More stories

  • in

    Annual phytoplankton dynamics in coastal waters from Fildes Bay, Western Antarctic Peninsula

    1.
    Smetacek, V. & Nicol, S. Polar ocean ecosystems in a changing world. Nature 437, 362–368. https://doi.org/10.1038/nature04161 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Browning, T. J. et al. Nutrient regimes control phytoplankton ecophysiology in the South Atlantic. Biogeosciences 11, 463–479. https://doi.org/10.5194/bg-11-463-2014 (2014).
    ADS  Article  Google Scholar 

    3.
    Garibotti, I. A., Vernet, M. & Ferrario, M. E. Annually recurrent phytoplanktonic assemblages during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean). Deep-Sea Res. Part I Oceanogr. Res. Pap. 52, 1823–1841. https://doi.org/10.1016/j.dsr.2005.05.003 (2005).
    ADS  Article  Google Scholar 

    4.
    Clem, K. R. et al. Record warming at the South Pole during the past three decades. Nat. Clim. Change 10, 762–770. https://doi.org/10.1038/s41558-020-0815-z (2020).
    ADS  Article  Google Scholar 

    5.
    Martinson, D. G., Stammerjohn, S. E., Iannuzzi, R. A., Smith, R. C. & Vernet, M. Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep-Sea Res. Part II Top. Stud. Oceanogr. 55, 1964–1987. https://doi.org/10.1016/j.dsr2.2008.04.038 (2008).
    ADS  Article  Google Scholar 

    6.
    Schofield, O. et al. Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170173. https://doi.org/10.1098/rsta.2017.0173 (2018).
    ADS  CAS  Article  Google Scholar 

    7.
    Kim, H. et al. Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170174. https://doi.org/10.1098/rsta.2017.0174 (2018).
    ADS  Article  Google Scholar 

    8.
    Lange, P. K., Ligowski, R. & Tenenbaum, D. R. Phytoplankton in the embayments of King George Island (Antarctic Peninsula): a review with emphasis on diatoms. Polar Rec. 54, 158–175. https://doi.org/10.1017/S0032247418000232 (2018).
    Article  Google Scholar 

    9.
    Kopczynska, E. Phytoplankton variability in Admiralty Bay, King George Island, South Shetland Islands: six years of monitoring. Pol. Polar Res. 29, 117–139 (2008).
    Google Scholar 

    10.
    Biggs, T. E. et al. Antarctic phytoplankton community composition and size structure: importance of ice type and temperature as regulatory factors. Polar Biol. 42, 1997–2015. https://doi.org/10.1007/s00300-019-02576-3 (2019).
    Article  Google Scholar 

    11.
    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 1–9. https://doi.org/10.1038/srep40850 (2017).
    CAS  Article  Google Scholar 

    12.
    Egas, C. et al. Short timescale dynamics of phytoplankton in Fildes Bay, Antarctica. Antarct. Sci. 29, 217. https://doi.org/10.1017/S0954102016000699 (2017).
    ADS  Article  Google Scholar 

    13.
    Delmont, T. O., Hammar, K. M., Ducklow, H. W., Yager, P. L. & Post, A. F. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front. Microbiol. 5, 1–13. https://doi.org/10.3389/fmicb.2014.00646 (2014).
    Article  Google Scholar 

    14.
    Arrigo, K. R. et al. Phytoplankton community structure and the drawdown of nutrients and ({{rm CO}}_{2}) in the Southern Ocean. Science 283, 365–367. https://doi.org/10.1126/science.283.5400.365 (1999).
    ADS  CAS  PubMed  Google Scholar 

    15.
    Lin, Y. et al. Specific eukaryotic plankton are good predictors of net community production in the Western Antarctic Peninsula. Sci. Rep. 7, 1–11. https://doi.org/10.1038/s41598-017-14109-1 (2017).
    ADS  CAS  Article  Google Scholar 

    16.
    Alcamán-Arias, M. E., Farías, L., Verdugo, J., Alarcón-Schumacher, T. & Díez, B. Microbial activity during a coastal phytoplankton bloom on the Western Antarctic Peninsula in late summer. FEMS Microbiol. Lett. 365, 1–13. https://doi.org/10.1093/femsle/fny090 (2018).
    CAS  Article  Google Scholar 

    17.
    Moreno-Pino, M. et al. Variation in coastal Antarctic microbial community composition at sub-mesoscale: spatial distance or environmental filtering? FEMS Microbiol. Ecol. 92, fiw088. https://doi.org/10.1093/femsec/fiw088 (2016).
    CAS  PubMed  Article  Google Scholar 

    18.
    Moon-van der Staay, S. Y., De Wachter, R. & Vaulot, D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409, 607–610. https://doi.org/10.1038/35054541 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Fuller, N. J. et al. Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquat. Microbial Ecol. 43, 79–93 (2006).
    Article  Google Scholar 

    20.
    Shi, X. L., Lepère, C., Scanlan, D. J. & Vaulot, D. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLoS ONE 6, e18979 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Sieburth, J. M., Smetacek, V. & Lenz, J. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23, 1256–1263 (1978).
    ADS  Article  Google Scholar 

    22.
    Marie, D., Shi, X. L., Rigaut-Jalabert, F. & Vaulot, D. Use of flow cytometric sorting to better assess the diversity of small photosynthetic eukaryotes in the English Channel. FEMS Microbiol. Ecol. 72, 165–178 (2010).
    CAS  PubMed  Article  Google Scholar 

    23.
    Balzano, S., Marie, D., Gourvil, P. & Vaulot, D. Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples. ISME J. 6, 1480–1498. https://doi.org/10.1038/ismej.2011.213 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Jeong, H. J. et al. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45, 65–91. https://doi.org/10.1007/s12601-010-0007-2 (2010).
    ADS  CAS  Article  Google Scholar 

    26.
    Wilks, J. V. & Armand, L. K. Diversity and taxonomic identification of Shionodiscus spp. in the Australian sector of the Subantarctic Zone. Diatom Res. 32, 295–307. https://doi.org/10.1080/0269249X.2017.1365015 (2017).
    Article  Google Scholar 

    27.
    Moreno, C. M. et al. Examination of gene repertoires and physiological responses to iron and light limitation in Southern Ocean diatoms. Polar Biol. 41, 679–696. https://doi.org/10.1007/s00300-017-2228-7 (2018).
    Article  Google Scholar 

    28.
    Balzano, S. et al. Morphological and genetic diversity of Beaufort Sea diatoms with high contributions from the Chaetoceros neogracilis species complex. J. Phycol. 53, 161–187. https://doi.org/10.1111/jpy.12489 (2017).
    CAS  PubMed  Article  Google Scholar 

    29.
    Worden, A. Z. et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr. Biol. 22, R675–R677 (2012).
    CAS  PubMed  Article  Google Scholar 

    30.
    Balzano, S. et al. Diversity of cultured photosynthetic flagellates in the North East Pacific and Arctic Oceans in summer. Biogeosciences 9, 4553–4571. https://doi.org/10.5194/bg-9-4553-2012 (2012).
    ADS  CAS  Article  Google Scholar 

    31.
    Kuwata, A. et al. Bolidophyceae, a sister picoplanktonic group of diatoms—a review. Front. Mar. Sci. 5, 370. https://doi.org/10.3389/fmars.2018.00370 (2018).
    Article  Google Scholar 

    32.
    Massana, R., del Campo, J., Sieracki, M. E., Audic, S. & Logares, R. Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J. 8, 854–866 (2014).
    PubMed  Article  Google Scholar 

    33.
    Tragin, M. & Vaulot, D. Novel diversity within marine Mamiellophyceae (Chlorophyta) unveiled by metabarcoding. Sci. Rep. 9, 5190. https://doi.org/10.1038/s41598-019-41680-6 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    van den Hoff, J., Bell, E. & Whittock, L. Dimorphism in the Antarctic cryptophyte Geminigera cryophila (Cryptophyceae). J. Phycol. 56, 1028–1038. https://doi.org/10.1111/jpy.13004 (2020).
    CAS  PubMed  Article  Google Scholar 

    35.
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. 1, 16005. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).
    CAS  PubMed  Article  Google Scholar 

    36.
    Lin, Y., Gifford, S., Ducklow, H., Schofield, O. & Cassar, N. Towards quantitative microbiome community profiling using internal standards. Appl. Environ. Microbiol. 85, 1–14 (2019).
    Google Scholar 

    37.
    van Leeuwe, M. A. et al. Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers. Limnol. Oceanogr. 65, 1651–1668. https://doi.org/10.1002/lno.11477 (2020).
    ADS  Article  Google Scholar 

    38.
    Wasilowska, A., Kopczynska, E. E. & Rzepecki, M. Temporal and spatial variation of phytoplankton in Admiralty Bay, South Shetlands: the dynamics of summer blooms shown by pigment and light microscopy analysis. Polar Biol. 38, 1249–1265. https://doi.org/10.1007/s00300-015-1691-2 (2015).
    Article  Google Scholar 

    39.
    Rozema, P. D. et al. Summer microbial community composition governed by upper-ocean stratification and nutrient availability in northern Marguerite Bay, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 139, 151–166. https://doi.org/10.1016/j.dsr2.2016.11.016 (2016).
    ADS  CAS  Article  Google Scholar 

    40.
    Annett, A. L., Carson, D. S., Crosta, X., Clarke, A. & Ganeshram, R. S. Seasonal progression of diatom assemblages in surface waters of Ryder Bay, Antarctica. Polar Biol. 33, 13–29. https://doi.org/10.1007/s00300-009-0681-7 (2010).
    Article  Google Scholar 

    41.
    Garibotti, I. et al. Phytoplankton spatial distribution patterns along the western Antarctic Peninsula (Southern Ocean). Mar. Ecol. Prog. Ser. 261, 21–39. https://doi.org/10.3354/meps261021 (2003).
    ADS  Article  Google Scholar 

    42.
    de Lima, D. T. et al. Abiotic changes driving microphytoplankton functional diversity in Admiralty Bay, King George Island (Antarctica). Front. Mar. Sci. 6, 1–17. https://doi.org/10.3389/fmars.2019.00638 (2019).
    ADS  CAS  Article  Google Scholar 

    43.
    Luria, C. M., Ducklow, H. W. & Amaral-Zettler, L. A. Marine bacterial, archaeal and eukaryotic diversity and community structure on the continental shelf of the western Antarctic Peninsula. Aquat. Microbial Ecol. 73, 107–121. https://doi.org/10.3354/ame01703 (2014).
    Article  Google Scholar 

    44.
    Luo, W. et al. Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biol. 39, 605–616. https://doi.org/10.1007/s00300-015-1815-8 (2016).
    ADS  Article  Google Scholar 

    45.
    Rozema, P. D. et al. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol. Oceanogr. 62, 235–252. https://doi.org/10.1002/lno.10391 (2017).
    ADS  Article  Google Scholar 

    46.
    Lee, S. H. et al. Large contribution of small phytoplankton at Marian Cove, King George Island, Antarctica, based on long-term monitoring from 1996 to 2008. Polar Biol. 38, 207–220. https://doi.org/10.1007/s00300-014-1579-6 (2015).
    Article  Google Scholar 

    47.
    Kang, J. S., Kang, S. H., Kim, D. & Kim, D. Y. Planktonic centric diatom Minidiscus chilensis dominated sediment trap material in eastern Bransfield Strait, Antarctica. Mar. Ecol. Prog. Ser. 255, 93–99 (2003).
    ADS  Article  Google Scholar 

    48.
    Vaulot, D., Eikrem, W., Viprey, M. & Moreau, H. The diversity of small eukaryotic phytoplankton ((le 3 upmu {{rm m}})) in marine ecosystems. FEMS Microbiol. Rev. 32, 795–820. https://doi.org/10.1111/j.1574-6976.2008.00121.x (2008).
    CAS  PubMed  Google Scholar 

    49.
    Andersen, R. A., Saunders, G. W., Paskind, M. P. & Sexton, J. Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. and sp. nov. and the description of a new algal class, the Pelagophyceae classis nov. J. Phycol. 29, 701–715 (1993).
    CAS  Article  Google Scholar 

    50.
    Dìez, B., Pedrós-Alió, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67, 2932–2941. https://doi.org/10.1128/AEM.67.7.2932-2941.2001 (2001).
    PubMed  PubMed Central  Article  Google Scholar 

    51.
    Gérikas Ribeiro, C. et al. Culturable diversity of Arctic phytoplankton during pack ice melting. Elem. Sci. Anthropocene 8, 6. https://doi.org/10.1525/elementa.401 (2020).
    Article  Google Scholar 

    52.
    Sow, L. S. S., Trull, T. W. & Bodrossy, L. Oceanographic fronts shape Phaeocystis assemblages: a high-resolution 18S rRNA gene survey from the ice-edge to the equator of the South Pacific. Front. Microbiol. 11, 1847. https://doi.org/10.3389/fmicb.2020.01847 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Gaebler, S., Hayes, P. K. & Medlin, L. K. Methods used to reveal genetic diversity in the colony-forming prymnesiophytes Phaeocystis antarctica, P. globosa and P. pouchetii—preliminary results. In Phaeocystis Major Link in the Biogeochemical Cycling of Climate-Relevant Elements (eds van Leeuwe, M. et al.) 330 (Springer Netherlands, Houten, 2007). https://doi.org/10.1007/978-1-4020-6214-8.
    Google Scholar 

    54.
    DiTullio, G. R. et al. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404, 595–598. https://doi.org/10.1038/35007061 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    55.
    Arrigo, K. R. et al. Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. J. Geophys. Res. Oceans 105, 8827–8846. https://doi.org/10.1029/1998JC000289 (2000).
    ADS  CAS  Article  Google Scholar 

    56.
    van Leeuwe, M. A. & Stefels, J. Photosynthetic responses in Phaeocystis antarctica towards varying light and iron conditions. Biogeochemistry 83, 61–70. https://doi.org/10.1007/s10533-007-9083-5 (2007).
    CAS  Article  Google Scholar 

    57.
    Gast, R. J., McKie-Krisberg, Z. M., Fay, S. A., Rose, J. M. & Sanders, R. W. Antarctic mixotrophic protist abundances by microscopy and molecular methods. FEMS Microbiol. Ecol. 89, 388–401. https://doi.org/10.1111/1574-6941.12334 (2014).
    CAS  PubMed  Article  Google Scholar 

