More stories

  • in

    Prioritizing conservation actions in urbanizing landscapes

    1.
    Game, E. T., Kareiva, P. & Possingham, H. P. Six common mistakes in conservation priority setting. Conserv. Biol. 27, 480–485 (2013).
    PubMed  PubMed Central  Article  Google Scholar 
    2.
    Bottrill, M. C. et al. Is conservation triage just smart decision making?. Trends Ecol. Evol. 23, 649–654 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Wilson, K. A., Carwardine, J. & Possingham, H. P. Setting conservation priorities. Ann. N. Y. Acad. Sci. 1162, 237–264 (2009).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Samhouri, J. F. & Levin, P. S. Linking land-and sea-based activities to risk in coastal ecosystems. Biol. Conserv. 145, 118–129 (2012).
    Article  Google Scholar 

    5.
    Shelton, A. O., Samhouri, J. F., Stier, A. C. & Levin, P. S. Assessing trade-offs to inform ecosystem-based fisheries management of forage fish. Sci. Rep. 4, 7110 (2014).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Tallis, H. Natural Capital: Theory and Practice of Mapping Ecosystem Services. (Oxford University Press, 2011).

    7.
    Murdoch, W. et al. Maximizing return on investment in conservation. Biol. Conserv. 139, 375–388 (2007).
    Article  Google Scholar 

    8.
    Carwardine, J. et al. Prioritizing threat management for biodiversity conservation. Conserv. Lett. 5, 196–204 (2012).
    Article  Google Scholar 

    9.
    Fonner, R., Bellanger, M. & Warlick, A. Economic analysis for marine protected resources management: challenges, tools, and opportunities. Ocean Coast. Manag. 194, 105222 (2020).
    Article  Google Scholar 

    10.
    Chan, K. M., Hoshizaki, L. & Klinkenberg, B. Ecosystem services in conservation planning: targeted benefits vs. co-benefits or costs?. PLoS ONE 6, e24378 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    McDonald, R. I., Kareiva, P. & Forman, R. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).
    Article  Google Scholar 

    12.
    Economic, U. N. D. of & Social Affairs, P. D. World Urbanization Prospects: The 2018 Revision. (United Nations Publications New York, 2019).

    13.
    Liu, Z., He, C. & Wu, J. The relationship between habitat loss and fragmentation during urbanization: an empirical evaluation from 16 world cities. PLoS ONE 11, e0154613 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Heidt, V. & Neef, M. Benefits of urban green space for improving urban climate. In Ecology, Planning, and Management of Urban Forests 84–96 (Springer, 2008).

    15.
    Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc. Urban Plan. 125, 234–244 (2014).
    Article  Google Scholar 

    16.
    Kondo, M. C., Fluehr, J. M., McKeon, T. & Branas, C. C. Urban green space and its impact on human health. Int. J. Environ. Res. Public. Health 15, 445 (2018).
    PubMed Central  Article  Google Scholar 

    17.
    Wood, E. et al. Not all green space is created equal: biodiversity predicts psychological restorative benefits from urban green space. Front. Psychol. 9, 2320 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Pickett, S. T. et al. Urban ecological systems: scientific foundations and a decade of progress. J. Environ. Manag. 92, 331–362 (2011).
    CAS  Article  Google Scholar 

    19.
    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Walsh, C. J. et al. The urban stream syndrome: current knowledge and the search for a cure. J. North Am. Benthol. Soc. 24, 706–723 (2005).
    Article  Google Scholar 

    21.
    Paul, M. J. & Meyer, J. L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 32, 333–365 (2001).
    Article  Google Scholar 

    22.
    Schueler, T. R., Fraley-McNeal, L. & Cappiella, K. Is impervious cover still important? Review of recent research. J. Hydrol. Eng. 14, 309–315 (2009).
    Article  Google Scholar 

    23.
    Canessa, S. & Parris, K. M. Multi-scale, direct and indirect effects of the urban stream syndrome on amphibian communities in streams. PLoS ONE 8, e70262 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Bernhardt, E. S. & Palmer, M. A. Restoring streams in an urbanizing world. Freshw. Biol. 52, 738–751 (2007).
    Article  Google Scholar 

    25.
    Hardy, S. D. & Koontz, T. M. Collaborative watershed partnerships in urban and rural areas: different pathways to success?. Landsc. Urban Plan. 95, 79–90 (2010).
    Article  Google Scholar 

    26.
    Ahiablame, L. M., Engel, B. A. & Chaubey, I. Effectiveness of low impact development practices: literature review and suggestions for future research. Integr. Environ. Assess. Manag. Int. J. 223, 4253–4273 (2012).
    CAS  Google Scholar 

    27.
    McIntyre, J. et al. Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff. Chemosphere 132, 213–219 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    McIntyre, J. K. et al. Severe coal tar sealcoat runoff toxicity to fish is prevented by bioretention filtration. Environ. Sci. Technol. 50, 1570–1578 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Spromberg, J. A. et al. Coho salmon spawner mortality in western US urban watersheds: bioinfiltration prevents lethal storm water impacts. J. Appl. Ecol. 53, 398–407 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Seattle, D. of P. & D. 2015 Environmentally Critical Areas: Best Available Science Review. (2015).

    31.
    Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Rhodes, J. R. et al. Regional variation in habitat–occupancy thresholds: a warning for conservation planning. J. Appl. Ecol. 45, 549–557 (2008).
    Article  Google Scholar 

    33.
    Carwardine, J., Klein, C. J., Wilson, K. A., Pressey, R. L. & Possingham, H. P. Hitting the target and missing the point: target-based conservation planning in context. Conserv. Lett. 2, 4–11 (2009).
    Article  Google Scholar 

    34.
    Ruckelshaus, M. H., Levin, P., Johnson, J. B. & Kareiva, P. M. The Pacific salmon wars: what science brings to the challenge of recovering species. Annu. Rev. Ecol. Syst. 33, 665–706 (2002).
    Article  Google Scholar 

    35.
    Underwood, E. C. et al. Protecting biodiversity when money matters: maximizing return on investment. PLoS ONE 3, e1515 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Murdoch, W., Ranganathan, J., Polasky, S. & Regetz, J. Using return on investment to maximize conservation effectiveness in Argentine grasslands. Proc. Natl. Acad. Sci. 107, 20855–20862 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Boyd, J., Epanchin-Niell, R. & Siikamäki, J. Conservation planning: a review of return on investment analysis. Rev. Environ. Econ. Policy 9, 23–42 (2015).
    Article  Google Scholar 

    38.
    Samhouri, J. F., Levin, P. S., James, C. A., Kershner, J. & Williams, G. Using existing scientific capacity to set targets for ecosystem-based management: a Puget Sound case study. Mar. Policy 35, 508–518 (2011).
    Article  Google Scholar 

    39.
    Martin, J., Runge, M. C., Nichols, J. D., Lubow, B. C. & Kendall, W. L. Structured decision making as a conceptual framework to identify thresholds for conservation and management. Ecol. Appl. 19, 1079–1090 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Puget Sound Regional Council (PSRC). 2050 Forecast of People and Jobs. https://www.psrc.org/ (2018).

    41.
    Ruckelshaus, M., Essington, T. & Levin, P. 2009 Puget Sound, Washington, USA. in Ecosystem-based Management for the Oceans 201–226 (Island Press, Washington, DC, USA, 2012).

    42.
    Feist, B. E. et al. Roads to ruin: conservation threats to a sentinel species across an urban gradient. Ecol. Appl. 27, 2382–2396 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Scholz, N. L. et al. Recurrent die-offs of adult coho salmon returning to spawn in Puget Sound lowland urban streams. PLoS ONE 6, e28013 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    WAECY – Water Resource Inventory Areas (WRIA).

    45.
    Spromberg, J. A. & Scholz, N. L. Estimating the future decline of wild coho salmon populations resulting from early spawner die-offs in urbanizing watersheds of the Pacific Northwest, USA. Integr. Environ. Assess. Manag. 7, 648–656 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Bolte, J. & Vache, K. Envisioning Puget Sound Alternative Futures. Or. State Univ. (2010).

    47.
    King, M. A. & Fairfax, S. K. Beyond bucks and acres: land acquisition and water. Tex Rev 83, 1941 (2004).
    Google Scholar 

    48.
    Bottrill, M. C. & Pressey, R. L. The effectiveness and evaluation of conservation planning. Conserv. Lett. 5, 407–420 (2012).
    Article  Google Scholar 

    49.
    Rissman, A. R. & Smail, R. Accounting for results: how conservation organizations report performance information. Environ. Manag. 55, 916–929 (2015).
    ADS  Article  Google Scholar 

    50.
    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Jones, K. R. et al. The location and protection status of Earth’s diminishing marine wilderness. Curr. Biol. 28, 2506–2512 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Tulloch, V. J. et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 13, 91–99 (2015).
    Article  Google Scholar 

    53.
    Moilanen, A. et al. Balancing alternative land uses in conservation prioritization. Ecol. Appl. 21, 1419–1426 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Rodewald, A. D., Strimas-Mackey, M., Schuster, R. & Arcese, P. Tradeoffs in the value of biodiversity feature and cost data in conservation prioritization. Sci. Rep. 9, 1–8 (2019).
    CAS  Article  Google Scholar 

    55.
    Walsh, J. C. et al. Prioritizing conservation actions for Pacific salmon in Canada. J. Appl. Ecol. (2020).

    56.
    Chow, M. I. et al. An urban stormwater runoff mortality syndrome in juvenile coho salmon. Aquat. Toxicol. 214, 105231 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Battin, J. et al. Projected impacts of climate change on salmon habitat restoration. Proc. Natl. Acad. Sci. 104, 6720–6725 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Council, N. R. et al. Upstream: Salmon and Society in the Pacific Northwest. (National Academies Press, 1996).

    59.
    Benda, L., Andras, K., Miller, D. & Bigelow, P. Confluence effects in rivers: interactions of basin scale, network geometry, and disturbance regimes. Water Resour. Res. 40, (2004).

    60.
    Nel, J. L. et al. Progress and challenges in freshwater conservation planning. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 474–485 (2009).
    Article  Google Scholar 

    61.
    Booth, D. B., Roy, A. H., Smith, B. & Capps, K. A. Global perspectives on the urban stream syndrome. Freshw. Sci. 35, 412–420 (2016).
    Article  Google Scholar 

    62.
    Feist, B. E., Buhle, E. R., Arnold, P., Davis, J. W. & Scholz, N. L. Landscape ecotoxicology of coho salmon spawner mortality in urban streams. PLoS ONE 6, e23424 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Sethi, S. A., O’Hanley, J. R., Gerken, J., Ashline, J. & Bradley, C. High value of ecological information for river connectivity restoration. Landsc. Ecol. 32, 2327–2336 (2017).
    Article  Google Scholar 

    64.
    Watts, M. E. et al. Marxan with Zones: software for optimal conservation based land-and sea-use zoning. Environ. Model. Softw. 24, 1513–1521 (2009).
    Article  Google Scholar 

    65.
    Beger, M. et al. Incorporating asymmetric connectivity into spatial decision making for conservation. Conserv. Lett. 3, 359–368 (2010).
    Article  Google Scholar 

    66.
    Bower, S. D. et al. Making tough choices: picking the appropriate conservation decision-making tool. Conserv. Lett. 11, e12418 (2018).
    Article  Google Scholar 

    67.
    Schwartz, M. W. et al. Decision support frameworks and tools for conservation. Conserv. Lett. 11, e12385 (2018).
    Article  Google Scholar 

    68.
    Jarden, K. M., Jefferson, A. J. & Grieser, J. M. Assessing the effects of catchment-scale urban green infrastructure retrofits on hydrograph characteristics. Hydrol. Process. 30, 1536–1550 (2016).
    ADS  Article  Google Scholar 

    69.
    Pyke, C. et al. Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landsc. Urban Plan. 103, 166–173 (2011).
    Article  Google Scholar 

    70.
    Kim, D.-G., Jeong, K. & Ko, S.-O. Removal of road deposited sediments by sweeping and its contribution to highway runoff quality in Korea. Environ. Technol. 35, 2546–2555 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    Scheffer, M. Foreseeing tipping points. Nature 467, 411–412 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Halpern, B. S. Addressing Socioecological Tipping Points and Safe Operating Spaces in the Anthropocene. in Conservation for the Anthropocene Ocean 271–286 (Elsevier, 2017).

    73.
    Malhado, A. C. M., Pires, G. F. & Costa, M. H. Cerrado conservation is essential to protect the Amazon rainforest. Ambio 39, 580–584 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    Selkoe, K. A. et al. Principles for managing marine ecosystems prone to tipping points. Ecosyst. Health Sustain. 1, 1–18 (2015).
    Article  Google Scholar 

    75.
    Schilling, J. & Logan, J. Greening the rust belt: a green infrastructure model for right sizing America’s shrinking cities. J. Am. Plann. Assoc. 74, 451–466 (2008).
    Article  Google Scholar 

    76.
    Hughes, R. M. et al. A review of urban water body challenges and approaches:(2) mitigating effects of future urbanization. Fisheries 39, 30–40 (2014).
    Article  Google Scholar 

    77.
    Parker, D. P. Land trusts and the choice to conserve land with full ownership or conservation easements. Nat. Resour. J. 483–518 (2004).

