More stories

  • in

    Variable inter and intraspecies alkaline phosphatase activity within single cells of revived dinoflagellates

    1.
    Gobler CJ, Doherty OM, Hattenrath-Lehmann TK, Griffith AW, Kang R, Litaker W. Ocean warming has expanded niche of toxic algae. Proc Natl Acad Sci USA. 2017;114:4975–80.
    CAS  PubMed  Article  Google Scholar 
    2.
    Olivieri ET. Colonization, adaptations and temporal changes in diversity and biomass of a phytoplankton community in upwelled water off the Cape Peninsula, South Africa, in December 1979. South Afr J Mar Sci. 1983;1:77–109.
    Article  Google Scholar 

    3.
    Irwin AJ, Zoe V, Finkel ZV, Müller-Karger FE, Troccoli, Ghinaglia L. Phytoplankton adapt to changing ocean environment. Proc Natl Acad Sci USA. 2015;112:5762–6.
    CAS  PubMed  Article  Google Scholar 

    4.
    Chivers W, Walne A, Hays G. Mismatch between marine plankton range movements and the velocity of climate change. Nat Commun. 2017;8:14434.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Gisselson L, Granéli E, Pallon J. Variation in cellular nutrient status within a population of Dinophysis norvegica (Dinophyceae) growing in situ: single – cell elemental analysis by use of a nuclear microprobe. Limnol Oceanogr. 2001;5. https://doi.org/10.4319/lo.2001.46.5.1237.

    6.
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508. https://doi.org/10.1038/nrmicro3491.
    CAS  Article  PubMed  Google Scholar 

    7.
    Núñez-Milland DR, Baines SB, Vogt S, Twining BS. Quantification of phosphorus in single cells using synchrotron X-ray fluorescence. J Synchrotron Radiat. 2010;17:560–6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Berthelot H, Duhamel S, L’Helguen S, Maguer JF, Wang S, Cetinić I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651–62. https://doi.org/10.1038/s41396-018-0285-8.
    CAS  Article  PubMed  Google Scholar 

    9.
    Štrojsová A, Vrba J. Short-term variation in extracellular phosphatase activity: possible limitations for diagnosis of nutrient status in particular algal populations. Aquat Ecol. 2009;43:19–25.
    Article  CAS  Google Scholar 

    10.
    O’Donnell DR, Hamman CR, Johnson EC, Kremer CT, Klausmeier CA, Litchman E. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob Change Biol. 2018;24:4554–65.
    Article  Google Scholar 

    11.
    Jin P, Agustí S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci Rep. 2018;8:17771. https://doi.org/10.1038/s41598-018-36091-y.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change. Nature. 2004;427:145–8.
    CAS  PubMed  Article  Google Scholar 

    13.
    Urban MC. Accelerating extinction risk from climate change. Science. 2015;348:571–3.
    CAS  PubMed  Article  Google Scholar 

    14.
    Kottuparambil S, Jin P, Agusti S. Adaptation of Red Sea Phytoplankton to experimental warming increases their tolerance to toxic metal exposure. Front Environ Sci. 2019;7. https://doi.org/10.3389/fenvs.2019.00125.

    15.
    Flores-Moya A, Costas E, Lopez-Rodas V. Roles of adaptation, chance and history in the evolution of the dinoflagellate Prorocentrum triestinum. Naturwissenschaften. 2008;95:697–703.
    CAS  PubMed  Article  Google Scholar 

    16.
    Flores-Moya A, Rouco M, García-Sánchez MJ, García-Balboa C, González R, Costas E, et al. Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification. Ecol Evol. 2012;2:1251–9. https://doi.org/10.1002/ece3.198.
    Article  PubMed  PubMed Central  Google Scholar 

    17.
    Martiny AC, Ustick LA, Garcia C, Lomas MW. Genomic adaptation of marine phytoplankton populations regulates phosphate uptake. Limnol Oceanogr. 2019. https://doi.org/10.1002/lno.11252.

    18.
    Ribeiro S, Berge T, Lundholm N, Andersen TJ, Abrantes F, Ellegaard M. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat Commun. 2011;2:311.
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Delebecq G, Schmidt S, Ehrhold A, Latimier M, Siano R. Revival of ancient marine dinoflagellates using molecular biostimulation. J Phycol. 2020;56:1077–89.
    CAS  PubMed  Article  Google Scholar 

    20.
    Ribeiro S, Berge T, Lundholm N, Ellegaard M. Hundred years of environmental change and phytoplankton ecophysiological variability archived in coastal sediments. PLoS ONE. 2013;8:e61184.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Klouch KZ, Schmidt S, Andrieux Loyer F, Le Gac M, Hervio-Heath D, Qui-Minet ZN, et al. Historical records from dated sediment cores reveal the multidecadal dynamic of the toxic dinoflagellate Alexandrium minutum in the Bay of Brest (France). FEMS Microbiol Ecol. 2016;92:1–16.
    Article  CAS  Google Scholar 

    22.
    Lundholm N, Ribeiro S, Godhe A, Rostgaard Nielsen L, Ellegaard M. Exploring the impact of multidecadal environmental changes on the population genetic structure of a marine primary producer. Ecol Evol. 2017;7:3132–42.
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, et al. Processes and patterns of oceanic nutrient limitation. Nat Geosci. 2013;6:701–10.
    CAS  Article  Google Scholar 

    24.
    Labry C, Herbland A, Delmas D. The role of phosphorus on planktonic production of the Gironde plume waters in the Bay of Biscay. J Plankt Res. 2002;24:97–117.
    CAS  Article  Google Scholar 

    25.
    Girault M, Arakawa H, Hashihama F. Phosphorus stress of microphytoplankton community in the western subtropical North Pacific. J Plankt Res. 2013;35:146–57.
    CAS  Article  Google Scholar 

    26.
    Ramos JBE, Schulz KG, Voss M, Narciso Á, Müller MN, Reis FV, et al. Nutrient-specific responses of a phytoplankton community: a case study of the North Atlantic Gyre. Azores J Plankt Res. 2017;39:744–61.
    Article  CAS  Google Scholar 

    27.
    Lin S, Litaker RW, Sunda WG. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J Phycol. 2016;52:10–36.
    CAS  PubMed  Article  Google Scholar 

    28.
    Lomas MW, Swain A, Shelton R, Ammerman JW. Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton. Limnol Oceanogr. 2004;49:2303–10.
    Article  Google Scholar 

    29.
    Wang D, Huang B, Liu X, Liu G, Wang H. Seasonal variations of phytoplankton phosphorus stress in the Yellow Sea Cold Water Mass. Acta Oceano Sin. 2014;33:124–35.
    Article  CAS  Google Scholar 

    30.
    Cembella AD, Antia NJ, Harrison PJ. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. CRC Crit Rev Microbiol. 1984;10:317–91.
    CAS  Article  Google Scholar 

    31.
    Cooper A, Bowen ID, Lloyd D. The properties and subcellular localization of acid phosphatases in the colourless alga Polytomella caeca. J Cell Sci. 1974;15:605–18.
    CAS  PubMed  Google Scholar 

    32.
    Duhamel S, Björkman KM, Van Wambeke F, Moutin T, Karl DM. Characterization of alkaline phosphatase activity in the North and South Pacific Subtropical Gyres: Implications for phosphorus cycling. Limnol Oceanogr. 2011;56:1244–54.
    CAS  Article  Google Scholar 

    33.
    Kang W, Wang ZH, Liu L, Guo X. Alkaline phosphatase activity in the phosphorus-limited southern Chinese coastal waters. J Environ Sci. 2019;86:38–49.
    Article  Google Scholar 

    34.
    Girault M, Beneyton T, Pekin D, Buisson L, Bichon S, Charbonnier C, et al. High-content screening of plankton alkaline phosphatase activity in microfluidics. Anal Chem. 2018;90:4174–81. https://doi.org/10.1021/acs.analchem.8b00234.
    CAS  Article  PubMed  Google Scholar 

    35.
    Anderson RA, Berges RA, Harrison PJ, Watanabe MM. Appendix A – recipes for freshwater and seawater media; enriched natural seawater media. In Andersen RA, editor. Algal culturing techniques. San Diego, USA: Academic; 2005. p. 429–538.

    36.
    Guillard RL, Ryther JH. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol. 1962;8:229–39.
    CAS  PubMed  Article  Google Scholar 

    37.
    Duffy DC, McDonald JC, Schueller OJ, Whitesides GM. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem. 1998;70:4974–84.
    CAS  PubMed  Article  Google Scholar 

    38.
    Girault M, Hattori A, Kim H, Arakawa H, Matsuura K, Odaka M, et al. An on-chip imaging droplet-sorting system: a real-time shape recognition method to screen target cells in droplets with single cell resolution. Sci Rep. 2017;7:40072. https://doi.org/10.1038/srep40072.
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    39.
    Girault M, Odaka M, Kim H, Matsuura K, Terazono H, Yasuda K. Particle recognition in microfluidic applications using a template matching algorithm. JPN J Appl Phys. 2016;55. https://doi.org/10.7567/JJAP.55.06GN05.

    40.
    Urvoy M, Labry C, Delmas D, Creac’h L, L’Helguen S. Microbial enzymatic assays in environmental water samples: impact of Inner Filter Effect and substrate concentrations. Limnol Oceanogr Methods. 2020;18:728–38.
    Article  CAS  Google Scholar 

    41.
    Huang Z, Terpetschnig E, You W, Haugland RP. 2-(2′-phosphoryloxyphenyl)-4-(3H)-quinazolinone derivatives as fluorogenic precipitating substrates of phosphatases. Anal Biochem. 1992;207:32–39.
    CAS  PubMed  Article  Google Scholar 

    42.
    Girault M, Hattori A, Kim H, Matsuura K, Odaka M, Terazono H et al. Algorithm for the precise detection of single and cluster cells in microfluidic applications. Cytom Part A. 2016. https://doi.org/10.1002/cyto.a.22825.