    58.
    Sekiguchi, H., Kawachi, M., Nakayama, T. & Inouye, I. A taxonomic re-evaluation of the Pedinellales (Dictyochophyceae), based on morphological, behavioural and molecular data. Phycologia 42, 165–182. https://doi.org/10.2216/i0031-8884-42-2-165.1 (2003).
    Article  Google Scholar 

    59.
    Li, Q., Edwards, K. F., Schvarcz, C. R., Selph, K. E. & Steward, G. F. Plasticity in the grazing ecophysiology of Florenciella (Dichtyochophyceae), a mixotrophic nanoflagellate that consumes Prochlorococcus and other bacteria. Limnol. Oceanogr.. https://doi.org/10.1002/lno.11585 (2020).
    CAS  Article  Google Scholar 

    60.
    Maruyama, S. & Kim, E. A modern descendant of early green algal phagotrophs. Curr. Biol. 23, 1081–1084. https://doi.org/10.1016/j.cub.2013.04.063 (2013).
    CAS  PubMed  Article  Google Scholar 

    61.
    Darling, K. F. et al. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405, 43–47. https://doi.org/10.1038/35011002 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    62.
    Sul, W. J., Oliver, T. A., Ducklow, H. W., Amaral-Zettler, L. A. & Sogin, M. L. Marine bacteria exhibit a bipolar distribution. Proc. Natl. Acad. Sci. USA 110, 2342–2347. https://doi.org/10.1073/pnas.1212424110 (2013).
    ADS  PubMed  Article  Google Scholar 

    63.
    Wolf, C., Kilias, E. & Metfies, K. Protists in the polar regions: comparing occurrence in the Arctic and Southern oceans using pyrosequencing. Polar Res. 34, 23225. https://doi.org/10.3402/polar.v34.23225 (2015).
    Article  Google Scholar 

    64.
    Lovejoy, C. & Potvin, M. Microbial eukaryotic distribution in a dynamic Beaufort Sea and the Arctic Ocean. J. Plankton Res. 33, 431–444. https://doi.org/10.1093/plankt/fbq124 (2011).
    Article  Google Scholar 

    65.
    Delmont, T. O., Murat Eren, A., Vineis, J. H. & Post, A. F. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front. Microbiol. 6, 1–19. https://doi.org/10.3389/fmicb.2015.01090 (2015).
    Article  Google Scholar 

    66.
    Simmons, M. P. et al. Intron invasions trace algal speciation and reveal nearly identical arctic and antarctic Micromonas populations. Mol. Biol. Evol. 32, 2219–2235. https://doi.org/10.1093/molbev/msv122 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Joli, N., Monier, A., Logares, R. & Lovejoy, C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 6, 1372–1385. https://doi.org/10.1038/ismej.2017.7 (2017).
    Article  Google Scholar 

    68.
    Benner, I., Irwin, A. J. & Finkel, Z. Capacity of the common Arctic picoeukaryote Micromonas to adapt to a warming warming ocean. Limnol. Oceanogr. Lett. 5, 221–227 (2019).
    Article  Google Scholar 

    69.
    Li, W. K., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the Arctic Ocean freshens. Science 326, 539. https://doi.org/10.1126/science.1179798 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    70.
    Hoppe, C. J. M., Flintrop, C. M. & Rost, B. The arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification. Biogeosciences 15, 4353–4365. https://doi.org/10.5194/bg-15-4353-2018 (2018).
    ADS  CAS  Article  Google Scholar 

    71.
    Vannier, T. et al. Survey of the green picoalga Bathycoccus genomes in the global ocean. Sci. Rep. 6, 37900. https://doi.org/10.1038/srep37900 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Vaulot, D. et al. Metagenomes of the Picoalga Bathycoccus from the Chile coastal upwelling. PLoS ONE 7, e39648. https://doi.org/10.1371/journal.pone.0039648 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Kauko, H. M. et al. Algal colonization of young Arctic sea ice in spring. Front. Mar. Sci. 5, 1–20. https://doi.org/10.3389/fmars.2018.00199 (2018).
    Article  Google Scholar 

    74.
    Schloss, I. R. et al. On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: an exceptional feature? Limnol. Oceanogr. 59, 195–210. https://doi.org/10.4319/lo.2014.59.1.0195 (2014).
    ADS  CAS  Article  Google Scholar 

    75.
    Świło, M., Majewski, W., Minzoni, R. T. & Anderson, J. B. Diatom assemblages from coastal settings of West Antarctica. Mar. Micropaleontol. 125, 95–109. https://doi.org/10.1016/j.marmicro.2016.04.001 (2016).
    ADS  Article  Google Scholar 

    76.
    Pike, J. et al. Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the late Quaternary. Mar. Micropaleontol. 73, 14–25. https://doi.org/10.1016/j.marmicro.2009.06.005 (2009).
    ADS  Article  Google Scholar 

    77.
    Luddington, I. A., Lovejoy, C. & Kaczmarska, I. Species-rich meta-communities of the diatom order Thalassiosirales in the Arctic and northern Atlantic Ocean. J. Plankton Res. 38, 781–797. https://doi.org/10.1093/plankt/fbw030 (2016).
    CAS  Article  Google Scholar 

    78.
    Hoppenrath, M. et al. Thalassiosira species (Bacillariophyceae, Thalassiosirales) in the North Sea at Helgoland (German Bight) and Sylt (North Frisian Wadden Sea) – A first approach to assessing diversity. Eur. J. Phycol. 42, 271–288. https://doi.org/10.1080/09670260701352288 (2007).
    Article  Google Scholar 

    79.
    Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J. Sea Res. 53, 43–66. https://doi.org/10.1016/j.seares.2004.01.008 (2005).
    ADS  CAS  Article  Google Scholar 

    80.
    Lange, M., Chen, Y. Q. & Medlin, L. K. Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. Eur. J. Phycol. 37, 77–92. https://doi.org/10.1017/S0967026201003481 (2002).
    Article  Google Scholar 

    81.
    Medlin, L. K., Lange, M. & Baumann, M. E. Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33, 199–212. https://doi.org/10.2216/i0031-8884-33-3-199.1 (1994).
    Article  Google Scholar 

    82.
    Thompson, D. W. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899. https://doi.org/10.1126/science.1069270 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    83.
    Smith, R. C. & Stammerjohn, S. E. Variations of surface air temperature and sea-ice extent in the western Antarctic Peninsula region. Ann. Glaciol. 33, 493–500. https://doi.org/10.3189/172756401781818662 (2001).
    ADS  Article  Google Scholar 

    84.
    Hansen, M. O., Nielsen, T. G., Stedmon, C. A. & Munk, P. Oceanographic regime shift during 1997 in Disko Bay, Western Greenland. Limnol. Oceanogr. 57, 634–644. https://doi.org/10.4319/lo.2012.57.2.0634 (2012).
    ADS  Article  Google Scholar 

    85.
    Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15. https://doi.org/10.1093/icesjms/30.1.3 (1965).
    CAS  Article  Google Scholar 

    86.
    Marie, D., Rigaut-Jalabert, F. & Vaulot, D. An improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples. Cytometry 85, 962–968. https://doi.org/10.1002/cyto.a.22517 (2014).
    CAS  PubMed  Article  Google Scholar 

    87.
    Gérikas Ribeiro, C., Lopes dos Santos, A., Marie, D., Pereira Brandini, F. & Vaulot, D. Small eukaryotic phytoplankton communities in tropical waters off Brazil are dominated by symbioses between Haptophyta and nitrogen-fixing cyanobacteria. ISME J. 12, 1360–1374. https://doi.org/10.1038/s41396-018-0050-z (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Piredda, R. et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. 93, fiw200. https://doi.org/10.1093/femsec/fiw200 (2017).
    CAS  PubMed  Article  Google Scholar 

    89.
    Lepère, C. et al. Whole Genome Amplification (WGA) of marine photosynthetic eukaryote populations. FEMS Microbiol. Ecol. 76, 516–523 (2011).
    Article  Google Scholar 

    90.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).
    Article  Google Scholar 

    91.
    R Development Core Team. R: A Language and Environment for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7 (2013).

    92.
    Guillou, L. et al. The Protist Ribosomal Reference database (({{rm PR}}^{2})): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604. https://doi.org/10.1093/nar/gks1160 (2013).
    CAS  PubMed  Google Scholar 

    93.
    Decelle, J. et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445. https://doi.org/10.1111/1755-0998.12401 (2015).
    CAS  PubMed  Article  Google Scholar 

    94.
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.2. (2020)

    95.
    Wilkins, D. treemapify: Draw Treemaps in ’ggplot2’. R package version 2.5.3. (2019)

    96.
    McMurdie, P. J. & Holmes, S. phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, 1–11. https://doi.org/10.1371/journal.pone.0061217 (2013).
    CAS  Article  Google Scholar 

    97.
    Dixon, P. Vegan, a package of r functions for community ecology. J. Veg. Sci. 14, 927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x (2003).
    Article  Google Scholar 

    98.
    Gehlenborg, N. UpSetR: A More Scalable Alternative to Venn and Euler Diagrams for Visualizing Intersecting Sets. R package version 1.4.0. (2019) More

  • in

    Preference, performance, and chemical defense in an endangered butterfly using novel and ancestral host plants

    1.
    Strauss, S. Y., Lau, J. A. & Carroll, S. P. Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Evolutionary responses of natives to introduced species. Ecol. Lett. 9, 357–374 (2006).
    PubMed  Article  Google Scholar 
    2.
    Smith, D. C. Heritable divergence of Rhagoletis pomonella host races by seasonal asynchrony. Nature 336, 66–67 (1988).
    ADS  Article  Google Scholar 

    3.
    Filchak, K. E., Roethele, J. B. & Feder, J. L. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407, 739–742 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Carroll, S. P., Dingle, H., Famula, T. R. & Fox, C. W. Genetic architecture of adaptive differentiation in evolving host races of the soapberry bug, Jadera haematoloma. in Microevolution Rate, Pattern, Process (eds. Hendry, A. P. & Kinnison, M. T.) vol. 8 257–272 (Springer Netherlands, 2001).

    5.
    Nice, C. C., Fordyce, J. A., Shapiro, A. M. & Ffrench-Constant, R. Lack of evidence for reproductive isolation among ecologically specialised lycaenid butterflies. Ecol. Entomol. 27, 702–712 (2002).
    Article  Google Scholar 

    6.
    Graves, S. D. & Shapiro, A. M. Exotics as host plants of the California butterfly fauna. 110, 413–433 (2003).
    Google Scholar 

    7.
    Thomas, J. A., Simcox, D. J. & Hovestadt, T. Evidence based conservation of butterflies. J. Insect Conserv. 15, 241–258 (2011).
    Article  Google Scholar 

    8.
    Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).
    Article  Google Scholar 

    9.
    Casagrande, R.A. & Dacey, J. E. Monarch butterfly oviposition on swallow-worts (Vincetoxicum spp.). Environ. Entomol. 36, 631–636 (2007).

    10.
    Davis, S. L. & Cipollini, D. Do mothers always know best? Oviposition mistakes and resulting larval failure of Pieris virginiensis on Alliaria petiolata, a novel, toxic host. Biol. Invasions 16, 1941–1950 (2014).
    Article  Google Scholar 

    11.
    Janzen, D. H. On ecological fitting. Oikos 45, 308 (1985).
    Article  Google Scholar 

    12.
    Singer, M. C. & Parmesan, C. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557, 238–241 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Thomas, C. D. et al. Incorporation of a European weed into the diet of a North American herbivore. Evolution 41, 892–901 (1987).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Bowers, M. D., Stamp, N. E. & Collinge, S. K. Early stage of host range expansion by a specialist herbivore Euphydryas phaeton. Ecology 73, 526–536 (1992).
    Article  Google Scholar 

    15.
    Severns, P. M. & Breed, G. A. Behavioral consequences of exotic host plant adoption and the differing roles of male harassment on female movement in two checkerspot butterflies. Behav. Ecol. Sociobiol. 68, 805–814 (2014).
    Article  Google Scholar 

    16.
    United States Fish and Wildlife Service. Endangered and threatened wildlife and plants; proposed designation of critical habitat for the bay checkerspot butterfly (Euphydryas editha bayensis); proposed rule. (2000).

    17.
    United States Fish and Wildlife Service. Endangered and threatened wildlife and plants; designation of critical habitat for the Quino checkerspot butterfly (Euphydryas editha quino). (2002).

    18.
    United States Fish and Wildlife Service. ESA Proposed Listing Taylor’s Checkerspot. Fed. Regist. 77, (2012).

    19.
    Ehrlich, P. R. & Hanski, I. On the wings of checkerspots: a model system for population biology. Oxford University Press (2004).

    20.
    Singer, M. C., Ng, D. & Thomas, C. D. Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution 42, 977–985 (1988).
    CAS  PubMed  Article  Google Scholar 

    21.
    Singer, M. C. & McBride, C. S. Multitrait, host-associated divergence among sets of butterfly populations: implications for reproductive isolation and ecological speciation. Evol. Int. J. Org. Evol. 64, 921–933 (2009).
    Article  Google Scholar 

    22.
    Peñuelas, J., Sardans, J., Stefanescu, C., Parella, T. & Filella, I. Lonicera implexa leaves bearing naturally laid eggs of the specialist herbivore Euphydryas aurinia have dramatically greater concentrations of iridoid glycosides than other leaves. J. Chem. Ecol. 32, 1925–1933 (2006).
    PubMed  Article  CAS  Google Scholar 

    23.
    Nieminen, M., Suomi, J., Nouhuys, S. V., Sauri, P. & Riekkola, M.-L. Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. J. Chem. Ecol. 22 (2003).

