Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metabolic volatiles are attractive to Drosophila suzukii in the laboratory and field
1.
Bolda, M. P., Goodhue, R. E. & Zalom, F. G. Spotted wing drosophila: Potential economic impact of a newly established pest. Agric. Resour. Econ. Update 13, 5–8 (2010).
Google Scholar
2.
Calabria, G., Máca, J., Bächli, G., Serra, L. & Pascual, M. First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J. Appl. Entomol. 136, 139–147 (2012).
Article Google Scholar
3.
Harris, A. & Shaw, B. First record of Drosophila suzukii (Matsumura) (Diptera, Drosophilidae) in Great Britain. Dipterists Digest. 21, 189–192 (2014).
Google Scholar
4.
Atallah, J., Teixeira, L., Salazar, R., Zaragoza, G. & Kopp, A. The making of a pest: The evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 281, 20132840. https://doi.org/10.1098/rspb.2013.2840 (2014).
Article Google Scholar
5.
Rombaut, A. et al. Invasive Drosophila suzukii facilitates Drosophila melanogaster infestation and sour rot outbreaks in the vineyards. R. Soc. Open Sci. 4, 170117. https://doi.org/10.1098/rsos.170117 (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
6.
Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manag. Sci. 75, 1270–1276. https://doi.org/10.1002/ps.5240 (2019).
CAS Article PubMed Google Scholar
7.
Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. 105, 2498–2503 (2008).
ADS CAS Article Google Scholar
8.
Piper, M. D. W. et al. A holidic medium for Drosophila melanogaster. Nat. Methods 11, 100–105. https://doi.org/10.1038/nmeth.2731 (2014).
CAS Article PubMed Google Scholar
9.
Grangeteau, C. et al. Yeast quality in juvenile diet affects Drosophila melanogaster adult life traits. Sci. Rep. 8, 13070. https://doi.org/10.1038/s41598-018-31561-9 (2018).
ADS CAS Article PubMed PubMed Central Google Scholar
10.
Rohlfs, M. & Kürschner, L. Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J. Appl. Entomol. 134, 667–671. https://doi.org/10.1111/j.1439-0418.2009.01458.x (2009).
Article Google Scholar
11.
Hardin, J. A., Kraus, D. A. & Burrack, H. J. Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol. Exp. Appl. 156, 59–65. https://doi.org/10.1111/eea.12311 (2015).
CAS Article Google Scholar
12.
Lewis, M. T. & Hamby, K. A. Differential impacts of yeasts on feeding behavior and development in larval Drosophila suzukii (Diptera:Drosophilidae). Sci. Rep. 9, 13370. https://doi.org/10.1038/s41598-019-48863-1 (2019).
ADS CAS Article PubMed PubMed Central Google Scholar
13.
Bellutti, N. et al. Dietary yeast affects preference and performance in Drosophila suzukii. J. Pest. Sci. 91, 651–660 (2018).
Article Google Scholar
14.
Buser, C. C., Newcomb, R. D., Gaskett, A. C. & Goddard, M. R. Niche construction initiates the evolution of mutualistic interactions. Ecol. Lett. 17, 1257–1264. https://doi.org/10.1111/ele.12331 (2014).
Article PubMed Google Scholar
15.
Günther, C. S., Knight, S. J., Jones, R. & Goddard, M. R. Are Drosophila preferences for yeasts stable or contextual?. Ecol. Evol. 9, 8075–8086. https://doi.org/10.1002/ece3.5366 (2019).
Article PubMed PubMed Central Google Scholar
16.
Christiaens, J. F. et al. The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep. 9, 425–432. https://doi.org/10.1016/j.celrep.2014.09.009 (2014).
CAS Article PubMed Google Scholar
17.
Palanca, L., Gaskett, A. C., Günther, C. S., Newcomb, R. D. & Goddard, M. R. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster. PLoS ONE 8, e75332. https://doi.org/10.1371/journal.pone.0075332 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
18.
Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G. & Syed, Z. Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 5, 1–13. https://doi.org/10.1038/srep14059 (2015).
CAS Article Google Scholar
19.
Becher, P. G. et al. Chemical signaling and insect attraction is a conserved trait in yeasts. Ecol. Evol. 8, 2962–2974. https://doi.org/10.1002/ece3.3905 (2018).
Article PubMed PubMed Central Google Scholar
20.
