More stories

  • in

    Large-scale variations in the dynamics of Amazon forest canopy gaps from airborne lidar data and opportunities for tree mortality estimates

    Study area
    The study area was the Amazon basin (Fig. 6)42. The basin was sub-divided in four regions with markedly different forest dynamics, geography and substrate origin, adapted from the classification of Feldpausch et al.33: West (parts of Brazil, Colombia, Ecuador and Peru), Southeast (Bolivia and Brazil), Central-East (Brazil) and North (Brazil, Guyana, French Guiana and Venezuela). The natural vegetation mainly corresponds to broadleaf moist forests and tropical seasonal forests, with both terra firme and seasonally flooded forests. Across the Amazon, there is a wide range of average monthly rainfall (100–300 mm) and dry season length (DSL) (0–8 months)43.
    Figure 6

    The Amazon in South America with colored regions, defined in Feldpausch et al.33, indicating faster (West and Southeast) and slower forest dynamics (Central-East and North). Small black lines represent single-date airborne lidar data acquisitions from the EBA project (n = 610 flight lines). Red triangles illustrate multi-temporal lidar data acquisition over five sites (BON, DUC, FN1, TAL and TAP). Circles indicate the location of field inventory plots (n = 181). R v4.0.2 was used to plot this figure32.

    Full size image

    The five sites selected for the multi-temporal assessment of the static and dynamic gaps relationship (red triangles in Fig. 6) were: Adolpho Ducke forest (DUC), Tapajós National Forest (TAP), Feliz Natal (FN1), Bonal (BON) and Talismã (TAL). These areas were chosen to represent distinct forest types, vegetation structure and biomass stocks. The predominant vegetation types consisted of dense rain forests (DUC and TAP), seasonal forests (FN1), and open rain forests (TAL and BON). DUC and FN1 are mostly undisturbed forests, while TAP underwent fire and/or selective logging in the past. TAL and BON were affected by a known fire occurrence in 2010. The sites cover a gradient of aboveground biomass (AGB) that increase, in average, from TAL (185 Mg ha−1), FN1 (235 Mg ha−1), BON (251 Mg ha−1), and DUC (327 Mg ha−1) to TAP (364 Mg ha−1)44.
    Data acquisition and pre-processing
    Airborne lidar data
    Multi-temporal lidar data were obtained by an airplane at each of the five sites (red triangles in Fig. 6), as part of the Sustainable Landscapes Brazil project. The time-interval window was close to 5 years and was sufficient to measure the long-term aggregated dynamics of tree mortality. The area covered by lidar in the 2012–2018 period was ~ 43 km2, ranging from 480 ha at TAL site to 1200 ha at DUC site (Supplementary Table S5).
    In addition to the multi-temporal datasets, 610 single-date airborne discrete-return lidar data strips (approx. 300 m wide by 12.5 km long; ~ 3.75 km2 each) were acquired during 2016 (acquisition dates in Supplementary Figure S6A) using the Trimble HARRIER 68i system at an airplane. The average flight height was 600 m above ground and the scan angle was 45° (dataset from the EBA project31).
    For both lidar datasets, multiple lidar returns were recorded with a minimum point density of 4 points m−2. Horizontal and vertical accuracy ranging from 0.035 to 0.185 m and from 0.07 to 0.33 m, respectively.
    Following the procedures described by Dalagnol et al.19, the lidar point clouds were processed into canopy height models (CHM) of 1-m spatial resolution. The steps of CHM processing included the: (a) classification of the points between ground and vegetation using the lasground, lasheight, and lasclassify functions from the LAStools 3.1.145; (b) creation of a Digital Terrain Model (DTM) using the TINSurfaceCreate function from FUSION/LDV 3.646; (c) normalization of the point cloud height to height above ground using the DTM; and (d) CHM generation by extracting the highest height of vegetation using the CanopyModel function from FUSION.
    Environmental and climate data
    To analyze the environmental and climatic drivers of gap dynamics, we used a spatialized set of variables and products for the whole Amazon, including: (a) HAND product at 30 × 30 m47; (b) slope calculated from the Shuttle Radar Topography Mission (SRTM) at 30 × 30 m48; (c) soil fertility proxied by SCC at 11 × 11 km37; (d) floodplain cover map at 30 × 30 m49; (e) forest degradation proxied by a non-forest distance map derived from the 30-m global forest change dataset v1.4 (2000–2016)50; (f) monthly mean rainfall (mm), climate water deficit (mm) and wind speed (m s−1), obtained from the TerraClimate dataset at 5 × 5 km (1958–2015)43; and (g) DSL at 28 × 28 km51. All variables and products, except HAND and slope, were resampled to the predominant spatial resolution of most datasets (5 km × 5 km), especially the climate data. We used the SRTM instead of the lidar DTM because the very narrow lidar DTMs (300–500 m) would not permit to determining the lowest point in the terrain to accurately calculate the HAND for every pixel.
    Long-term field inventory data
    We used data from 181 long-term field inventory plots from the RAINFOR network (Fig. 6)5. The data were collected at closed canopy mixed forests with vegetation structure preserved from fire and logging. All trees with diameter at breast height (DBH) ≥ 10 cm were measured at least twice5. These plots had 852 censuses from 1975 to 2013 with median plot size of 1 ha. The mean re-census interval was 3 years. Tree stem mortality rates (m; % year−1) were calculated as the coefficient of exponential mortality for each census interval and each plot52 (Eq. 1). The m estimates were then averaged by plot and were weighted by the censuses interval length, in years1.

    $$m = left[ {lnleft( {N0} right) – lnleft( {Nt} right)} right]/t$$
    (1)

    where N0 and Nt are the initial and final number of trees, and t is the censuses interval.
    Data analysis
    Gap definition and static–dynamic gaps relationship
    Dynamic gaps were detected using multi-date lidar data at the five study sites: DUC, TAP, FN1, BON, and TAL. We define here dynamic gaps as those opened between two periods of observation associated with canopy turnover events, including tree mortality. For this purpose, we calculated a delta height difference of 10 m between the two acquisitions (~ 5 years apart) and filtered for detections with area greater than 10 m2. This height difference was strongly correlated with tree loss at the canopy level in previous studies19, 20. Because standing dead trees do not necessarily generate gaps, we assume that the dynamic gaps are mostly related to the felled canopy trees associated with broken and uprooted mode of death.
    Static gaps were delineated using the CHM from the second lidar acquisition at the five sites (Supplementary Material S1). We applied and compared two types of gap delineation: a traditional method based on a fixed height cutoff (H = 2, 5 or 10 m), and an alternative method based on the relative height (RH = 33, 50, and 66% maximum tree height) around a neighborhood (W = 5–45 m). Since the relative height method did not depend on absolute height values, it should better account for local canopy variability and lower stature vegetation, as opposed to the fixed height method. For both methods, we tested a variety of parameters in the search of an optimal calibration amongst the sites. We filtered gaps for a minimum area of 10 m2, which corresponded to an approximation of the mean canopy area of trees greater than 5-cm DBH in tropical forests21. We also filtered them for a maximum area of 1 ha to automatically exclude open areas that very likely did not correspond to small-scale disturbance from treefall gaps21.
    The spatial match between each static and dynamic gap event was assessed by intersecting the detections and calculating metrics of precision (p), recall (r) and F1-score (F) (Eqs. 2–4) (more information at Supplementary Material S1). p represents the percentage of total correct detections, r represents the percentage of reference data correctly mapped, and F represents the harmonic mean between p and r, that is, a balance between commission and omission errors. Methods and parameters were compared to determine the optimal method for static gap delineation, i.e. higher F means greater agreement between static and dynamic gaps.

    $$Precisionleft( p right) = true , positives/number , of , gap , polygons$$
    (2)

    $$Recallleft( r right) = true , positives/number , of , mortality , polygons$$
    (3)

    $$F1 – scoreleft( F right) = left( {2 times p times r} right)/left( {p + r} right)$$
    (4)

    Finally, considering the optimal gap delineation method, we modeled the relationship between static-dynamic gaps at the landscape scale using a linear regression. For this purpose, annualized dynamic gap fraction and static gap fraction (i.e., the area occupied by gaps in relation to the total area of the flight line) were calculated at the 5-ha scale. Following the strategy by Wagner et al.53, we defined this value after several simulation tests between variable estimates, change rates and plot area (Supplementary Figure S7). Data and residuals were inspected for normality, and variables were transformed to the logarithmic scale prior to the linear model fitting. To assess the model, we calculated the coefficient of determination (R2), absolute Root Mean Square Error (RMSE) and relative RMSE (%) (ratio of RMSE and the mean of observations). To obtain more reliable and unbiased estimates of the model predictive performance, we calculated the RMSE considering out-of-sample values with a leave-one-site-out cross-validation (CV) strategy. Thus, we fitted the model with four sites and calculated the RMSE with predicted and observed values for the site not used in the modeling. We repeated this process for all five sites. A 95% prediction interval described the variability of tree mortality estimates from the gap fraction.
    Spatial variability of static gaps across the Brazilian Amazon
    We delineated static gaps on the single-date airborne lidar datasets (n = 610 flight lines) using the optimal gap delineation method and parameters assessed in the previous section. To characterize the gaps variability across the region, we calculated the gap fraction and mean gap size for each site.
    Assessment of landscape- and regional-scale drivers of static canopy gaps
    To quantify the relationship between static gaps and landscape- and regional-scale predictors, we employed correlation matrices and generalized linear models (GLM). Binomial GLM and Gaussian GLM were applied for landscape and regional models, respectively (detailed information at Supplementary Material S2). Models were assessed using a tenfold CV approach with 30 repetitions. The gap data used in this analysis were those obtained from the 610 single-date lidar data. We defined landscape-scale drivers as those showing great heterogeneity intra-site such as the topography (HAND and slope variables). We defined regional-scale drivers as those having great variability across sites such as the rainfall (Mean_pr and SD_pr), wind speed (Mean_vs and SD_vs), climate water deficit (Mean_def and SD_def), DSL, SCC, floodplains, and non-forest distance.
    Through the modeling we evaluated if gap occurrence (presence or absence) and gap size increased at valleys and steep terrains of the Amazon, represented by low HAND and high slope, respectively. As previously demonstrated with tree mortality ground observations, we also tested if gap fraction would increase with: (1) higher water stress, represented by low Mean_pr, and high SD_pr, Mean_def, SD_def, and DSL; (2) higher soil fertility, expressed by high SCC; (3) higher wind speed, proxied by high Mean_vs and SD_vs; (4) higher forest degradation/fragmentation, represented by low non-forest distance; and (5) areas of seasonally flooded forests, expressed by high floodplains cover. Model residuals were inspected in comparison to fitted values using also variogram and Moran’s I analyses to assess for potential biases and spatial correlation (detailed information in Supplementary Material S2). Static gap fraction and Nonforest_dist were transformed to log-scale due to non-normality data.
    Amazon-wide dynamic gaps mapping and relationship with tree mortality
    To obtain a map of dynamic gap estimates over the Amazon, we first applied the GLM model based on environmental and climate drivers to estimate static gap fractions for the whole region. We then applied the static–dynamic gaps relationship to estimate annualized dynamic gap fraction (% year−1). To explore the opportunities for tree mortality estimates based on gap dynamics, we compared the spatialized dynamic gap estimates with time-averaged mortality rates from long-term field inventory data using a linear model. The model was assessed using a tenfold CV approach with 30 repetitions and the RMSE calculated out-of-sample. We acknowledge that the comparison between field tree mortality and lidar gap estimates is not trivial. However, it is the best source available of independent mortality data to compare the results. Field plot-estimates located within the same 5-km cell of the lidar gap estimates were averaged, resulting in 88 pairs of lidar- and field-estimates samples for validation. The mean annualized dynamic gap fraction per Amazonian region (Fig. 6) was extracted and compared using one-way ANOVA and post-hoc Tukey–Kramer tests. More