    24.
    Bowers, M. D. Unpalatability as a defense strategy of Euphydryas phaeton (Lepidoptera: Nymphalidae). Evolution 34, 586–600 (1980).
    PubMed  Article  Google Scholar 

    25.
    Bowers, M. D. Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas Scudder, Nymphalidae). Evolution 35, 367–375 (1981).
    PubMed  Article  Google Scholar 

    26.
    Dobler, S., Petschenka, G. & Pankoke, H. Coping with toxic plant compounds–the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72, 1593–1604 (2011).
    CAS  PubMed  Article  Google Scholar 

    27.
    Bowers, M. D. & Stamp, N. E. Effects of plant age, genotype and herbivory on Plantago performance and chemistry. Ecology 74, 1778–1791 (1993).
    Article  Google Scholar 

    28.
    Dyer, L. A. & Deane Bowers, M. The importance of sequestered iridoid glycosides as a defense against an ant predator. J. Chem. Ecol. 22, 1527–1539 (1996).

    29.
    Dunwiddie, P. W. et al. Intertwined fates: Opportunities and challenges in the linked recovery of two rare species. Nat. Areas J. 36, 207–215 (2016).
    Article  Google Scholar 

    30.
    Stinson, D. Washington State Status Report for the Mazama Pocket Gopher, Streaked Horned Lark, and Taylor’s Checkerspot. Washington Department of Fish and Wildlife (2005).

    31.
    Cavers, P. B., Bassett, I. J. & Crompton, C. W. The biology of Canadian weeds 47. Plantago lanceolata L. Can. J. Plant Sci. 60, 1269–1282 (1980).

    32.
    Haan, N. L., Bakker, J. D., Dunwiddie, P. W. & Linders, M. J. Instar-specific effects of host plants on survival of endangered butterfly larvae. Ecol. Entomol. 43, 742–753 (2018).
    Article  Google Scholar 

    33.
    Danby, W. H. Food plant of Melitaea taylori Edw. Can. Entomol. 22, 121–122 (1890).
    Article  Google Scholar 

    34.
    Buckingham, D. A., Linders, M., Landa, C., Mullen, L. & LeRoy, C. Oviposition preference of endangered Taylor’s checkerspot butterflies (Euphydryas editha taylori) using native and non-native hosts. Northwest Sci. 90, 491–497 (2016).
    Article  Google Scholar 

    35.
    Mead, E. W. & Stermitz, F. R. Content of iridoid glycosides in different parts of Castilleja. Phytochemistry 32, 1155–1158 (1993).
    CAS  Article  Google Scholar 

    36.
    Barclay, E., Arnold, M., Anderson, M. J. & Shepherdson, D. Husbandry manual: Taylor’s checkerspot (Euphydryas editha taylori)) (Oregon Zoo, Portland OR, 2009).
    Google Scholar 

    37.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2020).

    38.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).

    39.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Lenth, R. V. Least-Squares Means: The R package lsmeans. J. Stat. Softw. 69, (2016).

    41.
    Bowers, M. D. & Stamp, N. E. Effect of hostplant genotype and predators on iridoid glycoside content of pupae of a specialist insect herbivore, Junonia coenia (Nymphalidae). Biochem. Syst. 25, 571–580 (1997).
    CAS  Article  Google Scholar 

    42.
    Bowers, M. D. Hostplant suitability and defensive chemistry of the Catalpa sphinx Ceratomia catalpae. J. Chem. Ecol. 29, 2359–2367 (2003).
    CAS  PubMed  Article  Google Scholar 

    43.
    Oksanen, J. et al. Package ‘vegan’. Community Ecol. Package Version 2, 1–295 (2013).
    Google Scholar 

    44.
    Yoon, S. & Read, Q. Consequences of exotic host use: Impacts on Lepidoptera and a test of the ecological trap hypothesis. Oecologia 181, 985–996 (2016).
    ADS  PubMed  Article  Google Scholar 

    45.
    Cogni, R. Resistance to plant invasion? A native specialist herbivore shows preference for and higher fitness on an introduced host. Biotropica 42, 188–193 (2010).
    Article  Google Scholar 

    46.
    Agosta, S. J. & Klemens, J. A. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol. Lett. 11, 1123–1134 (2008).
    PubMed  Article  Google Scholar 

    47.
    Bowers, M. D., Boockvar, K. & Collinge, S. K. Iridoid glycosides of Chelone glabra (Scrophulariaceae) and their sequestration by larvae of a Sawfly, Tenthredo grandis (Tenthredinidae). J. Chem. Ecol. 19, 815–815 (1993).
    CAS  PubMed  Article  Google Scholar 

    48.
    Singer, M. C. Quantification of host preference by manipulation of oviposition behavior in the butterfly Euphydryas editha. Oecologia 52, 224–229 (1982).
    ADS  PubMed  Article  Google Scholar 

    49.
    Parmesan, C., Singer, M. C. & Harris, I. A. N. Absence of adaptive learning from the oviposition foraging behaviour of a checkerspot butterfly. Anim. Behav. 50, 161–175 (1995).
    Article  Google Scholar 

    50.
    Quintero, C., Lampert, E. C. & Bowers, M. D. Time is of the essence: direct and indirect effects of plant ontogenetic trajectories on higher trophic levels. Ecology 95, 2589–2602 (2014).
    Article  Google Scholar 

    51.
    Gardner, D. R. & Stermitz, F. R. Host plant utilization and iridoid glycoside sequestration by Euphdryas anicia (Lepidoptera: Nymphalidae). J. Chem. Ecol. 14, 2147–2168 (1988).
    CAS  PubMed  Article  Google Scholar 

    52.
    Haan, N. L., Bakker, J. D. & Bowers, M. D. Hemiparasites can transmit indirect effects from their host plants to herbivores. Ecology 99, 399–410 (2018).
    PubMed  Article  Google Scholar 

    53.
    Haan, N. L. Ecological interactions between Euphydryas editha larvae and their host plants (University of Washington, Seattle, 2017).
    Google Scholar 

    54.
    Bowers, M. D. Aposematic caterpillars: life-styles of the warningly colored and unpalatable, in Caterpillars: ecological and evolutionary constraints on foraging (eds. Stamp, N.S., and Casey, T.M.). Chapman & Hall (1993).

    55.
    Theodoratus, D. H. & Bowers, M. D. Effects of sequestered iridoid glycosides on prey choice of the prairie wolf spider Lycosa carolinensis. J. Chem. Ecol. 25, 283–295 (1999).
    CAS  Article  Google Scholar 

    56.
    Cirak, C. et al. Phenological changes in the chemical content of wild and greenhouse-grown Hypericum pruinatum: hypericins, hyperforins and phenolic acids. Res Rev J Bot. 4, 37–47 (2015).
    ADS  Google Scholar 

    57.
    Richards, L. A. et al. Synergistic effects of iridoid glycosides on the survival, development and immune response of a specialist caterpillar, Junonia coenia (Nymphalidae). J. Chem. Ecol. 38, 1276–1284 (2012).
    CAS  PubMed  Article  Google Scholar 

    58.
    Smilanich, A. M., Dyer, L. A., Chambers, J. Q. & Bowers, M. D. Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol. Lett. 12, 612–621 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Hamilton, N.E. & Ferry, M. ggtern: Ternary diagrams using ggplot2. J. Stat. Softw., Code Snippets, 87, 1–17 (2018). More

  • in

    Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles

    1.
    Lenzner, B. et al. A framework for global twenty-first century scenarios and models of biological invasions. Bioscience 69, 697–710. https://doi.org/10.1093/biosci/biz070 (2019).
    Article  PubMed  PubMed Central  Google Scholar 
    2.
    Sun, Y. et al. Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Clim. Change 4, 1082–1085. https://doi.org/10.1038/nclimate2410 (2014).
    ADS  Article  Google Scholar 

    3.
    van der Geest, K. et al. in Loss and Damage from Climate Change Climate Risk Management, Policy and Governance (eds Mechler R. et al.) 221–236 (2018).

    4.
    Sage, R. F. Global change biodiversity: A primer. Glob. Change Biol. 26, 3–30. https://doi.org/10.1111/gcb.14893 (2020).
    ADS  Article  Google Scholar 

    5.
    Nunez-Mir, G. C., Guo, Q., Rejmanek, M., Iannone, B. V. III. & Fei, S. Predicting invasiveness of exotic woody species using a traits-absed framework. Ecol. Lett. 100, e02797. https://doi.org/10.1002/ecy.2797 (2019).
    Article  Google Scholar 

    6.
    Zeng, J. et al. Global warming modifies long-distance migration of an agricultural insect pest. J. Pest. Sci. 93, 569–581. https://doi.org/10.1007/s10340-019-01187-5 (2020).
    Article  Google Scholar 

    7.
    Gippet, J. M. W., Liebhold, A. M., Fenn-Moltu, G. & Bertelsmeier, C. Human-mediated dispersal in insects. Curr. Opin. Insect Sci. 35, 96–102. https://doi.org/10.1016/j.cois.2019.07.005 (2019).
    Article  PubMed  Google Scholar 

    8.
    Cassey, P., Delean, S., Lockwood, J. L., Sadowski, J. S. & Blackburn, T. M. Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biol 16, e2005987. https://doi.org/10.1371/journal.pbio.2005987 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Reaser, J. K. et al. The early detection of and rapid response (EDRR) to invasive species: A conceptual framework and federal capacities assessment. Biol. Invas. 22, 1–19. https://doi.org/10.1007/s10530-019-02156-w (2019).
    Article  Google Scholar 

    10.
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models (Cambridge University Press, Cambridge, 2017).
    Google Scholar 

    11.
    Soberon, J. & Townsend Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv. Inform. 2, 1–10. https://doi.org/10.17161/bi.v2i0.4 (2005).
    Article  Google Scholar 

    12.
    Porfirio, L. L. et al. Improving the use of species distribution models in conservation planning and management under climate change. PLoS One 9, e113749. https://doi.org/10.1371/journal.pone.0113749 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    13.
    IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 151 (IPCC, Geneva, 2014).
    Google Scholar 

    14.
    Beaumont, L. J., Hughes, L. & Pitman, A. J. Why is the choice of future climate scenarios for species distribution modelling important?. Ecol. Lett. 11, 1135–1146. https://doi.org/10.1111/j.1461-0248.2008.01231.x (2008).
    Article  PubMed  Google Scholar 

    15.
    Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157. https://doi.org/10.1111/j.1365-2486.2009.02000.x (2010).
    ADS  Article  Google Scholar 

    16.
    Faccoli, M. et al. A first worldwide multispecies survey of invasive Mediterranean pine bark beetles (Coleoptera: Curculionidae, Scolytinae). Biol. Invas. 22, 1785–1799. https://doi.org/10.1007/s10530-020-02219-3 (2020).
    Article  Google Scholar 

    17.
    Kirkendall, L. R. & Faccoli, M. Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe. Zookeys 56, 227–251. https://doi.org/10.3897/zookeys.56.529 (2010).
    Article  Google Scholar 

    18.
    Raffa, K. F., Grégoire, J.-C. & StaffanLindgren, B. Economics and politics of bark beetles. In Bark Beetles. Biology and Ecology of Native and Invasive Species (eds Fernando, E. V. & Richard, W. H.) 585–614 (Elsevier, New York, 2015).
    Google Scholar 

    19.
    Ngoan, N. D., Wilkinson, R. C., Short, D. E., Moses, C. S. & Mangold, J. R. Biology of an introduced ambrosia beetle, Xylosandrus compactus, in Florida. Ann. Entomol. Soc. Am. 69, 872–876. https://doi.org/10.1093/aesa/69.5.872 (1976).
    Article  Google Scholar 

    20.
    Hara, A. H. & Beardsley, J. W. Jr. The biology of the black twig borer, Xylosandrus compactus (Eichhoff), in Hawaii. Proc. Hawaiian Entomol. Soc. 13, 55–70 (1979).
    Google Scholar 

    21.
    Wood, S. L. New american bark beetles (Coleoptera: Scolytidae) with two recently introduced species. Great Basin Nat. 40, 353–358 (1980).
    Article  Google Scholar 

    22.
    Samuelson, G. A. A synopsis of Hawaiian Xyleborini (Coleoptera: Scolytidae). Pac. Insects 23, 50–92 (1981).
    Google Scholar 

    23.
    Anderson, D. M. First record of Xyleborus semiopacus in the continental United States (Coleoptera, Scolytidae). Cooper. Econ. Insect Rep. 24, 863–864 (1974).
    Google Scholar 

    24.
    Kirkendall, L. Invasive bark beetles (Coleoptera, Curculionidae, Scolytinae) in Chile and Argentina, including two species new for South America, and the correct identity of the Orthotomicus species in Chile and Argentina. Diversity https://doi.org/10.3390/d10020040 (2018).
    Article  Google Scholar 

    25.
    Pennachio, F., Roversi, P. F., Francardi, V. & Gatti, E. Xylosandrus crassiusculus (Motschulsky) a bark beetle new to Europe (Coleoptera Scolytidae). Redia 86, 77–80 (2003).
    Google Scholar 

    26.
    Garonna, A. P., Dole, S. A., Saracino, A., Mazzoleni, S. & Cristinzio, G. First record of the black twig borer Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae, Scolytinae) from Europe. Zootaxa 3251, 64–68. https://doi.org/10.11646/zootaxa.3251.1.5 (2012).
    Article  Google Scholar 

    27.
    Roques, A. et al. Les scolytes exotiques: Une menace pour le maquis. Phytoma 727, 16–20 (2019).
    Google Scholar 

    28.
    Gallego, D., Lencina, J. L., Mas, H., Cevero, J. & Faccoli, M. First record of the granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae, Scolytinae), in the Iberian Peninsula. Zootaxa 4273, 431–434. https://doi.org/10.11646/zootaxa.4273.3.7 (2017).
    Article  PubMed  Google Scholar 

    29.
    Kavčič, A. First record of the Asian ambrosia beetle, Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae, Scolytinae), Slovenia. Zootaxa 4483, 191–193. https://doi.org/10.11646/zootaxa.4483.1.9 (2018).
    Article  PubMed  Google Scholar 

    30.
    Spanou, K. et al. in 18th Panhellenic Entomological Congress (Komotini, 2019).

    31.
    Leza, M. A. R. et al. First record of the black twig borer, Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) in Spain. Zootaxa 4767, 345–350. https://doi.org/10.11646/zootaxa.4767.2.9 (2020).
    Article  Google Scholar 

    32.
    Greco, E. B. & Wright, M. G. Ecology, biology, and management of Xylosandrus compactus (Coleoptera: Curculionidae: Scolytinae) with emphasis on coffee in Hawaii. J. Integrat. Pest Manag. 6, 1–8. https://doi.org/10.1093/jipm/pmv007 (2015).
    CAS  Article  Google Scholar 

    33.
    Kirkendall, L. R., Dal Cortivo, M. & Gatti, E. First record of the ambrosia beetle, Monarthrum mali (Curculionidae, Scolytinae) in Europe. J. Pest. Sci. 81, 175–178. https://doi.org/10.1007/s10340-008-0196-y (2008).
    Article  Google Scholar 

    34.
    Jordal, B. H., Beaver, R. A. & Kirkendall, L. R. Breaking taboos in the tropics: Incest promotes colonization by wood-boring beetles. Glob. Ecol. Biogeogr. 10, 345–357. https://doi.org/10.1046/j.1466-822X.2001.00242.x (2001).
    Article  Google Scholar 

    35.
    Douglas, H. et al. New Curculionoidea (Coleoptera) records for Canada. Zookeys 309, 13–48. https://doi.org/10.3897/zookeys.309.4667 (2013).
    Article  Google Scholar 

    36.
    EPPO. EPPO Technical Document No. 1081, Study on the risk of bark and ambrosia beetles associated with imported non-coniferous wood. (2020).

