More stories

  • in

    Functional traits of the world’s late Quaternary large-bodied avian and mammalian herbivores

    1.
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75, https://doi.org/10.1126/science.1101476 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J. C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B. 281, 20133254, https://doi.org/10.1098/rspb.2013.3254 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Metcalf, J. L. et al. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Science Advances 2, e1501682 (2016).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Science Advances 1, e1400103 (2015).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Science Advances 6, eabb8458 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Ripple, W. J. et al. Saving the world’s terrestrial megafauna. Bioscience 66, 807–812 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Zimov, S. A. et al. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. The American Naturalist 146, 765–794 (1995).
    Article  Google Scholar 

    8.
    Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nature Ecology & Evolution 2, 640–649, https://doi.org/10.1038/s41559-018-0481-y (2018).
    Article  Google Scholar 

    9.
    Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nature Geoscience 12, 725–729 (2019).
    ADS  CAS  Article  Google Scholar 

    10.
    Johnson, C. N. et al. Can trophic rewilding reduce the impact of fire in a more flammable world? Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, https://doi.org/10.1098/rstb.2017.0443 (2018).

    11.
    Rule, S. et al. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486, https://doi.org/10.1126/science.1214261 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Smith, F. A., Elliott Smith, R. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313, https://doi.org/10.1126/science.aao5987 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Smith, F. A. et al. Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly. Ecography 39, 223–239, https://doi.org/10.1111/ecog.01779 (2015).
    Article  Google Scholar 

    15.
    Davis, M. What North America’s skeleton crew of megafauna tells us about community disassembly. Proc. R. Soc. B. 284, 20162116 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl. Acad. Sci. USA 113, 847–855 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Bakker, E. S., Arthur, R. & Alcoverro, T. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography 39, 162–179 (2016).
    Article  Google Scholar 

    18.
    Rowan, J. & Faith, J. in The Ecology of Browsing and Grazing II 61–79 (Springer, 2019).

    19.
    Wallach, A. D. et al. Invisible megafauna. Conservation Biology. 32, 962–965 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Sandom, C. J. et al. Trophic rewilding presents regionally specific opportunities for mitigating climate change. Philosophical Transactions of the Royal Society B 375, 20190125 (2020).
    CAS  Article  Google Scholar 

    21.
    Svenning, J. C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. USA 113, 898–906, https://doi.org/10.1073/pnas.1502556112 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    22.
    Guyton, J. A. et al. Trophic rewilding revives biotic resistance to shrub invasion. Nature Ecology & Evolution, https://doi.org/10.1038/s41559-019-1068-y (2020).

    23.
    Derham, T. T., Duncan, R. P., Johnson, C. N. & Jones, M. E. Hope and caution: rewilding to mitigate the impacts of biological invasions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20180127 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Derham, T. & Mathews, F. Elephants as refugees. People and Nature 2, 103–110 (2020).
    Article  Google Scholar 

    25.
    Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl. Acad. Sci. USA, https://doi.org/10.1073/pnas.1915769117 (2020).

    26.
    Lundgren, E. J., Ramp, D., Ripple, W. J. & Wallach, A. D. Introduced megafauna are rewilding the Anthropocene. Ecography 41, 857–866, https://doi.org/10.1111/ecog.03430 (2018).
    Article  Google Scholar 

    27.
    Donlan, C. J. et al. Pleistocene rewilding: an optimistic agenda for twenty-first century conservation. The American Naturalist 168, 660–681 (2006).
    Article  Google Scholar 

    28.
    Luck, G. W., Lavorel, S., McIntyre, S. & Lumb, K. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J. Anim. Ecol. 81, 1065–1076, https://doi.org/10.1111/j.1365-2656.2012.01974.x (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Faurby, S. et al. PHYLACINE 1.2: The Phylogenetic Atlas of Mammal Macroecology. Ecology 99, 2626–2626 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Smith, F. A. et al. Body mass of late Quaternary mammals. Ecology 84, 3403–3403 (2003).
    Article  Google Scholar 

    31.
    Hume, J. P. & Walters, M. Extinct birds. Vol. 217 (A&C Black, 2012).

    32.
    Owen-Smith, R. N. Megaherbivores: the influence of very large body size on ecology. (Cambridge University Press, 1988).

    33.
    Gordon, I. J. & Prins, H. H. Ecology Browsing and Grazing II. (Springer Nature, 2019).

    34.
    Martin, P. S. & Wright, H. E. Pleistocene extinctions; the search for a cause. (National Research Council (U.S.): International Association for Quaternary Research., 1967).

    35.
    Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World Vol. 1-9 (Lynx Publishing, 2009-2019).

    36.
    Hopcraft, J. G. C., Olff, H. & Sinclair, A. R. E. Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas. Trends Ecol. Evol. 25, 119–128 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    AnAge: The Animal Ageing and Longevity Database. (2020).

    38.
    Clauss, M., Kaiser, T. & Hummel, J. in The ecology of browsing and grazing 47-88 (Springer, 2008).

    39.
    Van Soest, P. J. Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association 15, 455–479 (1996).
    Article  Google Scholar 

    40.
    Davis, M. & Pineda-Munoz, S. The temporal scale of diet and dietary proxies. Ecol. Evol. 6, 1883–1897, https://doi.org/10.1002/ece3.2054 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Kingdon, J. et al. Mammals of Africa. Vol. I-VI (Bloomsbury Natural History, 2013).

    42.
    Kissling, W. D. et al. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecol. Evol. 4, 2913–2930, https://doi.org/10.1002/ece3.1136 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    43.
    Faurby, S. & Svenning, J. C. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84, 14–26, https://doi.org/10.1016/j.ympev.2014.11.001 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation. Methods Ecol. Evol. 8, 22–27 (2017).
    Article  Google Scholar 

    45.
    Bruggeman, J., Heringa, J. & Brandt, B. W. PhyloPars: estimation of missing parameter values using phylogeny. Nucleic Acids Res. 37, W179–W184 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Hume, I. D. Digestive strategies of mammals. Acta Zoologica Sinica 48, 1–19 (2002).
    CAS  Google Scholar 

    47.
    Demment, M. W. & Van Soest, P. J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. The American Naturalist 125, 641–672 (1985).
    Article  Google Scholar 

    48.
    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl. Acad. Sci. USA 113, 868–873, https://doi.org/10.1073/pnas.1502549112 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    49.
    Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457 (1989).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Prothero, D. R. & Foss, S. E. The evolution of artiodactyls. (JHU Press, 2007).

    51.
    Subalusky, A. L., Dutton, C. L., Rosi-Marshall, E. J. & Post, D. M. The hippopotamus conveyor belt: vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in sub-Saharan Africa. Freshw. Biol. 60, 512–525, https://doi.org/10.1111/fwb.12474 (2015).
    CAS  Article  Google Scholar 

    52.
    Kubo, T., Sakamoto, M., Meade, A. & Venditti, C. Transitions between foot postures are associated with elevated rates of body size evolution in mammals. Proc. Natl. Acad. Sci. USA 116, 2618–2623 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Brown, J. C. & Yalden, D. W. The description of mammals-2 limbs and locomotion of terrestrial mammals. Mammal Review 3, 107–134 (1973).
    Article  Google Scholar 

    54.
    Polly, P. D. in Fins into Limbs: Evolution, Development, and Transformation (ed B.K. Hall) 245-268 (2007).

    55.
    Cumming, D. H. M. & Cumming, G. S. Ungulate community structure and ecological processes: body size, hoof area and trampling in African savannas. Oecologia 134, 560–568 (2003).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    te Beest, M., Sitters, J., Ménard, C. B. & Olofsson, J. Reindeer grazing increases summer albedo by reducing shrub abundance in Arctic tundra. Environmental Research Letters 11, 125013, https://doi.org/10.1088/1748-9326/aa5128 (2016).
    ADS  Article  Google Scholar 

    57.
    Bennett, M. Foot areas, ground reaction forces and pressures beneath the feet of kangaroos, wallabies and rat-kangaroos (Marsupialia: Macropodoidea). J. Zool. 247, 365–369 (1999).
    Article  Google Scholar 

    58.
    Beever, E. A., Huso, M. & Pyke, D. A. Multiscale responses of soil stability and invasive plants to removal of non‐native grazers from an arid conservation reserve. Diversity and Distributions 12, 258–268 (2006).
    Article  Google Scholar 

    59.
    Lundgren, E. J. et al. Functional traits of the world’s late Quaternary large-bodied avian and mammalian herbivores. figshare https://doi.org/10.6084/m9.figshare.c.5001971 (2020).

    60.
    Kihwele, E. S. et al. Quantifying water requirements of African ungulates through a combination of functional traits. Ecological Monographs 90, e01404, https://doi.org/10.1002/ecm.1404 (2020).
    Article  Google Scholar 

    61.
    Abbazzi, L. Remarks on the validity of the generic name Praemegaceros portis 1920, and an overview on Praemegaceros species in Italy. Rendiconti Lincei 15, 115 (2004).
    Article  Google Scholar 

    62.
    Acevedo, P. & Cassinello, J. Biology, ecology and status of Iberian ibex Capra pyrenaica: a critical review and research prospectus. Mammal Review 39, 17–32 (2009).
    Article  Google Scholar 

    63.
    Adhikari, P. et al. Seasonal and altitudinal variation in roe deer (Capreolus pygargus tianschanicus) diet on Jeju Island, South Korea. Journal of Asia-Pacific Biodiversity 9, 422–428 (2016).
    Article  Google Scholar 

    64.
    Agenbroad, L. D. Mammuthus exilis from the California Channel Islands: height, mass, and geologic age. CIT 173, 536 (2010).
    Google Scholar 

    65.
    Agetsuma, N., Agetsuma-Yanagihara, Y. & Takafumi, H. Food habits of Japanese deer in an evergreen forest: Litter-feeding deer. Mammalian Biology 76, 201–207 (2011).
    Article  Google Scholar 

    66.
    Ahmad, S. et al. Using an ensemble modelling approach to predict the potential distribution of Himalayan gray goral (Naemorhedus goral bedfordi) in Pakistan. Global Ecology and Conservation 21, e00845 (2020).
    Article  Google Scholar 

    67.
    Ahrestani, F. S., Heitkönig, I. M. & Prins, H. H. Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest. J. Trop. Ecol., 385–394 (2012).

    68.
    Ahrestani, F. S., Heitkönig, I. M., Matsubayashi, H. & Prins, H. H. in The Ecology of Large Herbivores in South and Southeast Asia 99–120 (Springer, 2016).

    69.
    Aiba, K., Miura, S. & Kubo, M. O. Dental Microwear Texture Analysis in Two Ruminants, Japanese Serow (Capricornis crispus) and Sika Deer (Cervus nippon), from Central Japan. Mammal Study 44, 183-192, 110 (2019).

    70.
    Akbari, H., Habibipoor, A. & Mousavi, J. Investigation on Habitat Preferences and Group Sizes of Chinkara (Gazella bennettii) in Dareh-Anjeer Wildlife Refuge, Yazd province. Iranian Journal of Applied Ecology 2, 81–90 (2013).
    Google Scholar 

    71.
    Akbari, H., Moradi, H. V., Rezaie, H.-R. & Baghestani, N. Winter foraging of chinkara (Gazella bennettii shikarii) in Central Iran. Mammalia 80, 163–169 (2016).
    Article  Google Scholar 

    72.
    Akersten, W. A., Foppe, T. M. & Jefferson, G. T. New source of dietary data for extinct herbivores. Quaternary Research 30, 92–97 (1988).
    ADS  Article  Google Scholar 

    73.
    Akram, F., Ilyas, O. & Haleem, A. Food and Feeding Habits of Indian Crested Porcupine in Pench Tiger Reserve, Madhya Pradesh, India. Ambient Sci 4, 0–5 (2017).
    Article  Google Scholar 

    74.
    Al Harthi, L. S., Robinson, M. D. & Mahgoub, O. Diets and resource sharing among livestock on the Saiq Plateau, Jebel Akhdar Mountains, Oman. International journal of ecology and environmental sciences 34, 113–120 (2008).
    Google Scholar 

    75.
    Alberdi, M. T., Prado, J. L. & Ortiz-Jaureguizar, E. Patterns of body size changes in fossil and living Equini (Perissodactyla). Biological Journal of the Linnean Society 54, 349–370 (1995).
    Google Scholar 

    76.
    Alcover, J. A. Vertebrate evolution and extinction on western and central Mediterranean Islands. Tropics 10, 103–123 (2000).
    Article  Google Scholar 

    77.
    Alcover, J. A., Perez-Obiol, R., Yll, E.-I. & Bover, P. The diet of Myotragus balearicus Bate 1909 (Artiodactyla: Caprinae), an extinct bovid from the Balearic Islands: evidence from coprolites. Biological Journal of the Linnean Society 66, 57–74 (1999).
    Google Scholar 

    78.
    Ali, A. et al. An assessment of food habits and altitudinal distribution of the Asiatic black bear (Ursus thibetanus) in the Western Himalayas, Pakistan. Journal of Natural History 51, 689–701 (2017).
    Article  Google Scholar 

    79.
    Cornell Lab of Ornithology. All About Birds. Allaboutbirds.org (Cornell Lab of Ornithology, 2020).

    80.
    Myers, P. et al. (University of Michigan, 2019).

    81.
    Dantas, M. A. T. et al. Isotopic paleoecology of the Pleistocene megamammals from the Brazilian Intertropical Region: Feeding ecology (δ13C), niche breadth and overlap. Quaternary Science Reviews 170, 152–163 (2017).
    ADS  Article  Google Scholar 

    82.
    Arbouche, Y., Arbouche, H., Arbouche, F. & Arbouche, R. Valeur fourragere des especes prelevees par Gazella cuvieri Ogilby, 1841 au niveau du Djebel Metlili (Algerie). Archivos de Zootecnia 61, 145–148 (2012).
    Article  Google Scholar 

    83.
    Arman, S. D. & Prideaux, G. J. Dietary classification of extant kangaroos and their relatives (Marsupialia: Macropodoidea). Austral Ecol. 40, 909–922, https://doi.org/10.1111/aec.12273 (2015).
    Article  Google Scholar 

    84.
    Aryal, A. Habitat ecology of Himalayan serow (Capricornis sumatraensis ssp. thar) in Annapurna Conservation Area of Nepal. Tiger paper 34, 12–20 (2009).
    Google Scholar 

    85.
    Aryal, A., Coogan, S. C., Ji, W., Rothman, J. M. & Raubenheimer, D. Foods, macronutrients and fibre in the diet of blue sheep (Psuedois nayaur) in the Annapurna Conservation Area of Nepal. Ecol. Evol. 5, 4006–4017 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Asevedo, L., Winck, G. R., Mothé, D. & Avilla, L. S. Ancient diet of the Pleistocene gomphothere Notiomastodon platensis (Mammalia, Proboscidea, Gomphotheriidae) from lowland mid-latitudes of South America: Stereomicrowear and tooth calculus analyses combined. Quaternary International 255, 42–52, https://doi.org/10.1016/j.quaint.2011.08.037 (2012).
    ADS  Article  Google Scholar 

    87.
    Asensio, B. A., Méndez, J. R. & Prado, J. L. Patterns of body-size change in large mammals during the Late Cenozoic in the Northwestern Mediterranean. 464-479 (Museo Arqueológico Regional) (2004).

    88.
    Ashraf, N., Anwar, M., Hussain, I. & Nawaz, M. A. Competition for food between the markhor and domestic goat in Chitral, Pakistan. Turkish Journal of Zoology 38, 191–198 (2014).
    Article  Google Scholar 

    89.
    Ashraf, N. et al. Seasonal variation in the diet of the grey goral (Naemorhedus goral) in Machiara National Park (MNP), Azad Jammu and Kashmir, Pakistan. Mammalia 81, 235–244 (2017).
    Article  Google Scholar 

    90.
    The Australian Museum. Animal Fact Sheets. www.australian.museum/learn (New South Wales Government, New South Wales, 2019).

    91.
    Avaliani, N., Chunashvili, T., Sulamanidze, G. & Gurchiani, I. Supporting conservation of West Caucasian Tur (Capra caucasica) in Georgia. Conservation Leadership Pgoramme. Project No: 400206 (2007).

    92.
    Baamrane, M. A. A. et al. Assessment of the food habits of the Moroccan dorcas gazelle in M’Sabih Talaa, west central Morocco, using the trn L approach. PLoS One 7, e35643 (2012).
    ADS  Article  CAS  Google Scholar 

    93.
    Bailey, M., Petrie, S. A. & Badzinski, S. S. Diet of mute swans in lower Great Lakes coastal marshes. The Journal of wildlife Management 72, 726–732 (2008).
    Article  Google Scholar 

    94.
    Ballari, S. A. & Barrios‐García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Review 44, 124–134 (2014).
    Article  Google Scholar 

    95.
    Barboza, P. & Hume, I. Digestive tract morphology and digestion in the wombats (Marsupialia: Vombatidae). Journal of Comparative Physiology B 162, 552–560 (1992).
    CAS  Google Scholar 

    96.
    Bargo, M. S. The ground sloth Megatherium americanum: skull shape, bite forces, and diet. Acta Palaeontologica Polonica 46, 173–192 (2001).
    Google Scholar 

    97.
    Bargo, M. S. & Vizcaíno, S. F. Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45, 175–196 (2008).
    Google Scholar 

    98.
    Bargo, M. S., Toledo, N. & Vizcaíno, S. F. Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J. Morphol. 267, 248–263 (2006).
    PubMed  Article  Google Scholar 

    99.
    Barreto, G. R. & Quintana, R. D. in Capybara. (Springer, 2013).

    100.
    Baskaran, N., Kannan, V., Thiyagesan, K. & Desai, A. A. Behavioural ecology of four-horned antelope (Tetracerus quadricornis de Blainville, 1816) in the tropical forests of southern India. Mammalian Biology 76, 741–747 (2011).
    Article  Google Scholar 

    101.
    Baskaran, N., Ramkumaran, K. & Karthikeyan, G. Spatial and dietary overlap between blackbuck (Antilope cervicapra) and feral horse (Equus caballus) at Point Calimere Wildlife Sanctuary, Southern India: Competition between native versus introduced species. Mammalian Biology 81, 295–302 (2016).
    Article  Google Scholar 

    102.
    Basumatary, S. K., Singh, H., McDonald, H. G., Tripathi, S. & Pokharia, A. K. Modern botanical analogue of endangered Yak (Bos mutus) dung from India: Plausible linkage with extant and extinct megaherbivores. PLoS One 14, e0202723 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    Bedaso, Z. K., Wynn, J. G., Alemseged, Z. & Geraads, D. Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: Implication for Australopithecus afarensis habitat and food resources. J. Hum. Evol. 64, 21–38 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    104.
    Benamor, N., Bounaceur, F., Baha, M. & Aulagnier, S. First data on the seasonal diet of the vulnerable Gazella cuvieri (Mammalia: Bovidae) in the Djebel Messaâd forest, northern Algeria. Folia Zoologica 68, 1–8 (2019).
    Article  Google Scholar 

    105.
    Bennett, C. V. & Goswami, A. Statistical support for the hypothesis of developmental constraint in marsupial skull evolution. BMC Biol. 11 (2013).

    106.
    Bergmann, G. T., Craine, J. M., Robeson, M. S. II & Fierer, N. Seasonal shifts in diet and gut microbiota of the American bison (Bison bison). PLoS One 10, e0142409 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    107.
    Bhat, S. A., Telang, S., Wani, M. A. & Sheikh, K. A. Food habits of Nilgai (Boselaphus tragocamelus) in Van Vihar National Park, Bhopal, Madhya Pradesh, India. Biomedical and Pharmacology Journal 5, 141–147 (2015).
    Article  Google Scholar 

    108.
    Bhattacharya, T., Kittur, S., Sathyakumar, S. & Rawat, G. Diet overlap between wild ungulates and domestic livestock in the greater Himalaya: implications for management of grazing practices in Proceedings of the Zoological Society. 11-21 (Springer).

    109.
    Bibi, F. & Kiessling, W. Continuous evolutionary change in Plio-Pleistocene mammals of eastern. Africa. Proc. Natl. Acad. Sci. USA 112, 10623–10628 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    110.
    Biknevicius, A. R., McFarlane, D. A. & MacPhee, R. D. E. Body size in Amblyrhiza inundata (Rodentia, Caviomorpha), an extinct megafaunal rodent from the Anguilla Bank, West Indies: estimates and implications. American Museum novitates; no. 3079 (1993).

    111.
    Cornell Lab of Ornithology. Birds of the World. https://birdsoftheworld.org/bow Cornell Lab of Ornithology (2020).

    112.
    Biswas, J. et al. The enigmatic Arunachal macaque: its biogeography, biology and taxonomy in Northeastern India. Am. J. Primatol. 73, 458–473, https://doi.org/10.1002/ajp.20924 (2011).
    Article  PubMed  Google Scholar 

    113.
    Bocherens, H. et al. Isotopic insight on paleodiet of extinct Pleistocene megafaunal Xenarthrans from Argentina. Gondwana Research 48, 7–14, https://doi.org/10.1016/j.gr.2017.04.003 (2017).
    ADS  CAS  Article  Google Scholar 

    114.
    Boeskorov, G. G. et al. Woolly rhino discovery in the lower Kolyma River. Quaternary Science Reviews 30, 2262–2272 (2011).
    ADS  Article  Google Scholar 

    115.
    Bojarska, K. & Selva, N. Spatial patterns in brown bear Ursus arctos diet: the role of geographical and environmental factors. Mammal Review 42, 120–143 (2012).
    Article  Google Scholar 

    116.
    Bon, R., Rideau, C., Villaret, J.-C. & Joachim, J. Segregation is not only a matter of sex in Alpine ibex, Capra ibex ibex. Anim. Behav. 62, 495–504 (2001).
    Article  Google Scholar 

    117.
    Bond, W. J., Silander, J. A. Jr, Ranaivonasy, J. & Ratsirarson, J. The antiquity of Madagascar’s grasslands and the rise of C4 grassy biomes. Journal of Biogeography 35, 1743–1758, https://doi.org/10.1111/j.1365-2699.2008.01923.x (2008).
    Article  Google Scholar 

    118.
    Borgnia, M., Vilá, B. L. & Cassini, M. H. Foraging ecology of Vicuña, Vicugna vicugna, in dry Puna of Argentina. Small Rumin. Res. 88, 44–53 (2010).
    Article  Google Scholar 

    119.
    Bowman, D. M., Murphy, B. P. & McMahon, C. R. Using carbon isotope analysis of the diet of two introduced Australian megaherbivores to understand Pleistocene megafaunal extinctions. Journal of Biogeography 37, 499–505 (2010).
    Article  Google Scholar 

    120.
    Bradford, M. G., Dennis, A. J. & Westcott, D. A. Diet and dietary preferences of the southern cassowary (Casuarius casuarius) in North Queensland, Australia. Biotropica 40, 338–343 (2008).
    Article  Google Scholar 

    121.
    Bradham, J. L., DeSantis, L. R., Jorge, M. L. S. & Keuroghlian, A. Dietary variability of extinct tayassuids and modern white-lipped peccaries (Tayassu pecari) as inferred from dental microwear and stable isotope analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 499, 93–101 (2018).
    ADS  Article  Google Scholar 

    122.
    Bravo-Cuevas, V. M., Rivals, F. & Priego-Vargas, J. Paleoecology (δ13C and δ18O stable isotopes analysis) of a mammalian assemblage from the late Pleistocene of Hidalgo, central Mexico and implications for a better understanding of environmental conditions in temperate North America (18°–36° N Lat.). Palaeogeography, Palaeoclimatology, Palaeoecology 485, 632–643 (2017).
    ADS  Article  Google Scholar 

    123.
    Bravo-Cuevas, V. M., Jiménez-Hidalgo, E., Perdoma, M. A. C. & Priego-Vargas, J. Taxonomy and notes on the paleobiology of the late Pleistocene (Rancholabrean) antilocaprids (Mammalia, Artiodactyla, Antilocapridae) from the state of Hidalgo, central Mexico. Revista mexicana de Ciencias Geológicas 30, 601–613 (2013).
    Google Scholar 

    124.
    Buchsbaum, R., Wilson, J. & Valiela, I. Digestibility of plant constitutents by Canada Geese and Atlantic Brant. Ecology 67, 386–393 (1986).
    Article  Google Scholar 

    125.
    Buckland, R. & Guy, G. Goose Production Systems, http://www.fao.org/3/y4359e/y4359e00.htm#Contents (2002).

    126.
    Burness, G. P., Diamond, J. & Flannery, T. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proc. Natl. Acad. Sci. USA 98, 14518–14523 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    127.
    Burton, J., Hedges, S. & Mustari, A. The taxonomic status, distribution and conservation of the lowland anoa Bubalus depressicornis and mountain anoa Bubalus quarlesi. Mammal Review 35, 25–50 (2005).
    Article  Google Scholar 

    128.
    Butler, K., Louys, J. & Travouillon, K. Extending dental mesowear analyses to Australian marsupials, with applications to six Plio-Pleistocene kangaroos from southeast Queensland. Palaeogeography, Palaeoclimatology, Palaeoecology 408, 11–25, https://doi.org/10.1016/j.palaeo.2014.04.024 (2014).
    ADS  Article  Google Scholar 

    129.
    Cain, J. W., Avery, M. M., Caldwell, C. A., Abbott, L. B. & Holechek, J. L. Diet composition, quality and overlap of sympatric American pronghorn and gemsbok. Wildlife Biology 17, wlb.00296, https://doi.org/10.2981/wlb.00296 (2017).
    Article  Google Scholar 

    130.
    Campbell, J. L., Eisemann, J. H., Williams, C. V. & Glenn, K. M. Description of the Gastrointestinal Tract of Five Lemur Species: Propithecus tattersalli, Propithecus verreauxicoquereli, Varecia variegata, Hapalemur griseus, and Lemur catta. Am. J. Primatol. 52, 133–142 (2000).
    CAS  PubMed  Article  Google Scholar 

    131.
    Carey, S. P. et al. A diverse Pleistocene marsupial trackway assemblage from the Victorian Volcanic Plains, Australia. Quaternary Science Reviews 30, 591–610 (2011).
    ADS  Article  Google Scholar 

    132.
    Cartelle, C. & Hartwig, W. C. A new extinct primate among the Pleistocene megafauna of Bahia, Brazil. Proc. Natl. Acad. Sci. USA 93, 6405–6409, https://doi.org/10.1073/pnas.93.13.6405 (1996).
    ADS  CAS  Article  PubMed  Google Scholar 

    133.
    Cassini, G. H., Cerdeño, E., Villafañe, A. L. & Muñoz, N. A. Paleobiology of Santacrucian native ungulates (Meridiungulata: Astrapotheria, Litopterna and Notoungulata) in Early Miocene Paleobiology in Patagonia/Vizcaíno (Cambridge University Press) (2012).