    78.
    Kennedy, C. M. et al. Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services. Biol. Conserv. 204, 221–230 (2016).
    Article  Google Scholar 

    79.
    Kaeriyama, M., Seo, H., Kudo, H. & Nagata, M. Perspectives on wild and hatchery salmon interactions at sea, potential climate effects on Japanese chum salmon, and the need for sustainable salmon fishery management reform in Japan. Environ. Biol. Fishes 94, 165–177 (2012).
    Article  Google Scholar 

    80.
    Willson, M. F. & Halupka, K. C. Anadromous fish as keystone species in vertebrate communities. Conserv. Biol. 9, 489–497 (1995).
    Article  Google Scholar 

    81.
    McIntyre, J. K. et al. Interspecies variation in the susceptibility of adult Pacific salmon to toxic urban stormwater runoff. Environ. Pollut. 238, 196–203 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Service (NMFS), N. M. F. Report: 5-Year Review: Summary & Evaluation of Puget Sound Chinook Salmon, Hood Canal Summer-run Chum Salmon, Puget Sound Steelhead. (2016).

    83.
    Spromberg, J. A. & Meador, J. P. Relating results of chronic toxicity responses to population-level effects: modeling effects on wild chinook salmon populations. Integr. Environ. Assess. Manag. Int. J. 1, 9–21 (2005).
    CAS  Article  Google Scholar 

    84.
    Allan, J. D. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284 (2004).
    Article  Google Scholar 

    85.
    Bierwagen, B. G. et al. National housing and impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. 107, 20887–20892 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    86.
    Walsh, C. J., Fletcher, T. D. & Burns, M. J. Urban stormwater runoff: a new class of environmental flow problem. PLoS ONE 7, e45814 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Anthropogenic interferences lead to gut microbiome dysbiosis in Asian elephants and may alter adaptation processes to surrounding environments

    1.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105 (2012).
    ADS  CAS  Article  Google Scholar 

    3.
    Taylor-Brown, A. et al. The impact of human activities on Australian wildlife. PLoS ONE 14(1), e0206958 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Hunter, P. The human impact on biological diversity. How species adapt to urban challenges sheds light on evolution and provides clues about conservation. EMBO Rep. 8(4), 316–318 (2007).

    5.
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Natl. Acad. Sci. 112(15), 4531 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Cho, I. & Blaser, M. J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 13(4), 260–270 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13(10), 701–712 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474(7351), 327–336 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Inserra, A. et al. Mice lacking Casp 1, Ifngr and Nos2 genes exhibit altered depressive- and anxiety-like behaviour, and gut microbiome composition. Sci. Rep. 9(1), 6456 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Kuti, D. et al. Gastrointestinal (non-systemic) antibiotic rifaximin differentially affects chronic stress-induced changes in colon microbiome and gut permeability without effect on behavior. Brain Behav. Immun. 84, 218–228 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Bharwani, A. et al. Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology. 63, 217–227 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Wasimuddin, Menke, S., Melzheimer, J., Thalwitzer, S., Heinrich, S., Wachter, B. et al. Gut microbiomes of free-ranging and captive Namibian cheetahs: Diversity, putative functions and occurrence of potential pathogens. Mol. Ecol. 26(20), 5515–5527 (2017).

    13.
    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14(7), 1655–1661 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science (New York, NY). 320(5883), 1647–1651 (2008).
    ADS  CAS  Article  Google Scholar 

    15.
    Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl. Acad. Sci. U.S.A. 111(26), E2703–E2710 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl. Acad. Sci. U.S.A. 108(48), 19288–19292 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Schmidt, E., Mykytczuk, N. & Schulte-Hostedde, A. I. Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). ISME J. 13(5), 1293–1305 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Lahdenperä, M., Mar, K.U., Courtiol, A., Lummaa, V. Differences in age-specific mortality between wild-caught and captive-born Asian elephants. Nat. Commun. 9(1), 3023 (2018).

    19.
    Sun, C. H., Liu, H. Y., Liu, B., Yuan, B. D. & Lu, C. H. Analysis of the gut microbiome of wild and captive Pere David’s deer. Front. Microbiol. 10, 2331 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Ryser-Degiorgis, M.-P. Wildlife health investigations: Needs, challenges and recommendations. BMC Vet. Res. 9(1), 223 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Stallknecht, D. E. Impediments to wildlife disease surveillance, research, and diagnostics. Curr. Top. Microbiol. Immunol. 315, 445–461 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Soulsbury, C. D. et al. The welfare and ethics of research involving wild animals: A primer. Methods Ecol. Evol. 11(10), 1164–1181 (2020).
    Article  Google Scholar 

    23.
    Amato, K. R. et al. Using the gut microbiota as a novel tool for examining colobine primate GI health. Global Ecol. Conserv. 7, 225–237 (2016).
    Article  Google Scholar 

    24.
    Gehrig, J.L., Venkatesh, S., Chang, H.W., Hibberd, M.C., Kung, V.L., Cheng, J. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science (New York, NY). 365(6449) (2019).

    25.
    Choudhury, A., Lahiri Choudhury, D.K., Desai, A., Duckworth, J.W., Easa, P.S., Johnsingh, A.J.T. et al. Elephas maximus. The IUCN red list of threatened species. p. e.T7140A12828813 (2008).

    26.
    Zhang, C., Xu, B., Lu, T. & Huang, Z. Metagenomic analysis of the fecal microbiomes of wild asian elephants reveals microflora and enzymes that mainly digest hemicellulose. J. Microbiol. Biotechnol. 29(8), 1255–1265 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Ilmberger, N. et al. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS ONE 9(9), e106707 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Songer, M., Aung, M., Allendorf, T. D., Calabrese, J. M. & Leimgruber, P. Drivers of change in Myanmar’s wild elephant distribution. Trop. Conserv. Sci. 9(4), 1940082916673749 (2016).
    Article  Google Scholar 

    29.
    Crawley, J. A. H. et al. Investigating changes within the handling system of the largest semi-captive population of Asian elephants. PLoS ONE 14(1), e0209701 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Oo, Z. M. Health issues of captive Asian elephants in Myanmar. Gajah. 36, 21–22 (2012).
    Google Scholar 

    31.
    Chel, H.M., Iwaki, T., Hmoon, M., Thaw, Y.N., Chan Soe, N., Win, S.Y., et al. Morphological and molecular identification of cyathostomine gastrointestinal nematodes of Murshidia and Quilonia species from Asian elephants in Myanmar. Int. J. Parasitol. Parasites Wildl. (2020).

    32.
    Sukumar, R., Santiapillai, C. Elephas maximus: Status and distribution. in The Proboscidea: Evolution and Palaeoecology of Elephants and their Relatives 327–331 (Oxford University Press, New York, 1996).

    33.
    Leimgruber, P. et al. Current status of Asian elephants in Myanmar. Gajah. 35, 76–86 (2011).
    Google Scholar 

    34.
    Prakash, T.G.S.L., Indrajith, W.A.A.D.U., Aththanayaka, A.M.C.P., Karunarathna, S., Botejue, M., Nijman, V. et al. Illegal capture and internal trade of wild Asian elephants (Elephas maximus) in Sri Lanka. Nat. Conserv. 42, 51–69 (2020).

    35.
    Clubb, R. & Mason, G. A Review of the Welfare of Zoo Elephants in Europe: A Report Commissioned by the RSPCA (Animal BehaviourResearch Group, University of Oxford, Oxford, 2002).
    Google Scholar 

    36.
    Millspaugh, J.J., Burke, T., Van Dyk, G., Slotow, R., Washburn, B.E., Woods, R.J. Stress response of working African elephants to transportation and safari adventures. J. Wildl. Manag. 1257–1260 (2007).

    37.
    Clubb, R. et al. Compromised survivorship in zoo elephants. Science (New York, NY). 322(5908), 1649 (2008).
    ADS  CAS  Article  Google Scholar 

    38.
    Easton, A.V., Quinones, M., Vujkovic-Cvijin, I., Oliveira, R.G., Kepha, S., Odiere, M.R. et al. The impact of anthelmintic treatment on human gut microbiota based on cross-sectional and pre- and postdeworming comparisons in western Kenya. mBio. 10(2) (2019).

    39.
    Martin, I. et al. Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic trial in Indonesia. PLoS Negl. Trop. Dis. 12(8), e0006620 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    He, F. et al. Variations in gut microbiota and fecal metabolic phenotype associated with Fenbendazole and Ivermectin tablets by 16S rRNA gene sequencing and LC/MS-based metabolomics in Amur tiger. Biochem. Biophys. Res. Commun. 499(3), 447–453 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Kunz, I. G. Z. et al. Equine fecal microbiota changes associated with anthelmintic administration. J. Equine Vet. Sci. 77, 98–106 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Gagliardi, A. et al. Rebuilding the gut microbiota ecosystem. Int. J. Environ. Res. Public Health. 15(8), 1679 (2018).
    PubMed Central  Article  CAS  Google Scholar 

    43.
    Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. U.S.A. 113(37), 10376–10381 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57(4), 690–704 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Monfort, S.L. “Mayday mayday mayday”, the millennium ark is sinking! in (Holt, W.V., Brown, J.L., Comizzoli, P. eds.) Reproductive Sciences in Animal Conservation: Progress and Prospects 15–31 (Springer, New York, 2014).

    46.
    Gerber, L. R. Conservation triage or injurious neglect in endangered species recovery. Proc. Natl. Acad. Sci. U.S.A. 113(13), 3563–3566 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Haworth, S.E., White, K.S., Côté, S.D., Shafer, A.B.A. Space, time and captivity: Quantifying the factors influencing the fecal microbiome of an alpine ungulate. FEMS Microbiol. Ecol. 95(7) (2019).

    48.
    Gibson, K. M. et al. Gut microbiome differences between wild and captive black rhinoceros—Implications for rhino health. Sci. Rep. 9(1), 7570 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Montonye, D. R. et al. Acclimation and institutionalization of the mouse microbiota following transportation. Front. Microbiol. 9, 1085 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Conour, L. A., Murray, K. A. & Brown, M. J. Preparation of animals for research–issues to consider for rodents and rabbits. ILAR J. 47(4), 283–293 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Obernier, J. A. & Baldwin, R. L. Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J. 47(4), 364–369 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Mir, R. A., Kleinhenz, M. D., Coetzee, J. F., Allen, H. K. & Kudva, I. T. Fecal microbiota changes associated with dehorning and castration stress primarily affects light-weight dairy calves. PLoS ONE 14(1), e0210203 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Abhijith, T.V., Ashokkumar, M., Dencin, R.T., George, C. Gastrointestinal parasites of Asian elephants (Elephas maximus L. 1798) in south Wayanad forest division, Kerala, India. J. Parasit. Dis. 42(3), 382–390 (2018).

    54.
    Bansiddhi, P., Brown, J.L., Thitaram, C., Punyapornwithaya, V., Somgird, C., Edwards, K.L. et al. Changing trends in elephant camp management in northern Thailand and implications for welfare. PeerJ. 6, e5996-e (2018).

    55.
    Leung, J. M. & Loke, P. N. A role for IL-22 in the relationship between intestinal helminths, gut microbiota and mucosal immunity. Int. J. Parasitol. 43(3–4), 253–257 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Kreisinger, J., Bastien, G., Hauffe, H.C., Marchesi, J., Perkins, S.E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 370(1675) (2015).

    57.
    Lee, S. C. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 8(5), e2880 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Ditgen, D. et al. Harnessing the helminth secretome for therapeutic immunomodulators. Biomed. Res. Int. 2014, 964350 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    59.
    Hewitson, J. P. et al. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J. Proteom. 74(9), 1573–1594 (2011).
    CAS  Article  Google Scholar 

    60.
    Chong, R. et al. Looking like the locals—Gut microbiome changes post-release in an endangered species. Anim. Microbiome. 1(1), 8 (2019).
    Article  Google Scholar 

    61.
    Wienemann, T. et al. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 34(7), 542–551 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Pilla, R. & Suchodolski, J. S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 6, 498 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Hemarajata, P. & Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 6(1), 39–51 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Pertoldi, C., Randi, E., Ruiz-González, A., Vergeer, P. & Ouborg, J. How can genomic tools contribute to the conservation of endangered organisms. Int. J. Genomics. 2016, 4712487 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Roth, T. L. et al. Reduced gut microbiome diversity and metabolome differences in Rhinoceros species at risk for iron overload disorder. Front. Microbiol. 10, 2291 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    66.
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10(1), 2200 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Tatsika, S., Karamanoli, K., Karayanni, H. & Genitsaris, S. Metagenomic characterization of bacterial communities on ready-to-eat vegetables and effects of household washing on their diversity and composition. Pathogens. 8(1), 37 (2019).
    CAS  PubMed Central  Article  Google Scholar 

    68.
    Allan, N., Knotts, T.A., Pesapane, R., Ramsey, J.J., Castle, S., Clifford, D. et al. Conservation implications of shifting gut microbiomes in captive-reared endangered voles intended for reintroduction into the wild. Microorganisms. 6(3) (2018).

