More stories

  • in

    Disturbance type determines how connectivity shapes ecosystem resilience

    Connectivity confers resilience
    We observed inherently higher grazing performance in better-connected, unperturbed systems (Fig. 2a,f). The two better-connected systems (connectivity = 14.5; 21.6) had significantly higher grazing performance than the least-connected system (connectivity = 9.6), demonstrating a positive, non-linear, relationship between connectivity and ecosystem function in the controls (Fig. 2a,f; S1, S2). Physical disturbances, however, did not appear to dramatically alter this relationship at the system level (Fig. 2b,c), despite clear impacts on performance in the affected patch (Fig. 2g,h).
    Figure 2

    Grazing performance in response to ten experimental disturbance treatments at three connectivity levels. Grazing performance is algal consumption as a proportion of total algae available (mean ± SE). In d: both stressors were applied to the same patch (same). In e: stressors were applied to different patches (diff).

    Full size image

    Each disturbance regime resulted in a significant decrease in grazing performance within the affected patch (Fig. 2f:j; S2), but not always across the entire system (e.g. Fig. 2a:e; S1). Impacts within affected areas were sometimes offset at the whole system level by increases within unstressed patches because the stressors themselves triggered animal aggregations in unstressed regions. For example, the animals typically left heat-stressed areas, sometimes finding refuge in the unstressed patch. This meant that unstressed protected areas sometimes returned higher grazing performance than in the control scenarios, offsetting losses in the affected patch and resulting in no significant change in performance across the whole system (Fig. 2b,c).
    Multiple stressor scenarios
    Multiple stressors had variable effects on the shape of the connectivity-resilience relationship (Fig. 2; Extended data Fig. 2). When heat-stress and harvesting were applied to the same patch, grazing performance was heavily reduced under all connectivity scenarios, but the shape of the connectivity-resilience relationship remained positive (Fig. 2d,i). However, when applied to different patches, these effects were strongly antagonistic. Heat-stress offset the effect of harvesting, creating a slight negative relationship between connectivity and resilience. There was a loss in grazing performance at higher connectivity levels and, by contrast, a slight gain at the lowest connectivity (Fig. 2e,j). Heat-stress likely encouraged animals to move away from the hotter patch, into the harvesting patch. These patches were in closer proximity in better-connected systems, making animal congregations in the harvesting patch more likely, thus increasing the relative impact of harvesting and changing the shape of the connectivity-resilience relationship.
    Disease interactions
    We applied a 50% consumption penalty for infected individuals in disease simulations, representing a realistic simulation of real-world diseases that can hinder animal performance. White-spot disease, for example, affects shrimp consumption rates before causing mortality, allowing the disease to spread while also suppressing consumption rates27. Some diseases may have different magnitudes of effect on individuals. Thus, we also simulated stronger disease effects by reducing grazing rates for infected crabs by 100%. In general, the simulated disease infected more crabs at higher connectivity levels (Extended data Fig. 3), leading to higher consumption penalties with increasing connectivity in most scenarios (Fig. 3a,b). The 50% disease effect level did not negate the inherent benefits of connectivity observed in unperturbed systems (Fig. 2), but at a more strongly negative relationship between connectivity and grazing performance was observed under a 100% penalty (Fig. 3b). Thus, disease had a higher impact on ecosystem function in better-connected systems (Fig. 3; Extended data Fig. 4).
    Figure 3

    Box and violin plots of effect size for each of the (a) 50% and (b) 100% disease effect scenarios and (c) standard error plot of variation across all spatial scales and connectivity levels. Linear model (dashed line) in (a) and (b) provided as visual guide of direction of trend. Data in (c) are the grand-averages of within-treatment standard errors.

    Full size image

    There was also less variability in grazing performance with higher connectivity, but not significantly (Fig. 3c). The within-treatment standard error in grazing performance was empirically lowest in the best-connected systems across three spatial assessment levels (Fig. 3c), suggesting that grazing responses were more predictable in better-connected systems (Fig. 3c).
    Conservation implications
    Given the setting of reserves in complex spatial mosaics, with multiple stressors, it is necessary to have a better understanding of how connectivity can change the way ecosystems respond to stressors. We show that these relationships are complex, even in simplified, controlled systems. Despite the microcosm scale of our experiments, our results support real-world phenomena that have been linked with the benefits of connectivity and/or protected areas. Thus, we suggest these findings contribute valuable information to support the future design of research and management strategies for natural systems. For example, Marine Protected Areas (MPAs) can be considered analogous refuges to the unaffected patches in our harvesting scenarios. MPAs provide an offsetting service in natural ecosystems where, by excluding harvesting, they provide a refuge and source of animal resupply28 that supports fisheries and acts to maintain ecosystem function e.g.22. Our systems responded similarly to these real-world examples in that the number of animals available for harvest was highest at the edge of the simulated MPA, as observed in the best-connected systems (Extended data Fig. 5). This phenomenon was strongest in the multiple-stressor scenario that applied heat-stress to the patch that was protected from harvesting pressure. Heat-stressed animals vacated the hotter protected area, exposing them to possible capture.
    Additionally, connectivity may provide a stabilising effect on ecosystem function, a phenomena that may partially contribute to previous findings that connectivity strengthens ecosystem resilience (e.g.29). Thus, when connectivity is low, ecosystems may experience greater variability in the performance of key ecosystem functions, potentially limiting capacity to resist or recover from disturbance.
    We tested the role that connectivity plays in shaping animal functional responses to single and multiple disturbance events of different types. To do so, we quantified the effect that different combinations of stressors had on the grazing performance of a widespread mesograzer, the yellow-footed hermit crab (Clibanarius virescens), in purpose-built arenas at three levels of connectivity. Connectivity can be measured in many ways, with effects being difficult to quantify between systems with different numbers of redundant or complimentary routes, motifs such as triangular or circular clusters, or ‘hubs’ that connect multiple patches to one central node30. To minimise unintended effects of altering the number or place of connections, we altered system connectivity by varying the location of important patches (containing food) within a standard 4 × 3 node grid of approx. 42 × 32 cm (Fig. 1), rather than by adding or removing connections. We selected system configurations (habitat patch placements) that were symmetrical along both the x and y axes, minimising the risk of introducing unintentional confounding effects. This created a base system with 12 nodes and 14 edges in all cases.
    Connectivity within each system was calculated using a modified measure of closeness31, as in Eq. (1):

    $$text{Connectivity }= frac{1}{T+P+D}times 100$$
    (1)

    where; T = average shortest path length from food node 1 to all other nodes; P = average shortest path length from food node 2 to all other nodes; and D = shortest path length between both food nodes. All path lengths were counted as integer steps between nodes.
    Standard experimental procedure for all treatments
    We tested ten treatments at each connectivity level, resulting in N = 236 replications; between 73 and 82 at each connectivity level.
    Each replication involved slowly warming crabs and arenas to the desired temperature (defined per treatment below) over a 4-h period, approximately mimicking daily warming cycles. One crab was then added to each patch (12 total in the system), and six 1 mg algal pellets were added to each of the two food patches (coloured patches in Fig. 1). Every 20 min, the number of pellets remaining was counted, and an additional six pellets were added to each patch. Each experimental replication lasted 1 h (3 × 20-min intervals), starting when crabs were first added to the arena. Thus, in all cases, 18 pellets were added to each patch; 36 total to the system. This was determined as the control level because an individual crab is expected to consume approximately three pellets per hour at an optimal temperature 29.5 °C25. Hence, by adding pellets equal to the mean consumption rate (one per crab per 20-min period), we simulated a stable system in which consumption was approximately equal to algal production in the absence of stressors. Any reduction in consumption (driven by stressors) below optimal rates implies that algal mass would increase over time, suggesting that the system is trending towards a phase shift. Thus, by our definition, lower consumption makes the system less resilient.
    Treatment specifics
    Control
    The control treatments were run as per the standard experimental procedure described above with no stressor applied.
    Heat-stress
    For the temperature stressor treatment, the experiment was run as per the standard experimental procedure, but with a temperature stress applied to the half of the arena incorporating an affected patch ‘Zone B’). Water was heated using a combination of sous vide precision cookers and aquarium heaters, arranged in a way that ensured the stability of target temperatures for the duration of the experiment. The stressed half of the arena was set to 33.5 °C, and the unstressed half was set to optimal temperature (29.5 °C; as per24). The 4 °C increase in temperature is expected to decrease consumption rates by approx. 15–20%24, with an additional effect on movement expected to amplify this effect. This is intended to simulate a system with connected heat-stressed and refuge areas.
    Harvesting pressure
    A harvesting stressor was applied that simulated a fishery management scenario with a fixed bag limit. We designated one food patch as a protected area and resupply point (blue in Fig. 1), and the other as a harvesting area (red in Fig. 1). Because our systems included two distinct habitat patches, separated by different amounts of featureless habitat at different connectivity levels, we equate these to reef or vegetated habitat where fauna are likely to congregate near resources. Similarly, fishers are likely to congregate in the same areas, unless excluded. Thus, by restricting harvesting in one of the patches, we have simulated the broad dynamics of an enclosed bay that contains both protected and high harvesting pressure habitat areas, and some unprotected, but featureless areas in-between that would be expected to experience low harvesting pressure, which we did not attempt to simulate.
    In this scenario, we set a bag-limit that allowed up to three crabs (or as many as were present under three) to be harvested from the affected patch at the end of each 20 min interval, and then the same number of crabs were added to the protected area, simulating a maximum sustainable yield management (MSY) scenario. Under the harvesting only stressor, all other experimental procedures were as per the standard scenario, with temperature set to optimal (29.5 °C) across the entire arena.
    Heat-stress and harvesting
    To investigate how multiple stressors interact with the connectivity-resilience relationship, we also applied both heat-stress and harvesting to the same arenas simultaneously in two ways. First, by applying both stressors to the same patch (same), and second by applying the heat-stress to the protected area and the harvesting pressure to the other (diff).
    Disease
    We applied a simulated effect of disease by recording interactions between individuals and applying a 50% and 100% (separately) consumption penalty for ‘infected’ crabs. Reduced consumption is a known effect observed in individuals infected by numerous diseases, including some that are known to affect crustacean mesograzers (e.g. white-spot disease27). We recorded all experimental treatments on video (GoPro models) and then extracted data on the movement and interactions between crabs from each video. Unique colour markers were used to track individual crabs, enabling data to be recorded for all occasions during which contact was made between crabs (including the total duration of each interaction). We also recorded the time that each crab entered and/or exited one of the designated habitat patches.
    Disease spread scenarios were then modelled from interaction data, whereby we designated an individual crab as being the infection vector (starting with a disease) and then quantified how the disease spread through the system through crab-to-crab interactions. For each treatment replication, 12 sub-replications were assessed simulating each of the 12 different crabs starting with the disease. See Extended data Fig. 1 for example of infection pathways taken for each ‘starting crab’ during one physical replicate. Interaction and movement data were extracted from videos manually. Disease spread was then simulated from interaction data in R using customised code.
    For each disease spread scenario we applied the stressor as a 50% reduction in consumption for diseased crabs as our primary test level, also testing the effect at a 100% reduction level to observe a worst-case scenario. The effect was calculated based on the total consumption within a period and time that crabs (both infected and uninfected) spent in close proximity to food using the below equations:
    1.
    Consumption after disease = 
    Disease effect (as percentage) × observed consumption rate × cumulative infection time.