  • in

    Reconstructing Late Pleistocene paleoclimate at the scale of human behavior: an example from the Neandertal occupation of La Ferrassie (France)

    1.
    Dansgaard, W. et al. A new Greenland deep ice core. Science 218, 1273–1277 (1982).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Stuiver, M. & Grootes, P. M. GISP2 oxygen isotope ratios. Quatern. Res. 53, 277–284 (2000).
    ADS  CAS  Article  Google Scholar 

    3.
    Genty, D. et al. Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars Cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records. Quatern. Sci. Rev. 29, 2799–2820 (2010).
    ADS  Article  Google Scholar 

    4.
    Pérez-Mejías, C. et al. Orbital-to-millennial scale climate variability during Marine Isotope Stages 5 to 3 in northeast Iberia. Quatern. Sci. Rev. 224, 105946 (2019).
    Article  Google Scholar 

    5.
    Sánchez Goñi, M. F., Bard, E., Landais, A., Rossignol, L. & D’Errico, F. Air–sea temperature decoupling in western Europe during the last interglacial–glacial transition. Nat. Geosci. 6, 837 (2013).
    ADS  Article  CAS  Google Scholar 

    6.
    Fletcher, W. J. et al. Millennial-scale variability during the last glacial in vegetation records from Europe. Quatern. Sci. Rev. 29, 2839–2864 (2010).
    ADS  Article  Google Scholar 

    7.
    Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the pleistocene. Curr. Biol. 19, R584–R594 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Hodgkins, J. et al. Climate-mediated shifts in Neandertal subsistence behaviors at Pech de l’Azé IV and Roc de Marsal (Dordogne Valley, France). J. Hum. Evol. 96, 1–18 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Rendu, W. et al. Subsistence strategy changes during the Middle to Upper Paleolithic transition reveals specific adaptations of human populations to their environment. Sci. Rep. 9, 15817 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Dibble, H. L. et al. How did hominins adapt to ice age Europe without fire?. Curr. Anthropol. 58, S278–S287 (2017).
    Article  Google Scholar 

    11.
    Sorensen, A. C. On the relationship between climate and Neandertal fire use during the Last Glacial in south-west France. Quatern. Int. 436, 114–128 (2017).
    Article  Google Scholar 

    12.
    Delagnes, A. & Rendu, W. Shifts in Neandertal mobility, technology and subsistence strategies in western France. J. Archaeol. Sci. 38, 1771–1783 (2011).
    Article  Google Scholar 

    13.
    Discamps, E., Jaubert, J. & Bachellerie, F. Human choices and environmental constraints: Deciphering the variability of large game procurement from Mousterian to Aurignacian times (MIS 5–3) in southwestern France. Quatern. Sci. Rev. 30, 2755–2775 (2011).
    ADS  Article  Google Scholar 

    14.
    Faivre, J.-P. et al. The contribution of lithic production systems to the interpretation of Mousterian industrial variability in south-western France: The example of Combe-Grenal (Dordogne, France). Quatern. Int. 350, 227–240 (2014).
    Article  Google Scholar 

    15.
    Hublin, J. J. The modern human colonization of western Eurasia: When and where?. Quatern. Sci. Rev. 118, 194–210 (2015).
    ADS  Article  Google Scholar 

    16.
    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Discamps, E. & Royer, A. Reconstructing palaeoenvironmental conditions faced by Mousterian hunters during MIS 5 to 3 in southwestern France: A multi-scale approach using data from large and small mammal communities. Quatern. Int. 433, 64–87 (2016).
    Article  Google Scholar 

    18.
    Bernard, A. et al. Pleistocene seasonal temperature variations recorded in the δ 18O of Bison priscus teeth. Earth Planet. Sci. Lett. 283, 133–143 (2009).
    ADS  CAS  Article  Google Scholar 

    19.
    Fabre, M. et al. Late Pleistocene climatic change in the French Jura (Gigny) recorded in the δ18O of phosphate from ungulate tooth enamel. Quatern. Res. 75, 605–613 (2011).
    ADS  CAS  Article  Google Scholar 

    20.
    Richards, M. P. et al. Temporal variations in Equus tooth isotope values (C, N, O) from the Middle Paleolithic site of Combe Grenal, France (ca. 150,000 to 50,000 BP). J. Archaeol. Sci. Rep. 14, 189–198 (2017).
    Google Scholar 

    21.
    Scherler, L., Tütken, T. & Becker, D. Carbon and oxygen stable isotope compositions of late Pleistocene mammal teeth from dolines of Ajoie (Northwestern Switzerland). Quatern. Res. (United States) 82, 378–387 (2014).
    ADS  CAS  Article  Google Scholar 

    22.
    Skrzypek, G., Winiewski, A. & Grierson, P. F. How cold was it for Neanderthals moving to Central Europe during warm phases of the last glaciation?. Quatern. Sci. Rev. 30, 481–487 (2011).
    ADS  Article  Google Scholar 

    23.
    Capitan, L. & Peyrony, D. Découverte d’un sixième squelette moustérien à La Ferrassie (Dordogne). Rev. Anthropol. 31, 382–388 (1921).
    Google Scholar 

    24.
    Peyrony, D. La Ferrassie. Moustérien, Périgordien, Aurignacien. Préhistoire III. Préhistoire (1934)

    25.
    Turq, A. et al. La Ferrassie: Rapport d’opération pour l’année 2012 (2012).

    26.
    Delporte, H. & Delibrias, G. Le grand abri de la Ferrassie: fouilles 1968–1973. (Ed. du Laboratoire de paléontologie humaine et de préhistoire, 1984).

    27.
    Guérin, G. et al. A multi-method luminescence dating of the Palaeolithic sequence of La Ferrassie based on new excavations adjacent to the La Ferrassie 1 and 2 skeletons. J. Archaeol. Sci. 58, 147–166 (2015).
    Article  Google Scholar 

    28.
    Talamo, S. et al. The new 14C chronology for the Palaeolithic site of La Ferrassie, France: The disappearance of Neanderthals and the arrival of Homo sapiens in France. J. Quatern. Sci. https://doi.org/10.1002/jqs.3236 (2020).
    Article  Google Scholar 

    29.
    Britton, K. et al. Sampling plants and malacofauna in 87Sr/86Sr bioavailability studies: Implications for isoscape mapping and reconstructing of past mobility patterns. Front. Ecol. Evol. 8, 579473 (2020). 

    30.
    Willmes, M. et al. Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies. Appl. Geochem. 90, 75–86 (2018).
    CAS  Article  Google Scholar 

    31.
    Deutscher Wetterdienst. Monthly mean air temperature of Gourdon, Dépt. Lot; Aquitaine/France (1996–2017) (2020).

    32.
    Hoppe, K. A. Correlation between the oxygen isotope ratio of North American bison teeth and local waters: Implication for paleoclimatic reconstructions. Earth Planet. Sci. Lett. 244, 408–417 (2006).
    ADS  CAS  Article  Google Scholar 

    33.
    D’Angela, D. & Longinelli, A. Oxygen isotopes in living mammal’s bone phosphate: Further results. Chem. Geol. Isot. Geosci. Sect. 86, 75–82 (1990).
    Article  Google Scholar 

    34.
    Rozanski, K., Araguás-Araguás, L. & Gonfiantini, R. Relation between long-term trends of oxygen-18 isotope composition of precipitation and source. Sci. New Ser. 258, 981–985 (1992).
    CAS  Google Scholar 

    35.
    Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M. & Ehleringer, J. R. A stable isotope aridity index for terrestrial environments. Proc. Natl. Acad. Sci. U.S.A. 103, 11201–11205 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).
    ADS  CAS  Article  Google Scholar 

    37.
    Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jaeger, J.-J. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from african pleistocene hominid sites. Palaios 11, 306–318 (1996).
    ADS  Article  Google Scholar 

    38.
    Shackleton, N. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, 15–17 (1967).
    ADS  CAS  Article  Google Scholar 

    39.
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).
    ADS  Article  Google Scholar 

    40.
    Gat, J. R. Isotope Hydrology: A Study of the Water Cycle Vol. 6 (Imperila College Press, London, 2010).
    Google Scholar 

    41.
    Pryor, A. J. E., Stevens, R. E., O’Connell, T. C. & Lister, J. R. Quantification and propagation of errors when converting vertebrate biomineral oxygen isotope data to temperature for palaeoclimate reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 99–107 (2014).
    Article  Google Scholar 

    42.
    Rozanski, K., Araguás-Araguás, L. & Gonfiantini, R. Isotopic patterns in modern global precipitation. Clim. Change Cont. Isot. Rec. 78, 1–36 (1993).
    Google Scholar 

    43.
    Bocherens, H. et al. Direct isotopic evidence for subsistence variability in Middle Pleistocene Neanderthals (Payre, southeastern France). Quatern. Sci. Rev. 154, 226–236 (2016).
    ADS  Article  Google Scholar 

    44.
    Ingraham, N. L., Caldwell, E. A. & Verhagen, B. T. Arid Catchments. in Isotope tracers in catchment hydrology, 435–465 (Elsevier, 1998). https://doi.org/10.1016/B978-0-444-81546-0.50020-3.

    45.
    Tütken, T., Furrer, H. & Walter Vennemann, T. Stable isotope compositions of mammoth teeth from Niederweningen, Switzerland: Implications for the Late Pleistocene climate, environment, and diet. Quatern. Int. 164–165, 139–150 (2007).
    Article  Google Scholar 

    46.
    Ecker, M. et al. Middle pleistocene ecology and neanderthal subsistence: Insights from stable isotope analyses in Payre (Ardèche, southeastern France). J. Hum. Evol. 65, 363–373 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Stevens, R. E. et al. Nitrogen isotope analyses of reindeer (Rangifer tarandus), 45,000 BP to 9,000 BP: Palaeoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 262, 32–45 (2008).
    Article  Google Scholar 

    48.
    Stevens, R. E., Hermoso-Buxán, X. L., Marín-Arroyo, A. B., González-Morales, M. R. & Straus, L. G. Investigation of Late Pleistocene and Early Holocene palaeoenvironmental change at El Mirón cave (Cantabria, Spain): Insights from carbon and nitrogen isotope analyses of red deer. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 46–60 (2014).
    Article  Google Scholar 

    49.
    Drucker, D. G., Bridault, A., Hobson, K. A., Szuma, E. & Bocherens, H. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 69–82 (2008).
    Article  Google Scholar 

    50.
    Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L. & Freeman, K. H. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc. Natl. Acad. Sci. 107, 5738–5743 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Feranec, R. S., García, N., Díez, J. C. & Arsuaga, J. L. Understanding the ecology of mammalian carnivorans and herbivores from Valdegoba cave (Burgos, northern Spain) through stable isotope analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297, 263–272 (2010).
    Article  Google Scholar 

    52.
    Bocherens, H., Drucker, D. G. & Madelaine, S. Evidence for a 15N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: Implications for early modern human palaeodiet and palaeoenvironment. J. Hum. Evol. 69, 31–43 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Sanchez Goni, M. F. et al. Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quatern. Sci. Rev. 27, 1136–1151 (2008).
    ADS  Article  Google Scholar 

    54.
    Ruddiman, W. F. & McIntyre, A. Oceanic mechanisms for amplification of the 23,000-year ice-volume cycle. Science 212, 617–627 (1981).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Kindler, P. et al. Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Clim. Past 10, 887–902 (2014).
    Article  Google Scholar 

    56.
    Guiter, F. et al. The last climatic cycles in Western Europe: A comparison between long continuous lacustrine sequences from France and other terrestrial records. Quatern. Int. 111, 59–74 (2003).
    Article  Google Scholar 

    57.
    de Beaulieu, J.-L. & Reille, M. The last climatic cycle at La Grande Pile (Vosges, France) a new pollen profile. Quatern. Sci. Rev. 11, 431–438 (1992).
    ADS  Article  Google Scholar 

    58.
    Van Andel, T. H. & Tzedakis, P. C. Palaeolithic landscapes of Europe and environs, 150,000–25,000 years ago: An overview. Quatern. Sci. Rev. 15, 481–500 (1996).
    ADS  Article  Google Scholar 

    59.
    Ponel, P. Rissian, Eemian and Würmian Coleoptera assemblages from La Grande Pile (Vosges, France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 114, 1–41 (1995).
    Article  Google Scholar 

    60.
    Royer, A. et al. Late Pleistocene (MIS 3–4) climate inferred from micromammal communities and δ 18O of rodents from Les Pradelles, France. Quatern. Res. (United States) 80, 113–124 (2013).
    ADS  CAS  Article  Google Scholar 

    61.
    Barron, E., Andel, T. H. van & Pollard, D. Glacial environments II: Reconstructing the climate of Europe in the last glaciation. Neanderthals and modern humans in the European landscape during the last glaciation 57–78 (2003).