    43.
    Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–36.
    CAS  Article  Google Scholar 

    44.
    Hoppe HG. Phosphatase activity in the sea. Hydrobiologia. 2003;493:187–200.
    CAS  Article  Google Scholar 

    45.
    Golda-VanEeckhoutte RL, Roof LT, Needoba JA, Peterson DT. Determination of intracellular pH in phytoplankton using the fluorescent probe, SNARF, with detection by fluorescence spectroscopy. J Microbiol Methods. 2018;152:109–18.
    CAS  PubMed  Article  Google Scholar 

    46.
    Kruskopf MM, Du Plessis S. Induction of both acid and alkaline phosphatase activity in two green-algae (chlorophyceae) in low N and P concentrations. Hydrobiologia. 2004;513:59–70.
    CAS  Article  Google Scholar 

    47.
    Štrojsová A, Vrba J, Nedoma J, Komárková J, Znachor P. Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. Eur J Phycol. 2003;38:295–306.
    Article  CAS  Google Scholar 

    48.
    Skelton HM, Parrow MW, Burkholder JM. Phosphatase activity in the heterotrophic dinoflagellate Pfiesteria shumwayae. Harmful Algae 2006;5:395–406.
    CAS  Article  Google Scholar 

    49.
    Nedoma J, Štrojsová A, Vrba J, Komárková J, Simek K. Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environ Microbiol. 2003;5:462–72.
    CAS  PubMed  Article  Google Scholar 

    50.
    Young EB, Tucker RC, Pansch LA. Alkaline phosphatase in freshwater Cladophora-epiphyte assemblages: regulation in response to phosphorus supply and localization. J Phycol. 2010;46:93–101.
    CAS  Article  Google Scholar 

    51.
    Díaz-de-Quijano D, Felip M. A comparative study of fluorescence-labelled enzyme activity methods for assaying phosphatase activity in phytoplankton. A possible bias in the enzymatic pathway estimations. J Micro Meth. 2011;86:104–7.
    Article  CAS  Google Scholar 

    52.
    Ou L, Huang B, Lin L, Hong H, Zhang F, Chen Z. Phosphorus stress of phytoplankton in the Taiwan Strait determined by bulk and single-cell alkaline phosphatase activity assays. Mar Ecol Prog Ser. 2006;327:95–106.
    CAS  Article  Google Scholar 

    53.
    Huang B, Ou L, Wang X, Huo W, Li R, Hong H, et al. Alkaline phosphatase activity of phytoplankton in East China Sea coastal waters with frequent harmful algal bloom occurrences. Aquat Micro Ecol. 2007;49:195–206.
    Article  Google Scholar 

    54.
    Ivančić I, Pfannkuchen M, Godrijan J, Djakovac T, Pfannkuchen DM, Korlević M, et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions. Prog Oceanogr. 2016;146:175–86.
    Article  Google Scholar 

    55.
    González-Gil S, Keafer B, Jovine JMR, Aguileral A, Lu S, Anderson DM. Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Mar Ecol Prog Ser. 1998;164:21–35.
    Article  Google Scholar 

    56.
    Dyhrman ST, Ruttenberg KC. Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol Oceanogr. 2006;51. https://doi.org/10.4319/lo.2006.51.3.1381.

    57.
    Flynn K, Jones KJ, Flynn KJ. Comparisons among species of Alexandrium (Dinophyceae) grown in nitrogen- or phosphorus-limiting batch culture. Mar Biol. 1996;126:9–18.
    CAS  Article  Google Scholar 

    58.
    Perry MJ. Alkaline phosphatase activity in subtropical Central North Pacific waters using a sensitive fluorometric method. Mar Biol. 1972;15:113–9.
    CAS  Article  Google Scholar 

    59.
    Dyhrman ST, Palenik B. Phosphate stress in cultures and field populations of the dinoflagellate prorocentrum minimum detected by a single-cell alkaline phosphatase assay. Appl Environ Microbiol. 1999;65:3205–12.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Mulholland MR, Floge S, Carpenter EJ, Capone DG. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp. Mar Ecol Prog Ser. 2002;239:45–55.
    CAS  Article  Google Scholar 

    61.
    Thomson B, Wenley J, Currie K, Hepburn C, Herndl GJ, Baltar F. Resolving the paradox: Continuous cell-free alkaline phosphatase activity despite high phosphate concentrations. Mar Chem. 2019;214:103671.
    CAS  Article  Google Scholar 

    62.
    Foster RA, Sztejrenszus S, Kuypers MMM. Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry. J Phycol. 2013;49:502–16.
    CAS  PubMed  Article  Google Scholar 

    63.
    Dyhrman ST, Palenik B. Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. J Plankton Res. 2003;25:1215–25.
    CAS  Article  Google Scholar 

    64.
    Oh SJ, Yamammoto T, Kataoka Y, Matsuda O, Matsuyama Y, Katani Y. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish Sci. 2002;68:416–24.
    CAS  Article  Google Scholar 

    65.
    Jauzein C, Labry C, Youenou A, Quéré J, Delmas D, Collos Y. Growth and phosphorus uptake by the toxic dinoflagellate Alexandrium catenella (Dinophycea) in response to phosphate limitation. J Phycol. 2010;46:926–36.
    CAS  Article  Google Scholar 

    66.
    Elgavish A, Halmann M, Berman T. A comparative study of phosphorus utilization and storage in batch cultures of Peridinium cinctum, Pediastrum duplex and Cosmarium sp., from Lake Kinneret (Israel). Phycologia. 1982;21:47–54.
    CAS  Article  Google Scholar 

    67.
    Flynn K, Franco JM, Fernandez P, Reguera B, Zapata M, Wood G, et al. Changes in toxin content, biomass and pigments of the dinoflagellate Alexandrium minutum during nitrogen refeeding and growth into nitrogen or phosphorus stress. Mar Ecol Prog Ser. 1994;111:99–109.
    CAS  Article  Google Scholar 

    68.
    Ou L, Wang D, Huang B, Hong H, Qi Y, Lu S. Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters. J Plankton Res. 2008;30:1007–17.
    CAS  Article  Google Scholar 

    69.
    Droop MR. The nutrient status of algal cells in continuous culture. J Mar Biol Ass UK. 1974;54:825–55.
    CAS  Article  Google Scholar 

    70.
    Bechemin C, Grzebyk D, Hachame F, Hummert C, Maestrini S. Effect of different nitrogen/phosphorus nutrient ratios on the toxin content in Alexandrium minutum. Aquat Micro Ecol. 1990;20:157–65.
    Article  Google Scholar 

    71.
    Labry C, Erard–Le Denn E, Chapelle A, Fauchot J, Youenou A, Crassous MP, et al. Competition for phosphorus between two dinoflagellates: A toxic Alexandrium minutum and a non-toxic Heterocapsa triquetra. J Exp Mar Biol Ecol. 2008;358:124–35.
    CAS  Article  Google Scholar 

    72.
    Chapelle A, Labry C, Sourisseau M, Lebreton C, Youenou A, Crassous MP. Alexandrium minutum growth controlled by phosphorus An applied model. J Mar Syst. 2010;83:181–91.
    Article  Google Scholar 

    73.
    Sakshaug E, Granéli E, Elbrächter M, Kayser H. Chemical composition and alkaline phosphatase activity of nutrient-saturated and P-deficient cells of four marine dinoflagellates. J Exp Mar Biol Ecol. 1984;11:241–54.
    Article  Google Scholar 

    74.
    Lirdwitayaprasit T, Okaichi T, Montani S, Ochi T, Anderson DM. Changes in cell chemical con~position during the life cycle of Scrippsiella trochoidea (Dinophyceae). J Phycol. 1990;26:299–306.
    CAS  Article  Google Scholar 

    75.
    Qi H, Wang J, Wang Z. A comparative study of maximal quantum yield of photosystem II to determine nitrogen and phosphorus limitation on two marine algae. J Sea Res. 2013;80:1–11.
    Article  Google Scholar 

    76.
    Simon N, Cras AL, Foulon E, Lemée R. Diversity and evolution of marine phytoplankton. C R Biol. 2009;332:159–70.
    PubMed  Article  Google Scholar 

    77.
    Rengefors K, Kremp A, Reusch TBH, Wood AM. Genetic diversity and evolution in eukaryotic phytoplankton: revelations from population genetic studies. J Plankton Res. 2017;39:165–79.
    Google Scholar 

    78.
    Bendif EM, Nevado B, Wong ELY, Wong EL, Hagino K, Probert I, et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat Commun. 2019;10:4234.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    79.
    Thornton DCO. Individuals clones or groups? Phytoplankton behaviour and units of selection. Ethol Ecol Evol. 2002;14:165–73.
    Article  Google Scholar 

    80.
    Gerecht A, Romano G, Lanora A, d’Ippolito G, Cutignano A, Fontana A. Plasticity of Oxylipin metabolism among clones of the marine diatom Skeletonema marinoi (Bacillariophyceae). J Phycol. 2011;47:1050–6.
    CAS  PubMed  Article  Google Scholar 