    37.
    Guiot, J. & Cramer, W. Climate change: The 2015 Paris agreement thresholds and Mediterranean basin ecosystems. Science 354, 465–468. https://doi.org/10.1126/science.aah5015 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).
    Article  Google Scholar 

    39.
    Radosavljevic, A., Anderson, R. P. & Araújo, M. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643. https://doi.org/10.1111/jbi.12227 (2014).
    Article  Google Scholar 

    40.
    Beaumont, L. J. et al. Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?. Ecol. Model. 342, 135–146. https://doi.org/10.1016/j.ecolmodel.2016.10.004 (2016).
    Article  Google Scholar 

    41.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).
    Article  Google Scholar 

    42.
    Godefroid, M., Meurisse, N., Groenen, F., Kerdelhué, C. & Rossi, J. P. Current and future distribution of the invasive oak processionary moth. Biol. Invas. 22, 523–534. https://doi.org/10.1007/s10530-019-02108-4 (2019).
    Article  Google Scholar 

    43.
    Qiao, H., Soberón, J., Peterson, A. T. & Kriticos, D. No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 6, 1126–1136. https://doi.org/10.1111/2041-210x.12397 (2015).
    Article  Google Scholar 

    44.
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods Ecol. Evol. 5, 1198–1205. https://doi.org/10.1111/2041-210X.12261 (2014).
    Article  Google Scholar 

    45.
    Gettelman, A. & Rood, R. B. A Users Guide to Earth System Models Earth Systems Data and Models 282 (Springer, Berlin, 2016).
    Google Scholar 

    46.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).
    Google Scholar 

    47.
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Dismo: Species Distribution Modeling. R package version 1.1-4. (2017).

    48.
    Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble platform for species distribution modeling. R package version 3.3-7.1. (2019).

    49.
    Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 0.9.4. (2019).

    50.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).
    Google Scholar 

    51.
    South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0. (2017).

    52.
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. (2019).

    53.
    Department for Environment Food and Rural Affairs. Rapid pest risk analysis for Xylosandrus crassisuculus. 30 (2015).

    54.
    ANSES. Évaluation du risque simplifiée sur Xylosandrus compactus (Eichhoff) identifié en France métropolitaine. (2017).

    55.
    Kavčič, A. & de Groot, M. Pest risk analysis for the Asian Ambrosia Beetle (Xylosandrus crassiusculus (Motschulsky, 1866)). (Slovenian Forestry Institute, 2017).

    56.
    Storer, C., Payton, A., McDaniel, S., Jordal, B. & Hulcr, J. Cryptic genetic variation in an inbreeding and cosmopolitan pest, Xylosandrus crassiusculus, revealed using ddRADseq. Ecol. Evol. 7, 10974–10986. https://doi.org/10.1002/ece3.3625 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    57.
    Ito, M. & Kajimura, H. Phylogeography of an ambrosia beetle, Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae: Scolytinae), Japan. Appl. Entomol. Zool. 44, 549–559. https://doi.org/10.1303/aez.2009.549 (2009).
    CAS  Article  Google Scholar 

    58.
    Godefroid, M., Rasplus, J.-Y. & Rossi, J.-P. Is phylogeography helpful for invasive species risk assessment? The case study of the bark beetle genus Dendroctonus. Ecography 39, 1197–1209. https://doi.org/10.1111/ecog.01474 (2016).
    Article  Google Scholar 

    59.
    Godefroid, M., Cruaud, A., Rossi, J. P. & Rasplus, J. Y. Assessing the risk of invasion by Tephritid fruit flies: Intraspecific divergence matters. PLoS One 10, e0135209. https://doi.org/10.1371/journal.pone.0135209 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    60.
    Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E. & Thuiller, W. Invasive species distribution models—how violating the equilibrium assumption can create new insights. Glob. Ecol. Biogeogr. 21, 1126–1136. https://doi.org/10.1111/j.1466-8238.2012.00768.x (2012).
    Article  Google Scholar 

    61.
    Rey, O. et al. Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area. Ecol. Lett. 15, 1266–1275. https://doi.org/10.1111/j.1461-0248.2012.01849.x (2012).
    Article  PubMed  Google Scholar 

    62.
    Ma, Z. & Yang, Q. (2017) Global patterns of aridity trends and time regimes in transition. In Aridity Trend in Northern China (eds Congbin, F. & Huiting, M.) 67–90 (World Scientific Publishing, Singapore, 2017).
    Google Scholar 

    63.
    Gugliuzzo, A. et al. Seasonal changes in population structure of the ambrosia beetle Xylosandrus compactus and its associated fungi in a southern Mediterranean environment. PLoS One 15, e0239011. https://doi.org/10.1371/journal.pone.0239011 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    64.
    Formby, J. P. et al. Cold tolerance and invasive potential of the redbay ambrosia beetle (Xyleborus glabratus) in the eastern United States. Biol. Invas. 20, 995–1007. https://doi.org/10.1007/s10530-017-1606-y (2017).
    Article  Google Scholar 

    65.
    Reding, M. E., Ranger, C. M., Oliver, J. B. & Schultz, P. B. Monitoring attack and flight activity of Xylosandrus spp. (Coleoptera: Curculionidae: Scolytinae): The influence of temperature on activity. Hortic. Entomol. 106, 1780–1787. https://doi.org/10.1603/ec13134 (2013).
    Article  Google Scholar 

    66.
    Gugliuzzo, A., Criscione, G., Siscaro, G., Russo, A. & Tropea Garzia, G. First data on the flight activity and distribution of the ambrosia beetle Xylosandrus compactus (Eichhoff) on carob trees in Sicily. EPPO Bull. 49, 340–351. https://doi.org/10.1111/epp.12564 (2019).
    Article  Google Scholar 

    67.
    Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts?. J. Biogeogr. 45, 2175–2189. https://doi.org/10.1111/jbi.13395 (2018).
    Article  Google Scholar 

    68.
    Hlásny, T. et al. Living with Bark Beetles: Impacts, Outlook and Management Options 52 (European Forest Institute, Joensuu, 2019).
    Google Scholar 

    69.
    Ranger, C. M., Schultz, P. B., Frank, S. D., Chong, J. H. & Reding, M. E. Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLoS One 10, e0131496. https://doi.org/10.1371/journal.pone.0131496 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    70.
    Ranger, C. M., Reding, M. E., Schultz, P. B. & Oliver, J. B. Influence of flood-stress on ambrosia beetle host-selection and implications for their management in a changing climate. Agric. For. Entomol. 15, 56–64. https://doi.org/10.1111/j.1461-9563.2012.00591.x (2013).
    Article  Google Scholar 

    71.
    LaBonte, J. R. in USDA Research Forum on Invasive Species. 41–43.

    72.
    Castrillo, L. A., Griggs, M. H., Ranger, C. M., Reding, M. E. & Vandenberg, J. D. Virulence of commercial strains of Beauveria bassiana and Metarhizium brunneum (Ascomycota: Hypocreales) against adult Xylosandrus germanus (Coleoptera: Curculionidae) and impact on brood. Biol. Control 58, 121–126. https://doi.org/10.1016/j.biocontrol.2011.04.010 (2011).
    Article  Google Scholar 

    73.
    Horn, S. & Horn, G. N. New host record for the asian ambrosia beetle, Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae). J. Entomol. Sci. 41, 90–91. https://doi.org/10.18474/0749-8004-41.1.90 (2006).
    Article  Google Scholar 

    74.
    Wu, T. et al. An overview of BCC climate system model development and application for climate change studies. J. Meteorol. Res. 28, 34–56. https://doi.org/10.1007/s13351-014-3041-7 (2013).
    Article  Google Scholar 

    75.
    Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991. https://doi.org/10.1175/2011jcli4083.1 (2011).
    ADS  Article  Google Scholar 

    76.
    Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst. 6, 141–184. https://doi.org/10.1002/2013ms000265 (2014).
    ADS  Article  Google Scholar 

    77.
    Collins, W. J. et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 4, 1051–1075. https://doi.org/10.5194/gmd-4-1051-2011 (2011).
    ADS  Article  Google Scholar 

    78.
    Dufresne, J. L. et al. Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165. https://doi.org/10.1007/s00382-012-1636-1 (2013).
    Article  Google Scholar 

    79.
    Watanabe, M. et al. Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Clim. 23, 6312–6335. https://doi.org/10.1175/2010jcli3679.1 (2010).
    ADS  Article  Google Scholar 

    80.
    Yukimoto, S. et al. A new global climate model of the Meteorological Research Institute: MRI-CGCM3. J. Meteorol. Soc. Jpn 90A, 23–64. https://doi.org/10.2151/jmsj.2012-A02 (2012).
    Article  Google Scholar 

    81.
    Watanabe, S. et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872. https://doi.org/10.5194/gmd-4-845-2011 (2011).
    ADS  Article  Google Scholar 

    82.
    Bentsen, M. et al. The Norwegian earth system model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 6, 687–720. https://doi.org/10.5194/gmd-6-687-2013 (2013).
    ADS  Article  Google Scholar  More

  • in

    A simple and effective approach to quantitatively characterize structural complexity

    1.
    Zenner, E. Does old-growth condition imply high live-tree structural complexity?. For. Ecol. Manag. 195, 243–258 (2004).
    Article  Google Scholar 
    2.
    Forest Ecosystem Management Assessment Team (FEMAT). Draft Supplemental Environmental Impact Statement on Management of Habitat for Late Successional and Oldgrowth Forest Related Species within the Range of the Northern Spotted Owl (US Government Printing Office, Washington, DC, 1993).
    Google Scholar 

    3.
    Wan, P. et al. Impacts of different forest management methods on the stand spatial structure of a natural Quercus aliena var. acuteserrata forest in Xiaolongshan, China. Ecol. Inform. 50, 86–94 (2019).
    Article  Google Scholar 

    4.
    Carrer, M., Castagneri, D., Popa, I., Pividori, M. & Lingua, E. Tree spatial patterns and stand attributes in temperate forests: The importance of plot size, sampling design, and null model. For. Ecol. Manag. 407, 125–134 (2018).
    Article  Google Scholar 

    5.
    Bauhus, J., Puettmann, K. & Messier, C. Silviculture for old-growth attributes. For. Ecol. Manag. 258, 525–537 (2009).
    Article  Google Scholar 

    6.
    Messier, C., Puettmann, K. J. & Coates, D. K. Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change (Routledge, Abingdon, 2013).
    Google Scholar 

    7.
    McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manage. 218, 1–24 (2005).
    Article  Google Scholar 

    8.
    Di Filippo, A., Biondi, F., Piovesan, G. & Ziaco, E. Tree ring-based metrics for assessing old-growth forest naturalness. J. Appl. Ecol. 54, 737–749 (2017).
    Article  Google Scholar 

    9.
    Parrotta, J. A., Turnbull, J. W. & Jones, N. Catalyzing native forest regeneration on degraded tropical lands. For. Ecol. Manag. 99, 1–7 (1997).
    Article  Google Scholar 

    10.
    Neumann, M. & Starlinger, F. The significance of different indices for stand structure and diversity in forests. For. Ecol. Manag. 145, 91–106 (2001).
    Article  Google Scholar 

    11.
    McCleary, K. & Mowat, G. Using forest structural diversity to inventory habitat diversity of forest-dwelling wildlife in the West Kootenay region of British Columbia 2 1–13 (2002).

    12.
    Ishii, H. T., Tanabe, S.-I. & Hiura, T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. For. Sci. 50, 342–355 (2004).
    Google Scholar 

    13.
    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).
    Article  Google Scholar 

    14.
    Long, J. N. & Shaw, J. D. The influence of compositional and structural diversity on forest productivity. Forestry 83, 121–128 (2010).
    Article  Google Scholar 

    15.
    Dănescu, A., Albrecht, A. & Bauhus, J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 182, 319–333 (2016).
    ADS  PubMed  Article  Google Scholar 

    16.
    Ehbrecht, M., Schall, P., Ammer, C. & Seidel, D. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric. For. Meteorol. 242, 1–9 (2017).
    ADS  Article  Google Scholar 

    17.
    Zenner, E. K. Do residual trees increase structural complexity in pacific northwest?. Ecol. Appl. 10, 800–810 (2000).
    Article  Google Scholar 

    18.
    Hardiman, B. S., Bohrer, G., Gough, C. M., Vogel, C. S. & Curtisi, P. S. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92, 1818–1827 (2011).
    PubMed  Article  Google Scholar 

    19.
    Puettmann, K. J., Coates, K. D. & Messier, C. C. A Critique of Silviculture: Managing for Complexity (Island Press, Washington, D.C., 2012).
    Google Scholar 

    20.
    Robertson, G. P. & Tiedje, J. Spatial variability in a successional plant community: patterns of nitrogen availability. Ecology 69, 0–1524 (1988).