    2.
    Observed consumption rate = (frac{total ; consumption}{sum_{n=1}^{12} crab ; n ; total ; time ; in ; food ; patch})

    3.
    Cumulative infection time = (sum_{n=1}^{12}crab ; n ; time ; in ; food ; patch ; while ; infected)

    See worked example in Extended data Table 1.
    Statistical analyses
    We assessed the effect of treatment (connectivity level and stressor(s)) with generalised linear models (glm). Effect was assessed at two levels: both at the whole system level, as total consumption across both habitat patches combined and, within the affected patch only (affected), tested in separate analyses. Treatments (as factors) were: Control; heat-stress, harvesting; heat-stress and harvesting (same); heat-stress and harvesting (diff). Noting that in the heat-stress and harvesting (diff) treatment there was no designated ‘unaffected’ patch because both patches were affected by at least one stressor. For consistency, we included the patch affected by harvesting in all affected patch analyses. Connectivity level was the system’s connectivity metric (9.6; 14.5; 21.6), also set as a factor.
    To identify the best model, we started with the most complex model that included all possible interaction terms, and used a leave-one-out technique, exclude the most complex interaction term until a significant interaction was identified using Analysis of Deviance (ANOVA) with chi-squared test (detailed outputs in S1; S2). The final glm model was selected as the most complex equation (i.e. largest interaction term) that returned a significant interaction in this test, resulting in a final model for both system level and affected patch level of:
    Consumption ~ Harvesting + Heat-stress + Connectivity + Disease + Harvesting:heat-stress + Harvesting:Connectivity + Heat-stress:Connectivity + Harvesting:Disease + Heat-stress:Disease + Connectivity:Disease + Harvesting:Heat-stress:Connectivity.
    Mean ± SE plots presented were derived from outputs for this glm equation. Alpha was set to 0.05.
    Treatment differences were assessed using model outputs, with significant differences defined as non-overlapping treatment values for model fit (mean) ± standard error.
    Disease effect size was calculated as:

    $$Effect;size , = , left( {diseased;consumption , {-} , replication;consumption} right)/replication;consumption$$ More

  • in

    Silicon alleviates salinity stress in licorice (Glycyrrhiza uralensis) by regulating carbon and nitrogen metabolism

    1.
    Aslam, M., Ahmad, K., Arslan, A. M. & Amir, M. M. Salinity stress in crop plants: Effects of stress, tolerance mechanisms and breeding strategies for improvement. J. Agric. Basic Sci. 2(1), 2518–4210 (2017).
    Google Scholar 
    2.
    Kirsten, B., Abbey, F. W., Thomas, D., Amitava, C. & Jason, H. Soil salinity: A threat to global food security. Agron. J. 108(6), 2189–2200 (2016).
    Article  CAS  Google Scholar 

    3.
    Shakeel, A. A. et al. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 8(69), 1–12 (2017).
    Google Scholar 

    4.
    Abd-ElBaki, G. K. et al. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ. 23, 515–521 (2000).
    CAS  Article  Google Scholar 

    5.
    Flores, P., Botella, M. Á., Martínez, V. & Cerdá, A. C. Ionic and osmotic effects of nitrate reductase activity in tomato seedlings. J. Plant Physiol. 156, 552–557 (2000).
    CAS  Article  Google Scholar 

    6.
    Petronia, C., Gabriella, M., Francesco, N. & Amodio, F. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct. Plant Biol. 32(3), 209–219 (2005).
    Article  Google Scholar 

    7.
    Flowers, T. J. et al. Salt sensitivity in chickpea. Plant Cell Environ. 3(4), 490–509 (2010).
    MathSciNet  Article  CAS  Google Scholar 

    8.
    Husen, A., Iqbal, M., Sohrab, S. S. & Ansari, M. K. A. Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric. Food Secur. 7(1), 44 (2018).
    Article  Google Scholar 

    9.
    Farhangi-Abriz, S. & Torabian, S. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis. 74(3), 215–223 (2018).
    CAS  Article  Google Scholar 

    10.
    Gupta, B. & Huan, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genomics. 1, 701596. https://doi.org/10.1155/2014/701596 (2014).
    CAS  Article  Google Scholar 

    11.
    Zhang, W. J. et al. Silicon promotes growth and root yield of Glycyrrhiza uralensis, under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Prot. 107, 1–11 (2018).
    Article  CAS  Google Scholar 

    12.
    Saqib, M., Zörb, C. & Schubert, S. Salt resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. J. Plant Nutr. Soil Sci. 169(4), 542–548 (2006).
    CAS  Article  Google Scholar 

    13.
    Turan, M. A., Katkat, V. & Taban, S. Salinity-induced stomatal resistance, proline, chlorophyll and ion concentrations of bean. Int. J. Agric. Res. 2(5), 483–488 (2007).
    CAS  Article  Google Scholar 

    14.
    Memon, S. A., Hou, X. L. & Wang, L. J. Morphological analysis of salt stress response of pak Choi. Electron. J. Environ. Agric. Food Chem. 9(1), 248–254 (2010).
    CAS  Google Scholar 

    15.
    Keyvan, A. & Setsuko, K. Crop and medicinal plants proteomics in response to salt stress. Front. Plant Sci. 4(8), 8 (2013).
    Google Scholar 

    16.
    Dadkhah, A. R. Effect of salt stress on growth and essential oil of Matricaria chamomilla. Planta Med. 5(10), 643–646 (2010).
    Google Scholar 

    17.
    Aziz, E. E., Al-Amier, H. & Craker, L. E. Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. J. Herbs Spices Med. Plants. 14(1–2), 77–87 (2008).
    CAS  Article  Google Scholar 

    18.
    Leithy, S., Gaballah, M. S. & Gomaa, A. M. Associative impact of bio-and organic fertilizers on geranium plants grown under saline conditions. Electron. J. Environ. Agric. Food Chem. 1(3), 617–626 (2009).
    Google Scholar 

    19.
    Najafian, S., Khoshkhui, M. & Tavallali, V. Effect of salicylic acid and salinity in rosemary (Rosmarinus officinalis L): Investigation on changes in gas exchange, water relations, and membrane stabilization. Aust. J. Basic. Appl. Sci. 3(3), 322–328 (2009).
    CAS  Google Scholar 

    20.
    Taarit, M. B. et al. Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Ind. Crops Prod. 30(3), 333–337 (2009).
    Article  CAS  Google Scholar 

    21.
    Queslati, S. et al. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol. Plant. 32(2), 289–296 (2010).
    Article  CAS  Google Scholar 

    22.
    Seyed, M. Z., Faezeh, M., Saadat, S. & Mohsen, P. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci. Rep. 10, 17672. https://doi.org/10.1038/s41598-020-74273-9 (2020).
    CAS  Article  Google Scholar 

    23.
    Yan, et al. Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Front. Plant Sci. 11, 260. https://doi.org/10.3389/fpls.2020.00260 (2020).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Mateos-Naranjo, E., Andrades-Moreno, L. & Davy, A. J. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol. Biochem. 63, 115–121 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Chen, D. Q., Yin, L., Deng, X. P. & Wang, S. W. Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L). Acta Physiol. Plant. 36(9), 2531–2535 (2014).
    CAS  Article  Google Scholar 

    26.
    Khattab, H. I., Emam, M. A., Emam, M. M., Helal, N. M. & Mohamed, R. M. Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biol. Plant. 58(2), 265–273 (2014).
    CAS  Article  Google Scholar 

    27.
    Zhu, Y. X. & Gong, H. G. Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev. 34(2), 455–472 (2013).
    Article  CAS  Google Scholar 

    28.
    Zhang, X. H. et al. Effect of silicon on seed germination and the physiological characteristics of Glycyrrhiza uralensis under different levels of salinity. J. Hortic. Sci. Biotechnol. 90(4), 439–443 (2015).
    CAS  Article  Google Scholar 

    29.
    Marcin, R. N. & Maria, S. The relationship between carbon and nitrogen metabolism in cucumber leaves acclimated to salt stress. Peer J. 6(3), e6043 (2018).
    Google Scholar 

    30.
    Zhang, D. D. et al. Enhanced of α-ketoglutarate production in Torulopsis glabrata: Redistribution of carbon flux from pyruvate to α-ketoglutarate. Biotechnol. Bioprocess Eng. 14(2), 134–139 (2009).
    ADS  CAS  Article  Google Scholar 

    31.
    Nunes-Nesi, A., Fernie, A. R. & Stitt, M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant. 3(6), 973–996 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Miller, A. J., Fan, X. R., Shen, Q. R. & Smith, S. J. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J. Exp. Bot. 59(1), 111–119 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Reynolds, M. P. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 62(2), 469–486 (2010).
    PubMed  PubMed Central  Google Scholar 

    34.
    Yan, B. B. et al. The effects of endogenous hormones on the flowering and fruiting of Glycyrrhiza uralensis. Plants Basel. 8(11), 519 (2019).
    CAS  PubMed Central  Article  Google Scholar 

    35.
    Mochida, K. et al. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J. 89(2), 181–194 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    36.
    An, C.-G. et al. Effect of KCl or K2SO4 supplement to nutrient solution on yield and fruit quality in sweet peppers (Capsicum annuum “Special” and ’Fiesta’). Hortic. Sci. Technol. 24(2), 181–189 (2006).
    Google Scholar 

    37.
    Lang, D. Y., Yu, X. X., Jia, X. X., Li, Z. X. & Zhang, X. H. Methyl jasmonate improves metabolism and growth of NaCl-stressed Glycyrrhiza uralensis seedlings. Sci. Hortic. 266, 109287. https://doi.org/10.1016/j.scienta (2020).
    CAS  Article  Google Scholar 

    38.
    Verma, A. K., Upadhyay, S. K., Verma, P. C., Solomon, S. & Singh, S. B. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biol. 13(2), 325–332 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    39.
    Orathai, W., Lih, S. K. & Liang, Y. S. The changes in physical, bio-chemical, physiological characteristics and enzyme activities of mango cv. Jinhwang during fruit growth and development. NJAS-Wagen. J. Life Sc. 72–73, 7–12 (2015).
    Google Scholar 

    40.
    Charles, J. B., Christine, H. F., Janice, T., Stephen, A. R. & Quick, W. P. Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. J. Exp. Bot. 54(389), 1813–1820 (2003).
    Article  Google Scholar 

    41.
    Wang, X. W. et al. In vitro evaluation of the hypoglycemic properties of lactic acid bacteria and its fermentation adaptability in apple juice. LWT-Food Sci. Technol. 136, 110363. https://doi.org/10.1016/j.lwt.2020.110363 (2020).
    CAS  Article  Google Scholar 

    42.
    Ali, A., Jha, P., Sandhu, K. S. & Raghuram, N. Spirulina nitrate-assimilating enzymes (NR, NiR, GS) have higher specific activities and are more stable than those of rice. Physiol. Mol. Biol. Plant. 14(3), 179–182 (2008).
    CAS  Article  Google Scholar 

    43.
    Patel, J. G., Kumar, N. J. I., Kumar, R. N. & Khan, S. R. Evaluation of nitrogen fixing enzyme activities in response to pyrene bioremediation efficacy by defined artificial microalgal-bacterial consortium of Gujarat, India. Polycycl. Aromat. Compd. 38(3), 282–293 (2018).
    CAS  Article  Google Scholar 

    44.
    Liu, C. G. et al. Carbon and nitrogen metabolism in leaves and roots of dwarf bamboo (Fargesia denudata Yi) subjected to drought for two consecutive years during sprouting period. J. Plant Growth Regul. 33, 243–255 (2014).
    CAS  Article  Google Scholar 

    45.
    Magomya, A. M., Kubmarawa, D., Ndahi, J. A. & Yebpella, G. G. Determination of plant proteins via the Kjeldahl method and amino acid analysis: A comparative study. Int. J. Sci. Technol. Res. 3(4), 68–72 (2014).
    Google Scholar 

    46.
    Yang, H. L. et al. Molybdenum blue photometry method for the determination of colloidal silica and soluble silica in leaching solution. Anal. Methods. https://doi.org/10.1039/C5AY01306B (2015).
    Article  Google Scholar 

    47.
    Marino, D., González, E. M. & Arrese-Igor, C. Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat: Evidence for the occurrence of two regulation pathways under oxidative stresses. J. Exp. Bot. 57(3), 665–673 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Shao, Q. S. et al. Effects of NaCl stress on nitrogen metabolism of cucumber seedlings. Russ. J. Plant Physiol. 62(5), 595–603 (2015).
    CAS  Article  Google Scholar 

    49.
    Irani, S. & Todd, C. D. Ureide metabolism under abiotic stress in Arabidopsis thaliana. J. Plant Physiol. 199, 87–95 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Ahmad, P. et al. Silicon (Si) supplementation alleviates NaCl toxicity in Mung Bean [Vigna radiata, (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J. Plant Growth Regul. 38, 70–82 (2018).
    Article  CAS  Google Scholar 

    51.
    Liang, Y. C., Chen, Q., Liu, Q., Zhang, W. H. & Ding, R. X. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 160(10), 1157–1164 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Kim, Y. H. et al. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J. Plant Growth Regul. 33(2), 137–149 (2013).
    Article  CAS  Google Scholar 

    53.
    Haghighi, M. & Pessarakli, M. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 161(24), 111–117 (2013).
    CAS  Article  Google Scholar 

    54.
    Zhu, Y. X. et al. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus, L. Plant Cell Rep. 34(9), 1629–1646 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Fernandes, F. M., Arrabaca, M. C. & Carvalho, L. M. M. Sucrose metabolism in Lupinus albus L. under salt stress. Biol. Plant. 48(2), 317–319 (2004).
    CAS  Article  Google Scholar 

    56.
    Miyako, K. et al. Cytosolic GLUTAMINE SYNTHETASE1;1 modulates metabolism and chloroplast development in roots. Plant Physiol. 182(4), 1894–1909 (2020).
    Article  CAS  Google Scholar 

    57.
    Joaquim, A. G. S. et al. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. J. Plant Physiol. 160(2), 115–123 (2003).
    Article  Google Scholar 

    58.
    Dresler, S., Wójcik, M., Bednarek, W., Hanaka, A. & Tukiendorf, A. The effect of silicon on maize growth under cadmium stress. Russ. J. Plant Physiol. 62(1), 86–92 (2015).
    CAS  Article  Google Scholar 

    59.
    Muneer, S. & Jeong, B. R. Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regul. 77(2), 133–146 (2015).
    ADS  CAS  Article  Google Scholar 

    60.
    Dorairaj, D., Ismail, M. R., Sinniah, U. R. & Ban, T. K. Influence of silicon on growth, yield, and lodging resistance of MR219, a lowland rice of Malaysia. J. Plant Nutr. 40(8), 1111–1124 (2017).
    CAS  Article  Google Scholar 

    61.
    Garg, N. & Singh, S. Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeonpea) genotypes under cadmium and zinc stress. J. Plant Growth Regul. 37(6), 46–63 (2018).
    CAS  Article  Google Scholar  More

  • in

    Alligator presence influences colony site selection of long-legged wading birds through large scale facilitative nest protector relationship

    1.
    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(02)00045-9 (2003).
    Article  Google Scholar 
    2.
    Bronstein, J. L. The costs of mutualism. Am. Zool. 839, 825–839 (2001).
    Google Scholar 