    134.
    Cerdeño, E. Diversity and evolutionary trends of the Family Rhinocerotidae (Perissodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology 141, 13–34, https://doi.org/10.1016/S0031-0182(98)00003-0 (1998).
    ADS  Article  Google Scholar 

    135.
    Cerling, T. E. & Viehl, K. Seasonal diet changes of the forest hog (Hylochoerus meinertzhageni Thomas) based on the carbon isotopic composition of hair. African Journal of Ecology 42, 88–92 (2004).
    Article  Google Scholar 

    136.
    Chaiyarat, R., Saengpong, S., Tunwattana, W. & Dunriddach, P. Habitat and food utilization by banteng (Bos javanicus d’Alton, 1823) accidentally introduced into the Khao Khieo-Khao Chomphu Wildlife Sanctuary, Thailand. Mammalia 82, 23–34 (2017).
    Article  Google Scholar 

    137.
    Chen, Y. et al. Activity Rhythms of Coexisting Red Serow and Chinese Serow at Mt. Gaoligong as Identified by Camera Traps. Animals 9, 1071 (2019).
    Article  Google Scholar 

    138.
    Choudhury, A. The decline of the wild water buffalo in north-east India. Oryx 28, 70–73 (1994).
    Article  Google Scholar 

    139.
    Christiansen, P. What size were Arctodus simus and Ursus spelaeus (Carnivora: Ursidae)? Annales Zoologici Fennici 36, 93–102 (1999).
    Google Scholar 

    140.
    Christiansen, P. Body size in proboscideans, with notes on elephant metabolism. Zoological journal of the Linnean Society 140, 523–549 (2004).
    Article  Google Scholar 

    141.
    Chritz, K. L. et al. Palaeobiology of an extinct Ice Age mammal: Stable isotope and cementum analysis of giant deer teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 282, 133–144 (2009).
    ADS  Article  Google Scholar 

    142.
    Clarke, S. J., Miller, G. H., Fogel, M. L., Chivas, A. R. & Murray-Wallace, C. V. The amino acid and stable isotope biogeochemistry of elephant bird (Aepyornis) eggshells from southern Madagascar. Quaternary Science Reviews 25, 2343–2356 (2006).
    ADS  Article  Google Scholar 

    143.
    Clauss, M. The potential interplay of posture, digestive anatomy, density of ingesta and gravity in mammalian herbivores: Why sloths do not rest upside down. Mammal Review 34, 241–245 (2004).
    Article  Google Scholar 

    144.
    Clauss, M. et al. The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia 136, 14–27 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    145.
    Clauss, M., Hummel, J., Vercammen, F. & Streich, W. J. Observations on the Macroscopic Digestive Anatomy of the Himalayan Tahr (Hemitragus jemlahicus). Anatomia Histologia Embryologia 34, 276–278 (2005).
    CAS  Article  Google Scholar 

    146.
    Clench, M. H. & Mathias, J. R. The avian cecum: a review. The Wilson Bulletin, 93–121 (1995).

    147.
    Cobb, M. A., KHelling, H. & Pyle, B. Summer diet and feeding location selection patterns of an irrupting mountain goat population on Kodiak Island, Alaska. Biennial Symposium of the Northern Wild Sheep and Goat Council 18, 122–135 (2012).
    Google Scholar 

    148.
    Codron, D., Brink, J. S., Rossouw, L. & Clauss, M. The evolution of ecological specialization in southern African ungulates: competition- or physical environmental turnover? Oikos 117, 344–353, https://doi.org/10.1111/j.2007.0030-1299.16387.x (2008).
    Article  Google Scholar 

    149.
    Codron, D., Clauss, M., Codron, J. & Tütken, T. Within trophic level shifts in collagen–carbonate stable carbon isotope spacing are propagated by diet and digestive physiology in large mammal herbivores. Ecol. Evol. 8, 3983–3995 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    150.
    Comparatore, V. & Yagueddú, C. Diet of the Greater Rhea (Rhea americana) in an agroecosystem of the Flooding Pampa, Argentina. Ornitologia Neotropical 18, 187–194 (2007).
    Google Scholar 

    151.
    Cooke, S. B. Paleodiet of extinct platyrrhines with emphasis on the Caribbean forms: three-dimensional geometric morphometrics of mandibular second molars. The Anatatomical Record 294, 2073–2091, https://doi.org/10.1002/ar.21502 (2011).
    Article  Google Scholar 

    152.
    Coombs, M. C. Large mammalian clawed herbivores: a comparative study. Transactions of the American Philosophical Society 73, 1–96 (1983).
    Article  Google Scholar 

    153.
    Cope, E. D. The extinct rodentia of North America. The American Naturalist 17, 43–57 (1883).
    Article  Google Scholar 

    154.
    Corona, A., Ubilla Gutierrez, M. & Perea Negreira, D. New records and diet reconstruction using dental microwear analysis for Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae). Andean Geology, 2019 46(1), 153–167 (2019).
    CAS  Article  Google Scholar 

    155.
    Craine, J. M., Towne, E. G., Miller, M. & Fierer, N. Climatic warming and the future of bison as grazers. Sci. Rep. 5, 16738 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    156.
    Cransac, N., Valet, G., Cugnasse, J.-M. & Rech, J. Seasonal diet of mouflon (Ovis gmelini): comparison of population sub-units and sex-age classes. Revue d’écologie (1997).

    157.
    Creese, S., Davies, S. J. & Bowen, B. J. Comparative dietary analysis of the black-flanked rock-wallaby (Petrogale lateralis lateralis), the euro (Macropus robustus erubescens) and the feral goat (Capra hircus) from Cape Range National Park, Western Australia. Aust. Mammal. 41, 220–230 (2019).
    Article  Google Scholar 

    158.
    Croitor, R. Systematical position and paleoecology of the endemic deer Megaceroides algericus Lydekker, 1890 (Cervidae, Mammalia) from the late Pleistocene-early Holocene of North Africa. Geobios 49, 265–283, https://doi.org/10.1016/j.geobios.2016.05.002 (2016).
    Article  Google Scholar 

    159.
    Croitor, R., Bonifay, M.-F. & Brugal, J.-P. Systematic revision of the endemic deer Haploidoceros n. gen. mediterraneus (Bonifay, 1967)(Mammalia, Cervidae) from the Middle Pleistocene of Southern France. Paläontologische Zeitschrift 82, 325–346 (2008).
    Article  Google Scholar 

    160.
    Cromsigt, J. P. G. M., Kemp, Y. J. M., Rodrigues, E. & Kivit, H. Rewilding Europe’s large grazer community: how functionally diverse are the diets of European bison, cattle, and horses? Restoration Ecology 26, 891–899 (2017).
    Article  Google Scholar 

    161.
    Crowley, B. E. & Godfrey, L. R. in Leaping Ahead 173-182 (Springer, 2012).

    162.
    Crowley, B. E. & Samonds, K. E. Stable carbon isotope values confirm a recent increase in grasslands in northwestern Madagascar. The Holocene 23, 1066–1073, https://doi.org/10.1177/0959683613484675 (2013).
    ADS  Article  Google Scholar 

    163.
    Crowley, B. E., Godfrey, L. R. & Irwin, M. T. A glance to the past: subfossils, stable isotopes, seed dispersal, and lemur species loss in southern Madagascar. Am. J. Primatol. 73, 25–37 (2011).
    PubMed  Article  Google Scholar 

    164.
    Cunningham, P. L. & Wacher, T. Changes in the distribution, abundance and status of Arabian Sand Gazelle (Gazella subgutturosa marica) in Saudi Arabia: a review. Mammalia 73, 203–210 (2009).
    Article  Google Scholar 

    165.
    Czerwonogora, A., Fariña, R. A. & Tonni, E. P. Diet and isotopes of Late Pleistocene ground sloths: first results for Lestodon and Glossotherium (Xenarthra, Tardigrada). Neues Jahrbuch fur Geologie und Paleontologie – Abhandlungen 262, 257–266, https://doi.org/10.1127/0077-7749/2011/0197 (2011).
    Article  Google Scholar 

    166.
    Domanov, T. A. Musk deer Moschus moschiferus nutrition in the Tukuringra Mountain Range, Russian Far East, during the snow season. Russian Journal of Theriology 12, 91–97 (2013).
    Article  Google Scholar 

    167.
    Dantas, M. A. T. & Cozzuol, M. A. in Marine Isotope Stage 3 in Southern South America, 60 KA B.P.-30 KA B.P. (eds Germán Mariano Gasparini, Jorge Rabassa, Cecilia Deschamps, & Eduardo Pedro Tonni) 207-226 (Springer International Publishing, 2016).

    168.
    Dantas, M. A. T. et al. Paleoecology and radiocarbon dating of the Pleistocene megafauna of the Brazilian Intertropical Region. Quaternary Research 79, 61–65, https://doi.org/10.1016/j.yqres.2012.09.006 (2013).
    ADS  CAS  Article  Google Scholar 

    169.
    Dantas, M. A. T. et al. Isotopic paleoecology (δ 13C) of mesoherbivores from Late Pleistocene of Gruta da Marota, Andaraí, Bahia, Brazil. Hist. Biol., 1–9 (2019).

    170.
    Dantas, M. A. T. et al. Isotopic paleoecology (δ13C) from mammals from IUIU/BA and paleoenvironmental reconstruction (δ13C, δ18O) for the Brazilian intertropical region through the late Pleistocene. Quaternary Science Reviews 242, 106469 (2020).
    Article  Google Scholar 

    171.
    Davids, A. H. Estimation of genetic distances and heterosis in three ostrich (Struthio camelus) breeds for the improvement of productivity, Stellenbosch: University of Stellenbosch, (2011).

    172.
    Davies, P. & Lister, A. M. in The World of Elephants International Congress 479-480 (International Congress, Rome 2001, 2001).

    173.
    Dawson, L. An ecophysiological approach to the extinction of large marsupial herbivores in middle and late Pleistocene Australia. Alcheringa: An Australasian Journal of Palaeontology 30, 89–114, https://doi.org/10.1080/03115510609506857 (2006).
    Article  Google Scholar 

    174.
    Dawson, T. J. et al. in Fauna of Australia (eds D. W. Walton & B. J. Richardson) (AGPS Canberra, 1989).

    175.
    De Iuliis, G., Bargo, M. S. & Vizcaíno, S. F. Variation in skull morphology and mastication in the fossil giant armadillos Pampatherium spp. and allied genera (Mammalia: Xenarthra: Pampatheriidae), with comments on their systematics and distribution. Journal of Vertebrate Paleontology 20, 743–754, https://doi.org/10.1671/0272-4634(2000)020[0743:vismam]2.0.co;2 (2000).
    Article  Google Scholar 

    176.
    de Oliveira, A. M. & Santos, C. M. D. Functional morphology and paleoecology of Pilosa (Xenarthra, Mammalia) based on a two‐dimensional geometric Morphometrics study of the Humerus. J. Morphol. 279, 1455–1467 (2018).
    PubMed  Article  Google Scholar 

    177.
    de Oliveira, K. et al. Fantastic beasts and what they ate: Revealing feeding habits and ecological niche of late Quaternary Macraucheniidae from South America. Quaternary Science Reviews 231, 106178 (2020).
    Article  Google Scholar 

    178.
    DeSantis, L. R. G., Field, J. H., Wroe, S. & Dodson, J. R. Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change. Paleobiology 43, 181–195, https://doi.org/10.1017/pab.2016.50 (2017).
    Article  Google Scholar 

    179.
    Desbiez, A. L. J., Santos, S. A., Alvarez, J. M. & Tomas, W. M. Forage use in domestic cattle (Bos indicus), capybara (Hydrochoerus hydrochaeris) and pampas deer (Ozotoceros bezoarticus) in a seasonal Neotropical wetland. Mammalian Biology 76, 351–357 (2011).
    Article  Google Scholar 

    180.
    Dierenfeld, E., Hintz, H., Robertson, J., Van Soest, P. & Oftedal, O. Utilization of bamboo by the giant panda. The Journal of Nutrition 112, 636–641 (1982).
    CAS  PubMed  Article  Google Scholar 

    181.
    Djagoun, C., Codron, D., Sealy, J., Mensah, G. & Sinsin, B. Stable carbon isotope analysis of the diets of West African bovids in Pendjari Biosphere Reserve, Northern Benin. African Journal of Wildlife Research 43, 33–43 (2013).
    Article  Google Scholar 

    182.
    Domingo, L., Prado, J. L. & Alberdi, M. T. The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. Quaternary Science Reviews 55, 103–113 (2012).
    ADS  Article  Google Scholar 

    183.
    Dong, W. et al. Late Pleistocene mammalian fauna from Wulanmulan Paleolithic Site, Nei Mongol, China. Quaternary International 347, 139–147 (2014).
    ADS  Article  Google Scholar 

    184.
    Doody, J. S., Sims, R. A. & Letnic, M. Environmental Manipulation to Avoid a Unique Predator: Drinking Hole Excavation in the Agile Wallaby, Macropus agilis. Ethology 113, 128–136, https://doi.org/10.1111/j.1439-0310.2006.01298.x (2007).
    Article  Google Scholar 

    185.
    Dookia, S. & Jakher, G. R. Food and Feeding Habit of Indian Gazelle (Gazella bennettii), in the Thar Desert of Rajasthan. The Indian Forester 133 (2007).

    186.
    Downer, C. C. Observations on the diet and habitat of the mountain tapir (Tapirus pinchaque). J. Zool. 254, 279–291 (2001).
    Article  Google Scholar 

    187.
    Dunning, J. B. Jr CRC handbook of avian body masses. (CRC press, 2007).

    188.
    Dunstan, H., Florentine, S. K., Calviño-Cancela, M., Westbrooke, M. E. & Palmer, G. C. Dietary characteristics of Emus (Dromaius novaehollandiae) in semi-arid New South Wales, Australia, and dispersal and germination of ingested seeds. Emu-Austral Ornithology 113, 168–176 (2013).
    Article  Google Scholar 

    189.
    Endo, Y., Takada, H. & Takatsuki, S. Comparison of the Food Habits of the Sika Deer (Cervus nippon), the Japanese Serow (Capricornis crispus), and the Wild Boar (Sus scrofa), Sympatric Herbivorous Mammals from Mt. Asama, Central Japan. Mammal Study 42, 131-140, 110 (2017).

    190.
    Espunyes, J. et al. Seasonal diet composition of Pyrenean chamois is mainly shaped by primary production waves. PLoS One 14, e0210819 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    191.
    Evans, M. C., Macgregor, C. & Jarman, P. J. Diet and feeding selectivity of common wombats. Wildlife Research 33, 321–330 (2006).
    Article  Google Scholar 

    192.
    Faith, J. T. Late Quaternary dietary shifts of the Cape grysbok (Raphicerus melanotis) in southern Africa. Quaternary Research 75, 159–165 (2011).
    ADS  Article  Google Scholar 

    193.
    Faith, J. T. Late Pleistocene and Holocene mammal extinctions on continental Africa. Earth-Science Reviews 128, 105–121 (2014).
    ADS  Article  Google Scholar 

    194.
    Faith, J. T. & Behrensmeyer, A. K. Climate change and faunal turnover: testing the mechanics of the turnover-pulse hypothesis with South African fossil data. Paleobiology 39, 609–627 (2013).
    Article  Google Scholar 

    195.
    Faith, J. T. & Thompson, J. C. Fossil evidence for seasonal calving and migration of extinct blue antelope (Hippotragus leucophaeus) in southern Africa. Journal of Biogeography 40, 2108–2118 (2013).
    Article  Google Scholar 

    196.
    Faith, J. T. et al. New perspectives on middle Pleistocene change in the large mammal faunas of East Africa: Damaliscus hypsodon sp. nov. (Mammalia, Artiodactyla) from Lainyamok, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology 361-362, 84–93, https://doi.org/10.1016/j.palaeo.2012.08.005 (2012).
    ADS  Article  Google Scholar 

    197.
    Fanelli, F., Palombo, M. R., Pillola, G. L. & Ibba, A. Tracks and trackways of “Praemegaceros” cazioti (Depéret, 1897) (Artiodactyla, Cervidae) in Pleistocene coastal deposits from Sardinia (Western Mediterranean, Italy). Bollettino della Società Paleontologica Italiana 46, 47–54 (2007).
    Google Scholar 

    198.
    Farhadinia, M. S. et al. Goitered Gazelle, Gazella subgutturosa: its habitat preference and conservation needs in Miandasht Wildlife Refuge, north-eastern Iran (Mammalia: Artiodactyla). Zoology in the middle east 46, 9–18 (2009).
    Article  Google Scholar 

    199.
    Fariña, R. A., Vizcaíno, S. F. & Bargo, M. S. Body mass estimations in Lujanian (late Pleistocene-early Holocene of South America) mammal megafauna. Mastozoología Neotropical 5, 87–108 (1998).
    Google Scholar 

    200.
    Feranec, R. S. Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology 29, 230–242 (2003).
    Article  Google Scholar 

    201.
    Feranec, R., García, N., Díez, J. & Arsuaga, J. Understanding the ecology of mammalian carnivorans and herbivores from Valdegoba cave (Burgos, northern Spain) through stable isotope analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 263–272 (2010).
    ADS  Article  Google Scholar 

    202.
    Fernández-Olalla, M., Martínez-Jauregui, M., Perea, R., Velamazán, M. & San Miguel, A. Threat or opportunity? Browsing preferences and potential impact of Ammotragus lervia on woody plants of a Mediterranean protected area. J. Arid Environ. 129, 9–15, https://doi.org/10.1016/j.jaridenv.2016.02.003 (2016).
    ADS  Article  Google Scholar 

    203.
    Ferretti, M. P. The dwarf elephant Palaeoloxodon mnaidriensis from Puntali Cave, Carini (Sicily; late Middle Pleistocene): Anatomy, systematics and phylogenetic relationships. Quaternary International 182, 90–108, https://doi.org/10.1016/j.quaint.2007.11.003 (2008).
    ADS  Article  Google Scholar 

    204.
    Figueirido, B. & Soibelzon, L. H. Inferring palaeoecology in extinct tremarctine bears (Carnivora, Ursidae) using geometric morphometrics. Lethaia 43, 209–222 (2010).
    Article  Google Scholar 

    205.
    Flannery, T. F. Pleistocene faunal loss: implications of the aftershock for Australia’s past and future. Archaeology in Oceania 25, 45–55 (1990).
    Article  Google Scholar 

    206.
    Flannery, T. F. Taxonomy of Dendrolagus goodfellowi (Macropodidae: Marsupialia) with description of a new subspecies. Records of the Australian Museum 45, 33–42, https://doi.org/10.3853/j.0067-1975.45.1993.128 (1993).
    Article  Google Scholar 

    207.
    Flannery, T. F. The Pleistocene mammal fauna of Kelangurr Cave, central montane Irian Jaya, Indonesia. Records of the Western Australian Museum 57, 341–350 (1999).
    Google Scholar 

    208.
    Flannery, T. F., Martin, R. & Szalay, A. Tree kangaroos: a curious natural history. (Reed Books, 1996).

    209.
    Fleagle, J. G. & Gilbert, C. C. Elwyn Simons: a search for origins. (Springer Science & Business Media, 2007).

    210.
    Foerster, C. R. & Vaughan, C. Diet and foraging behavior of a female Baird’s tapir (Tapirus bairdi) in a Costa Rican lowland rainforest. Cuadernos de Investigación UNED 7, 259–267 (2015).
    Google Scholar 

    211.
    Fooden, J. Systematic review of the Barbary Macaque, Macaca sylvanus (Linnaeus, 1758). Fieldiana Zoology 113, 1–58 (2007).
    Article  Google Scholar 

    212.
    Forasiepi, A. M. et al. Exceptional skull of Huayqueriana (Mammalia, Litopterna, Macraucheniidae) from the late Miocene of Argentina: anatomy, systematics, and paleobiological implications. Bulletin of the American Museum of Natural History 2016, 1–76 (2016).
    Article  Google Scholar 

    213.
    França, Ld. M. et al. Chronology and ancient feeding ecology of two upper Pleistocene megamammals from the Brazilian Intertropical Region. Quaternary Science Reviews 99, 78–83, https://doi.org/10.1016/j.quascirev.2014.04.028 (2014).
    ADS  Article  Google Scholar 

    214.
    França, Ld. M. et al. Review of feeding ecology data of Late Pleistocene mammalian herbivores from South America and discussions on niche differentiation. Earth-Science Reviews 140, 158–165, https://doi.org/10.1016/j.earscirev.2014.10.006 (2015).
    ADS  CAS  Article  Google Scholar 

    215.
    France, C. A., Zelanko, P. M., Kaufman, A. J. & Holtz, T. R. Carbon and nitrogen isotopic analysis of Pleistocene mammals from the Saltville Quarry (Virginia, USA): Implications for trophic relationships. Palaeogeography, Palaeoclimatology, Palaeoecology 249, 271–282 (2007).
    ADS  Article  Google Scholar 

    216.
    Fuller, B. T. et al. Pleistocene paleoecology and feeding behavior of terrestrial vertebrates recorded in a pre-LGM asphaltic deposit at Rancho La Brea, California. Palaeogeography, Palaeoclimatology, Palaeoecology 537, 109383, https://doi.org/10.1016/j.palaeo.2019.109383 (2020).
    ADS  Article  Google Scholar 

    217.
    Furley, C. W. Potential Use of Gazelles for Game Ranching in the Arabian Peninsula (This lecture was delivered at the Agro-Gulf Exhibition and Conference, Abu Dhabi, 1983.).

    218.
    Gad, S. D. & Shyama, S. K. Diet composition and quality in Indian bison (Bos gaurus) based on fecal analysis. Zoolog. Sci. 28, 264–267 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    219.
    Gagnon, M. & Chew, A. E. Dietary preferences in extant African Bovidae. J. Mammal. 81, 490–511 (2000).
    Article  Google Scholar 

    220.
    García, A., Carretero, E. M. & Dacar, M. A. Presence of Hippidion at two sites of western Argentina: Diet composition and contribution to the study of the extinction of Pleistocene megafauna. Quaternary International 180, 22–29 (2008).
    ADS  Article  Google Scholar 

    221.
    García‐Rangel, S. Andean bear Tremarctos ornatus natural history and conservation. Mammal Review 42, 85–119 (2012).
    Article  Google Scholar 

    222.
    Gardner, P. C., Ridge, S., Wern, J. G. E. & Goossens, B. The influence of logging upon the foraging behaviour and diet of the endangered Bornean banteng. Mammalia 83, 519–529 (2019).
    Article  Google Scholar 

    223.
    Garitano-Zavala, A., Nadal, J. & Ávila, P. The feeding ecology and digestive tract morphometry of two sympatric tinamous of the high plateau of the Bolivian Andes: the Ornate Tinamou (Nothoprocta ornata) and the Darwin’s Nothura (Nothura darwinii). Ornitología Neotropical 14, 173–194 (2003).
    Google Scholar 

    224.
    Garrett, N. D. et al. Stable isotope paleoecology of Late Pleistocene Middle Stone Age humans from the Lake Victoria basin, Kenya. J. Hum. Evol. 82, 1–14 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    225.
    Gasparini, G. M., Kerber, L. & Oliveira, E. V. Catagonus stenocephalus (Lund in Reinhardt, 1880)(Mammalia, Tayassuidae) in the Touro Passo Formation (Late Pleistocene), Rio Grande do Sul, Brazil. Taxonomic and palaeoenvironmental comments. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 254, 261–273 (2009).
    Article  Google Scholar 

    226.
    Gasparini, G. M., Soibelzon, E., Zurita, A. E. & Miño-Boilini, A. R. A review of the Quaternary Tayassuidae (Mammalia, Artiodactyla) from the Tarija Valley, Bolivia. Alcheringa: An Australasian Journal of Palaeontology 34, 7–20, https://doi.org/10.1080/03115510903277717 (2010).
    Article  Google Scholar 

    227.
    Gautier-Hion, A. & Gautier, J.-P. Cephalophus ogilbyi crusalbum Grubb 1978, described from coastal Gabon, is quite common in the Forêt des Abeilles, Central Gabon. Revue d’Écologie 2 (1994).

