More stories

  • in

    Local knowledge as a tool for prospecting wild food plants: experiences in northeastern Brazil

    1.
    Kalle, R. et al. Gaining momentum: Popularization of Epilobium angustifolium as food and recreational tea on the Eastern edge of Europe. Appetite 150, 104638 (2020).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    FAO. Voluntary Guidelines for the Conservation and Sustainable Use of Crop Wild Relatives and Wild Food Plants. (Food and Agriculture Organization of the United Nations, 2017).

    3.
    Gold, K. & McBurney. Conservation of plant diversity for sustainable diets. in Sustainable diets and biodiversity: directions ad solutions for policy, research and action (eds. Burlingame, B. & Dernini, S.) 30–36 (FAO Headquarters, 2010).

    4.
    Soares, W. L. & de Porto, M. F. Estimating the social cost of pesticide use: An assessment from acute poisoning in Brazil. Ecol. Econ. 68, 2721–2728 (2009).
    Article  Google Scholar 

    5.
    Oliveira, B. P. T. & Ranieri, G. R. Narrativa midiática e difusão sobre Plantas Alimentícias Não Convencionais (PANC): Contribuições para avançar no debate. Cad. Agroecol. 13, 7 (2017).
    Google Scholar 

    6.
    de Assis, J. G. A., Galvão, R. F. M., de Castro, I. R. & de Melo, J. F. Plantas Alimentícias Não Convencionais na Bahia: uma rede em consolidação. Agriculturas 13, 16–20 (2016).
    Google Scholar 

    7.
    Kinupp, V. F. & Lorenzi, H. Plantas Alimentícias não Convencionais no Brasil: Guia de identificação, Aspectos Nutricionais e Receitas Ilustradas. (Instituto Plantarum, 2014).

    8.
    Jacob, M. C. M., de Medeiros, M. F. A. & Albuquerque, U. P. Biodiverse food plants in the semiarid region of Brazil have unknown potential: A systematic review. PLoS ONE 15, e0230936 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Pieroni, A. Evaluation of the cultural significance of wild food botanicals traditionally consumed in Northwestern tuscany, Italy. J. Ethnobiol. 21, 89–104 (2001).
    Google Scholar 

    10.
    Jacob, M. C. M. & Albuquerque, U. P. Biodiverse food plants: Which gaps do we need to address to promote sustainable diets?. Ethnobiol. Conserv. 9, 1–6 (2020).
    Google Scholar 

    11.
    Berkes, F., Colding, J. & Folke, C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol. Appl. 10, 1251–1262 (2000).
    Article  Google Scholar 

    12.
    Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton University Press, Princeton, 1981).
    Google Scholar 

    13.
    Reyes-García, V. et al. Cultural transmission of ethnobotanical knowledge and skills: An empirical analysis from an Amerindian society. Evol. Hum. Behav. 30, 274–285 (2009).
    Article  Google Scholar 

    14.
    Ladio, A. H. & Lozada, M. Patterns of use and knowledge of wild edible plants in distinct ecological environments: A case study of a Mapuche community from northwestern Patagonia. Biodivers. Conserv. 13, 1153–1173 (2004).
    Article  Google Scholar 

    15.
    Menendez-baceta, G., Pardo-de-santayana, M., Aceituno-mata, L. & Reyes-garcía, V. Trends in wild food plants uses in Gorbeialdea (Basque Country). Appetite 112, 9–16 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Ayantunde, A. A., Briejer, M., Hiernaux, P., Udo, H. M. J. & Tabo, R. Botanical knowledge and its differentiation by age, gender and ethnicity in Southwestern Niger. Hum. Ecol. 36, 881–889 (2008).
    Article  Google Scholar 

    17.
    de Brito, C. C. et al. The use of different indicators for interpreting the local knowledge loss on medical plants. Braz. J. Pharmacogn. 27, 2 (2017).
    Article  Google Scholar 

    18.
    Ghorbani, A., Langenberger, G. & Sauerborn, J. A comparison of the wild food plant use knowledge of ethnic minorities in Naban River Watershed National Nature Reserve, Yunnan SW China. J. Ethnobiol. Ethnomed. 8, 17 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Kang, Y., Łuczaj, Ł, Kang, J. & Zhang, S. Wild food plants and wild edible fungi in two valleys of the Qinling Mountains (Shaanxi, central China). J. Ethnobiol. Ethnomed. 9, 26 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Nascimento, V. T., Lucena, R. F., Maciel, M. I. & Albuquerque, U. P. Knowledge and use of wild food plants in areas of dry seasonal forests in Brazil. Ecol. Food Nutr. 52, 317–343 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Torres-Avilez, W., Medeiros, P. M. D. & Albuquerque, U. P. Effect of gender on the knowledge of medicinal plants: Systematic review and meta-analysis. Evid.-Based Complement. Altern. Med. 2016, 6592363 (2016).
    Article  Google Scholar 

    22.
    Somnasang, P. & Moreno-Black, G. Knowing, gathering and eating: Knowledge and attitudes about wild food in an Isan village in Northeastern Thailand. J. Ethnobiol. 20, 197–216 (2000).
    Google Scholar 

    23.
    Cruz, M. P., Medeiros, P. M., Combariza, I. S., Peroni, N. & Albuquerque, U. P. ‘I eat the manofê so it is not forgotten’: Local perceptions and consumption of native wild edible plants from seasonal dry forests in Brazil. J. Ethnobiol. Ethnomed. 10, 45 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Gomes, D. L., dos Ferreira, R. P. S., da Santos, É. M. C., da Silva, R. R. V. & de Medeiros, P. M. Local criteria for the selection of wild food plants for consumption and sale in Alagoas, Brazil. Ethnobiol. Conserv. 9, 10 (2020).
    Google Scholar 

    25.
    Serrasolses, G. et al. A matter of taste: Local explanations for the consumption of wild food plants in the Catalan pyrenees and the Balearic Islands. Econ. Bot. 70, 176–189 (2016).
    Article  Google Scholar 

    26.
    Balemie, K. & Kebebew, F. Ethnobotanical study of wild edible plants in Derashe and Kucha Districts South Ethiopia. J. Ethnobiol. Ethnomed. 2, 53 (2014).
    Article  Google Scholar 

    27.
    Costa, J. M. S., Melo, Y. N. C. da S. & Navas, R. Agricultura familiar e agroecologia: diversidade na produção do assentamento Dom Helder Câmara. in Gestão dos ambientes nas práticas socioeconômicas (eds. Selva, V. S. F. et al.) 31–37 (Itacaiúnas, 2019).

    28.
    Cavalcanti, B. C., Rocha, R. & Barros, D. A. Desiring the city—the urban imaginary in rural collective settlements in a Brazilian submontane Atlantic forest reserve. Horizontes Antropológicos 3, 217–235 (2007).
    Google Scholar 

    29.
    Lopes, T. V., Cruz, R. R. & Silva, R. J. N. da. Produção agrícola em um assentamento de reforma agrária da zona da mata alagoana: uma análise do uso de agrotóxicos e a alternativa orgânica. in Gestão dos ambientes nas práticas socioeconômicas (eds. Selva, V. S. F. et al.) 88–94 (Itacaiúnas, 2019).

    30.
    Oliveira, J. R. P. M. & Pôrto, K. C. Composição, riqueza e padrões de distribuição das hepáticas (Marchantiophyta) epífitas da Estação Ecológica Murici, AL Brasil. Rev. Bras. Biociências 5, 1041–1043 (2007).
    Google Scholar 

    31.
    IBGE. Manual Técnico da Vegetação Brasileira. (1992).

    32.
    de Campos, L. Z., Albuquerque, U. P., Peroni, N. & Araújo, E. L. Do socioeconomic characteristics explain the knowledge and use of native food plants in semiarid environments in Northeastern Brazil?. J. Arid Environ. 115, 53–61 (2015).
    ADS  Article  Google Scholar 

    33.
    Nascimento, V. T., Pereira, H. C., Silva, A. S., Nunes, A. T. & Medeiros, P. M. Plantas alimentícias espontâneas conhecidas pelos moradores do Vau da Boa Esperança, município de Barreiras, oeste da Bahia, nordeste do Brasil. Ouricuri 5, 86–109 (2015).
    Google Scholar 

    34.
    Bhattarai, S., Chaudhary, R. P. & Taylor, R. S. L. Wild edible plants used by the people of Manang district, central Nepal wild edible. Ecol. Food Nutr. 48, 1–20 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Ladio, A. H. & Lozada, M. Edible wild plant use in a Mapuche community of northwestern Patagonia. Hum. Ecol. 28, 53–71 (2000).
    Article  Google Scholar 

    36.
    Sansanelli, S. & Tassoni, A. Wild food plants traditionally consumed in the area of Bologna (Emilia Romagna region, Italy ). J. Ethnobiol. Ethnomed. 10, 69 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Sousa, D. C. P., Soldati, G. T., Monteiro, J. M., De Sousa Araújo, T. A. & Albuquerque, U. P. Information retrieval during free listing is biased by memory: Evidence from medicinal plants. PLoS ONE 11, e0165838 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Tabuti, J. R. S., Dhillion, S. S. & Lye, K. A. The status of wild food plants in Bulamogi County Uganda. Int. J. Food Sci. Nutr. 55, 485–498 (2004).
    PubMed  Article  CAS  Google Scholar 

    39.
    Hadjichambis, A. C. H. et al. Wild and semi-domesticated food plant consumption in seven circum-Mediterranean areas. Int. J. Food Sci. Nutr. 59, 383–414 (2008).
    PubMed  Article  Google Scholar 

    40.
    Pieroni, A. Gathered wild food plants in the upper valley of the Serchio River (Garfagnana) Central Italy. Econ. Bot. 53, 327–341 (1999).
    Article  Google Scholar 

    41.
    Thakur, D., Sharma, A. & Uniyal, S. K. Why they eat, what they eat: Patterns of wild edible plants consumption in a tribal area of Western Himalaya. J. Ethnobiol. Ethnomed. 13, 70 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Cruz-garcia, G. S. & Price, L. L. Ethnobotanical investigation of ‘wild’ food plants used by rice farmers in Kalasin Northeast Thailand. J. Ethnobiol. Ethnomed. 7, 33 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Ogle, B. M. & Grivetti, L. E. Legacy of the chameleon: Edible wild plants in the kingdom of Swaziland, southern Africa. A cultural, ecological, nutritional study. Part iv—nutritional analysis and conclusions. Ecol. Food Nutr. 17, 41–64 (1985).
    Article  Google Scholar 

    44.
    Price, L. L. Wild plant food in agricultural environments: A study of occurrence, management, and gathering rights in Northeast Thailand. Hum. Organ. 56, 2019–2221 (1997).
    Article  Google Scholar 

    45.
    Ribeiro, J. P. O. et al. Can ecological apparency explain the use of plant species in the semi-arid depression of Northeastern Brazil?. Acta Bot. Brasilica 28, 476–483 (2014).
    Article  Google Scholar 

    46.
    Soldati, G. T., Medeiros, P. M., Duque-Brasil, R., Coelho, F. M. G. & Albuquerque, U. P. How do people select plants for use? Matching the ecological apparency hypothesis with optimal foraging theory. Environ. Dev. Sustain. 19, 2143–2161 (2017).
    Article  Google Scholar 

    47.
    Bezerra, J. E. F., Lederman, I. E., Junior, J. F. da S. & Proença, C. E. B. Araçá. in Frutas Nativas da Região Centro-Oste do Brasil (eds. Vieira, R. F., Costa, T. da S. A., Silva, D. B. da, Ferreira, F. R. & Sano, S. M.) 42–62 (Embrapa Recursos Genéticos e Biotecnologia, 2006). doi:https://doi.org/10.13140/2.1.2141.1206.

