Introduction of Varroa destructor has not altered honey bee queen mating success in the Hawaiian archipelago
1.
Roddy, K. M. & Arita-Tsutsumi, L. A history of honey bees in the Hawaiian islands. J. Hawaiian Pac. Agric. 8, 59–70 (1997).
Google Scholar
2.
Danka, R. G., Hellmich, R. L., Rinderer, T. E. & Collins, A. M. Diet-selection ecology of tropically and temperately adapted honey-bees. Anim. Behav. 35, 1858–1863 (1987).
Article Google Scholar
3.
Roberts, J. M. K., Anderson, D. L. & Durr, P. A. Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses. Sci. Rep. https://doi.org/10.1038/s41598-017-07290-w (2017).
PubMed PubMed Central Article Google Scholar
4.
de Guzman, L. I., Rinderer, T. E. & Stelzer, J. A. DNA evidence of the origin of Varroa jacobsoni Oudemans in the Americas. Biochem. Genet. 35, 327–335. https://doi.org/10.1023/a:1021821821728 (1997).
PubMed Article Google Scholar
5.
Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA. 116, 1792–1801. https://doi.org/10.1073/pnas.1818371116 (2019).
CAS PubMed Article Google Scholar
6.
Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010).
PubMed Article Google Scholar
7.
Sammataro, D., Gerson, U. & Needham, G. Parasitic mites of honey bees: Life history, implications, and impact. Annu. Rev. Entomol. 45, 519–548 (2000).
CAS PubMed Article Google Scholar
8.
Amdam, G. V., Hartfelder, K., Norberg, K., Hagen, A. & Omholt, S. W. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): A factor in colony loss during overwintering?. J. Econ. Entomol. 97, 741–747 (2004).
PubMed Article Google Scholar
9.
Dejong, D., Dejong, P. H. & Goncalves, L. S. Weight-loss and other damage to developing worker honeybees from infestation with Varroa jacobsoni. J. Apic. Res. 21, 165–167. https://doi.org/10.1080/00218839.1982.11100535 (1982).
Article Google Scholar
10.
Ramadan, M. M., Reimer, N. J., Oishi, D. E., Young, C. L. & Heu, R. A. Varroa Mite Varroa destructor Anderson and Trueman (Acari: Varroidae) (Springer, New York, 2019).
Google Scholar
11.
Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. https://doi.org/10.1126/science.1220941 (2012).
ADS CAS PubMed Article Google Scholar
12.
Seeley, T. D. Honey bees of the Arnot Forest: A population of feral colonies persisting with Varroa destructor in the northeastern United States. Apidologie 38, 19–29 (2007).
Article Google Scholar
13.
Brettell, L. E. & Martin, S. J. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees. Sci. Rep. https://doi.org/10.1038/srep45953 (2017).
PubMed PubMed Central Article Google Scholar
14.
Nielsen, D. I. Genetic structure of feral honey bee (Apis mellifera L.) populations in California Ph.D. thesis, University of California, Davis (2000).
15.
Doebler, S. A. The rise and fall of the honeybee: Mite infestations challenge the bee and the beekeeping industry. Bioscience 50, 738–742. https://doi.org/10.1641/0006-3568(2000)050[0738:Trafot]2.0.Co;2 (2000).
Article Google Scholar
16.
Fuchs, S. Preference for drone brood cells by Varroa jacobsoni oud in colonies of Apis-Mellifera-Carnica. Apidologie 21, 193–199 (1990).
Article Google Scholar
17.
Boot, W. J., Calis, J. N. M. & Beetsma, J. Differential periods of varroa mite invasion into worker and drone cells of honey-bees. Exp. Appl. Acarol. 16, 295–301 (1992).
Article Google Scholar
18.
Estoup, A., Solignac, M. & Cornuet, J. Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc. R. Soc. Lond. B 258, 1–7 (1994).
ADS CAS Article Google Scholar
19.
Tarpy, D. R., Nielsen, R. & Nielsen, D. I. A scientific note on the revised estimates of effective paternity frequency in Apis. Insectes Soc. 51, 203–204 (2004).
Article Google Scholar
20.
Akyol, E., Yeninar, H. & Kaftanoglu, O. Live weight of queen honey bees (Apis mellifera L.) predicts reproductive characteristics. J. Kansas Entomol. Soc. 81, 92–100. https://doi.org/10.2317/jkes-705.13.1 (2008).
Article Google Scholar
21.
Amiri, E., Strand, M. K., Rueppell, O. & Tarpy, D. R. Queen quality and the impact of honey bee diseases on queen health: Potential for interactions between two major threats to colony health. Insects. https://doi.org/10.3390/insects8020048 (2017).
PubMed PubMed Central Article Google Scholar
22.
