More stories

  • in

    Modelling seasonal patterns of larval fish parasitism in two northern nearshore areas in the Humboldt Current System

    1.
    Moyano, M., Rodríguez, J. M. & Hernández-León, S. Larval fish abundance and distribution during the late winter bloom off Gran Canaria Island, Canary Islands. Fish Oceanogr. 18, 51–61 (2009).
    Article  Google Scholar 
    2.
    Sutherland, K., Strydom, N. A. & Wooldridge, T. H. Composition, abundance, distribution and seasonality of larval fishes in the Sundays Estuary, South Africa. Afr. Zool. 47, 229–244 (2012).
    Article  Google Scholar 

    3.
    Sun, D., Blomberg, S. P., Cribb, T. H., McCormick, M. I. & Grutter, A. S. The effects of parasites on the early life stages of a damselfish. Coral Reefs 31, 1065–1075 (2012).
    ADS  Article  Google Scholar 

    4.
    Palacios-Fuentes, P., Landaeta, M. F., Muñoz, G., Plaza, G. & Ojeda, F. P. The effects of a parasitic copepod on the recent larval growth of a fish inhabiting rocky coasts. Parasitol. Res. 111, 1661–1671 (2012).
    PubMed  Article  Google Scholar 

    5.
    Muñoz, G., Landaeta, M. F., Palacios-Fuentes, P., López, Z. & González, M. T. Parasite richness in fish larvae from the nearshore waters of central and northern Chile. Folia Parasite. 62, 029 (2015).
    Google Scholar 

    6.
    Ribeiro, F., Hilton, E. J. & Carnegie, R. B. High prevalence and potential impacts of caligid ectoparasites on larval atlantic croaker (Micropogonias undulatus) in the Chesapeake Bay. Estuar. Coasts 39, 583–588 (2016).
    Article  Google Scholar 

    7.
    Jahnsen-Guzmán, N., Bernal-Durán, V. & Landaeta, M. F. Parasitic copepods affect morphospace and diet of larvae of a temperate reef fish. J. Fish. Biol. 92, 330–346 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    8.
    González, M. T. & Acuña, E. Influence of host size and sex on the endohelminth infracommunities of the red rockfish Sebastes capensis off Northern Chile. J. Parasitol. 86, 854–857 (2000).
    PubMed  Article  Google Scholar 

    9.
    Poulin, R. Are there general laws in parasite ecology?. Parasitology 134, 763–776 (2007).
    CAS  PubMed  Article  Google Scholar 

    10.
    Fogelman, R. M. & Grutter, A. S. Mancae of the parasitic cymothoid isopod, Anilocra apogonae: Early life history, host-specificity, and effect on growth and survival of preferred young cardinal fishes. Coral Reefs 27, 685 (2008).
    ADS  Article  Google Scholar 

    11.
    Muñoz, G., Landaeta, M. F., Palacios-Fuentes, P. & George-Nascimento, M. Parasites of fish larvae: Do they follow metabolic energetic laws?. Parasitol. Res. 114, 3977–3987 (2015).
    PubMed  Article  Google Scholar 

    12.
    Felley, S. M., Vecchione, M. & Hare, S. G. F. Incidence of ectoparasitic copepods on ichthyoplankton. Copeia 3, 778–782 (1987).
    Article  Google Scholar 

    13.
    Landaeta, M. F. et al. Spatial and temporal variations of coastal fish larvae, ectoparasites and oceanographic conditions off central Chile. Rev. Biol. Mar. Oceanogr. 50, 563–574 (2015).
    Article  Google Scholar 

    14.
    Boxshall, G.A. Crustacean parasites (Copepoda). In Marine Parasitology. (ed. Rohde, K.) 23–138 (CABI, Oxon, 2005).

    15.
    Brooker, A. J., Shinn, A. P. & Bron, J. E. A review of the biology of the parasitic copepod Lernaeocera branchialis (L., 1767) (Copepoda, Pennellidae). Adv. Parasit. 65, 297–341 (2007).
    Article  Google Scholar 

    16.
    Rohde, K. Marine Parasitology (Csiro Publishing, Collingwood, 2005).
    Google Scholar 

    17.
    Poulin, R. Variation in infection parameters among populations within parasite species: Intrinsic properties versus local factors. Int. J. Parasitol. 36, 877–885 (2006).
    PubMed  Article  Google Scholar 

    18.
    Begon, M., Harper, J. L. & Townsend, C. R. Ecology: Individuals, Populations and Communities (Blackwell Scientific Publications, Hoboken, 1986).
    Google Scholar 

