Annual phytoplankton dynamics in coastal waters from Fildes Bay, Western Antarctic Peninsula
1.
Smetacek, V. & Nicol, S. Polar ocean ecosystems in a changing world. Nature 437, 362–368. https://doi.org/10.1038/nature04161 (2005).
ADS CAS PubMed Article Google Scholar
2.
Browning, T. J. et al. Nutrient regimes control phytoplankton ecophysiology in the South Atlantic. Biogeosciences 11, 463–479. https://doi.org/10.5194/bg-11-463-2014 (2014).
ADS Article Google Scholar
3.
Garibotti, I. A., Vernet, M. & Ferrario, M. E. Annually recurrent phytoplanktonic assemblages during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean). Deep-Sea Res. Part I Oceanogr. Res. Pap. 52, 1823–1841. https://doi.org/10.1016/j.dsr.2005.05.003 (2005).
ADS Article Google Scholar
4.
Clem, K. R. et al. Record warming at the South Pole during the past three decades. Nat. Clim. Change 10, 762–770. https://doi.org/10.1038/s41558-020-0815-z (2020).
ADS Article Google Scholar
5.
Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A., Smith, R. C. & Vernet, M. Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep-Sea Res. Part II Top. Stud. Oceanogr. 55, 1964–1987. https://doi.org/10.1016/j.dsr2.2008.04.038 (2008).
ADS Article Google Scholar
6.
Schofield, O. et al. Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170173. https://doi.org/10.1098/rsta.2017.0173 (2018).
ADS CAS Article Google Scholar
7.
Kim, H. et al. Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170174. https://doi.org/10.1098/rsta.2017.0174 (2018).
ADS Article Google Scholar
8.
Lange, P. K., Ligowski, R. & Tenenbaum, D. R. Phytoplankton in the embayments of King George Island (Antarctic Peninsula): a review with emphasis on diatoms. Polar Rec. 54, 158–175. https://doi.org/10.1017/S0032247418000232 (2018).
Article Google Scholar
9.
Kopczynska, E. Phytoplankton variability in Admiralty Bay, King George Island, South Shetland Islands: six years of monitoring. Pol. Polar Res. 29, 117–139 (2008).
Google Scholar
10.
Biggs, T. E. et al. Antarctic phytoplankton community composition and size structure: importance of ice type and temperature as regulatory factors. Polar Biol. 42, 1997–2015. https://doi.org/10.1007/s00300-019-02576-3 (2019).
Article Google Scholar
11.
Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 1–9. https://doi.org/10.1038/srep40850 (2017).
CAS Article Google Scholar
12.
Egas, C. et al. Short timescale dynamics of phytoplankton in Fildes Bay, Antarctica. Antarct. Sci. 29, 217. https://doi.org/10.1017/S0954102016000699 (2017).
ADS Article Google Scholar
13.
Delmont, T. O., Hammar, K. M., Ducklow, H. W., Yager, P. L. & Post, A. F. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front. Microbiol. 5, 1–13. https://doi.org/10.3389/fmicb.2014.00646 (2014).
Article Google Scholar
14.
Arrigo, K. R. et al. Phytoplankton community structure and the drawdown of nutrients and ({{rm CO}}_{2}) in the Southern Ocean. Science 283, 365–367. https://doi.org/10.1126/science.283.5400.365 (1999).
ADS CAS PubMed Google Scholar
15.
Lin, Y. et al. Specific eukaryotic plankton are good predictors of net community production in the Western Antarctic Peninsula. Sci. Rep. 7, 1–11. https://doi.org/10.1038/s41598-017-14109-1 (2017).
ADS CAS Article Google Scholar
16.
Alcamán-Arias, M. E., Farías, L., Verdugo, J., Alarcón-Schumacher, T. & Díez, B. Microbial activity during a coastal phytoplankton bloom on the Western Antarctic Peninsula in late summer. FEMS Microbiol. Lett. 365, 1–13. https://doi.org/10.1093/femsle/fny090 (2018).
CAS Article Google Scholar
17.
Moreno-Pino, M. et al. Variation in coastal Antarctic microbial community composition at sub-mesoscale: spatial distance or environmental filtering? FEMS Microbiol. Ecol. 92, fiw088. https://doi.org/10.1093/femsec/fiw088 (2016).
CAS PubMed Article Google Scholar
18.
Moon-van der Staay, S. Y., De Wachter, R. & Vaulot, D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409, 607–610. https://doi.org/10.1038/35054541 (2001).
ADS CAS PubMed Article Google Scholar
19.
Fuller, N. J. et al. Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquat. Microbial Ecol. 43, 79–93 (2006).
