Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia)
1.
Kuwae, T. et al. Biofilm grazing in a higher vertebrate: The Western Sandpiper, Calidris mauri. Ecology 89, 599–606 (2008).
PubMed Article PubMed Central Google Scholar
2.
Góngora, E., Braune, B. M. & Elliott, K. H. Nitrogen and sulfur isotopes predict variation in mercury levels in Arctic seabird prey. Mar. Pollut. Bull. 135, 907–914 (2018).
PubMed Article CAS Google Scholar
3.
Ben-Yosef, M., Aharon, Y., Jurkevitch, E. & Yuval, B. Give us the tools and we will do the job: Symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proc. R. Soc. B Biol. Sci. 277, 1545–1552 (2010).
CAS Article Google Scholar
4.
Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation?. Trends Ecol. Evol. 31, 689–699 (2016).
PubMed Article PubMed Central Google Scholar
5.
Lapanje, A., Zrimec, A., Drobne, D. & Rupnik, M. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut. Environ. Pollut. 158, 3186–3193 (2010).
CAS PubMed Article PubMed Central Google Scholar
6.
Lewis, W. B., Moore, F. R. & Wang, S. Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J. Avian Biol. 47, 659–668 (2016).
Article Google Scholar
7.
Bolnick, D. I. et al. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol. Lett. 17, 979–987 (2014).
PubMed PubMed Central Article Google Scholar
8.
Bolnick, D. I. et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500 (2014).
ADS CAS PubMed PubMed Central Article Google Scholar
9.
Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).
Article Google Scholar
10.
Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).
MathSciNet PubMed Article PubMed Central Google Scholar
11.
Apajalahti, J. H. A., Kettunen, A., Bedford, M. R. & Holben, W. E. Percent G + C profiling accurately reveals diet-related differences in the gastrointestinal microbial community of broiler chickens. Appl. Environ. Microbiol. 67, 5656–5667 (2001).
CAS PubMed PubMed Central Article Google Scholar
12.
Apajalahti, J. & Kettunen, A. Microbes of the chicken gastrointestinal tract. In Avian Gut Function in Health and Disease (ed. Perry, G. C.) 124–137 (CAB International, Wallingford, 2006).
Google Scholar
13.
Oakley, B. B. et al. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 360, 100–112 (2014).
CAS PubMed Article PubMed Central Google Scholar
14.
Bangert, R. L., Ward, A. C. S., Stauber, E. H., Cho, B. R. & Widders, P. R. A survey of the aerobic bacteria in the feces of captive raptors. Avian Dis. 32, 53–62 (1988).
CAS PubMed Article PubMed Central Google Scholar
15.
Soucek, Z. & Mushin, R. Gastrointestinal bacteria of certain Antarctic birds and mammals. Appl. Microbiol. 20, 561–566 (1970).
CAS PubMed PubMed Central Article Google Scholar
16.
Mead, G. C., Griffiths, N. M., Impey, C. S. & Coplestone, J. C. Influence of diet on the intestinal microflora and meat flavour of intensively-reared broiler chickens. Br. Poult. Sci. 24, 261–272 (1983).
Article Google Scholar
17.
Waldenström, J. et al. Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl. Environ. Microbiol. 68, 5911–5917 (2002).
PubMed PubMed Central Article CAS Google Scholar
18.
Waite, D. W. & Taylor, M. W. Exploring the avian gut microbiota: Current trends and future directions. Front. Microbiol. 6, 1–12 (2015).
Article Google Scholar
19.
Maul, J. D., Gandhi, J. P. & Farris, J. L. Community-level physiological profiles of cloacal microbes in songbirds (order: Passeriformes): Variation due to host species, host diet, and habitat. Microb. Ecol. 50, 19–28 (2005).
CAS PubMed Article PubMed Central Google Scholar
20.
Risely, A., Waite, D. W., Ujvari, B., Hoye, B. J. & Klaassen, M. Active migration is associated with specific and consistent changes to gut microbiota in Calidris shorebirds. J. Anim. Ecol. 87, 428–437 (2018).
PubMed Article PubMed Central Google Scholar
21.
Dewar, M. L. et al. Interspecific variations in the gastrointestinal microbiota in penguins. Microbiologyopen 2, 195–204 (2013).
CAS PubMed PubMed Central Article Google Scholar
22.
Waite, D. W. & Taylor, M. W. Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Front. Microbiol. 5, 1–12 (2014).
Article Google Scholar
23.
Teyssier, A. et al. Inside the guts of the city: Urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612, 1276–1286 (2018).
ADS CAS PubMed Article PubMed Central Google Scholar
24.
Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).
PubMed Article PubMed Central Google Scholar
25.
Capunitan, D. C., Johnson, O., Terrill, R. S. & Hird, S. M. Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Mol. Ecol. 29, 829–847 (2020).
CAS PubMed Article PubMed Central Google Scholar
26.