    19.
    Thiel, M. et al. The Humboldt Current System of northern and central Chile: Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. Annu. Rev. 45, 195–344 (2007).
    Google Scholar 

    20.
    Paredes, L. D., Landaeta, M. F. & González, M. T. Larval fish assemblages in two nearshore areas of the Humboldt Current System during autumn-winter in northern Chile. Rev. Biol. Mar. Oceanogr. 53, 63–76 (2018).
    Article  Google Scholar 

    21.
    Escribano, R., Rosales, S. A. & Blanco, J. L. Understanding upwelling circulation off Antofagasta (northern Chile): A three-dimensional numerical-modeling approach. Cont. Shelf. Res. 24, 37–53 (2004).
    ADS  Article  Google Scholar 

    22.
    Pérez, R. Desarrollo embrionario y larval de los pejesapos Sycyases sanguineus y Gobiesox marmoratus en la bahía de Valparaíso, Chile, con notas sobre su reproducción (Gobiesocidae: Pisces). Lat. Am. J. Aquat. Res. 9, 1–24 (1981).
    Google Scholar 

    23.
    Herrera, G. Descripción de estados post-embrionales de Ophiogobius jenynsi Hoese 1976 (Gobiidae: Blennioidei). Rev. Biol. Mar. Oceanogr. 20, 159–168 (1984).
    Google Scholar 

    24.
    Zavala-Muñoz, F., Landaeta, M. F., Bernal-Durán, V., Herrera, G. A. & Brown, D. I. Larval development and shape variation of the kelpfish Myxodes viridis (Teleostei: Clinidae). Sci. Mar. 80, 39–49 (2016).
    Article  Google Scholar 

    25.
    González, M. T., Castro, R., Muñoz, G. & López, Z. Sea lice (Siphonostomatoida: Caligidae) diversity on littoral fishes from the south-eastern Pacific coast determined from morphology and molecular analysis, with description of a new species (Lepeophtheirus confusum). Parasitol. Int. 65, 685–695 (2016).
    PubMed  Article  CAS  Google Scholar 

    26.
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997).
    CAS  PubMed  Article  Google Scholar 

    27.
    Zar, J. H. Biostatistical Analysis (Prentice Hall, Upper Saddle River, 1999).
    Google Scholar 

    28.
    Stefansson, G. Analysis of groundfish survey abundance data: Combining the GLM and delta approaches. ICES J. Mar. Sci. 53, 577–588 (1996).
    Article  Google Scholar 

    29.
    Aitchison, J. On the distribution of a positive random variable having a discrete probability mass at the origin. J. Am. Stat. Assoc. 50, 901–908 (1955).
    MathSciNet  MATH  Google Scholar 

    30.
    Pennington, J. T. Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39, 281–286 (1983).
    Article  Google Scholar 

    31.
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effect Models and Extensions in Ecology with R (Springer Science & Business Media, New York, 2009).
    Google Scholar 

    32.
    Akaike, H. A. new look at the statistical model identification. IEEE Trans. Autom. Control. 19(6), 716–723 (1974).
    ADS  MathSciNet  MATH  Article  Google Scholar 

    33.
    McCullagh, P. & Nelder, J. A. Generalized Linear Models (Chapman & Hall, London, 1989).
    Google Scholar 

    34.
    Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304 (2004).
    MathSciNet  Article  Google Scholar 

    35.
    Fox, J., & Sanford, W. Car: Companion to applied regression. R Package Version 2, 0–2 http://CRAN.R-project.org/package=car (Accessed 15 Nov 2013) (2010).

    36.
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. The R Development Core Team. nlme: Linear and nonlinear mixed effects models. R Package Version 3.1-111. in: 3.1-111, R.p.v (Ed.) (2013).

    37.
    Mansur, L., Plaza, G., Landaeta, M. F. & Ojeda, F. P. Planktonic duration in fourteen species of intertidal rocky fishes from the south-eastern Pacific Ocean. Mar. Freshw. Res. 65, 901–909 (2014).
    Article  Google Scholar 

    38.
    Raventós, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 38, 1115–1120 (2001).
    Google Scholar 

    39.
    Grutter, A. S., Cribb, T. H., McCallum, H., Pickering, J. L. & McCormick, M. I. Effects of parasites on larval and juvenile stages of the coral reef fish Pomacentrus moluccensis. Coral Reefs 29, 31–40 (2010).
    ADS  Article  Google Scholar 

    40.
    Duong, B. et al. Parasites of coral reef fish larvae: Its role in the pelagic larval stage. Coral Reefs 38, 199–214 (2019).
    ADS  Article  Google Scholar 

    41.
    Palacios-Fuentes, P., Landaeta, M. F., Jahnsen-Guzmán, N., Plaza, G. & Ojeda, F. P. Hatching patterns and larval growth of a triplefin from central Chile inferred by otolith microstructure analysis. Aquat. Ecol. 48, 259–266 (2014).
    CAS  Article  Google Scholar 

    42.
    Landaeta, M.F., Díaz-Richter, C. & Muñoz, G. Larval parasitic copepods affect early life history traits of a temperate clingfish. Parasitol. Res. 119(12), 3977–3985 (2020).

