruggink, J. G. Seasonal variation in assimilated diets of American beavers. The American Midland Naturalist 169, 30–42 (2013).
    Article  Google Scholar 

    495.
    Sewell, L., Merceron, G., Hopley, P. J., Zipfel, B. & Reynolds, S. C. Using springbok (Antidorcas) dietary proxies to reconstruct inferred palaeovegetational changes over 2 million years in Southern Africa. Journal of Archaeological Science: Reports 23, 1014–1028 (2019).
    Article  Google Scholar 

    496.
    Shapiro, L. J. et al. Morphometric analysis of lumbar vertebrae in extinct Malagasy strepsirrhines. Am. J. Phys. Anthropol. 128, 823–839, https://doi.org/10.1002/ajpa.20122 (2005).
    Article  Google Scholar 

    497.
    Sharp, A. C. & Rich, T. H. Cranial biomechanics, bite force and function of the endocranial sinuses in Diprotodon optatum, the largest known marsupial. J. Anat. 228, 984–995 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    498.
    Shockey, B. J. Specialized knee joints in some extinct, endemic, South American herbivores. Acta Palaeontologica Polonica 46, 2277–2288 (2001).
    Google Scholar 

    499.
    Shrestha, T. K., Hecker, L. J., Aryal, A. & Coogan, S. C. Feeding preferences and nutritional niche of wild water buffalo (Bubalus arnee) in Koshi Tappu Wildlife Reserve, Nepal. Ecol. Evol. (2020).

    500.
    Simpson, B. K., Shukor, M. & Magintan, D. in AIP Conference Proceedings. 317–324 (American Institute of Physics).

    501.
    Smith, G. J. & DeSantis, L. R. Dietary ecology of Pleistocene mammoths and mastodons as inferred from dental microwear textures. Palaeogeography, Palaeoclimatology, Palaeoecology 492, 10–25 (2018).
    ADS  Article  Google Scholar 

    502.
    Smith, R. J. & Jungers, W. L. Body mass in comparative primatology. J. Hum. Evol. 32, 523–559, https://doi.org/10.1006/jhev.1996.0122 (1997).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    503.
    Smith, A. T. et al. A Guide to the Mammals of China. (Princeton University Press, 2008).

    504.
    Smith, F. A., Elliott, S. M. & Lyons, S. K. Methane emissions from extinct megafauna. Nature Geoscience 3, 374–375, https://doi.org/10.1038/ngeo877 (2010).
    ADS  CAS  Article  Google Scholar 

    505.
    Soibelzon, L. H. L Ursidae (Carnivora, Fissipedia) fósiles de la República Argentina. Aspectos Sistemáticos y Paleoecológicos. (2002).

    506.
    Sondaar, P. Y. & van der Geer, S. A. in Archaeozoology of the Near East IVA. Proceedings of the fourth international symposium on the archaeozoology of Southwestern Asia and adjacent areas (ARC Publicatie 32, pp. 67–73). Groningen: Centrum voor Archeologische Research & Consultancy.

    507.
    Sony, R., Sen, S., Kumar, S., Sen, M. & Jayahari, K. Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India. Ecol. Eng. 120, 355–363 (2018).
    Article  Google Scholar 

    508.
    Spitzer, R. et al. Fifty years of European ungulate dietary studies: a synthesis. Oikos n/a, https://doi.org/10.1111/oik.07435 (2020).

    509.
    Squires, J. R. & Anderson, S. H. Trumpeter swan (Cygnus buccinator) food habits in the Greater Yellowstone Ecosystem. American Midland Naturalist, 274–282 (1995).

    510.
    St-Louis, A. & Côté, S. D. Equus kiang (Perissodactyla: Equidae). Mammalian Species, 1–11 (2009).

    511.
    Steenweg, R., Hebblewhite, M., Gummer, D., Low, B. & Hunt, B. Assessing potential habitat and carrying capacity for reintroduction of plains bison (Bison bison bison) in Banff National Park. PLoS One 11, e0150065 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    512.
    Stefaniak, K. et al. Browsers, grazers or mix-feeders? Study of the diet of extinct Pleistocene Eurasian forest rhinoceros Stephanorhinus kirchbergensis (Jäger, 1839) and woolly rhinoceros Coelodonta antiquitatis (Blumenbach, 1799). Quaternary International (2020).

