Cable bacteria extend the impacts of elevated dissolved oxygen into anoxic sediments
1.
Zoumis T, Schmidt A, Grigorova L, Calmano W. Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ. 2001;266:195–202.
CAS PubMed Article Google Scholar
2.
SØNdergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, et al. Lake restoration: successes, failures and long-term effects. J Appl Ecol. 2007;44:1095–105.
Article CAS Google Scholar
3.
Zhao CS, Yang Y, Yang ST, Xiang H, Wang F, Chen X, et al. Impact of spatial variations in water quality and hydrological factors on the food-web structure in urban aquatic environments. Water Res. 2019;153:121–33.
CAS PubMed Article Google Scholar
4.
Wang C, Zhai W, Shan B. Oxygen microprofile in the prepared sediments and its implication for the sediment oxygen consuming process in a heavily polluted river of China. Environ Sci Pollut Res Int. 2016;23:8634–43.
CAS PubMed Article Google Scholar
5.
Liu B, Han RM, Wang WL, Yao H, Zhou F. Oxygen microprofiles within the sediment-water interface studied by optode and its implication for aeration of polluted urban rivers. Environ Sci Pollut Res Int. 2017;24:9481–94.
CAS PubMed Article PubMed Central Google Scholar
6.
Rysgaard S, Risgaard-Petersen N, Sloth NP, Jensen K, Nielsen LP. Oxygen regulation of nitrification and denitrification in sediments. Limnol Oceanogr. 2003;39:1643–52.
Article Google Scholar
7.
Broman E, Sachpazidou V, Pinhassi J, Dopson M. Oxygenation of hypoxic coastal Baltic Sea sediments impacts on chemistry, microbial community composition, and metabolism. Front Microbiol. 2017;8:2453–2453.
PubMed PubMed Central Article Google Scholar
8.
Zheng B, Wang L, Liu L. Bacterial community structure and its regulating factors in the intertidal sediment along the Liaodong Bay of Bohai Sea, China. Microbiol Res. 2014;169:585–92.
CAS PubMed Article PubMed Central Google Scholar
9.
Yu P, Wang J, Chen J, Guo J, Yang H, Chen Q. Successful control of phosphorus release from sediments using oxygen nano-bubble-modified minerals. Sci Total Environ. 2019;663:654–61.
CAS PubMed Article PubMed Central Google Scholar
10.
Papageorgiou N, Kalantzi I, Karakassis I. Effects of fish farming on the biological and geochemical properties of muddy and sandy sediments in the Mediterranean Sea. Mar Environ Res. 2010;69:326–36.
CAS PubMed Article Google Scholar
11.
Pfeffer C, Larsen S, Song J, Dong MD, Besenbacher F, Meyer RL, et al. Filamentous bacteria transport electrons over centimetre distances. Nature. 2012;491:218–21.
CAS PubMed Article Google Scholar
12.
Nielsen LP, Risgaard-Petersen N. Rethinking sediment biogeochemistry after the discovery of electric currents. Annu Rev Mar Sci. 2015;7:425–42.
Article Google Scholar
13.
Burdorf LDW, Tramper A, Seitaj D, Meire L, Hidalgo-Martinez S, Zetsche E-M, et al. Long-distance electron transport occurs globally in marine sediments. Biogeosciences. 2017;14:683–701.
CAS Article Google Scholar
14.
Sandfeld T, Marzocchi U, Petro C, Schramm A, Risgaard-Petersen N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. 2020;14:1233–46.
CAS PubMed Article PubMed Central Google Scholar
15.
Muller H, Bosch J, Griebler C, Damgaard LR, Nielsen LP, Lueders T, et al. Long-distance electron transfer by cable bacteria in aquifer sediments. ISME J. 2016;10:2010–9.
PubMed PubMed Central Article CAS Google Scholar
16.
Malkin SY, Rao AM, Seitaj D, Vasquez-Cardenas D, Zetsche EM, Hidalgo-Martinez S, et al. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. ISME J. 2014;8:1843–54.
CAS PubMed PubMed Central Article Google Scholar
17.
Rao AMF, Malkin SY, Hidalgo-Martinez S, Meysman FJR. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment. Geochim et Cosmochim Acta. 2016;172:265–86.
CAS Article Google Scholar
18.
Marzocchi U, Palma E, Rossetti S, Aulenta F, Scoma A. Parallel artificial and biological electric circuits power petroleum decontamination: the case of snorkel and cable bacteria. Water Res. 2020;173:115520.
CAS PubMed Article PubMed Central Google Scholar
19.
Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, et al. On the evolution and physiology of cable bacteria. Proc Natl Acad Sci USA. 2019;116:19116–25.
CAS PubMed Article PubMed Central Google Scholar
20.
Schauer R, Risgaard-Petersen N, Kjeldsen KU, Bjerg JJT, Jorgensen BB, Schramm A, et al. Succession of cable bacteria and electric currents in marine sediment. ISME J. 2014;8:1314–22.
CAS PubMed PubMed Central Article Google Scholar
21.