    21.
    Palmer, M. W. Spatial scale and patterns of species-environment relationships in hardwood forest of the North Carolina piedmont. Coenoses, 79–87 (1990).

    22.
    Lechowicz, M. & Bell, G. The ecology and genetics of fitness in forest plants. II. Microspatial heterogeneity of the edaphic environment. J. Ecol. 79, 687 (1991).

    23.
    Song, B. et al. Modeling canopy structure and heterogeneity across scales: from crowns to canopy. For. Ecol. Manage. 96, 217–229 (1997).
    Article  Google Scholar 

    24.
    Zenner, E. & Peck, J. Characterizing structural conditions in mature managed red pine: spatial dependency of metrics and adequacy of plot size. For. Ecol. Manag. 257, 311–320 (2009).
    Article  Google Scholar 

    25.
    Pommerening, A. & Uria-Diez, J. Do large forest trees tend towards high species mingling? Ecol. Inform. 42 (2017).

    26.
    Wang, H., Peng, H., Hui, G., Hu, Y. & Zhao, Z. Large trees are surrounded by more heterospecific neighboring trees in Korean pine broad-leaved natural forests. Sci. Rep. 8, 9149 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Hubbell, S. P., Ahumada, J. A., Condit, R. & Foster, R. B. Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecol. Res. 16, 859–875 (2001).
    Article  Google Scholar 

    28.
    Stoll, P. & Newbery, D. M. Evidence of species-specific neighborhood effects in the dipterocarpaceae of a bornean rain forest. Ecology 86, 3048–3062 (2005).
    Article  Google Scholar 

    29.
    Pillay, T. & Ward, D. Spatial pattern analysis and competition between Acacia karroo trees in humid savannas. Plant Ecol. 213 (2012).

    30.
    Fueldner, K., Sattler, S., Zucchini, W. & Gadow, K. V. Modelling person-specific tree selection probabilities in a thinning. Allgemeine Forst Und Jagdzeitung (1996).

    31.
    Zenner, E. & Hibbs, D. A new method for modeling the heterogeneity of forest structure. For. Ecol. Manag. 129 (2000).

    32.
    Pommerening, A. Approaches to quantifying forest structures. Forestry 75(3), 305–324 (2002).
    Article  Google Scholar 

    33.
    Beckschäfer, P. et al. Enhanced structural complexity index: an improved index for describing forest structural complexity. Open J. For. 3, 23–29 (2013).
    Google Scholar 

    34.
    Kint, V., van Meirvenne, M., Nachtergale, L., Geudens, G. & Lust, N. Spatial methods for quantifying forest stand structure development: a comparison between nearest-neighbor indices and variogram analysis. For. Sci. 49, 36–49 (2003).
    Google Scholar 

    35.
    Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).
    Article  Google Scholar 

    36.
    Ripley, B. D. Spatial Statistics (Wiley, New York, 1981).

    37.
    Ripley, B. D. Modelling spatial patterns. J. R. Stat. Soc. 39(2), 172–212 (1977).
    MathSciNet  Google Scholar 

    38.
    Pommerening, A. & Grabarnik, P. Individual-Based Methods in Forest Ecology and Management (Springer, Berlin, 2019).

    39.
    Gadow, K., Albert, M. & Hui, G. Das Winkelmaß – ein Strukturparameter zur beschreibung der Individualverteilung in Waldbeständen. Centralblatt für das gesamte Forstwesen 115(1), 1–10 (1998).
    Google Scholar 

    40.
    Aguirre, O., Hui, G., Gadow, K. v. & Jiménez, J. An analysis of spatial forest structure using neighbourhood-based variables. For. Ecol. Manag. 183, 137–145 (2003).

    41.
    Hui, G. & Gadow, K. Das Winkelmass – Theoretische Überlegungen zum optimalen Standardwinkel. Allgemeine Forst u. Jagdzeitung 173(9), 173–177 (2002).
    Google Scholar 

    42.
    Pommerening, A. Evaluating structural indices by reversing forest structural analysis. For. Ecol. Manage. 224, 266–277 (2006).
    Article  Google Scholar 

    43.
    Li, Y., Hui, G., Zhao, Z., Hu, Y. & Adler, P. The bivariate distribution characteristics of spatial structure in natural Korean pine broad-leaved forest. Journal of Vegetation Science 23 (2012).

    44.
    Graz, F. P. Spatial diversity of dry savanna woodlands. Assessing the spatial diversity of a dry savanna woodland stand in northern Namibia using neighbourhood-based measures. Biodivers. Conserv. 00, 1–16 (2004).

    45.
    Pastorella, F. & Paletto, A. Stand structure indices as tools to support forest management: an application in Trentino forests (Italy). J. For. Sci. 59, 159–168 (2013).
    Article  Google Scholar 

    46.
    Zhao, Z. et al. Testing the significance of different tree spatial distribution patterns based on the Uniform Angle Index. Can. J. For. Res. 44(11), 1417–1425 (2014).
    Article  Google Scholar 

    47.
    Zhang, G. et al. Composition of basal area in natural forests based on the uniform angle index. Ecol. Inform. 45, 1–8 (2018).
    Article  Google Scholar 

    48.
    Stiell, W. How uniformity of tree distribution affects stand growth. For. Chron. 54, 156–158 (1978).
    Article  Google Scholar 

    49.
    Jay, A., Nichols, J. & Vanclay, J. Social and ecological issues for private native forestry in north-eastern New South Wales Australia. Small Scale For. 6, 115–126 (2007).
    Article  Google Scholar 

    50.
    Zhang, G. et al. Designing near-natural planting patterns for plantation forests in China. For. Ecosyst. 6, 137 (2019).
    Article  Google Scholar 

    51.
    Moeur, M. Characterising spatial patterns of trees using stem-mapped data. For. Sci. 39, 756–775 (1993).
    ADS  Google Scholar 

    52.
    Stohlgren, T. Spatial patterns of giant sequoia (Sequoiadendrongiganteum) in two sequoia groves in Sequoia National Park California. Can. J. For. Res. 23, 120–132 (2011).
    Article  Google Scholar 

    53.
    Pommerening, A. & Grabarnik, P. Individual-based Methods in Forest Ecology and Management (2019).

    54.
    Clark, P. & Evans, F. Distance to nearest neighbor as a measure of spatial relations. Ecology 35, 445–453 (1954).
    Article  Google Scholar 

    55.
    Assunçáo, R. Testing spatial randomness by means of angle. Biometrics 50, 531–537 (1994).
    MATH  Article  Google Scholar 

    56.
    Corral-Rivas JJ. PhD thesis. University of Göttingen (2006).

    57.
    Hui, G., Zhang, G., Zhao, Z. & Yang, A. Methods of forest structure research: a review. Curr. For. Rep. 5(3), 142–154. https://doi.org/10.1007/S40725-019-00090-7 (2019).
    Article  Google Scholar 

    58.
    Gadow, K., Hui, G. & Albert, M. Das Winkelmaß – Ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Centralblatt für das Gesamte Forstwesen 115, 1–10 (1998).
    Google Scholar 

    59.
    Wang, H. et al. The influence of sampling unit size and spatial arrangement patterns on neighborhood-based spatial structure analyses of forest stands. For. Syst. 25, e056 (2016).
    Google Scholar 

    60.
    Kraft, G. Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben, Vol. 154 (Klindworth’s Verlag, Hanover, 1884).

    61.
    Röhrig, E. & Gussone, H. A. Waldbau auf Ökologischer Grundlage: Zweiter Band (Hamburg, Paul Parey, 1982).
    Google Scholar 

    62.
    Hawley, R. C. & Smith, M. D. The practice of silviculture. Ecology 17(1), 172 (1936).
    Article  Google Scholar 

    63.
    Larsen, J. B. & Nielsen, A. B. Nature-based forest management—Where are we going?. For. Ecol. Manag. 238, 107–117 (2007).
    Article  Google Scholar 

    64.
    Ajani, J. The Forest Wars (Melbourne University, Melbourne, 2007).
    Google Scholar 

    65.
    Nichols, J. D., Bristow, M. & Vanclay, J. K. Mixed-species plantations: prospects and challenges. For. Ecol. Manag. 233, 383–390 (2006).
    Article  Google Scholar 

    66.
    Carnus, J.-M. et al. Planted forests and biodiversity. J. For. 104, 65–77 (2006).
    Google Scholar 

    67.
    Gadow, K. V. & Hui, G. Y. Characterizing forest spatial structure and diversity Institute of Forest Management, Georg-August-University Göttingen, Büsgenweg 5, D-37077 Göttingen, Germany Published in: Sustainable Forestry in Temperate Regions; Proc. of an international workshop organized at the University of Lund, Sweden: 20–30. More

  • in

    Alloparental care in glassfrogs: males care for unrelated clutches only when associated with their own

    1.
    Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, Princeton, 1991).
    Google Scholar 
    2.
    Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man (ed. Campbell, B.) 136–179 (John Murray, Aldine, 1972).
    Google Scholar 

    3.
    Alonzo, S. H. & Klug, H. Maternity, paternity and parental care. In The Evolution of Parental Care (eds Royle, N. J. et al.) 189–203 (Oxford University Press, Oxford, 2012).
    Google Scholar 

    4.
    Møller, A. P. & Cuervo, J. J. The evolution of paternity and paternal care in birds. Behav. Ecol. 11, 472–485 (2000).
    Article  Google Scholar 

    5.
    Neff, B. D. Paternity and condition affect cannibalistic behavior in nest-tending bluegill sunfish. Behav. Ecol. Sociobiol. 54, 377–384 (2003).
    Article  Google Scholar 

    6.
    Benowitz, K. M., Head, M. L., Williams, C. A., Moore, A. J. & , Royle, N.J. ,. Male age mediates reproductive investment and response to paternity assurance. Proc. R. Soc. B 280, 20131124 (2013).
    PubMed  Article  Google Scholar 

    7.
    Wisenden, B. D. Alloparental care in fishes. Rev. Fish Biol. Fish. 9, 45–70 (1999).
    Article  Google Scholar 

    8.
    Griffin, A. S., Alonzo, S. H. & Cornwallis, C. K. Why do cuckolded males provide paternal care? PLoS ONE 11, e1001520 (2013).
    CAS  Article  Google Scholar 

    9.
    Stevens, M. Bird brood parasitism. Curr. Biol. 23, R909–R913 (2013).
    CAS  PubMed  Article  Google Scholar 

    10.
    Cohen, M. S., Hawkins, M. B., Stock, D. W. & Cruz, A. Early life-history features associated with brood parasitism in the cuckoo catfish, Synodontis multipunctatus (Siluriformes: Mochokidae). Philos. Trans. R. Soc. B 374, 20180205 (2019).
    Article  Google Scholar 

    11.
    Taborsky, M. Sneakers, satellites, and helpers: Parasitic and cooperative behavior in fish reproduction. Adv. Stud. Behav. 23, 1–100 (1994).
    Article  Google Scholar 

    12.
    Zahavi, A. Mate selection: A selection for handicap. J. Theor. Biol. 53, 205–214 (1975).
    CAS  PubMed  Article  Google Scholar 

    13.
    Price, T., Schluter, D. & Heckman, N. E. Sexual selection when the female directly benefits. Biol. J. Linn. Soc. 48, 187–211 (1993).
    Article  Google Scholar 

    14.
    Arnold, S. J. & Duvall, D. Animal mating systems: A synthesis based on selection theory. Am. Nat. 143, 317–348 (1994).
    Article  Google Scholar 

    15.
    Klug, H., Alonzo, S. H. & Bonsall, M. B. Theoretical foundations of parental care. In The Evolution of Parental Care (eds Royle, N. J. et al.) 21–39 (Oxford University Press, Oxford, 2012).
    Google Scholar 

    16.
    Nazareth, T. M. & Machado, G. Mating system and exclusive postzygotic paternal care in a Neotropical harvestman (Arachnida: Opiliones). Anim. Behav. 79, 547–554 (2010).
    Article  Google Scholar 

    17.
    Matsumoto, Y., Tawa, A. & Takegaki, T. Female mate choice in a paternal brooding blenny: the process and benefits of mating with males tending young eggs. Ethology 117, 227–235 (2011).
    Article  Google Scholar 

    18.
    Rohwer, S. Selection for adoption versus infanticide by replacement “mates” in birds. In Current Ornithology (ed. Johnston, R. F.) 353–395 (Plenum Press, New York, 1986).
    Google Scholar 

    19.
    Valencia-Aguilar, A., Zamudio, K. R., Haddad, C. F. B., Bogdanowicz, S. M. & Prado, C. P. A. Show me you care: Female mate choice based on egg attendance rather than male or territorial traits. Behav. Ecol. 31, 1054–1064 (2020).
    Article  Google Scholar 

    20.
    Schulte, L. M., Ringler, E., Rojas, B. & Stynoski, J. L. Developments in amphibian parental care research: History, present advances, and future perspectives. Herpetol. Monogr. 34, 71–97 (2020).
    Article  Google Scholar 

    21.
    Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Parental care and the evolution of terrestriality in frogs. Proc. R. Soc. B 286, 20182737 (2019).
    PubMed  Article  Google Scholar 

    22.
    Guayasamin, J. M., Cisneros-Heredia, D. F., McDiarmid, R. W., Peña, P. & Hutter, C. R. Glassfrogs of ecuador: Diversity, evolution, and conservation. Diversity 12, 222 (2020).
    CAS  Article  Google Scholar 

    23.
    Stynoski, J. L. Discrimination of offspring by indirect recognition in an egg-feeding dendrobatid frog, Oophaga pumilio. Anim. Behav. 78, 1351–1356 (2009).
    Article  Google Scholar 

    24.
    Ringler, E., Beck, K. B., Weinlein, S., Huber, L. & Ringler, M. Adopt, ignore, or kill? Male poison frogs adjust parental decisions according to their territorial status. Sci. Rep. 7, 43544 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Waldman, B. Mechanisms of kin recognition. J. Theor. Biol. 128, 159–185 (1987).
    Article  Google Scholar 

    26.
    Penn, D. & Frommen, J. Kin recognition: An overview of conceptual issues, mechanisms and evolutionary theory. In Animal Behaviour: Evolution and Mechanisms (ed. Kappeler, P.) 55–86 (Springer, Heidelberg, 2010).
    Google Scholar 