    513.
    Steinmetz, R. G. Bos gaurus) and banteng (B. javanicus) in the lowland forest mosaic of Xe Pian Protected Area, Lao PDR: abundance, habitat use, and conservation. Mammalia 68, 141–157 (2004).
    Article  Google Scholar 

    514.
    Stinnesbeck, S. R. et al. A new fossil peccary from the Pleistocene-Holocene boundary of the eastern Yucatán Peninsula, Mexico. Journal of South American Earth Sciences 77, 341–349, https://doi.org/10.1016/j.jsames.2016.11.003 (2017).
    ADS  Article  Google Scholar 

    515.
    Stirrat, S. C. Foraging ecology of the agile wallaby (Macropus agilis) in the wet–dry tropics. Wildlife Research 29, 347–361 (2002).
    Article  Google Scholar 

    516.
    Stuart, A. J. Mammalian extinctions in the Late Pleistocene of northern Eurasia and North America. Biological Reviews 66, 453–562 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    517.
    Stuenes, S. Taxonomy, habits, and relationships of the subfossil Madagascan hippopotami Hippopotamus lemerlei and H. madagascariensis. Journal of Vertebrate Paleontology 9, 241–268, https://doi.org/10.1080/02724634.1989.10011761 (1989).
    Article  Google Scholar 

    518.
    Burnik Šturm, M., Ganbaatar, O., Voigt, C. C. & Kaczensky, P. Sequential stable isotope analysis reveals differences in dietary history of three sympatric equid species in the Mongolian Gobi. J. Appl. Ecol. 54, 1110–1119 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    519.
    Stynder, D. D. The diets of ungulates from the hominid fossil-bearing site of Elandsfontein, Western Cape, South Africa. Quaternary Research 71, 62–70 (2009).
    ADS  Article  Google Scholar 

    520.
    Sugimoto, T. et al. Diet of sympatric wild and domestic ungulates in southern Mongolia by DNA barcoding analysis. J. Mammal. 99, 450–458, https://doi.org/10.1093/jmammal/gyx182 (2018).
    Article  Google Scholar 

    521.
    Superina, M. & Loughry, W. Life on the half-shell: consequences of a carapace in the evolution of armadillos (Xenarthra: Cingulata). J. Mamm. Evol. 19, 217–224 (2012).
    Article  Google Scholar 

    522.
    Syed, Z. & Ilyas, O. Habitat preference and feeding ecology of alpine musk deer (Moschus chrysogaster) in Kedarnath Wildlife Sanctuary, Uttarakhand, India. Animal Production Science 56, 978–987 (2016).
    Article  Google Scholar 

    523.
    Takada, H. & Minami, M. Food habits of the Japanese serow (Capricornis crispus) in an alpine habitat on Mount Asama, central Japan. Mammalia 83, 455, https://doi.org/10.1515/mammalia-2018-0099 (2019).
    Article  Google Scholar 

    524.
    Takada, H., Nakamura, K. & Minami, M. Effects of the physical and social environment on flight response and habitat use in a solitary ungulate, the Japanese serow (Capricornis crispus). Behav. Processes 158, 228–233 (2019).
    PubMed  Article  Google Scholar 

    525.
    Takai, M. et al. Stable isotope analysis of the tooth enamel of Chaingzauk mammalian fauna (late Neogene, Myanmar) and its implication to paleoenvironment and paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 11–22 (2011).
    ADS  Article  Google Scholar 

    526.
    Talamoni, S. A. & Assis, M. A. Feeding habit of the Brazilian tapir, Tapirus terrestris (Perissodactyla: Tapiridae) in a vegetation transition zone in south-eastern Brazil. Zoologia (Curitiba) 26, 251–254 (2009).
    Article  Google Scholar 

    527.
    Talbot, L. M. & Talbot, M. H. The tamarau (Bubalus mindorensis (Huede)) observations and recommendations. Mammalia 30, 1–12 (1965).
    Article  Google Scholar 

    528.
    Teague, R. L. The ecological context of the Early Pleistocene hominin dispersal to Asia PhD thesis, The George Washington University, (2001).