    48.
    Peralta-Bohórquezo, A. F. P., Parada, F., Quijano, C. E. & Pino, J. A. Analysis of volatile compounds of sour guava (psidium guineense swartz) fruit. J. Essent. Oil Res. 22, 493–498 (2010).
    Article  Google Scholar 

    49.
    Damiani, C. et al. Characterization of fruits from the savanna: Araça (Psidium guinnensis Sw.) and Marolo (Annona crassiflora Mart.). Cienc. e Tecnol. Aliment. 31, 723–729 (2011).
    Article  Google Scholar 

    50.
    Schmeda-Hirschmann, G., Feresin, G., Tapia, A., Hilgert, N. & Theoduloz, C. Proximate composition and free radical scavenging activity of edible fruits from the Argentinian Yungas. J. Sci. Food Agric. 85, 1357–1364 (2005).
    Article  CAS  Google Scholar 

    51.
    González, A., Ramírez, M. & Sánchez, P. N. Estudio fitoquímico y actividad antibacterial de Psidium guineense Sw (choba) frente a Streptococcus mutans, agente causal de caries dentales. Rev. Cuba. Plantas Med. 10, 11 (2005).
    Google Scholar 

    52.
    Santos, M. A. C., Queiróz, M. A., Bispo, J. S. & Dantas, B. F. Seed germination of Brazilian guava (Psidium guineense Swartz). J. Seed Sci. 37, 214–221 (2015).
    Article  Google Scholar 

    53.
    Keeler, C. Genipa Americana in native tropical medicine. Dermatol. Trop. Ecol. Geogr. 3, 104–107 (1964).
    Google Scholar 

    54.
    Figueiredo, R. W., Maia, G. A., Holanda, L. F. F. & Monteiro, J. C. F. Características físicas e químicas do jenipapo. Pesqui. Agropecuária Bras. 21, 421–428 (1986).
    Google Scholar 

    55.
    Conceição, A. O., Rossi, M. H., Oliveira, F. F., Takser, L. & Lafond, J. Genipa americana (Rubiaceae) fruit extract affects mitogen-activated protein kinase cell pathways in human trophoblast-derived bewo cells: Implications for placental development. J. Med. Food 14, 483–494 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    56.
    Hamacek, F. R., Moreira, A. V. B., Martino, H. S. D., Ribeiro, S. M. R. & Pinheiro-Santana, H. M. Valor nutricional, caracterização Física e físico-química de jenipapo (Genipa Americana L.) do cerrado de Minas Gerais. Aliment. e Nutr. 24, 73–77 (2013).
    Google Scholar 

    57.
    Omena, C. M. B. et al. Antioxidant, anti-acetylcholinesterase and cytotoxic activities of ethanol extracts of peel, pulp and seeds of exotic Brazilian fruits. Antioxidant, anti-acetylcholinesterase and cytotoxic activities in fruits. Food Res. Int. 49, 334–344 (2012).
    Article  CAS  Google Scholar 

    58.
    Porto, R. G. C. L. et al. Chemical composition and antioxidant activity of Genipa Americana L. (Jenipapo) of the Brazilian Cerrado. J. Agric. Environ. Sci. 3, 51–61 (2014).
    Google Scholar 

    59.
    Dickson, L. et al. Main human urinary metabolites after genipap (Genipa americana L.) juice intake. Nutrients 10, 2 (2018).
    Article  CAS  Google Scholar 

    60.
    Alves, L. F. & Ming, L. C. Chemistry and pharmacology of some plants mentioned in the letter of Pero Vaz de Caminha. Ethnobiol. Conserv. 4, 1–15 (2015).
    Google Scholar 

    61.
    Li, Z. et al. Genipin inhibits the growth of human bladder cancer cells via inactivation of PI3k/AkT signaling. Oncol. Lett. 15, 2619–2624 (2018).
    PubMed  PubMed Central  Google Scholar 

    62.
    Shanmugam, M. K. et al. Potential role of genipin in cancer therapy. Pharmacol. Res. 133, 195–200 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    63.
    Brauch, J. E., Zapata-Porras, S. P., Buchweitz, M., Aschoff, J. K. & Carle, R. Jagua blue derived from Genipa americana L. fruit: A natural alternative to commonly used blue food colorants?. Food Res. Int. 89, 391–398 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    64.
    Souza, A. F., Andrade, A. C. S., Ramos, F. N. & Loureiro, M. B. Ecophysiology and morphology of seed germination of the neotropical lowland tree Genipa americana (Rubiaceae). J. Trop. Ecol. 15, 667–680 (1999).
    Article  Google Scholar 

    65.
    Oliveira, L. M., Oliveira Silva, E., Bruno, R. & Alves, E. U. Periods and dry environments in the seeds quality of Genipa americana L. Semin. Ciencias Agrar. 32, 495–502 (2011).
    Article  Google Scholar 

    66.
    Jackix, E. A., Monteiro, E. B., Raposo, H. F., Vanzela, E. C. & Amaya-Farfán, J. Taioba (xanthosoma sagittifolium) leaves: Nutrient composition and physiological effects on healthy rats. J. Food Sci. 78, 1929–1934 (2013).
    Article  CAS  Google Scholar 

    67.
    Akonor, P. T., Tortoe, C. & Buckman, E. S. Evaluation of cocoyam-wheat composite flour in pastry products based on proximate composition, physicochemical, functional, and sensory properties. J. Culin. Sci. Technol. 16, 52–65 (2018).
    Article  Google Scholar 

    68.
    Falade, K. O. & Okafor, C. A. Physicochemical properties of five cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) starches. Food Hydrocoll. 30, 173–181 (2013).
    Article  CAS  Google Scholar 

    69.
    Falade, K. O. & Okafor, C. A. Physical, functional, and pasting properties of flours from corms of two Cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) cultivars. J. Food Sci. Technol. 52, 3440–3448 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    70.
    Nishanthini, A. & Mohan, V. R. Antioxidant activites of Xanthosoma sagittifolium Schott using various in vitro assay models. Asian Pac. J. Trop. Biomed. 2, S1701–S1706 (2012).
    Article  Google Scholar 

    71.
    Pinto, N. A. V. D., Fernandes, S. M., Thé, P. M. P. & Carvalho, V. D. Variabilidade da composição centesimal, vitamina C, ferro e cálcio de partes da folha de Taioba (Xanthosoma sagittifolium Schott). Rev. Bras. Agrociência 7, 205–208 (2001).
    Google Scholar 

    72.
    Oliveira, G. L., Andrade, L. H. C. & Oliveira, A. F. M. Xanthosoma sagittifolium and Laportea aestuans: Species used to prevent osteoporosis in Brazilian traditional medicine. Pharm. Biol. 50, 930–932 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    73.
    Jackix, E. A., Monteiro, E. B., Raposo, H. F. & Amaya-Farfán, J. Cholesterol reducing and bile-acid binding properties of taioba (Xanthosoma sagittifolium) leaf in rats fed a high-fat diet. Food Res. Int. 51, 886–891 (2013).
    Article  CAS  Google Scholar 

    74.
    Arruda, S. F., Souza, E. M. T. & Siqueira, E. M. A. Carotenoids from Malanga (Xanthosoma sagittifolium) leaves protect cells against oxidative stress in rats. Int. J. Vitam. Nutr. Res. 75, 161–168 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    75.
    Chai, W. & Liebman, M. Effect of different cooking methods on vegetable oxalate content. J. Agric. Food Chem. 53, 3027–3030 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    76.
    de Carvalho, E. F. & Cordeiro, J. A. D. Um método alternativo e eficiente de propagação vegetativa de inhame (Colocasia esculenta (L.) SCHOTT) e de taioba (Xanthosoma sagittifolium (L) SCHOOT). Acta Amaz. 20, 11–18 (1990).
    Article  Google Scholar 

    77.
    Suja, G., John, K. S. & Sundaresan, S. Potential of tannia (Xanthosoma sagittifolium (L.) Schott.) for organic production. J. Root Crop. 35, 36–40 (2009).
    Google Scholar 

    78.
    Ramos-Escudero, F., Santos-Buelga, C., Pérez-Alonso, J. J., Yáñez, J. A. & Dueñas, M. HPLC-DAD-ESI/MS identification of anthocyanins in Dioscorea trifida L. yam tubers (purple sachapapa). Eur. Food Res. Technol. 230, 745–752 (2010).
    Article  CAS  Google Scholar 

    79.
    Bousalem, M. et al. Evidence of diploidy in the wild Amerindian yam, a putative progenitor of the endangered species dioscorea trifida (Dioscoreaceae). Genome 53, 371–383 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    80.
    Nascimento, W. F., Rodrigues, J. F., Koehler, S., Gepts, P. & Veasey, E. A. Spatially structured genetic diversity of the Amerindian yam (Dioscorea trifida L.) assessed by SSR and ISSR markers in Southern Brazil. Genet. Resour. Crop Evol. 60, 2405–2420 (2013).
    Article  Google Scholar 

    81.
    Rached, L. B., de Vizcarrondo, C. A., Rincón, A. M. & Padilla, F. Evaluación de harinas y almidones de mapuey (Dioscorea trifida), variedades blanco y morado. Arch. Latinoam. Nutr. 56, 2 (2006).
    Google Scholar 

    82.
    Morada, D. E. S. & Yáñez, J. A. Antocianinas, polifenoles, actividad anti-oxidante de sachapapa morada (Dioscorea trifida L.) y evaluación de lipoperoxidación en suero humano. Rev. la Soc. Química del Perú 76, 61–72 (2010).
    Google Scholar 

    83.
    Mollica, J. Q. et al. Anti-inflammatory activity of American yam Dioscorea trifida L.f. in food allergy induced by ovalbumin in mice. J. Funct. Foods 5, 1975–1984 (2013).
    Article  CAS  Google Scholar 

    84.
    Beyerlein, P., Mendes, A. M. S. & Pereira, H. S. Floral phenology, seed germination and hybrid plants of the amerindian yam (Dioscorea trifida). Acta Amaz. 49, 167–172 (2019).
    Article  Google Scholar 

    85.
    N’Danikou, S., Achigan-dako, E. G. & Wong, J. L. G. Eliciting local values of wild edible plants in southern Bénin to identify priority species for conservation. Econ. Bot. 65, 381–395 (2011).
    Article  Google Scholar  More

  • in

    Mapping coral calcification strategies from in situ boron isotope and trace element measurements of the tropical coral Siderastrea siderea

    1.
    Cesar, H. J. S., Burke, L. & Pet-Soede, L. The Economics of Worldwide Coral Reef Degradation. 23 (Cesar Environmental Economics Consulting: The Netherlands). https://www.icran.org/pdf/cesardegradationreport.pdf (2003).
    2.
    Tambutté, E. et al. Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26, 517–529 (2007).
    ADS  Article  Google Scholar 

    3.
    Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).
    ADS  CAS  Article  Google Scholar 

    4.
    Mass, T. et al. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr. Biol. 23, 1126–1131. https://doi.org/10.1016/j.cub.2013.05.007 (2013).
    CAS  Article  PubMed  Google Scholar 

    5.
    Guo, W. Seawater temperature and buffering capacity modulate coral calcifying pH. Sci. Rep. 9, 1–13 (2019).
    Article  Google Scholar 

    6.
    McCulloch, M. et al. Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).
    ADS  CAS  Article  Google Scholar 

    7.
    Guo, W. et al. Ocean acidification has impacted coral growth on the great barrier reef. Geophys. Res. Lett. https://doi.org/10.1029/2019gl086761 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    8.
    Sevilgen, D. S. et al. Full in vivo characterization of carbonate chemistry at the site of calcification in corals. Sci. Adv. https://doi.org/10.1126/sciadv.aau7447 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    9.
    Venn, A., Tambutté, E., Holcomb, M., Allemand, D. & Tambutté, S. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS ONE 6, e20013 (2011).
    ADS  CAS  Article  Google Scholar 

    10.
    Cai, W.-J. et al. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat. Commun. 7, 1–8 (2016).
    Google Scholar 

    11.
    Holcomb, M. et al. Coral calcifying fluid pH dictates response to ocean acidification. Sci. Rep. 4, 5207. https://doi.org/10.1038/srep05207 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    DeCarlo, T. M., Holcomb, M. & McCulloch, M. T. Reviews and syntheses: revisiting the boron systematics of aragonite and their application to coral calcification. Biogeosciences 15, 2819–2834. https://doi.org/10.5194/bg-15-2819-2018 (2018).
    ADS  CAS  Article  Google Scholar 

    13.
    McCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M. & Trotter, J. A. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nat. Commun. 8, 15686. https://doi.org/10.1038/ncomms15686 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Horvath, K. M. et al. Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea. Sci. Rep. 6, 29613. https://doi.org/10.1038/srep29613 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Tambutté, E. et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat. Commun. 6, 7368. https://doi.org/10.1038/ncomms8368 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Stewart, J. A., Anagnostou, E. & Foster, G. L. An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite. Chem. Geol. 447, 148–160. https://doi.org/10.1016/j.chemgeo.2016.10.029 (2016).
    ADS  CAS  Article  Google Scholar 

    17.
    Allison, N., Finch, A. A. & EIMF. δ11B, Sr, Mg and B in a modern Porites coral: the relationship between calcification site pH and skeletal chemistry. Geochim. Cosmochim. Acta 74, 1790–1800 (2010).
    ADS  CAS  Article  Google Scholar 

    18.
    Rollion-Bard, C. & Blamart, D. SIMS method and examples of applications in coral biomineralization. In Biomineralization Sourcebook: Characterization of Biominerals and Biomimetic Materials (eds DiMasi, E. & Gower, L. B.) 249–261 (CRC Press, Boca Raton, 2014).
    Google Scholar 