    69.
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69(2), 434–443 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Eid, H. M. et al. Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front. Pharmacol. 8, 387 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    71.
    Lay, C. et al. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol. 7(7), 933–946 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116(47), 23588–23593 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Pope, P. B. et al. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7(6), e38571 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Warnecke, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169), 560–565 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Evans, N. J. et al. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl. Environ. Microbiol. 77(1), 138 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    76.
    Kay, G. L. et al. Differences in the faecal microbiome in Schistosoma haematobium infected children vs. uninfected children. PLoS Negl. Trop. Dis. 9(6), 0003861 (2015).
    Article  CAS  Google Scholar 

    77.
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. Biol. Sci. 2019(286), 20182448 (1895).
    Google Scholar 

    78.
    Borody, T. J., Paramsothy, S. & Agrawal, G. Fecal microbiota transplantation: Indications, methods, evidence, and future directions. Curr. Gastroenterol. Rep. 15(8), 337 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    79.
    Blyton, M. D. J. et al. Faecal inoculations alter the gastrointestinal microbiome and allow dietary expansion in a wild specialist herbivore, the koala. Anim. Microbiome. 1(1), 6 (2019).
    Article  Google Scholar 

    80.
    Guo, W. et al. Fecal microbiota transplantation provides new insight into wildlife conservation. Glob. Ecol. Conserv. 24, e01234 (2020).
    Article  Google Scholar 

    81.
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37(8), 852–857 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26(1), 32–46 (2001).
    Google Scholar 

    84.
    Vazquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. GigaScience. 2(1), 16 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 6(1), 90 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Morton, J. T. et al. Balance trees reveal microbial niche differentiation. mSystems 2(1), e00162-00166 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    87.
    Mandal, S. et al. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Novel approach to enhance coastal habitat and biotope mapping with drone aerial imagery analysis

    1.
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Lefcheck, J. S., Wilcox, D. J., Murphy, R. R., Marion, S. R. & Orth, R. J. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Glob. Change Biol. 32, 202–3483 (2017).
    Google Scholar 

    3.
    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).
    PubMed  Article  Google Scholar 

    5.
    Liquete, C. et al. Current status and future prospects for the assessment of marine and coastal ecosystem services: A systematic review. PLoS ONE 8, e67737 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Bayley, D. T. I. & Mogg, A. O. M. Chapter 6—New Advances in Benthic Monitoring Technology and Methodology. World Seas: An Environmental Evaluation 121–132 (Elsevier, Amsterdam, 2018). https://doi.org/10.1016/B978-0-12-805052-1.00006-1.
    Google Scholar 

    7.
    González-Rivero, M. et al. The Catlin Seaview Survey—Kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 184–198 (2014).
    Article  Google Scholar 

    8.
    Ventura, D., Bruno, M., Jona Lasinio, G., Belluscio, A. & Ardizzone, G. A low-cost drone based application for identifying and mapping of coastal fish nursery grounds. Estuar. Coast. Shelf Sci. 171, 85–98 (2016).
    ADS  Article  Google Scholar 

    9.
    Pyle, R. L. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 12, 959–972 (Springe, Berlin, 2019).

    10.
    Lam, K. et al. A comparison of video and point intercept transect methods for monitoring subtropical coral communities. J. Exp. Mar. Biol. Ecol. 333, 115–128 (2006).
    Article  Google Scholar 

    11.
    Dumas, P., Bertaud, A., Peignon, C., Léopold, M. & Pelletier, D. A ‘quick and clean’ photographic method for the description of coral reef habitats. J. Exp. Mar. Biol. Ecol. 368, 161–168 (2009).
    Article  Google Scholar 

    12.
    Monteiro, J. G., Almeida, C., Freitas, R., Delgado, A. & Porteiro, F. Coral assemblages of Cabo Verde: preliminary assessment and description. Proceedings of the 11th ICRS (2009).

    13.
    Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 10, e0130312 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    14.
    Chennu, A., Färber, P., De’ath, G., de Beer, D. & Fabricius, K. E. A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Sci. Rep. 7, 1–12 (2017).
    CAS  Article  Google Scholar 

    15.
    Purkis, S. J. Remote sensing tropical coral reefs: The view from above. Annu. Rev. Mar. Sci. 10, 149–168 (2018).
    ADS  Article  Google Scholar 

    16.
    Kao, H.-M. et al. Determination of shallow water depth using optical satellite images. Int. J. Remote Sens. 30, 6241–6260 (2009).
    ADS  Article  Google Scholar 

    17.
    Saul, S. & Purkis, S. Semi-automated object-based classification of coral reef habitat using discrete choice models. Remote Sens. 7, 15894–15916 (2015).
    ADS  Article  Google Scholar 

    18.
    Marcello, J., Eugenio, F. & Marques, F. Benthic mapping using high resolution multispectral and hyperspectral imagery. In IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium 1535–1538 (2018). https://doi.org/10.1109/IGARSS.2018.8519166

    19.
    Chénier, R., Faucher, M.-A. & Ahola, R. Satellite-derived bathymetry for improving canadian hydrographic service charts. ISPRS Int. J. Geo-Inf. 7, 306–315 (2018).
    Article  Google Scholar 

    20.
    Casella, E. et al. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 36, 269–275 (2016).
    ADS  Article  Google Scholar 

    21.
    Chust, G., Galparsoro, I., Borja, Á., Franco, J. & Uriarte, A. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar. Coast. Shelf Sci. 78, 633–643 (2008).
    ADS  Article  Google Scholar 

    22.
    Garcia, R., Hedley, J., Tin, H. & Fearns, P. A method to analyze the potential of optical remote sensing for benthic habitat mapping. Remote Sens. 7, 13157–13189 (2015).
    ADS  Article  Google Scholar 

    23.
    Hernandez, W. & Armstrong, R. Deriving bathymetry from multispectral remote sensing data. JMSE 4, 8 (2016).
    Article  Google Scholar 

    24.
    Gonzalez, L. et al. Unmanned Aerial Vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 16, 97 (2016).
    Article  Google Scholar 

    25.
    Jiménez López, J. & Mulero-Pázmány, M. Drones for conservation in protected areas: Present and future. Drones 3, 10 (2019).
    Article  Google Scholar 

    26.
    Chirayath, V. & Earle, S. A. Drones that see through waves—Preliminary results from airborne fluid lensing for centimetre-scale aquatic conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 237–250 (2016).
    Article  Google Scholar 

    27.
    Giordano, F., Mattei, G., Parente, C., Peluso, F. & Santamaria, R. Integrating sensors into a marine drone for bathymetric 3D surveys in shallow waters. Sensors 16, 41–17 (2016).
    Article  Google Scholar 

    28.
    Collin, A. et al. Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery. Int. J. Remote Sens. 00, 1–13 (2018).
    Google Scholar 

    29.
    Konar, B. & Iken, K. The use of unmanned aerial vehicle imagery in intertidal monitoring. Deep-Sea Res. Part II(147), 79–86 (2018).
    Article  Google Scholar 

    30.
    Parsons, M., Bratanov, D., Gaston, K. J. & Gonzalez, F. UAVs, hyperspectral remote sensing, and machine learning revolutionizing reef monitoring. Sensors 18, 2026 (2018).
    Article  Google Scholar 

    31.
    Rossiter, T., Furey, T., McCarthy, T. & Stengel, D. B. UAV-mounted hyperspectral mapping of intertidal macroalgae. Estuar. Coast. Shelf Sci. https://doi.org/10.1016/j.ecss.2020.106789 (2020).
    Article  Google Scholar 

    32.
    United Nations Environment Programme. Out of the Blue. 1–96 (UNEP, 2020).

    33.
    Monteiro, J. G. & Lopez, J. J. Map of Quinta do Lorde Bay—Madeira Island. 1–3 (2020). doi:https://doi.org/10.22541/au.158939921.14824633

    34.
    Stumpf, R. P., Holderied, K. & Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 48, 547–556 (2003).
    ADS  Article  Google Scholar 

    35.
    Conger, C. L., Hochberg, E. J., Fletcher, C. H. & Atkinson, M. J. Decorrelating remote sensing color bands from bathymetry in optically shallow waters. IEEE Trans. Geosci. Remote Sens. 44, 1655–1660 (2006).
    ADS  Article  Google Scholar 

    36.
    Clarke, K. & Warwick, R. Change in Marine Communities: An Approach to Statistical Analysis (Primer-e Ltd, London, 2014).
    Google Scholar 

    37.
    Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the mesophotic. Sci. Rep. https://doi.org/10.1038/s41598-018-23067-1 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Olenin, S. & Ducrotoy, J.-P. The concept of biotope in marine ecology and coastal management. J. Exp. Mar. Biol. Ecol. 53, 20–29 (2006).
    CAS  Google Scholar 

    39.
    Frazão Santos, C. et al. in World Seas: An Environmental Evaluation 571–592 (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/B978-0-12-805052-1.00033-4

    40.
    Mumby, P. J. et al. Remote sensing of coral reefs and their physical environment. Mar Polut Bull 48, 219–228 (2004).
    CAS  Article  Google Scholar 

    41.
    Hayes, R. & Goreau, T. Satellite-derived sea surface temperature from Caribbean and Atlantic coral reef sites, 1984–2003. Rev. Biol. Trop. 56, 97–118 (2008).
    Google Scholar 

    42.
    Sugara, A. A., Siregar, V. P. V. & Agus, S. B. S. Classification of benthic habitat of shallow water using worldview-2 image with in-situ and drone data. Jurnal Ilmu dan Teknologi Kelautan Tropis 12, 135–150 (2020).
    Article  Google Scholar 

    43.
    Murfitt, S. L. et al. Applications of unmanned aerial vehicles in intertidal reef monitoring. Sci. Rep. https://doi.org/10.1038/s41598-017-10818-9 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    44.
    Kaplanis, N. J., Edwards, C. B., Eynaud, Y. & Smith, J. E. Future sea-level rise drives rocky intertidal habitat loss and benthic community change. PeerJ 8, e9186–e9221 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Chatzinikolaou, E. Use and limitations of ecological models. Transit. Waters Bull. 6, 34–41 (2012).
    Google Scholar 

    46.
    de Carneiro, L. R. A., Lima, A. P., Machado, R. B. & Magnusson, W. E. Limitations to the use of species-distribution models for environmental-impact assessments in the Amazon. PLoS ONE 11, e0146543 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    van der Wal, D., van Dalen, J., Dool, den, A. W.-V., Dijkstra, J. T. & Ysebaert, T. Biophysical control of intertidal benthic macroalgae revealed by high-frequency multispectral camera images. J. Sea Res. 90, 111–120 (2014).

    48.
    Goldberg, J. & Wilkinson, C. in Status of coral reefs of the World (ed. Wilkinson, C.) 1, 67–92 (Status of coral reefs of the World, 2004).

    49.
    Fabry, V. J., Seibel, B. A. & Feely, R. A. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).
    CAS  Article  Google Scholar 

    50.
    Radeta, M. et al. in Human-Computer Interaction—INTERACT 2019, vol. 11748, 237–248 (Springer, Cham, 2019).

    51.
    Rusu, E. & Guedes Soares, C. Wave energy pattern around the Madeira Islands. Energy 45, 771–785 (2012).
    Article  Google Scholar 

    52.
    Pullen, J., Caldeira, R., Doyle, J. D., May, P. & Tomé, R. Modeling the air-sea feedback system of Madeira Island. J. Adv. Model. Earth Syst. 9, 1641–1664 (2017).
    ADS  Article  Google Scholar 

    53.
    Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275 (2010).
    Article  Google Scholar 

    54.
    Earth Systems Research Institute (ESRI). ArcGIS Desktop: Release 10 (2011).

    55.
    Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogram. Remote Sens. 65, 2–16 (2010).
    ADS  Article  Google Scholar 

    56.
    Darwish, A., Leukert, K. & Reinhardt, W. Image segmentation for the purpose of object-based classification. in 3, 2039–2041 (IEEE, 2003).