    27.
    Delia, J. R., Bravo-Valencia, L. & Warkentin, K. The evolution of extended parental care in glassfrogs: Do egg-clutch phenotypes mediate coevolution between the sexes? Ecol. Monogr. 90, e01411 (2020).
    Article  Google Scholar 

    28.
    Pašukonis, A. et al. Induced parental care in a poison frog: A tadpole cross-fostering experiment. J. Exp. Biol. 220, 3949–3954 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Townsend, D. & Moger, W. H. Plasma androgen levels during male parental care in a tropical frog (Eleutherodactylus). Horm. Behav. 21, 93–99 (1987).
    CAS  PubMed  Article  Google Scholar 

    30.
    Knapp, R., Wingfield, J. C. & Bass, A. H. Steroid hormones and paternal care in the plainfin midshipman fish (Porichthys notatus). Horm. Behav. 35, 81–89 (1999).
    CAS  PubMed  Article  Google Scholar 

    31.
    Pikus, A. E., Guindre-Parker, S. & Rubenstein, D. R. Testosterone, social status and parental care in a cooperatively breeding bird. Horm. Behav. 97, 85–93 (2018).
    CAS  PubMed  Article  Google Scholar 

    32.
    Fischer, E. K. & O’Connell, L. A. Hormonal and neural correlates of care in active versus observing poison frog parents. BioRxiv 27, 765503 (2019).
    Google Scholar 

    33.
    Goymann, W. & Dávila, P. F. Acute peaks of testosterone suppress paternal care: evidence from individual hormonal reaction norms. Proc. R. Soc. B 284, 20170632 (2017).
    PubMed  Article  CAS  Google Scholar 

    34.
    Butin, J. D. Parental behavior and hormones in non-mammalian vertebrates. In Encyclopedia of Animal Behavior (eds Breed, M. & Moore, J.) 664–671 (Elsevier, Amsterdam, 2010).
    Google Scholar 

    35.
    Townsend, D. S., Palmer, B. & Guillette, L. G. The lack of influence of exogenous testosterone on male parental behavior in a neotropical frog (Eleutherodactylus): A field experiment. Horm. Behav. 25, 313–322 (1991).
    CAS  PubMed  Article  Google Scholar 

    36.
    Magee, S. E., Neff, B. D. & Knapp, R. Plasma levels of androgens and cortisol in relation to breeding behavior in parental male bluegill sunfish, Lepomis macrochirus. Horm. Behav. 49, 598–609 (2006).
    CAS  PubMed  Article  Google Scholar 

    37.
    Ouyang, J. Q., Sharp, P. J., Dawson, A., Quetting, M. & Hau, M. Hormone levels predict individual differences in reproductive success in a passerine bird. Proc. R. Soc. B 278, 2537–2545 (2011).
    CAS  PubMed  Article  Google Scholar 

    38.
    Mota, M. T. S., Franci, C. R. & Sousa, M. B. C. Hormonal changes related to paternal and alloparental care in common marmosets (Callithrix jacchus). Horm. Behav. 49, 293–302 (2006).
    CAS  Article  Google Scholar 

    39.
    Romero, L. M. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 128, 1–24 (2002).
    CAS  Article  Google Scholar 

    40.
    Consolmagno, R. C., Requena, G. S., Machado, G. & Brasileiro, C. A. Costs and benefits of temporary egg desertion in a rocky shore frog with male-only care. Behav. Ecol. Sociobiol. 70, 785–795 (2016).
    Article  Google Scholar 

    41.
    Kelly, N. B. & Alonzo, S. H. Will male advertisement be a reliable indicator of paternal care, if offspring survival depends on male care? Proc. R. Soc. B 276, 3175–3183 (2009).
    PubMed  Article  Google Scholar 

    42.
    Stiver, K. A. & Alonzo, S. H. Alloparental care increases mating success. Behav. Ecol. 22, 206–211 (2011).
    Article  Google Scholar 

    43.
    Roldán, M. & Soler, M. Parental-care parasitism: How do unrelated offspring attain acceptance by foster parents? Behav. Ecol. 22, 679–691 (2011).
    Article  Google Scholar 

    44.
    Maynard-Smith, J. Parental investment: A prospective analysis. Anim. Behav. 25, 1–9 (1977).
    Article  Google Scholar 

    45.
    Valencia-Aguilar, A., Rodrigues, D. & Prado, C. P. A. Male care status influences the risk-taking decisions in a glassfrog. Behav. Ecol. Sociobiol. 74, 1–11 (2020).
    Article  Google Scholar 

    46.
    Delia, J., Bravo-Valencia, L. & Warkentin, K. M. Patterns of parental care in Neotropical glassfrogs: Fieldwork alters hypotheses of sex-role evolution. J. Evol. Biol. 30, 898–914 (2017).
    CAS  PubMed  Article  Google Scholar 

    47.
    Noronha, J. C. & Rodrigues, D. J. Reproductive behaviour of the glass frog Hyalinobatrachium cappellei (Anura: Centrolenidae) in the Southern Amazon. J. Nat. Hist. 52, 207–224 (2018).
    Article  Google Scholar 

    48.
    Drake, D. L. & Ranvestel, A. W. Hyalinobatrachium colymbihpyllum (glass frog). Egg mass defense. Herpetol. Rev. 36, 434 (2005).
    Google Scholar 

    49.
    Vockenhuber, E. A., Hödl, W. & Amézquita, A. Glassy fathers do matter: Egg attendance enhances embryonic survivorship in the glass frog Hyalinobatrachium valerioi. J. Herpetol. 43, 340–344 (2009).
    Article  Google Scholar 

    50.
    Salgado, A. L. & Guayasamin, J. M. Parental care and reproductive behavior of the minute dappled glassfrog (Centrolenidae: Centrolene peristictum). S. Am. J. Herpetol. 13, 211–219 (2018).
    Article  Google Scholar 

    51.
    Foster, W. A. & Treherne, J. E. Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature 293, 466–467 (1981).
    ADS  Article  Google Scholar 

    52.
    Lehtonen, J. & Jaatinen, K. Safety in numbers: The dilution effect and other drivers of group life in the face of danger. Behav. Ecol. Sociobiol. 70, 449–458 (2016).
    Article  Google Scholar 

    53.
    Gloag, R., Fiorini, V. D., Reboreda, J. C. & Kacelnik, A. Brood parasite eggs enhance egg survivorship in a multiply parasitized host. Proc. Biol. Sci. 279, 1831–1839 (2012).
    PubMed  Google Scholar 

    54.
    Schulte, L. M. et al. The smell of success: Choice of larval rearing sites by means of chemical cues in a Peruvian poison frog. Anim. Behav. 81, 1147–1154 (2011).
    Article  Google Scholar 

    55.
    Kam, Y. C. & Yang, H. W. Female–offspring communication in a Taiwanese tree frog, Chirixalus eiffingeri (Anura: Rhacophoridae). Anim. Behav. 64, 881–886 (2002).
    Article  Google Scholar 

    56.
    Riedman, M. The evolution of alloparental care and adoption in mammals and birds. Q. Rev. Biol. 57, 405–435 (1982).
    Article  Google Scholar 

    57.
    Briga, M., Pen, I. & Wright, J. Care for kin: Within-group relatedness and allomaternal care are positively correlated and conserved throughout the mammalian phylogeny. Biol. Lett. 8, 533–536 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Phillips, E., DeAngelis, R., Gogola, J. V. & Rhodes, J. S. Spontaneous alloparental care of unrelated offspring by non-breeding Amphiprion ocellaris in absence of the biological parents. Sci. Rep. 10, 4610 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Lee, H. J., Heim, V. & Meyer, A. Genetic evidence for prevalence of alloparental care in a socially monogamous biparental cichlid fish, Perissodus microlepis, from Lake Tanganyika supports the “selfish shepherd effect” hypothesis. Ecol. Evol. 6, 2843–2853 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    60.
    Gosner, K. L. A simplified table for staging anuran embryos an larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar  More

  • in

    Co-application of a biosolids product and biochar to two coarse-textured pasture soils influenced microbial N cycling genes and potential for N leaching

    1.
    Sullivan, D. Composting biosolids into high quality agricultural product. BioCycle 51, 39–40 (2010).
    Google Scholar 
    2.
    Wang, X., Chen, T., Ge, Y. & Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 160, 554–558 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Borjesson, G. & Katterer, T. Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agroecosyst. 112, 369–385 (2018).
    Article  Google Scholar 

    4.
    Kelly, J. J., Favila, E., Hundal, L. S. & Marlin, J. C. Assessment of soil microbial communities in surface applied mixtures of Illinois River sediments and biosolids. Appl. Soil Ecol. 36, 176–183 (2007).
    Article  Google Scholar 

    5.
    Kelly, J. J., Polocht, K., Grancharova, T. & Hundal, L. S. Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Appl. Environ. Microbiol. 77, 6551–6558 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Nakatani, A. S. et al. Changes in the genetic structure of bacteria and microbial activity in an agricultural soil amended with tannery sludge. Soil Biol. Biochem. 43, 106–114 (2011).
    CAS  Article  Google Scholar 

    7.
    Wang, M. & Xue., J., Horswell, J., Kimberley, M.O. & Huang, Z. ,. Long-term biosolids application alters the composition of soil microbiakl groups and nutrient status in a pine plantation. Biol. Fert. Soils 53, 799–809 (2017).
    CAS  Article  Google Scholar 

    8.
    Zaleski, K. J., Josephson, K. L., Gerba, C. P. & Pepper, I. L. Potential regrowth and recolonization of Salmonellae and indicators in biosolids and biosolid-amended soil. Appl. Environ. Microbiol. 71, 3701–3708 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Singh, R. P. & Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 28, 347–358 (2008).
    CAS  Article  Google Scholar 

    10.
    Sigua, C. Recycling biosolids and lack-dredged materials to pasture-based animal agriculture: alternative nutrient sources for forage productivity and sustainability. A review. Agron. Sustain. Dev. 29, 143–160 (2009).
    CAS  Article  Google Scholar 

    11.
    McBride, M. B. Toxic metal accumulation from agricultural use of sludge—are USEPA regulations protective?. J. Environ. Qual. 24, 5–18 (1995).
    CAS  Article  Google Scholar 

    12.
    Navarro, I. et al. Environmental risk assessment of perfluoroalkyl substances and halogenated flame retardants released from biosolids-amended soils. Chemosphere 210, 147–155 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Mantovi, P., Baldoni, G. & Toderi, G. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res. 39, 289–296 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Paramashivam, D. et al. Effect of pine waste and pine biochar on nitrogen mobility in biosolids. J. Environ. Qual. 45, 360–367 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Willen, A., Junestedt, C., Rodhe, L., Pell, M. & Jonsson, H. Sewage sludge as fertiliser—environmental assessment of storage and land application options. Water Sci. Technol. 75, 1034–1050 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Weaver, D. M. & Reed, A. E. G. Patterns of nutrient status and fertiliser practice on soils of the south coast of Western Australia. Agric. Ecosyst. Environ. 67, 37–53 (1998).
    Article  Google Scholar 

    17.
    Knowles, O. A., Robinson, B. H., Contangelo, A. & Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 409, 3206–3210 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., Jones, D. L. & Murphy, D. V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354, 311–324 (2012).
    CAS  Article  Google Scholar 

    19.
    Dempster, D. N., Jones, D. L. & Murphy, D. V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221 (2012).
    CAS  Article  Google Scholar 

    20.
    Shanmugam, S., Abbott, L. K. & Murphy, D. V. Clay addition to lime-amended biosolids overcomes water repellence and provides nitrogen supply in an acid sandy soil. Soil Biol. Fert. Soils 50, 1047–1059 (2014).
    CAS  Article  Google Scholar 

    21.
    Paramashivam, D., Dickinson, N. M., Clough, T. J., Horswell, J. & Robinson, B. H. Potential environmental benefits from blending biosolids with other organic amendments before application to land. J. Environ. Qual. 46, 481–489 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Samara, E., Matsi, T., Zdragas, A. & Barbayiannis, N. Use of clay minerals for sewage sludge stabilization and a preliminary assessment of the treated sludge’s fertilization capacity. Environ. Sci. Polut. R. 26, 35387–35398 (2019).
    CAS  Article  Google Scholar 

    23.
    Djajadi, Abbott, L. K. & Hinz, C. Synergistic impacts of clay and organic matter on structural and biological properties of a sandy soil. Geoderma 183, 19–24 (2012).
    ADS  Article  Google Scholar 

    24.
    Ma, B., Lv, X., Cai, Y., Chang, S. X. & Dyke, M. F. Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biol. Biochem. 123, 45–53 (2018).
    CAS  Article  Google Scholar 

    25.
    Dilly, O., Blume, H.-P. & Munch, J. C. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65, 319–339 (2003).
    CAS  Article  Google Scholar 

    26.
    Lehmann, J. et al. Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011).
    CAS  Article  Google Scholar 

    27.
    Liang, B. et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730 (2006).
    ADS  CAS  Article  Google Scholar 

    28.
    Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R. & Condron, L. M. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353, 73–84 (2012).
    CAS  Article  Google Scholar 

    29.
    Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L. & Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39, 1224–1235 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Wang, D., Felice, M. L. & Scow, K. M. Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet-dry cycles. Appl. Soil Ecol. 152, 103570 (2020).
    Article  Google Scholar 

    32.
    Wu, H. et al. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Appl. Microbiol. Biotechnol. 100, 8583–8591 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Xu, H.-J. et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ. Sci. Technol. 48, 9391–9399 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    34.
    Solaiman, Z. M., Abbott, L. K. & Murphy, D. V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phorphorus cycling. Sci. Rep.-U.K. 9, 5062 (2019).
    ADS  Article  CAS  Google Scholar 

    35.
    Cao, H. et al. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 135, 25–32 (2019).
    Article  Google Scholar 

    36.
    Zhang, K. et al. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fert. Soils 53, 77–87 (2017).
    CAS  Article  Google Scholar 