Chandler, J. A., Eisen, J. A. & Kopp, A. Yeast communities of diverse Drosophila species: Comparison of two symbiont groups in the same hosts. Appl. Environ. Microbiol. 78, 7327–7336. https://doi.org/10.1128/AEM.01741-12 (2012).
CAS Article PubMed Google Scholar
21.
Lam, S. S. T. H. & Howell, K. S. Drosophila-associated yeast species in vineyard ecosystems. FEMS Microbiol. Lett. 362, 1–7. https://doi.org/10.1093/femsle/fnv170 (2015).
CAS Article Google Scholar
22.
Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78, 4869–4873. https://doi.org/10.1128/AEM.00841-12 (2012).
CAS Article PubMed PubMed Central Google Scholar
23.
Lewis, M. T., Koivunen, E. E., Swett, C. L. & Hamby, K. A. Associations between Drosophila suzukii (Diptera: Drosophilidae) and fungi in raspberries. Environ. Entomol. 27, 383–392. https://doi.org/10.1093/ee/nvy167 (2018).
Article Google Scholar
24.
Fountain, M. T. et al. Alimentary microbes of winter-form Drosophila suzukii. Insect Mol. Biol. 27, 383–392. https://doi.org/10.1111/imb.12377 (2018).
CAS Article PubMed Google Scholar
25.
Vadkertiová, R., Molnárová, J., Vránová, D. & Sláviková, E. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can. J. Microbiol. 58, 1344–1352. https://doi.org/10.1139/cjm-2012-0468 (2012).
CAS Article PubMed Google Scholar
26.
Barata, A., Malfeito-Ferreira, M. & Loureiro, V. Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Int. J. Food Microbiol. 154, 152–161. https://doi.org/10.1016/J.IJFOODMICRO.2011.12.029 (2012).
CAS Article PubMed Google Scholar
27.
Lasa, R. et al. Yeast species, strains, and growth media mediate attraction of Drosophila suzukii (Diptera: Drosophilidae). Insects 10, 228–228. https://doi.org/10.3390/insects10080228 (2019).
Article PubMed Central Google Scholar
28.
Noble, R. et al. Improved insecticidal control of spotted wing drosophila (Drosophila suzukii) using yeast and fermented strawberry juice baits. Crop Protect. https://doi.org/10.1016/J.CROPRO.2019.104902 (2019).
Article Google Scholar
29.
Hoang, D., Kopp, A. & Chandler, J. A. Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?. PeerJ 3, e1116. https://doi.org/10.7717/peerj.1116 (2015).
Article PubMed PubMed Central Google Scholar
30.
Taylor, M. W., Tsai, P., Anfang, N., Ross, H. A. & Goddard, M. R. Pyrosequencing reveals regional differences in fruit-associated fungal communities. Environ. Microbiol. 16, 2848–2858. https://doi.org/10.1111/1462-2920.12456 (2014).
CAS Article PubMed PubMed Central Google Scholar
31.
Abdelfattah, A., Wisniewski, M., Li Destri Nicosia, M. G., Cacciola, S. O. & Schena, L. Metagenomic analysis of fungal diversity on strawberry plants and the effect of management practices on the fungal community structure of aerial organs. PLoS ONE 11, e0160470. https://doi.org/10.1371/journal.pone.0160470 (2016).
CAS Article PubMed PubMed Central Google Scholar
32.
Dobzhansky, T., Cooper, D. M., Phaff, H. J., Knapp, E. P. & Carson, H. L. Differential attraction of species of Drosophila to different species of yeasts. Ecology 37, 544–550. https://doi.org/10.2307/1930178 (1956).
Article Google Scholar
33.
Günther, C. S. & Goddard, M. R. Do yeasts and Drosophila interact just by chance?. Fungal Ecol. 38, 37–43. https://doi.org/10.1016/J.FUNECO.2018.04.005 (2018).
Article Google Scholar
34.
Günther, C. S., Goddard, M. R., Newcomb, R. D. & Buser, C. C. The context of chemical communication driving a mutualism. J. Chem. Ecol. 41, 929–936. https://doi.org/10.1007/s10886-015-0629-z (2015).
CAS Article PubMed Google Scholar
35.
Schiabor, K. M., Quan, A. S. & Eisen, M. B. Saccharomyces cerevisiae mitochondria are required for optimal attractiveness to Drosophila melanogaster. PLoS ONE 9, e113899. https://doi.org/10.1371/journal.pone.0113899 (2014).