    81.
    Lim PT, Leaw CP, Usup G, Kobiyama A, Koike K, Ogata T. Effects of light and temperature on growth, nitrate uptake, and toxin production of two tropical dinoflagellates: Alexandrium tamiyavanichii and Alexandrium minutum (Dinophyceae). J Phycol. 2006;42:786–99.
    CAS  Article  Google Scholar 

    82.
    Van Mooy BA, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature. 2009;458:69–72.
    PubMed  Article  CAS  Google Scholar 

    83.
    Galbraith AD, Martiny AC. Simple mechanism for marine nutrient stoichiometry. Proc Natl Acad Sci USA. 2015;112:8199–204.
    CAS  PubMed  Article  Google Scholar 

    84.
    Berge T, Daugbjerg N, Hansen PJ. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH. Harmful Algae. 2012;20:101–10.
    CAS  Article  Google Scholar  More

  • in

    Symbiotic bacteria mediate volatile chemical signal synthesis in a large solitary mammal species

    Composition of chemical constituents and bacterial communities in AGS and feces indicates separate, unique odor profiles
    The gas chromatography–mass spectrometry analyses revealed that AGS volatiles of wild and captive pandas were comprised of a multicomponent blend of 30–50 chemical compounds, including fatty acids, aldehydes, ketones, aliphatic ethers, amides, aromatics, alcohols, steroids and squalene (Fig. 2a and Supplementary Table S2). These compounds are typical components of chemosignals across species due to their volatility, detectability and other characteristics facilitating chemoreception [3, 26, 32]. By contrast, feces contained mostly fatty acid ethyl ester, and a small number and quantity of fatty acids, amides, steroids and indole (Fig. 2b and Supplementary Table S3). Our results show that the relative abundance of steroids, aldehydes and fatty acids were remarkably higher in AGS than in feces (Fig. 3a), and the number of chemical components of aldehydes, fatty acids, and ketones in AGS was also significantly higher than found in feces (Fig. 3b). These results indicate that the chemical constituents of AGS are much better suited for chemosignaling than those from feces.
    Fig. 2: Representative ion chromatograms of samples in giant pandas.

    a Anogenital gland secretions (AGS). b Feces.

    Full size image

    Fig. 3: Differences in chemical compounds of anogenital gland secretions (AGS) and feces in giant pandas, and the differences in microbial communities, KEGG and contribution bacteria for lipid metabolism.

    a A heat map of the mean relative abundance of the chemical compounds. b A heat map of the number chemical components. Differences in the microbial communities as a function of providence (captive/wild) and source (feces/AGS) at the c phylum and d genus level. e PCoA clustering results of samples from different groups. f Hierarchical clustering analysis of the samples, clearly indicating two branches for AGS and fecal samples. g Six differentially represented pathways in lipid metabolism and the Linear discriminant analysis (LDA) score. h Prevalence of enzymes involved in lipid metabolism as a function of phylum and family in AGS of giant pandas. i The contribution of different bacteria at genus level to lipid metabolism. WPF: wild panda feces, CPF: captive panda feces, WPAG: wild panda AG, CPAG: captive panda AG.

    Full size image

    The composition of bacterial communities in AGS and feces was markedly different at the phylum (Fig. 3c) and genus levels (Fig. 3d), based on taxonomic classifications of predicted gene sequences. Principal Co-ordinates Analysis (PCoA) (Fig. 3e) and hierarchical clustering analyses (Fig. 3f) revealed cluster patterns based on provenance (captive/wild) and sample type (AGS/fecal). Notably, the microbiota composition of AGS from different individuals or living environments was more similar than were AGS and fecal samples from the same individuals. Actinobacteria (X2 = 26.33, P  More

  • in

    Comparisons of fall armyworm haplotypes between the Galápagos Islands and mainland Ecuador indicate limited migration to and between islands

    1.
    Luginbill, P. The fall armyworm. USDA Tech. Bull. 34, 1–91 (1928).
    Google Scholar 
    2.
    Chandrasena, D. I. et al. Characterization of field-evolved resistance to Bacillus thuringiensis-derived Cry1F delta-endotoxin in Spodopterafrugiperda populations from Argentina. Pest Manag. Sci. 74, 746–754. https://doi.org/10.1002/ps.4776 (2018).
    CAS  Article  PubMed  Google Scholar 

    3.
    Farias, J. R. et al. Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 72, 2295–2302. https://doi.org/10.1002/ps.4274 (2016).
    CAS  Article  PubMed  Google Scholar 

    4.
    Farias, J. R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150–158 (2014).
    Article  ADS  Google Scholar 

    5.
    Huang, F. et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: Single gene versus pyramided Bt maize. PLoS ONE 9, e112958. https://doi.org/10.1371/journal.pone.0112958 (2014).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    6.
    Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera:Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038. https://doi.org/10.1603/Ec10040 (2010).
    Article  PubMed  Google Scholar 

    7.
    Ganiger, P. C. et al. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci. India 115, 621–623 (2018).
    CAS  Article  Google Scholar 

    8.
    Nagoshi, R. N. Evidence that a major subpopulation of fall armyworm found in the Western Hemisphere is rare or absent in Africa, which may limit the range of crops at risk of infestation. PLoS ONE 14, e0208966. https://doi.org/10.1371/journal.pone.0208966 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    9.
    Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    10.
    Shylesha, A. N. et al. Studies on new invasive pest Spodopterafrugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. J. Biol. Control 32, 145–151. https://doi.org/10.18311/jbc/2018/21707 (2018).
    Article  Google Scholar 

    11.
    DPIRD, G. o. W. A. Fall armyworm in Western Australia. http://www.agric.wa.gov.au/plant-biosecurity/fall-armyworm-western-australia (2020).

    12.
    Pair, S. D. & Sparks, A. N. in Long-range migration of moths of agronomic importance to the United States and Canada: Specific examples of occurrence and synoptic weather patterns conducive to migration (ESA Symposium, 1982). Vol. ARS-43 (ed A. N. Sparks) 25–33 (USDA Miscellaneous Publication, 1986).

    13.
    Mitchell, E. R. et al. Seasonal periodicity of fall armyworm, (Lepidoptera, Noctuidae) in the Caribbean basin and northward to Canada. J. Entomol. Sci. 26, 39–50 (1991).
    Article  Google Scholar 

    14.
    Nagoshi, R. N., Meagher, R. L. & Hay-Roe, M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol. Evol. 2, 1458–1467 (2012).
    Article  Google Scholar 

    15.
    Westbrook, J. K. Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr. Comp. Biol. 48, 99–106 (2008).
    Article  Google Scholar 

    16.
    16Danthanarayana, W. in Proceedings in life sciences (ed International Congress of Entomology) (Springer, Hamburg, 1986).

    17.
    Westbrook, J. K., Nagoshi, R. N., Meagher, R. L., Fleischer, S. J. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267 (2016).
    CAS  Article  ADS  Google Scholar 

    18.
    Pashley, D. P. The current status of fall armyworm host strains. Fla Entomol. 71, 227–234 (1988).
    Article  Google Scholar 

    19.
    19Pashley, D. P. in Electrophoretic Studies on Agricultural Pests (eds H. D. Loxdale & J. der Hollander) 103–114 (Oxford University Press, Oxford, 1989).

    20.
    Juárez, M. L. et al. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 105, 573–582. https://doi.org/10.1603/Ec11184 (2012).
    Article  PubMed  Google Scholar 

    21.
    Murúa, M. G. et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J. Econ. Entomol. 108, 2305–2315 (2015).
    Article  Google Scholar 

    22.
    Nagoshi, R. N., Silvie, P., Meagher, R. L., Lopez, J. & Machados, V. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Ann. Entomol. Soc. Am. 100, 394–402 (2007).
    CAS  Article  Google Scholar 

    23.
    Levy, H. C., Garcia-Maruniak, A. & Maruniak, J. E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Fla Entomol. 85, 186–190 (2002).
    CAS  Article  Google Scholar 

    24.
    Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292. https://doi.org/10.1603/An09046 (2010).
    CAS  Article  Google Scholar 

    25.
    Nagoshi, R. N., Silvie, P. & Meagher, R. L. Comparison of haplotype frequencies differentiate fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Florida and Brazil. J. Econ. Entomol. 100, 954–961 (2007).
    Article  Google Scholar 

    26.
    Nagoshi, R. N., Meagher, R. L. & Jenkins, D. A. Puerto Rico fall armyworm has only limited interactions with those from Brazil or Texas but could have substantial exchanges with Florida populations. J. Econ. Entomol. 103, 360–367 (2010).
    Article  Google Scholar 

    27.
    Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 14, e021775 (2019).
    Google Scholar 

    28.
    Nagoshi, R. N., Fleischer, S. & Meagher, R. L. Demonstration and quantification of restricted mating between fall armyworm host strains in field collections by SNP comparisons. J. Econ. Entomol. 110, 2568–2575 (2017).
    CAS  Article  Google Scholar 

    29.
    Nagoshi, R. N., Goergen, G., Du Plessis, H., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. UK 9, 8311 (2019).
    Article  ADS  Google Scholar 

    30.
    Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).
    CAS  Article  PubMed  Google Scholar 

    31.
    Meagher, R. L. & Nagoshi, R. N. Population dynamics and occurrence of Spodoptera frugiperda host strains in southern Florida. Ecol. Entomol. 29, 614–620 (2004).
    Article  Google Scholar 

    32.
    Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Lepidoptera: Noctuidae) host strains in Argentina. J. Econ. Entomol. 105, 418–428. https://doi.org/10.1603/Ec11332 (2012).
    CAS  Article  PubMed  Google Scholar 