    228.
    Gautier-Hion, A., Emmons, L. H. & Dubost, G. A comparison of the diets of three major groups of primary consumers of Gabon (primates, squirrels and ruminants). Oecologia 45, 182–189 (1980).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    229.
    Gavashelishvili, A. Habitat selection by East Caucasian tur (Capra cylindricornis). Biol. Conserv. 120, 391–398 (2004).
    Article  Google Scholar 

    230.
    Gebremedhin, B. et al. DNA Metabarcoding Reveals Diet Overlap between the Endangered Walia Ibex and Domestic Goats – Implications for Conservation. PLoS One 11, e0159133, https://doi.org/10.1371/journal.pone.0159133 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    231.
    Geist, V. Deer of the world: their evolution, behaviour, and ecology. (Stackpole books, 1998).

    232.
    Ghosh, A., Thakur, M., Singh, S. K., Sharma, L. K. & Chandra, K. Gut microbiota suggests dependency of Arunachal Macaque (Macaca munzala) on anthropogenic food in Western Arunachal Pradesh, Northeastern India: Preliminary findings. Global Ecology and Conservation, e01030 (2020).

    233.
    Giles, F. H. The riddle of Cervus schomburgki. Journal of the Siam Society Natural History Supplement 10, 1–34 (1937).
    Google Scholar 

    234.
    Gill, F. B. Ornithology. (W.H. Freeman and Company, 2001).

    235.
    Gillette, D. D. & Ray, C. E. Glyptodonts of North America. Vol. 40 (1981).

    236.
    Gingerich, P. D. Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology 29, 429–454, 10.1666/0094-8373(2003)0292.0.CO;2 (2003).

    237.
    Giri, S., Aryal, A., Koirala, R., Adhikari, B. & Raubenheimer, D. Feeding ecology and distribution of Himalayan serow (Capricornis thar) in Annapurna Conservation Area, Nepal. World Journal of Zoology 6, 80–85 (2011).
    Google Scholar 

    238.
    Godfrey, L. R. et al. Dental use wear in extinct lemurs: evidence of diet and niche differentiation. J. Hum. Evol. 47, 145–169, https://doi.org/10.1016/j.jhevol.2004.06.003 (2004).
    Article  PubMed  Google Scholar 

    239.
    González-Guarda, E. et al. Late Pleistocene ecological, environmental and climatic reconstruction based on megafauna stable isotopes from northwestern Chilean Patagonia. Quaternary Science Reviews 170, 188–202 (2017).
    ADS  Article  Google Scholar 

    240.
    Gazzolo, C. & Barrio, J. Feeding ecology of taruca (Hippocamelus antisensis) populations during the rainy and dry seasons in Central Peru. International Journal of Zoology 2016 (2016).

    241.
    Grass, A. D. Inferring lifestyle and locomotor habits of extinct sloths through scapula morphology and implications for convergent evolution in extant sloths PhD thesis, Graduate College of the University of Iowa, (2014).

    242.
    Gray, G. G. & Simpson, C. D. Ammotragus lervia. Mammalian Species 144, 1–7 (1980).
    Article  Google Scholar 

    243.
    Green, J. L. Dental microwear in the orthodentine of the Xenarthra (Mammalia) and its use in reconstructing the palaeodiet of extinct taxa: the case study of Nothrotheriops shastensis (Xenarthra, Tardigrada, Nothrotheriidae). Zoological Journal of the Linnean Society 156, 201–222 (2009).
    Article  Google Scholar 

    244.
    Green, J. L. & Kalthoff, D. C. Xenarthran dental microstructure and dental microwear analyses, with new data for Megatherium americanum (Megatheriidae). J. Mammal. 96, 645–657 (2015).
    Article  Google Scholar 

    245.
    Green, K., Davis, N. & Robinson, W. The diet of the common wombat (Vombatus ursinus) above the winter snowline in the decade following a wildfire. Aust. Mammal. 37, 146–156 (2015).
    Article  Google Scholar 

    246.
    Green, J. L., DeSantis, L. R. G. & Smith, G. J. Regional variation in the browsing diet of Pleistocene Mammut americanum (Mammalia, Proboscidea) as recorded by dental microwear textures. Palaeogeography, Palaeoclimatology, Palaeoecology 487, 59–70, https://doi.org/10.1016/j.palaeo.2017.08.019 (2017).
    ADS  Article  Google Scholar 

    247.
    Grignolio, S., Parrini, F., Bassano, B., Luccarini, S. & Apollonio, M. Habitat selection in adult males of Alpine ibex. Capra ibex ibex. Folia Zoologica-Praha 52, 113–120 (2003).
    Google Scholar 

    248.
    Gröcke, D. R. Distribution of C3 and C4 plants in the late Pleistocene of South Australia recorded by isotope biogeochemistry of collagen in megafauna. Australian Journal of Botany 45, 607–617 (1997).
    Article  Google Scholar 

    249.
    Gröcke, D. & Bocherens, H. Isotopic investigation of an Australian island environment. Comptes Rendus de l’Academie des Sciences. Serie 2. Sciences de la Terre et des Planetes 322, 713–719 (1996).
    Google Scholar 

    250.
    Groves, C. P. & Leslie, D. M. Jr Rhinoceros sondaicus (Perissodactyla: Rhinocerotidae). Mammalian Species 43, 190–208 (2011).
    Article  Google Scholar 

    251.
    Guerrero-Cardenas, I., Gallina, S., del Rio, P. C. M., Cardenas, S. A. & Orduña, R. R. Composición y selección de la dieta del borrego cimarrón (Ovis canadensis) en la Sierra El Mechudo, Baja California Sur, México. Therya (2016).

    252.
    Hadjisterkotis, E. & Reese, D. S. Considerations on the potential use of cliffs and caves by the extinct endemic late pleistocene hippopotami and elephants of Cyprus. European Journal of Wildlife Research 54, 122–133 (2008).
    Article  Google Scholar 

    253.
    Haleem, A. & Ilyas, O. Food and Feeding Habits of Gaur (Bos gaurus) in Highlands of Central India: A Case Study at Pench Tiger Reserve, Madhya Pradesh (India). Zoolog. Sci. 35, 57–68 (2018).
    PubMed  Article  Google Scholar 

    254.
    Halenar, L. B. Reconstructing the Locomotor Repertoire of Protopithecus brasiliensis. II. Forelimb Morphology. The Anatomical Record 294, 2048–2063, https://doi.org/10.1002/ar.21499 (2011).
    Article  PubMed  Google Scholar 

    255.
    Halenar, L. B. Paleobiology of Protopithecus brasiliensis, a plus-size Pleistocene platyrrhine from Brazil, City University of New York, (2012).

    256.
    Hamilton, W. J. III, Buskirk, R. & Buskirk, W. H. Intersexual dominance and differential mortality of Gemsbok Oryx gazella at Namib Desert waterholes. Madoqua 10, 5–19 (1977).
    Google Scholar 

    257.
    Hansen, R. M. Shasta ground sloth food habits, Rampart Cave, Arizona. Paleobiology 4, 302–319 (1978).
    Article  Google Scholar 

    258.
    Hansford, J. P. & Turvey, S. T. Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world’s largest bird. Royal Society open science 5, 181295 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    259.
    Harris, J. M. & Cerling, T. E. Dietary adaptations of extant and Neogene African suids. J. Zool. 256, 45–54 (2002).
    Article  Google Scholar 

    260.
    Hartwig, W. C. & Cartelle, C. A complete skeleton of the giant South American primate Protopithecus. Nature 381, 307–311 (1996).
    ADS  CAS  PubMed  Article  Google Scholar 

    261.
    Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction‐driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2018).
    Article  Google Scholar 

    262.
    Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    263.
    Henry, O., Feer, F. & Sabatier, D. Diet of the lowland tapir (Tapirus terrestris L.) in French Guiana. Biotropica 32, 364–368 (2000).
    Article  Google Scholar 

    264.
    Herd, R. M. & Dawson, T. J. Fiber digestion in the emu, Dromaius novaehollandiae, a large bird with a simple gut and high rates of passage. Physiol. Zool. 57, 70–84 (1984).
    Article  Google Scholar 

    265.
    Herridge, V. L. & Lister, A. M. Extreme insular dwarfism evolved in a mammoth. Proc. R. Soc. B. 279, 3193–3200 (2012).
    PubMed  Article  Google Scholar 

    266.
    Heywood, J. Functional anatomy of bovid upper molar occlusal surfaces with respect to diet. J. Zool. 281, 1–11 (2010).
    Article  Google Scholar 

    267.
    Hofreiter, M. et al. A molecular analysis of ground sloth diet through the last glaciation. Mol. Ecol. 9, 1975–1984 (2000).
    CAS  PubMed  Article  Google Scholar 

    268.
    Hollis, C., Robertshaw, J. & Harden, R. Ecology of the swamp wallaby (Wallabia-Bicolor) in northeastern New-South-Wales. 1. Diet. Wildlife Research 13, 355–365 (1986).
    Article  Google Scholar 

    269.
    Hope, G. & Flannery, T. A preliminary report of changing Quaternary mammal faunas in subalpine New Guinea. Quaternary Research 40, 117–126 (1993).
    ADS  Article  Google Scholar 

    270.
    Hou, R. et al. Seasonal variation in diet and nutrition of the northern‐most population of Rhinopithecus roxellana. Am. J. Primatol. 80, e22755 (2018).
    PubMed  Article  CAS  Google Scholar 

    271.
    Huffman, B. Rucervus schomburgki. Ultimate Ungulate. http://www.ultimateungulate.com/Artiodactyla/Rucervus_schomburgki.html (2020).

    272.
    Hullot, M., Antoine, P.-O., Ballatore, M. & Merceron, G. Dental microwear textures and dietary preferences of extant rhinoceroses (Perissodactyla, Mammalia). Mammal Research 64, 397–409 (2019).
    Article  Google Scholar 

    273.
    Hume, J. P. The history of the Dodo Raphus cucullatus and the penguin of Mauritius. Hist. Biol. 18, 69–93 (2006).
    Article  Google Scholar 

    274.
    Hummel, J. et al. Fluid and particle retention in the digestive tract of the addax antelope (Addax nasomaculatus)—Adaptations of a grazing desert ruminant. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 149, 142–149 (2008).
    Article  CAS  Google Scholar 

    275.
    Iribarren, C. & Kotler, B. P. Foraging patterns of habitat use reveal landscape of fear of Nubian ibex Capra nubiana. Wildlife Biology 18, 194–201 (2012).
    Article  Google Scholar 

    276.
    Ismail, K., Kamal, K., Plath, M. & Wronski, T. Effects of an exceptional drought on daily activity patterns, reproductive behaviour, and reproductive success of reintroduced Arabian oryx (Oryx leucoryx). J. Arid Environ. 75, 125–131 (2011).
    ADS  Article  Google Scholar 

    277.
    IUCN Redlist. The International Union for the Conservation of Nature 2018.

    278.
    Iwaniuk, A. N., Pellis, S. M. & Whishaw, I. Q. The relative importance of body size, phylogeny, locomotion, and diet in the evolution of forelimb dexterity in fissiped carnivores (Carnivora). Can. J. Zool. 78, 1110–1125 (2000).
    Article  Google Scholar 

    279.
    Iwase, A., Hashizume, J., Izuho, M., Takahashi, K. & Sato, H. Timing of megafaunal extinction in the late Late Pleistocene on the Japanese Archipelago. Quaternary International 255, 114–124, https://doi.org/10.1016/j.quaint.2011.03.029 (2012).
    ADS  Article  Google Scholar 

    280.
    Jackson, J. The annual diet of the fallow deer (Dama dama) in the New Forest, Hampshire, as determined by rumen content analysis. J. Zool. 181, 465–473 (1977).
    Article  Google Scholar 

    281.
    Janis, C. M., Napoli, J. G., Billingham, C. & Martín-Serra, A. Proximal humerus morphology indicates divergent patterns of locomotion in extinct giant kangaroos. J. Mamm. Evol., 1–21 (2020).

    282.
    Jankowski, N. R., Gully, G. A., Jacobs, Z., Roberts, R. G. & Prideaux, G. J. A late Quaternary vertebrate deposit in Kudjal Yolgah Cave, south‐western Australia: refining regional late Pleistocene extinctions. Journal of Quaternary Science 31, 538–550 (2016).
    ADS  Article  Google Scholar 

    283.
    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quaternary Science Reviews 144, 145–154 (2016).
    ADS  Article  Google Scholar 

    284.
    Al-Jassim, R. & Hogan, J. in Proc. 3rd ISOCARD Conference. Keynote presentations. 29th January–1st February. 75–86.

    285.
    Jhala, Y. V. & Isvaran, K. in The Ecology of Large Herbivores in South and Southeast Asia 151–176 (Springer, 2016).

    286.
    Jiménez-Hidalgo, E. et al. Species diversity and paleoecology of Late Pleistocene horses from southern Mexico. Frontiers in Ecology and Evolution 7, 394 (2019).
    Article  Google Scholar 

    287.
    Johnson, C. Australia’s mammal extinctions: a 50,000-year history. (Cambridge University Press, 2006).

    288.
    Johnson, C. N. & Prideaux, G. J. Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environmental change as cause of extinction. Austral Ecol. 29, 553–557 (2004).
    Article  Google Scholar 

    289.
    Jones, T. et al. The Highland Mangabey Lophocebus kipunji: A New Species of African Monkey. Science 308, 1161–1164, https://doi.org/10.1126/science.1109191 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    290.
    Jones, K. E. et al. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090‐184. Ecology 90, 2648–2648 (2009).
    Article  Google Scholar 

    291.
    Jones, D. B. & DeSantis, L. R. Dietary ecology of the extinct cave bear: evidence of omnivory as inferred from dental microwear textures. Acta Palaeontologica Polonica 61, 735–742 (2016).
    Article  Google Scholar 

    292.
    Jungers, W. L., Godfrey, L. R., Simons, E. L. & Chatrath, P. S. Phalangeal curvature and positional behavior in extinct sloth lemurs (Primates, Palaeopropithecidae). Proc. Natl. Acad. Sci. USA 94, 11998–12001 (1997).
    ADS  CAS  PubMed  Article  Google Scholar 

    293.
    Jungers, W. L. et al. The hands and feet of Archaeolemur: metrical affinities and their functional significance. J. Hum. Evol. 49, 36–55, https://doi.org/10.1016/j.jhevol.2005.03.001 (2005).
    CAS  Article  PubMed  Google Scholar 

    294.
    Kaczensky, P. et al. Stable isotopes reveal diet shift from pre-extinction to reintroduced Przewalski’s horses. Sci. Rep. 7, 5950, https://doi.org/10.1038/s41598-017-05329-6 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    295.
    Kartzinel, T. R. et al. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc. Natl. Acad. Sci. U. S. A. 112, 8019–8024, https://doi.org/10.1073/pnas.1503283112 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    296.
    Kelly, E. M. & Sears, K. E. Limb specialization in living marsupial and eutherian mammals: constraints on mammalian limb evolution. J. Mammal. 92, 1038–1049 (2011).
    Article  Google Scholar 

    297.
    Kelt, D. A. & Meyer, M. D. Body size frequency distributions in African mammals are bimodal at all spatial scales. Glob. Ecol. Biogeogr. 18, 19–29, https://doi.org/10.1111/j.1466-8238.2008.00422.x (2008).
    Article  Google Scholar 

    298.
    Khadka, K. K., Singh, N., Magar, K. T. & James, D. A. Dietary composition, breadth, and overlap between seasonally sympatric Himalayan musk deer and livestock: Conservation implications. Journal for Nature Conservation 38, 30–36 (2017).
    ADS  Article  Google Scholar 

    299.
    Kim, B. J., Lee, N. S. & Lee, S. D. Feeding diets of the Korean water deer (Hydropotes inermis argyropus) based on a 202 bp rbcL sequence analysis. Conservation Genetics 12, 851–856 (2011).
    Article  Google Scholar 

    300.
    Kim, D. B., Koo, K. A., Kim, H. H., Hwang, G. Y. & Kong, W. S. Reconstruction of the habitat range suitable for long-tailed goral (Naemorhedus caudatus) using fossils from the Paleolithic sites. Quaternary International 519, 101–112 (2019).
    ADS  Article  Google Scholar 

    301.
    Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37 (2006).

    302.
    Köhler, M. & Moyà-Solà, S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain. Behav. Evol. 63, 125–140 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    303.
    Kohn, M. J. & McKay, M. P. Paleoecology of late Pleistocene–Holocene faunas of eastern and central Wyoming, USA, with implications for LGM climate models. Palaeogeography, Palaeoclimatology, Palaeoecology 326–328, 42–53 (2012).
    ADS  Article  Google Scholar 

    304.
    Kohn, M. J., McKay, M. P. & Knight, J. L. Dining in the Pleistocene—who’s on the menu? Geology 33, 649–652 (2005).
    ADS  Article  Google Scholar 

    305.
    Koike, S., Nakashita, R., Naganawa, K., Koyama, M. & Tamura, A. Changes in diet of a small, isolated bear population over time. J. Mammal. 94, 361–368, https://doi.org/10.1644/11-mamm-a-403.1 (2013).
    Article  Google Scholar 

    306.
    Kosintsev, P. et al. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nature Ecology & Evolution 3, 31–38 (2019).
    Article  Google Scholar 

    307.
    Kowalczyk, R. et al. Influence of management practices on large herbivore diet—Case of European bison in Białowieża Primeval Forest (Poland). For. Ecol. Manage. 261, 821–828 (2011).
    Article  Google Scholar 

    308.
    Kram, R. & Dawson, T. J. Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 120, 41–49 (1998).
    CAS  Article  Google Scholar 

    309.
    Krishna, Y. C., Clyne, P. J., Krishnaswamy, J. & Kumar, N. S. Distributional and ecological review of the four horned antelope, Tetracerus quadricornis. Mammalia 73, 1–6 (2009).
    Article  Google Scholar 

    310.
    Kropf, M., Mead, J. I. & Scott Anderson, R. Dung, diet, and the paleoenvironment of the extinct shrub-ox (Euceratherium Collinum) on the Colorado Plateau, USA. Quaternary Research 67, 143–151, https://doi.org/10.1016/j.yqres.2006.10.002 (2007).
    ADS  Article  Google Scholar 

    311.
    Kubo, M. O., Yamada, E., Fujita, M. & Oshiro, I. Paleoecological reconstruction of Late Pleistocene deer from the Ryukyu Islands, Japan: Combined evidence of mesowear and stable isotope analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 435, 159–166 (2015).
    ADS  Article  Google Scholar 

    312.
    Kumar, R. S., Mishra, C. & Sinha, A. Foraging ecology and time-activity budget of the Arunachal macaque Macaca munzala – A preliminary study. Curr. Sci. 93, 532–539 (2007).
    Google Scholar 

    313.
    Kuzmin, Y. V. Extinction of the woolly mammoth (Mammuthus primigenius) and woolly rhinoceros (Coelodonta antiquitatis) in Eurasia: review of chronological and environmental issues. Boreas 39, 247–261 (2010).
    Article  Google Scholar 

    314.
    Lambert, J. E. Primate digestion: interactions among anatomy, physiology, and feeding ecology. Evolutionary Anthropology 7, 8–20 (1998).
    Article  Google Scholar 

    315.
    Lamoot, I., Callebaut, J., Demeulenaere, E., Vandenberghe, C. & Hoffmann, M. Foraging behaviour of donkeys grazing in a coastal dune area in temperate climate conditions. Appl. Anim. Behav. Sci. 92, 93–112 (2005).
    Article  Google Scholar 

    316.
    Loponte, D. M. & Corriale, M. J. Isotopic values of diet of Blastocerus dichotomus (marsh deer) in Paraná Basin, South America. Journal of Archaeological Science 40, 1382–1388 (2013).
    Article  Google Scholar 

    317.
    Larramendi, A. Shoulder height, body mass, and shape of proboscideans. Acta Palaeontologica Polonica 61, 537–574 (2015).
    Google Scholar 

    318.
    Latham, A. D. M. et al. A refined model of body mass and population density in flightless birds reconciles extreme bimodal population estimates for extinct moa. Ecography 43, 353–364 (2020).
    Article  Google Scholar 

    319.
    Latrubesse, E. M. et al. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth-Science Reviews 99, 99–124, https://doi.org/10.1016/j.earscirev.2010.02.005 (2010).
    ADS  CAS  Article  Google Scholar 

    320.
    Law, A., Jones, K. C. & Willby, N. J. Medium vs. short-term effects of herbivory by Eurasian beaver on aquatic vegetation. Aquat. Bot. 116, 27–34 (2014).
    Article  Google Scholar 

    321.
    Lazagabaster, I. A., Rowan, J., Kamilar, J. M. & Reed, K. E. Evolution of craniodental correlates of diet in African Bovidae. J. Mamm. Evol. 23, 385–396 (2016).
    Article  Google Scholar 

    322.
    Lazagabaster, I. A. et al. Fossil Suidae (Mammalia, Artiodactyla) from Lee Adoyta, Ledi-Geraru, lower Awash Valley, Ethiopia: Implications for late Pliocene turnover and paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 504, 186–200 (2018).
    ADS  Article  Google Scholar 

    323.
    Lehmann, D. Dietary and spatial strategies of gemsbok (Oryx g. gazella) and springbok (Antidorcas marsupialis) in response to drought in the desert environment of the Kunene region, Namibia PhD thesis, Freie Universität Berlin (2015).

    324.
    Leslie, D. M. Boselaphus tragocamelus (Artiodactyla: Bovidae). Mammalian Species, 1–16 (2008).

    325.
    Leslie, D. M. Jr Procapra picticaudata (Artiodactyla: Bovidae). Mammalian Species 42, 138–148 (2010).
    Article  Google Scholar 

    326.
    Leslie, D. M. & Schaller, G. B. Pantholops hodgsonii (Artiodactyla: Bovidae). Mammalian Species, 1–13 (2008).

    327.
    Leslie, D. M. & Schaller, G. B. Bos grunniens and Bos mutus (Artiodactyla: Bovidae). Mammalian species, 1–17 (2009).

    328.
    Leslie, D. M. Jr, Groves, C. P. & Abramov, A. V. Procapra przewalskii (Artiodactyla: Bovidae). Mammalian Species 42, 124–137 (2010).
    Article  Google Scholar 

    329.
    Leslie, D. M. Jr, Lee, D. N. & Dolman, R. W. Elaphodus cephalophus (Artiodactyla: Cervidae). Mammalian Species 45, 80–91 (2013).
    Article  Google Scholar 

    330.
    Leus, K., Goodall, G. P. & Macdonald, A. A. Anatomy and histology of the babirusa (Babyrousa babyrussa) stomach. Comptes Rendus de l’Académie des Sciences – Series III – Sciences de la Vie 322, 1081–1092, https://doi.org/10.1016/S0764-4469(99)00107-9 (1999).
    CAS  Article  Google Scholar 

    331.
    Li, Y., Yu, Y.-Q. & Shi, L. Foraging and bedding site selection by Asiatic ibex (Capra sibirica) during summer in Central Tianshan Mountains. Pakistan Journal of Zoology 47, 1–6 (2015).
    ADS  CAS  Google Scholar 

    332.
    Li, B., Xu, W., Blank, D. A., Wang, M. & Yang, W. Diet characteristics of wild sheep (Ovis ammon darwini) in the Mengluoke Mountains, Xinjiang. China Journal of Arid Land (2018).