Article Google Scholar
20.
Shi, X. L., Lepère, C., Scanlan, D. J. & Vaulot, D. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLoS ONE 6, e18979 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
21.
Sieburth, J. M., Smetacek, V. & Lenz, J. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23, 1256–1263 (1978).
ADS Article Google Scholar
22.
Marie, D., Shi, X. L., Rigaut-Jalabert, F. & Vaulot, D. Use of flow cytometric sorting to better assess the diversity of small photosynthetic eukaryotes in the English Channel. FEMS Microbiol. Ecol. 72, 165–178 (2010).
CAS PubMed Article Google Scholar
23.
Balzano, S., Marie, D., Gourvil, P. & Vaulot, D. Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples. ISME J. 6, 1480–1498. https://doi.org/10.1038/ismej.2011.213 (2012).
CAS PubMed PubMed Central Article Google Scholar
24.
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).
CAS PubMed PubMed Central Article Google Scholar
25.
Jeong, H. J. et al. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45, 65–91. https://doi.org/10.1007/s12601-010-0007-2 (2010).
ADS CAS Article Google Scholar
26.
Wilks, J. V. & Armand, L. K. Diversity and taxonomic identification of Shionodiscus spp. in the Australian sector of the Subantarctic Zone. Diatom Res. 32, 295–307. https://doi.org/10.1080/0269249X.2017.1365015 (2017).
Article Google Scholar
27.
Moreno, C. M. et al. Examination of gene repertoires and physiological responses to iron and light limitation in Southern Ocean diatoms. Polar Biol. 41, 679–696. https://doi.org/10.1007/s00300-017-2228-7 (2018).
Article Google Scholar
28.
Balzano, S. et al. Morphological and genetic diversity of Beaufort Sea diatoms with high contributions from the Chaetoceros neogracilis species complex. J. Phycol. 53, 161–187. https://doi.org/10.1111/jpy.12489 (2017).
CAS PubMed Article Google Scholar
29.
Worden, A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–R677 (2012).
CAS PubMed Article Google Scholar
30.
Balzano, S. et al. Diversity of cultured photosynthetic flagellates in the North East Pacific and Arctic Oceans in summer. Biogeosciences 9, 4553–4571. https://doi.org/10.5194/bg-9-4553-2012 (2012).
ADS CAS Article Google Scholar
31.
Kuwata, A. et al. Bolidophyceae, a sister picoplanktonic group of diatoms—a review. Front. Mar. Sci. 5, 370. https://doi.org/10.3389/fmars.2018.00370 (2018).
Article Google Scholar
32.
Massana, R., del Campo, J., Sieracki, M. E., Audic, S. & Logares, R. Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J. 8, 854–866 (2014).
PubMed Article Google Scholar
33.
Tragin, M. & Vaulot, D. Novel diversity within marine Mamiellophyceae (Chlorophyta) unveiled by metabarcoding. Sci. Rep. 9, 5190. https://doi.org/10.1038/s41598-019-41680-6 (2019).
ADS CAS PubMed PubMed Central Article Google Scholar
34.
van den Hoff, J., Bell, E. & Whittock, L. Dimorphism in the Antarctic cryptophyte Geminigera cryophila (Cryptophyceae). J. Phycol. 56, 1028–1038. https://doi.org/10.1111/jpy.13004 (2020).
CAS PubMed Article Google Scholar
35.
Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).
CAS PubMed Article Google Scholar
36.
Lin, Y., Gifford, S., Ducklow, H., Schofield, O. & Cassar, N. Towards quantitative microbiome community profiling using internal standards. Appl. Environ. Microbiol. 85, 1–14 (2019).
Google Scholar
37.
van Leeuwe, M. A. et al. Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers. Limnol. Oceanogr. 65, 1651–1668. https://doi.org/10.1002/lno.11477 (2020).
ADS Article Google Scholar
38.
Wasilowska, A., Kopczynska, E. E. & Rzepecki, M. Temporal and spatial variation of phytoplankton in Admiralty Bay, South Shetlands: the dynamics of summer blooms shown by pigment and light microscopy analysis. Polar Biol. 38, 1249–1265. https://doi.org/10.1007/s00300-015-1691-2 (2015).
Article Google Scholar
39.
Rozema, P. D. et al. Summer microbial community composition governed by upper-ocean stratification and nutrient availability in northern Marguerite Bay, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 139, 151–166. https://doi.org/10.1016/j.dsr2.2016.11.016 (2016).
ADS CAS Article Google Scholar
40.