    62.
    Guérin, G. et al. Multi-method (TL and OSL), multi-material (quartz and flint) dating of the Mousterian site of Roc de Marsal (Dordogne, France): Correlating Neanderthal occupations with the climatic variability of MIS 5-3. J. Archaeol. Sci. 39, 3071–3084 (2012).
    Article  CAS  Google Scholar 

    63.
    Copeland, S. R. et al. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: A comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. Rapid Commun. Mass Spectrom. 22, 3187–3194 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Pseudomonas aeruginosa reverse diauxie is a multidimensional, optimized, resource utilization strategy

    1.
    Byrd, M. S. et al. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect. Immun. 79, 3087–3095. https://doi.org/10.1128/IAI.00057-11 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Behrends, V. et al. Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infections. Environ. Microbiol. 15, 398–408. https://doi.org/10.1111/j.1462-2920.2012.02840.x (2013).
    CAS  Article  PubMed  Google Scholar 

    3.
    Calhoun, J. H., Murray, C. K. & Manring, M. M. Multidrug-resistant organisms in military wounds from Iraq and Afghanistan. Clin. Orthop. Relat. Res. 466, 1356–1362. https://doi.org/10.1007/s11999-008-0212-9 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Frykberg, R. G. & Banks, J. Challenges in the treatment of chronic wounds. Adv. Wound Care New Rochelle 4, 560–582. https://doi.org/10.1089/wound.2015.0635 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    5.
    Jarbrink, K. et al. The humanistic and economic burden of chronic wounds: A protocol for a systematic review. Syst. Rev. 6, 15. https://doi.org/10.1186/s13643-016-0400-8 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    6.
    Fife, C. E. & Carter, M. J. Wound care outcomes and associated cost among patients treated in US outpatient wound centers: Data from the US wound registry. Wounds 24, 10–17 (2012).
    PubMed  Google Scholar 

    7.
    Valot, B. et al. What it takes to be a Pseudomonas aeruginosa? The core genome of the opportunistic pathogen updated. PLoS ONE 10, e0126468. https://doi.org/10.1371/journal.pone.0126468 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Rojo, F. Carbon catabolite repression in Pseudomonas: Optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 34, 658–684. https://doi.org/10.1111/j.1574-6976.2010.00218.x (2010).
    CAS  Article  PubMed  Google Scholar 

    9.
    Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613. https://doi.org/10.1038/nrmicro1932 (2008).
    CAS  Article  PubMed  Google Scholar 

    10.
    Collier, D. N., Hager, P. W. & Phibbs, P. V. Catabolite repression control in the Pseudomonads. Res. Microbiol. 147, 551–561. https://doi.org/10.1016/0923-2508(96)84011-3 (1996).
    CAS  Article  PubMed  Google Scholar 

    11.
    Scitable by Nature EDUCATION 2005).

    12.
    Pellett, S., Bigley, D. V. & Grimes, D. J. Distribution of Pseudomonas aeruginosa in a riverine ecosystem. Appl. Environ. Microb. 45, 328–332 (1983).
    CAS  Article  Google Scholar 

    13.
    Döring, G. et al. Distribution and transmission of Pseudomonas aeruginosa andBurkholderia cepacia in a hospital ward. Pediatr. Pulmonol. 21, 90–100. https://doi.org/10.1002/(sici)1099-0496(199602)21:2%3c90::Aid-ppul5%3e3.0.Co;2-t (1996).
    Article  PubMed  Google Scholar 

    14.
    Romling, U., Kader, A., Sriramulu, D. D., Simm, R. & Kronvall, G. Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. Environ. Microbiol. 7, 1029–1038. https://doi.org/10.1111/j.1462-2920.2005.00780.x (2005).
    CAS  Article  PubMed  Google Scholar 

    15.
    Hamilton, W. A., Dawes, E. & A. ,. A diauxic effect with Pseudomonas aeruginosa. Biochem. J. 71, 25P-26P (1959).
    CAS  Google Scholar 

    16.
    Liu, Y., Gokhale, C. S., Rainey, P. B. & Zhang, X. X. Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25. Mol. Microbiol. 105, 589–605. https://doi.org/10.1111/mmi.13720 (2017).
    CAS  Article  PubMed  Google Scholar 

    17.
    Park, H., McGill, S. L., Arnold, A. D. & Carlson, R. P. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell.Mol. Life Sci. https://doi.org/10.1007/s00018-019-03377-x (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).
    Google Scholar 

    19.
    Carlson, R. P. Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics 23, 1258–1264. https://doi.org/10.1093/bioinformatics/btm082 (2007).
    CAS  Article  PubMed  Google Scholar 

    20.
    Carlson, R. P., Oshota, O. J. & Taffs, R. L. in Reprogramming Microbial Metabolic Pathways (eds Xiaoyuan Wang, Jian Chen, & Peter Quinn) 139–157 (Springer, Netherlands, 2012).

    21.
    Folsom, J. P. & Carlson, R. P. Physiological, biomass elemental composition and proteomic analyses of Escherichia coli ammonium-limited chemostat growth, and comparison with iron- and glucose-limited chemostat growth. Microbiology 161, 1659–1670. https://doi.org/10.1099/mic.0.000118 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Carlson, R. P. Decomposition of complex microbial behaviors into resource-based stress responses. Bioinformatics 25, 90–97 (2009).
    CAS  Article  Google Scholar 

    23.
    Goelzer, A. & Fromion, V. Bacterial growth rate reflects a bottleneck in resource allocation. Biochim. Biophys. Acta 1810, 978–988. https://doi.org/10.1016/j.bbagen.2011.05.014 (2011).
    CAS  Article  PubMed  Google Scholar 

    24.
    Goelzer, A. & Fromion, V. Resource allocation in living organisms. Biochem. Soc. Trans. 45, 945–952. https://doi.org/10.1042/BST20160436 (2017).
    CAS  Article  Google Scholar 

    25.
    Yang, L. et al. solveME: Fast and reliable solution of nonlinear ME models. BMC Bioinform. 17, 391. https://doi.org/10.1186/s12859-016-1240-1 (2016).
    CAS  Article  Google Scholar 

    26.
    Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl. Acad. Sci. USA 104, 12663–12668. https://doi.org/10.1073/pnas.0609845104 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    27.
    Vazquez, A. & Oltvai, Z. N. Macromolecular crowding explains overflow metabolism in cells. Sci. Rep. 6, 31007. https://doi.org/10.1038/srep31007 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    28.
    Zhuang, K., Vemuri, G. N. & Mahadevan, R. Economics of membrane occupancy and respiro-fermentation. Mol. Syst. Biol. 7, 500. https://doi.org/10.1038/msb.2011.34 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    29.
    Szenk, M., Dill, K. A. & de Graff, A. M. R. Why do fast-growing bacteria enter overflow metabolism? Testing the membrane real estate hypothesis. Cell Syst. 5, 95–104. https://doi.org/10.1016/j.cels.2017.06.005 (2017).
    CAS  Article  PubMed  Google Scholar 

    30.
    Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104. https://doi.org/10.1038/nature15765 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Folsom, J. P., Parker, A. E. & Carlson, R. P. Physiological and proteomic analysis of Escherichia coli iron-limited chemostat growth. J. Bacteriol. 196, 2748–2761. https://doi.org/10.1128/JB.01606-14 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    32.
    Schuster, S., Boley, D., Moller, P., Stark, H. & Kaleta, C. Mathematical models for explaining the Warburg effect: A review focussed on ATP and biomass production. Biochem. Soc. Trans. 43, 1187–1194. https://doi.org/10.1042/BST20150153 (2015).
    CAS  Article  PubMed  Google Scholar 

    33.
    Woods, J. et al. Development and application of a polymicrobial in vitro wound biofilm model. J. Appl. Microbiol. 112, 998–1006. https://doi.org/10.1111/j.1365-2672.2012.05264.x (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    Yung, Y. P. et al. Reverse diauxie phenotype in Pseudomonas aeruginosa biofilm revealed by exometabolomics and label-free proteomics. NPJ Biofilms Microbiomes 5, 31. https://doi.org/10.1038/s41522-019-0104-7 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Behrends, V., Ebbels, T. M., Williams, H. D. & Bundy, J. G. Time-resolved metabolic footprinting for nonlinear modeling of bacterial substrate utilization. Appl. Environ. Microbiol. 75, 2453–2463. https://doi.org/10.1128/AEM.01742-08 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Berger, A. et al. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PLoS ONE 9, e88368. https://doi.org/10.1371/journal.pone.0088368 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Nouwens, A. S. et al. Complementing genomics with proteomics: The membrane subproteome ofPseudomonas aeruginosa PAO1. Electrophoresis 21, 3797–3809. https://doi.org/10.1002/1522-2683(200011)21:17%3c3797::Aid-elps3797%3e3.0.Co;2-p (2000).
    CAS  Article  PubMed  Google Scholar 

    38.
    Penesyan, A. et al. Genetically and phenotypically distinct Pseudomonas aeruginosa cystic fibrosis isolates share a core proteomic signature. PLoS ONE 10, e0138527. https://doi.org/10.1371/journal.pone.0138527 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Nikel, P. I., Chavarria, M., Fuhrer, T., Sauer, U. & de Lorenzo, V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J. Biol. Chem. 290, 25920–25932. https://doi.org/10.1074/jbc.M115.687749 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Phalak, P., Chen, J., Carlson, R. P. & Henson, M. A. Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species. BMC Syst. Biol. 10, 90. https://doi.org/10.1186/s12918-016-0334-8 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Oberhardt, M. A., Goldberg, J. B., Hogardt, M. & Papin, J. A. Metabolic network analysis of Pseudomonas aeruginosa during chronic cystic fibrosis lung infection. J. Bacteriol. 192, 5534–5548. https://doi.org/10.1128/JB.00900-10 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Schuetz, R., Kuepfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119. https://doi.org/10.1038/msb4100162 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Schuster, S., Pfeiffer, T. & Fell, D. A. Is maximization of molar yield in metabolic networks favoured by evolution?. J. Theor. Biol. 252, 497–504. https://doi.org/10.1016/j.jtbi.2007.12.008 (2008).
    MathSciNet  CAS  Article  PubMed  MATH  Google Scholar 