    333.
    Liang, X., Kang, A. & Pettorelli, N. Understanding habitat selection of the Vulnerable wild yak Bos mutus on the Tibetan Plateau. Oryx 51, 361–369 (2017).
    Article  Google Scholar 

    334.
    Lister, A. M. & Stuart, A. J. The extinction of the giant deer Megaloceros giganteus (Blumenbach): New radiocarbon evidence. Quaternary International 500, 185–203 (2019).
    ADS  Article  Google Scholar 

    335.
    Liu, X., Stanford, C. B., Yang, J., Yao, H. & Li, Y. Foods Eaten by the Sichuan snub‐nosed monkey (Rhinopithecus roxellana) in Shennongjia National Nature Reserve, China, in relation to nutritional chemistry. Am. J. Primatol. 75, 860–871 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    336.
    Livezey, B. C. An ecomorphological review of the dodo (Raphus cucullatus) and solitaire (Pezophaps solitaria), flightless Columbiformes of the Mascarene Islands. J. Zool. 230, 247–292 (1993).
    Article  Google Scholar 

    337.
    Livezey, B. C. & Zusi, R. L. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological journal of the Linnean Society 149, 1–95 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    338.
    Lobo, L. S. Estudo da morfologia dentária de Xenorhinotherium bahiense Cartelle & Lessa, 1988 (Litopterna, Macraucheniidae) Universidade Federal De Viçosa, (2015).

    339.
    Long, J. A., Archer, M., Flannery, T. & Hand, S. Prehistoric mammals of Australia and New Guinea: one hundred million years of evolution. (Johns Hopkins University Press, 2002).

    340.
    Louys, J., Meloro, C., Elton, S., Ditchfield, P. & Bishop, L. C. Mesowear as a means of determining diets in African antelopes. Journal of Archaeological Science 38, 1485–1495, https://doi.org/10.1016/j.jas.2011.02.011 (2011).
    Article  Google Scholar 

    341.
    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quaternary Science Reviews 212, 33–44 (2019).
    ADS  Article  Google Scholar 

    342.
    MacFadden, B. J. Fossil horses from “Eohippus”(Hyracotherium) to Equus: scaling, Cope’s Law, and the evolution of body size. Paleobiology 12, 355–369 (1986).
    Article  Google Scholar 

    343.
    MacFadden, B. J. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quaternary Research 64, 113–124 (2005).
    ADS  Article  Google Scholar 

    344.
    MacFadden, B. J. & Shockey, B. J. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23, 77–100 (1997).
    Article  Google Scholar 

    345.
    MacPhee, R. D. E. & Sues, H.-D. Extinctions in Near Time: Causes, Contexts, and Consequences. (Springer, 1999).

    346.
    Madden, R. H. Hypsodonty in Mammals: Evolution, Geomorphology, and the Role of Earth System Processes. (Cambridge University Press, 2014).

    347.
    Al Majaini, H. Nutritional ecology of the Arabian tahr Hemitragus jayakari Thomas 1984 in Wadi Sareen Reserve area, M. Sc. thesis, Sultan Qaboos University, Oman. 97pages, (1999).

    348.
    Marcolino, C. P., dos Santos Isaias, R. M., Cozzuol, M. A., Cartelle, C. & Dantas, M. A. T. Diet of Palaeolama major (Camelidae) of Bahia, Brazil, inferred from coprolites. Quaternary international 278, 81–86 (2012).
    ADS  Article  Google Scholar 

    349.
    Marin, V. C. et al. Diet of the marsh deer in the Paraná River Delta, Argentina—a vulnerable species in an intensive forestry landscape. European Journal of Wildlife Research 66, 16 (2020).
    Article  Google Scholar 

    350.
    Marinero, N. V., Navarro, J. L. & Martella, M. B. Does food abundance determine the diet of the Puna Rhea (Rhea tarapacensis) in the Austral Puna desert in Argentina? Emu-Austral Ornithology 117, 199–206 (2017).
    Article  Google Scholar 

    351.
    Mayte, G.-B. et al. Diet and habitat of Mammuthus columbi (Falconer, 1857) from two Late Pleistocene localities in central western Mexico. Quaternary International 406, 137–146 (2016).
    ADS  Article  Google Scholar 

    352.
    McAfee, R. K. Feeding mechanics and dietary implications in the fossil sloth Neocnus (Mammalia: Xenarthra: Megalonychidae) from Haiti. J. Morphol. 272, 1204–1216 (2011).
    PubMed  Article  Google Scholar 

    353.
    McDonald, H. G. Palecology of extinct Xenarthrans and the Great American Biotic Interchange. Bulletin of the Florida Museum of Natural History 45, 319–340 (2005).
    Google Scholar 

    354.
    McDonald, H. G. & Pelikan, S. Mammoths and mylodonts: Exotic species from two different continents in North American Pleistocene faunas. Quaternary International 142–143, 229–241, https://doi.org/10.1016/j.quaint.2005.03.020 (2006).
    ADS  Article  Google Scholar 

    355.
    McDonald, H. G., Feranec, R. S. & Miller, N. First record of the extinct ground sloth, Megalonyx jeffersonii,(Xenarthra, Megalonychidae) from New York and contributions to its paleoecology. Quaternary International 530, 42–46 (2019).
    ADS  Article  Google Scholar 

    356.
    McFarlane, D. A., MacPhee, R. D. E. & Ford, D. C. Body Size Variability and a Sangamonian Extinction Model forAmblyrhiza, a West Indian Megafaunal Rodent. Quaternary Research 50, 80–89 (1998).
    ADS  Article  Google Scholar 

    357.
    McNamara, K. & Murray, P. Prehistoric Mammals of Western Australia. (Western Australian Museum, 2010).

    358.
    Mead, J. I., O’Rourke, M. K. & Foppe, T. M. Dung and diet of the extinct Harrington’s mountain goat (Oreamnos harringtoni). J. Mammal. 67, 284–293 (1986).
    Article  Google Scholar 

    359.
    Mead, J. I., Agenbroad, L. D., Phillips, A. M. III & Middleton, L. T. Extinct mountain goat (Oreamnos harringtoni) in southeastern Utah. Quaternary Research 27, 323–331 (1987).
    ADS  Article  Google Scholar 

    360.
    Meijaard, E. & Groves, C. Upgrading three subspecies of babirusa (Babyrousa sp.) to full species level. Asian Wild Pig News 2, 33–39 (2002).
    Google Scholar 

    361.
    Meijaard, E. & Groves, C. P. Morphometrical relationships between South‐east Asian deer (Cervidae, tribe Cervini): Evolutionary and biogeographic implications. J. Zool. 263, 179–196 (2004).
    Article  Google Scholar 

    362.
    Meloro, C. & de Oliveira, A. M. Elbow joint geometry in bears (Ursidae, Carnivora): a tool to infer paleobiology and functional adaptations of Quaternary fossils. J. Mamm. Evol. 26, 133–146 (2019).
    Article  Google Scholar 

    363.
    Mengli, Z., Willms, W. D., Guodong, H. & Ye, J. Bactrian camel foraging behaviour in a Haloxylon ammodendron (C.A. Mey) desert of Inner Mongolia. Appl. Anim. Behav. Sci. 99, 330–343, https://doi.org/10.1016/j.applanim.2005.11.001 (2006).
    Article  Google Scholar 

    364.
    Miller, G. H. et al. Pleistocene extinction of Genyornis newtoni: human impact on Australian megafauna. Science 283, 205–208 (1999).
    CAS  PubMed  Article  Google Scholar 

    365.
    Miller, G. H. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290, https://doi.org/10.1029/2004gl021592 (2005).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    366.
    Milligan, H. E. & Humphries, M. M. The importance of aquatic vegetation in beaver diets and the seasonal and habitat specificity of aquatic-terrestrial ecosystem linkages in a subarctic environment. Oikos 119, 1877–1886, https://doi.org/10.1111/j.1600-0706.2010.18160.x (2010).
    Article  Google Scholar 

    367.
    Milton, S. J., Dean, W. R. J. & Siegfried, W. R. Food selection by ostrich in southern Africa. The Journal of wildlife management, 234–248 (1994).

    368.
    Mimoun, J. B. & Nouira, S. Food habits of the aoudad Ammotragus lervia in the Bou Hedma mountains, Tunisia. South African Journal of Science 111, 1–5 (2015).
    Google Scholar 

    369.
    Mingxing, D., Yanhong, Z. & Jianguo, Z. Cold and/or wet Early Holocene in Shijiazhuang district: Evidences from tooth microwear and stable isotopes analyses. Quaternary Sciences 34, 8–15 (2014).
    Google Scholar 

    370.
    Miranda, M. et al. Contrasting feeding patterns of native red deer and two exotic ungulates in a Mediterranean ecosystem. Wildlife Research 39, 171–182 (2012).
    ADS  Article  Google Scholar 

    371.
    Missagia, R. V., Parisi-Dutra, R. & Cozzuol, M. A. Morphometry of Catagonus stenocephalus (Lund in Reinhardt 1880)(Artiodactyla: Tayassuidae) and taxonomical considerations about Catagonus Ameghino 1904. Lundiana International Journal of Biodiversity 12, 39–44 (2016).
    Google Scholar 

    372.
    Mitchell, D. R. & Wroe, S. Biting mechanics determines craniofacial morphology among extant diprotodont herbivores: dietary predictions for the giant extinct short-faced kangaroo, Simosthenurus occidentalis. Paleobiology 45, 167–181 (2019).
    Article  Google Scholar 

    373.
    Mitchell, K. J. et al. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science 344, 898–900 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    374.
    Moczygemba, J. D. Movements of nilgai antelope (Boselaphus tragocamelus) in southern Texas. (Texas A&M University-Kingsville, 2010).

    375.
    Moore, D. M. Post-glacial vegetation in the South Patagonian territory of the giant ground sloth, Mylodon. Botanical Journal of the Linnean Society 77, 177–202 (1978).
    Article  Google Scholar 

    376.
    Mori, E., Bozzi, R. & Laurenzi, A. Feeding habits of the crested porcupine Hystrix cristata L. 1758 (Mammalia, Rodentia) in a Mediterranean area of Central Italy. The European Zoological Journal 84, 261–265 (2017).
    Article  Google Scholar 

    377.
    Morosi, E. & Ubilla, M. Dietary and palaeoenvironmental inferences in Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay). Hist. Biol. 1–7, https://doi.org/10.1080/08912963.2017.1355914 (2017).

    378.
    Murray, P. F. & Vickers-Rich, P. Magnificent mihirungs: the colossal flightless birds of the Australian dreamtime. (Indiana University Press, 2004).

    379.
    Naish, D. The anatomy of sloths, https://blogs.scientificamerican.com/tetrapod-zoology/the-anatomy-of-sloths/ (2012).

    380.
    Nedin, C. The dietary niche of the extinct Australian marsupial lion: Thylacoleo carnifex Owen. Lethaia 24, 115–118, https://doi.org/10.1111/j.1502-3931.1991.tb01184.x (1991).
    Article  Google Scholar 

    381.
    New Zealand Organisms Register. (New Zealand, 2020).

    382.
    Nijboer, J. & Clauss, M. Fibre intake and feces quality in leaf-eating primates PhD thesis, Utrecht University, (2006).

    383.
    Noe-Nygaard, N., Price, T. D. & Hede, S. U. Diet of aurochs and early cattle in southern Scandinavia: evidence from 15N and 13C stable isotopes. Journal of Archaeological Science 32, 855–871 (2005).
    Article  Google Scholar 

    384.
    Northcote, E. M. Size, form and habit of the extinct Maltese swan Cygnus falconeri. Ibis 124, 148–158 (1982).
    Article  Google Scholar 

    385.
    Nowak, R. M. Walker’s Mammals of the World. (Johns Hopkins University Press, 1999).

    386.
    Nugraha, R. & Mustari, A. H. Habitat Characteristics and Diet of Bear Cuscus (Ailurops ursinus) in Tanjung Peropa Wildlife Reserve, Southeast Sulawesi. Jurnal Wasian 4, 55–68 (2017).
    Article  Google Scholar 

    387.
    Oli, C. B. et al. Dry season diet composition of four-horned antelope Tetracerus quadricornis in tropical dry deciduous forests, Nepal. PeerJ 6, e5102 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    388.
    de Oliveira, J. F., Asevedo, L., Cherkinsky, A. & Dantas, M. A. T. Radiocarbon dating and integrative paleoecology (δ13C, stereomicrowear) of Eremotherium laurillardi (LUND, 1842) from midwest region of the Brazilian intertropical region. Journal of South American Earth Sciences, 102653 (2020).

    389.
    Olson, V. A. & Turvey, S. T. The evolution of sexual dimorphism in New Zealand giant moa (Dinornis) and other ratites. Proc. R. Soc. B. 280, 20130401 (2013).
    PubMed  Article  Google Scholar 

    390.
    Omena, É. C., Silva, J. L. L. d., Sial, A. N., Cherkinsky, A. & Dantas, M. A. T. Late Pleistocene meso-megaherbivores from Brazilian Intertropical Region: isotopic diet (δ 13C), niche differentiation, guilds and paleoenvironmental reconstruction (δ 13C, δ 18O). Hist. Biol., 1–6 (2020).

    391.
    Osawa, R. Feeding strategies of the swamp wallaby, Wallabia bicolor, on North Stradbroke Island, Queensland. I: Composition of diets. Wildlife Research 17, 615–621 (1990).
    Article  Google Scholar 

    392.
    Pacini, N. & Harper, D. M. in Tropical stream ecology 147–197 (Elsevier, 2008).

    393.
    The Paleobiology Database. (University of Wisconsin-Madison, Department of Geosciences 2020).

    394.
    Palmqvist, P., Martínez-Navarro, B. & Arribas, A. Prey selection by terrestrial carnivores in a lower Pleistocene paleocommunity. Paleobiology 22, 514–534 (1996).
    Article  Google Scholar 

    395.
    Palmqvist, P., Gröcke, D. R., Arribas, A. & Fariña, R. A. Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr: Zn) and ecomorphological approaches. Paleobiology 29, 205–229 (2003).
    Article  Google Scholar 

    396.
    Palmqvist, P., Pérez-Claros, J. A., Janis, C. M. & Gröcke, D. R. Tracing the ecophysiology of ungulates and predator–prey relationships in an early Pleistocene large mammal community. Palaeogeography, Palaeoclimatology, Palaeoecology 266, 95–111 (2008).
    ADS  Article  Google Scholar 

    397.
    Palombo, M. R. in Insular Vertebrate Evolution: the Palaeontological Approach Vol. 12 (eds Josep Antoni Alcover & P. Bover) 233–244 (Monografies de la Societat d’História Natural de les Balears, 2005).

    398.
    Palombo, M. R. et al. Coupling tooth microwear and stable isotope analyses for palaeodiet reconstruction: the case study of Late Middle Pleistocene Elephas (Palaeoloxodon) antiquus teeth from Central Italy (Rome area). Quaternary International 126–128, 153–170, https://doi.org/10.1016/j.quaint.2004.04.020 (2005).
    ADS  Article  Google Scholar 

    399.
    Pangau-Adam, M. & Muehlenberg, M. Palm species in the diet of the northern cassowary (Casuarius unappendiculatus) in Jayapura region, Papua, Indonesia. Palms 58, 19–26 (2014).
    Google Scholar 

    400.
    Pansani, T. R., Muniz, F. P., Cherkinsky, A., Pacheco, M. L. A. F. & Dantas, M. A. T. Isotopic paleoecology (δ13C, δ18O) of Late Quaternary megafauna from Mato Grosso do Sul and Bahia States, Brazil. Quaternary Science Reviews 221, 105864 (2019).
    Article  Google Scholar 

    401.
    Pansu, J. et al. Trophic ecology of large herbivores in a reassembling African ecosystem. J. Ecol. 107, 1355–1376 (2019).
    Article  Google Scholar 

    402.
    Paoletti, G. & Puig, S. Diet of the Lesser Rhea (Pterocnemia pennata) and availability of food in the Andean Precordillera (Mendoza, Argentina). Emu-Austral Ornithology 107, 52–58 (2007).
    Article  Google Scholar 

    403.
    Pappa, S., Schreve, D. C. & Rivals, F. The bear necessities: A new dental microwear database for the interpretation of palaeodiet in fossil Ursidae. Palaeogeography, Palaeoclimatology, Palaeoecology 514, 168–188 (2019).
    ADS  Article  Google Scholar 

    404.
    Park, J.-E., Kim, B.-J., Oh, D.-H., Lee, H. & Lee, S.-D. Feeding habit analysis of the Korean water deer. Korean Journal of Environment and Ecology 25, 836–845 (2011).
    Google Scholar 

    405.
    Patnaik, R. Diet and habitat changes among Siwalik herbivorous mammals in response to Neogene and Quaternary climate changes: An appraisal in the light of new data. Quaternary International 371, 232–243 (2015).
    ADS  Article  Google Scholar 

    406.
    Patnaik, R., Singh, N. P., Paul, D. & Sukumar, R. Dietary and habitat shifts in relation to climate of Neogene-Quaternary proboscideans and associated mammals of the Indian subcontinent. Quaternary Science Reviews 224, 105968 (2019).
    Article  Google Scholar 

    407.
    Peigné, S. et al. Predormancy omnivory in European cave bears evidenced by a dental microwear analysis of Ursus spelaeus from Goyet, Belgium. Proc. Natl. Acad. Sci. USA 106, 15390–15393 (2009).
    ADS  PubMed  Article  Google Scholar 

    408.
    Pereira, J. A., Quintana, R. D. & Monge, S. Diets of plains vizcacha, greater rhea and cattle in Argentina. Rangeland Ecology & Management/Journal of Range Management Archives 56, 13–20 (2003).
    Google Scholar 

    409.
    Pereira, I. Cd. S., Dantas, M. A. T. & Ferreira, R. L. Record of the giant sloth Valgipes bucklandi (Lund, 1839) (Tardigrada, Scelidotheriinae) in Rio Grande do Norte state, Brazil, with notes on taphonomy and paleoecology. Journal of South American Earth Sciences 43, 42–45, https://doi.org/10.1016/j.jsames.2012.11.004 (2013).
    ADS  CAS  Article  Google Scholar 

    410.
    Pérez-Crespo, V. A. et al. Geographic variation of diet and habitat of the Mexican populations of Columbian Mammoth (Mammuthus columbi). Quaternary International 276, 8–16 (2012).
    ADS  Article  Google Scholar 

    411.
    Pérez, M. E., Vallejo-Pareja, M. C., Carrillo, J. D. & Jaramillo, C. A new Pliocene capybara (Rodentia, Caviidae) from Northern South America (Guajira, Colombia), and its implications for the great American biotic interchange. J. Mamm. Evol. 24, 111–125 (2017).
    Article  Google Scholar 

    412.
    Pérez-Crespo, V. A., Arroyo-Cabrales, J., Alva-Valdivia, L. M., Morales-Puente, P. & Cienfuegos-Alvarado, E. Diet and habitat definitions for Mexican glyptodonts from Cedral (San Luis Potosí, México) based on stable isotope analysis. Geol. Mag. 149, 153–157, https://doi.org/10.1017/s0016756811000951 (2011).
    ADS  Article  Google Scholar 

    413.
    Pérez-Crespo, V. A. et al. Isotopic paleoecology of a toxodont Mixotoxodon larensis from Michoacan, Mexico. The Southwestern Naturalist 64, 63–66 (2020). 64.
    Article  Google Scholar 

    414.
    Phillips, M. J., Gibb, G. C., Crimp, E. A. & Penny, D. Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Syst. Biol. 59, 90–107 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    415.
    Pinto-Llona, A. C. Macrowear and occlusal microwear on teeth of cave bears Ursus spelaeus and brown bears Ursus arctos: Inferences concerning diet. Palaeogeography, Palaeoclimatology, Palaeoecology 370, 41–50 (2013).
    ADS  Article  Google Scholar 

    416.
    Plint, T., Longstaffe, F. J. & Zazula, G. Giant beaver palaeoecology inferred from stable isotopes. Sci. Rep. 9, 7179, https://doi.org/10.1038/s41598-019-43710-9 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    417.
    Poinar, H. N. et al. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281, 402–406 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    418.
    Pokharel, K. P., Yohannes, E., Salvarina, I. & Storch, I. Isotopic evidence for dietary niche overlap between barking deer and four-horned antelope in Nepal. Journal of Biological Research-Thessaloniki 22, 6, https://doi.org/10.1186/s40709-015-0029-0 (2015).
    Article  Google Scholar 

    419.
    Pokhrel, K., Poudel, P., Neupane, B. & Paudel, R. Comparative study in habitat suitability analysis of wild water buffalo (Bubalus arnee) in two flood plains of Chitwan National Park (CNP). Nepal. International Journal of Research Studies in Zoology 5, 1–10 (2019).
    Google Scholar 

    420.
    Poole, K. G. & Heard, D. C. Seasonal habitat use and movements of mountain goats, Oreamnos americanus, in east-central British Columbia. The Canadian Field-Naturalist 117, 565–576 (2003).
    Article  Google Scholar 

    421.
    Presslee, S. et al. Palaeoproteomics resolves sloth relationships. Nature Ecology & Evolution 3, 1121–1130, https://doi.org/10.1038/s41559-019-0909-z (2019).
    Article  Google Scholar 

    422.
    Prevosti, F. J. & Martin, F. M. Paleoecology of the mammalian predator guild of Southern Patagonia during the latest Pleistocene: ecomorphology, stable isotopes, and taphonomy. Quaternary International 305, 74–84 (2013).
    ADS  Article  Google Scholar 

    423.
    Prevosti, F. J. & Vizcaíno, S. F. Paleoecology of the large carnivore guild from the late Pleistocene of Argentina. Acta Palaeontologica Polonica 51 (2006).

    424.
    Price, G. J. et al. Seasonal migration of marsupial megafauna in Pleistocene Sahul (Australia-New Guinea). Proc. Biol. Sci. 284, https://doi.org/10.1098/rspb.2017.0785 (2017).

    425.
    Prideaux, G. J. Borungaboodie hatcheri gen. et sp. nov., a very large bettong (Marsupialia: Macropodoidea) from the Pleistocene of southwestern Australia. Records of the Western Australian Museum 57, 317–329 (1999).
    Google Scholar 

    426.
    Prideaux, G. J. et al. An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia. Nature 445, 422–425 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    427.
    Prideaux, G. J. et al. Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo. Proc. Natl. Acad. Sci. USA 106, 11646–11650, https://doi.org/10.1073/pnas.0900956106 (2009).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    428.
    Prideaux, G. J. et al. Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia. Proc. Natl. Acad. Sci. USA 107, 22157–22162 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    429.
    Prothero, D. R. Giants of the Lost World: Dinosaurs and Other Extinct Monsters of South America. (Smithsonian Institution, 2016).

    430.
    Pujaningsih, R. et al. Diet composition of Anoa (Buballus sp.) studied using direct observation and dung analysis method in their habitat. Journal of the Indonesian Tropical Animal Agriculture 34, 223–228 (2009).
    Article  Google Scholar 

    431.
    Pujos, F., Argot, C., De Iuliis, G. & Werdelin, L. A peculiar climbing Megalonychidae from the Pleistocene of Peru and its implication for sloth history. Zoological Journal of the Linnean Society 149, 179–235, https://doi.org/10.1111/j.1096-3642.2007.00240.x (2007).
    Article  Google Scholar 

    432.
    Pujos, F., Gaudin, T. J., De Iuliis, G. & Cartelle, C. Recent Advances on Variability, Morpho-Functional Adaptations, Dental Terminology, and Evolution of Sloths. J. Mamm. Evol. 19, 159–169 (2012).
    Article  Google Scholar 

    433.
    Pushkina, D., Bocherens, H. & Ziegler, R. Unexpected palaeoecological features of the Middle and Late Pleistocene large herbivores in southwestern Germany revealed by stable isotopic abundances in tooth enamel. Quaternary International 339–340, 164–178, https://doi.org/10.1016/j.quaint.2013.12.033 (2014).
    ADS  Article  Google Scholar 

    434.
    Puspaningrum, M. R. et al. in VIth International Conference on Mammoths and their Relatives Vol. 102 (School of Geology, Aristotle University of Thessaloniki, Greece: Aristotle University of Thessaloniki, 2014).