    3.
    Bronstein, J. L. The evolution of facilitation and mutualism. J. Ecol. 97, 1160–1170 (2009).
    Article  Google Scholar 

    4.
    Boucher, D. H., James, S. & Keeler, K. H. The ecology of mutualism. Annu. Rev. Ecol. Syst. https://doi.org/10.1146/annurev.es.13.110182.001531 (1982).
    Article  Google Scholar 

    5.
    Stachowicz, J. J. The structure of ecological communities. Bioscience 51, 235–246 (2001).
    Article  Google Scholar 

    6.
    Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: Implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. https://doi.org/10.1111/1365-2435.12528 (2016).
    Article  Google Scholar 

    7.
    Callaway, R. M. Positive interactions among plants. Bot. Rev. 61, 306–337 (1995).
    Article  Google Scholar 

    8.
    Brooker, R. W. et al. Facilitation in plant communities: the past, the present, and the future. J. Ecol. 96, 18–34 (2008).
    MathSciNet  Article  Google Scholar 

    9.
    Kotler, B. P., Blaustein, L. & Brown, J. S. Predator facilitation: the combined effect of snakes and owls on the foraging behavior of gerbils. Ann. Zool. Fennici 29, 199–206 (1992).
    Google Scholar 

    10.
    Nummi, P. & Hahtola, A. The beaver as an ecosystem engineer. Ecography (Cop.) 31, 519–524 (2008).
    Article  Google Scholar 

    11.
    Odadi, W. O., Jain, M., Van Wieren, S. E., Prins, H. H. T. & Rubenstein, D. I. Facilitation between bovids and equids on an African savanna. Evol. Ecol. Res. 13, 237–252 (2011).
    Google Scholar 

    12.
    Harvey, J. A., Ode, P. J., Malcicka, M. & Gols, R. Short-term seasonal habitat facilitation mediated by an insect herbivore. Basic Appl. Ecol. 17, 447–454 (2016).
    Article  Google Scholar 

    13.
    Tirado, R. & Pugnaire, F. I. Community structure and positive interactions in constraining environments. Oikos 111, 437–444 (2005).
    Article  Google Scholar 

    14.
    Oliveras de Ita, A. & Rojas-Soto, O. R. Ant presence in Acacias: An association that maximizes nesting success in birds? Wilson J. Ornithol. 118, 563–566 (2006).

    15.
    Quinn, J. L. & Ueta, M. Protective nesting associations in birds. Ibis (Lond. 1859). 150, 146–167 (2008).

    16.
    Haemig, P. D. Symbiotic nesting of birds with formidable animals: A review with applications to biodiversity conservation. Biodivers. Conserv. 10, 527–540 (2001).
    Article  Google Scholar 

    17.
    Burtner, B. F. & Frederick, P. C. Attraction of Nesting Wading Birds to Alligators (Alligator mississippiensis). Testing the ‘Nest Protector’ Hypothesis. Wetlands 37, 697–704 (2017).

    18.
    Hay, M. E. Associational plant defenses and the maintenance of species diversity: Turning competitors into accomplices. Am. Soc. Nat. 128, 617–641 (1986).
    Google Scholar 

    19.
    Atsatt, P. R. & O’Dowd, D. J. Plant Defense Guilds. Science (80-. ). 193, 24–29 (1976).

    20.
    Barbosa, P. et al. Associational resistance and associational susceptibility: Having right or wrong neighbors. Annu. Rev. Ecol. Evol. Syst. 40, 1–20 (2009).
    Article  Google Scholar 

    21.
    Myers, J. G. The nesting-together of birds, wasps and ants. (1929).

    22.
    Moreau, R. E. Bird-Insect nesting associations. Ibis (Lond. 1859). 460–471 (1936).

    23.
    Durango, S. The nesting associations of birds with social insects and with birds of different species. Ibis (Lond. 1859). 91, 140–143 (1949).

    24.
    Grimes, L. G. The breeding of Heuglin’s masked weaver and its nesting association with the red weaver ant. Ostrich 44, 170–175 (1973).
    Article  Google Scholar 

    25.
    Uchida, H. Passerine birds nesting close to nests of birds of prey. Japanese J. Ornithol. 35, 25–31 (1986).
    Article  Google Scholar 

    26.
    Pius, S. M. & Leberg, P. L. The protector species hypothesis: Do black skimmers find refuge from predators in gull-billed tern colonies?. Ethology 104, 273–284 (1998).
    Article  Google Scholar 

    27.
    Richardson, D. S. & Bolen, G. M. A nesting association between semi-colonial Bullock’s orioles and yellow-billed magpies: Evidence for the predator protection hypothesis. Behav. Ecol. Sociobiol. 46, 373–380 (1999).
    Article  Google Scholar 

    28.
    Nell, L. A., Frederick, P. C., Mazzotti, F. J., Vliet, K. A. & Brandt, L. A. Presence of breeding birds improves body condition for a crocodilian nest protector. PLoS ONE 11, 1–16 (2016).
    Article  CAS  Google Scholar 

    29.
    Freestone, A. L. Facilitation drives local abundance and regional distribution of a rare plant in a harsh environment. Ecology 87, 2728–2735 (2006).
    PubMed  Article  Google Scholar 

    30.
    Frederick, P. C. & Collopy, M. W. The role of predation in determining reproductive success of colonially nesting wading birds in the Florida everglades. Condor 91, 860–867 (1989).
    Article  Google Scholar 

    31.
    Rodgers, J. A. Jr. On the antipredator advantages of coloniality: A word of caution. Wilson Bull. 99, 269–271 (1987).
    Google Scholar 

    32.
    Hoogland, J. L. & Sherman, P. W. Advantages and Disadvantages of Bank Swallow (Riparia riparia) Coloniality. Source Ecol. Monogr. 46, 33–58 (1976).
    Article  Google Scholar 

    33.
    Møller, A. P. Advantages and disadvantages of coloniality in the swallow Hirundo rustica. Anim. Behav. 35, 819–832 (1987).
    Article  Google Scholar 

    34.
    White, C. L., Frederick, P. C., Main, M. B. & Rodgers Jr., J. A. Nesting island creation for water birds. Univ. Florida IFAS Ext. 7 (2005).

    35.
    Jungwirth, A., Josi, D., Walker, J. & Taborsky, M. Benefits of coloniality: Communal defence saves anti-predator effort in cooperative breeders. Funct. Ecol. 29, 1218–1224 (2015).
    Article  Google Scholar 

    36.
    Deneubourg, J. L. & Goss, S. Collective patterns and decision-making. Ethol. Ecol. Evol. 1, 295–311 (1989).
    Article  Google Scholar 

    37.
    Couzin, I. D. Collective cognition in animal groups. Trends Cogn. Sci. 13, 36–43 (2009).
    PubMed  Article  Google Scholar 

    38.
    Fasola, M. & Alieri, R. Conservation of heronry Ardeidae sites in North Italian agricultural landscapes. Biol. Conserv. 62, 219–228 (1992).
    Article  Google Scholar 

    39.
    Van Eerden, M. R., Koffijberg, K. & Platteeuw, M. Riding on the crest of the wave: Possibilities and limitations for a thiriving population of migratoy Great Cormorant (Phalacrocorax carbo). in Man-Dominated wetlands 338 (Nederlandse Ornithologische Unie (NOU), 1995).

    40.
    Burger, J. A model for the evolution of mixed-species colonies of Ciconiiformes. Q. Rev. Biol. 56, 143–167 (1981).
    Article  Google Scholar 

    41.
    Hafner, H. Heron nest site conservation. in Heron Conservation (eds. Kushlan, J. A. & Hafner, H.) 201–217 (Academic Press, 2000).

    42.
    Ogden, J. C. Nesting by wood storks in Natural. Altered, and Artificial Wetlands in Central and Northern Florida. 14, 39–45 (1991).
    Google Scholar 

    43.
    Parsons, K. C., Schmidt, S. R. & Matz, A. C. Regional patterns of wading bird productivity in Northeastern. Int. J. Waterbird Biol. 24, 323–330 (2001).
    Google Scholar 

    44.
    Parsons, K. C. Reproductive success of wading birds using phragmites marsh and upland nesting habitats. Source Estuaries Part B 26, 596–601 (2003).
    Google Scholar 

    45.
    Paton, P. W. C., Harris, R. J. & Trocki, C. L. Distribution and abundance of breeding birds in Boston Harbor. Northeast. Nat. 12, 145–168 (2005).
    Article  Google Scholar 

    46.
    Robinson, S. K. Coloniality in the yellow-rumped cacique as a defense against nest predators. Auk 102, 506–519 (1985).
    Article  Google Scholar 

    47.
    Post, W. Nest survival in a large ibis-heron colony during a three-year decline to extinction. Waterbird Soc. 13, 50–61 (1990).
    Article  Google Scholar 

    48.
    Strong, A. M., Sawicki, R. J. & Thomasbancroft ’, G. Effects of predator presence on the nesting distribution of White-Crowned Pigeons in Florida Bay. Wilson Bull 103, 415–425 (1991).

    49.
    Kelly, J. P., Pratt, H. M. & Greene, P. L. The distribution, reproductive success, and habitat characteristics of heron and egret breeding colonies in the San Francisco Bay Area. Colon. Waterbirds 16, 18–27 (1993).
    Article  Google Scholar 

    50.
    Erwin, R. M., Hatfield, J. S. & Wilmers, T. J. The value and vulnerability of small estuarine islands for conserving metapopulations of breeding waterbirds. Biol. Conserv. 71, 187–191 (1995).
    Article  Google Scholar 

    51.
    Tsai, J. S., Reichert, B. E., Frederick, P. C. & Meyer, K. D. Breeding site longevity and site characteristics have intrinsic value for predicting persistence of colonies of an Endangered Bird. Wetlands 36, 639–647 (2016).
    Article  Google Scholar 

    52.
    Frederick, P. C. & Collopy, M. W. Nesting success of five ciconiiform species in relation to water conditions in the Florida Everglades. Auk 106, 625–634 (1989).
    Google Scholar 

    53.
    Post, W. & Seals, C. A. Breeding biology of the common moorhen in an impounded Cattail Marsh. J. F. Ornithol. 71, 437–442 (1991).
    Article  Google Scholar 

    54.
    Hoover, J. P. Water depth influences nest predation for a wetland-dependent bird in fragmented bottomland forests. Biol. Conserv. 127, 37–45 (2006).
    Article  Google Scholar 

    55.
    Coulter, M. C. & Bryan, L. A. Factors affecting reproductive success of wood storks (Mycteria americana) in East- Central Georgia. Auk 112, 237–243 (1995).
    Article  Google Scholar 

    56.
    Dusi, J. L. & Dusi, R. T. Ecological factors contributing to nesting failure in a Heron Colony. Source Wilson Bull. 80, 458–466 (1968).
    Google Scholar 

    57.
    Jenni, D. A. A study of the ecology of four species of herons during the breeding season at Lake Alice, Alachua County Florida. Ecol. Monogr. 39, 245–270 (1969).
    Article  Google Scholar 

    58.
    Nell, L. A. & Frederick, P. C. Fallen nestlings and regurgitant as mechanisms of nutrient transfer from nesting wading birds to crocodilians. Wetlands 35, 723–732 (2015).
    Article  Google Scholar 

    59.
    Gabel, W., Frederick, P. & Zabala, J. Nestling carcasses from colonially breeding wading birds: Patterns of access and energetic relevance for a vertebrate scavenger community. Sci. Rep. 9, 14512 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Tiner, R. W. Wetlands of the United States: current status and recent trends (U.S. Fish and Wildlife Service, Habitat Resources, 1984).
    Google Scholar 

    61.
    Gardner, B., Garner, L. A., Cobb, D. T. & Moorman, C. E. Factors affecting occupancy and abundance of American alligators at the northern extent of their range. J. Herpetol. 50, 541–547 (2016).
    Article  Google Scholar 

    62.
    Elsey, R. M. & Woodward, A. R. Alligator mississippiensis (American Alligator). in Crocodiles: Status Survey and Conservation Action Plan. (eds. Manolis, S. C. & Stevenson, C.) 1–4 (Crocodile Specialist Group, 2010).

    63.
    Parlin, A., Dinkelacker, S. & Mccall, A. Do habitat characteristics influence American alligator occupancy of barrier islands in North Carolina?. Southeast. Nat. 14, 33–40 (2015).
    Article  Google Scholar 

    64.
    Dunham, K., Dinkelacker, S. & Miller, J. A stage-based population model for American alligators in northern latitudes. J. Wildl. Manage. 78, 440–447 (2014).
    Article  Google Scholar 

    65.
    O’Brien, T. G. & Doerr, P. D. Night count surveys for alligators in coastal counties of North Carolina. J. Herpetol. 20, 444–448 (1986).
    Article  Google Scholar 

    66.
    Bent, A. C. Life Histories of North American Marsh Birds. (Dover Publications, Inc., 1963).

    67.
    Beaver, D. L., Osborn, R. G. & Custer, T. W. Nest-site and colony characteristics of wading birds in selected Atlantic coast colonies. Wilson Bull. 92, 200–220 (1980).
    Google Scholar 

    68.
    Custer, T. W. & Osborn, R. G. Wading birds as biological indicators: 1975 colony survey. US Fish Wildl. Serv. Spec. Sci. Rep. Wildl. 206, 1–28 (1977).