Annett, A. L., Carson, D. S., Crosta, X., Clarke, A. & Ganeshram, R. S. Seasonal progression of diatom assemblages in surface waters of Ryder Bay, Antarctica. Polar Biol. 33, 13–29. https://doi.org/10.1007/s00300-009-0681-7 (2010).
Article Google Scholar
41.
Garibotti, I. et al. Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean). Mar. Ecol. Prog. Ser. 261, 21–39. https://doi.org/10.3354/meps261021 (2003).
ADS Article Google Scholar
42.
de Lima, D. T. et al. Abiotic changes driving microphytoplankton functional diversity in Admiralty Bay, King George Island (Antarctica). Front. Mar. Sci. 6, 1–17. https://doi.org/10.3389/fmars.2019.00638 (2019).
ADS CAS Article Google Scholar
43.
Luria, C. M., Ducklow, H. W. & Amaral-Zettler, L. A. Marine bacterial, archaeal and eukaryotic diversity and community structure on the continental shelf of the western Antarctic Peninsula. Aquat. Microbial Ecol. 73, 107–121. https://doi.org/10.3354/ame01703 (2014).
Article Google Scholar
44.
Luo, W. et al. Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biol. 39, 605–616. https://doi.org/10.1007/s00300-015-1815-8 (2016).
ADS Article Google Scholar
45.
Rozema, P. D. et al. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol. Oceanogr. 62, 235–252. https://doi.org/10.1002/lno.10391 (2017).
ADS Article Google Scholar
46.
Lee, S. H. et al. Large contribution of small phytoplankton at Marian Cove, King George Island, Antarctica, based on long-term monitoring from 1996 to 2008. Polar Biol. 38, 207–220. https://doi.org/10.1007/s00300-014-1579-6 (2015).
Article Google Scholar
47.
Kang, J. S., Kang, S. H., Kim, D. & Kim, D. Y. Planktonic centric diatom Minidiscus chilensis dominated sediment trap material in eastern Bransfield Strait, Antarctica. Mar. Ecol. Prog. Ser. 255, 93–99 (2003).
ADS Article Google Scholar
48.
Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton ((le 3 upmu {{rm m}})) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820. https://doi.org/10.1111/j.1574-6976.2008.00121.x (2008).
CAS PubMed Google Scholar
49.
Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. and sp. nov. and the description of a new algal class, the Pelagophyceae classis nov. J. Phycol. 29, 701–715 (1993).
CAS Article Google Scholar
50.
Dìez, B., Pedrós-Alió, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67, 2932–2941. https://doi.org/10.1128/AEM.67.7.2932-2941.2001 (2001).
PubMed PubMed Central Article Google Scholar
51.
Gérikas Ribeiro, C. et al. Culturable diversity of Arctic phytoplankton during pack ice melting. Elem. Sci. Anthropocene 8, 6. https://doi.org/10.1525/elementa.401 (2020).
Article Google Scholar
52.
Sow, L. S. S., Trull, T. W. & Bodrossy, L. Oceanographic fronts shape Phaeocystis assemblages: a high-resolution 18S rRNA gene survey from the ice-edge to the equator of the South Pacific. Front. Microbiol. 11, 1847. https://doi.org/10.3389/fmicb.2020.01847 (2020).
PubMed PubMed Central Article Google Scholar
53.
Gaebler, S., Hayes, P. K. & Medlin, L. K. Methods used to reveal genetic diversity in the colony-forming prymnesiophytes Phaeocystis antarctica, P. globosa and P. pouchetii—preliminary results. In Phaeocystis Major Link in the Biogeochemical Cycling of Climate-Relevant Elements (eds van Leeuwe, M. et al.) 330 (Springer Netherlands, Houten, 2007). https://doi.org/10.1007/978-1-4020-6214-8.
Google Scholar
54.
DiTullio, G. R. et al. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404, 595–598. https://doi.org/10.1038/35007061 (2000).
ADS CAS PubMed Article Google Scholar
55.
Arrigo, K. R. et al. Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. J. Geophys. Res. Oceans 105, 8827–8846. https://doi.org/10.1029/1998JC000289 (2000).
ADS CAS Article Google Scholar
56.
van Leeuwe, M. A. & Stefels, J. Photosynthetic responses in Phaeocystis antarctica towards varying light and iron conditions. Biogeochemistry 83, 61–70. https://doi.org/10.1007/s10533-007-9083-5 (2007).
CAS Article Google Scholar
57.
Gast, R. J., McKie-Krisberg, Z. M., Fay, S. A., Rose, J. M. & Sanders, R. W. Antarctic mixotrophic protist abundances by microscopy and molecular methods. FEMS Microbiol. Ecol. 89, 388–401. https://doi.org/10.1111/1574-6941.12334 (2014).
