Comparing detectability patterns of bird species using multi-method occupancy modelling
1.
MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamycs of Species Occurence (Academic Press, Cambridge, 2006).
Google Scholar
2.
Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology Vol. 1 (Academic Press, Cambridge, 2016).
Google Scholar
3.
Lindenmayer, D. B. et al. Improving biodiversity monitoring. Austral Ecol. 37, 285–294 (2012).
Article Google Scholar
4.
Einoder, L. D. et al. Occupancy and detectability modelling of vertebrates in northern Australia using multiple sampling methods. PLoS ONE 13, e0206373. https://doi.org/10.1371/journal.pone.0206373 (2018).
Article PubMed PubMed Central Google Scholar
5.
Boulinier, T., Nichols, J. D., Sauer, J. R., Hines, J. E. & Pollock, K. H. Estimating species richness: The importance of heterogeneity in species detectability. Ecology 79, 1018–1028 (1998).
Article Google Scholar
6.
Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D. & Parris, K. Improving precision and reducing bias in biological surveys: Estimating false-negative error rates. Ecol. Appl. 13, 1790–1801 (2003).
Article Google Scholar
7.
Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 9, e111436. https://doi.org/10.1371/journal.pone.0111436 (2014).
CAS Article PubMed PubMed Central ADS Google Scholar
8.
Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: Emerging methods to estimate species diversity. Trends Ecol. Evol. 29, 97–106 (2014).
PubMed Article PubMed Central Google Scholar
9.
Kéry, M. & Schmidt, B. Imperfect detection and its consequences for monitoring for conservation. Community Ecol. 9, 207–216 (2008).
Article Google Scholar
10.
Tingley, M. W. & Beissinger, S. R. Cryptic loss of montane avian richness and high community turnover over 100 years. Ecology 94, 598–609 (2013).
PubMed Article PubMed Central Google Scholar
11.
Leu, M. et al. Effects of point-count duration on estimated detection probabilities and occupancy of breeding birds. J. F. Ornithol. 88, 80–93 (2017).
Article Google Scholar
12.
Royle, J. A. & Dorazio, R. M. Hierarchical Modeling and Inference in Ecology. The Analysis of Data from Populations, Metapopulations and Communities (Elsevier, Amsterdam, 2008).
Google Scholar
13.
Guillera-Arroita, G. Modelling of species distributions, range dynamics and communities under imperfect detection: Advances, challenges and opportunities. Ecography 40, 281–295 (2017).
Article Google Scholar
14.
Kéry, M., Royle, J. A., Plattner, M. & Dorazio, R. M. Species richness and occupancy estimation in communities subject to temporary emigration. Ecology 90, 1279–1290 (2009).
PubMed Article PubMed Central Google Scholar
15.
Sólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. S. & Bayne, E. M. Phylogeny and species traits predict bird detectability. Ecography 41, 1595–1603 (2018).
Article Google Scholar
16.
Jarzyna, M. A. & Jetz, W. Detecting the multiple facets of biodiversity. Trends Ecol. Evol. 31, 527–538 (2016).
PubMed Article PubMed Central Google Scholar
17.
Kéry, M., Royle, J. A. & Schmid, H. Modeling avian abundance from replicated counts. Ecol. Appl. 15, 1450–1461 (2005).
Article Google Scholar
18.
Mackenzie, D. I. & Royle, J. A. Designing occupancy studies: General advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114 (2005).
Article Google Scholar
19.
Jiménez-Franco, M. V. et al. Use of classical bird census transects as spatial replicates for hierarchical modeling of an avian community. Ecol. Evol. 9, 825–835 (2018).
Article Google Scholar
20.
Clement, M. J., Hines, J. E., Nichols, J. D., Pardieck, K. L. & Ziolkowski, D. J. Estimating indices of range shifts in birds using dynamic models when detection is imperfect. Glob. Change Biol. 22, 3273–3285 (2016).
Article ADS Google Scholar
21.
Sliwinski, M., Powell, L., Koper, N., Giovanni, M. & Schacht, W. Research design considerations to ensure detection of all species in an avian community. Methods Ecol. Evol. 7, 456–462 (2016).
Article Google Scholar
22.