    529.
    Teale, C. L. & Miller, N. G. Mastodon herbivory in mid-latitude late-Pleistocene boreal forests of eastern North America. Quaternary Research 78, 72–81, https://doi.org/10.1016/j.yqres.2012.04.002 (2012).
    ADS  Article  Google Scholar 

    530.
    Telfer, W. R. & Bowman, D. M. J. S. Diet of four rock-dwelling macropods in the Australian monsoon tropics. Austral Ecol. 31, 817–827, https://doi.org/10.1111/j.1442-9993.2006.01644.x (2006).
    Article  Google Scholar 

    531.
    Tewari, R. & Rawat, G. Studies on the Food and Feeding Habits of Swamp Deer (Rucervus duvaucelii duvaucelii) in Jhilmil Jheel Conservation Reserve, Haridwar, Uttarakhand, India. International Scholarly Research Notices 278213, 1–6 (2013).
    Google Scholar 

    532.
    Thuc, P. D., Hieu, D. N., Thap, H. V., Van, V. H. & Khu, N. X. Notes on food of Capricornis milneedwardsii in the Cat Ba archipelago, Hai Phong, Vietnam. TAP CHI SINH HOC (Journal of Biology) 34 (2012).

    533.
    Thuc, P. D., Baxter, G., Smith, C. & Hieu, D. N. Population status of the Southwest China serow Capricornis milneedwardsii: a case study in Cat Ba Archipelago, Vietnam. Pac. Conserv. Biol. 20, 385–391 (2014).
    Article  Google Scholar 

    534.
    Tiunov, A. V. & Kirillova, I. V. Stable isotope (13C/12C and 15N/14N) composition of the woolly rhinoceros Coelodonta antiquitatis horn suggests seasonal changes in the diet. Rapid Commun. Mass Spectrom. 24, 3146–3150 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    535.
    Tobler, M. W. Habitat use and diet of Baird’s Tapirs (Tapirus bairdii) in a montane cloud forest of the Cordillera de Talamanca, Costa Rica. Biotropica 34, 468–474 (2002).
    Article  Google Scholar 

    536.
    Tobler, M., Naranjo, E. J. & Lira-Torres, I. in Ecology and conservation of Neotropical montane oak forests 347–359 (Springer, 2006).

    537.
    Tochigi, K. et al. Detection of arboreal feeding signs by Asiatic black bears: effects of hard mast production at individual tree and regional scales. J. Zool. 305, 223–231 (2018).
    Article  Google Scholar 

    538.
    Tonni, E. Los mamíferos del Cuaternario de la región pampeana de Buenos Aires, Argentina. (2009).

    539.
    Torres, M. M. & Puig, S. Seasonal diet of vicuñas in the Los Andes protected area (Salta, Argentina): Are they optimal foragers? J. Arid Environ. 74, 450–457 (2010).
    Article  Google Scholar 

    540.
    Torres, C. R. & Clarke, J. A. Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions. Proceedings of the Royal Society B 285, 20181540 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    541.
    Tovondrafale, T., Razakamanana, T., Hiroko, K. & Rasoamiaramanana, A. Paleoecological analysis of elephant bird (Aepyornithidae) remains from the Late Pleistocene and Holocene formations of southern Madagascar. Malagasy Nature 8, 1–13 (2014).
    Google Scholar 

    542.
    Tran, L. A. P. Interaction between Digestive Strategy and Niche Specialization Predicts Speciation Rates across Herbivorous Mammals. The American Naturalist 187, 468–480 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    543.
    Treydte, A. C., Bernasconi, S. M., Kreuzer, M. & Edwards, P. J. Diet of the common warthog (Phacochoerus africanus) on former cattle grounds in a Tanzanian savanna. J. Mammal. 87, 889–898 (2006).
    Article  Google Scholar 

    544.
    Tsuji, Y., Ito, T. Y., Wada, K. & Watanabe, K. Spatial patterns in the diet of the Japanese macaque Macaca fuscata and their environmental determinants. Mammal Review 45, 227–238 (2015).
    Article  Google Scholar 

    545.
    Tuboi, C. & Hussain, S. A. Factors affecting forage selection by the endangered Eld’s deer and hog deer in the floating meadows of Barak-Chindwin basin of North-east India. Mammalian Biology 81, 53–60 (2016).
    Article  Google Scholar 