    435.
    Puspaningrum, M. R., van den Bergh, G. D., Chivas, A. R., Setiabudi, E. & Kurniawan, I. Isotopic reconstruction of Proboscidean habitats and diets on Java since the Early Pleistocene: Implications for adaptation and extinction. Quaternary Science Reviews 228, 106007 (2020).
    Article  Google Scholar 

    436.
    Quin, B. Diet and habitat of emus Dromaius novaehollandiae in the Grampians Ranges, south-western Victoria. Emu 96, 114–122 (1996).
    Article  Google Scholar 

    437.
    Rahman, M. M. et al. Feeding ecology of Northern Plains Sacred langur Semnopithecus entellus (Dufresne) in Jessore, Bangladesh: dietary composition, seasonal and age-sex differences. Asian Primates J 5, 24–39 (2015).
    Google Scholar 

    438.
    Raia, P., Carotenuto, F. & Meiri, S. One size does not fit all: no evidence for an optimal body size on islands. Glob. Ecol. Biogeogr. 19, 475–484, https://doi.org/10.1111/j.1466-8238.2010.00531.x (2010).
    Article  Google Scholar 

    439.
    Rayé, G. et al. New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing: chamois diet in autumn as a case study. Ecol. Res. 26, 265–276 (2011).
    Article  Google Scholar 

    440.
    Rduch, V. Diet of the puku antelope (Kobus vardonii) and dietary overlap with selected other bovids in Kasanka National Park, Zambia. Mammal Research 61, 289–297 (2016).
    Article  Google Scholar 

    441.
    Reid, F. A. A Field Guide to the Mammals of Central America & Southeast Mexico. (Oxford University Press, 2009).

    442.
    Remington, T. E. Why do grouse have ceca? A test of the fiber digestion theory. J. Exp. Zool. 252, 87–94 (1989).
    Article  Google Scholar 

    443.
    Repi, T., Masyud, B., Mustari, A. H. & Prasetyo, L. B. Daily activity and diet of Talaud bear cuscus (Ailurops melanotis Thomas, 1898) on Salibabu Island, North Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity 20 (2019).

    444.
    Resar, N. A. Reconstructing the Paleodiet of Ground Sloths Using Microwear Analysis, Kent State University, (2012).

    445.
    Resar, N. A., Green, J. L. & McAfee, R. K. Reconstructing paleodiet in ground sloths (Mammalia, Xenarthra) using dental microwear analysis. Kirtlandia 58, 61–72 (2013).
    Google Scholar 

    446.
    Reus, M. L. et al. Trophic interactions between the native guanaco (Lama guanicoe) and the exotic donkey (Equus asinus) in the hyper-arid Monte desert (Ischigualasto Park, Argentina). Stud. Neotrop. Fauna Environ. 49, 159–168 (2014).
    Article  Google Scholar 

    447.
    Reynolds, P. S. How big is a giant? The importance of method in estimating body size of extinct mammals. J. Mammal. 83, 321–332 (2002).
    Article  Google Scholar 

    448.
    Richards, M. P. et al. Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Peştera cu Oase. Romania. Proc. Natl. Acad. Sci. USA 105, 600–604 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    449.
    Richards, H. L., Wells, R. T., Evans, A. R., Fitzgerald, E. M. G. & Adams, J. W. The extraordinary osteology and functional morphology of the limbs in Palorchestidae, a family of strange extinct marsupial giants. PLoS One 14, e0221824, https://doi.org/10.1371/journal.pone.0221824 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    450.
    Righini, N. & Amato, K. R. in Encyclopedia of Animal Cognition and Behavior 1–6 (Springer, Cham, 2018).

    451.
    Rijsdijk, K. F. et al. Mid-Holocene vertebrate bone Concentration-Lagerstätte on oceanic island Mauritius provides a window into the ecosystem of the dodo (Raphus cucullatus). Quaternary Science Reviews 28, 14–24 (2009).
    ADS  Article  Google Scholar 

    452.
    Rishworth, C., McIlroy, J. & Tanton, M. Diet of the common wombat, Vombatus ursinus, in plantations of Pinus radiata. Wildlife Research 22, 333–339 (1995).
    Article  Google Scholar 

    453.
    Rivals, F. Les petits bovidés (Caprini et Rupicaprini) pléistocènes dans le bassin méditerranéen et le Caucase. (Archaeopress, Oxford, England, 2004).

    454.
    Rivals, F. & Lister, A. M. Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain. Quaternary Science Reviews 146, 116–133 (2016).
    ADS  Article  Google Scholar 

    455.
    Rivals, F., Schulz, E. & Kaiser, T. M. Late and middle Pleistocene ungulates dietary diversity in Western Europe indicate variations of Neanderthal paleoenvironments through time and space. Quaternary Science Reviews 28, 3388–3400 (2009).
    ADS  Article  Google Scholar 

    456.
    Rivals, F., Semprebon, G. & Lister, A. An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quaternary International 255, 188–195, https://doi.org/10.1016/j.quaint.2011.05.036 (2012).
    ADS  Article  Google Scholar 

    457.
    Rivals, F., Rindel, D. & Belardi, J. B. Dietary ecology of extant guanaco (Lama guanicoe) from Southern Patagonia: seasonal leaf browsing and its archaeological implications. Journal of Archaeological Science 40, 2971–2980, https://doi.org/10.1016/j.jas.2013.03.005 (2013).
    Article  Google Scholar 

    458.
    Rivals, F., Takatsuki, S., Albert, R. M. & Macià, L. Bamboo feeding and tooth wear of three sika deer (Cervus nippon) populations from northern Japan. J. Mammal. 95, 1043–1053 (2014).
    Article  Google Scholar 

    459.
    Rivals, F., Sanz, M. & Daura, J. First reconstruction of the dietary traits of the Mediterranean deer (Haploidoceros mediterraneus) from the Cova del Rinoceront (NE Iberian Peninsula). Palaeogeography, Palaeoclimatology, Palaeoecology 449, 101–107 (2016).
    ADS  Article  Google Scholar 

    460.
    Rivals, F., Semprebon, G. M. & Lister, A. M. Feeding traits and dietary variation in Pleistocene proboscideans: A tooth microwear review. Quaternary Science Reviews 219, 145–153 (2019).
    ADS  Article  Google Scholar 

    461.
    Robinson, A. C. & Young, M. C. The Toolache wallaby (Macropus greyi waterhouse). (Department of Environment and Planning, South Australian National Parks and Wildlife Service, 1983).

    462.
    Robu, M. et al. Isotopic evidence for dietary flexibility among European Late Pleistocene cave bears (Ursus spelaeus). Can. J. Zool. 91, 227–234 (2013).
    CAS  Article  Google Scholar 

    463.
    Ross, S., Al Jahdhami, M. H. & Al Rawahi, H. Refining conservation strategies using distribution modelling: a case study of the Endangered Arabian tahr Arabitragus jayakari. Oryx 53, 532–541 (2019).
    Article  Google Scholar 

    464.
    Rotti, A., Mothé, D., dos Santos Avilla, L. & Semprebon, G. M. Diet reconstruction for an extinct deer (Cervidae: Cetartiodactyla) from the Quaternary of South America. Palaeogeography, Palaeoclimatology, Palaeoecology 497, 244–252, https://doi.org/10.1016/j.palaeo.2018.02.026 (2018).
    ADS  Article  Google Scholar 

    465.
    Rowan, J., Faith, J. T., Gebru, Y. & Fleagle, J. G. Taxonomy and paleoecology of fossil Bovidae (Mammalia, Artiodactyla) from the Kibish Formation, southern Ethiopia: Implications for dietary change, biogeography, and the structure of the living bovid faunas of East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 420, 210–222 (2015).
    ADS  Article  Google Scholar 

    466.
    Rowan, J., Martini, P., Likius, A., Merceron, G. & Boisserie, J.-R. New Pliocene remains of Camelus grattardi (Mammalia, Camelidae) from the Shungura Formation, Lower Omo Valley, Ethiopia, and the evolution of African camels. Hist. Biol. 31, 1123–1134, https://doi.org/10.1080/08912963.2017.1423485 (2019).
    Article  Google Scholar 

    467.
    Roy, D., Ashokkumar, M. & Desai, A. A. Foraging ecology of Nilgiri Langur (Trachypithecus johnii) in Parimbikulam Tiger Reserve, Kerala, India. Asian Journal of Conservation Biology 1, 92–102 (2012).
    Google Scholar 

    468.
    Rozzi, R. A new extinct dwarfed buffalo from Sulawesi and the evolution of the subgenus Anoa: An interdisciplinary perspective. Quaternary Science Reviews 157, 188–205, https://doi.org/10.1016/j.quascirev.2016.12.011 (2017).
    ADS  Article  Google Scholar 

    469.
    Ruez, D. R. Diet of Pleistocene Paramylodon harlani (Xenarthra: Mylodontidae): review of methods and preliminary use of carbon isotopes. Texas Journal of Science 57, 329–344 (2005).
    Google Scholar 

    470.
    Ruso, G. E. Beatragus hunteri (Artiodactyla: Bovidae). Mammalian Species 49, 119–127 (2017).
    Article  Google Scholar 

    471.
    Rybczynski, N. Castorid phylogenetics: implications for the evolution of swimming and tree-exploitation in beavers. J. Mamm. Evol. 14, 1–35, https://doi.org/10.1007/s10914-006-9017-3 (2007).
    Article  Google Scholar 

    472.
    Saarinen, J. & Karme, A. Tooth wear and diets of extant and fossil xenarthrans (Mammalia, Xenarthra) – Applying a new mesowear approach. Palaeogeography, Palaeoclimatology, Palaeoecology 476, 42–54, https://doi.org/10.1016/j.palaeo.2017.03.027 (2017).
    ADS  Article  Google Scholar 

    473.
    Saarinen, J., Eronen, J., Fortelius, M., Seppä, H. & Lister, A. M. Patterns of diet and body mass of large ungulates from the Pleistocene of Western Europe, and their relation to vegetation. Palaeontologia Electronica 19.3.32A, 1–58 (2016).
    Google Scholar 

    474.
    Salas, L. A. & Fuller, T. K. Diet of the lowland tapir (Tapirus terrestris L.) in the Tabaro River valley, southern Venezuela. Can. J. Zool. 74, 1444–1451 (1996).
    Article  Google Scholar 

    475.
    Sales, J. Digestive physiology and nutrition of ratites. Avian and poultry biology reviews 17, 41–55 (2006).
    Article  Google Scholar 

    476.
    Salesa, M. J. et al. Anatomy of the “false thumb” of Tremarctos ornatus (Carnivora, Ursidae, Tremarctinae): phylogenetic and functional implications. Estudios Geologicos 62, 389–394 (2006).
    Article  Google Scholar 

    477.
    Salles, L. O. et al. A new record of a Scelidotheriine ground sloth (Xenarthra, Mylodontidae) from Central Brazil: Quaternary cave stratigraphy, taxonomy and stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 461, 253–260 (2016).
    ADS  Article  Google Scholar 

    478.
    San Diego Zoo Global. San Diego (CA): Tapirs (extant/living species; Tapirus spp.) Fact Sheet, http://ielc.libguides.com/sdzg/factsheets/tapirs (c2009-2019).

    479.
    Sánchez, B., Prado, J. L. & Alberdi, M. T. Feeding ecology, dispersal, and extinction of South American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea). Paleobiology 30, 146–161 (2004).
    Article  Google Scholar 

    480.
    Sánchez, B., Prado, J. L. & Alberdi, M. T. Ancient feeding, ecology and extinction of Pleistocene horses from the Pampean Region, Argentina. Ameghiniana 43, 427–436 (2006).
    Google Scholar 

    481.
    Sankar, K. et al. Home range, habitat use and food habits of re-introduced gaur (Bos gaurus gaurus) in Bandhavgarh Tiger Reserve, central India. Tropical Conservation Science 6, 50–69 (2013).
    Article  Google Scholar 

    482.
    Sarhangzadeh, J., Yavari, A., Hemami, M., Jafari, H. & Shams-Esfandabad, B. Habitat suitability modeling for wild goat (Capra aegagrus) in a mountainous arid area, central Iran. Caspian Journal of Environmental Sciences 11, 41–51 (2013).
    Google Scholar 

    483.
    Scasta, J. D., Beck, J. L. & Angwin, C. J. Meta-Analysis of Diet Composition and Potential Conflict of Wild Horses with Livestock and Wild Ungulates on Western Rangelands of North America. Rangeland Ecology & Management 69, 310–318, https://doi.org/10.1016/j.rama.2016.01.001 (2016).
    Article  Google Scholar 

    484.
    Schaller, G. B. & Khan, S. A. Distribution and status of markhor (Capra falconeri. Biol. Conserv. 7, 185–198 (1975).
    Article  Google Scholar 

    485.
    Schaller, G. et al. Feeding behavior of Sichuan takin (Budorcas taxicolor). Mammalia 50, 311–322 (1986).
    Article  Google Scholar 

    486.
    Schilling, A.-M. & Rössner, G. E. The (sleeping) Beauty in the Beast–a review on the water deer, Hydropotes inermis. Hystrix, the Italian Journal of Mammalogy 28 (2017).

    487.
    Schmidt, C. W. Dental microwear analysis of extinct flat-headed peccary (Platygonus compressus) from Southern Indiana. Proc. Indiana Acad. Sci. 117, 95–106 (2008).
    Google Scholar 

    488.
    Schubert, B. W., Graham, R. W., McDonald, H. G., Grimm, E. C. & Stafford, T. W. Latest Pleistocene paleoecology of Jefferson’s ground sloth (Megalonyx jeffersonii) and elk-moose (Cervalces scotti) in northern Illinois. Quaternary Research 61, 231–240, https://doi.org/10.1016/j.yqres.2003.10.005 (2004).
    ADS  Article  Google Scholar 

    489.
    Schulz, E. et al. Food preferences and tooth wear in the sand gazelle (Gazella marica). Mammalian Biology 78, 55–62 (2013).
    Article  Google Scholar 

    490.
    Seegmiller, R. F. & Ohmart, R. D. Ecological relationships of feral burros and desert bighorn sheep. Wildlife Monographs 78, 3–58 (1981).
    Google Scholar 

    491.
    Semprebon, G. M. & Rivals, F. Trends in the paleodietary habits of fossil camels from the Tertiary and Quaternary of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 131–145, https://doi.org/10.1016/j.palaeo.2010.05.033 (2010).
    ADS  Article  Google Scholar 

    492.
    Semprebon, G. M. et al. Dietary reconstruction of pygmy mammoths from Santa Rosa Island of California. Quaternary International 406, 123–136, https://doi.org/10.1016/j.quaint.2015.10.120 (2015).
    ADS  Article  Google Scholar 

    493.
    Serbent, M., Periago, M. E. & Leynaud, G. C. Mazama gouazoubira (Cervidae) diet during the dry season in the arid Chaco of Córdoba (Argentina). J. Arid Environ. 75, 87–90 (2011).
    ADS  Article  Google Scholar 

    494.
    Severud, W. J., Belant, J. L., Windels, S. K. & Bruggink, J. G. Seasonal variation in assimilated diets of American beavers. The American Midland Naturalist 169, 30–42 (2013).
    Article  Google Scholar 

    495.
    Sewell, L., Merceron, G., Hopley, P. J., Zipfel, B. & Reynolds, S. C. Using springbok (Antidorcas) dietary proxies to reconstruct inferred palaeovegetational changes over 2 million years in Southern Africa. Journal of Archaeological Science: Reports 23, 1014–1028 (2019).
    Article  Google Scholar 

    496.
    Shapiro, L. J. et al. Morphometric analysis of lumbar vertebrae in extinct Malagasy strepsirrhines. Am. J. Phys. Anthropol. 128, 823–839, https://doi.org/10.1002/ajpa.20122 (2005).
    Article  Google Scholar 

    497.
    Sharp, A. C. & Rich, T. H. Cranial biomechanics, bite force and function of the endocranial sinuses in Diprotodon optatum, the largest known marsupial. J. Anat. 228, 984–995 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    498.
    Shockey, B. J. Specialized knee joints in some extinct, endemic, South American herbivores. Acta Palaeontologica Polonica 46, 2277–2288 (2001).
    Google Scholar 

    499.
    Shrestha, T. K., Hecker, L. J., Aryal, A. & Coogan, S. C. Feeding preferences and nutritional niche of wild water buffalo (Bubalus arnee) in Koshi Tappu Wildlife Reserve, Nepal. Ecol. Evol. (2020).

    500.
    Simpson, B. K., Shukor, M. & Magintan, D. in AIP Conference Proceedings. 317–324 (American Institute of Physics).

    501.
    Smith, G. J. & DeSantis, L. R. Dietary ecology of Pleistocene mammoths and mastodons as inferred from dental microwear textures. Palaeogeography, Palaeoclimatology, Palaeoecology 492, 10–25 (2018).
    ADS  Article  Google Scholar 

    502.
    Smith, R. J. & Jungers, W. L. Body mass in comparative primatology. J. Hum. Evol. 32, 523–559, https://doi.org/10.1006/jhev.1996.0122 (1997).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    503.
    Smith, A. T. et al. A Guide to the Mammals of China. (Princeton University Press, 2008).

    504.
    Smith, F. A., Elliott, S. M. & Lyons, S. K. Methane emissions from extinct megafauna. Nature Geoscience 3, 374–375, https://doi.org/10.1038/ngeo877 (2010).
    ADS  CAS  Article  Google Scholar 

    505.
    Soibelzon, L. H. L Ursidae (Carnivora, Fissipedia) fósiles de la República Argentina. Aspectos Sistemáticos y Paleoecológicos. (2002).

    506.
    Sondaar, P. Y. & van der Geer, S. A. in Archaeozoology of the Near East IVA. Proceedings of the fourth international symposium on the archaeozoology of Southwestern Asia and adjacent areas (ARC Publicatie 32, pp. 67–73). Groningen: Centrum voor Archeologische Research & Consultancy.

    507.
    Sony, R., Sen, S., Kumar, S., Sen, M. & Jayahari, K. Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India. Ecol. Eng. 120, 355–363 (2018).
    Article  Google Scholar 

    508.
    Spitzer, R. et al. Fifty years of European ungulate dietary studies: a synthesis. Oikos n/a, https://doi.org/10.1111/oik.07435 (2020).

    509.
    Squires, J. R. & Anderson, S. H. Trumpeter swan (Cygnus buccinator) food habits in the Greater Yellowstone Ecosystem. American Midland Naturalist, 274–282 (1995).

    510.
    St-Louis, A. & Côté, S. D. Equus kiang (Perissodactyla: Equidae). Mammalian Species, 1–11 (2009).

    511.
    Steenweg, R., Hebblewhite, M., Gummer, D., Low, B. & Hunt, B. Assessing potential habitat and carrying capacity for reintroduction of plains bison (Bison bison bison) in Banff National Park. PLoS One 11, e0150065 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    512.
    Stefaniak, K. et al. Browsers, grazers or mix-feeders? Study of the diet of extinct Pleistocene Eurasian forest rhinoceros Stephanorhinus kirchbergensis (Jäger, 1839) and woolly rhinoceros Coelodonta antiquitatis (Blumenbach, 1799). Quaternary International (2020).

    513.
    Steinmetz, R. G. Bos gaurus) and banteng (B. javanicus) in the lowland forest mosaic of Xe Pian Protected Area, Lao PDR: abundance, habitat use, and conservation. Mammalia 68, 141–157 (2004).
    Article  Google Scholar 

    514.
    Stinnesbeck, S. R. et al. A new fossil peccary from the Pleistocene-Holocene boundary of the eastern Yucatán Peninsula, Mexico. Journal of South American Earth Sciences 77, 341–349, https://doi.org/10.1016/j.jsames.2016.11.003 (2017).
    ADS  Article  Google Scholar 

    515.
    Stirrat, S. C. Foraging ecology of the agile wallaby (Macropus agilis) in the wet–dry tropics. Wildlife Research 29, 347–361 (2002).
    Article  Google Scholar 

    516.
    Stuart, A. J. Mammalian extinctions in the Late Pleistocene of northern Eurasia and North America. Biological Reviews 66, 453–562 (1991).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    517.
    Stuenes, S. Taxonomy, habits, and relationships of the subfossil Madagascan hippopotami Hippopotamus lemerlei and H. madagascariensis. Journal of Vertebrate Paleontology 9, 241–268, https://doi.org/10.1080/02724634.1989.10011761 (1989).
    Article  Google Scholar 

    518.
    Burnik Šturm, M., Ganbaatar, O., Voigt, C. C. & Kaczensky, P. Sequential stable isotope analysis reveals differences in dietary history of three sympatric equid species in the Mongolian Gobi. J. Appl. Ecol. 54, 1110–1119 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    519.
    Stynder, D. D. The diets of ungulates from the hominid fossil-bearing site of Elandsfontein, Western Cape, South Africa. Quaternary Research 71, 62–70 (2009).
    ADS  Article  Google Scholar 

    520.
    Sugimoto, T. et al. Diet of sympatric wild and domestic ungulates in southern Mongolia by DNA barcoding analysis. J. Mammal. 99, 450–458, https://doi.org/10.1093/jmammal/gyx182 (2018).
    Article  Google Scholar 

    521.
    Superina, M. & Loughry, W. Life on the half-shell: consequences of a carapace in the evolution of armadillos (Xenarthra: Cingulata). J. Mamm. Evol. 19, 217–224 (2012).
    Article  Google Scholar 

    522.
    Syed, Z. & Ilyas, O. Habitat preference and feeding ecology of alpine musk deer (Moschus chrysogaster) in Kedarnath Wildlife Sanctuary, Uttarakhand, India. Animal Production Science 56, 978–987 (2016).
    Article  Google Scholar 

    523.
    Takada, H. & Minami, M. Food habits of the Japanese serow (Capricornis crispus) in an alpine habitat on Mount Asama, central Japan. Mammalia 83, 455, https://doi.org/10.1515/mammalia-2018-0099 (2019).
    Article  Google Scholar 

    524.
    Takada, H., Nakamura, K. & Minami, M. Effects of the physical and social environment on flight response and habitat use in a solitary ungulate, the Japanese serow (Capricornis crispus). Behav. Processes 158, 228–233 (2019).
    PubMed  Article  Google Scholar 

    525.
    Takai, M. et al. Stable isotope analysis of the tooth enamel of Chaingzauk mammalian fauna (late Neogene, Myanmar) and its implication to paleoenvironment and paleogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 11–22 (2011).
    ADS  Article  Google Scholar 

    526.
    Talamoni, S. A. & Assis, M. A. Feeding habit of the Brazilian tapir, Tapirus terrestris (Perissodactyla: Tapiridae) in a vegetation transition zone in south-eastern Brazil. Zoologia (Curitiba) 26, 251–254 (2009).
    Article  Google Scholar 

    527.
    Talbot, L. M. & Talbot, M. H. The tamarau (Bubalus mindorensis (Huede)) observations and recommendations. Mammalia 30, 1–12 (1965).
    Article  Google Scholar 

    528.
    Teague, R. L. The ecological context of the Early Pleistocene hominin dispersal to Asia PhD thesis, The George Washington University, (2001).

    529.
    Teale, C. L. & Miller, N. G. Mastodon herbivory in mid-latitude late-Pleistocene boreal forests of eastern North America. Quaternary Research 78, 72–81, https://doi.org/10.1016/j.yqres.2012.04.002 (2012).
    ADS  Article  Google Scholar 

    530.
    Telfer, W. R. & Bowman, D. M. J. S. Diet of four rock-dwelling macropods in the Australian monsoon tropics. Austral Ecol. 31, 817–827, https://doi.org/10.1111/j.1442-9993.2006.01644.x (2006).
    Article  Google Scholar 

    531.
    Tewari, R. & Rawat, G. Studies on the Food and Feeding Habits of Swamp Deer (Rucervus duvaucelii duvaucelii) in Jhilmil Jheel Conservation Reserve, Haridwar, Uttarakhand, India. International Scholarly Research Notices 278213, 1–6 (2013).
    Google Scholar 

    532.
    Thuc, P. D., Hieu, D. N., Thap, H. V., Van, V. H. & Khu, N. X. Notes on food of Capricornis milneedwardsii in the Cat Ba archipelago, Hai Phong, Vietnam. TAP CHI SINH HOC (Journal of Biology) 34 (2012).

    533.
    Thuc, P. D., Baxter, G., Smith, C. & Hieu, D. N. Population status of the Southwest China serow Capricornis milneedwardsii: a case study in Cat Ba Archipelago, Vietnam. Pac. Conserv. Biol. 20, 385–391 (2014).
    Article  Google Scholar 

    534.
    Tiunov, A. V. & Kirillova, I. V. Stable isotope (13C/12C and 15N/14N) composition of the woolly rhinoceros Coelodonta antiquitatis horn suggests seasonal changes in the diet. Rapid Commun. Mass Spectrom. 24, 3146–3150 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    535.
    Tobler, M. W. Habitat use and diet of Baird’s Tapirs (Tapirus bairdii) in a montane cloud forest of the Cordillera de Talamanca, Costa Rica. Biotropica 34, 468–474 (2002).
    Article  Google Scholar 

    536.
    Tobler, M., Naranjo, E. J. & Lira-Torres, I. in Ecology and conservation of Neotropical montane oak forests 347–359 (Springer, 2006).

