Aircraft events correspond with vocal behavior in a passerine
1.
Barber, J. R., Crooks, K. R. & Fristrup, K. M. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. Evol. 25, 180–189 (2010).
PubMed Article Google Scholar
2.
Buxton, R. T. et al. Noise pollution is pervasive in US protected areas. Science (80-) 356, 531–533 (2017).
ADS CAS Article Google Scholar
3.
Manci, K. M., Gladwin, D. N., Villella, R. & Cavendish, M. G. Effects of aircraft noise and sonic booms on domestic animals and wildlife: a literature synthesis (Engineering and Services Center U. S. Air Force, 1988).
4.
Pott-Pollenske, M. et al. Airframe noise characteristics from flyover measurements and prediction. In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference) 2567 (2006).
5.
Khardi, S. Reduction of commercial aircraft noise emission around airports. A new environmental challenge. Eur. Transp. Res. Rev. 1, 175–184 (2009).
Article Google Scholar
6.
Dooling, R. J. & Popper, A. N. The effects of highway noise on birds (The California Department of Transportation Division of Environmental Analysis, 2007).
7.
Etzel, R. A. & Balk, S. J. Pediatric environmental health (American Academy of Pediatrics, Itasca, 2011).
Google Scholar
8.
Schomer, P. D. Growth function for human response to large-amplitude impulse noise. J. Acoust. Soc. Am. 64, 1627–1632 (1978).
ADS CAS PubMed Article Google Scholar
9.
Kunc, H. P. & Schmidt, R. The effects of anthropogenic noise on animals: a meta-analysis. Biol. Lett. 15, 20190649 (2019).
PubMed PubMed Central Article Google Scholar
10.
Shannon, G. et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 91, 982–1005 (2016).
PubMed Article Google Scholar
11.
Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).
PubMed Article Google Scholar
12.
Brown, A. L. Measuring the effect of aircraft noise on sea birds. Environ. Int. 16, 587–592 (1990).
Article Google Scholar
13.
McLaughlin, K. E. & Kunc, H. P. Experimentally increased noise levels change spatial and singing behaviour. Biol. Lett. 9, 20120771 (2013).
PubMed PubMed Central Article Google Scholar
14.
Injaian, A. S., Poon, L. Y. & Patricelli, G. L. Effects of experimental anthropogenic noise on avian settlement patterns and reproductive success. Behav. Ecol. 29, 1181–1189 (2018).
Article Google Scholar
15.
McClure, C. J. W., Ware, H. E., Carlisle, J., Kaltenecker, G. & Barber, J. R. An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. Proc. R. Soc. London B Biol. Sci. 280, 20132290 (2013).
Google Scholar
16.
Kruger, D. J. D. & Du Preez, L. H. The effect of airplane noise on frogs: a case study on the Critically Endangered Pickersgill’s reed frog (Hyperolius pickersgilli). Ecol. Res. 31, 393–405 (2016).
Article Google Scholar
17.
Melcon, M. L. et al. Blue whales respond to anthropogenic noise. PLoS ONE 7, e32681 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
18.
Sierro, J., Schloesing, E., Pavón, I. & Gil, D. European blackbirds exposed to aircraft noise advance their chorus, modify their song and spend more time singing. Front. Ecol. Evol. 5, 68 (2017).
Article Google Scholar
19.
McCarthy, E. et al. Changes in spatial and temporal distribution and vocal behavior of Blainville’s beaked whales (Mesoplodon densirostris) during multiship exercises with mid-frequency sonar. Mar. Mammal Sci. 27, E206–E226 (2011).
Article Google Scholar
20.
Dominoni, D. M., Greif, S., Nemeth, E. & Brumm, H. Airport noise predicts song timing of European birds. Ecol. Evol. 6, 6151–6159 (2016).
PubMed PubMed Central Article Google Scholar
21.
Gil, D., Honarmand, M., Pascual, J., Pérez-Mena, E. & Macías, G. C. Birds living near airports advance their dawn chorus and reduce overlap with aircraft noise. Behav. Ecol. 26, 435–443 (2014).