Burdorf LDW, Malkin SY, Bjerg JT, van Rijswijk P, Criens F, Tramper A, et al. The effect of oxygen availability on long-distance electron transport in marine sediments. Limnol Oceanogr. 2018;63:1799–816.
CAS Article Google Scholar
22.
Zhou J, Deng Y, Luo F, He Z, Yang Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio. 2011;2:e00122-11.
Article Google Scholar
23.
Faust K, Raes J. Microbial interactions: from networks to model. Nat Rev Microbiol. 2012;10:538–50.
CAS PubMed Article PubMed Central Google Scholar
24.
Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. Functional molecular ecological networks. mBio. 2010;1:e00169–110.
PubMed PubMed Central Google Scholar
25.
Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.
PubMed Article CAS PubMed Central Google Scholar
26.
Tu Q, Yan Q, Deng Y, Michaletz ST, Buzzard V, Weiser MD, et al. Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biol Biochem. 2020;148:107897.
CAS Article Google Scholar
27.
Hu A, Ju F, Hou L, Li J, Yang X, Wang H, et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol. 2017;19:4993–5009.
CAS PubMed Article PubMed Central Google Scholar
28.
Deng Y, Jiang YH, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinform. 2012;13:113.
Article Google Scholar
29.
Kruskal JB. Nonmetric multidimensional scaling: a numerical method. Psychometrika. 1964;29:115–29.
Article Google Scholar
30.
Guo X, Feng J, Shi Z, Zhou X, Yuan M, Tao X, et al. Climate warming leads to divergent succession of grassland microbial communities. Nat Clim Change. 2018;8:813–8.
Article Google Scholar
31.
Legendre P, Legendre LF. Numerical ecology. 3rd ed. Oxford, UK: Elsevier; 2012.
32.
van den Wollenberg AL. Redundancy analysis an alternative for canonical correlation analysis. Psychometrika. 1977;42:207–19.
Article Google Scholar
33.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. https://www.R-project.org/.
34.
Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 2007;22:1–19.
Article Google Scholar
35.
Luo Y, Hui D, Zhang D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology. 2006;87:53–63.
PubMed Article Google Scholar
36.
Scholz VV, Meckenstock RU, Nielsen LP, Risgaard-Petersen N. Cable bacteria reduce methane emissions from rice-vegetated soils. Nat Commun. 2020;11:1878.
CAS PubMed PubMed Central Article Google Scholar
37.
Risgaard-Petersen N, Kristiansen M, Frederiksen RB, Dittmer AL, Bjerg JT, Trojan D, et al. Cable bacteria in freshwater sediments. Appl Environ Microbiol. 2015;81:6003–11.
CAS PubMed PubMed Central Article Google Scholar
38.
Coates JD, Anderson RT, Lovley DR. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl Environ Microbiol. 1996;62:1099–101.
CAS PubMed PubMed Central Article Google Scholar
39.
Coates JD, Chakraborty R, McInerney MJ. Anaerobic benzene biodegradation—a new era. Res Microbiol. 2002;153:621–8.
CAS PubMed Article PubMed Central Google Scholar
40.
Matturro B, Cruz Viggi C, Aulenta F, Rossetti S. Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Front Microbiol. 2017;8:952.
PubMed PubMed Central Article Google Scholar
41.
Huisingh J, McNeill JJ, Matrone G. Sulfate reduction by a Desulfovibrio species isolated from sheep rumen. Appl Microbiol. 1974;28:489–97.
CAS PubMed PubMed Central Article Google Scholar
42.
Gupta A, Dutta A, Sarkar J, Panigrahi MK, Sar P. Low-abundance members of the Firmicutes facilitate bioremediation of soil impacted by highly acidic mine drainage from the Malanjkhand Copper Project, India. Front Microbiol. 2018;9:2882–2882.
PubMed PubMed Central Article Google Scholar
43.
Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682–682.
PubMed PubMed Central Article Google Scholar
44.
Coates JD, Councell T, Ellis DJ, Lovley DR. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. Anaerobe. 1998;4:277–82.
CAS PubMed Article PubMed Central Google Scholar
45.
Caccavo F Jr., Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol. 1994;60:3752–9.
CAS PubMed PubMed Central Article Google Scholar
46.
Loesche WJ. Oxygen sensitivity of various anaerobic bacteria. Appl Microbiol. 1969;18:723–7.
CAS PubMed PubMed Central Article Google Scholar
47.
Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol. 2009;11:2112–22.
PubMed Article PubMed Central Google Scholar
48.
Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M, et al. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA. 2009;106:9151–6.
CAS PubMed Article PubMed Central Google Scholar
49.
Yun Y, Wang H, Man B, Xiang X, Zhou J, Qiu X, et al. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front Microbiol. 2016;7:1955–1955.
PubMed PubMed Central Article Google Scholar
50.
Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol. 2004;54:1483–7.
CAS PubMed Article PubMed Central Google Scholar
51.
Rodriguez-Conde S, Molina L, González P, García-Puente A, Segura A. Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl Microbiol Biotechnol. 2016;100:10627–36.