    537.
    Tochigi, K. et al. Detection of arboreal feeding signs by Asiatic black bears: effects of hard mast production at individual tree and regional scales. J. Zool. 305, 223–231 (2018).
    Article  Google Scholar 

    538.
    Tonni, E. Los mamíferos del Cuaternario de la región pampeana de Buenos Aires, Argentina. (2009).

    539.
    Torres, M. M. & Puig, S. Seasonal diet of vicuñas in the Los Andes protected area (Salta, Argentina): Are they optimal foragers? J. Arid Environ. 74, 450–457 (2010).
    Article  Google Scholar 

    540.
    Torres, C. R. & Clarke, J. A. Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions. Proceedings of the Royal Society B 285, 20181540 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    541.
    Tovondrafale, T., Razakamanana, T., Hiroko, K. & Rasoamiaramanana, A. Paleoecological analysis of elephant bird (Aepyornithidae) remains from the Late Pleistocene and Holocene formations of southern Madagascar. Malagasy Nature 8, 1–13 (2014).
    Google Scholar 

    542.
    Tran, L. A. P. Interaction between Digestive Strategy and Niche Specialization Predicts Speciation Rates across Herbivorous Mammals. The American Naturalist 187, 468–480 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    543.
    Treydte, A. C., Bernasconi, S. M., Kreuzer, M. & Edwards, P. J. Diet of the common warthog (Phacochoerus africanus) on former cattle grounds in a Tanzanian savanna. J. Mammal. 87, 889–898 (2006).
    Article  Google Scholar 

    544.
    Tsuji, Y., Ito, T. Y., Wada, K. & Watanabe, K. Spatial patterns in the diet of the Japanese macaque Macaca fuscata and their environmental determinants. Mammal Review 45, 227–238 (2015).
    Article  Google Scholar 

    545.
    Tuboi, C. & Hussain, S. A. Factors affecting forage selection by the endangered Eld’s deer and hog deer in the floating meadows of Barak-Chindwin basin of North-east India. Mammalian Biology 81, 53–60 (2016).
    Article  Google Scholar 

    546.
    Turvey, S. T. & Fritz, S. A. The ghosts of mammals past: biological and geographical patterns of global mammalian extinction across the Holocene. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2564–2576, https://doi.org/10.1098/rstb.2011.0020 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    547.
    van Asperen, E. N. & Kahlke, R.-D. Dietary variation and overlap in Central and Northwest European Stephanorhinus kirchbergensis and S. hemitoechus (Rhinocerotidae, Mammalia) influenced by habitat diversity: “You’ll have to take pot luck!”(proverb). Quaternary Science Reviews 107, 47–61 (2015).
    ADS  Article  Google Scholar 

    548.
    Van Den Bergh, G. D. et al. The youngest stegodon remains in Southeast Asia from the Late Pleistocene archaeological site Liang Bua, Flores, Indonesia. Quaternary International 182, 16–48, https://doi.org/10.1016/j.quaint.2007.02.001 (2008).
    Article  Google Scholar 

    549.
    van der Made, J. & Grube, R. in Elefantentreich – Eine Fossilwelt in Europa (eds D. Höhne & W. Schwarz) (Landesamt für Denkmalpflege und Archälogie Sachsen-Anhalt & Landesmuseum für Vorgeschichte, Halle, 2010).

    550.
    van der Made, J. & Tong, H. W. Phylogeny of the giant deer with palmate brow tines Megaloceros from west and Sinomegaceros from east Eurasia. Quaternary International 179, 135–162, https://doi.org/10.1016/j.quaint.2007.08.017 (2008).
    ADS  Article  Google Scholar 

    551.
    van Dyck, S. & Strahan, R. The Mammals of Australia. (New Holland Publishing Australia Pty Ltd, 2008).

    552.
    Van Geel, B. et al. Giant deer (Megaloceros giganteus) diet from Mid‐Weichselian deposits under the present North Sea inferred from molar‐embedded botanical remains. Journal of Quaternary Science 33, 924–933 (2018).
    ADS  Article  Google Scholar 

    553.
    van Heteren, A. H., van Dierendonck, R. C., van Egmond, M. A., Sjang, L. & Kreuning, J. Neither slim nor fat: estimating the mass of the dodo (Raphus cucullatus, Aves, Columbiformes) based on the largest sample of dodo bones to date. PeerJ 5, e4110 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    554.
    Vandercone, R. P., Dinadh, C., Wijethunga, G., Ranawana, K. & Rasmussen, D. T. Dietary diversity and food selection in Hanuman langurs (Semnopithecus entellus) and purple-faced langurs (Trachypithecus vetulus) in the Kaludiyapokuna Forest Reserve in the dry zone of Sri Lanka. Int. J. Primatol. 33, 1382–1405 (2012).
    Article  Google Scholar 

    555.
    Vasey, N., Burney, D. A. & Godfrey, L. R. in Leaping Ahead 149-156 (Springer, 2012).

    556.
    Velázquez, N. J., Burry, L. S. & Fugassa, M. H. Palynological analysis of extinct herbivore dung from Patagonia, Argentina. Quaternary International 377, 140–147 (2015).
    ADS  Article  Google Scholar 

    557.
    Venter, J. A. & Kalule-Sabiti, M. J. Diet composition of the large herbivores in Mkambati nature reserve, eastern cape, South Africa. African Journal of Wildlife Research 46, 49–56 (2016).
    Article  Google Scholar 

    558.
    Vizcaíno, S. F., Bargo, M. S. & Cassini, G. H. Dental occlusal surface area in relation to body mass, food habits and other biological features in fossil xenarthrans. Ameghiniana 43, 11–26 (2006).
    Google Scholar 

    559.
    Villarreal-Espino-Barros, O. A. et al. Composición botánica de la dieta del venado temazate rojo (Mazama temama), en la sierra nororiental del estado de Puebla. Universidad y ciencia 24, 183–188 (2008).
    Google Scholar 

    560.
    Vizcaíno, S. F. & Bargo, M. S. The masticatory apparatus of the armadillo Eutatus (Mammalia, Cingulata) and some allied genera: paleobiology and evolution. Paleobiology 24, 371–383 (1998).
    Google Scholar 

    561.
    Vizcaíno, S. F., Fariña, R. A. & Fernicola, J. C. Young Darwin and the ecology and extinction of Pleistocene South American fossil mammals. Revista de la Asociacion Geologica Argentina 64, 160–169 (2009).
    Google Scholar 

    562.
    Vizcaíno, S. F., Cassini, G. H., Fernicola, J. C. & Bargo, M. S. Evaluating habitats and feeding habits through ecomorphological features in Glyptodonts (Mammalia, Xenarthra). Ameghiniana 48, 305–319, https://doi.org/10.5710/AMGH.v48i3(364) (2011).
    Article  Google Scholar 

    563.
    Vos, J. D. & Van de Geer, A. in International Insular Investigations, V Deia International Conference of Prehistory Vol. 1095 (eds Waldren & Ensenyat) 395–405 (2002).

    564.
    Wallach, A. D. et al. When all life counts in conservation. Conserv. Biol. 34, 997–1007 (2019).
    Article  Google Scholar 

    565.
    Wang, B., Zhang, J. & Hu, J. Habitat selection by Chinese goral (Naemorhedus griseus) in spring in Fentongzhai Nature Reserve. Sichuan Journal of Zoology (2008).

    566.
    Wangchuk, T. R., Wegge, P. & Sangay, T. Habitat and diet of Bhutan takin Budorcas taxicolor whitei during summer in Jigme Dorji National Park, Bhutan. Journal of Natural History 50, 759–770 (2016).
    Article  Google Scholar 

    567.
    Webb, S. Megafauna demography and late Quaternary climatic change in Australia: A predisposition to extinction. Boreas 37, 329–345 (2008).
    Article  Google Scholar 

    568.
    Webb, S. Late Quaternary distribution and biogeography of the southern Lake Eyre basin (SLEB) megafauna, South Australia. Boreas 38, 25–38, https://doi.org/10.1111/j.1502-3885.2008.00044.x (2009).
    Article  Google Scholar 

    569.
    Wegge, P., Shrestha, A. K. & Moe, S. R. Dry season diets of sympatric ungulates in lowland Nepal: competition and facilitation in alluvial tall grasslands. Ecol. Res. 21, 698–706, https://doi.org/10.1007/s11284-006-0177-7 (2006).
    Article  Google Scholar 

    570.
    Weinberg, P. J. Capra cylindricornis. Mammalian Species 2002, 1–9 (2002).
    Article  Google Scholar 

    571.
    Werdelin, L. & Sanders, W. J. Cenozoic mammals of Africa. (University of California Press, 2010).

    572.
    White, J. L. Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. Journal of Vertebrate Paleontology 13, 230–242 (1993).
    Article  Google Scholar 

    573.
    White, T. G. & Alberico, M. S. Dinomys branickii. Mammalian Species, 1–5, https://doi.org/10.2307/3504284 (1992).

    574.
    Wikipedia. (2019).

    575.
    Williams, K. D. & Petrides, G. A. Browse use, feeding behavior, and management of the Malayan tapir. The Journal of Wildlife Management 44, 489–494 (1980).
    Article  Google Scholar 

    576.
    Williams, J. B. et al. Field metabolism, water requirements, and foraging behavior of wild ostriches in the Namib. Ecology 74, 390–404 (1993).
    Article  Google Scholar 

    577.
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027, https://doi.org/10.1890/13-1917.1 (2014).
    Article  Google Scholar 

    578.
    Wilson, L. A. B., Sánchez-Villagra, M. R., Madden, R. H. & Kay, R. F. Testing a developmental model in the fossil record: molar proportions in South American ungulates. Paleobiology 38, 308–321, https://doi.org/10.1666/11001.1 (2012).
    Article  Google Scholar 

    579.
    Wingard, G. et al. Argali food habits and dietary overlap with domestic livestock in Ikh Nart Nature Reserve, Mongolia. J. Arid Environ. 75, 138–145 (2011).
    ADS  Article  Google Scholar 

    580.
    Wood, R. J. The propagation and maintenance of the Arabian tahr Hemitragus jayakari at the Omani Mammal Breeding Centre, Bait al Barakah. The International Zoo Yearbook 31, 255–260 (1992).
    Article  Google Scholar 

    581.
    Wood, J. R. et al. Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quaternary Science Reviews 27, 2593–2602 (2008).
    ADS  Article  Google Scholar 

    582.
    Wood, J. R., Richardson, S. J., McGlone, M. S. & Wilmshurst, J. M. The diets of moa (Aves: Dinornithiformes). New Zealand Journal of Ecology 44, 1–21 (2020).
    Article  Google Scholar 

    583.
    Woolnough, A. P. & Steele, V. R. The palaeoecology of the Vombatidae: did giant wombats burrow? Mammal Review 31, 33–45 (2001).
    Article  Google Scholar 

    584.
    Worthy, T., Holdaway, R. N., Sorenson, M. & Cooper, A. Description of the first complete skeleton of the extinct New Zealand goose Cnemiornis calcitrans (Aves: Anatidae), and a reassessment of the relationships of Cnemiornis. J. Zool. 243, 695–718 (2009).
    Article  Google Scholar 

    585.
    Worthy, T. An analysis of the distribution and relative abundance of moa species (Aves: Dinornithiformes). New Zealand Journal of Zoology 17, 213–241 (1990).
    Article  Google Scholar 

    586.
    Worthy, T. A giant flightless pigeon gen. et sp. nov. and a new species of Ducula (Aves: Columbidae), from Quaternary deposits in Fiji. Journal of the Royal Society of New Zealand 31, 763–794 (2001).
    Article  Google Scholar 

    587.
    Worthy, T. H. & Holdaway, R. N. The lost world of the moa: prehistoric life of New Zealand. (Indiana University Press, 2002).

    588.
    Worthy, T. H. et al. Osteology supports a stem-galliform affinity for the giant extinct flightless bird Sylviornis neocaledoniae (Sylviornithidae, Galloanseres). PLoS One 11, e0150871 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    589.
    Worthy, T. H., Degrange, F. J., Handley, W. D. & Lee, M. S. The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres). Royal Society open science 4, 170975 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    590.
    Wright, D. D. in Tropical fruits and frugivores 205-236 (Springer, 2005).

    591.
    Xiang, Z. F., Liang, W. B., Nie, S. G. & Li, M. Diet and feeding behavior of Rhinopithecus brelichi at Yangaoping. Guizhou. Am. J. Primatol. 74, 551–560 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    592.
    Xu, W. et al. Diet of Gazella subgutturosa (Güldenstaedt, 1780) and food overlap with domestic sheep in Xinjiang, China. Journal of Vertebrate Biology 61, 54–60 (2012).
    Google Scholar 

    593.
    Xu, W. et al. Seasonal diet of khulan (Equidae) in northern Xinjiang, China. Italian Journal of Zoology 79, 92–99 (2012).
    CAS  Article  Google Scholar 

    594.
    Yang, Y. et al. First insights into the feeding habits of the Critically Endangered black snub-nosed monkey, Rhinopithecus strykeri (Colobinae, Primates). Primates 60, 143–153 (2019).
    PubMed  Article  Google Scholar 

    595.
    Yates, A. M. & Worthy, T. H. A diminutive species of emu (Casuariidae: Dromaiinae) from the late Miocene of the Northern Territory, Australia. Journal of Vertebrate Paleontology 39, e1665057 (2019).
    Article  Google Scholar 

    596.
    YouTube. YouTube, www.youtube.com (Accessed May 2019).

    597.
    Zhang, H., Wang, Y., Janis, C. M., Goodall, R. H. & Purnell, M. A. An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon, Stegodon, Elephas), by means of dental microwear texture analysis. Quaternary International 445, 60–70, https://doi.org/10.1016/j.quaint.2016.07.011 (2017).
    ADS  Article  Google Scholar 

    598.
    Zhegallo, V. et al. On the fossil rhinoceros Elasmotherium (including the collections of the Russian Academy of Sciences). Cranium 22, 17–40 (2005).
    Google Scholar 

    599.
    Zheng, R. & Bao, Y. Seasonal food habits of the black muntjac Muntiacus crinifrons. Europe PMC, 201–207 (2010).

    600.
    Zhou, Q., Wei, H., Huang, Z. & Huang, C. Diet of the Assamese macaque Macaca assamensis in limestone habitats of Nonggang, China. Current Zoology 57, 18–25 (2011).
    Article  Google Scholar 

    601.
    Zingg, A. Seasonal variability in the diet composition of alpine ibex (Capra ibex ibex L.) in the Swis National Park Masters thesis, University of Zurich (2009). More

  • in

    Causal evidence for the adaptive benefits of social foraging in the wild

    1.
    Krause, J. & Ruxton, G. D. Living in Groups. (Oxford University Press, 2002).
    2.
    Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Evol. Syst. 5, 325–383 (1974).
    Article  Google Scholar 

    3.
    Aureli, F. et al. Fission‐fusion dynamics: new research frameworks. Curr. Anthropol. 49, 627–654 (2008).
    Article  Google Scholar 

    4.
    Cantor, M., Aplin, L. M. & Farine, D. R. A primer on the relationship between group size and group performance. Anim. Behav. 166, 139–146 (2020).
    Article  Google Scholar 

    5.
    MacNulty, D. R., Tallian, A., Stahler, D. R. & Smith, D. W. Influence of group size on the success of wolves hunting bison. PLoS ONE 9, e112884 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    6.
    Ashton, B. J., Thornton, A. & Ridley, A. R. Larger group sizes facilitate the emergence and spread of innovations in a group-living bird. Anim. Behav. 158, 1–7 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Morand-Ferron, J. & Quinn, J. L. Larger groups of passerines are more efficient problem solvers in the wild. PNAS 108, 15898–15903 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Treherne, J. E. & Foster, W. A. The effects of group size on predator avoidance in a marine insect. Anim. Behav. 28, 1119–1122 (1980).
    Article  Google Scholar 

    9.
    Grand, T. C. & Dill, L. M. The effect of group size on the foraging behaviour of juvenile coho salmon: reduction of predation risk or increased competition? Anim. Behav. 58, 443–451 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Liker, A. & Bokony, V. Larger groups are more successful in innovative problem solving in house sparrows. PNAS 106, 7893–7898 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Blumstein, D. T., Evans, C. S. & Daniel, J. C. An experimental study of behavioural group size effects in tammar wallabies, Macropus eugenii. Anim. Behav. 58, 351–360 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Rieucau, G. & Giraldeau, L.-A. Group size effect caused by food competition in nutmeg mannikins (Lonchura punctulata). Behav. Ecol. 20, 421–425 (2009).
    Article  Google Scholar 

    13.
    Stöwe, M., Bugnyar, T., Heinrich, B. & Kotrschal, K. Effects of group size on approach to novel objects in ravens (Corvus corax). Ethology 112, 1079–1088 (2006).
    Article  Google Scholar 

    14.
    Steinegger, M., Sarhan, H. & Bshary, R. Laboratory experiments reveal effects of group size on hunting performance in yellow saddle goatfish, Parupeneus cyclostomus. Anim. Behav. 168, 159–167 (2020).
    Article  Google Scholar 

    15.
    Giraldeau, L. A. & Caraco, T. Social Foraging Theory. (Princeton University Press, 2000).

    16.
    Monk, C. T. et al. How ecology shapes exploitation: a framework to predict the behavioural response of human and animal foragers along exploration–exploitation trade-offs. Ecology 21, 779–793 (2018).
    Google Scholar 

    17.
    Kendal, R. L., Coolen, I., Bergen, Y. & Laland, K. N. Trade‐offs in the adaptive use of social and asocial Learning. Adv. Study Behav. 35, 333–379 (2005).
    Article  Google Scholar 

    18.
    Ellis, S. et al. Mortality risk and social network position in resident killer whales: Sex differences and the importance of resource abundance. Proc. R. Soc. Lond. B 284, 20171313 (2017).
    Google Scholar 

    19.
    Caraco, T. Risk-sensitivity and foraging groups. Ecology 62, 527–531 (1981).
    Article  Google Scholar 

    20.
    Firth, J. A., Voelkl, B., Farine, D. R. & Sheldon, B. C. Experimental evidence that social relationships determine individual foraging behavior. Curr. Biol. 25, 3138–3143 (2015).
    CAS  PubMed  Article  Google Scholar 

    21.
    Magurran, A. E. & Seghers, B. H. A cost of sexual harassment in the guppy, Poecilia reticulata. Proc. R. Soc. Lond. B 258, 89–92 (1994).
    Article  Google Scholar 

    22.
    Snijders, L. et al. Females facilitate male food patch discovery in a wild fish population. J. Anim. Ecol. 88, 1950–1960 (2019).
    PubMed  Article  Google Scholar 

    23.
    Avarguès-Weber, A. & Chittka, L. Local enhancement or stimulus enhancement? Bumblebee social learning results in a specific pattern of flower preference. Anim. Behav. 97, 185–191 (2014).
    Article  Google Scholar 

    24.
    Dindo, M., Whiten, A. & Waal, F. B. Mde Social facilitation of exploratory foraging behavior in capuchin monkeys (Cebus apella). Am. J. Primatol. 71, 419–426 (2009).
    PubMed  Article  Google Scholar 

    25.
    Webster, M. M. & Laland, K. N. Social information, conformity and the opportunity costs paid by foraging fish. Behav. Ecol. Sociobiol. 66, 797–809 (2012).
    Article  Google Scholar 

    26.
    Trompf, L. & Brown, C. Personality affects learning and trade-offs between private and social information in guppies, Poecilia reticulata. Anim. Behav. 88, 99–106 (2014).
    Article  Google Scholar 

    27.
    Rieucau, G. & Giraldeau, L.-A. Persuasive companions can be wrong: the use of misleading social information in nutmeg mannikins. Behav. Ecol. 20, 1217–1222 (2009).
    Article  Google Scholar 

    28.
    Focardi, S. & Pecchioli, E. Social cohesion and foraging decrease with group size in fallow deer (Dama dama). Behav. Ecol. Sociobiol. 59, 84–91 (2005).
    Article  Google Scholar 

    29.
    Smith, J. E., Kolowski, J. M., Graham, K. E., Dawes, S. E. & Holekamp, K. E. Social and ecological determinants of fission–fusion dynamics in the spotted hyaena. Anim. Behav. 76, 619–636 (2008).
    Article  Google Scholar 

    30.
    Aplin, L. M., Farine, D. R., Morand-Ferron, J. & Sheldon, B. C. Social networks predict patch discovery in a wild population of songbirds. Proc. R. Soc. Lond. B 279, 4199–4205 (2012).
    CAS  Google Scholar 

    31.
    Webster, M. M. & Laland, K. N. Reproductive state affects reliance on public information in sticklebacks. Proc. R. Soc. Lond. B 278, 619–627 (2011).
    CAS  Google Scholar 

    32.
    Rands, S. A., Pettifor, R. A., Rowcliffe, J. M. & Cowlishaw, G. State–dependent foraging rules for social animals in selfish herds. Proc. R. Soc. Lond. B 271, 2613–2620 (2004).
    Article  Google Scholar 

    33.
    Lee, A. E. G. & Cowlishaw, G. Switching spatial scale reveals dominance-dependent social foraging tactics in a wild primate. PeerJ 5, e3462 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    34.
    Janson, C. H. Social correlates of individual spatial choice in foraging groups of brown capuchin monkeys, Cebus apella. Anim. Behav. 40, 910–921 (1990).
    Article  Google Scholar 

    35.
    Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Choudhury, S. & Black, J. M. Testing the behavioural dominance and dispersal hypothesis in Pochard. Ornis Scand. 22, 155–159 (1991).
    Article  Google Scholar 

    37.
    Milligan, N. D., Radersma, R., Cole, E. F. & Sheldon, B. C. To graze or gorge: consistency and flexibility of individual foraging tactics in tits. J. Anim. Ecol. 86, 826–836 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Mady, R. P. & Blumstein, D. T. Social security: are socially connected individuals less vigilant? Anim. Behav. 134, 79–85 (2017).
    Article  Google Scholar 

    39.
    Lührs, M.-L., Dammhahn, M. & Kappeler, P. Strength in numbers: males in a carnivore grow bigger when they associate and hunt cooperatively. Behav. Ecol. 24, 21–28 (2013).
    Article  Google Scholar 

    40.
    Reader, S. M. & Laland, K. N. Diffusion of foraging innovations in the guppy. Anim. Behav. 60, 175–180 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Smolla, M., Rosher, C., Gilman, R. T. & Shultz, S. Reproductive skew affects social information use. R. Soc. Open Sci. 6, 182084 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Snijders, L., Kurvers, R. H. J. M., Krause, S., Ramnarine, I. W. & Krause, J. Individual- and population-level drivers of consistent foraging success across environments. Nat. Ecol. Evol. 2, 1610–1618 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Barbosa, M. et al. Individual variation in reproductive behaviour is linked to temporal heterogeneity in predation risk. Proc. R. Soc. Lond. B 285, 20171499 (2018).
    Google Scholar 

    44.
    Dimitriadou, S., Croft, D. P. & Darden, S. K. Divergence in social traits in Trinidadian guppies selectively bred for high and low leadership in a cooperative context. Sci. Rep. 9, 1–12 (2019).
    CAS  Article  Google Scholar 

    45.
    Griffiths, S. W. & Magurran, A. E. Sex and schooling behaviour in the Trinidadian guppy. Anim. Behav. 56, 689–693 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Croft, D. P. et al. Mechanisms underlying shoal composition in the Trinidadian guppy, Poecilia reticulata. Oikos 100, 429–438 (2003).
    Article  Google Scholar 

    47.
    Croft, D. P., Krause, J. & James, R. Social networks in the guppy (Poecilia reticulata). Proc. R. Soc. Lond. B 271, S516–S519 (2004).
    Article  Google Scholar 

    48.
    Croft, D. P. et al. Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behav. Ecol. Sociobiol. 59, 644–650 (2006).
    Article  Google Scholar 

    49.
    Piyapong, C. et al. Sex matters: a social context to boldness in guppies (Poecilia reticulata). Behav. Ecol. 21, 3–8 (2010).
    Article  Google Scholar 

    50.
    Harris, S., Ramnarine, I. W., Smith, H. G. & Pettersson, L. B. Picking personalities apart: estimating the influence of predation, sex and body size on boldness in the guppy Poecilia reticulata. Oikos 119, 1711–1718 (2010).
    Article  Google Scholar 

    51.
    Magurran, A. E. & Seghers, B. H. Sexual conflict as a consequence of ecology: evidence from guppy, Poecilia reticulata, populations in Trinidad. Proc. R. Soc. Lond. B 255, 31–36 (1994).
    Article  Google Scholar 

    52.
    Hawkins, E. R., Pogson‐Manning, L., Jaehnichen, C. & Meager, J. J. Social dynamics and sexual segregation of Australian humpback dolphins (Sousa sahulensis) in Moreton Bay. Qld. Mar. Mamm. Sci. 36, 500–521 (2020).
    Article  Google Scholar 

    53.
    Simpson, E. A. et al. Experience-independent sex differences in newborn macaques: females are more social than males. Sci. Rep. 6, 19669 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Reader, S. M. & Lefebvre, L. Social learning and sociality. Behav. Brain Sci. 24, 353–355 (2001).
    Article  Google Scholar 