Tarpy, D. R., Keller, J. J., Caren, J. R. & Delaney, D. A. Experimentally induced variation in the physical reproductive potential and mating success in honey bee queens. Insectes Soc. 58, 569–574. https://doi.org/10.1007/s00040-011-0180-z (2011).
Article Google Scholar
23.
Hatjina, F. et al. A review of methods used in some European countries for assessing the quality of honey bee queens through their physical characters and the performance of their colonies. J. Apic. Res. 53, 337–363. https://doi.org/10.3896/ibra.1.53.3.02 (2014).
Article Google Scholar
24.
De Souza, D. A. et al. Morphometric identification of queens, workers and intermediates in in vitro reared honey bees (Apis mellifera). PLoS ONE. https://doi.org/10.1371/journal.pone.0123663 (2015).
PubMed PubMed Central Article Google Scholar
25.
Woyke, J. Correlations between the age at which honeybee brood was grafted, characteristics of the resultant queens, and results of insemination. J. Apic. Res. 10, 45–55 (1971).
Article Google Scholar
26.
Dedej, S., Hartfelder, K., Aumeier, P., Rosenkranz, P. & Engels, W. Caste determination is a sequential process: Effect of larval age at grafting on ovariole number, hind leg size and cephalic volatiles in the honey bee (Apis mellifera carnica). J. Apic. Res. 37, 183–190 (1998).
Article Google Scholar
27.
Al-Lawati, H., Kamp, G. & Bienefeld, K. Characteristics of the spermathecal contents of old and young honeybee queens. J. Insect Physiol. 55, 116–121 (2009).
CAS PubMed Article Google Scholar
28.
Tarpy, D. R., Keller, J. J., Caren, J. R. & Delaney, D. A. Assessing the mating “health” of commercial honey bee queens. J. Econ. Entomol. 105, 20–25 (2012).
PubMed Article Google Scholar
29.
Pettis, J. S., Rice, N., Joselow, K., vanEngelsdorp, D. & Chaimanee, V. Colony failure linked to low sperm viability in honey bee (Apis mellifera) queens and an exploration of potential causative factors. PLoS ONE. https://doi.org/10.1371/journal.pone.0147220 (2016).
PubMed PubMed Central Article Google Scholar
30.
Woyke, J. Natural and artificial insemination of queen honeybees. Bee World 43, 21–25 (1962).
Article Google Scholar
31.
Delaney, D. A., Keller, J. J., Caren, J. R. & Tarpy, D. R. The physical, insemination, and reproductive quality of honey bee queens (Apis mellifera). Apidologie 42, 1–13. https://doi.org/10.1051/apido/2010027 (2011).
Article Google Scholar
32.
McAfee, A. et al. Vulnerability of honey bee queens to heat-induced loss of fertility. Nat. Sustain. https://doi.org/10.1038/s41893-020-0493-x (2020).
Article Google Scholar
33.
Chaimanee, V., Evans, J. D., Chen, Y., Jackson, C. & Pettis, J. S. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J. Insect Physiol. 89, 1–8 (2016).
CAS PubMed Article Google Scholar
34.
Williams, G. R. et al. Neonicotinoid pesticides severely affect honey bee queens. Sci. Rep. https://doi.org/10.1038/srep14621 (2015).
PubMed PubMed Central Article Google Scholar
35.
Rangel, J. & Tarpy, D. R. The combined effects of miticides on the mating health of honey bee (Apis mellifera L.) queens. J. Apicult. Res. 54, 275–283. https://doi.org/10.1080/00218839.2016.1147218 (2015).
Article Google Scholar
36.
Buechler, R. et al. Standard methods for rearing and selection of Apis mellifera queens. J. Apicult. Res. https://doi.org/10.3896/ibra.1.52.1.07 (2013).
Article Google Scholar
37.
Lee, K. V., Goblirsch, M., McDermott, E., Tarpy, D. R. & Spivak, M. Is the brood pattern within a honey bee colony a reliable indicator of queen quality?. Insects. https://doi.org/10.3390/insects10010012 (2019).
PubMed PubMed Central Article Google Scholar
38.
de Miranda, J. R. et al. Standard methods for virus research in Apis mellifera. J. Apicult. Res. https://doi.org/10.3896/ibra.1.52.4.22 (2013).
Article Google Scholar
39.
Kevill, J. L. et al. The pathogen profiles of queen honey bees does not reflect those of their colonies workers. Insects 11, 382. https://doi.org/10.3390/insects11060382 (2020).
PubMed Central Article Google Scholar
40.
Evans, J. D. et al. Standard methods for molecular research in Apis mellifera. J. Apicult. Res. https://doi.org/10.3896/ibra.1.52.4.11 (2013).
Article Google Scholar
41.