    19.
    Trotter, J. et al. Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet. Sci. Lett. 303, 163–173. https://doi.org/10.1016/j.epsl.2011.01.030 (2011).
    ADS  CAS  Article  Google Scholar 

    20.
    Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74, 4988–5001 (2010).
    ADS  CAS  Article  Google Scholar 

    21.
    Hönisch, B. et al. Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and vital effects. Geochim. Cosmochim. Acta 68, 3675–3685. https://doi.org/10.1016/j.gca.2004.03.002 (2004).
    ADS  CAS  Article  Google Scholar 

    22.
    Tanaka, K. et al. Response of Acropora digitifera to ocean acidification: constraints from δ11B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH. Coral Reefs 34, 1139–1149 (2015).
    ADS  Article  Google Scholar 

    23.
    Reynaud, S., Hemming, N. G., Juillet-Leclerc, A. & Gattuso, J.-P. Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp. Coral Reefs 23, 539–546 (2004).
    Google Scholar 

    24.
    Anagnostou, E., Huang, K.-F., You, C.-F., Sikes, E. & Sherrell, R. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: evidence of physiological pH adjustment. Earth Planet. Sci. Lett. 349, 251–260 (2012).
    ADS  Article  Google Scholar 

    25.
    Jurikova, H. et al. Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: zooming into a potential pH-proxy by combining bulk and high-resolution approaches. Chem. Geol. 513, 143–152. https://doi.org/10.1016/j.chemgeo.2019.01.005 (2019).
    ADS  CAS  Article  Google Scholar 

    26.
    Kasemann, S. A., Schmidt, D. N., Bijma, J. & Foster, G. L. In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH. Chem. Geol. https://doi.org/10.1016/j.chemgeo.2008.12.015 (2009).
    Article  Google Scholar 

    27.
    Rollion-Bard, C., Chaussidon, M. & France-Lanord, C. pH control on oxygen isotopic composition of symbiotic corals. Earth Planet. Sci. Lett. 215, 275–288. https://doi.org/10.1016/S0012-821X(03)00391-1 (2003).
    ADS  CAS  Article  Google Scholar 

    28.
    Standish, C. D. et al. The effect of matrix interferences on in situ boron isotope analysis by laser ablation multi-collector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 33, 959–968 (2019).
    ADS  CAS  Article  Google Scholar 

    29.
    Sadekov, A. et al. Accurate and precise microscale measurements of boron isotope ratios in calcium carbonates using laser ablation multicollector-ICPMS. J. Anal. At. Spectrom. 34, 550–560 (2019).
    CAS  Article  Google Scholar 

    30.
    Fietzke, J. et al. Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material. J. Anal. At. Spectrom. 25, 1953–1957 (2010).
    CAS  Article  Google Scholar 

    31.
    Oppelt, A., López, M. & Rocha, C. Biogeochemical analysis of the calcification patterns of cold-water corals Madrepora oculata and Lophelia pertusa along contact surfaces with calcified tubes of the symbiotic polychaete Eunice norvegica: evaluation of a ‘mucus’ calcification hypothesis. Deep Sea Res. I Oceanogr. Res. Pap. 127, 90–104. https://doi.org/10.1016/j.dsr.2017.08.006 (2017).
    ADS  CAS  Article  Google Scholar 

    32.
    Fowell, S. et al. Historical trends in pH and carbonate biogeochemistry on the Belize Mesoamerican Barrier Reef System. Geophys. Res. Lett. 45, 3228–3237 (2018).
    ADS  CAS  Article  Google Scholar 

    33.
    Runcorn, S. K. Corals as paleontological clocks. Sci. Am. 215, 26–33 (1966).
    Article  Google Scholar 

    34.
    DeCarlo, T. M. & Cohen, A. L. Dissepiments, density bands and signatures of thermal stress in Porites skeletons. Coral Reefs 36, 749–761. https://doi.org/10.1007/s00338-017-1566-9 (2017).
    ADS  Article  Google Scholar 

    35.
    Barnes, D. & Lough, J. On the nature and causes of density banding in massive coral skeletons. J. Exp. Mar. Biol. Ecol. 167, 91–108 (1993).
    Article  Google Scholar 

    36.
    DeCarlo, T. M. et al. Coral Sr-U thermometry. Paleoceanography 31, 626–638 (2016).
    ADS  Article  Google Scholar 

    37.
    Gagnon, A. C., Adkins, J. F., Fernandez, D. P. & Robinson, L. F. Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation. Earth Planet. Sci. Lett. 261, 280–295. https://doi.org/10.1016/j.epsl.2007.07.013 (2007).
    ADS  CAS  Article  Google Scholar 

    38.
    Blamart, D. et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: implications for biomineralization and paleo-pH. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001686 (2007).
    Article  Google Scholar 

    39.
    Jokiel, P. L. Coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proc. Biol. Sci. 280, 20130031–20130031. https://doi.org/10.1098/rspb.2013.0031 (2013).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Galli, G. & Solidoro, C. ATP supply may contribute to light-enhanced calcification in corals more than abiotic mechanisms. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00068 (2018).
    Article  Google Scholar 

    41.
    Barott, K. L., Venn, A. A., Perez, S. O., Tambutté, S. & Tresguerres, M. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl. Acad. Sci. 112, 607–612. https://doi.org/10.1073/pnas.1413483112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    42.
    Bernardet, C., Tambutté, E., Techer, N., Tambutté, S. & Venn, A. Ion transporter gene expression is linked to the thermal sensitivity of calcification in the reef coral Stylophora pistillata. Sci. Rep. 9, 1–13 (2019).
    Article  Google Scholar 

    43.
    Le Goff, C. et al. In vivo pH measurement at the site of calcification in an octocoral. Sci. Rep. 7, 11210. https://doi.org/10.1038/s41598-017-10348-4 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Zoccola, D. et al. Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci. Rep. 5, 9983. https://doi.org/10.1038/srep09983 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    45.
    Furla, P., Galgani, I., Durand, I. & Allemand, D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445–3457 (2000).
    CAS  PubMed  Google Scholar 

    46.
    DeLong, K. L., Maupin, C. R., Flannery, J. A., Quinn, T. M. & Shen, C.-C. Refining temperature reconstructions with the Atlantic coral Siderastrea siderea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 462, 1–15. https://doi.org/10.1016/j.palaeo.2016.08.028 (2016).
    Article  Google Scholar 

    47.
    Castillo, K. D., Ries, J. B. & Weiss, J. M. Declining coral skeletal extension for forereef colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System Southern Belize. PLoS ONE 6, e14615 (2011).
    ADS  CAS  Article  Google Scholar 

    48.
    Castillo, K. D., Ries, J. B., Weiss, J. M. & Lima, F. P. Decline of forereef corals in response to recent warming linked to history of thermal exposure. Nat. Clim. Change 2, 756–760. https://doi.org/10.1038/nclimate1577 (2012).
    Article  Google Scholar 

    49.
    Foster, G. L. Seawater pH, pCO2 and CO32− variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic forminifera. Earth Planet. Sci. Lett. 271, 254–266. https://doi.org/10.1016/j.epsl.2008.04.015 (2008).
    ADS  CAS  Article  Google Scholar 

    50.
    Foster, G. L. et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem. Geol. 358, 1–14. https://doi.org/10.1016/j.chemgeo.2013.08.027 (2013).
    ADS  CAS  Article  Google Scholar 

    51.
    le Roux P. J. et al. In situ, multiplemultiplier, laser ablation ICP‐MS measurement of boron isotopic composition (δ11B) at the nanogram level. Chem. Geol. 203(1–2), 123–138. https://doi.org/10.1016/j.chemgeo.2003.09.006 (2004).
    ADS  CAS  Article  Google Scholar 

    52.
    Inoue, M., Nohara, M., Okai, T., Suzuki, A. & Kawahata, H. Concentrations of trace elements in carbonate reference materials coral JCp-1 and Giant Clam JCt-1 by inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 28, 411–416. https://doi.org/10.1111/j.1751-908X.2004.tb00759.x (2004).
    CAS  Article  Google Scholar 

    53.
    Thil, F. et al. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral. Rapid Commun. Mass Spectrom. 30, 359–371 (2016).
    CAS  Article  Google Scholar 

    54.
    Hathorne, E. C. et al. Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements. Geochem. Geophys. Geosyst. 14, 3730–3750. https://doi.org/10.1002/ggge.20230 (2013).
    ADS  CAS  Article  Google Scholar 

    55.
    Hijmans, R. & Van Etten, J. Geographic analysis and modeling with raster data. R Package Version 2, 1–25 (2012).
    Google Scholar 

    56.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2010).

    57.
    Foster, G. L., von Strandmann, P. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003201 (2010).
    Article  Google Scholar 

    58.
    Klochko, K., Kaufman, A. J., Yao, W. S., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2006.05.034 (2006).
    Article  Google Scholar 

    59.
    Holcomb, M., DeCarlo, T., Gaetani, G. & McCulloch, M. Factors affecting B/Ca ratios in synthetic aragonite. Chem. Geol. 437, 67–76 (2016).
    ADS  CAS  Article  Google Scholar 

    60.
    Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Oceanogr. Res. Pap. 37, 755–766. https://doi.org/10.1016/0198-0149(90)90004-F (1990).
    ADS  CAS  Article  Google Scholar 

    61.
    Lee, K. et al. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 74, 1801–1811 (2010).
    ADS  CAS  Article  Google Scholar 

    62.
    Zeebe, R. E. & Wolf-Gladrow, D. A. CO2in Seawater: Equilibrium, Kinetics, Isotopes in Seawater: Equilibrium, Kinetics, Isotopes Vol. 65 (Elsevier, Amsterdam, 2001).
    Google Scholar 

    63.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Vulnerability assessment of nearshore clam habitat subject to storm waves and surge

    1.
    Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3(3), 157–163 (2010).
    ADS  CAS  Article  Google Scholar 
    2.
    Lin, N. & Emanuel, K. Grey swan tropical cyclones. Nat. Clim. Change 6, 106–111 (2016).
    ADS  Article  Google Scholar 

    3.
    de Vet, P. L. M. et al. Variations in storm-induced bed level dynamics across intertidal flats. Sci. Rep. 10, 12877 (2020).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Harris, L., Nel, R., Smale, M. & Schoeman, D. Swashed away? storm impacts on sandy beach macrofaunal communities. Estuar. Coast. Shelf Sci. 94(3), 210–221 (2011).
    ADS  Article  Google Scholar 

    5.
    Machado, P. M., Costa, L. L., Suciu, M. C., Tavares, D. C. & Zalmon, I. R. Extreme storm wave influence on sandy beach macrofauna with distinct human pressures. Mar. Pollut. Bull. 107(1), 125–135 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Costa, L. L., Machado, P. M. & Zalmon, I. R. Do natural disturbances have significant effects on sandy beach macrofauna of Southeastern Brazil?. Zoologia (Curitiba) 36(1), e29814 (2019).
    Google Scholar 

    7.
    Ghorai, D. & Sen, H. S. Role of climate change in increasing occurrences oceanic hazards as a potential threat to coastal ecology. Nat Hazards 75, 1223–1245 (2015).
    Article  Google Scholar 

    8.
    Posey, M., Lindberg, W., Alphin, T. & Vose, F. Influence of storm disturbance on an offshore benthic community. Bull. Mar. Sci. 59(3), 523–529 (1996).
    Google Scholar 

    9.
    Saloman, C. H. & Naughton, S. P. Effect of Hurricane Eloise on the benthic fauna of Panama City Beach, Florida, USA. Mar. Biol. 42(4), 357–363 (1977).
    Article  Google Scholar 

    10.
    Abe, H. et al. Impact of the 2011 tsunami on the Manila clam Ruditapes philippinarum population and subsequent population recovery in Matsukawaura Lagoon, Fukushima, northeastern Japan. Region. Stud. Mar. Sci. 9, 97–105 (2017).
    Article  Google Scholar 

    11.
    Dreyer, J., Bailey-Brock, J. H. & McCarthy, S. A. The immediate effects of Hurricane Iniki on intertidal fauna on the south shore of O ‘ahu. Mar. Environ. Res. 59(4), 367–380 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Izumi, S. & Masabumi, S. Behavioral characteristics of the juvenile Japanese surf clam Pseudocardium sachalinensis in response to sand erosion and deposition associated with oscillatory water flow. Fish. Sci. 64(3), 367–372 (1998).
    Article  Google Scholar 

    13.
    Bricheno, L. M., Wolf, J. & Aldridge, J. Distribution of natural disturbance due to wave and tidal bed currents around the UK. Cont. Shelf Res. 109, 67–77 (2015).
    ADS  Article  Google Scholar 