    69.
    Schweitzer, S. H. et al. Status and Distribution of Colonial Waterbirds during the 2017 Nesting Season in Coastal North Carolina. (2017).

    70.
    Annual Performance Report, Inland Colonial Waterbird Survey. http://repository.upi.edu/1360/1/s_d5451_0604180_chapter1.pdf (1996).

    71.
    Soots Jr., R. F. & Parnell, J. F. Inland Heronries of North Carolina. N.C. Sea Grant Publ. UNC-SG-78–10, Raleigh NC. 10–16 (1979).

    72.
    Parnell, J. F. & McCrimmon, D. A. 1983 supplement to Atlas of Colonial Waterbirds of North Carolina estuaries. UNC Sea Grant Publication UNC-SG-84–07 (1984).

    73.
    iNaturalist.org. iNaturalist Research-Grade Observations. Cooccurence dataset https://doi.org/https://doi.org/10.15468/ab3s5x (2019).

    74.
    Lauren, D. J. Effect of salt stress on electrolyte balance, corticosterone titer, and nitrogen metabolism in the American alligator, Alligator mississippiensis (Daudin, 1802). 81, 1–141 (1982).

    75.
    Brisbin, L. I. Jr., Standora, E. A. & Vargo, M. J. Body temperatures and behavior of American Alligators during cold winter weather. Am. Midl. Nat. 107, 209–218 (1982).
    Article  Google Scholar 

    76.
    Dunson, W. & Mazzotti, F. Salinity as a limiting factor in the distribution of reptiles in Florida Bay: A theory for the estuarine origin of marine snakes and turtles. Bull. Mar. Sci. 44, 229–244 (1989).
    Google Scholar 

    77.
    Birkhead, W. S. & Bennett, C. R. Observations of a small population of estuarine-inhabiting alligators near Southport North Carolina. Brimleyana 6, 111–117 (1981).
    Google Scholar 

    78.
    Seebacher, F. A review of thermoregulation and physiological performance in reptiles: What is the role of phenotypic flexibility? J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 175, 453–461 (2005).

    79.
    Fujisaki, I. et al. Home range and movements of American alligators (Alligator mississippiensis) in an estuary habitat. Anim. Biotelemetry 2, 1–10 (2014).
    Article  Google Scholar 

    80.
    McIlhenny, E. A. Alligator’s life history (Christopher Publishing House, USA, 1935).
    Google Scholar 

    81.
    Joanen, T. & Mcnease, L. L. Ecology and physiology of nesting and early development of the American Alligator. Am. Zool. 29, 987–998 (1989).
    Article  Google Scholar 

    82.
    Rosenblatt, A. E. & Heithaus, M. R. Does variation in movement tactics and trophic interactions among American alligators create habitat linkages?. J. Anim. Ecol. 80, 786–798 (2011).
    PubMed  Article  Google Scholar 

    83.
    ESRI. ArcGIS Desktop: Release 10.6. Redlands (2018). http://www.esri.com/

    84.
    Schneider, D. G., Mech, L. D. & Tester, J. R. Movements of female raccoons and their young as determined by radio-tracking. Anim. Behav. Monogr. 4, 1–43 (1971).
    Article  Google Scholar 

    85.
    Lotze, J. & Anderson, S. American Society of Mammalogists Procyon lotor. Mamm. Species 1–8 (1979).

    86.
    Pedlar, J. H., Fahring, L. & Merriam, G. Raccoon habitat use at 2 spatial scales. J. Wildl. Manage. 61, 102–112 (1997).
    Article  Google Scholar 

    87.
    Porter, J. H., Dueser, R. D. & Moncrief, N. D. Cost-distance analysis of mesopredators as a tool for avian habitat restoration on a naturally fragmented landscape. J. Wildl. Manage. 79, 220–234 (2015).
    Article  Google Scholar 

    88.
    Page, K. L. et al. Backyard raccoon latrines and risk for Baylisascaris procyonis transmission to humans reemergence of strongyloidiasis. Emerg. Infect. Dis. 15, 60–61 (2009).
    Article  Google Scholar 

    89.
    Prange, S., Gehrt, S. D. & Wiggers, E. P. Demographic factors contributing to high raccoon densities in urban landscapes. Wildl. Manag. 67, 324–333 (2003).
    Article  Google Scholar 

    90.
    Gibbs, J. P. & Kinkel, L. K. Determinants of the size and location of great blue heron colonies. Colon. Waterbirds 20, 1–7 (1997).
    Article  Google Scholar 

    91.
    Bancroft, T. G., Strong, A. M., Sawicki, R. J., Hoffman, W. & Jewell, S. D. Relationships among wading bird foraging patters, colony locations, and hydrology in the Everglades. in Everglades: the ecosystem and its restoration (eds. Davis, S. & Ogden, J. C.) 615–657 (St. Lucie Press, 1994).

    92.
    Stolen, E. D., Collazo, J. A. & Percival, H. F. Scale-dependent habitat selection of nesting great egrets and snowy egrets. Waterbirds 30, 384–393 (2007).
    Article  Google Scholar 

    93.
    Custer, T. W. & Osborn, R. G. Feeding habitat use by colonially-breeding herons, egrets, and ibises in North Carolina. Auk 95, 733–743 (1978).
    Google Scholar 

    94.
    Thompson, D. H. Feeding areas of great blue herons and great egrets nesting within the floodplain of the Upper Mississippi River. Proc. Colon. Waterbird Gr. 2, 202–213 (1979).
    Article  Google Scholar 

    95.
    Custer, C. M. & Galli, J. Feeding habitat selection by great blue herons and great egrets nesting in East Central Minnesota. Waterbirds 25, 115–124 (2006).
    Article  Google Scholar 

    96.
    Siderelis, K. A Standard Classification System for the Mapping of Land Use and Land Cover. (1994).

    97.
    Best, L. B. & Stauffer, D. F. Factors affecting nesting success in riparian bird communities. Condor 82, 149–158 (1980).
    Article  Google Scholar 

    98.
    Nilsson, S. G. The evolution of nest-site selection among hole-nesting birds: The importance of nest predation and competition. 15, 167–175 (1984).
    Google Scholar 

    99.
    Greer, R. C., Cordes, C. & Keller, C. Analysis of colonial wading habitat in Louisiana. in Proceedings 4th Marsh and Estuary Management Symposium (eds. Bryan, C., Zwank, P. & Chabrek, R.) 143–151 (Louisiana Coop. Fish and Wildlife Research Unit, 1985).

    100.
    Eason, P., Rabea, B. & Attum, O. Island shape, size, and isolation affect nest-site selection by Little Terns. J. F. Ornithol. 83, 372–380 (2012).
    Article  Google Scholar 

    101.
    Google Earth Pro. (2018). https://www.google.com/earth/versions/

    102.
    Tukey, J. W. Exploratory data analysis. in Exploratory Data Analysis (Addison-Wesley Publishing Company, 1977). doi:https://doi.org/10.1007/978-1-4419-7976-6.

    103.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
    Article  Google Scholar 

    104.
    Crawley, M. J. The R Book. The R Book https://doi.org/10.1002/9780470515075 (2007).
    Article  MATH  Google Scholar 

    105.
    Fleming, D. M., Palimisano, A. W. & Joanen, T. Food habits of coastal marsh raccoons with observation of alligator nest predation. Proc. Annu. Conf. Southeast. Assoc. Fish Wildl. Agencies 30, 348–357 (1976).

    106.
    Hunt, H. R. & Ogden, J. J. Selected aspects of nesting ecology of American Alliagtors in the Okefenokee Swamp. J. Herpetol. 25, 448–453 (1991).
    Article  Google Scholar 

    107.
    Ruckdeschel, C. & Shoop, C. R. Aspects of wood stork nesting ecology on Cumberland Island Georgia, USA. Oriole 52, 21–27 (1987).
    Google Scholar 

    108.
    Erwin, R. M., Spendelow, J. A., Geissler, P. H. & Williams, K. B. Relationships between nesting populations of wading birds and habitat features along the Atlantic Coast. in Waterfowl and Wetlands Symposium: Proceedings of a Symposium on Waterfowl and Wetlands Management in the Coastal Zone of the Atlantic Flyway (eds. Whitman, W. R. & Meredith, W. H.) 55–69 (Delaware Coastal Management Program, Delaware Department of Natural Resources and Environmental Control, 1986).

    109.
    Hartman, L. H. & Eastman, D. S. Distribution of introduced raccoons Procyon lotor on the Queen Charlotte Islands: Implications for burrow-nesting seabirds. Biol. Conserv. 88, 1–13 (1999).
    Article  Google Scholar 

    110.
    Gibbs, J. P., Woodward, S., Hunter, M. L. & Hutchinson, A. E. Determinants of great blue heron colony distribution in coastal Maine. Auk 104, 38–47 (1987).
    Article  Google Scholar 

    111.
    Cox, W. A. et al. Nest site selection by reddish egrets in Florida. J. Wildl. Manage. 83, 184–191 (2019).
    Article  Google Scholar 

    112.
    Palmer, M. L. & Mazzotti, F. J. Structure of Everglades alligator holes. Southeast. Nat. 9, 487–496 (2004).
    Google Scholar 

    113.
    Craighead, F. C. S. The role of the alligator in shaping plant communities and maintaining wildlife in the Southern Everglades. Florida Nat. 41, 2–94 (1968).
    Google Scholar 

    114.
    Loftus, W. F. & Eklund, A. M. Long-term dynamics of an Everglades small-fish assemblage. in Everglades: the ecosystem and its restoration (eds. Davis, S. M. & Ogden, J. C.) 461–83 (St. Lucie Press, 1994).

    115.
    Diez, D. C. & Jackson, D. R. Use of American alligator nests by nesting turtles. J. Herpetol. 13, 510–512 (1979).
    Article  Google Scholar 

    116.
    Kushlan, J. A. & Kushlan, M. S. Function of nest attendance in the American alligator. Herpetologica 36, 27–32 (1980).
    Google Scholar 

    117.
    Kushlan, J. An ecological study of an alligator pond in the Big Cypress swamp of Southern Florida (University of Miami, Coral Gables, FL, 1972).
    Google Scholar 

    118.
    Gawlik, D. E. & Rocque, D. A. Avian communities in bayheads, willowheads, and sawgrass marshes of the central everglades. Wilson Bull. 110, 45–55 (1998).
    Google Scholar 

    119.
    Campbell, M. R. & Mazzotti, F. J. Characterization of natural and artificial alligator holes. Southeast. Nat. 3, 583–594 (2004).
    Article  Google Scholar 

    120.
    Stachowicz, J. J. Niche expansion by positive interactions: realizing the fundamentals. A comment on Rodriguez-Cabal et al. Ideas Ecol. Evol. 5, 42–43 (2012). More

  • in

    Monkeys fight more in polluted air

    Monkey conflict data
    We obtained social conflict data ofNorthern China Rhesus Monkeys from Hongshan Forest Zoo of Nanjing, China. Nanjing (31° 14′–32° 37′ N, 118° 22′–119° 14′ E) is located in the central region of the lower Yangtze River and southwest of Jiangsu Province. It is an important national gateway city for the development of the central and western regions in the Yangtze River Delta, with an area of 6587 km2 covering a population of more than 8 Million. Average annual temperature is about 15.4 °C. Annual precipitation is 1106 mm, 60% of which occurs from Jun to Sep.
    There are about 90 monkeys in the Hongshan Zoo in 2017, about 35 adults, 20 sub-adults and 35 juveniles or new-borns. The round monkey park was located in the central part of the zoo, with an area of about 2000 m2. Although a thick and 3-m high glass wall has been built to prevent artificial feedings, visitors sometimes throw food into the monkey park, causing a social conflict due to the food competition. Usually the zookeeper feeds these monkeys twice a day at about 9:30 am and 3:30 pm respectively.
    We established a monitoring camera web (Haikang DS-7104N-SN/P) covering the monkey park in September 2016 and video-recorded the whole population since then. We defined social conflicts of monkeys as aggressive or fighting behaviors between individuals, including chasing (one chases another until it escapes), wrestling (one grapples and wrestles with another, until one escapes or gives up), biting (one opens its mouth and bites or tries to bites another), scratching (One scratches or scrapes another using its hands), threating (One warns or threats another through calling or behavioural display), etc. The age of participants and the occurrence time were recorded for each aggression46. We considered a conflict ends if there is no continuation within 10 s after the aggression. Since these monkeys are inactive during the night, we only recorded their diurnal aggressive behaviors from 6:30 till 18:30 and then summed the fights as daily social conflicts. One-year round data were collected from Mar 2017 to Feb 2018.
    Air Quality Index
    We obtained Air Quality Index (AQI) data of Nanjing from the Data Centre of the Ministry of Environmental Protection of the People’s Republic of China (MEP, http://datacenter.mep.gov.cn/)17. Based on established criteria (GB3095-2012). AQI is calculated for six major air pollutants separately: particle matter  More

  • in

    Prioritizing conservation actions in urbanizing landscapes

    1.
    Game, E. T., Kareiva, P. & Possingham, H. P. Six common mistakes in conservation priority setting. Conserv. Biol. 27, 480–485 (2013).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Bottrill, M. C. et al. Is conservation triage just smart decision making?. Trends Ecol. Evol. 23, 649–654 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Wilson, K. A., Carwardine, J. & Possingham, H. P. Setting conservation priorities. Ann. N. Y. Acad. Sci. 1162, 237–264 (2009).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Samhouri, J. F. & Levin, P. S. Linking land-and sea-based activities to risk in coastal ecosystems. Biol. Conserv. 145, 118–129 (2012).
    Article  Google Scholar 

    5.
    Shelton, A. O., Samhouri, J. F., Stier, A. C. & Levin, P. S. Assessing trade-offs to inform ecosystem-based fisheries management of forage fish. Sci. Rep. 4, 7110 (2014).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Tallis, H. Natural Capital: Theory and Practice of Mapping Ecosystem Services. (Oxford University Press, 2011).