    55.
    Wilkinson, A., Kuenstner, K., Mueller, J. & Huber, L. Social learning in a non-social reptile (Geochelone carbonaria). Biol. Lett. 6, 614–616 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Webster, M. M., Laland, K. N. & Skelhorn, J. Social information use and social learning in non-grouping fishes. Behav. Ecol. 28, 1547–1552 (2017).
    Article  Google Scholar 

    57.
    Hester, F. J. Effects of food supply on fecundity in the female guppy, Lebistes reticulatus (Peters). J. Fish. Res. Bd. Can. 21, 757–764 (1964).
    Article  Google Scholar 

    58.
    Magurran, A. E. Evolutionary Ecology: The Trinidadian Guppy. (Oxford University Press, 2005).

    59.
    Dammhahn, M. & Kappeler, P. M. Females go where the food is: does the socio-ecological model explain variation in social organisation of solitary foragers? Behav. Ecol. Sociobiol. 63, 939–952 (2009).
    Article  Google Scholar 

    60.
    Webster, M. M. & Laland, K. N. Local enhancement via eavesdropping on courtship displays in male guppies, Poecilia reticulata. Anim. Behav. 86, 75–83 (2013).
    Article  Google Scholar 

    61.
    Zajonc, R. B. Social facilitation. Science 149, 269–274 (1965).
    CAS  PubMed  Article  Google Scholar 

    62.
    Crook, J. H. & Gartlan, J. S. Evolution of primate societies. Nature 210, 1200–1203 (1966).
    CAS  PubMed  Article  Google Scholar 

    63.
    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977).
    CAS  PubMed  Article  Google Scholar 

    64.
    Abrahams, M. V. The trade-off between foraging and courting in male guppies. Anim. Behav. 45, 673–681 (1993).
    Article  Google Scholar 

    65.
    Pitcher, T. J., Magurran, A. E. & Winfield, I. J. Fish in larger shoals find food faster. Behav. Ecol. Sociobiol. 10, 149–151 (1982).
    Article  Google Scholar 

    66.
    Pollard, K. A. & Blumstein, D. T. Time allocation and the evolution of group size. Anim. Behav. 76, 1683–1699 (2008).
    Article  Google Scholar 

    67.
    Cresswell, W. & Quinn, J. L. Predicting the optimal prey group size from predator hunting behaviour. J. Anim. Ecol. 80, 310–319 (2011).
    PubMed  Article  Google Scholar 

    68.
    Botham, M. S., Kerfoot, C. J., Louca, V. & Krause, J. Predator choice in the field; grouping guppies, Poecilia reticulata, receive more attacks. Behav. Ecol. Sociobiol. 59, 181–184 (2005).
    Article  Google Scholar 

    69.
    Ward, A. J. W., Herbert-Read, J. E., Sumpter, D. J. T. & Krause, J. Fast and accurate decisions through collective vigilance in fish shoals. PNAS 108, 2312–2315 (2011).
    CAS  PubMed  Article  Google Scholar 

    70.
    Deacon, A. E., Jones, F. A. M. & Magurran, A. E. Gradients in predation risk in a tropical river system. Curr. Zool. 64, 213–221 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Grether, G. F., Millie, D. F., Bryant, M. J., Reznick, D. N. & Mayea, W. Rain forest canopy cover, resource availability, and life history evolution in guppies. Ecology 82, 1546–1559 (2001).
    Article  Google Scholar 

    72.
    Croft, D. P. et al. Sex-biased movement in the guppy (Poecilia reticulata). Oecologia 137, 62–68 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Grether, G. F., Kasahara, S., Kolluru, G. R. & Cooper, E. L. Sex–specific effects of carotenoid intake on the immunological response to allografts in guppies (Poecilia reticulata). Proc. R. Soc. Lond. B 271, 45–49 (2004).
    CAS  Article  Google Scholar 

    74.
    Kodric-Brown, A. Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav. Ecol. Sociobiol. 25, 393–401 (1989).
    Article  Google Scholar 

    75.
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).
    Article  Google Scholar 

    76.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

    77.
    Snijders L., et al. 2020 Data from: Causal evidence for the adaptive benefits of social foraging in the wild. OSF. https://osf.io/csajg

    78.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    79.
    Therneau, T. M. coxme: Mixed Effects Cox Models. R package version 2.2-16. (2020).

    80.
    Therneau, T. M. A Package for Survival Analysis in S_. version 2.38. (2015).

    81.
    Brooks, M. et al. glmmTMB balances speed and flexibility among packages for zero-inflated Generalized Linear Mixed Modeling. R. J. 9, 378–400 (2017).
    Article  Google Scholar 

    82.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016). More

  • in

    Bleaching of leaf litter accelerates the decomposition of recalcitrant components and mobilization of nitrogen in a subtropical forest

    Study site
    The present study was conducted in evergreen broad-leaved subtropical forests in the northern part of Okinawa Island, south-western Japan. Samples were collected in a secondary forest within Yona Experimental Forest of University of the Ryukyus (26°9′ N, 128°5′ E, ca 250–330 m a.s.l.). The mean annual temperature was 20.7 °C and the annual precipitation was 2487 mm. The topography is hilly and dissected. The bedrock is composed of sandstone and slate, and yellow soil has developed. The forest stand was dominated by Castanopsis sieboldii and Schima wallichii ssp. liuliuensis with a maximum height of 20 m28.
    Litterbag experiment
    Decomposition of leaf litter of six tree species (C. sieboldii, S. wallichii, Daphniphyllum teijsmannii, Persea thunbergii, Distylium racemosum, and Camellia japonica) was studied using a litterbag method, according to the procedure detailed previously13. These six tree species are dominant components of the forest canopy in the study site28. In short, a study plot of 50 m × 10 m (500 m2) was laid out in Yona Experimental Forest and was divided into 125 grids of 2 × 2 m. Freshly fallen leaves of six tree species were collected from the soil surface in March 2008. The leaves were dried in an oven at 40 °C for 1 week to a constant mass. Leaf litter (4.00 g) was placed in litterbags (24 × 18 cm) made of nylon with a mesh size of approximately 2 mm and incubated within the 500 m2 study plot for 18 months from April 2008 to October 2009. Nine litterbags per tree species were retrieved at 3, 6, 9, 12, 15, and 18 months after initiation of the experiment and used for measurement of the remaining mass of whole leaf litter13. In the present study, the bleached leaf area and leaf mass per area (LMA) and chemical compositions of bleached and nonbleached portions were then measured as described below. The LMA indicates the remaining mass of leaf tissues and represents the extent of decomposition in the bleached and nonbleached portions. Leaf litters of S. wallichii and D. teijsmannii collected at 12, 15 and 18 months of decomposition were too fragmented to measure bleached leaf area.
    Measurement and chemical analyses
    Leaves were pressed between layers of plywood and paper and oven-dried at 40 °C for 1 week. The leaves were photocopied, scanned, and measured for the total leaf area and the proportion of bleached area according to the method described previously29. A 6-mm-diameter cork borer was then used to excise leaf disks, avoiding the primary vein, from the bleached area and surrounding nonbleached area of the same leaves collected for the first 9 months of decomposition. The disks were oven-dried again at 40 °C for 1 week and weighed to calculate LMA. The disks were combined to make 1 sample each of bleached and nonbleached leaf area for each tree species collected at each sampling occasion and used for chemical analyses as described below. Leaf disks could not be excised from leaves collected at 12, 15, and 18 months of decomposition because of fragmentation.
    Litter materials were ground in a laboratory mill (0.5-mm screen). The amount of acid unhydrolyzable residue (AUR) and total carbohydrates (TCH) was estimated by means of gravimetry as acid-insoluble residue, using hot sulfuric acid digestion30 and by a phenol–sulfuric acid method31. Total N content was measured by automatic gas chromatography (NC analyzer SUMIGRAPH NC-900, Sumitomo Chemical Co., Osaka, Japan). Details of the methods followed Osono13. The contents of AUR and TCH were expressed in g/g dry litter, and that of total N was in mg/g dry litter. The mass of these components per leaf area was calculated by multiplying the contents and LMA. The AUR fraction contains a mixture of organic compounds in various proportions, including condensed tannins, phenolic and carboxylic compounds, alkyl compounds such as cutins, and true lignin16. No data were available for total N content of the nonbleached portions of D. teijsmannii at 9 months of decomposition because of the small amount of sample.
    To analyze the chemical composition of bleached leaf tissues more in detail and to compare it with that of nonbleached portions for multiple tree species, samples of bleached leaf litter were collected during fieldworks in March 2007 and in April 2011. These bleached leaf litter were separated into bleached and nonbleached litter samples to be used for measurement and chemical analyses (Table S1). Bleached leaf litter of 20 tree species was used for measurement of LMA, and the samples of 13 of the 20 tree species were further analyzed for the contents of AUR and TCH, as described above (Table S2). Samples were extracted with alcohol-benzene at room temperature (15–20 °C) to remove extractives (EXT; soluble polyphenols, hydrocarbons, and pigments) and to calculate the content of this fraction.
    Solid-state Cross polarization (CP) magic angle spinning (MAS) 13C NMR spectra of bleached and nonbleached litter samples for 12 tree species were obtained with an Alpha 300 FT NMR system (JEOL, Tokyo) operating at 75.45 MHz under the following conditions32: pulse repetition time of 3.1 s, CP contact time of 1 ms, sweep width of 35 kHz, acquisition time of 0.117 s, and MAS of 6 kHz. The finely powdered sample was tightly packed into a high-speed spinning NMR tube (rotor: zirconia, cap: KEL-F, 6-mm i.d., JEOL). Chemical shifts are quoted with respect to tetramethylsilane but were determined by referring to an external sample of adamantane (29.50 ppm). The 13C NMR spectra (Fig. S2) were divided into four chemical shift ranges, as follows: 0 to 45 ppm for alkyl-C (including major C of cutins and suberins), 45 to 110 ppm for O-alkyl-C (oxygen-substituted C in alcohols and ethers, including cellulose, hemicellulose, and other polysaccharides), 110 to 160 ppm for aromatic C (including mainly condensed tannins, hydrolyzable tannins, and lignin), and 160 to 190 ppm for carbonyl C (including carboxylic-C and carbonyl-C)33. The relative area of these chemical shift regions was calculated for each spectrum as the percentage of total area by using computer software ALICE 2 for Windows (JEOL) (Table S3).
    Nitrogen attached to leaf litter was determined by extraction and colorimetric analyses of the extractants for 13 tree species. Approximately 100 mg of bleached or nonbleached leaf litter was shaken with 10 ml of 2 M KCl in a 15-ml centrifuge tube on a shaker for 1 h. The suspension was centrifuged at 3000 rpm for 10 min and filtered with glass fiber filters (GF/F, Whatman). The total extractable nitrogen (TEN) in the extractants was measured by the alkali persulfate digestion method34. Ammonium-nitrogen (NH4+-N), nitrate-nitrogen (NO3–-N), and nitrite-nitrogen (NO2–-N) were determined colorimetrically35 for the pre-digested samples. Extractable organic nitrogen (EON) was calculated subtracting these three forms of inorganic nitrogen from TEN (Table S4).
    Statistical analyses
    Linear relationships between LMA and decomposition time and between contents of AUR, TCH, and total N and accumulated mass loss of leaf tissue were examined separately for bleached and nonbleached portions according to the following equations:

    $${text{Ln}},left[ {{text{LMA}},left( {% ,{text{original}},{text{value}}} right)} right] , = a + b times , left( {{text{time}},{text{in}},{text{months}}} right)$$
    (1)

    $${text{AUR}},{text{TCH}},{text{and}},{text{N}},{text{content }} = a + b times left( {{text{accumulated}},{text{mass}},{text{loss}},{text{of}},{text{leaf}},{text{tissue}}} right)$$
    (2)

    Accumulated mass loss of leaf tissue of bleached and nonbleached portions after a given period was calculated as the loss of LMA relative to the initial LMA values, expressed as a percentage. Intercepts (a) and slopes (b) of regression equations were calculated for the linear relationships using least-square regression15. The slope of the regression Eq. (1) represented the decomposition constant36. The slopes of the regression Eq. (2) describing AUR and N dynamics represented the N concentration increase rate and the lignin concentration increase rate, respectively15. A paired t-test was used to evaluate the difference between bleached and nonbleached portions in the slopes of regression equations for LMA, AUR, TCH, and N in decomposing leaf litter of 6 tree species and in LMA, contents of proximate organic chemical components, relative area of 13C NMR spectra, and contents of dissolved N in leaf litter of multiple tree species. More

  • in

    Over half of western United States' most abundant tree species in decline

    Field observations
    Since 1999, the FIA program has operated an extensive, nationally consistent forest inventory designed to monitor changes in forests across all lands in the US61. We used FIA data from 10 states in the continental western US (Washington, Oregon, California, Idaho, Montana, Utah, Nevada, Colorado, Arizona, and New Mexico) to quantify shifts in relative live tree density, excluding Wyoming due to a lack of repeated censuses (Fig. 1). This region spans a wide variety of climatic regimes and forest types, ranging from temperate rain forests of the coastal Pacific Northwest to pinyon-juniper woodlands of the interior southwest62. Although the spatial extent of the FIA plot network represents a large portion of the current range of all species examined in this study (Table 1), substantial portions of some species ranges (e.g., Douglas-fir) extend beyond the study region into Canada and/or Mexico and therefore were not fully addressed here.
    The FIA program measures forest attributes on a network of permanent ground plots that are systematically distributed at a rate of ~1 plot per 2428 hectares across the US61. For trees, 12.7 cm DBH and larger, attributes (e.g., species, DBH, live/dead) are measured on a cluster of four 168 m2 subplots61. Trees 2.54–12.7 cm DBH are measured on a microplot (13.5 m2) contained within each subplot, and rare events such as very large trees are measured on an optional macroplot (1012 m2) surrounding each subplot61. In the event a major disturbance (i.e., >1 acre in size, resulting in mortality or damage to >25% of trees) has occurred between measurements on a plot, FIA field crews record the primary disturbance agent (e.g., fire) and estimated year of the event. In the western US, one-tenth of ground plots are measured each year, with remeasurements first occurring in 2011. Please see Data Availability for more information on forest inventory data accessibility.
    Forest stability index
    Allometric relationships between size and density of live trees make it difficult to interpret many indices of forest change19. Live tree density is expected to decline as trees grow in size, owing to increased individual demand for resources and growing space (i.e., competition)16,23. The expected magnitude of change in tree density, given some change in average tree size, varies considerably across forest communities63, site conditions64, and stand age classes23. Thus, we posit it is useful to contextualize observed changes in live tree density relative to those expected given shifts in average tree size within a stand. To this end, we developed the FSI, a measure of change in relative live tree density that can be applied in stands of any forest community and/or structural type.
    To compute the FSI, we first develop a model of maximum size-density relationships for tree populations in our study system (Fig. 6). This model describes the theoretical maximum live tree density (({N}_{max }); in terms of tree number per unit area) attainable in stands as a function of their average tree size ((overline{S})) and will be used as a reference curve to determine the proportionate live tree density of observed stands (i.e., observed density with respect to theoretical maximum density). We use average tree basal area as an index of tree size (one, however, could also use biomass, volume, or other indices of tree size). For stand-type i, the general form of the maximum tree size-density relationship is given by

    $${N}_{max }({bar{S}}_{i})={a}_{i}cdot {bar{S}}_{i}^{ {r}_{i}},$$
    (1)

    where a is a scaling factor that describes the maximum tree density at (bar{S}=1) and r is a negative exponent controlling the decay in maximum tree density with increasing average tree size. Such allometric size-density relationships (i.e., power functions) are widely accepted as quantitative law describing the behavior of even-aged plant populations under self-thinning conditions16,17, and have been used extensively to describe relative stand density in forests23,24. As detailed below, we allow both a and r to vary with stand-type i, as maximum size-density relationships have been shown to vary across forest communities and ecological settings63,65. Allowing a and r to vary by forest community type, for example, allows us to acknowledge that the maximum tree density attainable in a lodgepole pine stand is likely to differ from that of a pinyon-juniper stand with the same average tree size.
    Fig. 6: Maximum size-density relationship for an example stand-type.

    Individual points represent observed stand-level indices of tree density (N) and average tree size ((overline{S})). Maximum tree density (({N}_{max })) is modeled as a power function of average tree size within a stand. Here, we use quantile regression to estimate ({N}_{max }) as the 99th percentile of N conditional on (overline{S}). The resulting maximum size-density curve can then be used to compute the relative density of observed stands (RD), where relative density is defined as ratio of observed tree density (N) to maximum theoretical density (({N}_{max })), given (overline{S}). Source data are provided as a Source Data file.

    Full size image

    We next define an index of the relative density of a population of trees j (e.g., species, Pinus edulis) within a stand of type i (e.g., forest community type, pinyon/juniper woodland)

    $${{rm{RD}}}_{ij}=sum _{h=1}frac{{N}_{hij}}{{N}_{max }({S}_{hi})},$$
    (2)

    where N is the density represented by tree h (in terms of tree number per unit area), and S is an index of individual-tree size (e.g., basal area, as used here). The denominator of Equation (2) represents the maximum tree density attainable in a stand of type i with average tree size equal to the size of tree h. We therefore express the relative density of a population j within stand-type i as a sum of the relative densities represented by individual trees within the stand. RD can be interpreted as the proportionate density, or stocking, of a population of trees within stand, where values range from 0 (population j is not present within a stand) to 1 (population j constitutes 100% of a stand and the stand is at maximum theoretical density given its size distribution). As we do in this study, one may apply any range of estimators to summarize the expected relative density of a population of trees j across a range of different stand-types (e.g., estimate the mean and variance of RDj across a broad region containing many different stand-types).
    It is important to note that Equation (2) is approximately equal to a simpler method using aggregate indices (i.e., (frac{{sum }_{h = 1}{N}_{hij}}{{N}_{max }(overline{{S}_{i}})})) when tree size-distributions are normally distributed (even age-structures). However, the use of aggregate indices introduces class aggregation bias that results in overestimation of relative density in stands with non-normal size distributions (i.e., uneven age-structures), consistent with other indices of relative tree density66. In contrast, summing tree-level relative densities eliminates such bias and allows RD to accurately compare density conditions across stands in very different structural settings (e.g., even-aged plantation vs. irregularly structured old forest). Furthermore, the partitioning of relative density into tree-level densities allows RD to be accurately summarized within tree size-classes66. That is, it is possible to explicitly estimate the contribution of tree size-classes to overall stand density using RD.
    For a given population j within stand-type i, we define the FSI as the average annual change in relative tree density observed between successive measurements of a stand

    $${rm{FSI}}=frac{{{Delta }}{rm{RD}}}{{{Delta }}t},$$
    (3)

    where Δt is the number of years between successive measurement times t1 and t2 and ΔRD is the change in RD over Δt (i.e., ({{rm{RD}}}_{{t}_{2}}-{{rm{RD}}}_{{t}_{1}})). The FSI may also be expressed in units of percent change (%FSI), where average annual change in relative tree density is standardized by previous relative density

    $$% {rm{FSI}}=frac{100cdot {rm{FSI}}}{{{rm{RD}}}_{{t}_{1}}}.$$
    (4)

    Here, stability is defined by zero net change in relative tree density over time (i.e., FSI equal to zero), but does not imply zero change in absolute tree density or tree size distributions. For example, a population exhibiting a decrease in absolute tree density (e.g., trees per unit area) may be considered stable if such decline is offset by a compensatory increase in average tree size. However, populations exhibiting expansion (i.e., ({{rm{RD}}}_{{t}_{1}} {,}{{rm{RD}}}_{{t}_{2}})) in relative tree density will be characterized by positive and negative FSI values, respectively.
    Statistical analysis
    We computed the FSI for all remeasured FIA plots in the western US (N = 24,229). We included plots on both public and private lands and considered all live stems (DBH ≥2.54 cm) in our analysis. As forest management can effect regional shifts in tree density, we excluded plots with evidence of recent (i.e., within 5 years of initial measurement) silvicultural treatment (e.g., harvesting, artificial regeneration, site preparation). All plot measurements occurred from 2001 to 2018, with an average remeasurement interval of 9.78 years (±0.005 years). For brevity, we restricted our analysis to consider the eight most abundant tree species in the western US. We identified the most abundant tree species using the rFIA R package60, defining abundance in terms of estimated total number of trees (DBH ≥ 2.54 cm) in the year 2018. We excluded species that exhibit non-tree growth habits (i.e., shrub, subshrub) across portions of the study region. All statistical analysis was conducted in Program R (4.0.0)67.
    We developed a Bayesian quantile regression model to estimate maximum size-density relationships for stand-types observed within our study area. Here, we use TPH as an index of absolute tree density, average tree basal area ((overline{{rm{BA}}}); equivalent to tree basal area per hectare divided by TPH) as an index of average tree size, and forest community type to describe stand-types. We produced stand-level estimates of TPH and (overline{{rm{BA}}}) from the most recent measurements of FIA plots that (1) lack evidence of recent (within remeasurement period or preceding 5 years) disturbance and/or silvicultural treatment and (2) exhibit approximately normal tree diameter distributions (i.e., even-aged). Here we define an approximately normal tree diameter distribution as exhibiting Pearson’s moment coefficient of skewness between −1 and 1.
    We transform the nonlinear size-density relationship to a linear function by taking the natural logarithm of TPH and (overline{{rm{BA}}}), and use a linear quantile mixed-effects model to estimate the 99th percentile of TPH conditional on (overline{{rm{BA}}}) (i.e., in log-log space) for all observed forest community types. We allowed both the model intercept and coefficient to vary across observed forest community types (i.e., random slope/intercept model), thereby acknowledging variation in the scaling factor (a) and exponent (r) of the maximum tree size-density relationship across stand-types. We place informative normal priors on the model intercept (μ = 7, σ = 1) and coefficient (μ = 0.8025, σ = 0.1) following the results of decades of previous research in maximum tree size-density relationships16,23,63,65.
    The FIA program uses post-stratification to improve precision and reduce non-response bias in estimates of forest variables68, and we used these standard post-stratified estimators to estimate the mean and variance of the FSI for each species across their respective ranges within the study area (see Code Availability for all relevant code). Further, the FIA program uses an annual panel system to estimate current inventories and change, where inventory cycles consist of multiple panels, and individual panels are comprised of mutually exclusive subsets of ground plots measured in the same year within a region. Precision of point and change estimates can often be improved by combining annual panels within an inventory cycle (i.e., by augmenting current data with data collected previously). We used the simple moving average estimator implemented in the rFIA R package60 to compute estimates from a series of eight annual panels (i.e., sets of plots remeasured in the same year) ranging from 2011 to 2018. The simple moving average estimator combines information from annual panels with equal weight (i.e., irrespective of time since remeasurement), thereby allowing us to characterize long-term patterns in relative density shifts. We determine populations to be stable if the 95% confidence intervals for range-averaged FSI included zero. Alternatively, if confidence intervals of range-averaged FSI do not include zero, we determine the population to be expanding when the estimate is positive and declining when the estimate is negative.
    To identify changes in species-size distributions, we used the simple moving average estimator to estimate the mean and variance of the FSI by species and size class across the range of each species within our study area. We assign individual trees to size-classes representing 10% quantiles of observed diameter distributions (i.e., diameter at 1.37 m above ground) of each species growing on one of seven site productivity classes (i.e., inherent capacity of a site to grow crops of industrial wood). That is, we allow size class definitions to vary among species and along a gradient of site productivity, thereby acknowledging intra-specific variation in diameter distributions arising from differences in growing conditions. The use of quantiles effectively standardizes absolute size distributions, simplifying both intra-specific and inter-specific comparison of trends in relative density shifts along species-size distributions.
    We assessed geographic variation in species relative density shifts at two scales: ecoregion divisions and subsections69. Ecoregion divisions (shown for our study area in Fig. 1) are large geographic units that represent broad-scale patterns in precipitation and temperature across continents. Ecoregion subsections are subclasses of ecoregion divisions, differentiated by variation in climate, vegetation, terrain, and soils at much finer spatial scales than those represented by divisions. We again used the simple moving average estimator to estimate the mean and variance of the FSI by species within each areal unit (i.e., drawing from FIA plots within each areal unit to estimate mean and variance of the FSI). As a direct measure of changes in relative tree density, spatial variation in the FSI is indicative of spatial shifts in species distributions during the remeasurement interval (i.e., range expansion/contraction and/or within-range relative density shifts). That is, the distribution of populations shift toward regions increasing in relative density and away from regions decreasing in relative density during the temporal frame of sampling. We map estimates of the FSI for each areal unit to assess spatial patterns of changes in relative density and identify regions where widespread geographic shifts in species distributions may be underway.
    We sought to quantify the average effect of forest disturbance processes on changes in the relative density of top tree species in the western US over the interval 2001–2018. To this end, we developed a hierarchical Bayesian model to determine the average severity and annual probability of disturbances (i.e., wildfire, insect outbreak, and disease) on sites where each species occurs. Average severity was modeled as

    $${y}_{jk} sim {rm{normal}}({alpha }_{j}+sum _{l}{beta }_{jl}cdot {x}_{lk}, {varsigma }_{j}^{2}),$$
    (5)

    where yjk is the FSI of species j on plot k, αj is a species-specific intercept, βjl is a species-specific coefficient corresponding to the binary variable xlk that takes the value of 1 if disturbance l occurred within plot k measurement interval and 0 otherwise. The intercept and regression coefficients each received an uninformative normal prior distribution. The species-specific residual standard deviation ςj received a uninformative uniform prior distribution70.
    On average, disturbance will occur at the midpoint of plot remeasurement periods, assuming temporal stationarity in disturbance probability over the study period. As plots in this study are remeasured on 10-year intervals, we assume that tree populations have, on average, 5 years to respond to any disturbance event. Hence, our definition of disturbance severity, βjl’s, cannot be interpreted as the immediate change in relative tree density resulting from disturbance. Rather, disturbance severity (as defined here) includes the immediate effects of disturbance, as well as 5 years of change in relative tree density prior to and following disturbance (where disturbance is assumed to be functionally instantaneous).
    Annual probability of disturbance l on plot k was modeled as

    $${x}_{lk} sim {rm{binomial}}({{Delta }}{t}_{k},{psi }_{jl}),$$
    (6)

    where Δtk is the number of years between successive measurements of plot k, viewed here as the number of binomial “trials,” and ψjl is the species-specific probability for disturbance which was assigned a beta(1,1) prior distribution. Hence, annual probability of disturbance is assumed to vary by species j and by disturbance type l.
    We estimate the mean effect of forest disturbance processes on changes in species-specific relative tree density by multiplying the posterior distributions of βjl and ψjl. That is, we multiply species-specific disturbance severity by disturbance probability to yield an estimate of the mean change in relative density caused by disturbance over the study period. We then standardize these values across species by dividing by the average relative density of each species at the beginning of the study period. Thus, standardized values can be interpreted as the annual proportionate change in the relative tree density of each species resulting from disturbance over the period 2001–2018.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    A genomic view of the microbiome of coral reef demosponges