Article Google Scholar
22.
Habib, L., Bayne, E. M. & Boutin, S. Chronic industrial noise affects pairing success and age structure of ovenbirds Seiurus aurocapilla. J. Appl. Ecol. 44, 176–184 (2007).
Article Google Scholar
23.
Halfwerk, W., Holleman, L. J. M., Lessells, C. K. & Slabbekoorn, H. Negative impact of traffic noise on avian reproductive success. J. Appl. Ecol. 48, 210–219 (2011).
Article Google Scholar
24.
Wolfenden, A. D., Slabbekoorn, H., Kluk, K. & de Kort, S. R. Aircraft sound exposure leads to song frequency decline and elevated aggression in wild chiffchaffs. J. Anim. Ecol. 88, 1720–1731 (2019).
PubMed Article Google Scholar
25.
Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554 (2011).
ADS CAS PubMed Article Google Scholar
26.
Blickley, J. L., Blackwood, D. & Patricelli, G. L. Experimental evidence for the effects of chronic anthropogenic noise on abundance of Greater Sage-Grouse at leks. Conserv. Biol. 26, 461–471 (2012).
PubMed Article Google Scholar
27.
Pepper, C. B., Nascarella, M. A. & Kendall, R. J. A review of the effects of aircraft noise on wildlife and humans, current control mechanisms, and the need for further study. Environ. Manag. 32, 418–432 (2003).
Article Google Scholar
28.
Staicer, C. A., Spector, D. A. & Horn, A. G. The dawn chorus and other diel patterns in acoustic signaling. In Ecology and evolution of acoustic communication in birds, 426–453 (1996).
29.
Gil, D. & Llusia, D. The bird dawn chorus revisited. In Coding strategies in vertebrate acoustic communication 45–90 (Springer, Berlin, 2020).
30.
Warren, P. S., Katti, M., Ermann, M. & Brazel, A. Urban bioacoustics: It’s not just noise. Anim. Behav. 71, 491–502 (2006).
Article Google Scholar
31.
Dooling, R. Avian hearing and the avoidance of wind turbines (University of Maryland, College Park, 2002).
Google Scholar
32.
Díaz, M., Parra, A. & Gallardo, C. Serins respond to anthropogenic noise by increasing vocal activity. Behav. Ecol. 22, 332–336 (2011).
Article Google Scholar
33.
Gentry, K. E. & Luther, D. A. Spatiotemporal patterns of avian vocal activity in relation to urban and rural background noise. J. Ecoacoust. https://doi.org/10.22261/jea.z9tqh (2017).
Article Google Scholar
34.
Cunnington, G. M. & Fahrig, L. Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecologica 36, 463–470 (2010).
ADS Article Google Scholar
35.
Kaiser, K. & Hammers, J. The effect of anthropogenic noise on male advertisement call rate in the neotropical treefrog, Dendropsophus triangulum. Behaviour 146, 1053–1069 (2009).
Article Google Scholar
36.
Brumm, H. & Slater, P. J. B. Ambient noise, motor fatigue, and serial redundancy in chaffinch song. Behav. Ecol. Sociobiol. 60, 475–481 (2006).
Article Google Scholar
37.
Meh, F. et al. Humpback whales Megaptera novaeangliae alter calling behavior in response to natural sounds and vessel noise. Mar. Ecol. Prog. Ser. 607, 251–268 (2018).
Article Google Scholar
38.
Slabbekoorn, H. & Peet, M. Ecology: birds sing at a higher pitch in urban noise. Nature 424, 267 (2003).
ADS CAS PubMed Article Google Scholar
39.
Ríos-Chelén, A. A., Lee, G. C. & Patricelli, G. L. Anthropogenic noise is associated with changes in acoustic but not visual signals in red-winged blackbirds. Behav. Ecol. Sociobiol. 69, 1139–1151 (2015).
Article Google Scholar
40.
Gross, K., Pasinelli, G. & Kunc, H. P. Behavioral plasticity allows short-term adjustment to a novel environment. Am. Nat. 176, 456–464 (2010).