    7.
    Murdoch, W. et al. Maximizing return on investment in conservation. Biol. Conserv. 139, 375–388 (2007).
    Article  Google Scholar 

    8.
    Carwardine, J. et al. Prioritizing threat management for biodiversity conservation. Conserv. Lett. 5, 196–204 (2012).
    Article  Google Scholar 

    9.
    Fonner, R., Bellanger, M. & Warlick, A. Economic analysis for marine protected resources management: challenges, tools, and opportunities. Ocean Coast. Manag. 194, 105222 (2020).
    Article  Google Scholar 

    10.
    Chan, K. M., Hoshizaki, L. & Klinkenberg, B. Ecosystem services in conservation planning: targeted benefits vs. co-benefits or costs?. PLoS ONE 6, e24378 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    McDonald, R. I., Kareiva, P. & Forman, R. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).
    Article  Google Scholar 

    12.
    Economic, U. N. D. of & Social Affairs, P. D. World Urbanization Prospects: The 2018 Revision. (United Nations Publications New York, 2019).

    13.
    Liu, Z., He, C. & Wu, J. The relationship between habitat loss and fragmentation during urbanization: an empirical evaluation from 16 world cities. PLoS ONE 11, e0154613 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Heidt, V. & Neef, M. Benefits of urban green space for improving urban climate. In Ecology, Planning, and Management of Urban Forests 84–96 (Springer, 2008).

    15.
    Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).
    Article  Google Scholar 

    16.
    Kondo, M. C., Fluehr, J. M., McKeon, T. & Branas, C. C. Urban green space and its impact on human health. Int. J. Environ. Res. Public. Health 15, 445 (2018).
    PubMed Central  Article  Google Scholar 

    17.
    Wood, E. et al. Not all green space is created equal: biodiversity predicts psychological restorative benefits from urban green space. Front. Psychol. 9, 2320 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Pickett, S. T. et al. Urban ecological systems: scientific foundations and a decade of progress. J. Environ. Manag. 92, 331–362 (2011).
    CAS  Article  Google Scholar 

    19.
    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Walsh, C. J. et al. The urban stream syndrome: current knowledge and the search for a cure. J. North Am. Benthol. Soc. 24, 706–723 (2005).
    Article  Google Scholar 

    21.
    Paul, M. J. & Meyer, J. L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 32, 333–365 (2001).
    Article  Google Scholar 

    22.
    Schueler, T. R., Fraley-McNeal, L. & Cappiella, K. Is impervious cover still important? Review of recent research. J. Hydrol. Eng. 14, 309–315 (2009).
    Article  Google Scholar 

    23.
    Canessa, S. & Parris, K. M. Multi-scale, direct and indirect effects of the urban stream syndrome on amphibian communities in streams. PLoS ONE 8, e70262 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Bernhardt, E. S. & Palmer, M. A. Restoring streams in an urbanizing world. Freshw. Biol. 52, 738–751 (2007).
    Article  Google Scholar 

    25.
    Hardy, S. D. & Koontz, T. M. Collaborative watershed partnerships in urban and rural areas: different pathways to success?. Landsc. Urban Plan. 95, 79–90 (2010).
    Article  Google Scholar 

    26.
    Ahiablame, L. M., Engel, B. A. & Chaubey, I. Effectiveness of low impact development practices: literature review and suggestions for future research. Integr. Environ. Assess. Manag. Int. J. 223, 4253–4273 (2012).
    CAS  Google Scholar 

    27.
    McIntyre, J. et al. Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff. Chemosphere 132, 213–219 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    McIntyre, J. K. et al. Severe coal tar sealcoat runoff toxicity to fish is prevented by bioretention filtration. Environ. Sci. Technol. 50, 1570–1578 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Spromberg, J. A. et al. Coho salmon spawner mortality in western US urban watersheds: bioinfiltration prevents lethal storm water impacts. J. Appl. Ecol. 53, 398–407 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Seattle, D. of P. & D. 2015 Environmentally Critical Areas: Best Available Science Review. (2015).

    31.
    Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Rhodes, J. R. et al. Regional variation in habitat–occupancy thresholds: a warning for conservation planning. J. Appl. Ecol. 45, 549–557 (2008).
    Article  Google Scholar 

    33.
    Carwardine, J., Klein, C. J., Wilson, K. A., Pressey, R. L. & Possingham, H. P. Hitting the target and missing the point: target-based conservation planning in context. Conserv. Lett. 2, 4–11 (2009).
    Article  Google Scholar 

    34.
    Ruckelshaus, M. H., Levin, P., Johnson, J. B. & Kareiva, P. M. The Pacific salmon wars: what science brings to the challenge of recovering species. Annu. Rev. Ecol. Syst. 33, 665–706 (2002).
    Article  Google Scholar 

    35.
    Underwood, E. C. et al. Protecting biodiversity when money matters: maximizing return on investment. PLoS ONE 3, e1515 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Murdoch, W., Ranganathan, J., Polasky, S. & Regetz, J. Using return on investment to maximize conservation effectiveness in Argentine grasslands. Proc. Natl. Acad. Sci. 107, 20855–20862 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Boyd, J., Epanchin-Niell, R. & Siikamäki, J. Conservation planning: a review of return on investment analysis. Rev. Environ. Econ. Policy 9, 23–42 (2015).
    Article  Google Scholar 

    38.
    Samhouri, J. F., Levin, P. S., James, C. A., Kershner, J. & Williams, G. Using existing scientific capacity to set targets for ecosystem-based management: a Puget Sound case study. Mar. Policy 35, 508–518 (2011).
    Article  Google Scholar 

    39.
    Martin, J., Runge, M. C., Nichols, J. D., Lubow, B. C. & Kendall, W. L. Structured decision making as a conceptual framework to identify thresholds for conservation and management. Ecol. Appl. 19, 1079–1090 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Puget Sound Regional Council (PSRC). 2050 Forecast of People and Jobs. https://www.psrc.org/ (2018).

    41.
    Ruckelshaus, M., Essington, T. & Levin, P. 2009 Puget Sound, Washington, USA. in Ecosystem-based Management for the Oceans 201–226 (Island Press, Washington, DC, USA, 2012).

    42.
    Feist, B. E. et al. Roads to ruin: conservation threats to a sentinel species across an urban gradient. Ecol. Appl. 27, 2382–2396 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Scholz, N. L. et al. Recurrent die-offs of adult coho salmon returning to spawn in Puget Sound lowland urban streams. PLoS ONE 6, e28013 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    WAECY – Water Resource Inventory Areas (WRIA).

    45.
    Spromberg, J. A. & Scholz, N. L. Estimating the future decline of wild coho salmon populations resulting from early spawner die-offs in urbanizing watersheds of the Pacific Northwest, USA. Integr. Environ. Assess. Manag. 7, 648–656 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Bolte, J. & Vache, K. Envisioning Puget Sound Alternative Futures. Or. State Univ. (2010).

    47.
    King, M. A. & Fairfax, S. K. Beyond bucks and acres: land acquisition and water. Tex Rev 83, 1941 (2004).
    Google Scholar 

    48.
    Bottrill, M. C. & Pressey, R. L. The effectiveness and evaluation of conservation planning. Conserv. Lett. 5, 407–420 (2012).
    Article  Google Scholar 

    49.
    Rissman, A. R. & Smail, R. Accounting for results: how conservation organizations report performance information. Environ. Manag. 55, 916–929 (2015).
    ADS  Article  Google Scholar 

    50.
    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Jones, K. R. et al. The location and protection status of Earth’s diminishing marine wilderness. Curr. Biol. 28, 2506–2512 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Tulloch, V. J. et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 13, 91–99 (2015).
    Article  Google Scholar 

    53.
    Moilanen, A. et al. Balancing alternative land uses in conservation prioritization. Ecol. Appl. 21, 1419–1426 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Rodewald, A. D., Strimas-Mackey, M., Schuster, R. & Arcese, P. Tradeoffs in the value of biodiversity feature and cost data in conservation prioritization. Sci. Rep. 9, 1–8 (2019).
    CAS  Article  Google Scholar 

    55.
    Walsh, J. C. et al. Prioritizing conservation actions for Pacific salmon in Canada. J. Appl. Ecol. (2020).

    56.
    Chow, M. I. et al. An urban stormwater runoff mortality syndrome in juvenile coho salmon. Aquat. Toxicol. 214, 105231 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Battin, J. et al. Projected impacts of climate change on salmon habitat restoration. Proc. Natl. Acad. Sci. 104, 6720–6725 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Council, N. R. et al. Upstream: Salmon and Society in the Pacific Northwest. (National Academies Press, 1996).

    59.
    Benda, L., Andras, K., Miller, D. & Bigelow, P. Confluence effects in rivers: interactions of basin scale, network geometry, and disturbance regimes. Water Resour. Res. 40, (2004).

    60.
    Nel, J. L. et al. Progress and challenges in freshwater conservation planning. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 474–485 (2009).
    Article  Google Scholar 

    61.
    Booth, D. B., Roy, A. H., Smith, B. & Capps, K. A. Global perspectives on the urban stream syndrome. Freshw. Sci. 35, 412–420 (2016).
    Article  Google Scholar 

    62.
    Feist, B. E., Buhle, E. R., Arnold, P., Davis, J. W. & Scholz, N. L. Landscape ecotoxicology of coho salmon spawner mortality in urban streams. PLoS ONE 6, e23424 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Sethi, S. A., O’Hanley, J. R., Gerken, J., Ashline, J. & Bradley, C. High value of ecological information for river connectivity restoration. Landsc. Ecol. 32, 2327–2336 (2017).
    Article  Google Scholar 

    64.
    Watts, M. E. et al. Marxan with Zones: software for optimal conservation based land-and sea-use zoning. Environ. Model. Softw. 24, 1513–1521 (2009).
    Article  Google Scholar 

    65.
    Beger, M. et al. Incorporating asymmetric connectivity into spatial decision making for conservation. Conserv. Lett. 3, 359–368 (2010).
    Article  Google Scholar 

    66.
    Bower, S. D. et al. Making tough choices: picking the appropriate conservation decision-making tool. Conserv. Lett. 11, e12418 (2018).
    Article  Google Scholar 

    67.
    Schwartz, M. W. et al. Decision support frameworks and tools for conservation. Conserv. Lett. 11, e12385 (2018).
    Article  Google Scholar 

    68.
    Jarden, K. M., Jefferson, A. J. & Grieser, J. M. Assessing the effects of catchment-scale urban green infrastructure retrofits on hydrograph characteristics. Hydrol. Process. 30, 1536–1550 (2016).
    ADS  Article  Google Scholar 

    69.
    Pyke, C. et al. Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landsc. Urban Plan. 103, 166–173 (2011).
    Article  Google Scholar 

    70.
    Kim, D.-G., Jeong, K. & Ko, S.-O. Removal of road deposited sediments by sweeping and its contribution to highway runoff quality in Korea. Environ. Technol. 35, 2546–2555 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Scheffer, M. Foreseeing tipping points. Nature 467, 411–412 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Halpern, B. S. Addressing Socioecological Tipping Points and Safe Operating Spaces in the Anthropocene. in Conservation for the Anthropocene Ocean 271–286 (Elsevier, 2017).

    73.
    Malhado, A. C. M., Pires, G. F. & Costa, M. H. Cerrado conservation is essential to protect the Amazon rainforest. Ambio 39, 580–584 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Selkoe, K. A. et al. Principles for managing marine ecosystems prone to tipping points. Ecosyst. Health Sustain. 1, 1–18 (2015).
    Article  Google Scholar 

    75.
    Schilling, J. & Logan, J. Greening the rust belt: a green infrastructure model for right sizing America’s shrinking cities. J. Am. Plann. Assoc. 74, 451–466 (2008).
    Article  Google Scholar 

    76.
    Hughes, R. M. et al. A review of urban water body challenges and approaches:(2) mitigating effects of future urbanization. Fisheries 39, 30–40 (2014).
    Article  Google Scholar 

    77.
    Parker, D. P. Land trusts and the choice to conserve land with full ownership or conservation easements. Nat. Resour. J. 483–518 (2004).