    33.
    Meagher, R. L. & Nagoshi, R. N. Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann. Entomol. Soc. Am. 105, 462–470. https://doi.org/10.1603/An11158 (2012).
    Article  Google Scholar 

    34.
    Meagher, R. L., Nagoshi, R. N., Stuhl, C. & Mitchell, E. R. Larval development of fall armyworm (Lepidoptera: Noctuidae) on different cover crop plants. Fla Entomol. 87, 454–460 (2004).
    Article  Google Scholar 

    35.
    Prowell, D. P., McMichael, M. & Silvain, J. F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 97, 1034–1044 (2004).
    CAS  Article  Google Scholar 

    36.
    Nagoshi, R. N. et al. Genetic characterization of fall armyworm (Spodoptera frugiperda) in Ecuador and comparisons with regional populations identify likely migratory relationships. PLoS ONE 14, e0222332. https://doi.org/10.1371/journal.pone.0222332 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    37.
    Nagoshi, R. N. et al. Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J. Econ. Entomol. 108, 135–144 (2015).
    CAS  Article  Google Scholar 

    38.
    Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743 (2017).
    CAS  Article  Google Scholar 

    39.
    Peck, S. B., Heraty, J., Landry, B. & Sinclair, B. J. Introduced insect fauna of an oceanic archipelago: The Galápagos Islands, Ecuador. Am. Entomol. 44, 218–237. https://doi.org/10.1093/ae/44.4.218 (1998).
    Article  Google Scholar 

    40.
    Zapata, F. & Granja, M. M. Optimizing marine transport of food products to Galapagos: advances in the implementation plan. http://www.galapagos.org/wp-content/uploads/2012/04/trans1-optimizing-marine-transport.pdf (2009–2010).

    41.
    Toral-Granda, M. V. et al. Alien species pathways to the Galapagos Islands, Ecuador. PLoS ONE 12, e0184379. https://doi.org/10.1371/journal.pone.0184379 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Nagoshi, R. N. et al. The genetic characterization of fall armyworm populations in Ecuador and its implications to migration and pest management in the northern regions of South America. PLoS ONE 15, e0236759. https://doi.org/10.1371/journal.pone.0236759 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
    Article  Google Scholar 

    44.
    Saitou, N. & Nei, M. The neighbor-joining method—A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).
    CAS  PubMed  Google Scholar 

    45.
    Clements, M. J., Kleinschmidt, C. E., Maragos, C. M., Pataky, J. K. & White, D. G. Evaluation of inoculation techniques for fusarium ear rot and fumonisin contamination of corn. Plant Dis. 87, 147–153 (2003).
    CAS  Article  Google Scholar 

    46.
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Article  Google Scholar 

    47.
    Murúa, G. M. et al. Fitness and mating compatibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from different host plant species and regions in Argentina. Ann. Entomol. Soc. Am. 101, 639–649 (2008).
    Article  Google Scholar 

    48.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  Article  Google Scholar 

    49.
    Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077. https://doi.org/10.1175/Bams-D-14-00110.1 (2015).
    Article  ADS  Google Scholar  More

  • in

    Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean

    1.
    Da Silva, J. F. & Williams, R. J. P. The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press (2001).
    2.
    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).
    ADS  CAS  Article  Google Scholar 

    3.
    Bruland, K. W., Orians, K. J. & Cowen, J. P. Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. 58, 3171–3182 (1994).
    ADS  CAS  Article  Google Scholar 

    4.
    van Hulten, M. et al. Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese. Biogeosciences 14, 1123–1152 (2017).
    ADS  Article  CAS  Google Scholar 

    5.
    Baker, A. R. et al. Trace element and isotope deposition across the air–sea inter- face: progress and research needs. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374, 2081 (2016).
    Article  CAS  Google Scholar 

    6.
    Sunda, W. G., Huntsman, S. A. & Harvey, G. R. Photoreduction of manganese oxides in seawater and its geochemical and biological implications. Nature 301, 234–236 (1983).
    ADS  CAS  Article  Google Scholar 

    7.
    Sunda, W. G. & Huntsman, S. A. Photoreduction of manganese oxides in seawater. Mar. Chem. 46, 133–152 (1994).
    CAS  Article  Google Scholar 

    8.
    Sunda, W. G. & Huntsman, S. Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea. Deep-Sea Res. Pt. A 35, 1297–1317 (1988).
    ADS  CAS  Article  Google Scholar 

    9.
    Wagener, T., Guieu, C., Losno, R., Bonnet, S. & Mahowald, N. Revisiting atmospheric dust export to the Southern Hemisphere ocean: Biogeochemical implications. Glob. Biogeochem. Cycles 22, GB2006 (2008).
    ADS  Article  CAS  Google Scholar 

    10.
    Tamsitt, V. et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun. 8, 172 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Boyd, P. W. Environmental factors controlling phytoplankton processes in the Southern Ocean. J. Phycol. 38, 844–861 (2002).
    Article  Google Scholar 

    12.
    Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).
    Article  Google Scholar 

    13.
    Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Iron in Antarctic waters. Nature 345, 156–158 (1990).
    ADS  CAS  Article  Google Scholar 

    14.
    Sedwick, P. N., Edwards, P. R., Mackey, D. J., Griffiths, F. B. & Parslow, J. S. Iron and manganese in surface waters of the Australian subantarctic region. Deep Sea Res. Pt. I 44, 1239–1253 (1997).
    CAS  Article  Google Scholar 

    15.
    Hatta, M., Measures, C. I., Selph, K. E., Zhou, M. & Hiscock, W. T. Iron fluxes from the shelf regions near the South Shetland Islands in the Drake Passage during the austral-winter 2006. Deep Sea Res. Pt. II 90, 89–101 (2013).
    ADS  CAS  Article  Google Scholar 

    16.
    Middag, R., De Baar, H. J. W., Laan, P. & Huhn, O. The effects of continental margins and water mass circulation on the distribution of dissolved aluminum and manganese in Drake Passage. J. Geophys. Res. 117, C01019 (2012).
    ADS  Google Scholar 

    17.
    Middag, R., de Baar, H. J., Klunder, M. B. & Laan, P. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co‐limitation. Limnol. Oceanogr. 58, 287–300 (2013).
    ADS  CAS  Article  Google Scholar 

    18.
    Browning, T. J. et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys. Res. Lett. 41, 2851–2857 (2014).
    ADS  CAS  Article  Google Scholar 

    19.
    Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63, 813–839 (2005).
    CAS  Article  Google Scholar 

    20.
    Kohfeld, K. E. and Ridgwell, A., 2009. Glacial-interglacial variability in atmospheric CO2. Surface Ocean-Lower Atmosphere Processes (Am. Geophys. Union, Washington DC), pp 251– 286 (2009).

    21.
    Petit, J. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).
    ADS  CAS  Article  Google Scholar 

    22.
    Lamy, F. et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science 343, 403–407 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Martin, J. H. Glacial‐interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).
    ADS  Article  Google Scholar 

    24.
    Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W. & Law, C. S. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730–CO733 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Khatiwala, S., Schmittner, A. & Muglia, J. Air-sea disequilibrium enhances ocean carbon storage during glacial periods. Sci. Adv. 5, eaaw4981 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).
    ADS  CAS  Article  Google Scholar 

    28.
    Chance, R., Jickells, T. D. & Baker, A. R. Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Mar. Chem. 177, 45–56 (2015).
    CAS  Article  Google Scholar 

    29.
    Gaiero, D. M., Probst, J. L., Depetris, P. J., Bidart, S. M. & Leleyter, L. Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim. Cosmochim. Acta 67, 3603–3623 (2003).
    ADS  CAS  Article  Google Scholar 

    30.
    Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Peers, G. & Price, N. M. A role for manganese in superoxide dismutases and growth of iron‐deficient diatoms. Limnol. Oceanogr. 49, 1774–1783 (2004).
    ADS  CAS  Article  Google Scholar 

    32.
    Wu, M. et al. Manganese and iron deficiency in Southern Ocean Phaeocystis antarctica populations revealed through taxon-specific protein indicators. Nat. Commun. 10, 1–10 (2019).
    ADS  Article  CAS  Google Scholar 

    33.
    Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. In IPCC special report on the ocean and cryosphere in a changing climate (2019).