CAS PubMed Article PubMed Central Google Scholar
52.
Sha S, Zhong J, Chen B, Lin L, Luan T. Novosphingobium guangzhouense sp. nov., with the ability to degrade 1-methylphenanthrene. Int J Syst Evolut Microbiol. 2017;67:489–97.
CAS Article Google Scholar
53.
Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. 2016;7:1369.
PubMed PubMed Central Google Scholar
54.
Yan Z, Zhang Y, Wu H, Yang M, Zhang H, Hao Z, et al. Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Adv. 2017;7:46690–8.
CAS Article Google Scholar
55.
Weiss JV, Rentz JA, Plaia T, Neubauer SC, Merrill-Floyd M, Lilburn T, et al. Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol J. 2007;24:559–70.
CAS Article Google Scholar
56.
Lenchi N, Inceoğlu O, Kebbouche-Gana S, Gana ML, Llirós M, Servais P, et al. Diversity of microbial communities in production and injection waters of Algerian oilfields revealed by 16S rRNA gene Amplicon 454 pyrosequencing. PLoS ONE. 2013;8:e66588.
CAS PubMed PubMed Central Article Google Scholar
57.
Nogales B, Moore ER, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol. 2001;67:1874–84.
CAS PubMed PubMed Central Article Google Scholar
58.
Xu P, Xiao E, Zeng L, He F, Wu Z. Enhanced degradation of pyrene and phenanthrene in sediments through synergistic interactions between microbial fuel cells and submerged macrophyte Vallisneria spiralis. J Soils Sediment. 2019;19:2634–49.
CAS Article Google Scholar
59.
Singleton DR, Jones MD, Richardson SD, Aitken MD. Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Appl Microbiol Biotechnol. 2013;97:8381–91.
CAS PubMed Article PubMed Central Google Scholar
60.
Lu XY, Zhang T, Fang HH. Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol. 2011;89:1357–71.
CAS PubMed Article PubMed Central Google Scholar
61.
Wang C, Huang Y, Zhang Z, Wang H. Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium. AMB Express. 2018;8:67.
PubMed PubMed Central Article CAS Google Scholar
62.
Dastgheib SM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A. Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol. 2012;95:789–98.
CAS PubMed Article PubMed Central Google Scholar
63.
Vasquez-Cardenas D, van de Vossenberg J, Polerecky L, Malkin SY, Schauer R, Hidalgo-Martinez S, et al. Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME J. 2015;9:1966–78.
CAS PubMed PubMed Central Article Google Scholar
64.
Wasmund K, Cooper M, Schreiber L, Lloyd KG, Baker BJ, Petersen DG, et al. Single-cell genome and group-specific dsrAB sequencing implicate marine members of the class Dehalococcoidia (phylum Chloroflexi) in sulfur cycling. mBio. 2016;7:e00266-16.
CAS PubMed PubMed Central Article Google Scholar
65.
Liang B, Wang L-Y, Mbadinga SM, Liu J-F, Yang S-Z, Gu J-D, et al. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express. 2015;5:117–117.
PubMed Article CAS PubMed Central Google Scholar
66.
Logan BE, Rossi R, Ragab AA, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol. 2019;17:307–19.
CAS PubMed Article PubMed Central Google Scholar
67.
Pisciotta JM, Zaybak Z, Call DF, Nam J-Y, Logan BE. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol. 2012;78:5212–9.
CAS PubMed PubMed Central Article Google Scholar
68.
Wang B, Zhang H, Yang Y, Xu M. Diffusion and filamentous bacteria jointly govern the spatiotemporal process of sulfide removal in sediment microbial fuel cells. Chem Eng J. 2021;405:126680.
CAS Article Google Scholar
69.
Li X, Li Y, Zhang X, Zhao X, Sun Y, Weng L, et al. Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. Sci Total Environ. 2019;651:796–806.
CAS PubMed Article PubMed Central Google Scholar
70.
Malvankar NS, King GM, Lovley DR. Centimeter-long electron transport in marine sediments via conductive minerals. ISME J. 2015;9:527–31.
CAS PubMed Article Google Scholar
71.
Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, Millo D, et al. Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA. 2018;115:5786–91.
CAS PubMed Article Google Scholar
72.
Meysman FJR, Cornelissen R, Trashin S, Bonné R, Martinez SH, van der Veen J, et al. A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat Commun. 2019;10:4120.
PubMed PubMed Central Article CAS Google Scholar
73.
Teske A. Cable bacteria, living electrical conduits in the microbial world. Proc Natl Acad Sci USA. 2019;116:18759.
CAS PubMed Article Google Scholar
74.
Risgaard-Petersen N, Revil A, Meister P, Nielsen LP. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim et Cosmochim Acta. 2012;92:1–13.
CAS Article Google Scholar
75.
Risgaard-Petersen N, Damgaard LR, Revil A, Nielsen LP. Mapping electron sources and sinks in a marine biogeobattery. J Geophys Res Biogeosci. 2014;119:1475–86.
CAS Article Google Scholar More