    14.
    Browning, T. N. et al. Widespread deposition in a coastal bay following three major 2017 hurricanes (Irma, Jose, and Maria). Sci. Rep. 9(1), 7101 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    15.
    Hagerman, G. & Rieger, R. Dispersal of benthic Meiofauna by wave and current action in Bogue sound, North Carolina, USA. Mar. Ecol. 2(3), 245–270 (1981).
    ADS  Article  Google Scholar 

    16.
    Corte, G. N. et al. Storm effects on intertidal invertebrates: Increased beta diversity of few individuals and species. PeerJ 5, e3360 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Murphy, A. E. et al. Quantifying the effects of commercial clam aquaculture on c and n cycling: An integrated ecosystem approach. Estuar. Coasts 39(6), 1–16 (2016).
    Article  CAS  Google Scholar 

    18.
    Turra, A. et al. Population biology and secondary production of the harvested clam Tivela Mactroides (Born, 1778) (Bivalvia, Veneridae) in Southeastern Brazil. Mar. Ecol. 36, 2 (2015).
    Article  Google Scholar 

    19.
    Thomas, S. et al. Does the size structure of venerid clam populations affect ecosystem functions on intertidal sandflats?. Estuar. Coasts 20, 20 (2020).
    Google Scholar 

    20.
    Wong, W. H., Rabalais, N. N. & Turner, R. E. Abundance and ecological significance of the clam Rangia Cuneata (Sowerby, 1831) in the upper Barataria Estuary (Louisiana, USA). Hydrobiologia 651(1), 305–315 (2010).
    CAS  Article  Google Scholar 

    21.
    Adkins, S. C., Marsden, I. D. & Pirker, J. G. Reproduction, growth and size of a burrowing intertidal clam exposed to varying environmental conditions in estuaries. Inverteb. Reprod. Dev. 60(3), 223–237 (2016).
    CAS  Article  Google Scholar 

    22.
    Clements, J. C. & Hunt, H. L. Effects of CO2-driven sediment acidification on infaunal marine bivalves: A synthesis. Mar. Pollut. Bull. 117(1–2), 6–16 (2017).
    CAS  PubMed  Article  Google Scholar 

    23.
    Clements, J. C., Woodard, K. D. & Hunt, H. L. Porewater acidification alters the burrowing behavior and post-settlement dispersal of juvenile soft-shell clams (Mya arenaria). J. Exp. Mar. Biol. Ecol. 477(Apr.), 103–111 (2016).
    Article  Google Scholar 

    24.
    Ocaña, F. A., Pech, D., Simões, N. & Hernández-Ávila, I. Spatial assessment of the vulnerability of benthic communities to multiple stressors in the Yucatan Continental Shelf, Gulf of Mexico. Ocean Coast. Manag. 181, 104900 (2019).
    Article  Google Scholar 

    25.
    Ortega, L., Celentano, E., Delgado, E. & Defeo, O. Climate change influences on abundance, individual size and body abnormalities in a sandy beach clam. Mar. Ecol. Progress Ser. 20, 545 (2016).
    Google Scholar 

    26.
    Hinchey, E. K., Schaffner, L. C., Hoar, C. C., Vogt, B. W. & Batte, L. P. Responses of estuarine benthic invertebrates to sediment burial: The importance of mobility and adaptation. Hydrobiologia 556(1), 85–98 (2006).
    Article  Google Scholar 

    27.
    Redjah, I. et al. The importance of turbulent kinetic energy on transport of juvenile clams (Mya arenaria). Aquaculture 307(1–2), 20–28 (2010).
    Article  Google Scholar 

    28.
    Forêt, M., Tremblay, R., Neumeier, U. & Olivier, F. Temporal variation of secondary migrations potential: Concept of temporal windows in four commercial bivalve species. Aquat. Liv. Resour. 31, 19 (2018).
    Article  Google Scholar 

    29.
    Hunt, H. L. & Chant, F. R. J. Modeling bedload transport of juvenile bivalves: Predicted changes in distribution and scale of postlarval dispersal. Estuar. Coasts 32(6), 1090–1102 (2009).
    Article  Google Scholar 

    30.
    Carolyn, J. L., Conrad, A. P. & Vonda, J. C. Behaviour controls post-settlement dispersal by the juvenile bivalves Austrovenus stutchburyi and Macomona Liliana. J. Exp. Mar. Biol. Ecol. 306, 51–74 (2004).
    Article  Google Scholar 

    31.
    St-Onge, P., Miron, G. & Moreau, G. Burrowing behaviour of the softshell clam (Mya arenaria) following erosion and transport. J. Exp. Mar. Biol. Ecol. 340(1), 103–111 (2007).
    Article  Google Scholar 

    32.
    Bolam, S. G. Burial survival of benthic macrofauna following deposition of simulated dredged material. Environ. Monit. Assess. 181(1–4), 13–27 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Fiori, S. M. & Carcedo, M. C. Influence of grain size on burrowing and alongshore distribution of the yellow clam (Amarilladesma mactroides). J. Shellf. Res. 34(3), 785–789 (2015).
    Article  Google Scholar 

    34.
    Lewis, N. S., Fox, E. W. & Dewitt, T. H. Estimating the distribution of harvested estuarine bivalves with natural-history-based habitat suitability models. Estuar. Coast. Shelf Sci. 219(Apr. 5), 453–472 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    Lundquist, C. J. et al. Spatial variability in recolonisation potential: Influence of organism behaviour and hydrodynamics on the distribution of macrofaunal colonists. Mar. Ecol. Prog. Ser. 324, 67–81 (2006).
    ADS  Article  Google Scholar 

    36.
    Hunt, H. L. Transport of juvenile clams: Effects of species and sediment grain size. J. Exp. Mar. Biol. Ecol. 312(2), 271–284 (2004).
    Article  Google Scholar 

    37.
    Lundquist, C. J., Pilditch, C. A. & Cummings, V. J. Behaviour controls post-settlement dispersal by the juvenile bivalves Austrovenus stutchburyi and Macomona liliana. J. Exp. Mar. Biol. Ecol. 306(1), 51–74 (2004).
    Article  Google Scholar 

    38.
    Sakurai, I., Nakajima, K. & Yamashita, T. Effect of oscillatory water flow on burrowing behaviors of the Japanese surf clam Pseudocardium sachalinensis. Nippon Suisan Gakkaishi 64(3), 406–411 (1998).
    Article  Google Scholar 

    39.
    Alejandro, A., Doris, O. & Pedro, T. Effect of transfer time, temperature, and size on burrowing capacity of juvenile clams, Mulinia edulis, from hatchery. World Aquacult. Soc. 50(4), 1–15 (2018).
    Google Scholar 

    40.
    Zaklan, S. D. & Ydenberg, R. The body size–burial depth relationship in the infaunal clam Mya arenaria. J. Exp. Mar. Biol. Ecol. 215(1), 1–17 (1997).
    Article  Google Scholar 

    41.
    Zwarts, L. & Wanink, J. Siphon size and burying depth in deposit-and suspension-feeding benthic bivalves. Mar. Biol. 100(2), 227–240 (1989).
    Article  Google Scholar 

    42.
    Abarca, A., Oliva, D. & Toledo, P. Effect of transfer time, temperature, and size on burrowing capacity of juvenile clams, Mulinia edulis, from hatchery. J. World Aquacult. Soc. 50(4), 774–788 (2019).
    Article  Google Scholar 

    43.
    Nunez, J. D., Laitano, M. V., Meretta, P. E. & Ocampo, E. H. Burrowing behavior of an infaunal clam species after siphon nipping. J. Exp. Mar. Biol. Ecol. 459(Oct. 4), 45–50 (2014).
    Article  Google Scholar 

    44.
    Maurer, D., Keck, R. T., Tinsman, J. C. & Leathem, W. A. Vertical migration and mortality of benthos in dredged material—part I: Mollusca. Mar. Environ. Res. 4(4), 299–319 (1981).
    Article  Google Scholar 

    45.
    Sakurai, I. & Seto, M. Behavioral characteristics of the juvenile Japanese surf clam Pseudocardium sachalinensis in response to sand erosion and deposition associated with oscillatory water flow. Fish. Sci. 64(3), 367–372 (1998).
    CAS  Article  Google Scholar 

    46.
    Hutchison, Z. L., Hendrick, V. J., Burrows, M. T., Wilson, B. & Last, K. S. Buried alive: The behavioural response of the mussels, modiolus modiolus and mytilus edulis to sudden burial by sediment. PLoS One 11(3), e0151471 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Ma, D., Shi, W. & Yu, J. Burial effects of Tianjin nangang industrial zone dredging Materialon Macrobenthos. J. Zhejiang Ocean Univ. 20, 20 (2015) ((in Chinese)).
    Google Scholar 

    48.
    Quinn, N., Atkinson, P. & Wells, N. Modelling of tide and surge elevations in the Solent and surrounding waters: The importance of tide–surge interactions. Estuar. Coast. Shelf Sci. 112(112), 162–172 (2012).
    ADS  Article  Google Scholar 

    49.
    Houser and Chris. Alongshore variation in the morphology of coastal dunes: Implications for storm response. Geomorphology 199, 48–61 (2013).
    ADS  Article  Google Scholar  More

  • in

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    1.
    Stearns, S. C. The Evolution of Life Histories (Oxford University Press, Oxford, 1996).
    Google Scholar 
    2.
    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).
    Google Scholar 

    3.
    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: Embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Kozlowski, J. Why life histories are diverse. Polish J. Ecol. 54, 585–605 (2006).
    Google Scholar 

    5.
    Ejsmond, M. J., Varpe, Ø., Czarnoleski, M. & Kozłowski, J. Seasonality in offspring value and trade-offs with growth explain capital breeding. Am. Nat. 186, E111–E125 (2015).
    Article  Google Scholar 

    6.
    Filipiak, M. A better understanding of bee nutritional ecology is needed to optimize conservation strategies for wild bees-the application of ecological stoichiometry. Insects 9, 85 (2018).
    PubMed Central  Article  Google Scholar 

    7.
    Filipiak, Z. M. & Filipiak, M. The scarcity of specific nutrients in wild bee larval food negatively influences certain life history traits. Biology (Basel). 9, 462 (2020).

    8.
    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, Princeton, 2012).
    Google Scholar 

    9.
    Bärlocher, F. & Rennenberg, H. Food chains and nutrient cycles. In Ecological biochemistry (eds Krauss, G. J. & Nies, D. H.) 92–122 (Wiley, New York, 2014).
    Google Scholar 

    10.
    DeAngelis, D. L. Dynamics of Nutrient Cycling and Food Webs (Springer Netherlands, Amsterdam, 1992).
    Google Scholar 

    11.
    Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry (Academic Press, London, 2020).
    Google Scholar 

    12.
    Jeyasingh, P. D., Cothran, R. D. & Tobler, M. Testing the ecological consequences of evolutionary change using elements. Ecol. Evol. 4, 528–538 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    13.
    Jeyasingh, P. D., Goos, J. M., Thompson, S. K., Godwin, C. M. & Cotner, J. B. Ecological stoichiometry beyond redfield: An ionomic perspective on elemental homeostasis. Front. Microbiol. 8, 722 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    González, A. L. et al. Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America. Funct. Ecol. 32, 2448–2463 (2018).
    Article  Google Scholar 

    15.
    Peñuelas, J. et al. The bioelements, the elementome, and the biogeochemical niche. Ecology 100, e02652 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Fagan, W. F. & Denno, R. F. Stoichiometry of actual vs. potential predator-prey interactions: Insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7, 876–883 (2004).
    Article  Google Scholar 

    17.
    Kay, A. D. et al. Toward a stoichiometric framework for evolutionary biology. Oikos 109, 6–17 (2005).
    Article  Google Scholar 

    18.
    Cherif, M. et al. An operational framework for the advancement of a molecule-to-biosphere stoichiometry theory. Front. Mar. Sci. 4, 1–16 (2017).
    ADS  Article  Google Scholar 

    19.
    Welti, N. et al. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Front. Microbiol. 8, 1298 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: An elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).
    ADS  CAS  Article  Google Scholar 

    21.
    Lemoine, N. P., Giery, S. T. & Burkepile, D. E. Differing nutritional constraints of consumers across ecosystems. Oecologia 174, 1367–1376 (2014).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Morehouse, N. I., Nakazawa, T., Booher, C. M., Jeyasingh, P. D. & Hall, M. D. Sex in a material world: Why the study of sexual reproduction and sex-specific traits should become more nutritionally-explicit. Oikos 119, 766–778 (2010).
    Article  Google Scholar 

    23.
    Filipiak, M. Key pollen host plants provide balanced diets for wild bee larvae: A lesson for planting flower strips and hedgerows. J. Appl. Ecol. 56, 1410–1418 (2019).
    CAS  Article  Google Scholar 

    24.
    Goos, J. M., Cothran, R. D. & Jeyasingh, P. D. Within-population variation in the chemistry of life: The stoichiometry of sexual dimorphism in multiple dimensions. Evol. Ecol. 31, 635–651 (2017).
    Article  Google Scholar 