Rappole, J. H., Winker, K. & Powell, G. V. Migratory bird habitat use in Southern Mexico: Mist nets versus point counts. J. F. Ornithol. 69, 635–643 (2012).
Google Scholar
23.
Faaborg, J., Arendt, W. J. & Dugger, K. M. Bird population studies in Puerto Rico using mist nets: General patterns and comparisons with point counts. Stud. Avian Biol. 29, 144–150 (2004).
Google Scholar
24.
Dunn, E. H. & Ralph, C. J. Use of mist nets as a tool for bird population monitoring. Stud. Avian Biol. 29, 1–6 (2004).
Google Scholar
25.
Lynch, J. F. Distribution of overwintering Nearctic migrants in the Yucatan Peninsula, I: General patterns of occurrence. Condor 91, 515–544 (1989).
Article Google Scholar
26.
Wunderle, J. M. & Waide, R. B. Distribution of overwintering Nearctic migrants in the Bahamas and Greater Antilles. Condor 95, 904–933 (1993).
Article Google Scholar
27.
Gram, W. K. & Faaborg, J. The distribution of neotropical migrant birds wintering in the El Cielo Biosphere Reserve, Tamaulipas, Mexico. Condor 99, 658–670 (1997).
Article Google Scholar
28.
Whitman, A. A., Hagan, J. M. & Brokaw, N. V. L. A comparison of two bird survey techniques used in a subtropical forest. Condor 99, 955–965 (1997).
Article Google Scholar
29.
Arizaga, J., Deán, J. I., Vilches, A., Alonso, D. & Mendiburu, A. Monitoring communities of small birds: A comparison between mist-netting and counting. Bird Study 58(3), 37–41 (2011).
30.
Darras, K. et al. Autonomous sound recording outperforms human observation for sampling birds: A systematic map and user guide. Ecol. Appl. 29, e01954. https://doi.org/10.1002/eap.1954 (2019).
Article PubMed Google Scholar
31.
Smit, B., Woodborne, S., Wolf, B. O. & McKechnie, A. E. Differences in the use of surface water resources by desert birds are revealed using isotopic tracers. Auk 136, 1–13 (2019).
Article Google Scholar
32.
Lynn, J. C., Rosenstock, S. S. & Chambers, C. L. Avian use of desert wildlife water developments as determined by remote videography. West. N. Am. Nat. 68, 107–112 (2008).
Article Google Scholar
33.
Fisher, J. T. & Bradbury, S. A multi-method hierarchical modeling approach to quantifying bias in occupancy from noninvasive genetic tagging studies. J. Wildl. Manag. 78, 1087–1095 (2014).
Article Google Scholar
34.
Fisher, J. T., Heim, N., Code, S. & Paczkowski, J. Grizzly bear noninvasive genetic tagging surveys: Estimating the magnitude of missed detections. PLoS ONE 11, 1–16 (2016).
Google Scholar
35.
Nichols, J. D. et al. Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol. 45, 1321–1329 (2008).
Article Google Scholar
36.
Calvo, J. F. et al. Catálogo de las aves de la Región de Murcia (España). An. Biol. 39, 7–33 (2017).
Article Google Scholar
37.
Galbraith, J. A., Jones, D. N., Beggs, J. R., Stanley, M. C. & Parry, K. Urban bird feeders dominated by a few species and individuals. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00081 (2017).
Article Google Scholar
38.
McCarthy, M. A. et al. The influence of abundance on detectability. Oikos 122, 717–726 (2012).
Article Google Scholar
39.
Lee, A. T. K., Wright, D. & Barnard, P. Hot bird drinking patterns: Drivers of water visitation in a fynbos bird community. Afr. J. Ecol. 55, 541–553 (2017).
Article Google Scholar
40.
Gregory, R. D., Gibbons, D. W. & Donald, P. F. Bird census and survey techniques. In Bird Ecology and Conservation. A Handbook of Techniques (eds. Sutherland, W. J., Newton, I. & Green, R. E.) 17–55 (Oxford Scholarship, Oxford, 2004).
41.
Derlindati, E. J. & Caziani, S. M. Using canopy and understory mist nets and point counts to study bird assemblages in Chaco forests. Wilson Bull. 117, 92–99 (2005).
Article Google Scholar
42.