Michel, A. J. et al. The gut of the finch: Uniqueness of the gut microbiome of the Galápagos vampire finch. Microbiome 6, 167 (2018).
PubMed PubMed Central Article Google Scholar
27.
Elliott, K. H., Woo, K. J. & Gaston, A. J. Specialization in murres: The story of eight specialists. Waterbirds 32, 491–506 (2009).
Article Google Scholar
28.
Woo, K. J., Elliott, K. H., Davidson, M., Gaston, A. J. & Davoren, G. K. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. J. Anim. Ecol. 77, 1082–1091 (2008).
PubMed Article PubMed Central Google Scholar
29.
Elliott, K. H., Gaston, A. J. & Crump, D. Sex-specific behavior by a monomorphic seabird represents risk partitioning. Behav. Ecol. 21, 1024–1032 (2010).
Article Google Scholar
30.
Paredes, R., Jones, I. & Boness, D. Parental roles of male and female thick-billed murres and razorbills at the Gannet Islands, Labrador. Behaviour 143, 451–481 (2006).
Article Google Scholar
31.
Atwell, L., Hobson, K. A. & Welch, H. E. Biomagnification and bioaccumulation of mercury in an arctic marine food web: Insights from stable nitrogen isotope analysis. Can. J. Fish. Aquat. Sci. 55, 1114–1121 (1998).
CAS Article Google Scholar
32.
Carr, M. K. et al. Stable sulfur isotopes identify habitat-specific foraging and mercury exposure in a highly mobile fish community. Sci. Total Environ. 586, 338–346 (2017).
ADS CAS PubMed Article Google Scholar
33.
Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).
Article Google Scholar
34.
Song, S. J. et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1, e00021-e116 (2016).
PubMed PubMed Central Article Google Scholar
35.
Grond, K., Sandercock, B. K., Jumpponen, A. & Zeglin, L. H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 49, e01788 (2018).
Article Google Scholar
36.
Lawson, P. A., Collins, M. D., Falsen, E. & Foster, G. Catellicoccus marimammalium gen. nov., sp. nov., a novel Gram-positive, catalase-negative, coccus-shaped bacterium from porpoise and grey seal. Int. J. Syst. Evol. Microbiol. 56, 429–432 (2006).
CAS PubMed Article Google Scholar
37.
Sinigalliano, C. D. et al. Multi-laboratory evaluations of the performance of Catellicoccus marimammalium PCR assays developed to target gull fecal sources. Water Res. 47, 6883–6896 (2013).
CAS PubMed Article Google Scholar
38.
Ryu, H. et al. Comparison of gull feces-specific assays targeting the 16S rRNA genes of Catellicoccus marimammalium and Streptococcus spp. Appl. Environ. Microbiol. 78, 1909–1916 (2012).
CAS PubMed PubMed Central Article Google Scholar
39.
Koskey, A. M., Fisher, J. C., Traudt, M. F., Newton, R. J. & McLellan, S. L. Analysis of the gull fecal microbial community reveals the dominance of Catellicoccus marimammalium in relation to culturable enterococci. Appl. Environ. Microbiol. 80, 757–765 (2014).
CAS PubMed PubMed Central Article Google Scholar
40.
Lu, J., Santo Domingo, J. W., Lamendella, R., Edge, T. & Hill, S. Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl. Environ. Microbiol. 74, 3969–3976 (2008).
CAS PubMed PubMed Central Article Google Scholar
41.
Benskin, C. M. H., Rhodes, G., Pickup, R. W., Wilson, K. & Hartley, I. R. Diversity and temporal stability of bacterial communities in a model passerine bird, the zebra finch. Mol. Ecol. 19, 5531–5544 (2010).
PubMed Article PubMed Central Google Scholar
42.
Kreisinger, J. et al. Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front. Microbiol. 8, 1–19 (2017).
Article Google Scholar
43.
Grond, K., Ryu, H., Baker, A. J., Santo Domingo, J. W. & Buehler, D. M. Gastro-intestinal microbiota of two migratory shorebird species during spring migration staging in Delaware Bay, USA. J. Ornithol. 155, 969–977 (2014).
Article Google Scholar
44.
Santos, S. S. et al. Diversity of cloacal microbial community in migratory shorebirds that use the Tagus estuary as stopover habitat and their potential to harbor and disperse pathogenic microorganisms. FEMS Microbiol. Ecol. 82, 63–74 (2012).
CAS PubMed Article PubMed Central Google Scholar
45.
Laviad-Shitrit, S., Izhaki, I., Lalzar, M. & Halpern, M. Comparative analysis of intestine microbiota of four wild waterbird species. Front. Microbiol. 10, 1–13 (2019).
Article Google Scholar
46.
Weigand, M. R., Ryu, H., Bozcek, L., Konstantinidis, K. T. & Santo Domingo, J. W. Draft genome sequence of Catellicoccus marimammalium, a novel species commonly found in gull feces. Genome Announc. 1, 12–13 (2013).