Jones, O. R. & Wang, J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x (2010).
PubMed Article Google Scholar
42.
Nielsen, R., Tarpy, D. R. & Reeve, H. K. Estimating effective paternity number in social insects and the effective number of alleles in a population. Mol. Ecol. 12, 3157–3164 (2003).
PubMed Article Google Scholar
43.
Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49, 1–6 (2010).
Article Google Scholar
44.
van Engelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, S80–S95 (2010).
Article Google Scholar
45.
Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 49, 134–136. https://doi.org/10.3896/ibra.1.49.1.30 (2010).
Article Google Scholar
46.
Lee, K. V. et al. A national survey of managed honey bee 2013–2014 annual colony losses in the USA: Results from the Bee Informed Partnership. Apidologie. https://doi.org/10.1007/s13592-015-0356-z (2015).
Article Google Scholar
47.
Steinhauer, N. et al. Drivers of colony losses. Curr. Opin. Insect Sci. 26, 142–148. https://doi.org/10.1016/j.cois.2018.02.004 (2018).
PubMed Article Google Scholar
48.
Tarpy, D. R., Delaney, D. A. & Seeley, T. D. Mating frequencies of honey bee queens (Apis mellifera L.) in a population of feral colonies in the northeastern United States. PLoS ONE. https://doi.org/10.1371/journal.pone.0118734 (2015).
PubMed PubMed Central Article Google Scholar
49.
Lensky, Y. & Demter, M. Mating flights of the queen honeybee (Apis mellifera) in a subtropical climate. Comp. Biochem. Physiol. 81, 229–241 (1985).
Article Google Scholar
50.
USDA-NASS. (ed National Agricultural Statistics Service) (2018).
51.
DeGrandi-Hoffman, G. et al. Comparisons of pollen substitute diets for honey bees: Consumption rates by colonies and effects on brood and adult populations. J. Apic. Res. 47, 265–270. https://doi.org/10.3896/ibra.1.47.4.06 (2008).
Article Google Scholar
52.
Loftus, J. C., Smith, M. L. & Seeley, T. D. How honey bee colonies survive in the wild: Testing the importance of small nests and frequent swarming. PLoS ONE. https://doi.org/10.1371/journal.pone.0150362 (2016).
PubMed PubMed Central Article Google Scholar
53.
Le Conte, Y. et al. Honey bee colonies that have survived Varroa destructor. Apidologie 38, 566–572 (2007).
Article Google Scholar
54.
Chen, Y. P., Evans, J. & Feldlaufer, M. Horizontal and vertical transmission of viruses in the honeybee, Apis mellifera. J. Invertebr. Pathol. 92, 152–159 (2006).
PubMed Article Google Scholar
55.
de Miranda, J. R. & Fries, I. Venereal and vertical transmission of deformed wing virus in honeybees (Apis mellifera L.). J. Invertebr. Pathol. 98, 184–189 (2008).
PubMed Article Google Scholar
56.
Yue, C., Schroder, M., Bienefeld, K. & Genersch, E. Detection of viral sequences in semen of honeybees (Apis mellifera): Evidence for vertical transmission of viruses through drones. J. Invertebr. Pathol. 92, 105–108 (2006).
CAS PubMed Article Google Scholar
57.
Amiri, E., Meixner, M. D. & Kryger, P. Deformed wing virus can be transmitted during natural mating in honey bees and infect the queens. Sci. Rep. https://doi.org/10.1038/srep33065 (2016).
PubMed PubMed Central Article Google Scholar
58.
Szalanski, A. L., Tripodi, A. D., Trammel, C. E. & Downey, D. Mitochondrial DNA genetic diversity of honey bees, Apis mellifera in Hawaii. Apidologie 47, 679–687. https://doi.org/10.1007/s13592-015-0416-4 (2016).
CAS Article Google Scholar
59.
Danka, R. G., Harris, J. W., Villalobos, E. & Glenn, T. Varroa destructor resistance of honey bees in Hawaii, USA, with different genetic proportions of Varroa Sensitive Hygiene (VSH). J. Apic. Res. 51, 288–290. https://doi.org/10.3896/ibra.1.51.3.13 (2012).
Article Google Scholar
60.
Metz, B. N. & Tarpy, D. R. Reproductive senescence in drones of the honey bee (Apis mellifera). Insects. https://doi.org/10.3390/insects10010011 (2019).
PubMed PubMed Central Article Google Scholar
61.
Sturup, M., Baer-Imhoof, B., Nash, D. R., Boomsma, J. J. & Baer, B. When every sperm counts: Factors affecting male fertility in the honeybee Apis mellifera. Behav. Ecol. 24, 1192–1198. https://doi.org/10.1093/beheco/art049 (2013).
Article Google Scholar More