CAS PubMed Article Google Scholar
58.
Sekiguchi, H., Kawachi, M., Nakayama, T. & Inouye, I. A taxonomic re-evaluation of the Pedinellales (Dictyochophyceae), based on morphological, behavioural and molecular data. Phycologia 42, 165–182. https://doi.org/10.2216/i0031-8884-42-2-165.1 (2003).
Article Google Scholar
59.
Li, Q., Edwards, K. F., Schvarcz, C. R., Selph, K. E. & Steward, G. F. Plasticity in the grazing ecophysiology of Florenciella (Dichtyochophyceae), a mixotrophic nanoflagellate that consumes Prochlorococcus and other bacteria. Limnol. Oceanogr.. https://doi.org/10.1002/lno.11585 (2020).
CAS Article Google Scholar
60.
Maruyama, S. & Kim, E. A modern descendant of early green algal phagotrophs. Curr. Biol. 23, 1081–1084. https://doi.org/10.1016/j.cub.2013.04.063 (2013).
CAS PubMed Article Google Scholar
61.
Darling, K. F. et al. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405, 43–47. https://doi.org/10.1038/35011002 (2000).
ADS CAS PubMed Article Google Scholar
62.
Sul, W. J., Oliver, T. A., Ducklow, H. W., Amaral-Zettler, L. A. & Sogin, M. L. Marine bacteria exhibit a bipolar distribution. Proc. Natl. Acad. Sci. USA 110, 2342–2347. https://doi.org/10.1073/pnas.1212424110 (2013).
ADS PubMed Article Google Scholar
63.
Wolf, C., Kilias, E. & Metfies, K. Protists in the polar regions: comparing occurrence in the Arctic and Southern oceans using pyrosequencing. Polar Res. 34, 23225. https://doi.org/10.3402/polar.v34.23225 (2015).
Article Google Scholar
64.
Lovejoy, C. & Potvin, M. Microbial eukaryotic distribution in a dynamic Beaufort Sea and the Arctic Ocean. J. Plankton Res. 33, 431–444. https://doi.org/10.1093/plankt/fbq124 (2011).
Article Google Scholar
65.
Delmont, T. O., Murat Eren, A., Vineis, J. H. & Post, A. F. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front. Microbiol. 6, 1–19. https://doi.org/10.3389/fmicb.2015.01090 (2015).
Article Google Scholar
66.
Simmons, M. P. et al. Intron invasions trace algal speciation and reveal nearly identical arctic and antarctic Micromonas populations. Mol. Biol. Evol. 32, 2219–2235. https://doi.org/10.1093/molbev/msv122 (2015).
CAS PubMed PubMed Central Article Google Scholar
67.
Joli, N., Monier, A., Logares, R. & Lovejoy, C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 6, 1372–1385. https://doi.org/10.1038/ismej.2017.7 (2017).
Article Google Scholar
68.
Benner, I., Irwin, A. J. & Finkel, Z. Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming warming ocean. Limnol. Oceanogr. Lett. 5, 221–227 (2019).
Article Google Scholar
69.
Li, W. K., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the Arctic Ocean freshens. Science 326, 539. https://doi.org/10.1126/science.1179798 (2009).
ADS CAS PubMed Article Google Scholar
70.
Hoppe, C. J. M., Flintrop, C. M. & Rost, B. The arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification. Biogeosciences 15, 4353–4365. https://doi.org/10.5194/bg-15-4353-2018 (2018).
ADS CAS Article Google Scholar
71.
Vannier, T. et al. Survey of the green picoalga Bathycoccus genomes in the global ocean. Sci. Rep. 6, 37900. https://doi.org/10.1038/srep37900 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
72.
Vaulot, D. et al. Metagenomes of the Picoalga Bathycoccus from the Chile coastal upwelling. PLoS ONE 7, e39648. https://doi.org/10.1371/journal.pone.0039648 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
73.
Kauko, H. M. et al. Algal colonization of young Arctic sea ice in spring. Front. Mar. Sci. 5, 1–20. https://doi.org/10.3389/fmars.2018.00199 (2018).
Article Google Scholar
74.
Schloss, I. R. et al. On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: an exceptional feature? Limnol. Oceanogr. 59, 195–210. https://doi.org/10.4319/lo.2014.59.1.0195 (2014).
ADS CAS Article Google Scholar
75.
Świło, M., Majewski, W., Minzoni, R. T. & Anderson, J. B. Diatom assemblages from coastal settings of West Antarctica. Mar. Micropaleontol. 125, 95–109. https://doi.org/10.1016/j.marmicro.2016.04.001 (2016).