Article Google Scholar
47.
Dewar, M. L. et al. Influence of fasting during moult on the faecal microbiota of penguins. PLoS ONE 9, e99996 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
48.
Dewar, M. L., Arnould, J. P. Y., Krause, L., Dann, P. & Smith, S. C. Interspecific variations in the faecal microbiota of Procellariiform seabirds. FEMS Microbiol. Ecol. 89, 47–55 (2014).
CAS PubMed Article PubMed Central Google Scholar
49.
Roggenbuck, M. et al. The microbiome of New World vultures. Nat. Commun. 5, 5498 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
50.
Potrykus, J., White, R. L. & Bearne, S. L. Proteomic investigation of amino acid catabolism in the indigenous gut anaerobe Fusobacterium varium. Proteomics 8, 2691–2703 (2008).
CAS PubMed Article PubMed Central Google Scholar
51.
Tsuchiya, C., Sakata, T. & Sugita, H. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Lett. Appl. Microbiol. 46, 071018031740002–000 (2007).
Article CAS Google Scholar
52.
Tegtmeier, D., Riese, C., Geissinger, O., Radek, R. & Brune, A. Breznakia blatticola gen. nov. sp. nov. and Breznakia pachnodae sp. nov., two fermenting bacteria isolated from insect guts, and emended description of the family Erysipelotrichaceae. Syst. Appl. Microbiol. 39, 319–329 (2016).
CAS PubMed Article PubMed Central Google Scholar
53.
Vandamme, P. et al. Ornithobacterium rhinotracheale gen. nov., sp. nov. isolated from the avian respiratory tract. Int. J. Syst. Bacteriol. 44, 24–37 (1994).
CAS PubMed Article PubMed Central Google Scholar
54.
Cerdà-Cuéllar, M. et al. Do humans spread zoonotic enteric bacteria in Antarctica?. Sci. Total Environ. 654, 190–196 (2019).
ADS PubMed Article CAS PubMed Central Google Scholar
55.
Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing?. Ecol. Monogr. 83, 557–574 (2013).
Article Google Scholar
56.
Lott, C. A., Meehan, T. D. & Heath, J. A. Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: Influence of marine prey base. Oecologia 134, 505–510 (2003).
ADS PubMed Article PubMed Central Google Scholar
57.
Góngora, E., Elliott, K. & Whyte, L. Dataset from Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Mendeley Data v4, (2020).
58.
Eriksson, P., Mourkas, E., González-Acuna, D., Olsen, B. & Ellström, P. Evaluation and optimization of microbial DNA extraction from fecal samples of wild Antarctic bird species. Infect. Ecol. Epidemiol. 7, 1386536 (2017).
PubMed PubMed Central Google Scholar
59.
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
CAS PubMed Article PubMed Central Google Scholar
60.
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
PubMed PubMed Central Article CAS Google Scholar
61.
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
CAS PubMed PubMed Central Article Google Scholar
62.
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
CAS PubMed PubMed Central Article Google Scholar
63.
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
PubMed PubMed Central Article Google Scholar
64.
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
ADS PubMed PubMed Central Article CAS Google Scholar
65.
Braune, B. M., Gaston, A. J., Hobson, K. A., Gilchrist, H. G. & Mallory, M. L. Changes in food web structure alter trends of mercury uptake at two seabird colonies in the Canadian arctic. Environ. Sci. Technol. 48, 13246–13252 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
66.
Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses. F1000Research 5, 1492 (2016).
PubMed PubMed Central Article Google Scholar
67.
Bokulich, N. A. et al. q2-longitudinal: Longitudinal and paired-sample analyses of microbiome data. mSystems 3, 1–9 (2018).
Article Google Scholar
68.
Wilcoxon, F. Individual comparisons by Ranking methods. Biometrics Bull. 1, 80 (1945).
Article Google Scholar
69.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
Google Scholar
70.
Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
CAS PubMed PubMed Central Article Google Scholar
71.
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
Article Google Scholar
72.
Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, Champaign, 1949).
Google Scholar
73.
Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).
MATH Article Google Scholar
74.
Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).
MathSciNet PubMed PubMed Central MATH Article Google Scholar
75.
Legendre, P. & Legendre, L. Ordination in reduced space. In Numerical Ecology Vol. 24 (eds Legendre, P. & Legendre, L.) 425–520 (Elsevier, Amsterdam, 2012).
Google Scholar
76.
Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience 2, 16 (2013).
PubMed PubMed Central Article Google Scholar
77.
Vázquez-Baeza, Y. et al. Bringing the dynamic microbiome to life with animations. Cell Host Microbe 21, 7–10 (2017).
PubMed Article CAS Google Scholar
78.
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
79.
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
PubMed PubMed Central Article CAS Google Scholar
80.
McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
81.
Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).
MathSciNet MATH Article Google Scholar
82.
Bartoń, K. MuMIn: Multi-Model Inference. (2019). More