    57.
    Qian, Y., Zhou, W., Yan, J., Li, W. & Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 7, 153–168 (2015).
    ADS  Article  Google Scholar 

    58.
    Masi, B., Macedo, I. & Zalmon, I. Benthic community zonation in a breakwater on the North Coast of the State of Rio de Janeiro, Brazil. Braz. Arch. Biol. Technol. 52, 637–646 (2009).
    Article  Google Scholar 

    59.
    Sangil, C. et al. Shallow subtidal macroalgae in the North-eastern Atlantic archipelagos (Macaronesian region): A spatial approach to community structure. Eur. J. Phycol. 00, 1–16 (2018).
    Google Scholar 

    60.
    Su, T.-C. & Chou, H.-T. Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu Reservoir in Kinmen, Taiwan. Remote Sens. 7, 10078–10097 (2015).
    ADS  Article  Google Scholar 

    61.
    Kohler, K. & Gill, S. Coral Point Count with Excel Extensions (CPCe): A Visual Basic Program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).
    ADS  Article  Google Scholar 

    62.
    Clarke, K. R. & Gorley, R. N. Getting started with PRIMER V7 (PRIMER-E, Plymouth, 2015).
    Google Scholar 

    63.
    Berman, J. & Bell, J. J. Spatial Variability of Sponge Assemblages on the Wellington South Coast, New Zealand. Open Mar. Biol. J. 4, 12–25 (2010). https://doi.org/10.2174/1874450801004010012.

    64.
    Rawson, C. A. et al. Benthic macroinvertebrate assemblages in remediated wetlands around Sydney, Australia. Ecotoxicology 19, 1589–1600 (2010).
    CAS  PubMed  Article  Google Scholar 

    65.
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA for PRIMER: a guide to software and statistical methods. (PRIMER-E Ltd, 2008). More

  • in

    Consistent choice of landscape urbanization level across the annual cycle in a migratory waterbird species

    1.
    Stein, B. A., Kutner, L. S. & Adams, J. S. Precious Heritage: The Status of Biodiversity in the United States (Oxford University Press, Oxford, UK, 2000).
    Google Scholar 
    2.
    Blair, R. B. Birds and Butterflies Along Urban Gradients in Two Ecoregions of the United States: Is Urbanization Creating a Homogeneous Fauna? In Biotic Homogenization (eds Lockwood, J. L. & McKinney, M. L.) 33–56 (Springer, Boston, MA, 2001).
    Google Scholar 

    3.
    Clergeau, P., Croci, S., Jokimäki, J., Kaisanlahti-Jokimäki, M. L. & Dinetti, M. Avifauna homogenisation by urbanisation: analysis at different European latitudes. Biol. conserv. 127, 336–344 (2006).
    Article  Google Scholar 

    4.
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
    Article  Google Scholar 

    5.
    Seto, K. C. & Shepherd, J. M. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sust. 1, 89–95 (2009).
    Article  Google Scholar 

    6.
    Wilby, R. L. & Perry, G. L. Climate change, biodiversity and the urban environment: a critical review based on London, UK. Prog. Phys. Geog. 30, 73–98 (2006).
    Article  Google Scholar 

    7.
    Chapman, R. & Jones, D. N. Just feeding the ducks: quantifying a common wildlife-human interaction. Sunbird: J. Qld. Ornithol. Soc. 39, 19 (2009).
    Google Scholar 

    8.
    Partecke, J., Schwabl, I. & Gwinner, E. Stress and the city: urbanization and its effects on the stress physiology in European blackbirds. Ecology 87, 1945–1952 (2006).
    PubMed  Article  Google Scholar 

    9.
    Adams, L. W. Urban Wildlife Habitats: A Landscape Perspective Vol. 3 (University of Minnesota Press, Minneapolis, USA, 1994).
    Google Scholar 

    10.
    Gering, J. C. & Blair, R. B. Predation on artificial bird nests along an urban gradient: predatory risk or relaxation in urban environments?. Ecography 22, 532–541 (1999).
    Article  Google Scholar 

    11.
    Baker, P. J., Bentley, A. J., Ansell, R. J. & Harris, S. Impact of predation by domestic cats Felis catus in an urban area. Mammal Rev. 35, 302–312 (2005).
    Article  Google Scholar 

    12.
    Bateman, P. W. & Fleming, P. A. Big city life: carnivores in urban environments. J. Zool. 287, 1–23 (2012).
    Article  Google Scholar 

    13.
    Brzeziński, M., Natorff, M., Zalewski, A. & Żmihorski, M. Numerical and behavioral responses of waterfowl to the invasive American mink: A conservation paradox. Biol. Conserv. 147, 68–78 (2012).
    Article  Google Scholar 

    14.
    Luniak, M. Synurbization–adaptation of animal wildlife to urban development. In Proceedings 4th International Urban Wildlife Symposium, pp 50–55 (University of Arizona, Tucson, USA, 2004).

    15.
    Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: a review. Landsc. Urban Plan. 74, 46–69 (2006).
    Article  Google Scholar 

    16.
    Møller, A. P. Successful city dwellers: a comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).
    ADS  PubMed  Article  Google Scholar 

    17.
    Chamberlain, D. E. et al. Avian productivity in urban landscapes: a review and meta-analysis. Ibis 151, 1–18 (2009).
    Article  Google Scholar 

    18.
    Müller, J. C., Partecke, J., Hatchwell, B. J., Gaston, K. J. & Evans, K. L. Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Mol. Ecol. 22, 3629–3637 (2013).
    Article  CAS  Google Scholar 

    19.
    Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).
    PubMed  Article  Google Scholar 

    21.
    Møller, A. P. Flight distance of urban birds, predation, and selection for urban life. Behav. Ecol. Sociobiol. 63, 63 (2008).
    Article  Google Scholar 

    22.
    Evans, J., Boudreau, K. & Hyman, J. Behavioural syndromes in urban and rural populations of song sparrows. Ethology 116, 588–595 (2010).
    Google Scholar 

    23.
    Carrete, M. & Tella, J. L. High individual consistency in fear of humans throughout the adult lifespan of rural and urban burrowing owls. Sci. Rep. 3, 3524 (2013).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Díaz, M. et al. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS ONE 8, e64634 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    McGiffin, A., Lill, A., Beckman, J. & Johnstone, C. P. Tolerance of human approaches by Common Mynas along an urban-rural gradient. EMU 113, 154–160 (2013).
    Article  Google Scholar 

    26.
    Knight, R. L., Grout, D. J. & Temple, S. A. Nest-defense behavior of the American crow in urban and rural areas. Condor 89, 175–177 (1987).
    Article  Google Scholar 

    27.
    Wang, Y., Huang, Q., Lan, S., Zhang, Q. & Chen, S. Common blackbirds Turdus merula use anthropogenic structures as nesting sites in an urbanized landscape. Curr. Zool. 61, 435–443 (2015).
    Article  Google Scholar 

    28.
    Russ, A., Rüger, A. & Klenke, R. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. J. Ornithol. 156, 123–131 (2015).
    Article  Google Scholar 

    29.
    Schoech, S. J., Bowman, R., Bridge, E. S. & Boughton, R. K. Baseline and acute levels of corticosterone in Florida scrub-jays (Aphelocoma coerulescens): effects of food supplementation, suburban habitat, and year. Gen. Comp. Endocrinol. 154, 150–160 (2007).
    CAS  PubMed  Article  Google Scholar 

    30.
    Fokidis, H. B., Orchinik, M. & Deviche, P. Corticosterone and corticosteroid binding globulin in birds: relation to urbanization in a desert city. Gen. Comp. Endocrinol. 160, 259–270 (2009).
    CAS  PubMed  Article  Google Scholar 

    31.
    Minias, P. Successful colonization of a novel urban environment is associated with an urban behavioural syndrome in a reed-nesting waterbird. Ethology 121, 1178–1190 (2015).
    Article  Google Scholar 

    32.
    Tryjanowski, P., Sparks, T. H., Kuźniak, S., Czechowski, P. & Jerzak, L. Bird migration advances more strongly in urban environments. PLoS ONE 8, e63482 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Latimer, C. E. & Zuckerberg, B. Habitat loss and thermal tolerances influence the sensitivity of resident bird populations to winter weather at regional scales. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13332 (2020).
    Article  PubMed  Google Scholar 

    34.
    Schatz, J. & Kucharik, C. J. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environ. Res. Lett. 10, 094024 (2015).
    ADS  Article  Google Scholar 

    35.
    Price, T. D., Qvarnström, A. & Irwin, D. E. The role of phenotypic plasticity in driving genetic evolution. P. Roy. Soc. B-Biol. Sci. 270, 1433–1440 (2003).
    Article  Google Scholar 

    36.
    Pigliucci, M., Murren, C. J. & Schlichting, C. D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 209, 2362–2367 (2006).
    PubMed  Article  Google Scholar 

    37.
    Partecke, J. Mechanisms of phenotypic responses following colonization of urban areas: from plastic to genetic adaptation. In Avian Urban Ecology: Behavioural and Physiological Adaptations (eds Gil, D. & Brumm, H.) 131–142 (Oxford University Press, Oxford, UK, 2014).
    Google Scholar 

    38.
    Baker, A. J. & Moeed, A. Rapid genetic differentiation and founder effect in colonizing populations of common mynas (Acridotheres tristis). Evolution 41, 525–538 (1987).
    PubMed  Google Scholar 

    39.
    Sacchi, R., Gentilli, A., Razzetti, E. & Barbieri, F. Effects of building features on density and flock distribution of feral pigeons Columba livia var. domestica in an urban environment. Can. J. Zool. 80, 48–54 (2002).
    Article  Google Scholar 

    40.
    Antonov, A. & Atanasova, D. Small-scale differences in the breeding ecology of urban and rural Magpies Pica pica. OrnisFenn. 80, 21–30 (2003).
    Google Scholar 

    41.
    Carrete, M. & Tella, J. L. Individual consistency in flight initiation distances in burrowing owls: a new hypothesis on disturbance-induced habitat selection. Biol. Lett. 6, 167–170 (2010).
    PubMed  Article  Google Scholar 

    42.
    Meillère, A. et al. Growing in a city: consequences on body size and plumage quality in an urban dweller, the house sparrow (Passer domesticus). Landsc. Urban Plan. 160, 127–138 (2017).
    Article  Google Scholar 

    43.
    Rodewald, A. D. & Shustack, D. P. Urban flight: understanding individual and population-level responses of nearctic-neotropical migratory birds to urbanization. J. Anim. Ecol. 77, 83–91 (2008).
    PubMed  Article  Google Scholar 

    44.
    Jokimäki, J. & Suhonen, J. Distribution and habitat selection of wintering birds in urban environments. Landsc. Urban Plan. 39, 253–263 (1998).
    Article  Google Scholar 

    45.
    Végvári, Z., Barta, Z., Mustakallio, P. & Székely, T. Consistent avoidance of human disturbance over large geographical distances by a migratory bird. Biol. Lett. 7, 814–817 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Snow, D. W. & Perrins, C. M. The Birds of the Western Palearctic (Oxford University Press, Oxford, UK, 1998).
    Google Scholar 

    47.
    Luniak, M., Kalbarczyk, W. & Pawłowski, W. Birds of Warsaw. ActaOrnithol. 8, 198–199 (1964).
    Google Scholar 

    48.
    Janiszewski, T., Wojciechowski, Z. & Markowski, J. Atlas Ptaków Lęgowych Łodzi (Wydawnictwo Uniwersytetu Łódzkiego, Łódź, Poland, 2009).
    Google Scholar 

    49.
    Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. ecol. 7, 1071–1075 (1998).
    CAS  PubMed  Article  Google Scholar 

    50.
    European Environment Agency 2018. Corine Land Cover (CLC) 2018, Version 2020_20u1. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018

    51.
    Kosztra, B., Büttner, G., Hazeu, G. & Arnold, S. Updated CLC Illustrated Nomenclature Guidelines 1–124 (European Environment Agency, Vienna, Austria, 2017).
    Google Scholar 

    52.
    United States Geological Survey 2019. Earth Explorer. https://earthexplorer.usgs.gov/

    53.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Article  Google Scholar 

    54.
    Bartoń, K. MuMIn: Multi-Model Inference. R package ver. 1.43.17. CRAN: The Comprehensive R Archive Network, Berkeley, CA, USA. https://CRAN.R-project.org/package=MuMIn (2020).

    55.
    R Development Core Team R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2013).

    56.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv:1406.5823 (2014).