    34.
    Buma, A. G., De Baar, H. J., Nolting, R. F. & Van Bennekom, A. J. Metal enrichment experiments in the Weddell‐Scotia Seas: effects of iron and manganese on various plankton communities. Limnol. Oceanogr. 36, 1865–1878 (1991).
    ADS  CAS  Article  Google Scholar 

    35.
    Scharek, R., Van Leeuwe, M. A. & De Baar, H. J. Responses of Southern Ocean phytoplankton to the addition of trace metals. Deep Sea Res. Pt. II 44, 209–227 (1997).
    ADS  CAS  Article  Google Scholar 

    36.
    Sedwick, P. N., DiTullio, G. R. & Mackey, D. J. Iron and manganese in the Ross Sea, Antarctica: seasonal iron limitation in Antarctic shelf waters. J. Geophys. Res. 105, 11321–11336 (2000).
    ADS  CAS  Article  Google Scholar 

    37.
    Saito, M. A., Goepfert, T. J. & Ritt, J. T. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol. Oceanogr. 53, 276–290 (2008).
    ADS  CAS  Article  Google Scholar 

    38.
    Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si: N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).
    ADS  CAS  Article  Google Scholar 

    39.
    Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).
    ADS  CAS  Article  Google Scholar 

    40.
    Klunder, M. B. et al. Dissolved Fe across the Weddell Sea and Drake passage: impact of DFe on nutrient uptake. Biogeosciences 11, 651–669 (2014).
    ADS  Article  Google Scholar 

    41.
    Thomalla, S. J., Fauchereau, N., Swart, S. & Monteiro, P. M. S. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean. Biogeosciences 8, 2849–2866 (2011).
    ADS  CAS  Article  Google Scholar 

    42.
    Moore, C. M. Diagnosing oceanic nutrient deficiency. Philos. Tran. R. Soc. A 374, 20150290 (2016).
    ADS  Article  CAS  Google Scholar 

    43.
    Middag, R. D., De Baar, H. J. W., Laan, P., Cai, P. V. & Van Ooijen, J. C. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep Sea Res. Pt. II 58, 2661–2677 (2011).
    ADS  CAS  Article  Google Scholar 

    44.
    Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W. & Van Ooijen, J. C. Dissolved iron in the Southern Ocean (Atlantic sector). Deep Sea Res. Pt. II 58, 2678–2694 (2011).
    ADS  CAS  Article  Google Scholar 

    45.
    Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science 315, 612–617 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Parekh, P., Follows, M. J. & Boyle, E. A. Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19, GB2020 (2005).
    ADS  Article  CAS  Google Scholar 

    47.
    Measures, C. I. et al. The influence of shelf processes in delivering dissolved iron to the HNLC waters of the Drake Passage, Antarctica. Deep Sea Res. Pt. I 90, 77–88 (2013).
    ADS  CAS  Article  Google Scholar 

    48.
    Dulaiova, H., Ardelan, M. V., Henderson, P. B. & Charette, M. A. Shelf‐derived iron inputs drive biological productivity in the southern Drake Passage. Glob. Biogeochem. Cycles 23, GB4014 (2009).
    ADS  Article  CAS  Google Scholar 

    49.
    Jiang, M. et al. Fe sources and transport from the Antarctic Peninsula shelf to the southern Scotia Sea. Deep Sea Res. Pt. I 150, 103060 (2019).
    CAS  Article  Google Scholar 

    50.
    Anderson, T. R., Gentleman, W. C. & Yool, A. EMPOWER-1.0: an efficient model of planktonic ecosystems written in R. Geosci. Mod. Dev. 8, 2231–2262 (2015).
    Article  Google Scholar 

    51.
    Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Bertrand, E. M. et al. Vitamin B12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnol. Oceanogr. 52, 1079–1093 (2007).
    ADS  CAS  Article  Google Scholar 

    53.
    Le Quéré, C. et al. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences 13, 4111–4133 (2016).
    ADS  Article  CAS  Google Scholar 

    54.
    Calvo, E., Pelejero, C., Logan, G. A. & De Deckker, P. Dust‐induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography 19, PA2020 (2004).
    ADS  Article  Google Scholar 

    55.
    Sigman, D. M., Altabet, M. A., Francois, R., McCorkle, D. C. & Gaillard, J. F. The isotopic composition of diatom‐bound nitrogen in Southern Ocean sediments. Paleoceanography 14, 118–134 (1999).
    ADS  Article  Google Scholar 

    56.
    De La Rocha, C. L., Brzezinski, M. A., DeNiro, M. J. & Shemesh, A. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680–683 (1998).
    ADS  Article  CAS  Google Scholar 

    57.
    Browning, T. J. et al. Nutrient co-limitation at the boundary of an oceanic gyre. Nature 551, 242–246 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Venables, H. & Moore, C. M. Phytoplankton and light limitation in the Southern Ocean: learning from high‐nutrient, high‐chlorophyll areas. J. Geophys. Res. Oceans 115, C02015 (2010).
    ADS  Article  CAS  Google Scholar 

    59.
    Van Heukelem, L. & Thomas, C. S. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A 910, 31–49 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Mackey, M. D., Mackey, D. J., Higgins, H. W. & Wright, S. W. CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265–283 (1996).
    ADS  CAS  Article  Google Scholar 

    61.
    Gibberd, M. J., Kean, E., Barlow, R., Thomalla, S. & Lucas, M. Phytoplankton chemotaxonomy in the Atlantic sector of the Southern Ocean during late summer 2009. Deep Sea Res. Pt. I 78, 70–78 (2013).
    CAS  Article  Google Scholar 

    62.
    Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. & Achterberg, E. P. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Anal. Chim. Acta 976, 1–13 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Wilson, S. T. et al. Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean. Science 365, 1040–1044 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Wuttig, K. et al. Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples. Talanta 197, 653–668 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. Pt. A 34, 267–285 (1987).
    ADS  CAS  Article  Google Scholar 

    66.
    Buck, K. N., Sohst, B. & Sedwick, P. N. The organic complexation of dissolved iron along the US GEOTRACES (GA03) North Atlantic Section. Deep Sea Res. Pt. II 116, 152–165 (2015).
    CAS  Article  Google Scholar 

    67.
    Parekh, P., Follows, M. J. & Boyle, E. Modeling the global ocean iron cycle. Glob. Biogeochem. Cycles 18, GB1002 (2004).
    ADS  Article  CAS  Google Scholar 

    68.
    Dutkiewicz, S., Follows, M. J. & Parekh, P. Interactions of the iron and phosphorus cycles: a three‐dimensional model study. Glob. Biogeochem. Cycles 19, GB1012 (2005).
    ADS  Article  CAS  Google Scholar 

    69.
    Glockzin, M., Pollehne, F. & Dellwig, O. Stationary sinking velocity of authigenic manganese oxides at pelagic redoxclines. Mar. Chem. 160, 67–74 (2014).
    CAS  Article  Google Scholar 

    70.
    Buesseler, K. O., McDonnell, A. M., Schofield, O. M., Steinberg, D. K. & Ducklow, H. W. High particle export over the continental shelf of the west Antarctic Peninsula. Geophys. Res. Lett. 37, L22606 (2010).
    ADS  Article  CAS  Google Scholar 

    71.
    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile‐based climatology. J. Geophys. Res. 109, C12003 (2004).
    ADS  Article  Google Scholar 

    72.
    Mahowald, N. et al. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. Atmospheres 104, 15895–15916 (1999).
    ADS  Article  Google Scholar  More

  • in

    North Pacific warming shifts the juvenile range of a marine apex predator

    1.
    Fuentes, M. M. et al. Adaptive management of marine mega-fauna in a changing climate. Mitig. Adapt. Strat. Glob. Change 21, 209–224 (2016).
    Article  Google Scholar 
    2.
    Grose, S. O., Pendleton, L., Leathers, A., Cornish, A. & Waitai, S. Climate change will re-draw the map for marine megafauna and the people who depend on them. Front. Mar. Sci. 7, 547 (2020).
    Article  Google Scholar 

    3.
    Halley, J. M., Van Houtan, K. S. & Mantua, N. How survival curves affect populations’ vulnerability to climate change. PLoS ONE 13, e0203124 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Zacharias, M. A. & Roff, J. C. Use of focal species in marine conservation and management: a review and critique. Aquat. Conserv. Mar. Freshw. Ecosyst. 11, 59–76 (2001).
    Article  Google Scholar 

    5.
    Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221–240 (2012).
    ADS  Article  Google Scholar 

    6.
    Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Change 3, 234–238 (2013).
    ADS  Article  Google Scholar 

    7.
    Jorgensen, S. J. et al. Killer whales redistribute white shark foraging pressure on seals. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-39356-2 (2019).
    CAS  Article  Google Scholar 

    8.
    Domeier, M. L. Global perspectives on the biology and life history of the white shark (CRC Press, Boca Raton, 2012).
    Google Scholar 

    9.
    Bruce, B. D. & Bradford, R. W. Habitat use and spatial dynamics of juvenile white sharks, Carcharodon carcharias, in eastern Australia. Global perspectives on the biology and life history of the white shark, 225–254 (2012).

    10.
    Lowe, C. G. et al. Historic fishery interactions with white sharks in the Southern California Bight. Global Perspectives on the Biology and Life History of the White Shark’.(Ed. ML Domeier.) pp, 169–186 (2012).

    11.
    Villafaña, J. A. et al. First evidence of a palaeo-nursery area of the great white shark. Sci. Rep. 10, 1–8 (2020).
    Article  CAS  Google Scholar 

    12.
    Oñate-González, E. C. et al. Importance of Bahia Sebastian Vizcaino as a nursery area for white sharks (Carcharodon carcharias) in the Northeastern Pacific: a fishery dependent analysis. Fish. Res. 188, 125–137 (2017).
    Article  Google Scholar 

    13.
    Klimley, A. P. The areal distribution and autoecology of the white shark, Carcharodon carcharias, off the west coast of North America. Mem. Southern Calif. Acad Sci 9, 15–40 (1985).
    Google Scholar 

    14.
    Weng, K. C. et al. Movements, behavior and habitat preferences of juvenile white sharks Carcharodon carcharias in the eastern Pacific. Mar. Ecol. Prog. Ser. 338, 211–224 (2007).
    ADS  Article  Google Scholar 

    15.
    White, C. F. et al. Quantifying habitat selection and variability in habitat suitability for juvenile white sharks. PLoS ONE 14, e0214642. https://doi.org/10.1371/journal.pone.0214642 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    16.
    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).
    ADS  Article  Google Scholar 

    17.
    Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res.: Oceans 122, 7267–7290 (2017).
    ADS  Article  Google Scholar 

    18.
    Thompson, A. et al. State of the California current: a new anchovy regime and Marine Heatwave? California Cooperative Oceanic Fisheries Investigations Reports. Calif. Cooper. Ocean. Fish. Investig. 60, 1–61 (2019).
    Google Scholar 

    19.
    Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).
    ADS  Article  Google Scholar 

    20.
    Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 9, 1–14 (2019).
    ADS  Article  CAS  Google Scholar 

    21.
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 1–9 (2019).
    Article  CAS  Google Scholar 

    22.
    Kohl, W. T., McClure, T. I. & Miner, B. G. Decreased temperature facilitates short-term sea star wasting disease survival in the keystone intertidal sea star Pisaster ochraceus. PLoS ONE 11, e0153670 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Laake, J. L., Lowry, M. S., DeLong, R. L., Melin, S. R. & Carretta, J. V. Population growth and status of California sea lions. J. Wildl. Manag. 82, 583–595 (2018).
    Article  Google Scholar 

    24.
    Jones, T. et al. Unusual mortality of Tufted puffins (Fratercula cirrhata) in the eastern Bering Sea. PLoS ONE 14, e0216532 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Savage, K. Alaska and British Columbia large whale unusual mortality event summary report. (2017).