    25.
    Halvorson, H. M., Scott, J. T., Sanders, A. J. & Evans-White, M. A. A stream insect detritivore violates common assumptions of threshold elemental ratio bioenergetics models. Freshw. Sci. 34, 508–518 (2015).
    Article  Google Scholar 

    26.
    Meunier, C. L. et al. From elements to function: Toward unifying ecological stoichiometry and trait-based ecology. Front. Environ. Sci. 5, 1–10 (2017).
    Article  Google Scholar 

    27.
    Sperfeld, E., Wagner, N. D., Halvorson, H. M., Malishev, M. & Raubenheimer, D. Bridging ecological stoichiometry and nutritional geometry with homeostasis concepts and integrative models of organism nutrition. Funct. Ecol. 31, 286–296 (2017).
    Article  Google Scholar 

    28.
    Filipiak, M. & Weiner, J. Plant–insect interactions: The role of ecological stoichiometry. Acta Agrobot. 70, 1–16 (2017).
    Article  Google Scholar 

    29.
    Elser, J. J., Dobberfuhl, D. R., MacKay, N. A. & Schampel, J. H. Organism size, life history, and N: P stoichiometry: Toward a unified view of cellular and ecosystem processes. Bioscience 46, 674–684 (1996).
    Article  Google Scholar 

    30.
    Polidori, C. et al. Strong phylogenetic constraint on transition metal incorporation in the mandibles of the hyper-diverse Hymenoptera (Insecta). Org. Divers. Evol. https://doi.org/10.1007/s13127-020-00448-x (2020).
    Article  Google Scholar 

    31.
    Bosch, J., Sgolastra, F. & Kemp, W. P. Life cycle ecophysiology of Osmia mason bees used as crop pollinators. In Bee Pollination in Agricultural Eco-systems (eds James, R. & Pitts-Singer, T. L.) 83–105 (Oxford Scholarship Online, Oxford, 2008).
    Google Scholar 

    32.
    Giejdasz, K. & Wilkaniec, Z. Individual development of the red mason bee (Osmia rufa L., Megachilidae) under natural and laboratory conditions. J. Apic. Sci. 46, 51–57 (2002).
    Google Scholar 

    33.
    Gruber, B., Eckel, K., Everaars, J. & Dormann, C. F. On managing the red mason bee (Osmia bicornis) in apple orchards. Apidologie 42, 564–576 (2011).
    Article  Google Scholar 

    34.
    Kaspari, M. The seventh macronutrient: How sodium shortfall ramifies through populations, food webs and ecosystems. Ecol. Lett. 23, 1153–1168 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Rizzuto, M. et al. Patterns and potential drivers of intraspecific variability in the body C, N, and P composition of a terrestrial consumer, the snowshoe hare (Lepus americanus). Ecol. Evol. 9, 14453–14464 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    36.
    Sitters, J. & Olde Venterink, H. The need for a novel integrative theory on feedbacks between herbivores, plants and soil nutrient cycling. Plant Soil 396, 421–426 (2015).
    CAS  Article  Google Scholar 

    37.
    Sitters, J. et al. Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Glob. Change Biol. 26, 2060–2071 (2020).
    ADS  Article  Google Scholar 

    38.
    Sitters, J. et al. The stoichiometry of nutrient release by terrestrial herbivores and its ecosystem consequences. Front. Earth Sci. 5, 1–8 (2017).
    Article  Google Scholar 

    39.
    González, A. L., Fariña, J. M., Kay, A. D., Pinto, R. & Marquet, P. A. Exploring patterns and mechanisms of interspecific and intraspecific variation in body elemental composition of desert consumers. Oikos 120, 1247–1255 (2011).
    Article  Google Scholar 

    40.
    Seidelmann, K. Optimal progeny body size in a solitary bee, Osmia bicornis (Apoidea: Megachilidae). Ecol. Entomol. 39, 656–663 (2014).
    Article  Google Scholar 

    41.
    Kim, J. Y. Female size and fitness in the leaf-cutter bee Megachile apicalis. Ecol. Entomol. 22, 275–282 (1997).
    Article  Google Scholar 

    42.
    Markow, T. et al. Elemental stoichiometry of Drosophila and their hosts. Funct. Ecol. 13, 78–84 (1999).
    Article  Google Scholar 

    43.
    Bergwitz, C. & Jüppner, H. Phosphate sensing. Adv. Chronic Kidney Dis. 18, 132–144 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Werner, A. & Kinne, R. K. H. Evolution of the Na-Pi cotransport systems. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R301–R312 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Morgan, A. J., Kille, P. & Stürzenbaum, S. R. Microevolution and ecotoxicology of metals in invertebrates. Environ. Sci. Technol. 41, 1085–1096 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Bednarska, A. J., Świątek, Z. M. & Labecka, A. M. Effects of cadmium bioavailability in food on its distribution in different tissues in the ground beetle Pterostichus oblongopunctatus. Bull. Environ. Contam. Toxicol. 103, 421–427 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Świątek, Z. M. & Bednarska, A. J. Energy reserves and respiration rate in the earthworm Eisenia andrei after exposure to zinc in nanoparticle or ionic form. Environ. Sci. Pollut. Res. Int. 26, 24933–24945 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Cohen, A. C. Insect Diets: Science and Technology (CRC Press, Boca Raton, 2005).
    Google Scholar 

    49.
    Seidelmann, K. Optimal resource allocation, maternal investment, and body size in a solitary bee, Osmia bicornis. Entomol. Exp. Appl. 166, 790–799 (2018).
    Article  Google Scholar 

    50.
    Bosch, J. & Vicens, N. Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav. Ecol. Sociobiol. 60, 26–33 (2006).
    Article  Google Scholar 

    51.
    Seidelmann, K., Ulbrich, K. & Mielenz, N. Conditional sex allocation in the Red Mason bee, Osmia rufa. Behav. Ecol. Sociobiol. 64, 337–347 (2010).
    Article  Google Scholar 

    52.
    González, A. L., Dézerald, O., Marquet, P. A., Romero, G. Q. & Srivastava, D. S. The multidimensional stoichiometric niche. Front. Ecol. Evol. 5, 110 (2017).
    Article  Google Scholar 

    53.
    Lemmen, K. D., Butler, O. M., Koffel, T., Rudman, S. M. & Symons, C. C. Stoichiometric traits vary widely within species: A meta-analysis of common garden experiments. Front. Ecol. Evol. 7, 1–15 (2019).
    Article  Google Scholar 

    54.
    Prater, C., Wagner, N. D. & Frost, P. C. Interactive effects of genotype and food quality on consumer growth rate and elemental content. Ecology 98, 1399–1408 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Sherman, R. E., Chowdhury, P. R., Baker, K. D., Weider, L. J. & Jeyasingh, P. D. Genotype-specific relationships among phosphorus use, growth and abundance in Daphnia pulicaria. R. Soc. Open Sci. 4, 170770 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Zajitschek, F. & Connallon, T. Partitioning of resources: The evolutionary genetics of sexual conflict over resource acquisition and allocation. J. Evol. Biol. 30, 826–838 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Moe, S. J. et al. Recent advances in ecological stoichiometry: Insights for population and community ecology. Oikos 109, 29–39 (2005).
    Article  Google Scholar 

    58.
    Peñuelas, J., Sardans, J., Ogaya, R. & Estiarte, M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change. Polish J. Ecol. 56, 613–622 (2008).
    Google Scholar 

    59.
    Urbina, I. et al. Plant community composition affects the species biogeochemical niche. Ecosphere 8, e01801 (2017).
    Article  Google Scholar 

    60.
    Jeyasingh, P. D., Goos, J. M., Lind, P. R., Roy Chowdhury, P. & Sherman, R. E. Phosphorus supply shifts the quotas of multiple elements in algae and Daphnia: Ionomic basis of stoichiometric constraints. Ecol. Lett. 23, 1064–1072 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    61.
    Ruedenauer, F. A. et al. Best be (e) on low fat: Linking nutrient perception, regulation and fitness. Ecol. Lett. 23, 545–554 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    62.
    Trinkl, M. et al. Floral species richness correlates with changes in the nutritional quality of larval diets in a stingless bee. Insects 11, E125 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Roswell, M., Dushoff, J. & Winfree, R. Male and female bees show large differences in floral preference. PLoS ONE 14, e0214909 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    64.
    Vaudo, A. D. et al. Pollen protein: Lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 11, 132 (2020).
    PubMed Central  Article  Google Scholar 

    65.
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 

    66.
    Smilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data using CANOCO 5 (Cambridge University Press, Cambridge, 2014).
    Google Scholar  More

  • in

    Species versus within-species niches: a multi-modelling approach to assess range size of a spring-dwelling amphibian

    1.
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Peterson, M. L., Doak, D. F. & Morris, W. F. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Glob. Change. Biol 25, 775–793 (2019).
    ADS  Article  Google Scholar 

    3.
    Rodríguez-Rodríguez, E. J. et al. Niche models at inter- and intraspecific levels reveal hierarchical niche differentiation in midwife toads. Sci. Rep. 10, 10942 (2020).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology Vol. 239 (Oxford University Press, Oxford, 1991).
    Google Scholar 

    5.
    Banerjee, A. K., Mukherjee, A., Guo, W., Ng, W. L. & Huang, Y. Combining ecological niche modeling with genetic lineage information to predict potential distribution of Mikania micrantha Kunth in South and Southeast Asia under predicted climate change. Glob. Ecol. Conserv. 20, e00800 (2019).
    Article  Google Scholar 

    6.
    Martínez-Freiría, F. et al. Climatic refugia boosted allopatric diversification in western Mediterranean vipers. J. Biogeogr. https://doi.org/10.1111/jbi.13861 (2020).
    Article  Google Scholar 

    7.
    Groom, Q. J., Marsh, C. J., Gavish, Y. & Kunin, W. E. How to predict fine resolution occupancy from coarse occupancy data. Methods Ecol. Evol. 9, 2273–2284 (2018).
    Article  Google Scholar 

    8.
    Li, Y. et al. Climate and topography explain range sizes of terrestrial vertebrates. Nat. Clim. Change 6, 498–502 (2016).
    ADS  Article  Google Scholar 

    9.
    Cardoso, P., Borges, P. A. V., Triantis, K. A., Ferrández, M. A. & Martín, J. L. Adapting the IUCN Red List criteria for invertebrates. Biol. Conserv. 144, 2432–2440 (2011).
    Article  Google Scholar 

    10.
    Burbidge, A., Woinarski, J. & Harrison, P. The Action Plan for Australian Mammals 2012 (Csiro Publishing, Clayton, 2014).
    Google Scholar 

    11.
    Jiménez-Alfaro, B., Draper, D. & Nogués-Bravo, D. Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates. Biol. Conserv. 147, 190–196 (2012).
    Article  Google Scholar 

    12.
    Kamino, L. H. Y., Siqueira, M., Sánchez-Tapia, A. & Stehmann, J. R. Reassessment of the extinction risk of endemic species in the Neotropics: how can modelling tools help us. Nat. Conserv. 10, 191–198 (2012).
    Article  Google Scholar 

    13.
    Kluber, M. R., Olson, D. H. & Puettmann, K. J. Amphibian distributions in riparian and upslope areas and their habitat associations on managed forest landscapes in the Oregon Coast Range. For. Ecol. Manage 256, 529–535 (2008).
    Article  Google Scholar 

    14.
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Article  Google Scholar 

    15.
    Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
    Article  Google Scholar 

    16.
    Steinfartz, S., Hwang, U. W., Tautz, D., Öz, M. & Veith, M. Molecular phylogeny of the salamandrid genus Neurergus: evidence for an intrageneric switch of reproductive biology. Amphib-Reptilia. 23, 419–431 (2002).
    Article  Google Scholar 

    17.
    Goudarzi, F. et al. Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser’s spotted newt (Neurergus kaiseri). Sci. Rep. 9, 6239 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    IUCN SSC Amphibian Specialist Group. Neurergus kaiseri. The IUCN Red List of Threatened Species 2016: e.T59450A49436271. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T59450A49436271.en. Downloaded on 29 November 2018.