    546.
    Turvey, S. T. & Fritz, S. A. The ghosts of mammals past: biological and geographical patterns of global mammalian extinction across the Holocene. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2564–2576, https://doi.org/10.1098/rstb.2011.0020 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    547.
    van Asperen, E. N. & Kahlke, R.-D. Dietary variation and overlap in Central and Northwest European Stephanorhinus kirchbergensis and S. hemitoechus (Rhinocerotidae, Mammalia) influenced by habitat diversity: “You’ll have to take pot luck!”(proverb). Quaternary Science Reviews 107, 47–61 (2015).
    ADS  Article  Google Scholar 

    548.
    Van Den Bergh, G. D. et al. The youngest stegodon remains in Southeast Asia from the Late Pleistocene archaeological site Liang Bua, Flores, Indonesia. Quaternary International 182, 16–48, https://doi.org/10.1016/j.quaint.2007.02.001 (2008).
    Article  Google Scholar 

    549.
    van der Made, J. & Grube, R. in Elefantentreich – Eine Fossilwelt in Europa (eds D. Höhne & W. Schwarz) (Landesamt für Denkmalpflege und Archälogie Sachsen-Anhalt & Landesmuseum für Vorgeschichte, Halle, 2010).

    550.
    van der Made, J. & Tong, H. W. Phylogeny of the giant deer with palmate brow tines Megaloceros from west and Sinomegaceros from east Eurasia. Quaternary International 179, 135–162, https://doi.org/10.1016/j.quaint.2007.08.017 (2008).
    ADS  Article  Google Scholar 

    551.
    van Dyck, S. & Strahan, R. The Mammals of Australia. (New Holland Publishing Australia Pty Ltd, 2008).

    552.
    Van Geel, B. et al. Giant deer (Megaloceros giganteus) diet from Mid‐Weichselian deposits under the present North Sea inferred from molar‐embedded botanical remains. Journal of Quaternary Science 33, 924–933 (2018).
    ADS  Article  Google Scholar 

    553.
    van Heteren, A. H., van Dierendonck, R. C., van Egmond, M. A., Sjang, L. & Kreuning, J. Neither slim nor fat: estimating the mass of the dodo (Raphus cucullatus, Aves, Columbiformes) based on the largest sample of dodo bones to date. PeerJ 5, e4110 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    554.
    Vandercone, R. P., Dinadh, C., Wijethunga, G., Ranawana, K. & Rasmussen, D. T. Dietary diversity and food selection in Hanuman langurs (Semnopithecus entellus) and purple-faced langurs (Trachypithecus vetulus) in the Kaludiyapokuna Forest Reserve in the dry zone of Sri Lanka. Int. J. Primatol. 33, 1382–1405 (2012).
    Article  Google Scholar 

    555.
    Vasey, N., Burney, D. A. & Godfrey, L. R. in Leaping Ahead 149-156 (Springer, 2012).

    556.
    Velázquez, N. J., Burry, L. S. & Fugassa, M. H. Palynological analysis of extinct herbivore dung from Patagonia, Argentina. Quaternary International 377, 140–147 (2015).
    ADS  Article  Google Scholar 

    557.
    Venter, J. A. & Kalule-Sabiti, M. J. Diet composition of the large herbivores in Mkambati nature reserve, eastern cape, South Africa. African Journal of Wildlife Research 46, 49–56 (2016).
    Article  Google Scholar 

    558.
    Vizcaíno, S. F., Bargo, M. S. & Cassini, G. H. Dental occlusal surface area in relation to body mass, food habits and other biological features in fossil xenarthrans. Ameghiniana 43, 11–26 (2006).
    Google Scholar 

    559.
    Villarreal-Espino-Barros, O. A. et al. Composición botánica de la dieta del venado temazate rojo (Mazama temama), en la sierra nororiental del estado de Puebla. Universidad y ciencia 24, 183–188 (2008).
    Google Scholar 

    560.
    Vizcaíno, S. F. & Bargo, M. S. The masticatory apparatus of the armadillo Eutatus (Mammalia, Cingulata) and some allied genera: paleobiology and evolution. Paleobiology 24, 371–383 (1998).
    Google Scholar 

    561.
    Vizcaíno, S. F., Fariña, R. A. & Fernicola, J. C. Young Darwin and the ecology and extinction of Pleistocene South American fossil mammals. Revista de la Asociacion Geologica Argentina 64, 160–169 (2009).
    Google Scholar 