    57.
    Thys, B. et al. The female perspective of personality in a wild songbird: repeatable aggressiveness relates to exploration behaviour. Sci. Rep. 7, 1–10 (2017).
    CAS  Article  Google Scholar 

    58.
    Hardman, S. I. & Dalesman, S. Repeatability and degree of territorial aggression differs among urban and rural great tits (Parus major). Sci. Rep. 8, 1–12 (2018).
    CAS  Article  Google Scholar 

    59.
    Edelaar, P., Siepielski, A. M. & Clobert, J. Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evol. Int. J. Organic Evol. 62, 2462–2472 (2008).
    Article  Google Scholar 

    60.
    Jaenike, J. & Holt, R. D. Genetic variation for habitat preference: evidence and explanations. Am. Nat. 137, S67–S90 (1991).
    Article  Google Scholar 

    61.
    Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Minias, P., Włodarczyk, R., Minias, A. & Dziadek, J. How birds colonize cities: genetic evidence from a common waterbird, the Eurasian coot. J. Avian Biol. 48, 1095–1103 (2017).
    Article  Google Scholar 

    63.
    Holtmann, B., Santos, E. S., Lara, C. E. & Nakagawa, S. Personality-matching habitat choice, rather than behavioural plasticity, is a likely driver of a phenotype–environment covariance. P. Roy. Soc. B-Biol. Sci. 284, 20170943 (2017).
    Google Scholar 

    64.
    Sprau, P. & Dingemanse, N. J. An approach to distinguish between plasticity and non-random distributions of behavioral types along urban gradients in a wild passerine bird. Front. Ecol. Evol. 5, 92 (2017).
    Article  Google Scholar 

    65.
    Skórka, P., Lenda, M. & Skórka, J. Supermarkets—a wintering habitat for house sparrow Passer domesticus. Pol. J. Ecol. 57, 597–603 (2009).
    Google Scholar 

    66.
    Newton, I. Population Limitation in Birds (Academic Press, San Diego, USA, 1998).
    Google Scholar 

    67.
    Ciach, M. & Fröhlich, A. Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosyst. 20, 547–559 (2017).
    Article  Google Scholar 

    68.
    Gauthreaux, S. A. The ecological significance of behavioral dominance. In Social Behaviour. Perspectives in Ethology Vol. 3 (eds Bateson, P. P. G. & Klopfer, P. H.) (Springer, Boston, MA, 1978).
    Google Scholar 

    69.
    Lynch, J. F., Morton, E. S. & Van der Voort, M. E. Habitat segregation between the sexes of wintering Hooded Warblers (Wilsonia citrina). Auk 102, 714–721 (1985).
    Google Scholar 

    70.
    Marra, P. P. The role of behavioral dominance in structuring patterns of habitat occupancy in a migrant bird during the nonbreeding season. Behav. Ecol. 11, 299–308 (2000).
    ADS  Article  Google Scholar 

    71.
    Morton, E. S. Habitat segregation by sex in the hooded warbler: experiments on proximate causation and discussion of its evolution. Am. Nat. 135, 319–333 (1990).
    Article  Google Scholar 

    72.
    del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, vol. 3 Hoatzin to Auks ( Lynx Edicions, Barcelona, Spain, 1996).
    Google Scholar  More

  • in

    Modelling seasonal patterns of larval fish parasitism in two northern nearshore areas in the Humboldt Current System

    1.
    Moyano, M., Rodríguez, J. M. & Hernández-León, S. Larval fish abundance and distribution during the late winter bloom off Gran Canaria Island, Canary Islands. Fish Oceanogr. 18, 51–61 (2009).
    Article  Google Scholar 
    2.
    Sutherland, K., Strydom, N. A. & Wooldridge, T. H. Composition, abundance, distribution and seasonality of larval fishes in the Sundays Estuary, South Africa. Afr. Zool. 47, 229–244 (2012).
    Article  Google Scholar 

    3.
    Sun, D., Blomberg, S. P., Cribb, T. H., McCormick, M. I. & Grutter, A. S. The effects of parasites on the early life stages of a damselfish. Coral Reefs 31, 1065–1075 (2012).
    ADS  Article  Google Scholar 

    4.
    Palacios-Fuentes, P., Landaeta, M. F., Muñoz, G., Plaza, G. & Ojeda, F. P. The effects of a parasitic copepod on the recent larval growth of a fish inhabiting rocky coasts. Parasitol. Res. 111, 1661–1671 (2012).
    PubMed  Article  Google Scholar 

    5.
    Muñoz, G., Landaeta, M. F., Palacios-Fuentes, P., López, Z. & González, M. T. Parasite richness in fish larvae from the nearshore waters of central and northern Chile. Folia Parasite. 62, 029 (2015).
    Google Scholar 

    6.
    Ribeiro, F., Hilton, E. J. & Carnegie, R. B. High prevalence and potential impacts of caligid ectoparasites on larval atlantic croaker (Micropogonias undulatus) in the Chesapeake Bay. Estuar. Coasts 39, 583–588 (2016).
    Article  Google Scholar 

    7.
    Jahnsen-Guzmán, N., Bernal-Durán, V. & Landaeta, M. F. Parasitic copepods affect morphospace and diet of larvae of a temperate reef fish. J. Fish. Biol. 92, 330–346 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    González, M. T. & Acuña, E. Influence of host size and sex on the endohelminth infracommunities of the red rockfish Sebastes capensis off Northern Chile. J. Parasitol. 86, 854–857 (2000).
    PubMed  Article  Google Scholar 

    9.
    Poulin, R. Are there general laws in parasite ecology?. Parasitology 134, 763–776 (2007).
    CAS  PubMed  Article  Google Scholar 

    10.
    Fogelman, R. M. & Grutter, A. S. Mancae of the parasitic cymothoid isopod, Anilocra apogonae: Early life history, host-specificity, and effect on growth and survival of preferred young cardinal fishes. Coral Reefs 27, 685 (2008).
    ADS  Article  Google Scholar 

    11.
    Muñoz, G., Landaeta, M. F., Palacios-Fuentes, P. & George-Nascimento, M. Parasites of fish larvae: Do they follow metabolic energetic laws?. Parasitol. Res. 114, 3977–3987 (2015).
    PubMed  Article  Google Scholar 

    12.
    Felley, S. M., Vecchione, M. & Hare, S. G. F. Incidence of ectoparasitic copepods on ichthyoplankton. Copeia 3, 778–782 (1987).
    Article  Google Scholar 

    13.
    Landaeta, M. F. et al. Spatial and temporal variations of coastal fish larvae, ectoparasites and oceanographic conditions off central Chile. Rev. Biol. Mar. Oceanogr. 50, 563–574 (2015).
    Article  Google Scholar 

    14.
    Boxshall, G.A. Crustacean parasites (Copepoda). In Marine Parasitology. (ed. Rohde, K.) 23–138 (CABI, Oxon, 2005).

    15.
    Brooker, A. J., Shinn, A. P. & Bron, J. E. A review of the biology of the parasitic copepod Lernaeocera branchialis (L., 1767) (Copepoda, Pennellidae). Adv. Parasit. 65, 297–341 (2007).
    Article  Google Scholar 

    16.
    Rohde, K. Marine Parasitology (Csiro Publishing, Collingwood, 2005).
    Google Scholar 

    17.
    Poulin, R. Variation in infection parameters among populations within parasite species: Intrinsic properties versus local factors. Int. J. Parasitol. 36, 877–885 (2006).
    PubMed  Article  Google Scholar 

    18.
    Begon, M., Harper, J. L. & Townsend, C. R. Ecology: Individuals, Populations and Communities (Blackwell Scientific Publications, Hoboken, 1986).
    Google Scholar 

    19.
    Thiel, M. et al. The Humboldt Current System of northern and central Chile: Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. Annu. Rev. 45, 195–344 (2007).
    Google Scholar 

    20.
    Paredes, L. D., Landaeta, M. F. & González, M. T. Larval fish assemblages in two nearshore areas of the Humboldt Current System during autumn-winter in northern Chile. Rev. Biol. Mar. Oceanogr. 53, 63–76 (2018).
    Article  Google Scholar 

    21.
    Escribano, R., Rosales, S. A. & Blanco, J. L. Understanding upwelling circulation off Antofagasta (northern Chile): A three-dimensional numerical-modeling approach. Cont. Shelf. Res. 24, 37–53 (2004).
    ADS  Article  Google Scholar 

    22.
    Pérez, R. Desarrollo embrionario y larval de los pejesapos Sycyases sanguineus y Gobiesox marmoratus en la bahía de Valparaíso, Chile, con notas sobre su reproducción (Gobiesocidae: Pisces). Lat. Am. J. Aquat. Res. 9, 1–24 (1981).
    Google Scholar 

    23.
    Herrera, G. Descripción de estados post-embrionales de Ophiogobius jenynsi Hoese 1976 (Gobiidae: Blennioidei). Rev. Biol. Mar. Oceanogr. 20, 159–168 (1984).
    Google Scholar 

    24.
    Zavala-Muñoz, F., Landaeta, M. F., Bernal-Durán, V., Herrera, G. A. & Brown, D. I. Larval development and shape variation of the kelpfish Myxodes viridis (Teleostei: Clinidae). Sci. Mar. 80, 39–49 (2016).
    Article  Google Scholar 

    25.
    González, M. T., Castro, R., Muñoz, G. & López, Z. Sea lice (Siphonostomatoida: Caligidae) diversity on littoral fishes from the south-eastern Pacific coast determined from morphology and molecular analysis, with description of a new species (Lepeophtheirus confusum). Parasitol. Int. 65, 685–695 (2016).
    PubMed  Article  CAS  Google Scholar 

    26.
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997).
    CAS  PubMed  Article  Google Scholar 

    27.
    Zar, J. H. Biostatistical Analysis (Prentice Hall, Upper Saddle River, 1999).
    Google Scholar 

    28.
    Stefansson, G. Analysis of groundfish survey abundance data: Combining the GLM and delta approaches. ICES J. Mar. Sci. 53, 577–588 (1996).
    Article  Google Scholar 

    29.
    Aitchison, J. On the distribution of a positive random variable having a discrete probability mass at the origin. J. Am. Stat. Assoc. 50, 901–908 (1955).
    MathSciNet  MATH  Google Scholar 

    30.
    Pennington, J. T. Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39, 281–286 (1983).
    Article  Google Scholar 

    31.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effect Models and Extensions in Ecology with R (Springer Science & Business Media, New York, 2009).
    Google Scholar 

    32.
    Akaike, H. A. new look at the statistical model identification. IEEE Trans. Autom. Control. 19(6), 716–723 (1974).
    ADS  MathSciNet  MATH  Article  Google Scholar 

    33.
    McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman & Hall, London, 1989).
    Google Scholar 

    34.
    Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304 (2004).
    MathSciNet  Article  Google Scholar 

    35.
    Fox, J., & Sanford, W. Car: Companion to applied regression. R Package Version 2, 0–2 http://CRAN.R-project.org/package=car (Accessed 15 Nov 2013) (2010).

    36.
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. The R Development Core Team. nlme: Linear and nonlinear mixed effects models. R Package Version 3.1-111. in: 3.1-111, R.p.v (Ed.) (2013).

    37.
    Mansur, L., Plaza, G., Landaeta, M. F. & Ojeda, F. P. Planktonic duration in fourteen species of intertidal rocky fishes from the south-eastern Pacific Ocean. Mar. Freshw. Res. 65, 901–909 (2014).
    Article  Google Scholar 

    38.
    Raventós, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 38, 1115–1120 (2001).
    Google Scholar 

    39.
    Grutter, A. S., Cribb, T. H., McCallum, H., Pickering, J. L. & McCormick, M. I. Effects of parasites on larval and juvenile stages of the coral reef fish Pomacentrus moluccensis. Coral Reefs 29, 31–40 (2010).
    ADS  Article  Google Scholar 

    40.
    Duong, B. et al. Parasites of coral reef fish larvae: Its role in the pelagic larval stage. Coral Reefs 38, 199–214 (2019).
    ADS  Article  Google Scholar 

    41.
    Palacios-Fuentes, P., Landaeta, M. F., Jahnsen-Guzmán, N., Plaza, G. & Ojeda, F. P. Hatching patterns and larval growth of a triplefin from central Chile inferred by otolith microstructure analysis. Aquat. Ecol. 48, 259–266 (2014).
    CAS  Article  Google Scholar 

    42.
    Landaeta, M.F., Díaz-Richter, C. & Muñoz, G. Larval parasitic copepods affect early life history traits of a temperate clingfish. Parasitol. Res. 119(12), 3977–3985 (2020).