    19.
    Vaissi, S. & Sharifi, M. Integrating multi-criteria decision analysis with a GIS-based siting procedure to select a protected area for the Kaiser’s mountain newt, Neurergus kaiseri (Caudata: Salamandridae). Glob. Ecol. Conserv. 20, e00738 (2019).
    Article  Google Scholar 

    20.
    Rancilhac, L. et al. Phylogeny and species delimitation of Near Eastern Neurergus newts (Salamandridae) based on genome-wide RADseq data analysis. Mol. Phylogenet. Evol. 133, 189–197 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Pearman, P. B., D’Amen, M., Graham, C. H., Thuiller, W. & Zimmermann, N. E. Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33, 990–1003 (2010).
    Article  Google Scholar 

    22.
    Lecocq, T., Harpke, A., Rasmont, P. & Schweiger, O. Integrating intraspecific differentiation in species distribution models: Consequences on projections of current and future climatically suitable areas of species. Divers. Distrib. 25, 1088–1100 (2019).
    Article  Google Scholar 

    23.
    Rodríguez-Rodríguez, E. J. et al. Climate change challenges IUCN conservation priorities: A test with western Mediterranean amphibians. SN Appl. Sci. 2, 216 (2020).
    Article  Google Scholar 

    24.
    Joppa, L. N. et al. Impact of alternative metrics on estimates of extent of occurrence for extinction risk assessment. Conserv. Biol. 30, 362–370 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    25.
    Denoël, M. & Ficetola, G. F. Landscape-level thresholds and newt conservation. Ecol. Appl. 17, 302–309 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Denoël, M. et al. A multi-scale approach to facultative paedomorphosis of European newts (Salamandridae) in the Montenegrin karst: distribution pattern, environmental variables, and conservation. Biol. Conserv. 142, 509–517 (2009).
    Article  Google Scholar 

    27.
    Ildos, A. S. & Ancona, N. Analysis of amphibian habitat preferences in a farmland area (Po plain, northern Italy). Amphib-Reptilia. 15, 307–316 (1994).
    Article  Google Scholar 

    28.
    Beebee, T. J. Discriminant analysis of amphibian habitat determinants in South-East England. Amphib-Reptilia. 6, 35–43 (1985).
    Article  Google Scholar 

    29.
    Manzoor, S. A., Griffiths, G. & Lukac, M. Species distribution model transferability and model grain size—finer may not always be better. Sci. Rep. 8, 7168 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Chardon, N. I., Pironon, S., Peterson, M. L. & Doak, D. F. Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide-spread plant species. Ecography 43, 60–74 (2020).
    Article  Google Scholar 

    31.
    Maguire, K. C., Shinneman, D. J., Potter, K. M. & Hipkins, V. D. Intraspecific niche models for ponderosa pine (Pinus ponderosa) suggest potential variability in population-level response to climate change. Syst. Biol 67, 965–978 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Barria, A. M. et al. The importance of intraspecific variation for niche differentiation and species distribution models: The ecologically diverse frog pleurodema thaul as study case. Evol. Biol. 47, 206–219 (2020).
    Article  Google Scholar 

    33.
    Austin, M. P. & Van Niel, K. P. Impact of landscape predictors on climate change modelling of species distributions: A case study with Eucalyptus fastigata in southern New South Wales, Australia. J. Biogeogr. 38, 9–19 (2011).
    Article  Google Scholar 

    34.
    Fournier, A., Barbet-Massin, M., Rome, Q. & Courchamp, F. Predicting species distribution combining multi-scale drivers. Glob. Ecol. Conserv. 12, 215–226 (2017).
    Article  Google Scholar 

    35.
    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).
    Article  Google Scholar 

    36.
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).
    Article  Google Scholar 

    37.
    Dinis, M. et al. Allopatric diversification and evolutionary melting pot in a North African Palearctic relict: the biogeographic history of Salamandra algira. Mol. Phylogenet. Evol. 130, 81–91 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Schulte, U. et al. Cryptic niche conservatism among evolutionary lineages of an invasive lizard. Glob. Ecol. Biogeogr 21, 198–211 (2012).
    Article  Google Scholar 

    39.
    Breiner, F. T., Guisan, A., Nobis, M. P. & Bergamini, A. Including environmental niche information to improve IUCN Red List assessments. Divers. Distrib. 23, 484–495 (2017).
    Article  Google Scholar 

    40.
    IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria, ver. 14. The Standards and Petitions Committee. https://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed 22 March 2020). (2019).

    41.
    Hartley, S. & Kunin, W. E. Scale dependency of rarity, extinction risk, and conservation priority. Conserv. Biol. 17, 1559–1570 (2003).
    Article  Google Scholar 

    42.
    Raeisi, E. & Stevanovic, Z. Groundwater Hydrology of Springs 498–515 (Elsevier, Amsterdam, 2010).
    Google Scholar 

    43.
    Chen, J. et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 103, 7–27 (2015).
    ADS  Article  Google Scholar 

    44.
    Sharifi, M., Farasat, H., Barani-Beiranvand, H., Vaissi, S. & Foroozanfar, E. Notes on the distribution and abundance of the endangered kaiser’s mountain newt, neurergus kaiseri (caudata: salamandridae), in southwestern Iran. Herpetol. Conserv. Biol 8, 724–731 (2013).
    Google Scholar 

    45.
    Mobaraki, A. et al. A conservation reassessment of the Critically Endangered, Lorestan newt Neurergus kaiseri (Schmidt 1952) in Iran. Amphib. Reptile Conserv. 9, 16–25 (2014).
    Google Scholar 

    46.
    Casula, P., Vignoli, L., Luiselli, L. & Lecis, R. Local abundance and observer’s identity affect visual detectability of Sardinian mountain newts. Herpetol. J. 27, 258–265 (2017).
    Google Scholar 

    47.
    Joly, P., Morand, C. & Cohas, A. Habitat fragmentation and amphibian conservation: Building a tool for assessing landscape matrix connectivity. BC. R. Biol. 326, 132–139 (2003).
    Google Scholar 

    48.
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Glob. Ecol. Biogeogr 12, 361–371 (2003).
    Article  Google Scholar 

    49.
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. R package version 1.0-12. The R Foundation for Statistical Computing, Vienna. http://cran.r-project.org (2015).

    50.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).

    51.
    ESRI. Using ecological niche modeling. (2016).

    52.
    Blank, L. & Blaustein, L. Using ecological niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites. Hydrobiologia 693, 157–167 (2012).
    Article  Google Scholar 

    53.
    Bradie, J. & Leung, B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361 (2017).
    Article  Google Scholar 

    54.
    Cunningham, H. R., Rissler, L. J., Buckley, L. B. & Urban, M. C. Abiotic and biotic constraints across reptile and amphibian ranges. Ecography 39, 1–8 (2015).
    Article  Google Scholar 

    55.
    Peterman, W. E. & Semlitsch, R. D. Fine-scale habitat associations of a terrestrial salamander: the role of environmental gradients and implications for population dynamics. PLoS ONE 8, e62184 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    56.
    Vasconcelos, T. S., Rodríguez, M. Á. & Hawkins, B. A. Species distribution modelling as a macroecological tool: A case study using New World amphibians. Ecography 35, 539–548 (2012).
    Article  Google Scholar 

    57.
    Keating, K. A., Gogan, P. J. P., Vore, J. M. & Irby, L. R. A simple solar radiation index for wildlife habitat studies. J. Wildl. Manage. 71, 1344–1348 (2007).
    Article  Google Scholar 

    58.
    Jenness, J., Brost, B. & Beier, P. Land Facet Corridor Designer: Extension for ArcGIS. Jenness Enterprises. http://www.jennessent.com/arcgis/land_facets.htm. (2013).

    59.
    Marnell, F. Discriminant analysis of the terrestrial and aquatic habitat determinants of the smooth newt (Triturus vulgaris) and the common frog (Rana temporaria) in Ireland. J Zool 244, 1–6 (2001).
    Article  Google Scholar 

    60.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    61.
    Warren, D. L., Wright, A. N., Seifert, S. N. & Shaffer, H. B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 C alifornia vertebrate species of concern. Divers. Distrib. 20, 334–343 (2014).
    Article  Google Scholar 

    62.
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Article  Google Scholar 

    63.
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
    Article  Google Scholar 

    64.
    Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 5, e3093 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17 (2013).
    Article  Google Scholar 

    66.
    Moreno-Amat, E. et al. Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecol. Model. 312, 308–317 (2015).
    Article  Google Scholar 

    67.
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Article  Google Scholar 

    68.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    69.
    Schoener, T. W. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
    Article  Google Scholar 

    70.
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    71.
    Lee, C. K. F., Keith, D. A., Nicholson, E. & Murray, N. J. Redlistr: tools for the IUCN Red Lists of ecosystems and threatened species in R. Ecography 42, 1050–1055 (2019).
    Article  Google Scholar  More

  • in

    In-vivo measurement of the fluorescence spectrum of wild cochineal (Dactylopius opuntiae)

    In this section, the methodology for the fluorescence spectra acquisition of the in-vivo cochineal in its natural ambient is described. The optical setup used is our own design that guarantees the detection of low levels of fluorescence present in this study. In addition, the wild cochineal reproduction model employed to ensure the existence of the samples is described. This study proposes a fluorescence standard based on a commonly used disk-shaped carmine colored pencil segment because of the non-availability of a commercial one in our laboratory.
    Optical setup for fluorescence spectra measurements
    The optical setup for detecting fluorescence spectra consists of (1) a power supply, (2) an excitation source, (3) a dichroic mirror, (4) a 10 × microscope objective lens, (5) a homemade sample-holder, (6) a mechanical positioning device with micrometric movements in x, y and z, (7) a 5 × microscope objective lens, (8) multi-mode optical fiber, (9) a miniature fiber optic spectrometer and (10) computer equipment. The previous elements were arranged as shown in Fig. 5.
    Figure 5

    Optical experimental setup for detecting fluorescence spectra: (1) power supply, (2) laser source emitting at 532 nm, (3) dichroic mirror, (4) 10 × microscope objective, (5) sample-holder with the biological specimen depicted in yellow color, (6) a mechanical positioning device with micrometric movements in x, y and z directions, (7) 5 × microscope objective, (8) optical fiber, (9) fiber optic spectrometer and (10) desktop computer showing a typical spectrum of carminic acid within a cochineal.

    Full size image

    The power supply (M30-TP305E, Shanghai MCP Corp.) provides a constant voltage of 3.5 V to the excitation source. The excitation source is a commercial laser pointer (KG-303-6) emitting at a wavelength of 532 nm and nominal power of 1 W. This wavelength is found within the absorption band of carminic acid diluted in methanol19, and as was demonstrated by Cárdenas23, this wavelength allows the excitation of the fluorescence of natural carminic acid from wild cochineal in-vivo. The dichroic mirror (DMLP550, Thorlabs, Inc.) is tilted at an angle of 45° with respect to the direction of laser beam propagation allowing the excitation light to be reflected towards the aperture of the 10 × microscope objective lens (M-10X, Newport, Co.) which in turn focuses this radiation on a plane where the sample is placed. The specimen to be studied is fixed on the sample holder which in turn is magnetically coupled to the mechanical positioning device (M-900, Newport, Co.), that together with a micrometric base (High-Performance Linear Stage, Newport, Co.) allows the cochineal to be placed at the focal point of the excitation beam. Both the fraction of the fluorescent light emitted isotropically by the cochineal and the fraction of the light reflected diffusely by this insect enter the 10 × objective lens and leave it as a collimated beam towards the dichroic mirror. The first fraction of light is transmitted approximately 85% to the second microscope objective lens (M-5X, Newport, Co.) while the second one is strongly blocked by the dichroic mirror. A 400 µm diameter optical fiber (QP400-2-SR, Ocean Optics, Inc.) is placed at the focal distance from this latter microscope objective to collect the fluorescence radiation and transmit it to the input port of the miniature fiber optic spectrometer (Exemplar, B&W Tek, LLC.) which allows for the spectral decomposition of the fluorescence radiation for its later processing. This spectrometer is connected through a USB port to a desktop computer where the BWSpec (B&W Tek, LLC.) software is installed, provided by the same manufacturer of this device, by means of which the acquisition of the spectra is carried out with an integration time of 200 ms. This software allows the user to save the spectra in plain text files (.txt) for further processing of the acquired information.
    The use of the dichroic mirror in the optical setup allows for adequate discrimination of the excitation and emission wavelengths. It shows about a 90% reflection in the range of 380–535 nm, the range in which the wavelength of the excitation beam is found (λexc = 532 nm), whereas for wavelengths in the range of 565–800 nm it presents an 85% transmission. We expect that the in-vivo cochineal fluorescence emission should be mainly located in this last spectral region, based on the findings reported in previous research works for solutions of carminic acid in methanol19,20,23.
    Carminic acid fluorescence standard
    As a part of this research, we proposed the use of a segment from a carmine colored pencil (Ekuz Carmín, AZOR) as a fluorescence standard due to the absence of a commercial one in our laboratory. This homemade fluorescence standard was used to calibrate the spectra acquisition optical setup. The standard was obtained by cutting a 5 mm segment of the carmine colored pencil with a razor blade (Stainless blade, Dorco, Co.) to achieve a finer cut. Then, this segment was situated inside a plastic piece in an annulus-shape to provide protection and handling during fluorescence measurements. Finally, its face of greater diameter was polished with fine grit sandpaper (B-99 1000, Fandeli, México) to get a smooth plane surface. The opposite face was adhered to the sample-holder while the polished one was placed perpendicular to the optical axis of the 10 × objective lens so that the excitation light impinges on it allowing the optimization of the fluorescence signal recorded by the optical setup.
    In order to test the temporal stability of the carminic acid fluorescence standard, a continuous acquisition of fluorescence spectra was performed by using the optical setup previously shown in Fig. 5. To do so, the excitation light source was turned on 30 min before the measurements. Then, the spectra acquisition was done one after the other by allowing the excitation light hits on the standard to detect its fluorescence, immediately blocking this radiation while its spectrum was recorded, and so on until 10 spectra were recorded.
    Biological samples and reproduction model
    The cochineal samples used in this research come from a cladode infected with this pest donated by farmers from the Sociedad Cooperativa Productora Agropecuaria de Nopal Tlanalapa S.C. de R. L. de C.V., from the state of Hidalgo, Mexico.
    For its survival, this pest was reproduced in the Biomedical Optics Laboratory of the Polytechnic University of Tulancingo, according to the reproduction model illustrated in Fig. 6, in a small-implemented orchard of plastic pots. In these pots were planted healthy adult cladodes of approximate dimensions of 40 × 20 × 2 cm; these cladodes were intentionally infected with this pest.
    Figure 6

    Reproduction model of the cochineal pest in a pot with adult cladodes near an infected cladode with active wild cochineal. Observe, in the center of the pot and between the two healthy cladodes, the infected cladode.