    Six sponge species, R. odorabile, C. matthewsi, C. foliascens, S. flabelliformis, I. ramosa and C. orientalis (a bioeroding sponge), were selected for metagenomic sequencing (7 ± 0.5 Gbp) as these species represent dominant habitat forming taxa on tropical and temperate Australian reefs and exhibit high intraspecies similarity in their microbiomes. In addition, previously published microbial MAGs from I. ramosa and Aplysina aerophoba were analysed [8, 12], including 62 additional unpublished MAGs from A. aerophoba. The recovered MAGs, averaging 86 ± 12% completeness and 2 ± 2% contamination, made up 72 ± 21% relative abundance of their respective communities (by read mapping) on average and spanned the vast majority of microbial lineages typically seen in marine sponges [45] (Fig. S1 and Table S1), including the bacterial phyla Proteobacteria (331 MAGs), Chloroflexota (242), Actinobacteriota (155), Acidobacteriota (97), Gemmatimonadota (60), Latescibacterota (44; including lineages Anck6, PAUC34 and SAUL), Cyanobacteria (43), Bacteroidota (38), Poribacteria (35), Dadabacteria (22; including SBR1093), Nitrospirota (22), Planctomycetota (15), UBP10 (14), Bdellovibrionota (13), Patescibacteria (9; includes Candidate Phylum Radiation), Spirochaetota (8), Nitrospinota (7), Myxococcota (4), Entotheonella (2) and the archaeal class Nitrososphaeria (21; phylum Crenarchaeota), hereafter referred to by their historical name “Thaumarchaeota” for name recognition. Mapping of the metagenomic reads to the recovered MAGs showed that the communities had high intraspecies similarity across replicates, consistent with previous 16S rRNA gene-based analyses (Fig. S1). In general, taxa present in A. aerophoba, C. foliascens, C. orientalis and S. flabelliformis appeared unique to those sponge species, with only one dominant lineage present in C. orientalis (order Parvibaculales). In contrast, several Actinobacteriota, Acidobacteriota and Cyanobacteria populations were shared across C. matthewsi, R. odorabile and I. ramosa. Further, members of the Thaumarchaeota were detected in all sponge species and were particularly abundant in S. flabelliformis at 12 ± 4% relative abundance (Fig. S1). Addition of these sponge MAGs to genome trees comprising all publicly available sponge symbionts (N = 1188 MAGs) resulted in a phylogenetic gain of 44 and 75% for Bacteria and Archaea, respectively, reflecting substantial novel genomic diversity (Fig. 1).
    Comparative genomic analysis of the sponge-derived MAGs provided unique insights into the distribution of metabolic pathways across sponge symbiont taxa. For example, microbial oxidation of ammonia benefits the sponge host by preventing ammonia from accumulating to toxic levels [46], a process thought to be mediated by both symbiotic Bacteria and Archaea (i.e. Thaumarchaeota) [33]. Prior identification of ammonia oxidisers has been based on functional inference from phylogeny (16S rRNA gene amplicon surveys) [47] or homology to specific Pfams (metagenomes) [33]. However, the CuMMO gene family is diverse, encompassing functionally distinct relatives that include amoA, particulate methane monooxygenases and hydrocarbon monooxygenases that cannot be distinguished by homology alone [35]. We used GraftM [32] to recover CuMMO genes from the sponge MAGs and their metagenomic assemblies, as well as previously sequenced metagenomic assemblies from six additional sponge microbiomes where bacterial amoA gene sequences had been identified [33]. Phylogenetic analysis of the recovered CuMMO genes showed that all archaeal homologues came from Thaumarchaeota and fell within the archaeal amoA clade. In contrast, bacterial CuMMO sequences were identified exclusively in MAGs from the phylum UBP10 (formerly unclassified Deltaproteobacteria) and from an unknown taxonomic group in the previous metagenomic assemblies [33]. All recovered bacterial and taxonomically unidentified CuMMO placed within the Deltaproteobacteria/Actinobacteria hmo clade, indicating these genes are specific for hydrocarbons rather than ammonia (Fig. S2). The finding that Thaumarchaeota are the only microbes within any of the surveyed sponge species capable of oxidising ammonia, and their ubiquity across sponges, suggests they are a keystone species for this process.
    To further investigate the distribution of functions within the sponge microbiome, a set of highly complete ( >85%) sponge symbiont MAGs were grouped by principal components analysis based on their KEGG and Pfam annotations, as well as orthologous clusters that reflected all gene content. Similar analysis conducted on 37 MAGs from the sponge Aplysina aerophoba suggested the presence of functional guilds, with MAGs from disparate microbial phyla carrying out similar metabolic processes [12] (e.g. carnitine catabolism). Here, we find that MAGs clustered predominately by microbial taxonomy (phylum) rather than function in all three analyses (Fig. S3). While functional guilds could not be identified based on analysis of total genome content, this does not preclude the existence of such guilds based on more specific metabolic pathways.
    To identify pathways enriched within the sponge microbiome, sponge-associated MAGs with >85% completeness (N = 798) were compared with a set of coral reef and coastal seawater MAGs (N = 86), 31 derived from published datasets [31] and 55 from this study (Table S1). Seawater MAGs with >85% genome completeness (93 ± 4% completeness and 2 ± 2% contamination; Table S1) spanned the bacterial phyla Proteobacteria (48 MAGs), Bacteroidota (13), Planctomycetota (5), Myxococcota (5), Gemmatimonadota (3), Marinisomatota (3), Actinobacteriota (3), Verrucomicrobiota (2), Cyanobacteriota (2), Bdellovibrionota (1) and the archaeal phylum Nanoarchaeota (1). Comparative analysis revealed that sponge symbionts were enriched in metabolic pathways for carbohydrate metabolism, defence against infection by MGE, amino acid synthesis, eukaryote-like gene repeat proteins (ELRs) and cell–cell attachment (Tables S2–S4).
    Genes belonging to GH and carbohydrate esterase (CE) families (Table S2) acting on starch (GH77), arabinose (CAZY families GH127 and GH51), fucose (GH95 and GH29) and xylan polymers (CE7 and CE15), were enriched in sponge-associated lineages, likely reflecting the hosts critical role in catabolising dissolved organic matter (DOM) present in reef seawater (Fig. 2). Microbial GHs from the GH77 family target starch, the main sugar storage compound in marine algae [48], whereas GHs from families 51 and 127 are known to act on plant arabinosaccharides, such as the hydroxyproline-linked arabinosaccharides found in algal extensin glycoproteins [49, 50]. GH127 enzymes are also required for microbial degradation of carrageenan, a complex heteropolysaccharide produced by red algae [51]. Members of the fucosidase GH95 and GH29 enzyme families are known to degrade fucoidan, a complex fucosaccharide prominent in brown algae [50, 52]. Notably, arabino- and fucopolysaccharides also make up a significant proportion of coral mucus, a major component of DOM in coral reefs that sponges have been shown to utilise [53, 54]. Supporting this observation, isotopic investigation of the fate of coral mucus and algal polysaccharides in sponges showed that the microbiome participates in metabolism of these compounds, particularly in sponges with high microbial abundance and diversity [4, 5]. Enzymes from the CE families 15 and 7 have been primarily characterised in terrestrial plants where they act as glucuronyl esterases and acetyl-xylan esterases, degrading lignocellulose and removing acetyl groups from hemicellulose [55] (e.g. xylans). Characterisation of CE15 and CE7 from marine microbes is rare, though activity on xylans, which are a structural component of marine algae, has previously been demonstrated [55,56,57].
    Fig. 2: Phylogenetic tree showing the distribution of glycosyl hydrolases and esterases across MAGs with >85% completeness (N = 884).

    Values represent the copy number of each gene per MAG. Internal branches of the tree are coloured by phylum, while the outer strip is coloured by class. Both are listed clockwise in the order in which they appear. Seawater MAGs are denoted by grey labels with red text.

    Full size image

    GHs acting on sialic acids (GH33) and glycosaminoglycans (GH88) were also enriched in the sponge-associated MAGs and may act on compounds found within sponge tissue [13] (Fig. 2). In contrast, no genes for the degradation of collagen (collagenases), one of the main structural components of the sponge skeleton were identified. Sialic acid-linked residues are found in the sponge mesohyl [58], and although the impact of cleavage on the host is unknown, analogy can be made to other symbioses. For example, sialidases are common in the commensal bacteria present in the human gut where they are used to cleave and metabolise the sialic acid-containing mucins lining the gut wall [59]. Increased sialidase activity is associated with gut dysbiosis and inflammation [60] and careful control of sialidase-containing commensals is therefore necessary to maintain gut homoeostasis [59]. As glycosaminoglycans are also part of sponge tissue [13, 61], the same may apply to microorganisms encoding GH88 family enzymes. However, these genes are also implicated in the degradation of external sugar compounds, such as ulvans, a major sugar storage compound found in green algae that can make up to 30% of their dry weight [62]. Thus, the ecological role of GH88 family enzymes within the sponge microbiome requires further investigation.
    Enrichment of GHs and CEs was largely restricted to the Poribacteria, Latescibacteria (class UBA2968), Spirochaetota, Chloroflexota (classes UBA2235 and Anaerolineae, but not Dehalococcoides) and Acidobacteriota (class Acidobacteriae). These findings corroborate previous targeted genomic characterisations of the Chloroflexota and Poribacteria [13, 14] but show that they are part of a larger set of polysaccharide-degrading lineages. Identification of disparately related microbial taxa across several sponge lineages (Figs. 1 and 2) that encode similar pathways for polysaccharide degradation, and therefore occupy a similar ecological niche, supports the existence of functional guilds within the sponge microbiome when viewed at the level of individual pathways. Given the fundamental role of marine sponges in recycling coral reef DOM, studies targeting these specific guilds are needed to quantify their contribution to reef DOM transformation.
    Because sponges filter and retain biomass from an extensive range of reef taxa (eukaryotic algae, bacteria, archaea, etc), they are exposed to a greatly expanded variety of MGEs from these organisms, including viruses, transposable elements and plasmids [33, 63]. For this reason, sponge-associated microorganisms likely require a diverse toolbox of molecular mechanisms for resisting infection. Both RM and CRISPR systems are capable of recognising and cleaving MGEs as part of the bacterial immune repertoire. RM systems are part of the innate immune system of bacteria and archaea and are encoded by a single (Type II) or multiple proteins (Type I, III and IV) that recognise and cleave foreign DNA based on a defined target sequence. In contrast, CRISPR systems are part of the adaptive immune system of some bacteria and archaea and encode a target sequence derived from the genome of a previous infective agent that is used by a CRISPR-associated protein (CAS) to identify and cleave foreign DNA. RM (Fig. S4) and CAS (Fig. S5) genes were both enriched (Table S3) in the sponge-associated MAGs and relatively evenly distributed across taxa, with the exception of the Planctomycetota and Verrucomicrobiota, where they were largely absent. As these MAGS average 93 +/− 5% completeness, this result is not likely due to genome incompleteness. This finding contrasts with comparative investigations of Planctomycetota genomes from other environments [64] and additional research is required to ascertain the mechanisms used by sponge-associated Planctomycetota and Verrucomicrobiota to avoid infection. Although Type III RM genes were enriched in sponge MAGs, they were also present in all seawater MAGs. In contrast, Types I and II RM genes were present almost exclusively in the sponge-associated MAGs. In conjunction with an enrichment in CRISPR systems, this expanded repertoire of defence systems likely reflects the increased burden from MGEs associated with the hosts role in filtering and concentrating diverse sources of reef biomass. Supporting this hypothesis, metagenomic surveys of sponge-associated viruses revealed a more diverse viral population than what could be recovered from the surrounding seawater [63]. Further, we found that genes encoding toxin-antitoxin systems, which are present on MGEs, such as plasmids, were also enriched in sponge-associated MAGs. These observations suggest that RM and CRISPR systems are important features of microbe-sponge symbiosis, allowing the symbionts to colonise and persist within their host by avoiding viral infection or being overtaken by MGEs.
    Pathways for the synthesis of amino acids were also enriched in the sponge microbiome. The inability of animals to produce several essential amino acids has been proposed as a primary reason that they harbor microbial symbionts [65,66,67,68] and it has long been thought that sponges acquire at least some of their essential amino acids from their microbiome [69, 70]. Further, gene-centric characterisation of the Xestospongia muta and R. odorabile microbiomes revealed pathways to synthesise and transport essential amino acids [33, 70]. However, these same amino acid pathways are also used catabolically by the microorganisms, and transporters could simply be importing amino acids into the microbial cell. Further, as sponges are almost constantly filter feeding, essential amino acids could be acquired through consumption of microorganisms present in seawater. Comparison of sponge MAGs with those from seawater revealed enrichment of specific pathways for the synthesis of lysine, arginine, histidine, threonine, valine and isoleucine (Table S4). However, visualisation of the distribution of these genes revealed that almost all MAGs in both sponges and seawater produce all amino acids, though specific lineages may use different pathways to achieve this (Fig. S6). The enrichment observed in the sponge MAGs was therefore ascribed to differences in pathway completeness between sponge-associated and seawater microbes, rather than an enhanced ability of sponge symbionts to produce any specific amino acid. In contrast, compounds, such as taurine, carnitine and creatine have also been proposed as important host-derived carbon sources for symbionts [69], but pathways for their catabolism were enriched in seawater rather than sponge-associated MAGs. While these findings do not invalidate the possibility that microbial communities play a role in amino acid provisioning to the host or that they utilise host-derived taurine, carnitine, or creatine, they suggest that these are not key processes mediating microbe-sponge symbiosis.
    To form stable symbioses, bacteria must persist within the sponge tissue and avoid phagocytosis by host cells. Microbial proteins containing ELR motifs have been identified in a range of animal and plant-associated microbes and are thought to modulate the host’s intracellular processes to facilitate stable symbiotic associations [71, 72]. For example, ELR-containing proteins from sponge-associated microbes have been shown to confer the ability to evade host phagocytosis when experimentally expressed in E. coli [10, 73]. ELR-containing proteins from the ankyrin (ARP), leucine-rich, tetratricopeptide and HEAT repeat families were enriched in the sponge-associated MAGs. In contrast, WD40 repeats were not found to be enriched but are included here as they have previously been reported as abundant in Poribacteria and symbionts of other marine animals [13, 31]. Most ELRs were present across all taxa but were much more prevalent in specific lineages (Fig. 3). For example, sponge-associated Poribacteria, Latescibacterota and Acidobacteriota encoded a high proportion of all ELR types, while other lineages, such as the Gemmatimonadota (average 0.25% coding genes per sponge-associated MAG versus 0.09% in seawater MAGs), Verrucomicrobiota (2%), Deinococcota (0.85%), Acidobacteriota (0.20%; specifically class Luteitaleia at 0.55%) and Dadabacteria from C. orientalis (0.62%) encoded a comparatively high percentage of ARPs and Nitrospirota encoded a high percentage of HEAT_2 family proteins (0.55% versus 0.05% in seawater MAGs) relative to other taxa. In contrast, ELR abundances were substantially lower, or absent, in the Actinobacteriota, the class Bacteroidia within the phylum Bacteroidota, and the Thaumarchaeota, suggesting these microorganisms utilise alternative mechanisms to maintain their stable associations with the host.
    Fig. 3: Phylogenetic tree showing the distribution of eukaryote-like repeat proteins—ankyrin (ARP), leucin-rich (LRR), tetratricopeptide (TPR), HEAT and WD40—across MAGS with >85% completeness (N = 884).

    Values represent the percentage of coding genes per MAG devoted to each gene class. Internal branches of the tree are coloured by phylum, while the outer strip is coloured by class, and both are listed clockwise in the order in which they appear. MAGs from seawater are denoted by grey labels with red text.

    Full size image

    The mechanisms by which ELRs interact with sponge cells remains largely unknown, although microbes in other host systems are known to deliver ELR-containing effector proteins into host cells via needle-like secretion systems (types III, IV and V) or extracellular contractile injection systems [74, 75], where they interact with the cellular machinery of the host to modify its behaviour. In sponges, it is also possible that ELRs could be secreted into the extracellular space by type I or II secretion systems. Interestingly, although most sponge MAGs encoded eukaryote-like proteins (Fig. 3), few lineages encoded the necessary genes to form secretion systems (Fig. S7). It is therefore unlikely that ELRs are introduced to the sponge host via traditional secretion pathways used in other animal-symbiont systems.
    Maintaining stable association with the sponge may also require mechanisms for attachment to the host tissue. For example, cadherin domains are Ca2+-dependent cell–cell adhesion proteins that are abundant in eukaryotes and have been found to serve the same function in bacteria [76]. Similarly, fibronectin III domains mediate cell adhesion in eukaryotes, but also occur in bacteria where they play various roles in carbohydrate binding and biofilm formation [77, 78]. In addition, some bacterial pathogens utilise fibronectin-binding proteins to gain entry into host tissue by binding to host fibronectin [77, 78]. Genes containing cadherin domains were enriched in the sponge-associated MAGs and were identified in most bacterial lineages, but were notably absent in the Cyanobacteriota and Verrucomicrobiota (Fig. 4). Genes containing fibronectin III domains and those for fibronectin-binding proteins were also enriched in sponge-associated MAGs and were distributed across most lineages, though were particularly abundant in the Actinobacteriota and Chloroflexota. However, although fibronectin III-containing genes were taxonomically widespread, those encoding fibronectin-binding proteins were restricted to the phyla Poribacteria, Gemmatimonadota, Latescibacterota, Cyanobacteriota, class Anaerolineae within the Chloroflexota (but not Dehalococcoidia), class Rhodothermia within the Bacteroidota, Spirochaetota, Nitrospirota and the archaeal phylum Thaumarchaeota. Interestingly, the taxonomic distribution of these genes shares significant overlap with lineages encoding the genes for sponge sialic acid and glyosaminoglycans degradation, suggesting that attachment to the host may be necessary for utilisation of these carbohydrates (Fig. 2). However, as the host, bacterial, and archaeal components of the sponge holobiont have fibronectin III domains, symbionts encoding fibronectin-binding proteins may use these to adhere to the host tissue or potentially to form biofilms (bacteria–bacteria attachment). In either case, the enrichment and wide distribution of cadherins, fibronectins and fibronectin-binding proteins in the sponge MAGs suggests that cell–cell adhesion is critical for successful establishment in the sponge niche.
    Fig. 4: Phylogenetic tree showing the distribution of cadherins, fibronectins and fibronectin-binding proteins across MAGS with >85% completeness (N = 884).

    Values represent the copy number of each gene per MAG. Internal branches of the tree are coloured by phylum while the outer strip is coloured by class. Both are listed clockwise in the order in which they appear. Seawater MAGs are denoted by grey labels with red text.

    Full size image

    Distribution of genes encoding ELRs, polysaccharide-degrading enzymes (GHs and CEs), cadherins, fibronectins, RMs and CRISPRs across distantly related taxa suggests that they were either acquired from a common ancestor or that they represent more recent LGT events, potentially mediated by MGEs, which are enriched in sponge-associated microbial communities [69]. Here, we identify 4963 LGTs from five sponges for which sufficient sequence data were available ( >100 Mbp total sequence length across all MAGs), as well as 136 LGTs from seawater MAGs, averaging 1.64 and 0.52 LGTs per Mbp sequences, respectively (Fig. 5 and Table S5). Sequence similarity of LGTs from MAGs within a sponge species was higher than between sponge species, indicating relatively recent gene transfers (Fig. S8). A higher frequency (Fig. S9) and lower genetic divergence of LGTs among MAGs derived from the same sponge species likely results from the close physical distance between members of each microbiome, as has been observed in other host-symbiont systems [79]. The identification of lateral transfers between microbes from different sponge species may highlight the horizontal acquisition of these microbes or that a recent ancestor inhabited the same host. Notably, LGTs included a subset of genes that were enriched within the sponge-associated MAGs, such as GH33 (sialidases) and CE7 (acetyl-xylan esterases), attachment proteins (cadherins and fibronectin III), RM and CAS proteins, and members of all ELR families other than WD40 (Figs. 6 and S10). The observation that a significant number of sponge-enriched genes were laterally transferred between disparate microbial lineages suggests that the processes they mediate provide a strong selective advantage within the sponge niche, though further research is required to validate these findings.
    Fig. 5: Visualisation of LGTs detected within the MAGs for the five sponges passing the cumulative MAG length criteria ( >100 Mbp).

    The inner strip is coloured by phylum while the outer strip is coloured by host sponges. Bands connect donors and recipients, with their colour corresponding to the donors and the width correlating to the number of LGTs.

    Full size image

    Fig. 6: Visualisation of gene flow among microbial phyla for gene families enriched in sponge-associated MAGs.

    The inner ring and band connecting donor and recipient is coloured by protein family of the gene being transferred, with the width of the band correlating to the number of LGTs. Recipient MAGs are shown in grey. The outer ring is coloured by microbial phylum. Representation of RM and CAS gene LGTs can be found in Fig. S10.

    Full size image

    Sponges are important constituents of coral reef ecosystems because of their critical role in DOM cycling and retention via the sponge-loop. Despite their importance, functional characterisation of sponge symbiont communities has been restricted to just a few lineages of interest, potentially biasing our view of sponge symbiosis. Here we present a comprehensive characterisation of sponge symbiont MAGs spanning the complete range of taxa found in marine sponges (Fig. 7), most of which were previously uncharacterised. We revealed enrichment in glycolytic enzymes (GHs and CEs) reflecting specific functional guilds capable of aiding the sponge in the degradation of reef DOM. Further, we identified several ELRs, CRISPRs and RMs that likely facilitate stable association with the sponge host, showing the specificity of ELR types with individual microbial lineages. We also clarified the role of Thaumarchaeota as a keystone taxon for ammonia oxidation across sponge species and showed that processes previously thought to be important, such as amino acid provisioning and taurine, creatine and carnitine metabolism are unlikely to be central mechanisms mediating sponge-microbe symbiosis. Many of the enriched genes are laterally transferred between microbial lineages, suggesting that LGT plays an important role in conferring a selective advantage to specific sponge-associated microorganisms. Taken together, these data illustrate how evolutionary processes have distributed and partitioned ecological functions across specific sponge symbiont lineages, allowing them to occupy or share specific niches and live symbiotically with their sponge hosts.
    Fig. 7: Schematic overview of microbial interactions with the host as inferred from the functional potential encoded by the sponge-associated microbial MAGs.

    Fbn fibronectin, cdh cadherins, RM restriction-modification systems, CAS CRISPR-associated proteins, ELP eukaryotic-like repeat proteins, CE7 carbohydrate esterase family 7, GH33 glycosyl hydrolase family 33.

    Full size image More