    43.
    Díaz-Astudillo, M. et al. The influence of regional and local oceanography in early stages of marine fishes from temperate rocky reefs. Mar. Biol. 166, 42 (2019).
    Article  Google Scholar 

    44.
    Fields, D. M., Skiftesvik, A. B. & Browman, H. I. Behavioural responses of infective-stage copepodids of the salmon louse (Lepeophtheirus salmonis, Copepoda: Caligidae) to host-related sensory cues. J. Fish. Dis. 41, 875–884 (2018).
    CAS  PubMed  Article  Google Scholar 

    45.
    Palacios-Fuentes, P. et al. Is ectoparasite burden related to host density? Evidence from nearshore fish larvae off the coast of central Chile. Aquat. Ecol. 49, 91–98 (2015).
    Article  Google Scholar 

    46.
    Montory, J. A. et al. Early development of the ectoparasite Caligus rogercresseyi under combined salinity and temperature gradients. Aquaculture 486, 68–74 (2018).
    Article  Google Scholar 

    47.
    Uribe, R. A., Ortiz, M., Macaya, E. C. & Pacheco, A. S. Successional patterns of hard-bottom microbenthic communities at kelps bed (Lessonia trabeculata) and barren ground sublittoral systems. J. Exp. Mar. Biol. Ecol. 472, 180–188 (2015).
    Article  Google Scholar 

    48.
    Landaeta, M. F., Nowajewski, V., Paredes, L. D. & Bustos, C. A. Early life history traits of the blenny Auchenionchus crinitus (Teleostei: Labrisomidae) off northern Chile. J. Mar. Biol. Assoc. U. K. 99, 969–974 (2019).
    CAS  Article  Google Scholar 

    49.
    Muñoz, G. & Olmos, V. Revisión bibliográfica de especies ectoparásitas y hospedadoras de sistemas acuáticos de Chile. Rev. Biol. Mar. Oceanogr. 42, 89–148 (2007).
    Article  Google Scholar  More

  • in

    Win-stay/lose-switch, prospecting-based settlement strategy may not be adaptive under rapid environmental change

    1.
    Orians, G. H. & Wittenberger, J. F. Spatial and temporal scales in habitat selection. Am. Nat. 137, S29–S49 (1991).
    Article  Google Scholar 
    2.
    Doligez, B., Cadet, C., Danchin, E. & Boulinier, T. When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim. Behav. 66, 973–988 (2003).
    Article  Google Scholar 

    3.
    Schmidt, K. A., Dall, S. R. X. & van Gils, J. A. The ecology of information: an overview on the ecological significance of making informed decisions. Oikos 119, 304–316 (2010).
    Article  Google Scholar 

    4.
    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).
    Article  Google Scholar 

    5.
    Fletcher, R. J., Orrock, J. L. & Robertson, B. A. How the type of anthropogenic change alters the consequences of ecological traps. Proc. R. Soc. B 279, 2546–2552 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Robertson, B. A., Rehage, J. S. & Sih, A. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evol. 28, 552–560 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Cosmides, L. & Tooby, J. From evolution to behavior: evolutionary psychology as the missing link. In The Latest on the Best: Essays on Evolution and Optimality (ed. Dupré, J.) 227–306 (MIT Press, Cambridge, 1987).
    Google Scholar 

    8.
    Sih, A., Trimmer, P. C. & Ehlman, S. M. A conceptual framework for understanding behavioural responses to HIREC. Curr. Opin. Behav. Sci. 12, 109–114 (2016).
    Article  Google Scholar 

    9.
    Trimmer, P. C., Barrett, B. J., McElreath, R. & Sih, A. Rapid environmental change in games: complications and counter-intuitive outcomes. Sci. Rep. 9, 7373 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Crowley, P. H. et al. Predicting habitat choice after rapid environmental change. Am. Nat. 193, 619–632 (2019).
    PubMed  Article  Google Scholar 

    11.
    Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction?. Evolution 49, 201–207 (1995).
    PubMed  Article  Google Scholar 

    12.
    Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).
    Article  Google Scholar 

    13.
    Kokko, H. & Sutherland, W. J. Ecological traps in changing environments: ecological and evolutionary consequences of a behaviourally mediated Allee effect. Evol. Ecol. Res. 3, 603–610 (2001).
    Google Scholar 

    14.
    Greggor, A. L., Trimmer, P. C., Barrett, B. J. & Sih, A. Challenges of learning to escape evolutionary traps. Front. Ecol. Evol. 7, 408 (2019).
    Article  Google Scholar 

    15.
    Fawcett, T. W. et al. The evolution of decision rules in complex environments. Trends Cogn. Sci. 18, 153–161 (2014).
    PubMed  Article  Google Scholar 

    16.
    Beletsky, L. D. & Orians, G. H. Effects of breeding experience and familiarity on site fidelity in female red-winged blackbirds. Ecology 72, 787–796 (1991).
    Article  Google Scholar 

    17.
    Forero, M. G., Donázar, J. A., Blas, J. & Hiraldo, F. Causes and consequences of territory change and breeding dispersal distance in the black kite. Ecology 80, 1298–1310 (1999).
    Article  Google Scholar 

    18.
    Schaub, M. & Hirschheydt, J. Effect of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture-recapture models. J. Anim. Ecol. 78, 625–635 (2009).
    PubMed  Article  Google Scholar 

    19.
    Switzer, P. V. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7, 533–555 (1993).
    Article  Google Scholar 

    20.
    Beletsky, L. D. & Orians, G. H. Site fidelity and territorial movements of males in a rapidly declining population of yellow-headed blackbirds. Behav. Ecol. Sociobiol. 34, 257–265 (1994).
    Article  Google Scholar 

    21.
    Reed, J. M., Boulinier, T., Danchin, E. & Oring, L. W. Informed dispersal. Curr. Ornithol. 15, 189–259 (1999).
    Article  Google Scholar 

    22.
    Delgado, M. M., Bartoń, K. A., Bonte, D. & Travis, J. M. J. Prospecting and dispersal: their eco-evolutionary dynamics and implications for population patterns. Proc. R. Soc. B 281, 20132851 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Delibes, M., Ferreras, P. & Gaona, P. Attractive sinks, or how individual behavioural decisions determine source-sink dynamics. Ecol. Lett 4, 401–403 (2001).
    Article  Google Scholar 

    24.
    Vlug, J. J. Red-necked grebe. BWP Update 4, 139–179 (2002).
    Google Scholar 

    25.
    Kloskowski, J. Consequences of the size structure of fish populations for their effects on a generalist avian predator. Oecologia 166, 517–530 (2011).
    ADS  PubMed  Article  Google Scholar 

    26.
    Kloskowski, J. Fish stocking creates an ecological trap for an avian predator via effects on prey availability. Oikos 121, 1567–1576 (2012).
    Article  Google Scholar 

    27.
    Kloskowski, J. An avian equivalent of selective abortion: postlaying clutch reduction under resource limitation. Behav. Ecol. 30, 864–871 (2019).
    Article  Google Scholar 

    28.
    Bellebaum, J., Szostek, K. L. & Kloskowski, J. Population dynamics and survival of the red-necked grebe Podiceps grisegena: results from a long-term study in eastern Poland. J. Ornithol. 159, 631–641 (2018).
    Article  Google Scholar 

    29.
    Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1969).
    Article  Google Scholar 

    30.
    Arlt, D. & Pärt, T. Nonideal breeding habitat selection: a mismatch between preference and fitness. Ecology 88, 792–801 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Kloskowski, J., Grela, P., Krogulec, J., Gąska, M. & Tchórzewski, M. Sexing red-necked grebes Podiceps grisegena by molecular techniques and morphology. Acta Ornithol. 41, 176–180 (2006).
    Article  Google Scholar 

    32.
    Kloskowski, J. Temporal patterns of parental resource distribution in the red-necked grebe: equalizing the share of the survivors. Behaviour 138, 1355–1370 (2001).
    Article  Google Scholar 

    33.
    Haas, C. A. Effects of prior nesting success on site fidelity and breeding dispersal: an experimental approach. Auk 115, 929–936 (1998).
    Article  Google Scholar 

    34.
    Hakkarainen, H., Ilmonen, P., Koivunen, V. & Korpimäki, E. Experimental increase of predation risk induces breeding dispersal of Tengmalm’s owl. Oecologia 126, 355–359 (2001).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Schall, R. Estimation in generalized linear models with random effects. Biometrika 78, 719–727 (1991).
    MATH  Article  Google Scholar 

    36.
    Piper, W. H., Tischler, K. B. & Klich, M. Territory acquisition in loons: the importance of take-over. Anim. Behav. 59, 385–394 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Nocera, J. J., Forbes, G. J. & Giraldeau, L.-A. Inadvertent social information in breeding site selection of natal dispersing birds. Proc. R. Soc. B 273, 349–355 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Ward, M. P. Habitat selection by dispersing yellow-headed blackbirds: evidence of prospecting and the use of public information. Oecologia 145, 650–657 (2005).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Pärt, T., Arlt, D., Doligez, B., Low, M. & Qvarnström, A. Prospectors combine social and environmental information to improve habitat selection and breeding success in the subsequent year. J. Anim. Ecol. 80, 1227–1235 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Boulinier, T. & Danchin, E. The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species. Evol. Ecol. 11, 505–517 (1997).
    Article  Google Scholar 

    41.
    McNamara, J. M. & Dall, S. R. X. The evolution of unconditional strategies via the “multiplier effect”. Ecol. Lett. 14, 237–243 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Piper, W. H., Palmer, M. W., Banfield, N. & Meyer, M. W. Can settlement in natal-like habitat explain maladaptive habitat selection?. Proc. R. Soc. B 280, 20130979 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    McParland, C. E., Paszkowski, C. A. & Newbrey, J. L. Trophic relationships of breeding Red-necked Grebes (Podiceps grisegena) on wetlands with and without fish in the Aspen Parkland. Can. J. Zool. 88, 186–194 (2010).
    Article  Google Scholar 

    45.
    Mäntylä, E., Sirkiä, P. M., Klemola, T. & Laaksonen, T. An experimental test of whether pied flycatchers choose the best territory for rearing the young. Curr. Zool. 61, 604–613 (2015).
    Article  Google Scholar 

    46.
    Gilroy, J. J. & Sutherland, W. J. Beyond ecological traps: perceptual errors and undervalued resources. Trends Ecol. Evol. 22, 351–356 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Patten, M. A. & Kelly, J. F. Habitat selection and the perceptual trap. Ecol. Appl. 20, 2148–2156 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Visser, M. E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B 275, 649–659 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Nudds, R. L. & Bryant, D. M. Consequences of load carrying by birds during short flights are found to be behavioral and not energetic. Am. J. Physiol. 283, R249–R256 (2002).
    CAS  Google Scholar 

    50.
    Hutchinson, J. M. C. & Gigerenzer, G. Simple heuristics and rules of thumb: where psychologists and behavioural biologists might meet. Behav. Proc. 69, 97–124 (2005).
    Article  Google Scholar 

    51.
    Hipfner, J. Matches and mismatches: ocean climate, prey phenology and breeding success in a zooplanktivorous seabird. Mar. Ecol. Prog. Ser. 368, 295–304 (2008).
    ADS  Article  Google Scholar 

    52.
    Ponchon, A., Garnier, R., Grémillet, D. & Boulinier, T. Predicting population responses to environmental change: the importance of considering informed dispersal strategies in spatially structured population models. Divers. Distrib. 21, 88–100 (2015).
    Article  Google Scholar 

    53.
    Bocedi, G., Heinonen, J. & Travis, J. M. J. Uncertainty and the role of information acquisition in the evolution of context-dependent emigration. Am. Nat. 179, 606–620 (2012).
    PubMed  Article  Google Scholar 

    54.
    Grosbois, V. & Tavecchia, G. Modeling dispersal with capture–recapture data: disentangling decisions of leaving and settlement. Ecology 84, 1225–1236 (2003).
    Article  Google Scholar 

    55.
    Owen, M. A., Swaisgood, R. R. & Blumstein, D. T. Contextual influences on animal decision-making: significance for behavior-based wildlife conservation and management. Integr. Zool. 12, 32–48 (2017).
    PubMed  Article  Google Scholar 

    56.
    Grieco, F., van Noordwijk, A. J. & Visser, M. E. Evidence for the effect of learning on timing of reproduction in blue tits. Science 296, 136–138 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    57.
    Stodola, K. W. & Ward, M. P. The emergent properties of conspecific attraction can limit a species’ ability to track environmental change. Am. Nat. 189, 726–733 (2017).
    PubMed  Article  Google Scholar  More

  • in

    Distinct bacterial community structure and composition along different cowpea producing ecoregions in Northeastern Brazil

    1.
    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trend Ecol. Evol. 31, 440–452. https://doi.org/10.1016/j.tree.2016.02.016 (2016).
    Article  Google Scholar 
    2.
    El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Glob. Food Secur. 20, 132–144. https://doi.org/10.1016/j.gfs.2019.01.007 (2019).
    Article  Google Scholar 

    3.
    Schimel, J. Playing scales in the methane cycle: from microbial ecology to the globe. Proc. Natl. Acad. Sci. USA 101, 12400–12401. https://doi.org/10.1073/pnas.0405075101 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541. https://doi.org/10.1038/ncomms10541 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Xue, P. P., Carrillo, Y., Pino, V., Minasny, B. & McBratney, A. B. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci. Rep. 8, 11725. https://doi.org/10.1038/s41598-018-30005-8 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Araujo, A. S. F. et al. Bacterial community associated with rhizosphere of maize and cowpea in a subsequent cultivation. Appl. Soil Ecol. 143, 26–34. https://doi.org/10.1016/j.apsoil.2019.05.019 (2019).
    Article  Google Scholar 

    7.
    Mendes, L. W. et al. Using metagenomics to connect microbial community biodiversity and functions. Curr. Issues Mol. Biol. 24, 103–118. https://doi.org/10.21775/cimb.024.103 (2017).
    Article  PubMed  Google Scholar 

    8.
    Miranda, A. R. L. et al. Responses of soil bacterial community after seventh yearly applications of composted tannery sludge. Geoderma 318, 1–8. https://doi.org/10.1016/j.geoderma.2017.12.026 (2018).
    ADS  CAS  Article  Google Scholar 

    9.
    Pajares, S., Campo, J., Bohannan, B. J. M. & Etchevers, J. D. Environmental controls on soil microbial communities in a seasonally dry tropical forest. Appl. Environ. Microbiol. 84, e00342-e418. https://doi.org/10.1128/AEM.00342-18 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Dequiedt, S. et al. Biogeographical patterns of soil bacterial communities. Environ. Microbiol. Rep. 1, 251–255. https://doi.org/10.1111/j.1758-2229.2009.00040.x (2009).
    Article  PubMed  Google Scholar 

    11.
    Barnett, S. E., Youngblut, N. D. & Buckley, D. H. Soil characteristics and land-use drive bacterial community assembly patterns. FEMS Microbiol. Ecol. 96, fiz194. https://doi.org/10.1093/femsec/fiz194 (2020).
    Article  PubMed  Google Scholar 

    12.
    Araújo Filho, J. C. et al. Levantamento de reconhecimento de baixa e média intensidade dos solos do Estado de Pernambuco. Boletim de Pesquisa N 11 (2000).