    44.
    Varma, A., Boesch, B. W. & Palsson, B. O. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Environ. Microbiol. 59, 2465–2473 (1993).
    CAS  Article  Google Scholar 

    45.
    Varma, A. & Palsson, B. O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microb. 60, 3724–3731 (1994).
    CAS  Article  Google Scholar 

    46.
    Bar-Even, A. et al. The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410. https://doi.org/10.1021/bi2002289 (2011).
    CAS  Article  PubMed  Google Scholar 

    47.
    Volkmer, B. & Heinemann, M. Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS ONE 6, e23126. https://doi.org/10.1371/journal.pone.0023126 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    48.
    Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am. Nat. 168, 242–251. https://doi.org/10.1086/506527 (2006).
    Article  PubMed  Google Scholar 

    49.
    Hoffmann, S., Hoppe, A. & Holzhütter, H.-G. Composition of metabolic flux distributions by functionally interpretable minimal flux modes (MinModes). Genome Inf. 17, 195–207 (2006).
    CAS  Google Scholar 

    50.
    Holzhutter, H. G. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271, 2905–2922. https://doi.org/10.1111/j.1432-1033.2004.04213.x (2004).
    CAS  Article  PubMed  Google Scholar 

    51.
    Carlson, R. P. & Taffs, R. L. Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors. Curr. Opin. Biotechnol. 21, 670–676 (2010).
    CAS  Article  Google Scholar 

    52.
    Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M. & Sauer, U. Multidimensional optimality of microbial metabolism. Science New York NY 336, 601–604. https://doi.org/10.1126/science.1216882 (2012).
    CAS  Article  Google Scholar 

    53.
    Velayudhan, J., Jones, M. A., Barrow, P. A. & Kelly, D. J. l-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect. Immun. 72, 260–268. https://doi.org/10.1128/iai.72.1.260-268.2004 (2004).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    54.
    Frimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L. & Schomburg, D. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ. Microbiol. 12, 1734–1747. https://doi.org/10.1111/j.1462-2920.2010.02253.x (2010).
    CAS  Article  PubMed  Google Scholar 

    55.
    Tiwari, N. & Campbell, J. Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate media. Biochimica et Biophysica Acta BBA Gen. Subj. 192, 395–401. https://doi.org/10.1016/0304-4165(69)90388-2 (1969).
    CAS  Article  Google Scholar 

    56.
    Trautwein, K. et al. Benzoate mediates repression of C(4)-dicarboxylate utilization in “Aromatoleum aromaticum” EbN1. J. Bacteriol. 194, 518–528. https://doi.org/10.1128/JB.05072-11 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Kremling, A., Geiselmann, J., Ropers, D. & de Jong, H. An ensemble of mathematical models showing diauxic growth behaviour. BMC Syst. Biol. 12, 1–16. https://doi.org/10.1186/s12918-018-0604-8 (2018).
    CAS  Article  Google Scholar 

    58.
    Kremling, A., Geiselmann, J., Ropers, D. & de Jong, H. Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends Microbiol. 23, 99–109. https://doi.org/10.1016/j.tim.2014.11.002 (2015).
    CAS  Article  PubMed  Google Scholar 

    59.
    Ibberson, C. B. & Whiteley, M. The social life of microbes in chronic infection. Curr. Opin. Microbiol. 53, 44–50. https://doi.org/10.1016/j.mib.2020.02.003 (2020).
    CAS  Article  PubMed  Google Scholar 

    60.
    King, A. N., de Mets, F. & Brinsmade, S. R. Who’s in control? Regulation of metabolism and pathogenesis in space and time. Curr. Opin. Microbiol. 55, 88–96. https://doi.org/10.1016/j.mib.2020.05.009 (2020).
    CAS  Article  PubMed  Google Scholar 

    61.
    Tuncil, Y. E. et al. Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence. MBio 8, 66. https://doi.org/10.1128/mBio.01068-17 (2017).
    Article  Google Scholar 

    62.
    Goyal, A., Dubinkina, V. & Maslov, S. Multiple stable states in microbial communities explained by the stable marriage problem. ISME J. 12, 2823–2834. https://doi.org/10.1038/s41396-018-0222-x (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    63.
    Ren, D., Madsen, J. S., Sorensen, S. J. & Burmolle, M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 9, 81–89. https://doi.org/10.1038/ismej.2014.96 (2015).
    CAS  Article  PubMed  Google Scholar 

    64.
    Russel, J., Roder, H. L., Madsen, J. S., Burmolle, M. & Sorensen, S. J. Antagonism correlates with metabolic similarity in diverse bacteria. Proc. Natl. Acad. Sci. USA 114, 10684–10688. https://doi.org/10.1073/pnas.1706016114 (2017).
    CAS  Article  PubMed  Google Scholar 

    65.
    Brileya, K. A., Camilleri, L. B., Zane, G. M., Wall, J. D. & Fields, M. W. Biofilm growth mode promotes maximum carrying capacity and community stability during product inhibition syntrophy. Front. Microbiol. 5, 693. https://doi.org/10.3389/fmicb.2014.00693 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Carlson, R. P. et al. Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia. Biochem. Soc. Trans. 46, 269–284. https://doi.org/10.1042/BST20170242 (2018).
    CAS  Article  PubMed  Google Scholar 

    67.
    Beck, A., Hunt, K., Bernstein, H. C. & Carlson, R. in Biotechnology for Biofuel Production and Optimization (eds Carrie A. Eckert & Cong T. Trinh) 407–432 (Elsevier, Amsterdam, 2016).

    68.
    Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. USA 107, 2124–2129. https://doi.org/10.1073/pnas.0908456107 (2010).
    ADS  Article  PubMed  Google Scholar 

    69.
    DeLeon, S. et al. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect. Immun. 82, 4718–4728. https://doi.org/10.1128/IAI.02198-14 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    70.
    Filkins, L. M. et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J. Bacteriol. 197, 2252–2264. https://doi.org/10.1128/jb.00059-15 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    71.
    Bernstein, H. C., Paulson, S. D. & Carlson, R. P. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157, 159–166. https://doi.org/10.1016/j.jbiotec.2011.10.001 (2012).
    CAS  Article  PubMed  Google Scholar 

    72.
    Bernier, S. P., Letoffe, S., Delepierre, M. & Ghigo, J. M. Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 81, 705–716. https://doi.org/10.1111/j.1365-2958.2011.07724.x (2011).
    CAS  Article  PubMed  Google Scholar 

    73.
    Palkova, Z. et al. Ammonia mediates communication between yeast colonies. Nature 390, 532–536. https://doi.org/10.1038/37398 (1997).
    ADS  CAS  Article  PubMed  Google Scholar 

    74.
    Wang, J., Yan, D., Dixon, R. & Wang, Y. P. Deciphering the principles of bacterial nitrogen dietary preferences: A strategy for nutrient containment. mBio https://doi.org/10.1128/mBio.00792-16 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    75.
    Schreiber, K. et al. The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J. Bacteriol. 189, 4310–4314. https://doi.org/10.1128/JB.00240-07 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    76.
    Stewart, P. S. Diffusion in biofilms. J. Bacteriol. 185, 1485–1491. https://doi.org/10.1128/JB.185.5.1485-1491.2003 (2003).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    77.
    Cornforth, D. M. & Foster, K. R. Competition sensing: The social side of bacterial stress responses. Nat. Rev. Microbiol. 11, 285. https://doi.org/10.1038/nrmicro2977 (2013).
    CAS  Article  PubMed  Google Scholar 

    78.
    Korgaonkar, A., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl. Acad. Sci. USA 110, 1059–1064. https://doi.org/10.1073/pnas.1214550110 (2013).
    ADS  Article  PubMed  Google Scholar 

    79.
    Wang, M., Schaefer, A. L., Dandekar, A. A. & Greenberg, E. P. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc. Natl. Acad. Sci. USA 112, 2187–2191. https://doi.org/10.1073/pnas.1500704112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    80.
    Allegretta, G. et al. In-depth profiling of MvfR-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment. Front. Microbiol. 8, 1–12. https://doi.org/10.3389/fmicb.2017.00924 (2017).
    Article  Google Scholar 

    81.
    Deziel, E. et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101, 1339–1344. https://doi.org/10.1073/pnas.0307694100 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    82.
    Meirelles, L. A. & Newman, D. K. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol. Microbiol. 110, 995–1010. https://doi.org/10.1111/mmi.14132 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    83.
    Hall, S. et al. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins Basel https://doi.org/10.3390/toxins8080236 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    84.
    Price-Whelan, A., Dietrich, L. E. & Newman, D. K. Rethinking “secondary” metabolism: Physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2, 71–78. https://doi.org/10.1038/nchembio764 (2006).
    CAS  Article  PubMed  Google Scholar 

    85.
    Noto, M. J., Burns, W. J., Beavers, W. N. & Skaar, E. P. Mechanisms of pyocyanin toxicity and genetic determinants of resistance in Staphylococcus aureus. J. Bacteriol. https://doi.org/10.1128/JB.00221-17 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    86.
    James, T. J., Hughes, M. A., Cherry, G. W. & Taylor, R. P. Simple biochemical markers to assess chronic wounds. Wound Repair. Regen. 8, 264–269. https://doi.org/10.1046/j.1524-475x.2000.00264.x (2000).
    CAS  Article  PubMed  Google Scholar 

    87.
    Trengove, N. J., Langton, S. R. & Stacey, M. C. Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair. Regen. 4, 234–239. https://doi.org/10.1046/j.1524-475X.1996.40211.x (1996).
    CAS  Article  PubMed  Google Scholar 

    88.
    Cox, K. et al. Prevalence and significance of lactic acidosis in diabetic ketoacidosis. J. Crit. Care 27, 132–137. https://doi.org/10.1016/j.jcrc.2011.07.071 (2012).
    CAS  Article  PubMed  Google Scholar 

    89.
    de Oliveira, F. P. et al. Prevalence, antimicrobial susceptibility, and clonal diversity of Pseudomonas aeruginosa in Chronic Wounds. J. Wound Ostomy Contin. Nurs. 44, 528–535. https://doi.org/10.1097/won.0000000000000373 (2017).
    Article  Google Scholar 

    90.
    Rhoads, D. D., Wolcott, R. D., Sun, Y. & Dowd, S. E. Comparison of culture and molecular identification of bacteria in chronic wounds. Int. J. Mol. Sci. 13, 2535–2550. https://doi.org/10.3390/ijms13032535 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    91.
    Dalton, T. et al. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE 6, e27317. https://doi.org/10.1371/journal.pone.0027317 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    92.
    Kirketerp-Moller, K. et al. Distribution, organization, and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 46, 2717–2722. https://doi.org/10.1128/JCM.00501-08 (2008).
    Article  PubMed  PubMed Central  Google Scholar 

    93.
    Murray, J. L., Connell, J. L., Stacy, A., Turner, K. H. & Whiteley, M. Mechanisms of synergy in polymicrobial infections. J. Microbiol. 52, 188–199. https://doi.org/10.1007/s12275-014-4067-3 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    94.
    Ferreira, M. T., Manso, A. S., Gaspar, P., Pinho, M. G. & Neves, A. R. Effect of oxygen on glucose metabolism: Utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies. PLoS ONE 8, e58277. https://doi.org/10.1371/journal.pone.0058277 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    95.
    Tynecka, Z., Szcześniak, Z., Malm, A. & Los, R. Energy conservation in aerobically grown Staphylococcus aureus. Res. Microbiol. 150, 555–566. https://doi.org/10.1016/s0923-2508(99)00102-3 (1999).
    CAS  Article  PubMed  Google Scholar 