    37.
    Gartler, J., Robinson, B., Burton, K. & Clucas, L. Carbonaceous soil amendments to biofortify crop plants with zinc. Sci. Total Environ. 465, 308–313 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Hassink, J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralisation. Soil Biol. Biochem. 26, 1221–1231 (1994).
    Article  Google Scholar 

    39.
    Wang, H., Kimberley, M. O. & Schlegelmilch, M. Biosolids-derived nitrogen mineralisation and transformation in forest soils. J. Environ. Qual. 32, 1851–1856 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Atkinson, C. J., Fitzgerald, J. & Hipps, N. Potential mechanisms for achieving agricultural benefits fromm biochar application to temperate soils: a review. Plant Soil 337, 1–18 (2010).
    CAS  Article  Google Scholar 

    41.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J. Integr. Agric. 13, 483–490 (2014).
    Article  Google Scholar 

    42.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Soil microbial responses to biochar varying in particle size, surface and pore properties. Pedosphere 25, 770–780 (2015).
    Article  Google Scholar 

    43.
    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Biochar-soil interactions in four agricultural soils. Pedosphere 25, 729–736 (2015).
    CAS  Article  Google Scholar 

    44.
    Petersen, S. O. et al. Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Till Res. 72, 139–152 (2003).
    Article  Google Scholar 

    45.
    Warman, P. R. & Termeer, W. C. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils. Bioresour. Technol. 96, 955–961 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Campos, T., Chear, G., Leles, P. D., Silva, M. & Santos, F. Leaching of heavy metals in soils conditioned with biosolids from sewage sludge. Floresta e Amniente 26, e20180399 (2019).
    Article  Google Scholar 

    47.
    Peoples, M. et al. Factors affecting the potential contributions of N2 Fuxation by legumes in Australian pasture systems. Crop Pasture Sci. 63, 759–786 (2012).
    CAS  Article  Google Scholar 

    48.
    Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012).
    CAS  Article  Google Scholar 

    49.
    Mickan, B. S., Abbott, L. K., Stefanova, K. & Solaiman, Z. M. Interactions between biochar and mycorrhizal fungi in water-stressed agricultural soil. Mycorrhiza 26, 565–574 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Hale, S. E. et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91, 1612–1619 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Zheng, J., Stewart, C. E. & Cotrufo, M. F. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 41, 1361–1370 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Dempster, D. N., Jones, D. L. & Murphy, D. V. Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biol. Biochem. 48, 47–50 (2012).
    CAS  Article  Google Scholar 

    53.
    Verhoeven, E. & Six, J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agric. Ecosyst. Environ. 191, 27–38 (2014).
    CAS  Article  Google Scholar 

    54.
    Hamza, M. A. & Anderson, W. K. Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 54, 273–282 (2003).
    Article  Google Scholar 

    55.
    Asadishad, B. et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 52, 1908–1918 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Mossa, A.-W., Dickinson, M. J., West, H. M., Young, S. D. & Crout, N. M. J. The response of soil microbial diversity and abundance to long-term application of biosolids. Environ. Pollut. 224, 16–25 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Sullivan, T. S., Stromberger, M. E. & Paschke, M. W. Parallel shifts in plant and soil microbial communities in response to biosolids in a semi-arid grassland. Soil Biol. Biochem. 38, 449–459 (2006).
    CAS  Article  Google Scholar 

    58.
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Jenkins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Anton Van Leeuwenhoek 95, 319–334 (2009).
    Article  Google Scholar 

    60.
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Zhang, X., Liu, W., Zhang, G., Jiang, L. & Han, X. Mechanisms of soil acidification reducing bacterial diversity. Soil Biol. Biochem. 81, 275–281 (2015).
    CAS  Article  Google Scholar 

    62.
    Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    O’Brien, F. J. M. et al. Soil salinity and pH drive soil bacterial community composition and diversity along a lateritic slope in the Avon River critical zone observatory, Western Australia. Front. Microbiol. 10, 1486. https://doi.org/10.3389/fmicb.2019.01486 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Zeng, Q. C., Dong, Y. H. & An, S. S. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau. China. Plos One. 11, e015289 (2016).
    Google Scholar 

    66.
    Gigliucci, F., Brambilla, G., Tozzoli, R., Michelacci, V. & Morabito, S. Comparative analysis of metagenomes of Italian top soil improvers. Environ. Res. 155, 108–115 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295–6300 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Mendez, M. O., Neilson, J. W. & Maier, R. M. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl. Environ. Microbiol. 74, 3899–3907 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Kim, J.-S., Dungan, R. S. & Crowley, D. Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil. Biol. Fert. Soils 44, 1003–1011 (2008).
    CAS  Article  Google Scholar 

    70.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Jenkins, S. N. et al. Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol. Biochem. 42, 1624–1631 (2010).
    CAS  Article  Google Scholar 

    72.
    Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744–744 (2016).
    PubMed  PubMed Central  Google Scholar 

    75.
    Barton, L., Gleeson, D. B., Maccarone, L. D., Zuniga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils?. Soil Biol. Biochem. 62, 28–35 (2013).
    CAS  Article  Google Scholar 

    76.
    Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).
    CAS  Article  Google Scholar 

    77.
    Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).
    CAS  Article  Google Scholar 

    78.
    Fisk, L. M., Maccarone, L. D., Barton, L. & Murphy, D. V. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 88, 214–223 (2015).
    CAS  Article  Google Scholar 

    79.
    Wu, J. & Brookes, P. C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol. Biochem. 37, 507–515 (2005).
    CAS  Article  Google Scholar 

    80.
    Rayment, G. & Higginson, F. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata Press, Melbourne, 1992).
    Google Scholar 

    81.
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 19, 703–707 (1987).
    CAS  Article  Google Scholar 

    82.
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol. 31, 814–821 (2013).
    CAS  Article  Google Scholar 

    83.
    Mori, H. et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 21, 217–227 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME 6, 1621–1624 (2012).
    CAS  Article  Google Scholar 

    85.
    Mickan, B. S., Abbott, L. K., Fan, J., Hart, M. M., Siddique, K. H. M., Solaiman, Z. M. & Jenkins, S. N. Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fert Soils. 54, 55–70 (2018).
    Article  Google Scholar 

    86.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27, 2194–2200 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Oksanen, J. et al. Vegan: community ecology package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan. (2010). More

  • in

    Comprehensive characterisation of Culicoides clastrieri and C. festivipennis (Diptera: Ceratopogonidae) according to morphological and morphometric characters using a multivariate approach and DNA barcode

    Molecular analyses
    Results of molecular analyses
    The sequences obtained are available in GenBank (Supplementary Information 1). Sequence alignments were 399 bp for COI and 587 bp for 28S including gaps.
    Phylogenetic analysis
    Our molecular analysis (Fig. 1) with both markers generated seven supported clusters, six of which were in agreement with the morphological determination (i.e. C. alazanicus, C. brunnicans, C. circumscriptus, C. furcillatus, C. nubeculous and C. pictipennis). However, one cluster (i.e. two species) corresponded to undistinguished C. clastrieri and C. festivipennis.
    Figure 1

    Block diagram of the study.

    Full size image

    In addition, the COI mtDNA tree shows that C. furcillatus is the sister of the “C. clastrieri/festivipennis” clade. Indeed, C. pictipennis is the sister species of C. brunnicans while C. circumscriptus is positioned between the two clades.
    Moreover, the 28S rDNA tree shows that C. pictipennis is the sister of the “C. clastrieri/festivipennis” clade. The other species are positioned in several places without a clade.
    Intra- and inter-specific comparison
    The COI Genbank sequences show little intraspecific divergence in both C. clastrieri (0.1 ± 0.1%) and C. festivipennis (1.2 ± 0.4%). The interspecific difference between C. clastrieri and in C. festivipennis is 0.7 ± 0.2%.
    Small intraspecific divergences with COI sequences were observed in our sample: C. alazanicus (1.2 ± 0.4%), C. brunnicans (0.7 ± 0.2%), C. circumscriptus (2.2 ± 0.5%), C. clastrieri (0.3 ± 0.1%), C. festivipennis (0.4 ± 0.1%), C. furcillatus (1.5 ± 0.4%), C. nubeculosus (0.2 ± 0.1%) and C. pictipennis (1.1 ± 0.3%).
    Finally, C. festivipennis and C. clastrieri—grouped in the same main clade—showed small interspecific distances (0.4 ± 0.2%); these were not identified as separate species based on DNA barcodes. We therefore decided to create a new group (C. clastrieri/festivipennis clade) based on interspecific distance. The overall mean genetic distance (K2P) computed for the different species of Culicoides was found to be 16.6 ± 1.4%. Interspecific K2P values for different (Table 1) species and taxa ranged from 27.3% (between C. furcillatus and C. nubeculosus; between C. circumscriptus-and C. furcillatus) to 17.2 ± 2.1% (between C. circumscriptus and the C. clastrieri/festivipennis clade) for our samples. For the COI Genbank sequences, we observed approximatively the same proportion and the same species (Table 1). We remarked very little interspecific divergence between our sample of the C. clastrieri/festivipennis clade and the C. clastrieri/festivipennis Genbank clade (0.6 ± 0.4%).
    Table 1 Estimation of pairwise distance (± SD) of the Culicoides species for the COI domain of the mtDNA and D1D2 region of the rDNA.
    Full size table

    Analysis from 28S rDNA sequences did not show any intraspecific divergence whatever the taxa (0.000) with the exception of C. nubeculosus (0.1 ± 0.1%) and C. festivipennis/C.clastrieri (0.1 ± 0%). The overall mean genetic distance (K2P) computed for the different species of Culicoides was found to be 2.1 ± 0.03%. Interspecific K2P values for different species (Table 1) and taxa ranged from 1.2% (between C. circumscriptus and C. furcillatus; C. furcillatus and C. brunnicans, the main C. clastrieri/festivipennis clade and C. furcillatus) to 5.3 ± 0.9% (between C. circumscriptus and C. nubeculosus).
    Morphometric and morphological analyses
    In all, 148 specimens identified as C. alazanicus (n = 10), C. brunnicans (n = 27), C. circumscriptus (n = 27), C. clastrieri (n = 21), C. festivipennis (n = 20), C. furcillatus (n = 14), C. nubeculosus (n = 19) and C. pictipennis (n = 20) were analysed with 11 wing landmarks/specimens (Fig. 2).
    Figure 2

    Trees obtained from nucleotide analysis of: (a) COI mtDNA; (b) 28S rDNA (with MP method) sequences of C. alazanicus, C. brunnicans, C. circumscriptus C. clastrieri, C. festivipennis, C. furcillatus, C. nubeculosus and C. pictipennis and bootstrap values are shown in nodes (1000 replicates).

    Full size image

    Principal component analyses
    Principal component analysis (PCA) was used to observe possible grouping trends.
    Firstly, we performed a first normed PCA using the “Wing landmarks” model. The first three axes accounted for 76%, 15% and 8% of the total variance, which suggests a weak structuration of the data. This was confirmed by a scatterplot of PCA axes 1 and 2 that was unable to separate the species (Fig. 3).
    Figure 3

    Principal component analysis (PCA): percentage of variance explained for each PCA dimension and results.

    Full size image

    Secondly, we performed a first normed PCA on the “Wing morphological characters” model. The various specimens of each species are represented by a single point suggesting a close correlation of wing morphological characters. This model, without variance, is not validated and does not permit species separation.
    We studied the “Full wing (landmarks and morphological, characters)” model through a normed PCA on raw data. C. clastrieri could be clearly separated from C. festivipennis. The first five axes accounted for 40%, 25%, 12%, 10% and 5% of the total variance. The scatterplot separated unambiguously and without overlap C. clastrieri-C. festivipennis on the one hand and the six species on the other hand (Fig. 3).
    Finally, we performed a first normed PCA on the “Full model” (Morphological characters—wing, head, abdomen, legs—and wing landmarks). The first nine axes accounted for 26%, 23%, 22%, 10%, 8%., 4%, 3%, 2% and 1% of the total variance, which reveals good structuration of the data. This was confirmed by a scatterplot of PCA axes 1 and 2 that presents the same topology as the wing morphological model (Fig. 3).
    This supports discrimination according to the species’ wing pattern. Similarly, and some body pattern characters could be used to identify Culicoides from the clastrieri/festivipennis clade better and quicker. With that objective in mind, we performed analyses on three datasets: (1) “Wing landmarks” (11 landmarks); (2) “Full wing” (38 items) and (3) the “Full model” that includes 71 items.
    Discriminant analyses
    PLS-DA and sPLS-DA models were used in order to discriminate the extremes (i.e. the most sensitive and most robust groups) using the three datasets (species, models and components) as described. The accuracy and the balanced error rate (BER) for the two models were compared and are summarised in Supplementary Information 2 and Fig. 4.
    Figure 4

    Balanced error rate (BER) choosing the number of dimensions. Performance and ncomp selection.