    78.
    Kennedy, C. M. et al. Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services. Biol. Conserv. 204, 221–230 (2016).
    Article  Google Scholar 

    79.
    Kaeriyama, M., Seo, H., Kudo, H. & Nagata, M. Perspectives on wild and hatchery salmon interactions at sea, potential climate effects on Japanese chum salmon, and the need for sustainable salmon fishery management reform in Japan. Environ. Biol. Fishes 94, 165–177 (2012).
    Article  Google Scholar 

    80.
    Willson, M. F. & Halupka, K. C. Anadromous fish as keystone species in vertebrate communities. Conserv. Biol. 9, 489–497 (1995).
    Article  Google Scholar 

    81.
    McIntyre, J. K. et al. Interspecies variation in the susceptibility of adult Pacific salmon to toxic urban stormwater runoff. Environ. Pollut. 238, 196–203 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Service (NMFS), N. M. F. Report: 5-Year Review: Summary & Evaluation of Puget Sound Chinook Salmon, Hood Canal Summer-run Chum Salmon, Puget Sound Steelhead. (2016).

    83.
    Spromberg, J. A. & Meador, J. P. Relating results of chronic toxicity responses to population-level effects: modeling effects on wild chinook salmon populations. Integr. Environ. Assess. Manag. Int. J. 1, 9–21 (2005).
    CAS  Article  Google Scholar 

    84.
    Allan, J. D. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284 (2004).
    Article  Google Scholar 

    85.
    Bierwagen, B. G. et al. National housing and impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. 107, 20887–20892 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Walsh, C. J., Fletcher, T. D. & Burns, M. J. Urban stormwater runoff: a new class of environmental flow problem. PLoS ONE 7, e45814 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Anthropogenic interferences lead to gut microbiome dysbiosis in Asian elephants and may alter adaptation processes to surrounding environments

    1.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105 (2012).
    ADS  CAS  Article  Google Scholar 

    3.
    Taylor-Brown, A. et al. The impact of human activities on Australian wildlife. PLoS ONE 14(1), e0206958 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Hunter, P. The human impact on biological diversity. How species adapt to urban challenges sheds light on evolution and provides clues about conservation. EMBO Rep. 8(4), 316–318 (2007).

    5.
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Natl. Acad. Sci. 112(15), 4531 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Cho, I. & Blaser, M. J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 13(4), 260–270 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13(10), 701–712 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474(7351), 327–336 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Inserra, A. et al. Mice lacking Casp 1, Ifngr and Nos2 genes exhibit altered depressive- and anxiety-like behaviour, and gut microbiome composition. Sci. Rep. 9(1), 6456 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Kuti, D. et al. Gastrointestinal (non-systemic) antibiotic rifaximin differentially affects chronic stress-induced changes in colon microbiome and gut permeability without effect on behavior. Brain Behav. Immun. 84, 218–228 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Bharwani, A. et al. Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology. 63, 217–227 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Wasimuddin, Menke, S., Melzheimer, J., Thalwitzer, S., Heinrich, S., Wachter, B. et al. Gut microbiomes of free-ranging and captive Namibian cheetahs: Diversity, putative functions and occurrence of potential pathogens. Mol. Ecol. 26(20), 5515–5527 (2017).

    13.
    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14(7), 1655–1661 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science (New York, NY). 320(5883), 1647–1651 (2008).
    ADS  CAS  Article  Google Scholar 

    15.
    Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl. Acad. Sci. U.S.A. 111(26), E2703–E2710 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. U.S.A. 108(48), 19288–19292 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Schmidt, E., Mykytczuk, N. & Schulte-Hostedde, A. I. Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). ISME J. 13(5), 1293–1305 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Lahdenperä, M., Mar, K.U., Courtiol, A., Lummaa, V. Differences in age-specific mortality between wild-caught and captive-born Asian elephants. Nat. Commun. 9(1), 3023 (2018).

    19.
    Sun, C. H., Liu, H. Y., Liu, B., Yuan, B. D. & Lu, C. H. Analysis of the gut microbiome of wild and captive Pere David’s deer. Front. Microbiol. 10, 2331 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Ryser-Degiorgis, M.-P. Wildlife health investigations: Needs, challenges and recommendations. BMC Vet. Res. 9(1), 223 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Stallknecht, D. E. Impediments to wildlife disease surveillance, research, and diagnostics. Curr. Top. Microbiol. Immunol. 315, 445–461 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Soulsbury, C. D. et al. The welfare and ethics of research involving wild animals: A primer. Methods Ecol. Evol. 11(10), 1164–1181 (2020).
    Article  Google Scholar 

    23.
    Amato, K. R. et al. Using the gut microbiota as a novel tool for examining colobine primate GI health. Global Ecol. Conserv. 7, 225–237 (2016).
    Article  Google Scholar 

    24.
    Gehrig, J.L., Venkatesh, S., Chang, H.W., Hibberd, M.C., Kung, V.L., Cheng, J. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science (New York, NY). 365(6449) (2019).

    25.
    Choudhury, A., Lahiri Choudhury, D.K., Desai, A., Duckworth, J.W., Easa, P.S., Johnsingh, A.J.T. et al. Elephas maximus. The IUCN red list of threatened species. p. e.T7140A12828813 (2008).

    26.
    Zhang, C., Xu, B., Lu, T. & Huang, Z. Metagenomic analysis of the fecal microbiomes of wild asian elephants reveals microflora and enzymes that mainly digest hemicellulose. J. Microbiol. Biotechnol. 29(8), 1255–1265 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Ilmberger, N. et al. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS ONE 9(9), e106707 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Songer, M., Aung, M., Allendorf, T. D., Calabrese, J. M. & Leimgruber, P. Drivers of change in Myanmar’s wild elephant distribution. Trop. Conserv. Sci. 9(4), 1940082916673749 (2016).
    Article  Google Scholar 

    29.
    Crawley, J. A. H. et al. Investigating changes within the handling system of the largest semi-captive population of Asian elephants. PLoS ONE 14(1), e0209701 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Oo, Z. M. Health issues of captive Asian elephants in Myanmar. Gajah. 36, 21–22 (2012).
    Google Scholar 

    31.
    Chel, H.M., Iwaki, T., Hmoon, M., Thaw, Y.N., Chan Soe, N., Win, S.Y., et al. Morphological and molecular identification of cyathostomine gastrointestinal nematodes of Murshidia and Quilonia species from Asian elephants in Myanmar. Int. J. Parasitol. Parasites Wildl. (2020).

    32.
    Sukumar, R., Santiapillai, C. Elephas maximus: Status and distribution. in The Proboscidea: Evolution and Palaeoecology of Elephants and their Relatives 327–331 (Oxford University Press, New York, 1996).

    33.
    Leimgruber, P. et al. Current status of Asian elephants in Myanmar. Gajah. 35, 76–86 (2011).
    Google Scholar 

    34.
    Prakash, T.G.S.L., Indrajith, W.A.A.D.U., Aththanayaka, A.M.C.P., Karunarathna, S., Botejue, M., Nijman, V. et al. Illegal capture and internal trade of wild Asian elephants (Elephas maximus) in Sri Lanka. Nat. Conserv. 42, 51–69 (2020).

    35.
    Clubb, R. & Mason, G. A Review of the Welfare of Zoo Elephants in Europe: A Report Commissioned by the RSPCA (Animal BehaviourResearch Group, University of Oxford, Oxford, 2002).
    Google Scholar 

    36.
    Millspaugh, J.J., Burke, T., Van Dyk, G., Slotow, R., Washburn, B.E., Woods, R.J. Stress response of working African elephants to transportation and safari adventures. J. Wildl. Manag. 1257–1260 (2007).

    37.
    Clubb, R. et al. Compromised survivorship in zoo elephants. Science (New York, NY). 322(5908), 1649 (2008).
    ADS  CAS  Article  Google Scholar 

    38.
    Easton, A.V., Quinones, M., Vujkovic-Cvijin, I., Oliveira, R.G., Kepha, S., Odiere, M.R. et al. The impact of anthelmintic treatment on human gut microbiota based on cross-sectional and pre- and postdeworming comparisons in western Kenya. mBio. 10(2) (2019).

    39.
    Martin, I. et al. Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic trial in Indonesia. PLoS Negl. Trop. Dis. 12(8), e0006620 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    He, F. et al. Variations in gut microbiota and fecal metabolic phenotype associated with Fenbendazole and Ivermectin tablets by 16S rRNA gene sequencing and LC/MS-based metabolomics in Amur tiger. Biochem. Biophys. Res. Commun. 499(3), 447–453 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Kunz, I. G. Z. et al. Equine fecal microbiota changes associated with anthelmintic administration. J. Equine Vet. Sci. 77, 98–106 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Gagliardi, A. et al. Rebuilding the gut microbiota ecosystem. Int. J. Environ. Res. Public Health. 15(8), 1679 (2018).
    PubMed Central  Article  CAS  Google Scholar 

    43.
    Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. U.S.A. 113(37), 10376–10381 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57(4), 690–704 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Monfort, S.L. “Mayday mayday mayday”, the millennium ark is sinking! in (Holt, W.V., Brown, J.L., Comizzoli, P. eds.) Reproductive Sciences in Animal Conservation: Progress and Prospects 15–31 (Springer, New York, 2014).

    46.
    Gerber, L. R. Conservation triage or injurious neglect in endangered species recovery. Proc. Natl. Acad. Sci. U.S.A. 113(13), 3563–3566 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Haworth, S.E., White, K.S., Côté, S.D., Shafer, A.B.A. Space, time and captivity: Quantifying the factors influencing the fecal microbiome of an alpine ungulate. FEMS Microbiol. Ecol. 95(7) (2019).

    48.
    Gibson, K. M. et al. Gut microbiome differences between wild and captive black rhinoceros—Implications for rhino health. Sci. Rep. 9(1), 7570 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Montonye, D. R. et al. Acclimation and institutionalization of the mouse microbiota following transportation. Front. Microbiol. 9, 1085 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Conour, L. A., Murray, K. A. & Brown, M. J. Preparation of animals for research–issues to consider for rodents and rabbits. ILAR J. 47(4), 283–293 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Obernier, J. A. & Baldwin, R. L. Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J. 47(4), 364–369 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Mir, R. A., Kleinhenz, M. D., Coetzee, J. F., Allen, H. K. & Kudva, I. T. Fecal microbiota changes associated with dehorning and castration stress primarily affects light-weight dairy calves. PLoS ONE 14(1), e0210203 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Abhijith, T.V., Ashokkumar, M., Dencin, R.T., George, C. Gastrointestinal parasites of Asian elephants (Elephas maximus L. 1798) in south Wayanad forest division, Kerala, India. J. Parasit. Dis. 42(3), 382–390 (2018).

    54.
    Bansiddhi, P., Brown, J.L., Thitaram, C., Punyapornwithaya, V., Somgird, C., Edwards, K.L. et al. Changing trends in elephant camp management in northern Thailand and implications for welfare. PeerJ. 6, e5996-e (2018).

    55.
    Leung, J. M. & Loke, P. N. A role for IL-22 in the relationship between intestinal helminths, gut microbiota and mucosal immunity. Int. J. Parasitol. 43(3–4), 253–257 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Kreisinger, J., Bastien, G., Hauffe, H.C., Marchesi, J., Perkins, S.E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 370(1675) (2015).

    57.
    Lee, S. C. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 8(5), e2880 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Ditgen, D. et al. Harnessing the helminth secretome for therapeutic immunomodulators. Biomed. Res. Int. 2014, 964350 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Hewitson, J. P. et al. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J. Proteom. 74(9), 1573–1594 (2011).
    CAS  Article  Google Scholar 

    60.
    Chong, R. et al. Looking like the locals—Gut microbiome changes post-release in an endangered species. Anim. Microbiome. 1(1), 8 (2019).
    Article  Google Scholar 

    61.
    Wienemann, T. et al. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 34(7), 542–551 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Pilla, R. & Suchodolski, J. S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 6, 498 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Hemarajata, P. & Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 6(1), 39–51 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Pertoldi, C., Randi, E., Ruiz-González, A., Vergeer, P. & Ouborg, J. How can genomic tools contribute to the conservation of endangered organisms. Int. J. Genomics. 2016, 4712487 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Roth, T. L. et al. Reduced gut microbiome diversity and metabolome differences in Rhinoceros species at risk for iron overload disorder. Front. Microbiol. 10, 2291 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10(1), 2200 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Tatsika, S., Karamanoli, K., Karayanni, H. & Genitsaris, S. Metagenomic characterization of bacterial communities on ready-to-eat vegetables and effects of household washing on their diversity and composition. Pathogens. 8(1), 37 (2019).
    CAS  PubMed Central  Article  Google Scholar 

    68.
    Allan, N., Knotts, T.A., Pesapane, R., Ramsey, J.J., Castle, S., Clifford, D. et al. Conservation implications of shifting gut microbiomes in captive-reared endangered voles intended for reintroduction into the wild. Microorganisms. 6(3) (2018).