    96.
    Sanchez, C. J. Jr. et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis. 13, 47. https://doi.org/10.1186/1471-2334-13-47 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    97.
    James, G. A. et al. Biofilms in chronic wounds. Wound Repair. Regen. 16, 37–44. https://doi.org/10.1111/j.1524-475X.2007.00321.x (2008).
    ADS  Article  PubMed  Google Scholar 

    98.
    Bacon, C. W. & White, J. Microbial Endophytes (CRC Press, Boca Raton, 2000).
    Google Scholar 

    99.
    Mann, M. Filter Aided Sample Preparation (FASP) Method. http://www.biochem.mpg.de/226356/FASP (2013).

    100.
    Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protocols 11, 2301–2319. https://doi.org/10.1038/nprot.2016.136 (2016).
    CAS  Article  PubMed  Google Scholar 

    101.
    Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. https://doi.org/10.1038/nmeth.3901 (2016).
    CAS  Article  PubMed  Google Scholar 

    102.
    Szklarczyk, D. et al. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452. https://doi.org/10.1093/nar/gku1003 (2015).
    CAS  Article  PubMed  Google Scholar  More

  • in

    Reconstruction and evaluation of oil-degrading consortia isolated from sediments of hydrothermal vents in the South Mid-Atlantic Ridge

    Biodegradability of crude oil by two enrichment cultures
    The enrichment culture H7S showed no obvious proliferation in the first five days because sample 7S was a sulphide rock, while H11S showed visible proliferation after the fourth day. After 14 days of cultivation, gravimetric analysis demonstrated that the enrichment cultures H7S and H11S exhibited similar oil-degrading abilities and degraded 54% and 56% of the crude oil, respectively (Fig. 1).
    Figure 1

    The oil degradation efficiency of the two enrichment cultures H7S and H11S.

    Full size image

    The biodegradation percentages for total n-alkanes (C10–C34) and polycyclic aromatic hydrocarbons (PAHs) were calculated by comparing the two enrichment cultures with the negative controls (Fig. 2). Based on evaluation with C17/pristane and C18/phytane, the degradation efficiencies of the two enrichment cultures were significantly better than those of the negative controls (P  More

  • in

    Seasonal variation in sex-specific immunity in wild birds

    1.
    Abbas, A., Lichtman, A. H. & Pillai, S. Basic Immunology: Functions and Disorders of the Immune System 5th edn. (Elsevier, Amsterdam, 2015).
    Google Scholar 
    2.
    Møller, A. P. & Saino, N. Immune response and survival. Oikos 104, 299–304. https://doi.org/10.1111/j.0030-1299.2004.12844.x (2004).
    Article  Google Scholar 

    3.
    Hegemann, A., Matson, K. D., Flinks, H. & Tieleman, I. B. Offspring pay sooner, parents pay later: experimental manipulation of body mass reveals trade-offs between immune function, reproduction and survival. Front. Zool. 10, 77. https://doi.org/10.1186/1742-9994-10-77 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Nystrand, M. & Dowling, D. K. Effects of immune challenge on expression of life-history and immune trait expression in sexually reproducing metazoans: a meta-analysis. BMC Biol. 18, 135. https://doi.org/10.1186/s12915-020-00856-7 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Furman, D. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. PNAS 111, 869–874. https://doi.org/10.1073/pnas.1321060111 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    Klein, S. & Flanagan, K. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638. https://doi.org/10.1038/nri.2016.90 (2016).
    CAS  Article  PubMed  Google Scholar 

    7.
    Roberts, M. L., Buchanan, K. L. & Evans, M. R. Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim. Behav. 68, 227–239. https://doi.org/10.1016/j.anbehav.2004.05.001 (2004).
    Article  Google Scholar 

    8.
    Foo, Y. Z. et al. The effects of sex hormones on immune function: a meta-analysis. Biol. Rev. 92, 551–571. https://doi.org/10.1111/brv.12243 (2017).
    Article  PubMed  Google Scholar 

    9.
    Kelly, C. D. et al. Sexual dimorphism in immunity across animals: a meta-analysis. Ecol. Lett. 21, 1885–1894. https://doi.org/10.1111/ele.13164 (2018).
    Article  PubMed  Google Scholar 

    10.
    Tella, J. L., Scheuerlein, A. & Ricklefs, R. E. Is cell-mediated immunity related to the evolution of life-history strategies in birds?. Proc. R. Soc. B. 269, 1059–1066. https://doi.org/10.1098/rspb.2001.1951 (2002).
    Article  PubMed  Google Scholar 

    11.
    Korver, D. R. Implications of changing immune function through nutrition in poultry. Anim. Feed. Sci. Technol. 173, 54–64. https://doi.org/10.1016/j.anifeedsci.2011.12.019 (2012).
    CAS  Article  Google Scholar 

    12.
    Demina, I. et al. Time-keeping programme can explain seasonal dynamics of leukocyte profile in a migrant bird. J. Avian Biol. 50, e02117. https://doi.org/10.1111/jav.02117 (2019).
    Article  Google Scholar 

    13.
    Martin, L. B. et al. Immune activity in temperate and tropical house sparrows: a common-garden experiment. Ecology 85, 2323–2331. https://doi.org/10.1890/03-0365 (2004).
    Article  Google Scholar 

    14.
    Hõrak, P. et al. Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can. J. Zool. 76, 2235–2244. https://doi.org/10.1139/cjz-76-12-2235 (1998).
    Article  Google Scholar 

    15.
    Merrill, L. et al. Immune function in an avian brood parasite and its nonparasitic relative. Physiol. Biochem. Zool. 86, 61–72. https://doi.org/10.1086/668852 (2013).
    CAS  Article  PubMed  Google Scholar 

    16.
    Hasselquist, D. & Nilsson, J.-A. Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds?. Anim. Behav. 83, 1303–1312. https://doi.org/10.1016/j.anbehav.2012.03.025 (2012).
    Article  Google Scholar 

    17.
    Marais, M., Maloney, S. K. & Gray, D. A. The metabolic cost of fever in Pekin ducks. J. Therm. Biol. 36, 116–120. https://doi.org/10.1016/j.jtherbio.2010.12.004 (2011).
    Article  Google Scholar 

    18.
    Nilsson, J., Granbom, M. & Råberg, L. Does the strength of an immune response reflect its energetic cost?. J. Avian. Biol. 38, 488–494. https://doi.org/10.1111/j.0908-8857.2007.03919.x (2007).
    Article  Google Scholar 

    19.
    Bryant, D. M. & Westerterp, K. R. The energy budget of the House martin (Delichon urbica). Ardea 55, 91–102. https://doi.org/10.5253/arde.v68.p91 (1980).
    Article  Google Scholar 

    20.
    Maxson, S. J. & Oring, L. W. Breeding season time and energy budgets of the polyandrous spotted sandpiper. Behaviour 74, 200–263. https://doi.org/10.1163/156853980X00474 (1980).
    Article  Google Scholar 

    21.
    Brunton, D. H. Energy expenditure in reproductive effort of male and female Killdeer (Charadrius vociferus). Auk 105, 553–564. https://doi.org/10.1093/auk/105.3.553 (1988).
    Article  Google Scholar 

    22.
    Merrill, L. et al. Sex-specific variation in Brown-headed cowbird immunity following acute stress: a mechanistic approach. Oecologia 170, 25–38. https://doi.org/10.1007/s00442-012-2281-4 (2012).
    ADS  Article  PubMed  Google Scholar 

    23.
    Romero, L. M. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 128, 1–24. https://doi.org/10.1016/S0016-6480(02)00064-3 (2002).
    CAS  Article  PubMed  Google Scholar 

    24.
    Matson, K. D., Tieleman, B. I. & Klasing, K. C. Capture stress and the bactericidal competence of blood and plasma in five species of tropical birds. Physiol. Biochem. Zool. 79, 556–564. https://doi.org/10.1086/501057 (2006).
    Article  PubMed  Google Scholar 

    25.
    Cyr, N. E., Earle, K., Tam, C. & Romero, L. M. The effect of chronic psychological stress on corticosterone, plasma metabolites, and immune responsiveness in European starlings. Gen. Comp. Endocrinol. 154, 59–66. https://doi.org/10.1016/j.ygcen.2007.06.016 (2007).
    CAS  Article  PubMed  Google Scholar 

    26.
    Gao, S., Sanchez, C. & Deviche, P. J. Corticosterone rapidly suppresses innate immune activity in the House sparrow (Passer domesticus). J. Exp. Biol. 220, 322–327. https://doi.org/10.1242/jeb.144378 (2017).
    Article  PubMed  Google Scholar 

    27.
    Palacios, M. J. et al. Cellular and humoral immunity in two highly demanding energetic life stages: reproduction and moulting in the Chinstrap Penguin. J. Ornithol. 159, 283–290. https://doi.org/10.1007/s10336-017-1499-7 (2018).
    Article  Google Scholar 

    28.
    Martin, L. B. et al. Captivity induces hyper-inflammation in the house sparrow (Passer domesticus). J. Exp. Biol. 214, 2579–2585. https://doi.org/10.1242/jeb.057216 (2011).
    CAS  Article  PubMed  Google Scholar 

    29.
    Jakubas, D., Wojczulanis-Jakubas, K. & Kosmicka, A. Factors affecting leucocyte profiles in the Little auk, a small Arctic seabird. J. Ornithol. 156, 101–111. https://doi.org/10.1007/s10336-014-1101-5 (2015).
    Article  Google Scholar 

    30.
    Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015. https://doi.org/10.1093/icb/icl049 (2006).
    CAS  Article  PubMed  Google Scholar 

    31.
    Nordling, D. et al. Reproductive effort reduces specific immune response and parasite resistance. Proc. Biol. Sci. 265, 1291–1298. https://doi.org/10.1098/rspb.1998.0432 (1998).
    Article  PubMed Central  Google Scholar 

    32.
    Merrill, L. et al. A blurring of life-history lines: immune function, molt and reproduction in a highly stable environment. Gen. Comp. Endocrinol. 213, 65–73. https://doi.org/10.1016/j.ygcen.2015.02.010 (2015).
    CAS  Article  PubMed  Google Scholar 

    33.
    Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097. https://doi.org/10.1136/bmj.b2535 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Davison, F., Kaspers, B. & Schat, K. A. Avian Immunology (Elsevier, Amsterdam, 2008).
    Google Scholar 

    35.
    Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct. Ecol. 22, 760–772. https://doi.org/10.1111/j.1365-2435.2008.01467.x (2008).
    Article  Google Scholar 

    36.
    Dein, F. J. Hematology. In Clinical Avian Medicine and Surgery (eds Harrison, B. G. & Harrison, L. R.) 174–191 (WB Sander, Philadelphia, 1986).
    Google Scholar 

    37.
    Ots, I., Murumägi, A. & Hõrak, P. Haematological health state indices of reproducing Great tits: methodology and sources of natural variation. Funct. Ecol. 12, 700–707. https://doi.org/10.1046/j.1365-2435.1998.00219.x (1998).
    Article  Google Scholar 

    38.
    Hõrak, P. et al. Immune function and survival of great tit nestlings in relation to growth conditions. Oecologia 121, 316–322. https://doi.org/10.1007/s004420050934 (1999).
    ADS  Article  PubMed  Google Scholar 

    39.
    Ots, I. & Hõrak, P. Health impact of blood parasites in breeding great tits. Oecologia 166, 441–448. https://doi.org/10.1007/s004420050608 (1998).
    ADS  Article  Google Scholar 