    13.
    Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 22, 711–728 (2013).
    ADS  Article  Google Scholar 

    14.
    Lopes, M. B. S., Tavares, T. C. D. O., Veloso, D. A., Silva, N. C. & Fidelis, R. R. Cowpea bean production under water stress using hydrogels. Pesq. Agropec. Trop. 47, 87–92. https://doi.org/10.1590/1983-40632016v4743398 (2017).
    Article  Google Scholar 

    15.
    Bezerra, A. A. C. et al. Morfologia e produção de grãos em linhagens modernas de feijão-caupi submetidas a diferentes densidades populacionais Morphology and grain yield in modern lines of cowpea under different planting densities. Biologia (Bratisl) 8, 85–93 (2008).
    Google Scholar 

    16.
    Cardoso, E. J. B. N. et al. Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?. Sci. Agric. 70, 274–289 (2013).
    Article  Google Scholar 

    17.
    Pereira, A. P. A. et al. Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Front. Microbiol. 9, 1–13 (2018).
    Article  Google Scholar 

    18.
    Bockheim, J. G. & Hartemink, A. E. Alfisols BT. The Soils of Wisconsin. in (eds. Bockheim, J. G. & Hartemink, A. E.) 129–147 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-52144-2_8

    19.
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630. https://doi.org/10.1038/ncomms13630 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Zheng, Q. et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 136, 107521. https://doi.org/10.1016/j.soilbio.2019.107521 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M. & Raaijmakers, J. M. The wild side of plant microbiomes. Microbiome 6, 143. https://doi.org/10.1186/s40168-018-0519-z (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Hartman, K., van der Heijden, M. G. A., Roussely-Provent, V., Walser, J. C. & Schlaeppi, K. Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5, 2. https://doi.org/10.1186/s40168-016-0220-z (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Kolton, M. et al. Draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. Cv. Maccabi). J. Bacteriol. 194, 5462–5463. https://doi.org/10.1128/JB.01249-12 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Schaefer, C. E. G. R., Fabris, J. D. & Ker, J. C. Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Miner. 43, 137–154. https://doi.org/10.1180/claymin.2008.043.1.11 (2008).
    ADS  CAS  Article  Google Scholar 

    25.
    Mendes, L. W., de Lima Brossi, M. J., Kuramae, E. E. & Tsai, S. M. Land-use system shapes soil bacterial communities in Southeastern Amazon region. Appl. Soil Ecol. 95, 151–160. https://doi.org/10.1016/j.apsoil.2015.06.005 (2015).
    Article  Google Scholar 

    26.
    Gyaneshwar, P., Naresh Kumar, G., Parekh, L. J. & Poole, P. S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245, 83–93 (2002).
    CAS  Article  Google Scholar 

    27.
    Germano, M. G. et al. Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia. Pesq. Agropec. Bras. 47, 654–664. https://doi.org/10.1590/S0100-204X2012000500004 (2012).
    Article  Google Scholar 

    28.
    Mohammadipanah, F. & Wink, J. Actinobacteria from arid and desert habitats: diversity and biological activity. Front. Microbiol. 6, 1541. https://doi.org/10.3389/fmicb.2015.01541 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Andreote, F. D. & Pereira e Silva, M. D. C. Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr. Opin. Microbiol. 37, 29–34 (2017).
    Article  Google Scholar 

    30.
    Rocha, S. M. B. et al. Nodule microbiome from cowpea and lima bean grown in composted tannery sludge-treated soil. Appl. Soil Ecol. 151, 103542 (2020).
    Article  Google Scholar 

    31.
    Soltani, A.-A. et al. Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J. Agric. Sci. 2, 106–115. https://doi.org/10.5539/jas.v2n4p106 (2010).
    Article  Google Scholar 

    32.
    Liew, K. J. et al. Complete genome sequence of Rhodothermaceae bacterium RA with cellulolytic and xylanolytic activities. 3 Biotech 8, 376. https://doi.org/10.1007/s13205-018-1391-z (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Navarrete, A. A. et al. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Anto. van Leeuwe. 108, 741–752. https://doi.org/10.1007/s10482-015-0530-3 (2015).
    CAS  Article  Google Scholar 

    34.
    Buckley, D. H. & Schmidt, T. M. Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiol. Ecol. 35, 105–112. https://doi.org/10.1016/S0168-6496(00)00122-7 (2001).
    CAS  Article  PubMed  Google Scholar 

    35.
    Kroeger, M. E. et al. New biological insights into how deforestation in amazonia affects soil microbial communities using metagenomics and metagenome-assembled genomes. Front. Microbiol. 9, 1635. https://doi.org/10.3389/fmicb.2018.01635 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Maron, P.-A. et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 84, 1–13 (2018).
    Article  Google Scholar 

    37.
    Székely, A. J. & Langenheder, S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol. Ecol. 87, 102–112 (2014).
    Article  Google Scholar 

    38.
    López-Mondéjar, R. et al. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. 12, 1768–1778 (2018).
    Article  Google Scholar 

    39.
    Pasternak, Z. et al. Spatial and temporal biogeography of soil microbial communities in Arid and Semiarid regions. PLoS ONE 8, e69705. https://doi.org/10.1371/journal.pone.0069705 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Pandit, S. N., Kolasa, J. & Cottenie, K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262. https://doi.org/10.1890/08-0851.1 (2009).
    Article  PubMed  Google Scholar 

    41.
    Yang, W. et al. Response of fungal communities and co-occurrence network patterns to compost amendment in black soil of northeast China. Front. Microbiol. 10, 1–11 (2019).
    Article  Google Scholar 

    42.
    van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378. https://doi.org/10.1371/journal.pbio.1002378 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Saboya, R. D. C. C. et al. Resposta do feijão-caupi a estirpes fixadoras de nitrogênio em Gurupi-TO. J. Biotechnol. Biodivers. 4, 40–48. https://doi.org/10.20873/jbb.uft.cemaf.v4n1.saboya (2013).
    Article  Google Scholar 

    44.
    IBGE. Levantamento Sistemático da Produção Agrícola Estatística da Produção Agrícola. (2019).

    45.
    Tedesco, M., Gianello, C. & Bissani, C. Análises de solo, plantas e outros materiais (UFRGS, Porto Alegre, 1995).
    Google Scholar 

    46.
    Yeomans, J. C. & Bremner, J. M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 19, 1467–1476. https://doi.org/10.1080/00103628809368027 (1988).
    CAS  Article  Google Scholar 

    47.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    ADS  CAS  Article  Google Scholar 

    48.
    Illumina. MiSeq System. Denature and Dilute Libraries Guide. Document 15039740 (2019).

    49.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620. https://doi.org/10.1093/bioinformatics/btt593 (2014).
    CAS  Article  Google Scholar 

    50.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods https://doi.org/10.1038/nmeth.3869 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).
    Article  Google Scholar 

    52.
    Leps, J. & Smilauer, P. Multivariate Analysis of Ecological Data usingCANOCO This. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki https://doi.org/10.1017/CBO9780511615146 (2003).
    Article  MATH  Google Scholar 

    53.
    Anderson, M. J. A new method for non parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    54.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).
    Google Scholar 

    55.
    Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).
    CAS  Article  Google Scholar 

    56.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).
    MathSciNet  Article  MATH  Google Scholar 

    57.
    R Core Team. R Development Core Team. R: A Language and Environment for Statistical Computing 55, 275–286 (2016).

    58.
    Chazdon, R. L. et al. A novel statistical method for classifying habitat generalists and specialists. Ecology 92, 1332–1343. https://doi.org/10.1890/10-1345.1 (2011).
    Article  PubMed  Google Scholar 

    59.
    Pedrinho, A., Mendes, L. W., Merloti, L. F., Andreote, F. D. & Tsai, S. M. The natural recovery of soil microbial community and nitrogen functions after pasture abandonment in the Amazon region. FEMS Microbiol. Ecol. 96, fiaa149. https://doi.org/10.1093/femsec/fiaa149 (2020).
    Article  PubMed  Google Scholar 

    60.
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, 1–11 (2012).
    Article  Google Scholar 

    61.
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. BT – International AAAI Conference on Weblogs and Social. 361–362 (2009). More

  • in

    An open access dataset for developing automated detectors of Antarctic baleen whale sounds and performance evaluation of two commonly used detectors

    1.
    Mellinger, D. K., Stafford, K. M., Moore, S. E., Dziak, R. P. & Matsumoto, H. An overview of fixed passive acoustic observation methods for cetaceans. Oceanography 20, 36–45 (2007).
    Article  Google Scholar 
    2.
    Van Parijs, S. et al. Management and research applications of real-time and archival passive acoustic sensors over varying temporal and spatial scales. Mar. Ecol. Prog. Ser. 395, 21–36 (2009).
    ADS  Article  Google Scholar 

    3.
    Sousa-Lima, R. S., Norris, T. F., Oswald, J. N. & Fernandes, D. P. A review and inventory of fixed autonomous recorders for passive acoustic monitoring of marine mammals. Aquat. Mamm. 39, (2013).

    4.
    Van Opzeeland, I. et al. Towards collective circum-Antarctic passive acoustic monitoring: The Southern Ocean Hydrophone Network (SOHN). Polarforschung 83, 47–61 (2013).
    Google Scholar 

    5.
    Branch, T. A., Matsuoka, K. & Miyashita, T. Evidence for increases in Antarctic blue whales based on Bayesian modelling. Mar. Mammal Sci. 20, 726–754 (2004).
    Article  Google Scholar 

    6.
    Branch, T. A. Abundance of Antarctic blue whales south of 60 S from three complete circumpolar sets of surveys. J. Cetacean Res. Manag. 9, 253–262 (2007).
    Google Scholar 

    7.
    Rocha, R. C. Jr., Clapham, P. J. & Ivashchenko, Y. Emptying the oceans: A summary of industrial whaling catches in the 20th century. Mar. Fish. Rev. 76, 37–48 (2015).
    Article  Google Scholar 

    8.
    Branch, T. A. & Butterworth, D. S. Estimates of abundance south of 60° S for cetacean species sighted frequently on the 1978/79 to 1997/98 IWC/IDCR-SOWER sighting surveys. J. Cetacean Res. Manag. 3, 251–270 (2001).
    Google Scholar 

    9.
    Cooke, J. G. Balaenoptera musculus ssp. intermedia. IUCN Red List Threat. Species e.T41713A50226962 (2018). https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T41713A50226962.en.

    10.
    Sears, R., Ramp, C., Douglas, A. & Calambokidis, J. Reproductive parameters of eastern North Pacific blue whales Balaenoptera musculus. Endanger. Species Res. 22, 23–31 (2013).
    Article  Google Scholar 

    11.
    Rankin, S., Ljungblad, D. K., Clark, C. W. & Kato, H. Vocalisations of Antarctic blue whales, Balaenoptera musculus intermedia, recorded during the 2001/2002 and 2002/2003 IWC/SOWER circumpolar cruises, Area V Antarctica. J. Cetacean Res. Manag. 7, 13–20 (2005).
    Google Scholar 

    12.
    Watkins, W. A., Tyack, P., Moore, K. E. & Bird, J. E. The 20-Hz signals of finback whales (Balaenoptera physalus). J. Acoust. Soc. Am. 82, 1901–1912 (1987).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    McDonald, M. A., Mesnick, S. L. & Hildebrand, J. A. Biogeographic characterisation of blue whale song worldwide: using song to identify populations. J. Cetacean Res. Manag. 8, 55–65 (2006).
    Google Scholar 

    14.
    Gavrilov, A. N., McCauley, R. D. & Gedamke, J. Steady inter and intra-annual decrease in the vocalization frequency of Antarctic blue whales. J. Acoust. Soc. Am. 131, 4476–4480 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Gedamke, J. Geographic variation in Southern Ocean fin whale song. Submitt. to Sci. Comm. Int. Whal. Comm. SC/61/SH16, 1–8 (2009).