    69.
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69(2), 434–443 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Eid, H. M. et al. Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front. Pharmacol. 8, 387 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Lay, C. et al. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol. 7(7), 933–946 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116(47), 23588–23593 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Pope, P. B. et al. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7(6), e38571 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Warnecke, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169), 560–565 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Evans, N. J. et al. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl. Environ. Microbiol. 77(1), 138 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Kay, G. L. et al. Differences in the faecal microbiome in Schistosoma haematobium infected children vs. uninfected children. PLoS Negl. Trop. Dis. 9(6), 0003861 (2015).
    Article  CAS  Google Scholar 

    77.
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. Biol. Sci. 2019(286), 20182448 (1895).
    Google Scholar 

    78.
    Borody, T. J., Paramsothy, S. & Agrawal, G. Fecal microbiota transplantation: Indications, methods, evidence, and future directions. Curr. Gastroenterol. Rep. 15(8), 337 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    79.
    Blyton, M. D. J. et al. Faecal inoculations alter the gastrointestinal microbiome and allow dietary expansion in a wild specialist herbivore, the koala. Anim. Microbiome. 1(1), 6 (2019).
    Article  Google Scholar 

    80.
    Guo, W. et al. Fecal microbiota transplantation provides new insight into wildlife conservation. Glob. Ecol. Conserv. 24, e01234 (2020).
    Article  Google Scholar 

    81.
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37(8), 852–857 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26(1), 32–46 (2001).
    Google Scholar 

    84.
    Vazquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. GigaScience. 2(1), 16 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 6(1), 90 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Morton, J. T. et al. Balance trees reveal microbial niche differentiation. mSystems 2(1), e00162-00166 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    87.
    Mandal, S. et al. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Novel approach to enhance coastal habitat and biotope mapping with drone aerial imagery analysis

    1.
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Lefcheck, J. S., Wilcox, D. J., Murphy, R. R., Marion, S. R. & Orth, R. J. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Glob. Change Biol. 32, 202–3483 (2017).
    Google Scholar 

    3.
    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).
    PubMed  Article  Google Scholar 

    5.
    Liquete, C. et al. Current status and future prospects for the assessment of marine and coastal ecosystem services: A systematic review. PLoS ONE 8, e67737 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Bayley, D. T. I. & Mogg, A. O. M. Chapter 6—New Advances in Benthic Monitoring Technology and Methodology. World Seas: An Environmental Evaluation 121–132 (Elsevier, Amsterdam, 2018). https://doi.org/10.1016/B978-0-12-805052-1.00006-1.
    Google Scholar 

    7.
    González-Rivero, M. et al. The Catlin Seaview Survey—Kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 184–198 (2014).
    Article  Google Scholar 

    8.
    Ventura, D., Bruno, M., Jona Lasinio, G., Belluscio, A. & Ardizzone, G. A low-cost drone based application for identifying and mapping of coastal fish nursery grounds. Estuar. Coast. Shelf Sci. 171, 85–98 (2016).
    ADS  Article  Google Scholar 

    9.
    Pyle, R. L. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 12, 959–972 (Springe, Berlin, 2019).

    10.
    Lam, K. et al. A comparison of video and point intercept transect methods for monitoring subtropical coral communities. J. Exp. Mar. Biol. Ecol. 333, 115–128 (2006).
    Article  Google Scholar 

    11.
    Dumas, P., Bertaud, A., Peignon, C., Léopold, M. & Pelletier, D. A ‘quick and clean’ photographic method for the description of coral reef habitats. J. Exp. Mar. Biol. Ecol. 368, 161–168 (2009).
    Article  Google Scholar 

    12.
    Monteiro, J. G., Almeida, C., Freitas, R., Delgado, A. & Porteiro, F. Coral assemblages of Cabo Verde: preliminary assessment and description. Proceedings of the 11th ICRS (2009).

    13.
    Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 10, e0130312 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Chennu, A., Färber, P., De’ath, G., de Beer, D. & Fabricius, K. E. A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Sci. Rep. 7, 1–12 (2017).
    CAS  Article  Google Scholar 

    15.
    Purkis, S. J. Remote sensing tropical coral reefs: The view from above. Annu. Rev. Mar. Sci. 10, 149–168 (2018).
    ADS  Article  Google Scholar 

    16.
    Kao, H.-M. et al. Determination of shallow water depth using optical satellite images. Int. J. Remote Sens. 30, 6241–6260 (2009).
    ADS  Article  Google Scholar 

    17.
    Saul, S. & Purkis, S. Semi-automated object-based classification of coral reef habitat using discrete choice models. Remote Sens. 7, 15894–15916 (2015).
    ADS  Article  Google Scholar 

    18.
    Marcello, J., Eugenio, F. & Marques, F. Benthic mapping using high resolution multispectral and hyperspectral imagery. In IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium 1535–1538 (2018). https://doi.org/10.1109/IGARSS.2018.8519166

    19.
    Chénier, R., Faucher, M.-A. & Ahola, R. Satellite-derived bathymetry for improving canadian hydrographic service charts. ISPRS Int. J. Geo-Inf. 7, 306–315 (2018).
    Article  Google Scholar 

    20.
    Casella, E. et al. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 36, 269–275 (2016).
    ADS  Article  Google Scholar 

    21.
    Chust, G., Galparsoro, I., Borja, Á., Franco, J. & Uriarte, A. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar. Coast. Shelf Sci. 78, 633–643 (2008).
    ADS  Article  Google Scholar 

    22.
    Garcia, R., Hedley, J., Tin, H. & Fearns, P. A method to analyze the potential of optical remote sensing for benthic habitat mapping. Remote Sens. 7, 13157–13189 (2015).
    ADS  Article  Google Scholar 

    23.
    Hernandez, W. & Armstrong, R. Deriving bathymetry from multispectral remote sensing data. JMSE 4, 8 (2016).
    Article  Google Scholar 

    24.
    Gonzalez, L. et al. Unmanned Aerial Vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 16, 97 (2016).
    Article  Google Scholar 

    25.
    Jiménez López, J. & Mulero-Pázmány, M. Drones for conservation in protected areas: Present and future. Drones 3, 10 (2019).
    Article  Google Scholar 

    26.
    Chirayath, V. & Earle, S. A. Drones that see through waves—Preliminary results from airborne fluid lensing for centimetre-scale aquatic conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 237–250 (2016).
    Article  Google Scholar 

    27.
    Giordano, F., Mattei, G., Parente, C., Peluso, F. & Santamaria, R. Integrating sensors into a marine drone for bathymetric 3D surveys in shallow waters. Sensors 16, 41–17 (2016).
    Article  Google Scholar 

    28.
    Collin, A. et al. Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery. Int. J. Remote Sens. 00, 1–13 (2018).
    Google Scholar 

    29.
    Konar, B. & Iken, K. The use of unmanned aerial vehicle imagery in intertidal monitoring. Deep-Sea Res. Part II(147), 79–86 (2018).
    Article  Google Scholar 

    30.
    Parsons, M., Bratanov, D., Gaston, K. J. & Gonzalez, F. UAVs, hyperspectral remote sensing, and machine learning revolutionizing reef monitoring. Sensors 18, 2026 (2018).
    Article  Google Scholar 

    31.
    Rossiter, T., Furey, T., McCarthy, T. & Stengel, D. B. UAV-mounted hyperspectral mapping of intertidal macroalgae. Estuar. Coast. Shelf Sci. https://doi.org/10.1016/j.ecss.2020.106789 (2020).
    Article  Google Scholar 

    32.
    United Nations Environment Programme. Out of the Blue. 1–96 (UNEP, 2020).

    33.
    Monteiro, J. G. & Lopez, J. J. Map of Quinta do Lorde Bay—Madeira Island. 1–3 (2020). doi:https://doi.org/10.22541/au.158939921.14824633

    34.
    Stumpf, R. P., Holderied, K. & Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 48, 547–556 (2003).
    ADS  Article  Google Scholar 

    35.
    Conger, C. L., Hochberg, E. J., Fletcher, C. H. & Atkinson, M. J. Decorrelating remote sensing color bands from bathymetry in optically shallow waters. IEEE Trans. Geosci. Remote Sens. 44, 1655–1660 (2006).
    ADS  Article  Google Scholar 

    36.
    Clarke, K. & Warwick, R. Change in Marine Communities: An Approach to Statistical Analysis (Primer-e Ltd, London, 2014).
    Google Scholar 

    37.
    Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the mesophotic. Sci. Rep. https://doi.org/10.1038/s41598-018-23067-1 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Olenin, S. & Ducrotoy, J.-P. The concept of biotope in marine ecology and coastal management. J. Exp. Mar. Biol. Ecol. 53, 20–29 (2006).
    CAS  Google Scholar 

    39.
    Frazão Santos, C. et al. in World Seas: An Environmental Evaluation 571–592 (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/B978-0-12-805052-1.00033-4

    40.
    Mumby, P. J. et al. Remote sensing of coral reefs and their physical environment. Mar Polut Bull 48, 219–228 (2004).
    CAS  Article  Google Scholar 

    41.
    Hayes, R. & Goreau, T. Satellite-derived sea surface temperature from Caribbean and Atlantic coral reef sites, 1984–2003. Rev. Biol. Trop. 56, 97–118 (2008).
    Google Scholar 

    42.
    Sugara, A. A., Siregar, V. P. V. & Agus, S. B. S. Classification of benthic habitat of shallow water using worldview-2 image with in-situ and drone data. Jurnal Ilmu dan Teknologi Kelautan Tropis 12, 135–150 (2020).
    Article  Google Scholar 

    43.
    Murfitt, S. L. et al. Applications of unmanned aerial vehicles in intertidal reef monitoring. Sci. Rep. https://doi.org/10.1038/s41598-017-10818-9 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Kaplanis, N. J., Edwards, C. B., Eynaud, Y. & Smith, J. E. Future sea-level rise drives rocky intertidal habitat loss and benthic community change. PeerJ 8, e9186–e9221 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Chatzinikolaou, E. Use and limitations of ecological models. Transit. Waters Bull. 6, 34–41 (2012).
    Google Scholar 

    46.
    de Carneiro, L. R. A., Lima, A. P., Machado, R. B. & Magnusson, W. E. Limitations to the use of species-distribution models for environmental-impact assessments in the Amazon. PLoS ONE 11, e0146543 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    van der Wal, D., van Dalen, J., Dool, den, A. W.-V., Dijkstra, J. T. & Ysebaert, T. Biophysical control of intertidal benthic macroalgae revealed by high-frequency multispectral camera images. J. Sea Res. 90, 111–120 (2014).

    48.
    Goldberg, J. & Wilkinson, C. in Status of coral reefs of the World (ed. Wilkinson, C.) 1, 67–92 (Status of coral reefs of the World, 2004).

    49.
    Fabry, V. J., Seibel, B. A. & Feely, R. A. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).
    CAS  Article  Google Scholar 

    50.
    Radeta, M. et al. in Human-Computer Interaction—INTERACT 2019, vol. 11748, 237–248 (Springer, Cham, 2019).

    51.
    Rusu, E. & Guedes Soares, C. Wave energy pattern around the Madeira Islands. Energy 45, 771–785 (2012).
    Article  Google Scholar 

    52.
    Pullen, J., Caldeira, R., Doyle, J. D., May, P. & Tomé, R. Modeling the air-sea feedback system of Madeira Island. J. Adv. Model. Earth Syst. 9, 1641–1664 (2017).
    ADS  Article  Google Scholar 

    53.
    Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275 (2010).
    Article  Google Scholar 

    54.
    Earth Systems Research Institute (ESRI). ArcGIS Desktop: Release 10 (2011).

    55.
    Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogram. Remote Sens. 65, 2–16 (2010).
    ADS  Article  Google Scholar 

    56.
    Darwish, A., Leukert, K. & Reinhardt, W. Image segmentation for the purpose of object-based classification. in 3, 2039–2041 (IEEE, 2003).

    57.
    Qian, Y., Zhou, W., Yan, J., Li, W. & Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 7, 153–168 (2015).
    ADS  Article  Google Scholar 

    58.
    Masi, B., Macedo, I. & Zalmon, I. Benthic community zonation in a breakwater on the North Coast of the State of Rio de Janeiro, Brazil. Braz. Arch. Biol. Technol. 52, 637–646 (2009).
    Article  Google Scholar 

    59.
    Sangil, C. et al. Shallow subtidal macroalgae in the North-eastern Atlantic archipelagos (Macaronesian region): A spatial approach to community structure. Eur. J. Phycol. 00, 1–16 (2018).
    Google Scholar 

    60.
    Su, T.-C. & Chou, H.-T. Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu Reservoir in Kinmen, Taiwan. Remote Sens. 7, 10078–10097 (2015).
    ADS  Article  Google Scholar 

    61.
    Kohler, K. & Gill, S. Coral Point Count with Excel Extensions (CPCe): A Visual Basic Program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).
    ADS  Article  Google Scholar 

    62.
    Clarke, K. R. & Gorley, R. N. Getting started with PRIMER V7 (PRIMER-E, Plymouth, 2015).
    Google Scholar 

    63.
    Berman, J. & Bell, J. J. Spatial Variability of Sponge Assemblages on the Wellington South Coast, New Zealand. Open Mar. Biol. J. 4, 12–25 (2010). https://doi.org/10.2174/1874450801004010012.