    40.
    Skwarska, J. Variation of heterophil-to-lymphocyte ratio in the Great Tit Parus major: a review. Acta Ornithol. 53, 103–114. https://doi.org/10.3161/00016454AO2018.53.2.001 (2019).
    Article  Google Scholar 

    41.
    Davis, A. K. Effects of handling time and repeated sampling on avian white blood cell counts. J. Field Ornithol. 76, 334–338. https://doi.org/10.1648/0273-8570-76.4.334 (2005).
    Article  Google Scholar 

    42.
    Martin, L. B. et al. Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct. Ecol. 20, 290–299. https://doi.org/10.1111/j.1365-2435.2006.01094.x (2006).
    Article  Google Scholar 

    43.
    French, S. S. & Neuman-Lee, L. A. Improved ex vivo method for microbiocidal activity across vertebrate species. Biol. Open. 1, 482–487. https://doi.org/10.1242/bio.2012919 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Matson, K. D., Ricklefs, R. E. & Klasing, K. C. A hemolysis-hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev. Comp. Immunol. 29, 275–286. https://doi.org/10.1016/j.dci.2004.07.006 (2005).
    CAS  Article  PubMed  Google Scholar 

    45.
    Higgins, J. P. T. & Deeks, J. J. Selecting studies and collecting data. In Cochrane Handbook for Systematic Reviews of Interventions (eds Higgins, J. P. T. & Green, S.) 151–185 (Wiley, New York, 2008).
    Google Scholar 

    46.
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48. https://doi.org/10.18637/jss.v036.i03 (2010).
    Article  Google Scholar 

    47.
    Hedges, L. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Behav. Stat. 6, 107–128. https://doi.org/10.3102/10769986006002107 (1981).
    Article  Google Scholar 

    48.
    Rosenberg, M. S., Rothstein, H. & Gurevitch, J. Effect sizes: conventional choices and calculations. In Handbook of Meta-Analysis in Ecology and Evolution (eds Koricheva, J. et al.) 61–71 (Princeton University Press, Princeton, 2013).
    Google Scholar 

    49.
    Jetz, W. et al. The global diversity of birds in space and time. Nature 491, 444–448. https://doi.org/10.1038/nature11631 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    50.
    Holder, M. T., Sukumaran, J. & Lewis, P. O. A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. Syst. Biol. 57, 814–821. https://doi.org/10.1080/10635150802422308 (2008).
    Article  PubMed  Google Scholar 

    51.
    Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571. https://doi.org/10.1093/bioinformatics/btq228 (2010).
    CAS  Article  PubMed  Google Scholar 

    52.
    Rubolini, D., Liker, A., Garamszegi, L. Z., Møller, A. P. & Saino, N. Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: a primer. Curr. Zool. 61, 959–965. https://doi.org/10.1093/czoolo/61.6.959 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. https://doi.org/10.1093/bioinformatics/btg412 (2004).
    CAS  Article  PubMed  Google Scholar 

    54.
    Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-Analysis in Ecology and Evolution (Princeton University Press, Princeton, 2013).
    Google Scholar 

    55.
    Egger, M., Smith, G. D. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634. https://doi.org/10.1136/bmj.315.7109.629 (1997).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    56.
    Sterne, J. A. & Egger, M. Regression methods to detect publication and other bias in meta-analysis. In Publication Bias in Meta-Analysis: Prevention, Assessment, and Adjustments (eds Rothstein, H. R. et al.) 99–110 (Wiley, New York, 2005).
    Google Scholar 

    57.
    Viechtbauer, W. & Cheung, M.W.-L. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 1, 112–125. https://doi.org/10.1002/jrsm.11 (2010).
    Article  PubMed  Google Scholar 

    58.
    Habeck, C. W. & Schultz, A. K. Community-level impacts of White-tailed deer on understorey plants in North American forests: a meta-analysis. AoB Plants 7, 119. https://doi.org/10.1093/aobpla/plv119 (2015).
    Article  Google Scholar 

    59.
    Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (Wiley, New York, 2009).
    Google Scholar 

    60.
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22. https://doi.org/10.18637/jss.v033.i02 (2010).
    Article  Google Scholar 

    61.
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
    Article  Google Scholar 

    62.
    Plummer, M. et al. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).
    Google Scholar 

    63.
    Higgins, J. P. T. et al. Measuring inconsistency in meta-analysis. BMJ 327, 557–560. https://doi.org/10.1136/bmj.327.7414.557 (2003).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Clark, P., Boardman, W. S. J. & Raidal, S. R. Atlas of Clinical Avian Hematology (Wiley, New York, 2009).
    Google Scholar 

    65.
    Dehnhard, N. & Hennicke, J. C. Leucocyte profiles and body condition in breeding Brown boobies and Red-tailed tropicbirds: effects of breeding stage and sex. Aust. J. Zool. 61, 178–185. https://doi.org/10.1071/ZO12123 (2013).
    Article  Google Scholar 

    66.
    Gallo, L. et al. Hematology, plasma biochemistry, and trace element reference values for free-ranging adult Magellanic penguins (Spheniscus magellanicus). Polar Biol. 42, 733. https://doi.org/10.1007/s00300-019-02467-7 (2019).
    Article  Google Scholar 

    67.
    Garcia-Morales, C. et al. Cell-autonomous sex differences in gene expression in chicken bone marrow-derived macrophages. J. Immunol. 194, 2338–2344. https://doi.org/10.4049/jimmunol.1401982 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    68.
    Vehrencamp, S. L., Bradbury, J. W. & Gibson, R. M. The energetic cost of display in male sage grouse. Anim. Behav. 38, 885–896. https://doi.org/10.1016/S0003-3472(89)80120-4 (1989).
    Article  Google Scholar 

    69.
    Hambly, C., Markman, S., Roxburgh, L. & Pinshow, B. Seasonal sex-specific energy expenditure in breeding and non-breeding Palestine sunbirds Nectarinia osea. J. Avian Biol. 38, 190–197. https://doi.org/10.1111/j.2007.0908-8857.03774.x (2007).
    Article  Google Scholar 

    70.
    Fokidis, H. B. et al. Unpredictable food availability induces metabolic and hormonal changes independent of food intake in a sedentary songbird. J. Exp. Biol. 215, 2920–2930. https://doi.org/10.1242/jeb.071043 (2012).
    Article  PubMed  Google Scholar 

    71.
    Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 182, 861–879. https://doi.org/10.1007/s00360-012-0656-9 (2012).
    Article  PubMed  Google Scholar 

    72.
    Müller, C., Jenni-Eiermann, S. & Jenni, L. Heterophils/Lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Funct. Ecol. 25, 566–576. https://doi.org/10.1111/j.1365-2435.2010.01816.x (2011).
    Article  Google Scholar 

    73.
    Oberkircher, M. C. & Smith Pagano, S. Seasonal variation in chronic stress and energetic condition in Gray Catbirds (Dumetella carolinensis) and Song Sparrows (Melospiza melodia). Auk 135, 83–90. https://doi.org/10.1642/AUK-17-79.1 (2018).
    Article  Google Scholar 

    74.
    Roberts, M. L. et al. The effects of testosterone on immune function in quail selected for divergent plasma corticosterone response. J. Exp. Biol. 212, 3125–3131. https://doi.org/10.1242/jeb.030726 (2009).
    Article  PubMed  Google Scholar 

    75.
    Li, D. et al. Changes in phytohaemagglutinin skin-swelling responses during the breeding season in a multi-brooded species, the Eurasian tree parrow: do males with higher testosterone levels show stronger immune responses?. J. Ornithol. 156, 133–141. https://doi.org/10.1007/s10336-014-1104-2 (2015).
    Article  Google Scholar 

    76.
    Duffy, D. L. et al. Effects of testosterone on cell-mediated and humoral immunity in non-breeding adult European starlings. Behav. Ecol. 11, 654–662. https://doi.org/10.1093/beheco/11.6.654 (2000).
    Article  Google Scholar 

    77.
    Boyd, R. J., Kelly, T. R., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. Alternative reproductive strategies in white-throated sparrows are associated with differences in parasite load following experimental infection. Biol. Lett. 14, 20180194. https://doi.org/10.1098/rsbl.2018.0194 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    78.
    Folstad, I. & Karter, A. J. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 139, 603–622. https://doi.org/10.1086/285346 (1992).
    Article  Google Scholar 

    79.
    Bourgeon, S. et al. Relationships between metabolic status, corticosterone secretion and maintenance of innate and adaptive humoral immunities in fasted re-fed Mallards. J. Exp. Biol. 213, 3810–3818. https://doi.org/10.1242/jeb.045484 (2010).
    CAS  Article  PubMed  Google Scholar 

    80.
    Cabrera-Martínez, L. V., Herrera, M. L. & Cruz-Neto, A. P. The energetic cost of mounting an immune response for Pallas’s long-tongued bat (Glossophaga soricina). PeerJ 6, e4627. https://doi.org/10.7717/peerj.4627 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321. https://doi.org/10.1016/0169-5347(96)10039-2 (1996).
    CAS  Article  PubMed  Google Scholar 

    82.
    Hanssen, S. A., Hasselquist, D., Folstad, I. & Erikstad, K. E. Cost of reproduction in a long-lived bird: incubation effort reduces immune function and future reproduction. Proc. R. Soc. B 272, 1039–1046. https://doi.org/10.1098/rspb.2005.3057 (2005).
    Article  PubMed  Google Scholar 

    83.
    Miller, M. R., White, A. & Boots, M. The evolution of parasites in response to tolerance in their hosts: the good, the bad, and apparent commensalism. Evolution 60, 945–956. https://doi.org/10.1111/j.0014-3820.2006.tb01173.x (2006).
    Article  PubMed  Google Scholar 

    84.
    Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941. https://doi.org/10.1126/science.1214935 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    85.
    Santiago-Quesada, F. et al. Secondary phytohaemagglutinin (PHA) swelling response is a good indicator of T-cell-mediated immunity in free-living birds. IBIS 157, 767–773. https://doi.org/10.1111/ibi.12295 (2015).
    Article  Google Scholar 

    86.
    Moreno, J., de León, A., Fargallo, J. A. & Moreno, E. Breeding time, health and immune response in the chinstrap penguin Pygoscelis antarctica. Oecologia 115, 312–319. https://doi.org/10.1007/s004420050522 (1998).
    ADS  CAS  Article  PubMed  Google Scholar 

    87.
    Zhao, Y. et al. Life-history dependent relationships between body condition and immunity, between immunity indices in male Eurasian tree sparrows. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 210, 7–13. https://doi.org/10.1016/j.cbpa.2017.05.004 (2017).
    CAS  Article  PubMed  Google Scholar 

    88.
    Zuk, M. & Johnsen, T. S. Seasonal changes in the relationship between ornamentation and immune response in red jungle fowl. Proc. R. Soc. Lond. B. 265, 1631–1635. https://doi.org/10.1098/rspb.1998.0481 (1998).
    Article  Google Scholar 

    89.
    Hasselquist, D. Comparative immunoecology in birds: hypotheses and tests. J. Ornithol. 148, 571–582. https://doi.org/10.1007/s10336-007-0201-x (2007).
    Article  Google Scholar  More

  • in

    Effects of climatic factors on the net primary productivity in the source region of Yangtze River, China

    Study area
    The Source Region of Yangtze River (SRYR for short, Latitude: 32° 25′ E and 35° 53′ E; Longitude: 89° 43′ E–97° 19′ E), located in the western Tibetan plateau, covers an area of 141,398 km2 (Fig. 10a). The elevation ranges from 6456 m in the West to 3512 m in the East, with an average of 4779 m. The SRYR belongs to transition zone from semi-arid to semi-humid alpine area. The annual temperature is − 2 to − 3 °C. Monthly mean temperature in the coldest month is − 13.0 °C and that in the warmest month is 9.7 °C. The annual temperature of the study area is 265 mm. The temperature decreases from southeast to northwest37. The aridity index is 3.67 in the SRYR, which means the climate is very dry. The vegetation types are mainly meadow (84,985 km2) and grassland (33,743 km2), which are 60.1% and 23.9% (Fig. 10b) of the study area respectively. We divided the SRYR into five sub-regions, including Tuotuo River Basin (I), Dam River Basin (II), Qumar River Basin (III), Middle Stream Region (IV) and Downstream Region (V).
    Figure 10

    The location of Source Region of Yangtze River (a) and vegetation types (b). Map was generated using ArcGIS 10.3 (http://www.esri.com/software/arcgis/arcgis-for-desktop).