    43.
    Díaz-Astudillo, M. et al. The influence of regional and local oceanography in early stages of marine fishes from temperate rocky reefs. Mar. Biol. 166, 42 (2019).
    Article  Google Scholar 

    44.
    Fields, D. M., Skiftesvik, A. B. & Browman, H. I. Behavioural responses of infective-stage copepodids of the salmon louse (Lepeophtheirus salmonis, Copepoda: Caligidae) to host-related sensory cues. J. Fish. Dis. 41, 875–884 (2018).
    CAS  PubMed  Article  Google Scholar 

    45.
    Palacios-Fuentes, P. et al. Is ectoparasite burden related to host density? Evidence from nearshore fish larvae off the coast of central Chile. Aquat. Ecol. 49, 91–98 (2015).
    Article  Google Scholar 

    46.
    Montory, J. A. et al. Early development of the ectoparasite Caligus rogercresseyi under combined salinity and temperature gradients. Aquaculture 486, 68–74 (2018).
    Article  Google Scholar 

    47.
    Uribe, R. A., Ortiz, M., Macaya, E. C. & Pacheco, A. S. Successional patterns of hard-bottom microbenthic communities at kelps bed (Lessonia trabeculata) and barren ground sublittoral systems. J. Exp. Mar. Biol. Ecol. 472, 180–188 (2015).
    Article  Google Scholar 

    48.
    Landaeta, M. F., Nowajewski, V., Paredes, L. D. & Bustos, C. A. Early life history traits of the blenny Auchenionchus crinitus (Teleostei: Labrisomidae) off northern Chile. J. Mar. Biol. Assoc. U. K. 99, 969–974 (2019).
    CAS  Article  Google Scholar 

    49.
    Muñoz, G. & Olmos, V. Revisión bibliográfica de especies ectoparásitas y hospedadoras de sistemas acuáticos de Chile. Rev. Biol. Mar. Oceanogr. 42, 89–148 (2007).
    Article  Google Scholar  More

  • in

    Win-stay/lose-switch, prospecting-based settlement strategy may not be adaptive under rapid environmental change

    1.
    Orians, G. H. & Wittenberger, J. F. Spatial and temporal scales in habitat selection. Am. Nat. 137, S29–S49 (1991).
    Article  Google Scholar 
    2.
    Doligez, B., Cadet, C., Danchin, E. & Boulinier, T. When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim. Behav. 66, 973–988 (2003).
    Article  Google Scholar 

    3.
    Schmidt, K. A., Dall, S. R. X. & van Gils, J. A. The ecology of information: an overview on the ecological significance of making informed decisions. Oikos 119, 304–316 (2010).
    Article  Google Scholar 

    4.
    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).
    Article  Google Scholar 

    5.
    Fletcher, R. J., Orrock, J. L. & Robertson, B. A. How the type of anthropogenic change alters the consequences of ecological traps. Proc. R. Soc. B 279, 2546–2552 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Robertson, B. A., Rehage, J. S. & Sih, A. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evol. 28, 552–560 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Cosmides, L. & Tooby, J. From evolution to behavior: evolutionary psychology as the missing link. In The Latest on the Best: Essays on Evolution and Optimality (ed. Dupré, J.) 227–306 (MIT Press, Cambridge, 1987).
    Google Scholar 

    8.
    Sih, A., Trimmer, P. C. & Ehlman, S. M. A conceptual framework for understanding behavioural responses to HIREC. Curr. Opin. Behav. Sci. 12, 109–114 (2016).
    Article  Google Scholar 

    9.
    Trimmer, P. C., Barrett, B. J., McElreath, R. & Sih, A. Rapid environmental change in games: complications and counter-intuitive outcomes. Sci. Rep. 9, 7373 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    10.
    Crowley, P. H. et al. Predicting habitat choice after rapid environmental change. Am. Nat. 193, 619–632 (2019).
    PubMed  Article  Google Scholar 

    11.
    Gomulkiewicz, R. & Holt, R. D. When does evolution by natural selection prevent extinction?. Evolution 49, 201–207 (1995).
    PubMed  Article  Google Scholar 

    12.
    Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).
    Article  Google Scholar 