    562.
    Vizcaíno, S. F., Cassini, G. H., Fernicola, J. C. & Bargo, M. S. Evaluating habitats and feeding habits through ecomorphological features in Glyptodonts (Mammalia, Xenarthra). Ameghiniana 48, 305–319, https://doi.org/10.5710/AMGH.v48i3(364) (2011).
    Article  Google Scholar 

    563.
    Vos, J. D. & Van de Geer, A. in International Insular Investigations, V Deia International Conference of Prehistory Vol. 1095 (eds Waldren & Ensenyat) 395–405 (2002).

    564.
    Wallach, A. D. et al. When all life counts in conservation. Conserv. Biol. 34, 997–1007 (2019).
    Article  Google Scholar 

    565.
    Wang, B., Zhang, J. & Hu, J. Habitat selection by Chinese goral (Naemorhedus griseus) in spring in Fentongzhai Nature Reserve. Sichuan Journal of Zoology (2008).

    566.
    Wangchuk, T. R., Wegge, P. & Sangay, T. Habitat and diet of Bhutan takin Budorcas taxicolor whitei during summer in Jigme Dorji National Park, Bhutan. Journal of Natural History 50, 759–770 (2016).
    Article  Google Scholar 

    567.
    Webb, S. Megafauna demography and late Quaternary climatic change in Australia: A predisposition to extinction. Boreas 37, 329–345 (2008).
    Article  Google Scholar 

    568.
    Webb, S. Late Quaternary distribution and biogeography of the southern Lake Eyre basin (SLEB) megafauna, South Australia. Boreas 38, 25–38, https://doi.org/10.1111/j.1502-3885.2008.00044.x (2009).
    Article  Google Scholar 

    569.
    Wegge, P., Shrestha, A. K. & Moe, S. R. Dry season diets of sympatric ungulates in lowland Nepal: competition and facilitation in alluvial tall grasslands. Ecol. Res. 21, 698–706, https://doi.org/10.1007/s11284-006-0177-7 (2006).
    Article  Google Scholar 

    570.
    Weinberg, P. J. Capra cylindricornis. Mammalian Species 2002, 1–9 (2002).
    Article  Google Scholar 

    571.
    Werdelin, L. & Sanders, W. J. Cenozoic mammals of Africa. (University of California Press, 2010).

    572.
    White, J. L. Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. Journal of Vertebrate Paleontology 13, 230–242 (1993).
    Article  Google Scholar 

    573.
    White, T. G. & Alberico, M. S. Dinomys branickii. Mammalian Species, 1–5, https://doi.org/10.2307/3504284 (1992).

    574.
    Wikipedia. (2019).

    575.
    Williams, K. D. & Petrides, G. A. Browse use, feeding behavior, and management of the Malayan tapir. The Journal of Wildlife Management 44, 489–494 (1980).
    Article  Google Scholar 

    576.
    Williams, J. B. et al. Field metabolism, water requirements, and foraging behavior of wild ostriches in the Namib. Ecology 74, 390–404 (1993).
    Article  Google Scholar 

    577.
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027, https://doi.org/10.1890/13-1917.1 (2014).
    Article  Google Scholar 

    578.
    Wilson, L. A. B., Sánchez-Villagra, M. R., Madden, R. H. & Kay, R. F. Testing a developmental model in the fossil record: molar proportions in South American ungulates. Paleobiology 38, 308–321, https://doi.org/10.1666/11001.1 (2012).
    Article  Google Scholar 

    579.
    Wingard, G. et al. Argali food habits and dietary overlap with domestic livestock in Ikh Nart Nature Reserve, Mongolia. J. Arid Environ. 75, 138–145 (2011).
    ADS  Article  Google Scholar 

    580.
    Wood, R. J. The propagation and maintenance of the Arabian tahr Hemitragus jayakari at the Omani Mammal Breeding Centre, Bait al Barakah. The International Zoo Yearbook 31, 255–260 (1992).
    Article  Google Scholar 

    581.
    Wood, J. R. et al. Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quaternary Science Reviews 27, 2593–2602 (2008).
    ADS  Article  Google Scholar 