    26.
    Gravem, S. A. & Morgan, S. G. Shifts in intertidal zonation and refuge use by prey after mass mortalities of two predators. Ecology 98, 1006–1015 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    27.
    Cheung, W. W. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 1–10 (2020).
    Article  CAS  Google Scholar 

    28.
    Kanive, P. E. et al. Size-specific apparent survival rate estimates of white sharks using mark–recapture models. Can. J. Fish. Aquat. Sci. 76, 2027–2034 (2019).
    Article  Google Scholar 

    29.
    California_State_Senate. Budget Act of 2018. Senate Bill 840 2017–2018 (2018).

    30.
    Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290 (2012).
    Article  Google Scholar 

    31.
    Vianna, G. M., Meekan, M. G., Bornovski, T. H. & Meeuwig, J. J. Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs. PLoS ONE 9, e95565 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Klimley, A. P., Anderson, S. D., Pyle, P. & Henderson, R. Spatiotemporal patterns of white shark (Carcharodon carcharias) predation at the South Farallon Islands, California. Copeia, 680–690 (1992).

    33.
    Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S. D. & Halpern, B. S. Cold range edges of marine fishes track climate change better than warm edges. Glob. Change Biol. 26, 2908–2922 (2020).
    ADS  Article  Google Scholar 

    34.
    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Mcclure, M. M. et al. Incorporating climate science in applications of the US Endangered Species Act for aquatic species. Conserv. Biol. 27, 1222–1233 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).
    Article  Google Scholar 

    37.
    Cao, J., Thorson, J. T., Punt, A. E. & Szuwalski, C. A novel spatiotemporal stock assessment framework to better address fine-scale species distributions: Development and simulation testing. Fish Fish. 21, 350–367. https://doi.org/10.1111/faf.12433 (2020).
    Article  Google Scholar 

    38.
    Dewar, H., Domeier, M. & Nasby-Lucas, N. Insights into young of the year white shark, Carcharodon carcharias, behavior in the Southern California Bight. Environ. Biol. Fishes 70, 133–143 (2004).
    Article  Google Scholar 

    39.
    Moxley, J. H., Nicholson, T. E., Van Houtan, K. S. & Jorgensen, S. J. Non-trophic impacts from white sharks complicate population recovery for sea otters. Ecol. Evol. 9, 6378–6388. https://doi.org/10.1002/ece3.5209 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    Cury, P. et al. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).
    Article  Google Scholar 

    41.
    Nicholson, T. E. et al. Gaps in kelp cover may threaten the recovery of California sea otters. Ecography 41, 1751–1762 (2018).
    Article  Google Scholar 

    42.
    Kenyon, K. W. The sea otter in the eastern Pacific Ocean. (US Bureau of Sport Fisheries and Wildlife, 1969).

    43.
    Tinker, M. T., Hatfield, B. B., Harris, M. D. & Ames, J. A. Dramatic increase in sea otter mortality from white sharks in California. Mar. Mammal Sci. 32, 309–326 (2016).
    Article  Google Scholar 

    44.
    Miller, M. A. et al. Predators, disease, and environmental change in the nearshore ecosystem: mortality in Southern Sea Otters (Enhydra lutris nereis) From 1998–2012. Front. Mar. Sci. 7, 582 (2020).
    Article  Google Scholar 

    45.
    Estes, J. A. & Palmisano, J. F. Sea otters: their role in structuring nearshore communities. Science 185, 1058–1060 (1974).
    ADS  CAS  PubMed  Article  Google Scholar 

    46.
    Hughes, B. B. et al. Recovery of a top predator mediates negative eutrophic effects on seagrass. Proc. Natl. Acad. Sci. USA 110, 15313–15318. https://doi.org/10.1073/pnas.1302805110 (2013).
    ADS  Article  PubMed  Google Scholar 

    47.
    Becker, S. L., Nicholson, T. E., Mayer, K. A., Murray, M. J. & Van Houtan, K. S. Environmental Factors May Drive the Post-release Movements of Surrogate-Reared Sea Otters. Frontiers in Marine Science 7, doi:https://doi.org/10.3389/fmars.2020.539904 (2020).

    48.
    Mayer, K. A. et al. Surrogate rearing a keystone species to enhance population and ecosystem restoration. Oryx, 1–11 (2019).

    49.
    Jorgensen, S. J. et al. Philopatry and migration of Pacific white sharks. Proc. R. Soc. B: Biol. Sci. 277, 679–688 (2010).
    Article  Google Scholar 

    50.
    Breaker, L. & Broenkow, W. W. The circulation of Monterey Bay and related processes. Moss Land. Mar. Lab. Tech. Publ. 89, 114 (1989).
    Google Scholar 

    51.
    Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536. https://doi.org/10.1038/s41467-019-14215-w (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heimbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl. Acad. Sci. 116, 1126–1131 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Gaines, S. D. & Denny, M. W. The largest, smallest, highest, lowest, longest, and shortest: extremes in ecology. Ecology 74, 1677–1692 (1993).
    Article  Google Scholar 

    54.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
    ADS  Article  Google Scholar 

    55.
    Oliver, E. C. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).
    CAS  Article  Google Scholar 

    56.
    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).
    Article  Google Scholar 

    57.
    McCauley, D. J., DeSalles, P. A., Young, H. S., Gardner, J. P. & Micheli, F. Use of high-resolution acoustic cameras to study reef shark behavioral ecology. J. Exp. Mar. Biol. Ecol. 482, 128–133 (2016).
    Article  Google Scholar 

    58.
    Ward-Paige, C. A. & Worm, B. Global evaluation of shark sanctuaries. Global Environ. Change 47, 174–189 (2017).
    Article  Google Scholar 

    59.
    Van Houtan, K. S. et al. Coastal sharks supply the global shark fin trade. Biol. Let. 16, 20200609 (2020).
    Article  CAS  Google Scholar 

    60.
    Benson, J. F. et al. Juvenile survival, competing risks, and spatial variation in mortality risk of a marine apex predator. J. Appl. Ecol. 55, 2888–2897 (2018).
    Article  Google Scholar 

    61.
    Cleveland, W. S. & Devlin, S. J. Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988).
    MATH  Article  Google Scholar 

    62.
    Beck, J., Ballesteros-Mejia, L., Nagel, P. & Kitching, I. J. Online solutions and the ‘W allacean shortfall’: what does GBIF contribute to our knowledge of species’ ranges?. Divers. Distrib. 19, 1043–1050 (2013).
    Article  Google Scholar 

    63.
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
    Article  Google Scholar 

    64.
    Van Horn, G. et al. in Proceedings of the IEEE conference on computer vision and pattern recognition. 8769–8778.

    65.
    Teo, S. L. et al. Validation of geolocation estimates based on light level and sea surface temperature from electronic tags. Mar. Ecol. Prog. Ser. 283, 81–98 (2004).
    ADS  Article  Google Scholar 

    66.
    Handcock, M. S. Package ‘reldist’. (2016).

    67.
    Reynolds, R. & Banzon, V. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2. NOAA National Centers for Environmental Information. 10, V5SQ8XB5 (2008).

    68.
    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. (2016).

    69.
    Lyons, K. et al. The degree and result of gillnet fishery interactions with juvenile white sharks in southern California assessed by fishery-independent and-dependent methods. Fish. Res. 147, 370–380 (2013).
    ADS  Article  Google Scholar 

    70.
    Mayer, L. et al. The Nippon Foundation—GEBCO seabed 2030 project: The quest to see the world’s oceans completely mapped by 2030. Geosciences 8, 63 (2018).
    ADS  Article  Google Scholar 

    71.
    Tanaka, K. R. et al. Mesoscale climatic impacts on the distribution of Homarus americanus in the US inshore Gulf of Maine. Can. J. Fish. Aquat. Sci. 76, 608–625 (2019).
    Article  Google Scholar 

    72.
    R_Core_Team. (Vienna, Austria, 2019). More

  • in

    Author Correction: Mapping the forest disturbance regimes of Europe

    Affiliations

    Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Freising, Germany
    Cornelius Senf & Rupert Seidl

    Institute for Silviculture, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
    Cornelius Senf & Rupert Seidl

    Berchtesgaden National Park, Berchtesgaden, Germany
    Rupert Seidl

    Authors
    Cornelius Senf

    Rupert Seidl

    Corresponding author
    Correspondence to Cornelius Senf. More

  • in

    Big trees drive forest structure patterns across a lowland Amazon regrowth gradient

    1.
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).
    ADS  CAS  Article  Google Scholar 
    2.
    Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730. https://doi.org/10.1111/btp.12381 (2016).
    Article  Google Scholar 