    Full size image

    Datasets
    The monthly NDVI data for SRYR was obtained from Resource and Environment Data Cloud Platform (RESDC, http://www.resdc.cn/). It was produced with Maximum Value Composite (MVC) approach based on the SPOT/VEGETATION NDVI data. The effects of cloud cover and non-vegetation were reduced. This dataset was at a spatial resolution of 1 km, covering the period 2000 to 2014.
    The gridded meteorological data used are obtained from China Ground Precipitation 0.5° × 0.5° Grid Dataset V2.0 and China Ground Temperature 0.5° × 0.5° Grid Dataset V2.0. These datasets are provided by National Meteorological Information Center (NMIC, http://data.cma.cn/). A total of 102 grids in the SRYR and the surroundings during 2000–2014 are selected. The gridded data has been projected and resampled in order to ensure the same coordinate system and resolution with NDVI data. The NMIC also provides meteorological data of 9 meteorological stations within and around the study area, including parameters such as solar radiation, surface water, pressure, sunshine hours, wind speed and relative humidity. Grid data of the study area was interpolated by ANUSPLINE.
    NPP simulation
    In this study, the NPP were simulated by CASA (Carnegie–Ames–Stanford Approach) model. The CASA model is based on the plant growing mechanism38,39,40 which can be summarized by Eq. (1).

    $$ NPPleft( {x,t} right) = APARleft( {x,t} right) times varepsilon left( {x,t} right) $$
    (1)

    where x and t are spatial location and time respectively, NPP is simulated value (gC m−2). APAR and ε represent absorbed photosynthetically active radiation and light use efficiency, which can be obtained by Eqs. (2) and (3).

    $$ APARleft( {x,t} right) = fPARleft( {x,t} right) times SOLleft( {x,t} right) times R $$
    (2)

    $$ varepsilon left( {x,t} right) = Tleft( {x,t} right) times Wleft( {x,t} right) times varepsilon_{max } $$
    (3)

    where fPAR is the fraction of absorbed photosynthetically active radiation, SOL is the total solar radiation (MJ/m2), R is the fraction of solar active radiation that can be used by vegetation. T and W are temperature stress index and moisture stress factor, respectively. εmax is maximum light utilization efficiency. Further details of the above equations can be obtained from previous studies38,39,40.
    The NPP calculated by CASA model can be considered as the actual NPP which is influenced by both climate change and human activities. It can be expressed as Eq. (4).

    $$ NPP = PNPP – HNPP $$
    (4)

    where PNPP and HNPP represent potential NPP and human-induced NPP, respectively. PNPP is only determined by climate conditions and without interference from human activities. It can be calculated by Thornthwaite Memorial model41, using the follows formulas:

    $$ PNPP = 3000left[ {1 – e^{{ – 0.0009695left( {v – 20} right)}} } right] $$
    (5)

    $$ v = frac{1.05N}{{sqrt {1 + left( {1.05{N mathord{left/ {vphantom {N L}} right. kern-nulldelimiterspace} L}} right)^{2} } }} $$
    (6)

    $$ L = 300 + 25t + 0.05t^{3} $$
    (7)

    where t, L, N and v are average annual temperature (°C), annual maximum evapotranspiration (mm), annual total precipitation (mm) and average annual actual evapotranspiration (mm).
    According to Eq. (4), the HNPP can be represented by the difference between PNPP and NPP.
    Statistical analysis
    To identify the inter-annual trends of temperature (Tem.), precipitation (Pre.) and NPP, the linear regression method was adopted to eliminate the increase or decrease rate42, which can be calculated as follows:

    $$ theta_{Slope} = frac{{n times sumnolimits_{i = 1}^{n} {(i times X_{i} ) – sumnolimits_{i = 1}^{n} {isumnolimits_{i = 1}^{n} {X_{i} } } } }}{{n times sumnolimits_{i = 1}^{n} {i^{2} – left( {sumnolimits_{i = 1}^{n} i } right)^{2} } }} $$
    (8)

    where θslope is the linear slope of the time series variable, which can be used to characterize the increase or decrease rate during a given study period; n is the number of years (here n = 15); Xi is the temperature, precipitation and NPP for the ith year (i = 1,2, … n).
    A nonparametric test, Mann–Kendall (M–K) trend analysis43,44 was utilized to detect the break points of temperature, precipitation and NPP series in the SRYR. The test statistic UFi is calculated as follows:

    $$ begin{array}{*{20}c} {UF_{i} = frac{{S_{i} – Eleft( {S_{i} } right)}}{{sqrt {Varleft( {S_{i} } right)} }}} & {left( {i = 1,2, ldots ,n} right)} \ end{array} $$
    (9)

    $$ begin{array}{*{20}c} {S_{k} = sumlimits_{i = 1}^{k} {r_{i} } } & {left( {k = 2,3, ldots ,n} right)} \ end{array} $$
    (10)

    $$ begin{array}{*{20}c} {ri = left{ {begin{array}{*{20}c} { + 1} & {x_{i} > x_{j} } \ 0 & {x_{i} le x_{j} } \ end{array} } right.} & {(j = 1,2, ldots ,i – 1)} \ end{array} $$
    (11)

    where xi is the variable with the sample of n. E(Sk) and variance Var(Sk) could be estimated as follows:

    $$ Eleft( {S_{i} } right) = frac{{ileft( {i – 1} right)}}{4} $$
    (12)

    $$ Varleft( {S_{i} } right) = frac{{ileft( {i – 1} right)left( {2i + 5} right)}}{72} $$
    (13)

    Using the same equation but in the reverse data series (xn, xn − 1, …, x1), UFi could be calculated again. Defining UBi = UFi (i = n, n − 1, …, 1), we can get the curve of UFi and UBi. If the intersection of the UFi and UBi curves occurs within the confidence interval, it indicates a change point45.
    To assess the effects of temperature and precipitation on NPP in the SRYR, correlation coefficient R was employed to analyze the correlation between two variables (NPP vs. Tem., NPP vs. Pre.), using the following formula:

    $$ R_{XY} = frac{{sumnolimits_{i = 1}^{n} {left( {X_{i} – overline{X} } right)left( {Y_{i} – overline{Y} } right)} }}{{sqrt {sumnolimits_{i = 1}^{n} {left( {X_{i} – overline{X} } right)^{2} sqrt {sumnolimits_{i = 1}^{n} {left( {Y_{i} – overline{Y} } right)^{2} } } } } }} $$
    (14)

    where Y denotes the NPP and X denotes temperature or precipitation.
    The results of the statistical analysis above can be got by MATLAB.
    Identification of the relative roles of climate change and human activities in NPP
    A positive PNPP slope indicates that vegetation growth is promoted by climate change, whereas a negative PNPP slope means that climate change reduced the vegetation NPP. A positive HNPP slope suggests that human activities have negative influence on vegetation growth and create ecological degradation, whereas a negative HNPP slope means that human activities contribute to vegetation growth46. Thus, the determinants for NPP change can be identified according to Table 2.
    Table 2 The causes of actual NPPA change.
    Full size table More

  • in

    Temperature driven hibernation site use in the Western barbastelle Barbastella barbastellus (Schreber, 1774)

    1.
    Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274. https://doi.org/10.1146/annurev.physiol.66.032102.115105 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 
    2.
    Speakman, J. R. & Thomas, D. W. In Bat Ecology (eds T. H. Kunz & B. M. Fenton) 430–490 (The University of Chicago Press, 2003).

    3.
    Thomas, D. W., Dorais, M. & Bergeron, J.-M. Winter energy budgets and cost of arousals for hibernating little brown bats, myotis lucifugus. J. Mammal. 71, 475–479. https://doi.org/10.2307/1381967 (1990).
    Article  Google Scholar 

    4.
    Thomas, D. W., Cloutier, D. & Gagné, D. Arrhythmic breathing, apnea and non-steady state oxygen uptake in hibernating Little Brown Bats (Myotis lucifugus). J. Exp. Biol. 149, 395–406 (1990).
    Google Scholar 

    5.
    Hock, R. J. The metabolic rates and body temperatures of bats. Biol. Bull. 101, 289–299 (1951).
    CAS  Article  Google Scholar 

    6.
    McNab, B. K. The behavior of temperate cave bats in a subtropical environment. Ecology 55, 943–958 (1974).
    Article  Google Scholar 

    7.
    Belkin, V. V., Panchenko, D. V., Tirronen, K. F., Yakimova, A. E. & Fedorov, F. V. Ecological status of bats (Chiroptera) in winter roosts in eastern Fennoscandia. Russ. J. Ecol. 46, 463–469. https://doi.org/10.1134/s1067413615050045 (2015).
    Article  Google Scholar 

    8.
    Richter, A. R., Humphrey, S. R., Cope, J. B. & Brack, V. Modified cave entrances – thermal effect on body-mass and resulting decline of endangered indiana bats (Myotis sodalis). Conserv. Biol. 7, 407–415. https://doi.org/10.1046/j.1523-1739.1993.07020407.x (1993).
    Article  Google Scholar 

    9.
    Arlettaz, R. et al. Physiological traits affecting the distribution and wintering strategy of the bat Tadarida teniotis. Ecology 81, 1004–1014. https://doi.org/10.1890/0012-9658(2000)081[1004:ptatda]2.0.co;2 (2000).
    Article  Google Scholar 

    10.
    Clawson, R. L., Laval, R. K., Laval, M. L. & Caire, W. Clustering behaviour of hibernating Myotis Sodalis in Missouri. J. Mammal. 61, 245–253. https://doi.org/10.2307/1380045 (1980).
    Article  Google Scholar 

    11.
    McManus, J. J. Activity and thermal preference of the little brown bat, Myotis lucifugus, during hibernation. J. Mammal. 55, 844–846 (1974).
    CAS  Article  Google Scholar 

    12.
    Ingersoll, T. E., Navo, K. W. & de Valpine, P. Microclimate preferences during swarming and hibernation in the Townsend’s big-eared bat, Corynorhinus townsendii. J. Mammal. 91, 1242–1250. https://doi.org/10.1644/09-mamm-a-288.1 (2010).
    Article  Google Scholar 

    13.
    Webb, P. I., Speakman, J. R. & Racey, P. A. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Can. J. Zool.-Rev. Can. Zool. 74, 761–765. https://doi.org/10.1139/z96-087 (1996).
    Article  Google Scholar 

    14.
    Gaisler, J. Remarks on the thermopreferendum of palearctic bats in their natural habitats. Bijdragen tot de Dierkunde 40, 33–35 (1970).
    Article  Google Scholar 

    15.
    Bogdanowicz, W. & Urbanczyk, Z. Some ecological aspects of bats hibernating in the city of Poznan. Acta Theriologica 28, 371–385 (1983).
    Article  Google Scholar 

    16.
    Lesinski, G. Ecology of bats hibernating underground in Central Poland. Acta Theriologica 31, 507–521 (1986).
    Article  Google Scholar 