    Full size image

    As observed, in a plastic pot with a diameter approximately of 20 cm, two healthy cladodes were planted with the cladode infected with the cochineal pest placed between them. The spread of the pest is carried out through the points of contact between cladodes, which in this case were the thorns of each specimen, the separation distance between them was 1.5–3 cm approximately. Since the first stage of cochineal pest is mobile, during migration to other parts of the cladode, some cochineals fell to the ground infecting it from the base.
    If we consider that in literature it has been reported that during oviposition females deposit about 419 eggs4 and we note that in our reproduction model both sides of the infected cladode have about 30 colonies conformed of 1–4 adult cochineal per side, then it is assumed that the spread of the pest towards the healthy cladodes with an infected cladode is enough to contaminate. This was visually verified by observing that during the course of two days both cladodes were already contaminated. In other variants of the reproduction model it was verified that a cladode with the pest is enough to infect four to five adult cladodes approximately of similar dimensions to those used in this study. This reproduction procedure allows us to have several groups of pots where the cochineals are in different maturation stages. The reproduction model proposed in this work is similar to the previously reported reproduction methods14,15,28,29 where the planting of the cladodes is also done in pots, however, the pest infestation is carried out in a different way from the one proposed in this work.
    In order for the pest to maintain an appropriate lifecycle, the pots are taken out the laboratory to expose the cladodes to sunlight during the day, taking care to avoid the rain and predators that could put the cochineals at risk. In the evening, approximately at 6 o’clock, the pots are returned to their resting place in the laboratory for their care, conservation and adequate control for this study. To be specific, in this study a photoperiod of 9 ± 1 h of direct solar radiation was stablished, to later leave the pots inside the laboratory in absolute darkness, until the next day. This photoperiod was applied for 3 months, for covering the life cycle of the cochineals (90 days approx.). A script development in MATLAB R2014a (The MathWorks, Inc.) software was performed to process the solar radiation detected by the UPT weather station (Vantage Pro2, Davis Instruments Corp.), as shown in Fig. 7, during the last five days of photoperiod from June 01st to 05th, which correspond also to the end of life cycle of the cochineal.
    Figure 7

    Solar radiation as a function of time (09:00–18:00 h) of the last five days of photoperiod and life cycle of the cochineal. The maximum solar radiation was between 13:00 and 14:20 h, recording a maximum solar radiation of 1037 to 1322 W/m2.

    Full size image

    Note that the photoperiod was established in the time range of 09:00–18:00 h, (0–540 min in graphs), corresponding to the time in which the reproduction model was exposed to direct sunlight, so that at the end of the day was placed again inside the laboratory. Figure 7 shows the following data: date, time of maximum solar radiation, also in minutes, and the value of solar radiation [W/m2], corresponding to each graph of this figure.
    The values of temperature and humidity, external (blue line) and internal (red line), recorded by the UPT weather station during the fluorescence spectra acquisition period for each set presented in this work, were processed in a script developed in MATLAB R2014a (The MathWorks, Inc.) software. In Fig. 8 are shown temperature and humidity as a function of time in a temporal range of 35 min, approximately.
    Figure 8

    Temperature and humidity (external and internal) registered by the UPT weather station (Vantage Pro2, Davis Instruments Corp.) during the experimental fluorescence measurements for each cochineal set.

    Full size image

    The measurement periods of each cochineal set, comprise around 35 min, where most of the cases were performed from 18:10 to 20:15 h. In this figure, data of temperature and humidity recorded by the UPT weather station were plotted, both external and internal with respect to the CIDETyP (Centro de Investigación, Desarrollo Tecnológico, Transferencia de Tecnología y Posgrado) building where the Biomedical Optics Laboratory is located. In Table 3 the temperature and humidity related to six replicates of our experiment are shown, since the cochineal life cycle (approximately 90 days) to the spectral measurement of the cochineal sets (set 0–5). These data are arranged by stage, date, temperature and humidity. These two lasts are in turn divided into the information collected from an online weather service page (WeatherOnline Online Services, www.weatheronline.mx) and by the UPT weather station (Vantage Pro2, Davis Instruments Corp., www.davisinstruments.com). The values, corresponding to temperature and humidity recorded by the UPT weather station, are the result of an average of the data plotted in Fig. 8.
    Observe that, in Table 3 exist differences between the temperature and humidity provided by the online weather service page and the UPT weather station. In this regard, since the data from the UPT weather station contain local information of the environment where both the growth of the pest in the reproduction model and the experimental fluorescence measurements were made, these values of temperature and humidity have been adopted in this work.
    Selection of the samples to study spectrally
    For this study 3 live-female cochineals of different sizes were selected, of around 480 µm for the small cochineal, 540 µm for the medium cochineal and 790 µm for the largest cochineal. These sizes were determined with a script developed in MATLAB R2014a (The MathWorks, Inc.) software reported in the work of Cárdenas23. We assumed that the cochineals are infesting the cladode, in other words feeding from the sap, given their morphological features and size observed and compared with those referred in the available literature4.
    Sample preparation
    In order to prepare the biological samples to be studied spectrally, a segment of approximately 6 mm long was cut from one of the infected cladodes planted in the laboratory. The three cochineals previously classified in different sizes were found in this portion as shown in Fig. 9a, where, according to their lifecycle, they are in the stage of nymph I (crawler) and II, that is, in their early growth stages with 23 days old. This cladode portion was fixed on the round base of a plastic cylinder with a glue stick (Lápiz adhesivo DIXON, 36 g). The other end of the round base was inserted inside of an aluminum ring to which two magnets were attached with adhesive (Kola Loka Brocha, 5 GRS) to the sides with 90° in respect to the other, which allows for the proper placement of the sample in the pinhole mount of the magnetic positioning device during fluorescence measurements. Figure 9b shows the lateral view of the sample-holder, where it can be seen that the plastic round base and the sample protrude from the aluminum ring. This device allows us to keep considerable distances and displacements between the sample and the 10 × objective microscope lens during fluorescence measurements as shown in Fig. 9c.
    Figure 9

    Sample. (a) Top view of the biological sample composed by a portion of cladode with presence of female cochineals classified in sizes S, M and L, indicated by yellow arrows. (b) Homemade sample-holder for the in-vivo measurement of fluorescence spectra from cochineals in their natural habitat, composed by a cylindrical plastic base where the biological sample is adhered on its top surface and an aluminum ring with two disk-shaped magnets for immobilization purposes. (c) Picture taken during the in-vivo fluorescence study of the cochineals in their natural habitat, when the cladode portion with the cochineals in nymph I and II stages is fitted on the sample-holder of the experimental setup.

    Full size image

    Measuring procedure of the fluorescence spectra
    The in-vivo fluorescence spectra measurements from the cochineals were performed using the optical setup described at the beginning of this section under laboratory conditions of complete darkness, at a temperature range from 20 to 25 °C as well as a relative humidity range from 42 to 80%. Additionally, it was necessary to turn on the excitation laser 30 min before the measurements began in order to achieve a stable fluorescence signal. During this time the output of the laser was obstructed with a dark piece of cardboard to avoid photodegradation of the sample, which was already placed in the sample-holder. Subsequently, the sample was approached to the edge of a dark colored, 374 µm thin plastic sheet, located just at the focal distance of the objective lens. Knowing the thickness of this sheet allows for the sample to be placed at the focal distance of the microscope objective once the plastic sheet is removed by moving properly the sample with the micrometric mechanism along the z-axis. This guarantees that recorded spectra of the cochineal are carried out “correctly”, that is, when the excitation focal point is on the highest part of the surface of this insect.
    Once in this location, 10 fluorescence spectra were acquired from each one of the cochineals selected and located in the cladode portion. Three displacements of the sample holder were performed on the z-axis, moving the sample away from and then back toward to the focus plane of the laser excitation beam. Finally, these fluorescence spectra were averaged using a script development in MATLAB R2014a (The MathWorks, Inc.) software, obtaining a smoothed average spectrum of each cochineal as well as the standard deviation between them.
    Figure 9c shows a lateral view of the way in which the fluorescence measurements of the in-vivo cochineals were performed. This view, of the interaction area of the excitation beam with a cochineal, allow us to observe that the spot size of the excitation laser is wide enough to cover completely the body of the cochineal.
    Statistical analysis
    Ten fluorescence spectra were acquired from each cochineal of different size that was present in the biological samples. These spectra were processed with a script developed by the authors in MATLAB R2014a (The MathWorks, Inc.) software, obtaining a smoothed average spectrum of each cochineal as well as its standard deviation. Figures for comparative fluorescence spectra of cochineals of different sizes show average values of fluorescence intensity and its standard deviation (errors bars). Control of reference fluorescence spectra of the background medium (cladode) and a homemade fluorescence standard were taken in all the experiments. Experiments were replicated in five sets of biological samples containing cochineals of similar sizes as is shown in Fig. 10 (see Table 1, which is complementary to this figure below). Statistical analysis of the fluorescence intensity at four wavelengths namely 620, 640, 660 nm and 760 nm were carried out using ANOVA test for the three cochineal sizes (small, medium and large) in each of the five available samples. The statistical values were computed using the Minitab 16 (Minitab, LLC.) software, where the computed p values  More

  • in

    Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite

    Overall similar genomic and functional repertoires of specialist and generalist wasps
    We first sequenced and de novo assembled the reference genomes of Lh and Lb. The generalist species Lh was fully sequenced with PacBio long reads (Supplementary Table 1), which yielded a 487 Mb genome assembly with high continuity (N50 = 2.18 Mb; Supplementary Table 2). The specialist species Lb was sequenced and assembled with 170-fold Illumina read coverage and paired-end sequencing data from five long-insert libraries (up to 13 Kb; Supplementary Table 3). Although the assembled Lb genome had a lower N50 size (480 Kb) and smaller genome size (324 Mb), both the Lh and Lb genomes showed high completeness based on BUSCO and CEGMA assessments (Supplementary Table 2). The difference in genome sizes between Lh and Lb was likely determined by their repeat contents, as 51.47% of the Lh genome was annotated as repeat content in comparison with a 33.79% ratio in the Lb genome (Supplementary Table 4). The average GC contents of the Lh and Lb genomes were 27 and 26%, respectively, indicating that Leptopilina genomes are remarkably AT-rich. Interestingly, unlike the uniform distribution in Lb, the Lh genome shows a secondary peak enriched with scattered genomic windows of remarkably low GC content (16%; Supplementary Fig. 2).
    We identified 11,881 and 11,054 protein-coding genes as the official gene sets for Lh and Lb, respectively (Supplementary Table 5). These gene sets were mainly generated by an integrated pipeline, and those retained had evidence from either a full-length transcriptome of pooled developmental stages or high-confidence homology with Insecta genes (see “Methods”). Ortholog analyses across 10 hymenopteran genomes suggested that the genomes of both these parasitoid species maintained a typical hymenopteran gene repertoire (Supplementary Fig. 3). Compared with those of other sequenced insects, the gene numbers of these two Leptopilina species are relatively small, largely due to their low proportions of patchy genes that were not vertically inherited along speciation (Supplementary Fig. 3). We manually annotated several representative gene families or pathways that are strongly associated with the biology of parasitoid wasps (Fig. 1c). The genomes of Leptopilina encode more olfactory receptor (OR) genes than those of other parasitoids except Nasonia vitripennis, while they encode the fewest gustatory receptor (GR) genes. Genes associated with metabolic and immune pathways in Leptopilina were shown to be more or less the same as those in other hymenopteran species. Because consistent patterns within a phylogenetic context were not available, we did not gain informative insights into the gene family variations underlying the divergence between Leptopilina and other Parasitoida species.
    The divergence time between the two Leptopilina species was estimated to be approximately 40 Mya, and those between the sublineages of Parasitoida (e.g., Cynipoidea and Chalcidoidea) were estimated to be as distant as hundreds of millions of years (Fig. 1c), consistent with the tremendous diversification of parasitoids17,18. Thus we focused on making detailed comparisons within Leptopilina. The gene repertoires of Lh and Lb shared 8050 (~75%) orthologous pairs (Fig. 1d) with an average sequence identity of 85.6% at the amino acid (aa) level. We calculated the ratio of synonymous-to-nonsynonymous substitutions (dN/dS) to characterize the genes and functional modules associated with the divergence between Lh and Lb. Only four pathways were found to have significantly elevated dN/dS values (Z-test P  More