    3.
    Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456. https://doi.org/10.1126/science.aam5432 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Brancalion, P. H. S. et al. Balancing economic costs and ecological outcomes of passive and active restoration in agricultural landscapes: the case of Brazil. Biotropica 48, 856–867. https://doi.org/10.1111/btp.12383 (2016).
    Article  Google Scholar 

    5.
    Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32. https://doi.org/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2 (2007).
    Article  Google Scholar 

    6.
    Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10, 5803. https://doi.org/10.1038/s41598-020-62591-x (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Csillik, O., Kumar, P., Mascaro, J., O’Shea, T. & Asner, G. P. Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Sci. Rep. 9, 17831. https://doi.org/10.1038/s41598-019-54386-6 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    8.
    Nunes, S. et al. Uncertainties in assessing the extent and legal compliance status of riparian forests in the eastern Brazilian Amazon. Land Use Policy 82, 37–47. https://doi.org/10.1016/j.landusepol.2018.11.051 (2019).
    Article  Google Scholar 

    9.
    Rocha, G. P. E., Vieira, D. L. M. & Simon, M. F. Fast natural regeneration in abandoned pastures in southern Amazonia. For. Ecol. Manag. 370, 93–101. https://doi.org/10.1016/j.foreco.2016.03.057 (2016).
    Article  Google Scholar 

    10.
    Rodrigues, S. B. et al. Direct seeded and colonizing species guarantee successful early restoration of South Amazon forests. For. Ecol. Manag. 451, 117559. https://doi.org/10.1016/j.foreco.2019.117559 (2019).
    Article  Google Scholar 

    11.
    Fearnside, P. M. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol. 19, 680–688. https://doi.org/10.1111/j.1523-1739.2005.00697.x (2005).
    Article  Google Scholar 

    12.
    Laurance, W. F. et al. Rain forest fragmentation and the proliferation of sucessional trees. Ecology 87, 469–482. https://doi.org/10.1890/05-0064 (2006).
    Article  PubMed  Google Scholar 

    13.
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214. https://doi.org/10.1038/nature16512 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    14.
    Camargo, J. L. C., Ferraz, I. D. K. & Imakawa, A. M. Rehabilitation of degraded areas of central Amazonia using direct sowing of forest tree seeds. Restor. Ecol. 10, 636–644. https://doi.org/10.1046/j.1526-100X.2002.01044.x (2002).
    Article  Google Scholar 

    15.
    Guariguata, M. R. & Ostertag, R. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manag. 148, 185–206. https://doi.org/10.1016/S0378-1127(00)00535-1 (2001).
    Article  Google Scholar 

    16.
    Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666. https://doi.org/10.1038/ncomms11666 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x (2009).
    Article  PubMed  Google Scholar 

    18.
    Peres, C. A., Emilio, T., Schietti, J., Desmouliere, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. USA 113, 892–897. https://doi.org/10.1073/pnas.1516525113 (2016).
    ADS  CAS  Article  PubMed  Google Scholar 

    19.
    Pessoa, M. S. et al. Deforestation drives functional diversity and fruit quality changes in a tropical tree assemblage. Perspect. Plant Ecol. Evol. Syst. 28, 78–86. https://doi.org/10.1016/j.ppees.2017.09.001 (2017).
    Article  Google Scholar 

    20.
    Bowen, M. E., McAlpine, C. A., House, A. P. & Smith, G. C. Regrowth forests on abandoned agricultural land: a review of their habitat values for recovering forest fauna. Biol. Cons. 140, 273–296. https://doi.org/10.1016/j.biocon.2007.08.012 (2007).
    Article  Google Scholar 

    21.
    Chazdon, R. L. & Uriarte, M. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48, 709–715. https://doi.org/10.1111/btp.12409 (2016).
    Article  Google Scholar 

    22.
    Neuschulz, E. L., Mueller, T., Schleuning, M. & Böhning-Gaese, K. Pollination and seed dispersal are the most threatened processes of plant regeneration. Sci. Rep. 6, 29839. https://doi.org/10.1038/srep29839 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Stoner, K. E., Riba-Hernández, P., Vulinec, K. & Lambert, J. E. The role of mammals in creating and modifying seedshadows in tropical forests and some possible consequences of their elimination. Biotropica 39, 316–327. https://doi.org/10.1111/j.1744-7429.2007.00292.x (2007).
    Article  Google Scholar 

    24.
    Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc. R. Soc. B 283, 20161634. https://doi.org/10.1098/rspb.2016.1634 (2016).
    Article  PubMed  Google Scholar 

    25.
    Asquith, N. M. & Mejía-Chang, M. Mammals, edge effects, and the loss of tropical forest diversity. Ecology 86, 379–390. https://doi.org/10.1890/03-0575 (2005).
    Article  Google Scholar 

    26.
    Beck, H., Snodgrass, J. W. & Thebpanya, P. Long-term exclosure of large terrestrial vertebrates: Implications of defaunation for seedling demographics in the Amazon rainforest. Biol. Cons. 163, 115–121. https://doi.org/10.1016/j.biocon.2013.03.012 (2013).
    Article  Google Scholar 

    27.
    Paine, C. E., Beck, H. & Terborgh, J. How mammalian predation contributes to tropical tree community structure. Ecology 97, 3326–3336. https://doi.org/10.1002/ecy.1586 (2016).
    Article  PubMed  Google Scholar 

    28.
    Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676. https://doi.org/10.1038/s41559-017-0334-0 (2017).
    Article  PubMed  Google Scholar 

    29.
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818 (2007).
    Article  MATH  Google Scholar 

    30.
    Wunderle, J. M. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. For. Ecol. Manag. 99, 223–235. https://doi.org/10.1016/S0378-1127(97)00208-9 (1997).
    Article  Google Scholar 

    31.
    Fragoso, J. M. V. Tapir-generated seed shadows: scale-dependent patchiness in the Amazon Rain Forest. J. Ecol. 85, 519–529. https://doi.org/10.2307/2960574 (1997).
    Article  Google Scholar 

    32.
    Hibert, F. et al. Unveiling the diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study. PLoS ONE 8, e60799. https://doi.org/10.1371/journal.pone.0060799 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768. https://doi.org/10.1890/07-0479.1 (2008).
    Article  PubMed  Google Scholar 

    34.
    Wright, S. J. et al. The plight of large animals in tropical forests and the consequences for plant regeneration. Biotropica 39, 289–291. https://doi.org/10.1111/j.1744-7429.2007.00293.x (2007).
    Article  Google Scholar 

    35.
    Molto, Q. et al. Predicting tree heights for biomass estimates in tropical forests; a test from French Guiana. Biogeosciences 11, 3121–3130. https://doi.org/10.5194/bg-11-3121-2014 (2014).
    ADS  Article  Google Scholar 

    36.
    Letcher, S. G. & Chazdon, R. L. Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in Northeastern Costa Rica. Biotropica 41, 608–617. https://doi.org/10.1111/j.1744-7429.2009.00517.x (2009).
    Article  Google Scholar 

    37.
    Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574. https://doi.org/10.1016/j.tree.2007.09.006 (2007).
    Article  PubMed  Google Scholar 

    38.
    Beven, K. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24, 43–69. https://doi.org/10.1080/02626667909491834 (1979).
    Article  Google Scholar 

    39.
    Campling, P., Gobin, A. & Feyen, J. Logistic modeling to spatially predict the probability of soil drainage classes. Soil Sci. Soc. Am. J. 66, 1390–1401. https://doi.org/10.2136/sssaj2002.1390 (2002).
    ADS  CAS  Article  Google Scholar 

    40.
    Nobre, A. D. et al. Height above the nearest drainage: a hydrologically relevant new terrain model. J. Hydrol. 404, 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051 (2011).
    ADS  Article  Google Scholar 

    41.
    Schietti, J. et al. Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol. Diver. 7, 241–253. https://doi.org/10.1080/17550874.2013.783642 (2014).
    Article  Google Scholar 

    42.
    Gehring, C., Denich, M. & Vlek, P. L. G. Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. J. Trop. Ecol. 21, 519–527. https://doi.org/10.1017/S0266467405002543 (2005).
    Article  Google Scholar 

    43.
    Feldpausch, T. R., Riha, S. J., Fernandes, E. C. M. & Wandelli, E. V. Development of forest structure and leaf area in secondary forests regenerating on abandoned pastures in Central Amazônia. Earth Interact. 9, 1–22. https://doi.org/10.1175/EI140.1 (2005).
    Article  Google Scholar 

    44.
    Luskin, M. S., Ickes, K., Yao, T. L. & Davies, S. J. Wildlife differentially affect tree and liana regeneration in a tropical forest: an 18-year study of experimental terrestrial defaunation versus artificially abundant herbivores. J. Appl. Ecol. 56, 1379–1388. https://doi.org/10.1111/1365-2664.13378 (2019).
    Article  Google Scholar 

    45
    Lu, D., Mausel, P., Brondizio, E. & Moran, E. Classification of successional forest stages in the Brazilian Amazon basin. Forest Ecol. Manag. 181, 301–312. https://doi.org/10.1016/S0378-1127(03)00003-3 (2003).
    Article  Google Scholar 

    46.
    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances 3, e1701345. https://doi.org/10.1126/sciadv.1701345 (2017).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    47
    de Castilho, C. V. et al. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecol. Manag. 234, 85–96. https://doi.org/10.1016/j.foreco.2006.06.024 (2006).
    Article  Google Scholar 

    48.
    Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000. https://doi.org/10.1111/ele.12964 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Fortunel, C. et al. Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest. Ecology 99, 2272–2283. https://doi.org/10.1002/ecy.2441 (2018).
    Article  PubMed  Google Scholar 