ADS CAS Article PubMed PubMed Central Google Scholar
36.
Gayevskiy, V. & Goddard, M. R. Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand. ISME J. 6, 1281–1290 (2012).
CAS Article Google Scholar
37.
Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. 111, E139–E148. https://doi.org/10.1073/PNAS.1317377110 (2014).
ADS CAS Article PubMed Google Scholar
38.
Martins, G. et al. Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. Int. J. Food Microbiol. 177, 21–28. https://doi.org/10.1016/J.IJFOODMICRO.2014.02.002 (2014).
Article PubMed Google Scholar
39.
Cordero-Bueso, G. et al. Influence of the farming system and vine variety on yeast communities associated with grape berries. Int. J. Food Microbiol. 145, 132–139. https://doi.org/10.1016/J.IJFOODMICRO.2010.11.040 (2011).
Article PubMed Google Scholar
40.
Cha, D. H., Adams, T., Rogg, H. & Landolt, P. J. Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing drosophila, Drosophila suzukii. J. Chem. Ecol. 38, 1419–1431. https://doi.org/10.1007/s10886-012-0196-5 (2012).
CAS Article PubMed Google Scholar
41.
Cha, D. H. et al. A four-component synthetic attractant for Drosophila suzukii (Diptera: Drosophilidae) isolated from fermented bait headspace. Pest Manag. Sci. 70, 324–331. https://doi.org/10.1002/ps.3568 (2014).
CAS Article PubMed Google Scholar
42.
Faucher, C. P., Hilker, M. & de Bruyne, M. Interactions of carbon dioxide and food odours in Drosophila: Olfactory hedonics and sensory neuron properties. PLoS ONE 8, e56361 (2013).
ADS CAS Article Google Scholar
43.
Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458, 337–341 (2009).
ADS CAS Article Google Scholar
44.
Knight, S., Klaere, S., Fedrizzi, B. & Goddard, M. R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 5, 1–10. https://doi.org/10.1038/srep14233 (2015).
CAS Article Google Scholar
45.
Albertin, W. et al. Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering. Front. Microbiol. 6, 1569 (2016).
Article Google Scholar
46.
Shearer, P. W. et al. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol. 16, 11. https://doi.org/10.1186/s12898-016-0070-3 (2016).
Article PubMed PubMed Central Google Scholar
47.
Tochen, S. et al. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 43, 501–510. https://doi.org/10.1603/EN13200 (2014).
Article PubMed Google Scholar
48.
Ryan, G. D., Emiljanowicz, L., Wilkinson, F., Kornya, M. & Newman, J. A. Thermal tolerances of the spotted-wing drosophila Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol 109, 746–752. https://doi.org/10.1093/jee/tow006 (2016).
Article PubMed Google Scholar
49.
Plantamp, C., Estragnat, V., Fellous, S., Desouhant, E. & Gibert, P. Where and what to feed? Differential effects on fecundity and longevity in the invasive Drosophila suzukii. Basic Appl. Ecol. 19, 56–66. https://doi.org/10.1016/j.baae.2016.10.005 (2017).
Article Google Scholar
50.
Anfang, N., Brajkovich, M. & Goddard, M. R. Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust. J. Grape Wine Res. 15, 1–8 (2009).
CAS Article Google Scholar
51.
Fischer, C. et al. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife 6, e18855. https://doi.org/10.7554/eLife.18855 (2017).
Article PubMed PubMed Central Google Scholar
52.
Mori, B. A. et al. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 54, 170–177. https://doi.org/10.1111/1365-2664.12688 (2017).
Article Google Scholar
53.
Shaw, B., Brain, P., Wijnen, H. & Fountain, M. T. Reducing Drosophila suzukii emergence through inter-species competition. Pest Manag. Sci. 74, 149–160. https://doi.org/10.1002/ps.4836 (2018).
CAS Article Google Scholar
54.
Cini, A., Ioriatti, C. & Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 65, 149–160 (2012).
Google Scholar
55.
Crawley, M. J. The R book (Wiley, New York, 2013).
Google Scholar
56.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
Google Scholar
57.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
58.
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Estimated marginal means, aka least-squares means. R package version 1.3. 2. (2019).
59.
Harrell, F. E., et al. Hmisc: Harrell Miscellaneous. R package version 4.3–1. (2020). More