    64.
    Rawson, C. A. et al. Benthic macroinvertebrate assemblages in remediated wetlands around Sydney, Australia. Ecotoxicology 19, 1589–1600 (2010).
    CAS  PubMed  Article  Google Scholar 

    65.
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA for PRIMER: a guide to software and statistical methods. (PRIMER-E Ltd, 2008). More

  • in

    Consistent choice of landscape urbanization level across the annual cycle in a migratory waterbird species

    1.
    Stein, B. A., Kutner, L. S. & Adams, J. S. Precious Heritage: The Status of Biodiversity in the United States (Oxford University Press, Oxford, UK, 2000).
    Google Scholar 
    2.
    Blair, R. B. Birds and Butterflies Along Urban Gradients in Two Ecoregions of the United States: Is Urbanization Creating a Homogeneous Fauna? In Biotic Homogenization (eds Lockwood, J. L. & McKinney, M. L.) 33–56 (Springer, Boston, MA, 2001).
    Google Scholar 

    3.
    Clergeau, P., Croci, S., Jokimäki, J., Kaisanlahti-Jokimäki, M. L. & Dinetti, M. Avifauna homogenisation by urbanisation: analysis at different European latitudes. Biol. conserv. 127, 336–344 (2006).
    Article  Google Scholar 

    4.
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
    Article  Google Scholar 

    5.
    Seto, K. C. & Shepherd, J. M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sust. 1, 89–95 (2009).
    Article  Google Scholar 

    6.
    Wilby, R. L. & Perry, G. L. Climate change, biodiversity and the urban environment: a critical review based on London, UK. Prog. Phys. Geog. 30, 73–98 (2006).
    Article  Google Scholar 

    7.
    Chapman, R. & Jones, D. N. Just feeding the ducks: quantifying a common wildlife-human interaction. Sunbird: J. Qld. Ornithol. Soc. 39, 19 (2009).
    Google Scholar 

    8.
    Partecke, J., Schwabl, I. & Gwinner, E. Stress and the city: urbanization and its effects on the stress physiology in European blackbirds. Ecology 87, 1945–1952 (2006).
    PubMed  Article  Google Scholar 

    9.
    Adams, L. W. Urban Wildlife Habitats: A Landscape Perspective Vol. 3 (University of Minnesota Press, Minneapolis, USA, 1994).
    Google Scholar 

    10.
    Gering, J. C. & Blair, R. B. Predation on artificial bird nests along an urban gradient: predatory risk or relaxation in urban environments?. Ecography 22, 532–541 (1999).
    Article  Google Scholar 

    11.
    Baker, P. J., Bentley, A. J., Ansell, R. J. & Harris, S. Impact of predation by domestic cats Felis catus in an urban area. Mammal Rev. 35, 302–312 (2005).
    Article  Google Scholar 

    12.
    Bateman, P. W. & Fleming, P. A. Big city life: carnivores in urban environments. J. Zool. 287, 1–23 (2012).
    Article  Google Scholar 

    13.
    Brzeziński, M., Natorff, M., Zalewski, A. & Żmihorski, M. Numerical and behavioral responses of waterfowl to the invasive American mink: A conservation paradox. Biol. Conserv. 147, 68–78 (2012).
    Article  Google Scholar 

    14.
    Luniak, M. Synurbization–adaptation of animal wildlife to urban development. In Proceedings 4th International Urban Wildlife Symposium, pp 50–55 (University of Arizona, Tucson, USA, 2004).

    15.
    Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: a review. Landsc. Urban Plan. 74, 46–69 (2006).
    Article  Google Scholar 

    16.
    Møller, A. P. Successful city dwellers: a comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).
    ADS  PubMed  Article  Google Scholar 

    17.
    Chamberlain, D. E. et al. Avian productivity in urban landscapes: a review and meta-analysis. Ibis 151, 1–18 (2009).
    Article  Google Scholar 

    18.
    Müller, J. C., Partecke, J., Hatchwell, B. J., Gaston, K. J. & Evans, K. L. Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Mol. Ecol. 22, 3629–3637 (2013).
    Article  CAS  Google Scholar 

    19.
    Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).
    PubMed  Article  Google Scholar 

    21.
    Møller, A. P. Flight distance of urban birds, predation, and selection for urban life. Behav. Ecol. Sociobiol. 63, 63 (2008).
    Article  Google Scholar 

    22.
    Evans, J., Boudreau, K. & Hyman, J. Behavioural syndromes in urban and rural populations of song sparrows. Ethology 116, 588–595 (2010).
    Google Scholar 

    23.
    Carrete, M. & Tella, J. L. High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls. Sci. Rep. 3, 3524 (2013).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Díaz, M. et al. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS ONE 8, e64634 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    McGiffin, A., Lill, A., Beckman, J. & Johnstone, C. P. Tolerance of human approaches by Common Mynas along an urban-rural gradient. EMU 113, 154–160 (2013).
    Article  Google Scholar 

    26.
    Knight, R. L., Grout, D. J. & Temple, S. A. Nest-defense behavior of the American crow in urban and rural areas. Condor 89, 175–177 (1987).
    Article  Google Scholar 

    27.
    Wang, Y., Huang, Q., Lan, S., Zhang, Q. & Chen, S. Common blackbirds Turdus merula use anthropogenic structures as nesting sites in an urbanized landscape. Curr. Zool. 61, 435–443 (2015).
    Article  Google Scholar 

    28.
    Russ, A., Rüger, A. & Klenke, R. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. J. Ornithol. 156, 123–131 (2015).
    Article  Google Scholar 

    29.
    Schoech, S. J., Bowman, R., Bridge, E. S. & Boughton, R. K. Baseline and acute levels of corticosterone in Florida scrub-jays (Aphelocoma coerulescens): effects of food supplementation, suburban habitat, and year. Gen. Comp. Endocrinol. 154, 150–160 (2007).
    CAS  PubMed  Article  Google Scholar 

    30.
    Fokidis, H. B., Orchinik, M. & Deviche, P. Corticosterone and corticosteroid binding globulin in birds: relation to urbanization in a desert city. Gen. Comp. Endocrinol. 160, 259–270 (2009).
    CAS  PubMed  Article  Google Scholar 

    31.
    Minias, P. Successful colonization of a novel urban environment is associated with an urban behavioural syndrome in a reed-nesting waterbird. Ethology 121, 1178–1190 (2015).
    Article  Google Scholar 

    32.
    Tryjanowski, P., Sparks, T. H., Kuźniak, S., Czechowski, P. & Jerzak, L. Bird migration advances more strongly in urban environments. PLoS ONE 8, e63482 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Latimer, C. E. & Zuckerberg, B. Habitat loss and thermal tolerances influence the sensitivity of resident bird populations to winter weather at regional scales. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13332 (2020).
    Article  PubMed  Google Scholar 

    34.
    Schatz, J. & Kucharik, C. J. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environ. Res. Lett. 10, 094024 (2015).
    ADS  Article  Google Scholar 

    35.
    Price, T. D., Qvarnström, A. & Irwin, D. E. The role of phenotypic plasticity in driving genetic evolution. P. Roy. Soc. B-Biol. Sci. 270, 1433–1440 (2003).
    Article  Google Scholar 

    36.
    Pigliucci, M., Murren, C. J. & Schlichting, C. D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 209, 2362–2367 (2006).
    PubMed  Article  Google Scholar 

    37.
    Partecke, J. Mechanisms of phenotypic responses following colonization of urban areas: from plastic to genetic adaptation. In Avian Urban Ecology: Behavioural and Physiological Adaptations (eds Gil, D. & Brumm, H.) 131–142 (Oxford University Press, Oxford, UK, 2014).
    Google Scholar 

    38.
    Baker, A. J. & Moeed, A. Rapid genetic differentiation and founder effect in colonizing populations of common mynas (Acridotheres tristis). Evolution 41, 525–538 (1987).
    PubMed  Google Scholar 

    39.
    Sacchi, R., Gentilli, A., Razzetti, E. & Barbieri, F. Effects of building features on density and flock distribution of feral pigeons Columba livia var. domestica in an urban environment. Can. J. Zool. 80, 48–54 (2002).
    Article  Google Scholar 

    40.
    Antonov, A. & Atanasova, D. Small-scale differences in the breeding ecology of urban and rural Magpies Pica pica. OrnisFenn. 80, 21–30 (2003).
    Google Scholar 

    41.
    Carrete, M. & Tella, J. L. Individual consistency in flight initiation distances in burrowing owls: a new hypothesis on disturbance-induced habitat selection. Biol. Lett. 6, 167–170 (2010).
    PubMed  Article  Google Scholar 

    42.
    Meillère, A. et al. Growing in a city: consequences on body size and plumage quality in an urban dweller, the house sparrow (Passer domesticus). Landsc. Urban Plan. 160, 127–138 (2017).
    Article  Google Scholar 

    43.
    Rodewald, A. D. & Shustack, D. P. Urban flight: understanding individual and population-level responses of nearctic-neotropical migratory birds to urbanization. J. Anim. Ecol. 77, 83–91 (2008).
    PubMed  Article  Google Scholar 

    44.
    Jokimäki, J. & Suhonen, J. Distribution and habitat selection of wintering birds in urban environments. Landsc. Urban Plan. 39, 253–263 (1998).
    Article  Google Scholar 

    45.
    Végvári, Z., Barta, Z., Mustakallio, P. & Székely, T. Consistent avoidance of human disturbance over large geographical distances by a migratory bird. Biol. Lett. 7, 814–817 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Snow, D. W. & Perrins, C. M. The Birds of the Western Palearctic (Oxford University Press, Oxford, UK, 1998).
    Google Scholar 

    47.
    Luniak, M., Kalbarczyk, W. & Pawłowski, W. Birds of Warsaw. ActaOrnithol. 8, 198–199 (1964).
    Google Scholar 

    48.
    Janiszewski, T., Wojciechowski, Z. & Markowski, J. Atlas Ptaków Lęgowych Łodzi (Wydawnictwo Uniwersytetu Łódzkiego, Łódź, Poland, 2009).
    Google Scholar 

    49.
    Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. ecol. 7, 1071–1075 (1998).
    CAS  PubMed  Article  Google Scholar 

    50.
    European Environment Agency 2018. Corine Land Cover (CLC) 2018, Version 2020_20u1. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018

    51.
    Kosztra, B., Büttner, G., Hazeu, G. & Arnold, S. Updated CLC Illustrated Nomenclature Guidelines 1–124 (European Environment Agency, Vienna, Austria, 2017).
    Google Scholar 

    52.
    United States Geological Survey 2019. Earth Explorer. https://earthexplorer.usgs.gov/

    53.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Article  Google Scholar 

    54.
    Bartoń, K. MuMIn: Multi-Model Inference. R package ver. 1.43.17. CRAN: The Comprehensive R Archive Network, Berkeley, CA, USA. https://CRAN.R-project.org/package=MuMIn (2020).

    55.
    R Development Core Team R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2013).

    56.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv:1406.5823 (2014).

    57.
    Thys, B. et al. The female perspective of personality in a wild songbird: repeatable aggressiveness relates to exploration behaviour. Sci. Rep. 7, 1–10 (2017).
    CAS  Article  Google Scholar 

    58.
    Hardman, S. I. & Dalesman, S. Repeatability and degree of territorial aggression differs among urban and rural great tits (Parus major). Sci. Rep. 8, 1–12 (2018).
    CAS  Article  Google Scholar 

    59.
    Edelaar, P., Siepielski, A. M. & Clobert, J. Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evol. Int. J. Organic Evol. 62, 2462–2472 (2008).
    Article  Google Scholar 

    60.
    Jaenike, J. & Holt, R. D. Genetic variation for habitat preference: evidence and explanations. Am. Nat. 137, S67–S90 (1991).
    Article  Google Scholar 

    61.
    Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Minias, P., Włodarczyk, R., Minias, A. & Dziadek, J. How birds colonize cities: genetic evidence from a common waterbird, the Eurasian coot. J. Avian Biol. 48, 1095–1103 (2017).
    Article  Google Scholar 

    63.
    Holtmann, B., Santos, E. S., Lara, C. E. & Nakagawa, S. Personality-matching habitat choice, rather than behavioural plasticity, is a likely driver of a phenotype–environment covariance. P. Roy. Soc. B-Biol. Sci. 284, 20170943 (2017).
    Google Scholar 

    64.
    Sprau, P. & Dingemanse, N. J. An approach to distinguish between plasticity and non-random distributions of behavioral types along urban gradients in a wild passerine bird. Front. Ecol. Evol. 5, 92 (2017).
    Article  Google Scholar 

    65.
    Skórka, P., Lenda, M. & Skórka, J. Supermarkets—a wintering habitat for house sparrow Passer domesticus. Pol. J. Ecol. 57, 597–603 (2009).
    Google Scholar 

    66.
    Newton, I. Population Limitation in Birds (Academic Press, San Diego, USA, 1998).
    Google Scholar 

    67.
    Ciach, M. & Fröhlich, A. Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosyst. 20, 547–559 (2017).
    Article  Google Scholar 

    68.
    Gauthreaux, S. A. The ecological significance of behavioral dominance. In Social Behaviour. Perspectives in Ethology Vol. 3 (eds Bateson, P. P. G. & Klopfer, P. H.) (Springer, Boston, MA, 1978).
    Google Scholar 

    69.
    Lynch, J. F., Morton, E. S. & Van der Voort, M. E. Habitat segregation between the sexes of wintering Hooded Warblers (Wilsonia citrina). Auk 102, 714–721 (1985).
    Google Scholar 

    70.
    Marra, P. P. The role of behavioral dominance in structuring patterns of habitat occupancy in a migrant bird during the nonbreeding season. Behav. Ecol. 11, 299–308 (2000).
    ADS  Article  Google Scholar 

    71.
    Morton, E. S. Habitat segregation by sex in the hooded warbler: experiments on proximate causation and discussion of its evolution. Am. Nat. 135, 319–333 (1990).
    Article  Google Scholar 

    72.
    del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, vol. 3 Hoatzin to Auks ( Lynx Edicions, Barcelona, Spain, 1996).
    Google Scholar  More