    582.
    Wood, J. R., Richardson, S. J., McGlone, M. S. & Wilmshurst, J. M. The diets of moa (Aves: Dinornithiformes). New Zealand Journal of Ecology 44, 1–21 (2020).
    Article  Google Scholar 

    583.
    Woolnough, A. P. & Steele, V. R. The palaeoecology of the Vombatidae: did giant wombats burrow? Mammal Review 31, 33–45 (2001).
    Article  Google Scholar 

    584.
    Worthy, T., Holdaway, R. N., Sorenson, M. & Cooper, A. Description of the first complete skeleton of the extinct New Zealand goose Cnemiornis calcitrans (Aves: Anatidae), and a reassessment of the relationships of Cnemiornis. J. Zool. 243, 695–718 (2009).
    Article  Google Scholar 

    585.
    Worthy, T. An analysis of the distribution and relative abundance of moa species (Aves: Dinornithiformes). New Zealand Journal of Zoology 17, 213–241 (1990).
    Article  Google Scholar 

    586.
    Worthy, T. A giant flightless pigeon gen. et sp. nov. and a new species of Ducula (Aves: Columbidae), from Quaternary deposits in Fiji. Journal of the Royal Society of New Zealand 31, 763–794 (2001).
    Article  Google Scholar 

    587.
    Worthy, T. H. & Holdaway, R. N. The lost world of the moa: prehistoric life of New Zealand. (Indiana University Press, 2002).

    588.
    Worthy, T. H. et al. Osteology supports a stem-galliform affinity for the giant extinct flightless bird Sylviornis neocaledoniae (Sylviornithidae, Galloanseres). PLoS One 11, e0150871 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    589.
    Worthy, T. H., Degrange, F. J., Handley, W. D. & Lee, M. S. The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres). Royal Society open science 4, 170975 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    590.
    Wright, D. D. in Tropical fruits and frugivores 205-236 (Springer, 2005).

    591.
    Xiang, Z. F., Liang, W. B., Nie, S. G. & Li, M. Diet and feeding behavior of Rhinopithecus brelichi at Yangaoping. Guizhou. Am. J. Primatol. 74, 551–560 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    592.
    Xu, W. et al. Diet of Gazella subgutturosa (Güldenstaedt, 1780) and food overlap with domestic sheep in Xinjiang, China. Journal of Vertebrate Biology 61, 54–60 (2012).
    Google Scholar 

    593.
    Xu, W. et al. Seasonal diet of khulan (Equidae) in northern Xinjiang, China. Italian Journal of Zoology 79, 92–99 (2012).
    CAS  Article  Google Scholar 

    594.
    Yang, Y. et al. First insights into the feeding habits of the Critically Endangered black snub-nosed monkey, Rhinopithecus strykeri (Colobinae, Primates). Primates 60, 143–153 (2019).
    PubMed  Article  Google Scholar 

    595.
    Yates, A. M. & Worthy, T. H. A diminutive species of emu (Casuariidae: Dromaiinae) from the late Miocene of the Northern Territory, Australia. Journal of Vertebrate Paleontology 39, e1665057 (2019).
    Article  Google Scholar 

    596.
    YouTube. YouTube, www.youtube.com (Accessed May 2019).

    597.
    Zhang, H., Wang, Y., Janis, C. M., Goodall, R. H. & Purnell, M. A. An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon, Stegodon, Elephas), by means of dental microwear texture analysis. Quaternary International 445, 60–70, https://doi.org/10.1016/j.quaint.2016.07.011 (2017).
    ADS  Article  Google Scholar 

    598.
    Zhegallo, V. et al. On the fossil rhinoceros Elasmotherium (including the collections of the Russian Academy of Sciences). Cranium 22, 17–40 (2005).
    Google Scholar 

    599.
    Zheng, R. & Bao, Y. Seasonal food habits of the black muntjac Muntiacus crinifrons. Europe PMC, 201–207 (2010).

    600.
    Zhou, Q., Wei, H., Huang, Z. & Huang, C. Diet of the Assamese macaque Macaca assamensis in limestone habitats of Nonggang, China. Current Zoology 57, 18–25 (2011).
    Article  Google Scholar 

    601.
    Zingg, A. Seasonal variability in the diet composition of alpine ibex (Capra ibex ibex L.) in the Swis National Park Masters thesis, University of Zurich (2009). More