  • in

    Genetic and demographic history define a conservation strategy for earth’s most endangered pinniped, the Mediterranean monk seal Monachus monachus

    1.
    Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).
    PubMed  Article  Google Scholar 
    2.
    Said, M. Y. et al. Effects of extreme land fragmentation on wildlife and livestock population abundance and distribution. J. Nat. Cons. 34, 151–164 (2016).
    Article  Google Scholar 

    3.
    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 1–617 (Cambridge University Press, Cambridge, 2002).
    Google Scholar 

    4.
    Lacy, R. C. Importance of genetic variation to the viability of mammalian populations. J. Mammal. 78, 320–335 (1997).
    Article  Google Scholar 

    5.
    Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Marín, J. C. et al. Mitochondrial phylogeography and demographic history of the vicuna: Implications for conservation. Heredity 99, 70–80 (2007).
    PubMed  Article  CAS  Google Scholar 

    7.
    Karamanlidis, A. A. & Dendrinos, P. Monachus monachus. The IUCN Red List of Threatened Species 2015: e.T13653A45227543 (2015).

    8.
    Karamanlidis, A. A. et al. The Mediterranean monk seal Monachus monachus: Status, biology, threats, and conservation priorities. Mamm. Rev. 46, 92–105 (2016).
    Article  Google Scholar 

    9.
    Karamanlidis, A. A., Adamantopoulou, S., Tounta, E. & Dendrinos, D. Monachus monachus Eastern Mediterranean subpopulation. The IUCN Red List of Threatened Species 2019, e.T120868935A120869697 (2019).

    10.
    Dendrinos, D. et al. LIFE-IP 4 NATURA: Integrated actions for the conservation and management of Natura 2000 sites, species, habitats and ecosystems in Greece. Deliverable Action A.1: Action Plan for the Mediterranean monk seal (Monachus monachus). 1–105; Annexes 112p (Hellenic Ministry of Environment and Energy, 2020).

    11.
    Piggott, M. P. & Taylor, A. C. Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl. Res. 30, 1–13 (2003).
    Article  Google Scholar 

    12.
    Pastor, T. et al. Genetic diversity and differentiation between the two remaining populations of the critically endangered Mediterranean monk seal. Anim. Conserv. 10, 461–469 (2007).
    Article  Google Scholar 

    13.
    Karamanlidis, A. A. et al. Shaping species conservation strategies using mtDNA analysis: The case of the elusive Mediterranean monk seal (Monachus monachus). Biol. Conserv. 193, 71–79 (2016).
    Article  Google Scholar 

    14.
    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).
    PubMed  Article  Google Scholar 

    15.
    Rey-Iglesia, A. et al. Mitogenomics of the endangered Mediterranean monk seal (Monachus monachus) reveals dramatic loss of diversity and supports historical gene-flow between Atlantic and eastern Mediterranean populations. Zool. J. Linn. Soc. 20, 1–13 (2020).
    Google Scholar 

    16.
    Dayon, J. et al. Development and characterization of nineteen microsatellite loci for the endangered Mediterranean monk seal Monachus monachus. Mar. Biodiv. 50, 1–7 (2020).

    17.
    Brandström, M. & Ellegren, H. Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Gen. Res. 18, 881–887 (2008).
    Article  CAS  Google Scholar 

    18.
    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley, New York, 2009).
    Google Scholar 

    19.
    Tokarska, M., Pertoldi, C., Kowalczyk, R. & Perzanowski, K. Genetic status of the European bison Bison bonasus after extinction in the wild and subsequent recovery. Mamm. Rev. 41, 151–162 (2011).
    Article  Google Scholar 

    20.
    Casas-Marce, M. et al. Spatio-temporal dynamics of genetic variation in the Iberian Lynx along its path to extinction reconstructed with ancient DNA. Mol. Biol. Evol. 34, 2893–2907 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Hasselgren, M. et al. Genetic rescue in an inbred Arctic fox (Vulpes lagopus) population. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 285, 20172814 (2018).
    Google Scholar 

    22.
    Mills, L. S. & Allendorf, F. W. The One-Migrant-per-Generation rule in conservation and management. Conserv. Biol. 10, 1509–1518 (1996).
    Article  Google Scholar 

    23.
    Heber, S. et al. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 280, 20122228 (2013).
    CAS  Google Scholar 

    24.
    Greenbaum, G., Templeton, A. R., Zarmi, Y. & Bar-David, S. Allelic richness following population founding events—A stochastic modeling framework incorporating gene flow and genetic drift. PLoS ONE 9, e115203 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Vucetich, J. A. & Waite, T. A. Is one migrant per generation sufficient for the genetic management of fluctuating populations?. Anim. Conserv. 3, 261–266 (2000).
    Article  Google Scholar 

    26.
    Waples, R. S. in: Population viability analysis (eds S.R. Beissinger & D.R. McCullough), 147–168 (University of Chicago Press, 2002).

    27.
    Lynch, M. & Lande, R. The critical effective size for a genetically secure population. Anim. Cons. For. 1, 70–72 (1998).
    Article  Google Scholar 

    28.
    Johnson, C. N. Sex-biased philopatry and dispersal in mammals. Oecologia 69, 626–627 (1986).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Oosthuizen, W. C. et al. Dispersal and dispersion of southern elephant seals in the Kerguelen province, Southern Ocean. Antarct.sSci. 23, 567–577 (2011).
    ADS  Article  Google Scholar 

    30.
    Fabiani, A., Galimberti, F., Sanvito, S. & Hoelzel, A. R. Relatedness and site fidelity at the southern elephant seal, Mirounga leonina, breeding colony in the Falkland Islands. Anim. Behav. 72, 617–626 (2006).
    Article  Google Scholar 

    31.
    Hofmeyr, G. J. G., Kirkman, S. P., Pistorius, P. A. & Bester, M. N. Natal site fidelity by breeding female southern elephant seals in relation to their history of participation in the winter haulout. Afr. J. Mar. Sci. 34, 373–382 (2012).
    Article  Google Scholar 

    32.
    Dendrinos, P. et al. Pupping habitat use in the Mediterranean monk seal: A long-term study. Mar. Mamm. Sci. 23, 615–628 (2007).
    Article  Google Scholar 

    33.
    Gücü, A. C., Gücü, G. & Orek, H. Habitat use and preliminary demographic evaluation of the critically endangered Mediterranean monk seal (Monachus monachus) in the Cilician Basin (Eastern Mediterranean). Biol. Conserv. 116, 417–431 (2004).
    Article  Google Scholar 

    34.
    Valtonen, M. et al. Causes and consequences of fine-scale population structure in a critically endangered freshwater seal. BMC Ecol. 14, 22 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Karamanlidis, A. A., Dendrinos, P., Tounta, E. & Kotomatas, S. Monitoring human activity in an area dedicated to the protection of the endangered Mediterranean monk seal. Coast. Manag. 32, 293–306 (2004).
    Article  Google Scholar 

    36.
    Karamanlidis, A. A. et al. An interview-based approach to assess seal—small-scale fishery interactions informs the conservation strategy of the endangered Mediterranean monk seal. Aquat. Cons. Mar. Freshw. Ecos. 30, 928–936 (2020).
    Article  Google Scholar 

    37.
    Karamanlidis, A. A. Establishment of the “Hellenic Monk Seal Register”. Final report of a grant award from the Marine Mammal Commission to MOm/Hellenic Society for the Study and Protection of the Monk seal. 1–25 (2017).

    38.
    Stoffel, M. A. et al. Demographic histories and genetic diversity across pinnipeds are shaped by human exploitation, ecology and life-history. Nat. Commun. 9, 1–12 (2018).
    Article  CAS  Google Scholar 

    39.
    Gaubert, P. et al. Insights from 180 years of mitochondrial variability in the endangered Mediterranean monk seal (Monachus monachus). Mar. Mamm. Sci. 35, 1489–1511 (2019).
    Article  Google Scholar 

    40.
    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
    Article  Google Scholar 

    41.
    Hoelzel, A. R. et al. Impact of a population bottleneck on symmetry and genetic diversity in the northern elephant seal. J. Evol. Biol. 15, 567–575 (2002).
    Article  Google Scholar 

    42.
    Allen, P. J., Amos, W., Pomeroy, P. P. & Twiss, S. D. Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies. Mol. Ecol. 4, 653–662 (1995).
    CAS  PubMed  Article  Google Scholar 

    43.
    Goodman, S. J. Molecular population genetics of the European harbour seal (Phoca vitulina) with reference to the 1988 phocine distemper virus epizootic PhD thesis thesis, University of Cambridge, (1995).

    44.
    Coltman, D. W., Bowen, W. D. & Wright, J. M. PCR primers for harbour seal (Phoca vitulina concolour) microsatellites amplify polymorphic loci in other pinniped species. Mol. Ecol. 5, 161–163 (1996).
    CAS  PubMed  Article  Google Scholar 

    45.
    Goodman, S. J. Patterns of extensive genetic differentiation and variation among European harbor seals (Phoca vitulina vitulina) revealed using microsatellite DNA polymorphisms. Mol. Biol. Evol. 15, 104–118 (1998).
    CAS  PubMed  Article  Google Scholar 

    46.
    Pastor, T. et al. Low genetic variability in the highly endangered Mediterranean monk seal. J. Hered. 95, 291–300 (2004).
    CAS  PubMed  Article  Google Scholar 

    47.
    Schultz, J. K., Marshall, A. J. & Pfunder, M. Genome-wide loss of diversity in the critically endangered Hawaiian monk seal. Diversity 2, 863–880 (2010).
    CAS  Article  Google Scholar 

    48.
    Mihnovets, A. N. et al. A novel microsatellite multiplex assay for the endangered Hawaiian monk seal (Neomonachus schauinslandi). Con. Gen. Res. 8, 91–95 (2016).
    Article  Google Scholar 

    49.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Jombart, T., Devillard, S. & Durfour, A.-B. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101, 92–103 (2008).
    CAS  PubMed  Article  Google Scholar 

    51.
    Upton, G. & Fingleton, B. Spatial Data Analysis by Example. Volume 1: Point Pattern and Quantitative Data (Wiley, New York, 1985).
    Google Scholar 

    52.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).

    53.
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  Article  Google Scholar 

    54.
    Forbes, S. H. & Hogg, J. T. Assessing population structure at high levels of differentiation: Microsatellite comparisons of bighorn sheep and large carnivores. Anim. Cons. For. 2, 223–233 (1999).
    Article  Google Scholar 

    55.
    Hardy, O. J. & Vekemans, X. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).
    Article  CAS  Google Scholar 

    56.
    Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubicaceae). Am. J. Bot. 82, 1420–1425 (1995).
    Article  Google Scholar 

    57.
    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Engels, W. R. Exact tests for Hardy–Weinberg proportions. Genetics 183, 1431–1441 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    HWxtest: Exact Tests for Hardy–Weinberg proportions. R package version 1.1.7. (2016).

    60.
    Karamanlidis, A. A. et al. History-driven population structure and assymetric gene flow in a recovering large carnivore at the rear-edge of its European range. Heredity 120, 168–182 (2018).
    CAS  PubMed  Article  Google Scholar 

    61.
    Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Res. 11, 141–145 (2011).
    Article  Google Scholar 

    62.
    Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184 (2006).
    Article  Google Scholar 

    63.
    Waples, R. S. & Do, C. H. I. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).
    PubMed  Article  Google Scholar 

    64.
    Do, C. et al. NeEstimator V2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Res. 14, 209–214 (2014).
    CAS  Article  Google Scholar 

    65.
    Waples, R. S. & Do, C. LdNe: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Res. 8, 753–756 (2008).
    Article  Google Scholar  More