    17.
    Nagel, A. & Nagel, R. How do bats choose optimal temperatures for hibernation?. Comp. Biochem. Physiol. A Physiol. 99, 323–326. https://doi.org/10.1016/0300-9629(91)90008-Z (1991).
    Article  Google Scholar 

    18.
    Siivonen, Y. & Wermundsen, T. Characteristics of winter roosts of bat species in southern Finland. Mammalia 72, 50–56. https://doi.org/10.1515/mamm.2008.003 (2008).
    Article  Google Scholar 

    19.
    Brack, V. Jr. Temperatures and locations used by hibernating bats, including Myotis sodalis (Indiana bat), in a limestone mine: Implications for conservation and management. Environ. Manag. 40, 739–746. https://doi.org/10.1007/s00267-006-0274-y (2007).
    ADS  MathSciNet  Article  Google Scholar 

    20.
    Boyles, J. G., Johnson, J. S., Blomberg, A. & Lilley, T. M. Optimal hibernation theory. Mammal Rev. 50, 91–100. https://doi.org/10.1111/mam.12181 (2020).
    Article  Google Scholar 

    21.
    Prendergast, B. J., Freeman, D. A., Zucker, I. & Nelson, R. J. Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 282, R1054–R1062. https://doi.org/10.1152/ajpregu.00562.2001 (2002).
    CAS  Article  PubMed  Google Scholar 

    22.
    Burton, R. S. & Reichman, O. J. Does immune challenge affect torpor duration?. Funct. Ecol. 13, 232–237. https://doi.org/10.1046/j.1365-2435.1999.00302.x (1999).
    Article  Google Scholar 

    23.
    Daan, S., Barnes, B. M. & Strijkstra, A. M. Warming up for sleep? Ground-squirrels sleep during arousals from hibernation. Neurosci. Lett. 128, 265–268. https://doi.org/10.1016/0304-3940(91)90276-y (1991).
    CAS  Article  PubMed  Google Scholar 

    24.
    van Breukelen, F. & Martin, S. L. Molecular biology of thermoregulation – Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses?. J. Appl. Physiol. 92, 2640–2647. https://doi.org/10.1152/japplphysiol.01007.2001 (2002).
    Article  PubMed  Google Scholar 

    25.
    Kokurewicz, T. Sex and age related habitat selection and mass dynamics of Daubenton’s bats Myotis daubentonii (Kuhl, 1817) hibernating in natural conditions. Acta Chiropterologica 6, 121–144 (2004).
    Article  Google Scholar 

    26.
    Czenze, Z. J., Jonasson, K. A. & Willis, C. K. R. Thrifty females, frisky males: winter energetics of hibernating bats from a cold climate. Physiol. Biochem. Zool. 90, 502–511. https://doi.org/10.1086/692623 (2017).
    Article  PubMed  Google Scholar 

    27.
    Boyles, J. G., Dunbar, M. B., Storm, J. J. & Brack, V. Jr. Energy availability influences microclimate selection of hibernating bats. J. Exp. Biol. 210, 4345–4350. https://doi.org/10.1242/jeb.007294 (2007).
    Article  PubMed  Google Scholar 

    28.
    Daan, S. & Wichers, H. J. Habitat selection of bats hibernating in a limestone cave. Z. Fur Saugetierkunde-Int. J. Mammalian Biol. 33, 262–287 (1968).

    29.
    Daan, S. Activity during natural hibernation in three species of vespertilionid bats. Netherlands J. Zool. 23, 1–71 (1973).
    Article  Google Scholar 

    30.
    Kirkpatrick, L., Apoznanski, G., De Bruyn, L., Gyselings, R. & Kokurewicz, T. Bee markers: a novel method for non invasive short term marking of bats. Acta Chiropterologica 21, 465–471. https://doi.org/10.3161/15081109acc2019.21.2.020 (2019).
    Article  Google Scholar 

    31.
    Bagrowska-Urbanczyk, E. & Urbanczyk, Z. Structure and dynamics of a winter colony of bats. Acta Theriologica 28, 183–196 (1983).
    Article  Google Scholar 

    32.
    Boyles, J. G., Boyles, E., Dunlap, R. K., Johnson, S. A. & Brack, V. Long-term microclimate measurements add further evidence that there is no “optimal” temperature for bat hibernation. Mammalian Biol. 86, 9–16. https://doi.org/10.1016/j.mambio.2017.03.003 (2017).
    Article  Google Scholar 

    33.
    Boyles, J. G. & McKechnie, A. E. Energy conservation in hibernating endotherms: why “suboptimal” temperatures are optimal. Ecol. Model. 221, 1644–1647. https://doi.org/10.1016/j.ecolmodel.2010.03.018 (2010).
    Article  Google Scholar 

    34.
    Webb, P. I., Speakman, J. R. & Racey, P. A. Population dynamics of a maternity colony of the pipistrelle bat (Pipistrellus pipistrellus) in north-east Scotland. J. Zool. 240, 777–780. https://doi.org/10.1111/j.1469-7998.1996.tb05323.x (1996).
    Article  Google Scholar 

    35.
    IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. Parry, M., Canziani, M., Palutikof, O., van der Linden, J., Hanson, P., Cambridge, C., (Cambridge University Press, 2007).

    36.
    Lutenbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).
    ADS  Article  Google Scholar 

    37.
    Piniewski, M., Mezghani, A., Szcześniak, M. & Kundzewicz, Z. W. Regional projections of temperature and precipitation changes: robustness and uncertainty aspects. Meteorol. Z. 26, 223–234. https://doi.org/10.1127/metz/2017/0813 (2017).
    Article  Google Scholar 

    38.
    Humphries, M. M., Thomas, D. W. & Speakman, J. R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316. https://doi.org/10.1038/nature00828 (2002).
    ADS  CAS  Article  PubMed  Google Scholar 

    39.
    Day, K. M. & Tomasi, T. E. Winter energetics of female Indiana bats Myotis sodalis. Physiol. Biochem. Zool. 87, 56–64. https://doi.org/10.1086/671563 (2014).
    Article  PubMed  Google Scholar 

    40.
    Rebelo, H., Tarroso, P. & Jones, G. Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob. Change Biol. 16, 561–576. https://doi.org/10.1111/j.1365-2486.2009.02021.x (2010).
    ADS  Article  Google Scholar 

    41.
    Gottfried, I. et al. Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change: are current monitoring schemes still reliable for cryophilic bat species?. PLoS ONE 15, 18. https://doi.org/10.1371/journal.pone.0227912 (2020).
    CAS  Article  Google Scholar 

    42.
    Rydell, J. & Bogdanowicz, W. Barbastella barbastellus. Mammalian Species, 1–8 (1997).

    43.
    Lesinski, G. et al. The importance of small cellars to bat hibernation in Poland. Mammalia 68, 345–352. https://doi.org/10.1515/mamm.2004.034 (2004).
    Article  Google Scholar 

    44.
    Sachanowicz, K. & Zub, K. Numbers of hibernating Barbastella barbastellus (Schreber, 1774) (Chiroptera, Vespertilionidae) and thermal conditions in military bunkers. Mammalian Biol. 67, 179–184. https://doi.org/10.1078/1616-5047-00026 (2002).
    Article  Google Scholar 

    45.
    Greenaway, F. The barbastelle in Britain. British Wildlife 12, 327–334 (2001).
    Google Scholar 

    46.
    Sherwin, H. A., Montgomery, W. I. & Lundy, M. G. The impact and implications of climate change for bats. Mammal Rev. 43, 171–182. https://doi.org/10.1111/j.1365-2907.2012.00214.x (2013).
    Article  Google Scholar 

    47.
    Dietz, C., Von Helversen, O. & Nill, D. Bats of Britain, Europe & Northwest Africa. (A &C Black Publishers Ltd., 2009).

    48.
    Hutterer, R., Ivanova, T., Meyer-Cords, C. & Rodrigues, L. Bat migrations in Europe: a review of banding data and literature. Vol. 28 (Federal Agency for Nature Conservation in Germany, 2005).

    49.
    Kokurewicz, T. et al. 45 years of bat study and conservation in Nietoperek bat reserve (Western Poland). Nyctalus 19, 252–269 (2019).
    Google Scholar 

    50.
    Cichocki, J. et al. In 23th Polish Chiropterological Conference. (ed W. Grzywinski) 9–10 (2014).

    51.
    Cichocki, J. et al. In Proceedings of the 24th Polish Chiropterological Conference. (ed W. Grzywinski) 36–37 (2015).

    52.
    Brack, V. & Twente, J. W. The duration of the period of hibernationof 3 species of Vespertilionid bats. 1. Field studies. Can. J. Zool.-Rev. Can. Zool. 63, 2952–2954 (1985).

    53.
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, 2009).

    54.
    Onkelinx, T., Devos, K. & Quataert, P. Working with population totals in the presence of missing data comparing imputation methods in terms of bias and precision. J. Ornithol. 158, 603–615. https://doi.org/10.1007/s10336-016-1404-9 (2017).
    Article  Google Scholar 

    55.
    Rubin, D. B. Multiple Imputation for Nonresponse in Surveys. (Wiley, 1987).

    56.
    Rubin, D. B. Multiple imputation after 18+ years. J. Am. Stat. Assoc. 91, 473–489. https://doi.org/10.1080/01621459.1996.10476908 (1996).
    Article  MATH  Google Scholar 

    57.
    RCoreTeam. in Version 3.6.1 (URL https://www.R-project.org/: R Foundation for Statistical Computing, Vienna, Austria, 2019).

    58.
    Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation v. 1.8–0 (2014).

    59.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. Fourth Edition. (Springer, 2002).

    60.
    Tuttle, M. D. & Stevenson, D. E. in BCI Bat Conservation and Management Workshop. 19–35 (Bat Conservation International).

    61.
    Lesinski, G., Fuszara, E., Fuszara, M., Jurczyszyn, M. & Urbanczyk, Z. Long-term changes in the numbers of the barbastelle Barbastella barbastellus in Poland. Folia Zool. 54, 351–358 (2005).
    Google Scholar 

    62.
    Klug-Baerwald, B. J., Lausen, C. L., Willis, C. K. R. & Brigham, R. M. Home is where you hang your bat: winter roost selection by prairie-living big brown bats. J. Mammal. 98, 752–760. https://doi.org/10.1093/jmammal/gyx039 (2017).
    Article  Google Scholar 

    63.
    Martinkova, N., Baird, S. J. E., Kana, V. & Zima, J. Bat population recoveries give insight into clustering strategies during hibernation. Front. Zool. 17, 11. https://doi.org/10.1186/s12983-020-00370-0 (2020).
    Article  Google Scholar 

    64.
    Tuttle, M. D. & Kennedy, J. In BCI Bat Conservation and Management Workshop. 73–82 (Bat Conservation International).

    65.
    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Climate Change 8, 713–717. https://doi.org/10.1038/s41558-018-0231-9 (2018).
    ADS  Article  Google Scholar 

    66.
    Thomas, D. W. Hibernating bats are sensitive to nontactile human disturbance. J. Mammal. 76, 940–946. https://doi.org/10.2307/1382764 (1995).
    Article  Google Scholar 

    67.
    Speakman, J. R., Webb, P. I. & Racey, P. A. Effects of disturbance on the energy expenditure of hibernating bats. J. Appl. Ecol. 28, 1087–1104. https://doi.org/10.2307/2404227 (1991).
    Article  Google Scholar 

    68.
    Jurga, R. M. & Kędryna A. M. Festungsfront Oder-Warthe Bogen. Katalog (Wydawnictwo Donjon, 2006). More