    16.
    Shabangu, F. W., Yemane, D., Stafford, K. M., Ensor, P. & Findlay, K. P. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales. PLoS ONE 12, e0172705 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Širović, A. et al. Seasonality of blue and fin whale calls and the influence of sea ice in the Western Antarctic Peninsula. Deep Sea Res. Part II Top. Stud. Oceanogr. 51, 2327–2344 (2004).

    18.
    Širović, A., Hildebrand, J. A., Wiggins, S. M. & Thiele, D. Blue and fin whale acoustic presence around Antarctica during 2003 and 2004. Mar. Mammal Sci. 25, 125–136 (2009).
    Article  Google Scholar 

    19.
    Thomisch, K. et al. Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea. Endanger. Species Res. 30, 239–253 (2016).
    Article  Google Scholar 

    20.
    Tripovich, J. S. et al. Temporal segregation of the Australian and Antarctic blue whale call types (Balaenoptera musculus spp.). J. Mammal. 1–8 (2015). https://doi.org/10.1093/jmammal/gyv065.

    21.
    Dréo, R., Bouffaut, L., Leroy, E., Barruol, G. & Samaran, F. Baleen whale distribution and seasonal occurrence revealed by an ocean bottom seismometer network in the Western Indian Ocean. Deep. Res. Part II Top. Stud. Oceanogr. 161, 132–144 (2019).

    22.
    Bouffaut, L., Madhusudhana, S., Labat, V., Boudraa, A.-O. & Klinck, H. A performance comparison of tonal detectors for low-frequency vocalizations of Antarctic blue whales. J. Acoust. Soc. Am. 147, 260–266 (2020).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Bouffaut, L., Dréo, R., Labat, V., Boudraa, A.-O. & Barruol, G. Passive stochastic matched filter for Antarctic blue whale call detection. J. Acoust. Soc. Am. 144, 955–965 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Gedamke, J. & Robinson, S. M. Acoustic survey for marine mammal occurrence and distribution off East Antarctica (30–80°E) in January-February 2006. Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 968–981 (2010).

    25.
    Gedamke, J., Gales, N., Hildebrand, J. A. & Wiggins, S. Seasonal occurrence of low frequency whale vocalisations across eastern Antarctic and southern Australian waters, February 2004 to February 2007. Rep. SC/59/SH5 Submitt. to Sci. Comm. Int. Whal. Comm. Anchorage, Alaska SC/59, 1–11 (2007).

    26.
    Leroy, E. C., Samaran, F., Bonnel, J. & Royer, J. Seasonal and diel vocalization patterns of Antarctic blue whale (Balaenoptera musculus intermedia) in the Southern Indian Ocean: a multi-year and multi-site study. PLoS ONE 11, e0163587 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Miller, B. S. et al. Validating the reliability of passive acoustic localisation: a novel method for encountering rare and remote Antarctic blue whales. Endanger. Species Res. 26, 257–269 (2015).
    Article  Google Scholar 

    28.
    Miller, B. S. et al. Software for real-time localization of baleen whale calls using directional sonobuoys: A case study on Antarctic blue whales. J. Acoust. Soc. Am. 139, EL83–EL89 (2016).

    29.
    Miller, B. S. et al. Circumpolar acoustic mapping of endangered Southern Ocean whales: Voyage report and preliminary results for the 2016/17 Antarctic Circumnavigation Expedition. Pap. SC/67a/SH03 Submitt. to Sci. Comm. 67a Int. Whal. Commision, Bled Slov. 18 (2017).

    30.
    Samaran, F. et al. Seasonal and geographic variation of Southern blue whale subspecies in the Indian Ocean. PLoS ONE 8, e71561 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Samaran, F., Adam, O. & Guinet, C. Discovery of a mid-latitude sympatric area for two Southern Hemisphere blue whale subspecies. Endanger. Species Res. 12, 157–165 (2010).
    Article  Google Scholar 

    32.
    Stafford, K. M., Fox, C. G. & Clark, D. S. Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. J. Acoust. Soc. Am. 104, 3616–3625 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Weirathmueller, M. J. et al. Spatial and temporal trends in fin whale vocalizations recorded in the NE Pacific Ocean between 2003–2013. PLoS ONE 12, 1–24 (2017).
    Article  CAS  Google Scholar 

    34.
    Harris, D., Matias, L., Thomas, L., Harwood, J. & Geissler, W. H. Applying distance sampling to fin whale calls recorded by single seismic instruments in the northeast Atlantic. J. Acoust. Soc. Am. 134, 3522–3535 (2013).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Morano, J. L. et al. Seasonal and geographical patterns of fin whale song in the western North Atlantic Ocean. J. Acoust. Soc. Am. 132, 1207–1212 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Socheleau, F.-X. et al. Automated detection of Antarctic blue whale calls. J. Acoust. Soc. Am. 138, 3105–3117 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Mellinger, D. K. & Clark, C. W. Recognizing transient low-frequency whale sounds by spectrogram correlation. J. Acoust. Soc. Am. 107, 3518–3529 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Mellinger, D. K. Ishmael 1.0 User’s Guide. (2001).

    39.
    Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localisation of cetaceans. Proc. Inst. Acoust. 30, 54–62 (2008).
    Google Scholar 

    40.
    Figueroa, H. & Robbins, M. XBAT: an open-source extensible platform for bioacoustic research and monitoring. Comput. bioacoustics Assess. Biodivers. 143–155 (2008).

    41.
    Balcazar, N. E. et al. Calls reveal population structure of blue whales across the southeast Indian Ocean and southwest Pacific Ocean. J. Mammal. gyv126 (2015). https://doi.org/10.1093/jmammal/gyv126.

    42.
    Buchan, S. J., Hucke-Gaete, R., Stafford, K. M. & Clark, C. W. Occasional acoustic presence of Antarctic blue whales on a feeding ground in southern Chile. Mar. Mammal Sci. 34, 220–228 (2017).
    Article  Google Scholar 

    43.
    Harris, D. V., Miksis-Olds, J. L., Vernon, J. A. & Thomas, L. Fin whale density and distribution estimation using acoustic bearings derived from sparse arrays. J. Acoust. Soc. Am. 143, (2018).

    44.
    Aulich, M. G., McCauley, R. D., Saunders, B. J. & Parsons, M. J. G. Fin whale (Balaenoptera physalus) migration in Australian waters using passive acoustic monitoring. Sci. Rep. 9, 1–12 (2019).
    CAS  Article  Google Scholar 

    45.
    Balcazar, N. E. et al. Using calls as an indicator for Antarctic blue whale occurrence and distribution across the southwest Pacific and southeast Indian Oceans. Mar. Mammal Sci. 33, 172–186 (2017).
    Article  Google Scholar 

    46.
    Helble, T. A. et al. Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones. J. Acoust. Soc. Am. 134, 2556–2570 (2013).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    McDonald, M. A., Hildebrand, J. A. & Mesnick, S. Worldwide decline in tonal frequencies of blue whale songs. Endanger. Species Res. 9, 13–21 (2009).
    Article  Google Scholar 

    48.
    Leroy, E. C., Royer, J.-Y., Bonnel, J. & Samaran, F. Long-term and seasonal vhanges of large whale call frequency in the Southern Indian Ocean. J. Geophys. Res. Ocean. 1–13 (2018). https://doi.org/10.1029/2018JC014352.

    49.
    Gavrilov, A. N., Mccauley, R. D., Salgado-kent, C., Tripovich, J. & Burton, C. L. K. Vocal characteristics of pygmy blue whales and their change over time. J. Acoust. Soc. Am. 130, 3651–3660 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Miller, B. S., Leaper, R., Calderan, S. & Gedamke, J. Red shift blue shift: Doppler shifts and seasonal variation in the tonality of Antarctic blue whale song. PLoS ONE 9, e107740 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Širović, A., Oleson, E. M., Buccowich, J., Rice, A. & Bayless, A. R. Fin whale song variability in southern California and the Gulf of California. Sci. Rep. 7, 1–11 (2017).
    Article  CAS  Google Scholar 

    52.
    Nieukirk, S. L. et al. Sounds from airguns and fin whales recorded in the mid-Atlantic Ocean, 1999–2009. J. Acoust. Soc. Am. 131, 1102–1112 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Širović, A. Variability in the performance of the spectrogram correlation detector for North-east Pacific blue whale calls. Bioacoustics 25, 145–160 (2016).
    Article  Google Scholar 

    54.
    Roch, M. A., Stinner-Sloan, J., Baumann-Pickering, S. & Wiggins, S. M. Compensating for the effects of site and equipment variation on delphinid species identification from their echolocation clicks. J. Acoust. Soc. Am. 137, 22–29 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Thomisch, K. et al. Effects of subsampling of passive acoustic recordings on acoustic metrics. J. Acoust. Soc. Am. 138, 267–278 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Pawlowicz, R. M_Map: A mapping package for Matlab. Version 1.4k (2019).

    57.
    Center for conservation bioacoustics. raven pro: interactive sound analysis software. (2014).

    58.
    Širović, A., Williams, L. N., Kerosky, S. M., Wiggins, S. M. & Hildebrand, J. A. Temporal separation of two fin whale call types across the eastern North Pacific. Mar. Biol. 160, 47–57 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Ou, H., Au, W. W. L., Oleson, E. M. & Rankin, S. Discrimination of frequency-modulated Baleen whale downsweep calls with overlapping frequencies. 137, 1 (2016).

    60.
    Lurton, X. Underwater acoustic wave propagation. in An Introduction to Underwater Acoustics Principles and Applications 13–74 (Springer-Verlag, 2010).

    61.
    Dawe, R. L. Detection Threshold Modelling Explained. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA335337 (1997).

    62.
    Davis, J. & Goadrich, M. The relationship between precision-recall and ROC curves. Proc. 23rd Int. Conf. Mach. Learn.—ICML’06 233–240 (2006). https://doi.org/10.1145/1143844.1143874.

    63.
    Wood, S. N. Generalized Additive Models. Generalized Additive Models: An Introduction with R, Second Edition (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.

    64.
    R Core Team. R: A language and environment for statistical computing. (2019).

    65.
    Leroy, E. C., Thomisch, K., Royer, J., Boebel, O. & Van Opzeeland, I. On the reliability of acoustic annotations and automatic detections of Antarctic blue whale calls under different acoustic conditions. J. Acoust. Soc. Am. 144, 740–754 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Tsang-Hin-Sun, E., Royer, J.-Y. & Leroy, E. C. Low-frequency sound level in the Southern Indian Ocean. J. Acoust. Soc. Am. 138, 3439–3446 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Samaran, F., Adam, O. & Guinet, C. Detection range modeling of blue whale calls in Southwestern Indian Ocean. Appl. Acoust. 71, 1099–1106 (2010).
    Article  Google Scholar 

    68.
    Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Baumgartner, M. F. & Mussoline, S. E. A generalized baleen whale call detection and classification system. J. Acoust. Soc. Am. 129, 2889–2902 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Mellinger, D. & Bradbury, J. Acoustic measurement of marine mammal sounds in noisy environments. in Proc. Second International Conference on Underwater Acoustic Measurements Technologies and Results 25–29 (2007).

    71.
    Urazghildiiev, I. R. & Clark, C. W. Acoustic detection of North Atlantic right whale contact calls using the generalized likelihood ratio test. J. Acoust. Soc. Am. 120, 1956–1963 (2006).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Dugan, P. et al. Using high performance computing to explore large complex bioacoustic soundscapes: case study for right whale acoustics. Procedia Comput. Sci. 20, 156–162 (2013).
    Article  Google Scholar 

    73.
    Shiu, Y. et al. Use of deep neural networks for automated detection of marine mammal species. 1–29 (2020). https://doi.org/10.1038/s41598-020-57549-y.

    74.
    Miller, B. S. et al. An annotated library of underwater acoustic recordings for testing and training automated algorithms for detecting Antarctic blue and fin whale sounds. Dataset hosted by the Australian Antarctic Data Centre http://data.aad.gov.au/metadata/records/AcousticTrends_BlueFinLibrary (2020) doi:https://doi.org/10.26179/5e6056035c01b. More