ADS Article Google Scholar
76.
Pike, J. et al. Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the late Quaternary. Mar. Micropaleontol. 73, 14–25. https://doi.org/10.1016/j.marmicro.2009.06.005 (2009).
ADS Article Google Scholar
77.
Luddington, I. A., Lovejoy, C. & Kaczmarska, I. Species-rich meta-communities of the diatom order Thalassiosirales in the Arctic and northern Atlantic Ocean. J. Plankton Res. 38, 781–797. https://doi.org/10.1093/plankt/fbw030 (2016).
CAS Article Google Scholar
78.
Hoppenrath, M. et al. Thalassiosira species (Bacillariophyceae, Thalassiosirales) in the North Sea at Helgoland (German Bight) and Sylt (North Frisian Wadden Sea) – A first approach to assessing diversity. Eur. J. Phycol. 42, 271–288. https://doi.org/10.1080/09670260701352288 (2007).
Article Google Scholar
79.
Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J. Sea Res. 53, 43–66. https://doi.org/10.1016/j.seares.2004.01.008 (2005).
ADS CAS Article Google Scholar
80.
Lange, M., Chen, Y. Q. & Medlin, L. K. Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. Eur. J. Phycol. 37, 77–92. https://doi.org/10.1017/S0967026201003481 (2002).
Article Google Scholar
81.
Medlin, L. K., Lange, M. & Baumann, M. E. Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33, 199–212. https://doi.org/10.2216/i0031-8884-33-3-199.1 (1994).
Article Google Scholar
82.
Thompson, D. W. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899. https://doi.org/10.1126/science.1069270 (2002).
ADS CAS PubMed Article Google Scholar
83.
Smith, R. C. & Stammerjohn, S. E. Variations of surface air temperature and sea-ice extent in the western Antarctic Peninsula region. Ann. Glaciol. 33, 493–500. https://doi.org/10.3189/172756401781818662 (2001).
ADS Article Google Scholar
84.
Hansen, M. O., Nielsen, T. G., Stedmon, C. A. & Munk, P. Oceanographic regime shift during 1997 in Disko Bay, Western Greenland. Limnol. Oceanogr. 57, 634–644. https://doi.org/10.4319/lo.2012.57.2.0634 (2012).
ADS Article Google Scholar
85.
Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15. https://doi.org/10.1093/icesjms/30.1.3 (1965).
CAS Article Google Scholar
86.
Marie, D., Rigaut-Jalabert, F. & Vaulot, D. An improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples. Cytometry 85, 962–968. https://doi.org/10.1002/cyto.a.22517 (2014).
CAS PubMed Article Google Scholar
87.
Gérikas Ribeiro, C., Lopes dos Santos, A., Marie, D., Pereira Brandini, F. & Vaulot, D. Small eukaryotic phytoplankton communities in tropical waters off Brazil are dominated by symbioses between Haptophyta and nitrogen-fixing cyanobacteria. ISME J. 12, 1360–1374. https://doi.org/10.1038/s41396-018-0050-z (2018).
CAS PubMed PubMed Central Article Google Scholar
88.
Piredda, R. et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. 93, fiw200. https://doi.org/10.1093/femsec/fiw200 (2017).
CAS PubMed Article Google Scholar
89.
Lepère, C. et al. Whole Genome Amplification (WGA) of marine photosynthetic eukaryote populations. FEMS Microbiol. Ecol. 76, 516–523 (2011).
Article Google Scholar
90.
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).
Article Google Scholar
91.
R Development Core Team. R: A Language and Environment for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7 (2013).
92.
Guillou, L. et al. The Protist Ribosomal Reference database (({{rm PR}}^{2})): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604. https://doi.org/10.1093/nar/gks1160 (2013).
CAS PubMed Google Scholar
93.
Decelle, J. et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445. https://doi.org/10.1111/1755-0998.12401 (2015).
CAS PubMed Article Google Scholar
94.
Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.2. (2020)
95.
Wilkins, D. treemapify: Draw Treemaps in ’ggplot2’. R package version 2.5.3. (2019)
96.
McMurdie, P. J. & Holmes, S. phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, 1–11. https://doi.org/10.1371/journal.pone.0061217 (2013).
CAS Article Google Scholar
97.
Dixon, P. Vegan, a package of r functions for community ecology. J. Veg. Sci. 14, 927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x (2003).
Article Google Scholar
98.
Gehlenborg, N. UpSetR: A More Scalable Alternative to Venn and Euler Diagrams for Visualizing Intersecting Sets. R package version 1.4.0. (2019) More