PubMed Article Google Scholar
41.
Gentry, K. E., McKenna, M. F. & Luther, D. A. Evidence of suboscine song plasticity in response to traffic noise fluctuations and temporary road closures. Bioacoustics 27, 165–181 (2018).
Article Google Scholar
42.
Conomy, J. T., Dubovsky, J. A., Collazo, J. A. & Fleming, W. J. Do black ducks and wood ducks habituate to aircraft disturbance?. J. Wildl. Manag. 62, 1135–1142 (1998).
Article Google Scholar
43.
Neo, Y. Y., Hubert, J., Bolle, L. J., Winter, H. V. & Slabbekoorn, H. European seabass respond more strongly to noise exposure at night and habituate over repeated trials of sound exposure. Environ. Pollut. 239, 367–374 (2018).
CAS PubMed Article Google Scholar
44.
Halfwerk, W., Both, C. & Slabbekoorn, H. Noise affects nest-box choice of 2 competing songbird species, but not their reproduction. Behav. Ecol. 27, 1592–1600 (2016).
Article Google Scholar
45.
Ware, H. E., McClure, C. J. W., Carlisle, J. D. & Barber, J. R. A phantom road experiment reveals traffic noise is an invisible source of habitat degradation. Proc. Natl. Acad. Sci. 112, 12105–12109 (2015).
ADS CAS PubMed Article Google Scholar
46.
Williams, R., Erbe, C., Ashe, E., Beerman, A. & Smith, J. Severity of killer whale behavioral responses to ship noise: A dose–response study. Mar. Pollut. Bull. 79, 254–260 (2014).
CAS PubMed Article Google Scholar
47.
Cynx, J., Lewis, R., Tavel, B. & Tse, H. Amplitude regulation of vocalizations in noise by a songbird Taeniopygia guttata. Anim. Behav. 56, 107–113 (1998).
CAS PubMed Article Google Scholar
48.
Rushing, C. S., Ryder, T. B. & Marra, P. P. Quantifying drivers of population dynamics for a migratory bird throughout the annual cycle. Proc. R. Soc. B Biol. Sci. 283, 20152846 (2016).
Article CAS Google Scholar
49.
Stanley, C. Q. et al. Connectivity of wood thrush breeding, wintering, and migration sites based on range-wide tracking. Conserv. Biol. 29, 164–174 (2015).
PubMed Article Google Scholar
50.
Kleist, N. J., Guralnick, R. P., Cruz, A. & Francis, C. D. Anthropogenic noise weakens territorial response to intruder’s songs. Ecosphere 7, e01259 (2016).
Article Google Scholar
51.
Ward, S., Speakman, J. R. & Slater, P. J. B. The energy cost of song in the canary, Serinus canaria. Anim. Behav. 66, 893–902 (2003).
Article Google Scholar
52.
Nemeth, E. & Brumm, H. Birds and anthropogenic noise: are urban songs adaptive?. Am. Nat. 176, 465–475 (2010).
PubMed Article Google Scholar
53.
Oberweger, K. & Goller, F. The metabolic cost of birdsong production. J. Exp. Biol. 204, 3379–3388 (2001).
CAS PubMed Google Scholar
54.
Ophir, A. G., Schrader, S. B. & Gilooly, J. F. Energetic cost of calling: general constraints and species-specific differences. J. Evol. Biol. 23, 1564–1569 (2010).
CAS PubMed Article Google Scholar
55.
Thomas, R. et al. The trade-off between singing and mass gain in a daytime-singing bird, the European robin. Behaviour 140, 387–404 (2003).
Article Google Scholar
56.
Sheikh, P. A. & Uhl, C. Airplane noise: A pervasive disturbance in Pennsylvania Parks, USA. J. Sound Vib. https://doi.org/10.1016/j.jsv.2003.09.014 (2004).
Article Google Scholar
57.
Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
MathSciNet Article Google Scholar
58.
Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).
MathSciNet MATH Article Google Scholar More