Wang, Y. & Finch, D. M. Consistency of mist netting and point counts in assessing landbird species richness and relative abundance during migration. Condor 104, 59–72 (2002).
Article Google Scholar
43.
Valera, F. et al. History and adaptation stories of the vertebrate fauna of southern Spain semiarid habitats. J. Arid Environ. 75, 1342–1351 (2011).
Article ADS Google Scholar
44.
Rappole, J. H. Migratory bird habitat use in Southern Mexico: Mist nets versus point counts. J. F. Ornithol. 69, 635–643 (2012).
Google Scholar
45.
Poulin, B., Lefebvre, G. & Pilard, P. Quantifying the breeding assemblage of reedbed passerines with mist-net and point-count surveys. J. F. Ornithol. 71, 443–454 (2000).
Article Google Scholar
46.
Armas, C., Miranda, J. D., Padilla, F. M. & Pugnaire, F. I. Special issue: The Iberian Southeast. J. Arid Environ. 75, 1241–1243 (2011).
Article ADS Google Scholar
47.
Lisón, F. & Calvo, J. F. Bat activity over small ponds in dry Mediterranean forests: Implications for conservation. Acta Chiropterol. 16, 95–101 (2014).
Article ADS Google Scholar
48.
Sebastián-González, E., Sánchez-Zapata, J. A. & Botella, F. Agricultural ponds as alternative habitat for waterbirds: Spatial and temporal patterns of abundance and management strategies. Eur. J. Wildl. Res. 56, 11–20 (2010).
Article Google Scholar
49.
Egea-Serrano, A., Oliva-Paterna, F. J. & Torralva, M. Breeding habitat selection of Salamandra salamandra (Linnaeus, 1758) in the most arid zone of its European distribution range: Application to conservation management. Hydrobiologia 560, 363–371 (2006).
Article Google Scholar
50.
Egea-Serrano, A., Oliva-Paterna, F. J., Tejedo, M. & Torralva, M. Breeding habitat selection of an endangered species in an arid zone: The case of Alytes dickhilleni Arntzen & García-París, 1995. Acta Herpetol. 1, 81–94 (2006).
Google Scholar
51.
Davies, S. R., Sayer, C. D., Greaves, H., Siriwardena, G. M. & Axmacher, J. C. A new role for pond management in farmland bird conservation. Agric. Ecosyst. Environ. 233, 179–191 (2016).
Article Google Scholar
52.
Oertli, B. Freshwater biodiversity conservation: The role of artificial ponds in the 21st century. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 264–269 (2018).
Article Google Scholar
53.
MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).
Article Google Scholar
54.
Rich, L. N., Miller, D. A. W., Robinson, H. S., McNutt, J. W. & Kelly, M. J. Using camera trapping and hierarchical occupancy modelling to evaluate the spatial ecology of an African mammal community. J. Appl. Ecol. 53, 1225–1235 (2016).
Article Google Scholar
55.
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2002).
Google Scholar
56.
Martínez-Martí, C., Jiménez-Franco, M. V., Royle, J. A., Palazón, J. A. & Calvo, J. F. Integrating occurrence and detectability patterns based on interview data: A case study for threatened mammals in Equatorial Guinea. Sci. Rep. 6, 33838. https://doi.org/10.1038/srep33838 (2016).
CAS Article PubMed PubMed Central ADS Google Scholar
57.
White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
Article Google Scholar
58.
Laake, J. L. RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. AFSC Processed Report 2013–01, 25p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115 (2013).
59.
Denis, T. et al. Biological traits, rather than environment, shape detection curves of large vertebrates in neotropical rainforests. Ecol. Appl. 27, 3218–3221 (2017).
Article Google Scholar
60.
Frishkoff, L. O., De Valpine, P. & M’Gonigle, L. K. Phylogenetic occupancy models integrate imperfect detection and phylogenetic signal to analyze community structure. Ecology 98, 198–210 (2017).
PubMed Article PubMed Central Google Scholar
61.
Pearman, P. B. et al. Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage. Glob. Ecol. Biogeogr. 23, 414–424 (2014).
PubMed Article PubMed Central Google Scholar
62.
Powell, L. A. Approximating variance of demographic parameters using the delta method: A reference for avian biologists. Condor 109, 949–954 (2007).
Article Google Scholar More