    50.
    Tiessen, H., Chacon, P. & Cuevas, E. Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro. Oecologia 99, 145–150. https://doi.org/10.1007/BF00317095 (1994).
    ADS  CAS  Article  PubMed  Google Scholar 

    51.
    Paredes, O. S. L., Norris, D., Oliveira, T. G. D. & Michalski, F. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest. PLOS ONE 12, e0174049. https://doi.org/10.1371/journal.pone.0174049 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    52.
    Michalski, L. J., Norris, D., de Oliveira, T. G. & Michalski, F. Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species. PLoS ONE 10, e0126114. https://doi.org/10.1371/journal.pone.0126114 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Mendes Pontes, A. R. Tree reproductive phenology determines the abundance of medium-sized and large mammalian assemblages in the Guyana shield of the Brazilian Amazonia. Anim. Biodiver. Conserv. 43(1), 9–26. https://doi.org/10.32800/abc.2020.43.0009 (2020).
    Article  Google Scholar 

    54.
    Arévalo-Sandi, A., Bobrowiec, P. E. D., Rodriguez Chuma, V. J. U. & Norris, D. Diversity of terrestrial mammal seed dispersers along a lowland Amazon forest regrowth gradient. PLoS ONE 13, e0193752. https://doi.org/10.1371/journal.pone.0193752 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    55
    Arita, H. T., Robinson, J. G. & Redford, K. Rarity in Neotropical forest mammals and its ecological correlates. Conserv. Biol. 4, 181–192. https://doi.org/10.1111/j.1523-1739.1990.tb00107.x (1990).
    Article  Google Scholar 

    56.
    Peres, C. A. & Palacios, E. Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39, 304–315. https://doi.org/10.1111/j.1744-7429.2007.00272.x (2007).
    Article  Google Scholar 

    57.
    Emmons, L. H. & Feer, F. Neotropical Rainforest Mammals: A Field Guide (The University of Chicago Press, Chicago, 1997).
    Google Scholar 

    58.
    Michalski, F., Michalski, L. J. & Barnett, A. A. Environmental determinants and use of space by six Neotropical primates in the northern Brazilian Amazon. Stud. Neotrop. Fauna Environ. 52, 187–197. https://doi.org/10.1080/01650521.2017.1335276 (2017).
    Article  Google Scholar 

    59.
    Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618. https://doi.org/10.1046/j.1523-1739.2002.01025.x (2002).
    Article  Google Scholar 

    60.
    Norris, D., Peres, C. A., Michalski, F. & Hinchsliffe, K. Terrestrial mammal responses to edges in Amazonian forest patches: a study based on track stations. Mammalia 72, 15–23. https://doi.org/10.1515/mamm.2008.002 (2008).
    Article  Google Scholar 

    61.
    Martínez-Ramos, M. et al. Natural forest regeneration and ecological restoration in human-modified tropical landscapes. Biotropica 48, 745–757. https://doi.org/10.1111/btp.12382 (2016).
    Article  Google Scholar 

    62.
    Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L. & Lovejoy, T. E. Rainforest fragmentation kills big trees. Nature 404, 836–836. https://doi.org/10.1038/35009032 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica 40, 657–661. https://doi.org/10.1111/j.1744-7429.2008.00454.x (2008).
    Article  Google Scholar 

    64.
    Santos, B. A. et al. Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol. Cons. 141, 249–260. https://doi.org/10.1016/j.biocon.2007.09.018 (2008).
    Article  Google Scholar 

    65.
    Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. & Tabarelli, M. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28, 462–468. https://doi.org/10.1016/j.tree.2013.01.001 (2013).
    Article  PubMed  Google Scholar 

    66
    Malhi, Y. et al. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 409–420. https://doi.org/10.1098/rstb.2003.1425 (2004).
    Article  Google Scholar 

    67.
    Keller, M., Palace, M. & Hurtt, G. Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties. For. Ecol. Manag. 154, 371–382. https://doi.org/10.1016/S0378-1127(01)00509-6 (2001).
    Article  Google Scholar 

    68.
    Arévalo-Sandi, A. R. & Norris, D. Short term patterns of germination in response to litter clearing and exclosure of large terrestrial vertebrates along an Amazon forest regrowth gradient. Glob. Ecol. Conserv. 13, e00371. https://doi.org/10.1016/j.gecco.2017.e00371 (2018).
    Article  Google Scholar 

    69.
    David, M. O. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 (2001).
    Article  Google Scholar 

    70
    ter Steege, H. et al. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J. Trop. Ecol. 16, 801–828 (2000).
    Article  Google Scholar 

    71.
    Batista, A. P. B. et al. Caracterização estrutural em uma floresta de terra firme no estado do Amapá, Brasil. Pesq. flor. bras 35, 21–33 (2015).
    Article  Google Scholar 

    72
    Eswaran, H., Ahrens, R., Rice, T. J. & Stewart, B. A. Soil Classification: A Global Desk Reference (CRC Press, Boca Raton, 2002).
    Google Scholar 

    73.
    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).
    Article  Google Scholar 

    74.
    ANA. Sistema de Monitoramento Hidrológico (Hydrological Monitoring System). Agência Nacional de Águas[[nl]]National Water Agency, Available at http://www.hidroweb.ana.gov.br, 2017).

    75
    Norris, D., Rodriguez Chuma, V. J. U., Arevalo-Sandi, A. R., Landazuri Paredes, O. S. & Peres, C. A. Too rare for non-timber resource harvest? Meso-scale composition and distribution of arborescent palms in an Amazonian sustainable-use forest. Forest Ecol. Manag. 377, 182–191. https://doi.org/10.1016/j.foreco.2016.07.008 (2016).
    Article  Google Scholar 

    76.
    Norris, D. & Michalski, F. Socio-economic and spatial determinants of anthropogenic predation on Yellow-spotted River Turtle, Podocnemis unifilis (Testudines: Pelomedusidae), nests in the Brazilian Amazon: Implications for sustainable conservation and management. Zoologia (Curitiba) 30, 482–490. https://doi.org/10.1590/S1984-46702013000500003 (2013).
    Article  Google Scholar 

    77
    Yirdaw, E., MongeMonge, A., Austin, D. & Toure, I. Recovery of floristic diversity, composition and structure of regrowth forests on fallow lands: implications for conservation and restoration of degraded forest lands in Laos. New Forests 50, 1007–1026. https://doi.org/10.1007/s11056-019-09711-2 (2019).
    Article  Google Scholar 

    78.
    McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: its definition and measurement. For. Ecol. Manag. 218, 1–24. https://doi.org/10.1016/j.foreco.2005.08.034 (2005).
    Article  Google Scholar 

    79.
    Sist, P., Mazzei, L., Blanc, L. & Rutishauser, E. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For. Ecol. Manag. 318, 103–109. https://doi.org/10.1016/j.foreco.2014.01.005 (2014).
    Article  Google Scholar 

    80.
    Phillips, O. L. et al. Species matter: wood density influences tropical forest biomass at multiple scales. Surv. Geophys. 40, 913–935. https://doi.org/10.1007/s10712-019-09540-0 (2019).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Bastin, J.-F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).
    Article  Google Scholar 

    82.
    TEAM Network. 69 (Tropical Ecology, Assessment and Monitoring Network, Center for Applied Biodiversity Science, Conservation International., Arlington, VA, USA., 2011).

    83.
    Hortal, J., Borges, P. A. & Gaspar, C. Evaluating the performance of species richness estimators: sensitivity to sample grain size. J. Anim. Ecol. 75, 274–287. https://doi.org/10.1111/j.1365-2656.2006.01048.x (2006).
    Article  PubMed  Google Scholar 

    84.
    Magurran, A. E. & McGill, B. J. in Biological diversity: frontiers in measurement and assessment (eds A. E. Magurran & B. J. McGill) Ch. 1, 1–7 (Oxford University Press, 2011).

    85.
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305. https://doi.org/10.1890/08-2244.1 (2010).
    Article  PubMed  Google Scholar 

    86.
    FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12 (2014).

    87.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach (Springer, Berlin, 2002).
    Google Scholar 

    88.
    Drasgow, F. in The Encyclopedia of Statistics Vol. 7 (eds S. Kotz & N. Johnson) 68–74 (Wiley, 1986).

    89.
    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. 3.6.3 (R Foundation for Statistical Computing, Vienna, 2020).
    Google Scholar 

    90.
    90vegan: Community Ecology Package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan (2016).

    91.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2009).
    Google Scholar 

    92.
    MuMIn: multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn (2016).

    93.
    Tweedie: Tweedie exponential family models. R package version 2.2.1. https://cran.r-project.org/web/packages/tweedie (2014). More

  • in

    Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain

    Characteristics of the NMs
    Commercially available spherical (10, 60, and 100 nm) and rod-shaped (10 × 45 nm and 50 × 100 nm) citrate-coated Au-NMs from Nanopartz (USA) were characterized in Milli-Q (MQ) water in terms of particle size and morphology using transmission electron microscopy (TEM) (Supplementary Fig. 1). The physicochemical properties of the Au-NMs in MQ water are summarized in Supplementary Table 1. A negative zeta potential (a measure of colloidal dispersion electrostatic stability) was observed for all Au-NMs and ranged from −21 to −25 mV in MQ water and from −17 to −19 mV in the algal exposure medium (without algae). The stability of the particles against dissolution and agglomeration in the algal exposure medium without algae was monitored throughout the exposure duration (72 h). The dissolved fraction of the Au-NMs was More