    Full size image

    The tuning step of the number of components to select showed that 16 components were necessary to lower the BER (Fig. 4A,B) for the “Wing landmarks” data. The AUC values with 16 components are as follows: C. alazanicus (0.97, p  More

  • in

    Past and future potential range changes in one of the last large vertebrates of the Australian continent, the emu Dromaius novaehollandiae

    1.
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl. Acad. Sci. 103, 632–636 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Latinne, A. et al. Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents. J. Biogeogr. 42, 1714–1726 (2015).
    Article  Google Scholar 

    4.
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Knick, S. T. & Rotenberry, J. T. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds. Ecology 81, 220–227 (2000).
    Article  Google Scholar 

    6.
    Enright, N. J. & Thomas, I. Pre-European fire regimes in Australian ecosystems. Geogr. Compass 2, 979–1011 (2008).
    Article  Google Scholar 

    7.
    Bowman, D. M. The impact of Aboriginal landscape burning on the Australian biota. N. Phytolog. 140, 385–410 (1998).
    Article  Google Scholar 

    8.
    Rule, S. et al. The aftermath of megafaunal extinction: Ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    Gillespie, R., Brook, B. W. & Baynes, A. Short overlap of humans and megafauna in Pleistocene Australia. Alcheringa Aust. J Palaeontol. 30, 163–186 (2006).
    Article  Google Scholar 

    10.
    Roberts, R. G. et al. New ages for the last Australian megafauna: Continent-wide extinction about 46,000 years ago. Science 292, 1888–1892 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Miller, G. H. et al. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Nat. Acad. Sci. 112, 4531–4540 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Guimarães, P. R. Jr., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS One 3, e1745 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Bradshaw, C. J. Little left to lose: Deforestation and forest degradation in Australia since European colonization. J. Plant Ecol. 5, 109–120 (2012).
    Article  Google Scholar 

    15.
    Dunstan, H., Florentine, S. K., Calviño-Cancela, M., Westbrooke, M. E. & Palmer, G. C. Dietary characteristics of Emus (Dromaius novaehollandiae) in semi-arid New South Wales, Australia, and dispersal and germination of ingested seeds. Emu 113, 168–176 (2013).
    Article  Google Scholar 

    16.
    Rogers, R. Dispersal of germinable seeds by emus in semi-arid Queensland. Emu 94, 132–134 (1994).
    Article  Google Scholar 

    17.
    Bradford, M. G. & Westcott, D. A. Consequences of Southern Cassowary (Casuarius casuarius, L) gut passage and deposition pattern on the germination of rainforest seeds. Austral. Ecol. 35, 325–333 (2010).
    Article  Google Scholar 

    18.
    Dawson, T., Read, D., Russell, E. & Herd, R. Seasonal variation in daily activity patterns, water relations and diet of emus. Emu 84, 93–102 (1984).
    Article  Google Scholar 

    19.
    Quin, B. Diet and habitat of Emus Dromaius novaehollandiae in the Grampians Ranges, south-western Victoria. Emu 96, 114–122 (1996).
    Article  Google Scholar 

    20.
    Higgins, S., Nathan, R. & Cain, M. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal?. Ecology 84, 1945–1956 (2003).
    Article  Google Scholar 

    21.
    Calviño-Cancela, M., Dunn, R. R., Van Etten, E. J. & Lamont, B. Emus as non-standard seed dispersers and their potential for long-distance dispersal. Ecography 29, 632–640 (2006).
    Article  Google Scholar 

    22.
    Calviño-Cancela, M., He, T. & Lamont, B. B. Distribution of myrmecochorous species over the landscape and their potential long-distance dispersal by emus and kangaroos. Divers. Distrib. 14, 11–17 (2008).
    Article  Google Scholar 

    23.
    McGrath, R. & Bass, D. Seed dispersal by emus on the New South Wales north-east coast. Emu 99, 248–252 (1999).
    Article  Google Scholar 

    24.
    Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Vidal, M. M., Pires, M. M. & Guimarães, P. R. Jr. Large vertebrates as the missing components of seed-dispersal networks. Biol. Cons. 163, 42–48 (2013).
    Article  Google Scholar 

    26.
    Ruxton, G. D. & Schaefer, H. M. The conservation physiology of seed dispersal. Philos. Trans. R. Soc. B Biol. Sci. 367, 1708–1718 (2012).
    Article  Google Scholar 

    27.
    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B Biol. Sci. 276, 2509–2519 (2009).
    CAS  Article  Google Scholar 

    28.
    Miller, G. H. & Fogel, M. L. Calibrating δ18O in Dromaius novaehollandiae (emu) eggshell calcite as a paleo-aridity proxy for the Quaternary of Australia. Geochim. Cosmochim. Acta 193, 1–13 (2016).
    ADS  CAS  Article  Google Scholar 

    29.
    Breckwoldt, R. Wildlife in the home paddock. Nat. Conserv. Farm. 20, 20 (1983).
    Google Scholar 

    30.
    Le Souëf, D. Extinct Tasmanian Emu. Emu Austral. Ornithol. 3, 229–231 (1904).
    Article  Google Scholar 

    31.
    Thomson, V. A. et al. Genetic diversity and drivers of dwarfism in extinct island emu populations. Biol. Lett. 14, 20 (2018).
    Article  Google Scholar 

    32.
    Department of Planning, Industry and Environment (DPIE) (2002). Emu population in the New South Wales North Coast Bioregion and Port Stephens local government area. NSW Sci. Determ. 20, 20 (2018).
    Google Scholar 

    33.
    Franklin, J. Moving beyond static species distribution models in support of conservation biogeography. Divers. Distrib. 16, 321–330 (2010).
    Article  Google Scholar 

    34.
    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Glazier, D. S. & Eckert, S. E. Competitive ability, body size and geographical range size in small mammals. J. Biogeogr. 29, 81–92 (2002).
    Article  Google Scholar 

    36.
    Gaston, K. J. How large is a species’ geographic range?. Oikos 20, 434–438 (1991).
    Article  Google Scholar 

    37.
    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514 (2008).
    Article  Google Scholar 

    38.
    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
    Article  Google Scholar 

    39.
    Östergård, H. & Ehrlén, J. Among population variation in specialist and generalist seed predation—the importance of host plant distribution, alternative hosts and environmental variation. Oikos 111, 39–46 (2005).
    Article  Google Scholar 

    40.
    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).
    Article  Google Scholar 

    41.
    Thuiller, W., Araújo, M. B. & Lavorel, S. Do we need land-cover data to model species distributions in Europe?. J. Biogeogr. 31, 353–361 (2004).
    Article  Google Scholar 

    42.
    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl. Acad. Sci. 98, 4534–4539 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    Davies, S. J. J. F., Beck, M. W. R. & Kruiskamp, J. P. Results of banding 154 emus in Western Australia. Wildl. Res. 16, 77–79 (1971).
    Article  Google Scholar 

    44.
    Pople, A., Cairns, S. & Grigg, G. Distribution and abundance of emus Dromaius novaehollandiae in relation to the environment in the South Australian pastoral zone. Emu 91, 222–229 (1991).
    Article  Google Scholar 

    45.
    Davies, S. Aspects of a study of emus in semi-arid Western Australia. Proc. Ecol. Soc. Aust. 3, 160–166 (1968).
    Google Scholar 

    46.
    Coddington, C. L. & Cockburn, A. The mating system of free-living emus. Aust. J. Zool. 43, 365–372 (1995).
    Article  Google Scholar 

    47.
    Taylor, E. L., Blache, D., Groth, D., Wetherall, J. D. & Martin, G. B. Genetic evidence for mixed parentage in nests of the emu (Dromaius novaehollandiae). Behav. Ecol. Sociobiol. 47, 359–364 (2000).
    Article  Google Scholar 

    48.
    Bradford, M. G., Dennis, A. J. & Westcott, D. A. Diet and dietary preferences of the southern cassowary (Casuarius casuarius) in North Queensland, Australia. Biotropica 40, 338–343 (2008).
    Article  Google Scholar 

    49.
    Moore, L. Population ecology of the southern cassowary Casuarius casuarius johnsonii, Mission Beach north Queensland. J. Ornithol. 148, 357–366 (2007).
    Article  Google Scholar 

    50.
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256 (2018).
    Article  Google Scholar 

    51.
    Grice, D., Caughley, G. & Short, J. Density and distribution of emus. Wildl. Res. 12, 69–73 (1985).
    Article  Google Scholar 

    52.
    Nield, A. P., Enright, N. J. & Ladd, P. G. Study of seed dispersal by Emu (Dromaius novaehollandiae) in the Jarrah (Eucalyptus marginata) forests of south-western Australia through satellite telemetry. Emu 115, 29–34 (2015).
    Article  Google Scholar 

    53.
    Davies, S. The food of emus. Aust. J. Ecol. 3, 411–422 (1978).
    Article  Google Scholar 

    54.
    Osborne, W. & Green, K. Seasonal changes in composition, abundance and foraging behavior of birds in the snowy mountains. Emu 92, 93–105 (1992).
    Article  Google Scholar 

    55.
    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    56.
    Mackey, B. G. & Lindenmayer, D. B. Towards a hierarchical framework for modelling the spatial distribution of animals. J. Biogeogr. 28, 1147–1166 (2001).
    Article  Google Scholar 

    57.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).
    Article  Google Scholar 

    58.
    Warren, M. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Thomas, C. D. Dispersal and extinction in fragmented landscapes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 139–145 (2000).
    CAS  Article  Google Scholar 

    60.
    Quigley, M. C., Horton, T., Hellstrom, J. C., Cupper, M. L. & Sandiford, M. Holocene climate change in arid Australia from speleothem and alluvial records. Holocene 20, 1093–1104 (2010).
    ADS  Article  Google Scholar 

    61.
    Shulmeister, J. & Lees, B. G. Pollen evidence from tropical Australia for the onset of an ENSO-dominated climate at c. 4000 BP. Holocene 5, 10–18 (1995).
    ADS  Article  Google Scholar 

    62.
    Weber, L. C., VanDerWal, J., Schmidt, S., McDonald, W. J. & Shoo, L. P. Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. J. Biogeogr. 41, 222–238 (2014).
    Article  Google Scholar 

    63.
    Avilés, J. M., Soler, J. J. & Pérez-Contreras, T. Dark nests and egg colour in birds: A possible functional role of ultraviolet reflectance in egg detectability. Proc. R. Soc. Lond. B Biol. Sci. 273, 2821–2829 (2006).
    Google Scholar 

    64.
    Lahti, D. C. & Ardia, D. R. Shedding light on bird egg color: Pigment as parasol and the dark car effect. Am. Nat. 187, 547–563 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Magige, F. J., Moe, B. & Røskaft, E. The white colour of the Ostrich (Struthio camelus) egg is a trade-off between predation and overheating. J. Ornithol. 149, 323–328 (2008).
    Article  Google Scholar 

    66.
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
    Article  Google Scholar 

    67.
    Maloney, S. & Dawson, T. Thermoregulation in a large bird, the emu (Dromaius novaehollandiae). J. Comp. Physiol. B. 164, 464–472 (1994).
    Article  Google Scholar 

    68.
    Dawson, T., Herd, R. & Skadhauge, E. Water turnover and body water distribution during dehydration in a large arid-zone bird, the emu, Dromaius novaehollandiae. J. Comp. Physiol. 153, 235–240 (1983).
    Article  Google Scholar 

    69.
    McKinney, M. L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495–516 (1997).
    Article  Google Scholar 

    70.
    Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M. & Wayne, R. K. Considering evolutionary processes in conservation biology. Trends Ecol. Evol. 15, 290–295 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Dickman, C. R. Impact of exotic generalist predators on the native fauna of Australia. Wildl. Biol. 2, 185–195 (1996).
    Article  Google Scholar 

    72.
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Article  Google Scholar 

    73.
    Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species—climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).
    ADS  Article  Google Scholar 

    74.
    Thuiller, W. et al. Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob. Ecol. Biogeogr. 12, 313–325 (2003).
    Article  Google Scholar 

    75.
    Pfennigwerth, S. “The mighty cassowary”: The discovery and demise of the King Island emu. Arch. Nat. Hist. 37, 74–90 (2010).
    Article  Google Scholar 

    76.
    Heupink, T. H., Huynen, L. & Lambert, D. M. Ancient DNA suggests Dwarf and ‘Giant’Emu are conspecific. PLoS One 6, e18728 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 7, 744–751 (2019).
    Article  Google Scholar 

    78.
    RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com (2020).

    79.
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: Pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).
    PubMed  Article  Google Scholar 

    81.
    Molloy, S. W., Davis, R. A., Dunlop, J. A. & van Etten, E. Applying surrogate species presences to correct sample bias in species distribution models: A case study using the Pilbara population of the Northern Quoll. Nat. Conserv. 18, 27–46 (2017).
    Google Scholar 

    82.
    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall, London, 2015).
    Google Scholar 

    83.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. A J. R. Meteorol. Soc. 25, 1965–1978 (2005).
    Article  Google Scholar 

    84.
    Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramme. Remote Sens. 57, 241–262 (2003).
    ADS  Article  Google Scholar 

    85.
    Werner, M. Shuttle radar topography mission (SRTM) mission overview. Frequenz 55, 75–79 (2001).
    ADS  Article  Google Scholar 

    86.
    ESRI, ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research Institute (2011).

    87.
    Hill, M. J., Lesslie, R., Barry, A. & Barry, S. A simple, portable, spatial multi-criteria analysis shell–MCAS-S. In MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand. 12–15 (2005).

    88.
    Australian Government Department of Agriculture, Water and the Environment (ABARES), Australian Fire Frequency (1988–2015), Australian Government. http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification (2016).

    89.
    Australian Government Department of Environmen and Energy, Australian Vegetation Attribute Manual: National Vegetation Information System, Version 6.0, Canberra (2018).

    90.
    National Aeronautics and Space Administration Socioeconomic Data and Applications Center. Gridded Population of the World v4 (2017).

    91.
    Wildlife Conservation Society (WCS), and Center for International Earth Science Information Network (CIESIN). Last of the Wild Project, Version 2: Global Human Footprint Dataset (Geographic). NASA Socioeconomic Data and Applications Center (SEDAC). Columbia University. Palisades, NY (2005).

    92.
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Article  Google Scholar 

    93.
    Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Article  Google Scholar 

    94.
    Guisan, A., Edwards, T. C. Jr. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Article  Google Scholar 

    95.
    Marquaridt, D. W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12, 591–612 (1970).
    Article  Google Scholar 

    96.
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Article  Google Scholar 

    97.
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).
    Article  Google Scholar 

    98.
    Anderson, R. P. & Gonzalez, I. Jr. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).
    Article  Google Scholar 

    99.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    100.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    101.
    Hegel, T. M., Cushman, S. A., Evans, J. & Huettmann, F. Spatial Complexity, Informatics, and Wildlife Conservation 273–311 (Springer, Tokoyo, 2010).
    Google Scholar 

    102.
    Pearce, J. L. & Boyce, M. S. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 43, 405–412 (2006).
    Article  Google Scholar 

    103.
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).
    Article  Google Scholar 

    104.
    Otto-Bliesner, B. L. et al. Last glacial maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2006).
    ADS  Article  Google Scholar 

    105.
    Bi, D. et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 63, 41–64 (2012).
    Article  Google Scholar 

    106.
    Cooper, A. et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704–707 (2001).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Yonezawa, T. et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr. Biol. 27, 68–77 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
    Article  Google Scholar 

    109.
    Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. dismo: Species distribution modeling. R package v1.1-4 (2017). More