    13.
    Kokko, H. & Sutherland, W. J. Ecological traps in changing environments: ecological and evolutionary consequences of a behaviourally mediated Allee effect. Evol. Ecol. Res. 3, 603–610 (2001).
    Google Scholar 

    14.
    Greggor, A. L., Trimmer, P. C., Barrett, B. J. & Sih, A. Challenges of learning to escape evolutionary traps. Front. Ecol. Evol. 7, 408 (2019).
    Article  Google Scholar 

    15.
    Fawcett, T. W. et al. The evolution of decision rules in complex environments. Trends Cogn. Sci. 18, 153–161 (2014).
    PubMed  Article  Google Scholar 

    16.
    Beletsky, L. D. & Orians, G. H. Effects of breeding experience and familiarity on site fidelity in female red-winged blackbirds. Ecology 72, 787–796 (1991).
    Article  Google Scholar 

    17.
    Forero, M. G., Donázar, J. A., Blas, J. & Hiraldo, F. Causes and consequences of territory change and breeding dispersal distance in the black kite. Ecology 80, 1298–1310 (1999).
    Article  Google Scholar 

    18.
    Schaub, M. & Hirschheydt, J. Effect of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture-recapture models. J. Anim. Ecol. 78, 625–635 (2009).
    PubMed  Article  Google Scholar 

    19.
    Switzer, P. V. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7, 533–555 (1993).
    Article  Google Scholar 

    20.
    Beletsky, L. D. & Orians, G. H. Site fidelity and territorial movements of males in a rapidly declining population of yellow-headed blackbirds. Behav. Ecol. Sociobiol. 34, 257–265 (1994).
    Article  Google Scholar 

    21.
    Reed, J. M., Boulinier, T., Danchin, E. & Oring, L. W. Informed dispersal. Curr. Ornithol. 15, 189–259 (1999).
    Article  Google Scholar 

    22.
    Delgado, M. M., Bartoń, K. A., Bonte, D. & Travis, J. M. J. Prospecting and dispersal: their eco-evolutionary dynamics and implications for population patterns. Proc. R. Soc. B 281, 20132851 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Delibes, M., Ferreras, P. & Gaona, P. Attractive sinks, or how individual behavioural decisions determine source-sink dynamics. Ecol. Lett 4, 401–403 (2001).
    Article  Google Scholar 

    24.
    Vlug, J. J. Red-necked grebe. BWP Update 4, 139–179 (2002).
    Google Scholar 

    25.
    Kloskowski, J. Consequences of the size structure of fish populations for their effects on a generalist avian predator. Oecologia 166, 517–530 (2011).
    ADS  PubMed  Article  Google Scholar 

    26.
    Kloskowski, J. Fish stocking creates an ecological trap for an avian predator via effects on prey availability. Oikos 121, 1567–1576 (2012).
    Article  Google Scholar 

    27.
    Kloskowski, J. An avian equivalent of selective abortion: postlaying clutch reduction under resource limitation. Behav. Ecol. 30, 864–871 (2019).
    Article  Google Scholar 

    28.
    Bellebaum, J., Szostek, K. L. & Kloskowski, J. Population dynamics and survival of the red-necked grebe Podiceps grisegena: results from a long-term study in eastern Poland. J. Ornithol. 159, 631–641 (2018).
    Article  Google Scholar 

    29.
    Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1969).
    Article  Google Scholar 

    30.
    Arlt, D. & Pärt, T. Nonideal breeding habitat selection: a mismatch between preference and fitness. Ecology 88, 792–801 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Kloskowski, J., Grela, P., Krogulec, J., Gąska, M. & Tchórzewski, M. Sexing red-necked grebes Podiceps grisegena by molecular techniques and morphology. Acta Ornithol. 41, 176–180 (2006).
    Article  Google Scholar 

    32.
    Kloskowski, J. Temporal patterns of parental resource distribution in the red-necked grebe: equalizing the share of the survivors. Behaviour 138, 1355–1370 (2001).
    Article  Google Scholar 

    33.
    Haas, C. A. Effects of prior nesting success on site fidelity and breeding dispersal: an experimental approach. Auk 115, 929–936 (1998).
    Article  Google Scholar 

    34.
    Hakkarainen, H., Ilmonen, P., Koivunen, V. & Korpimäki, E. Experimental increase of predation risk induces breeding dispersal of Tengmalm’s owl. Oecologia 126, 355–359 (2001).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Schall, R. Estimation in generalized linear models with random effects. Biometrika 78, 719–727 (1991).
    MATH  Article  Google Scholar 

    36.
    Piper, W. H., Tischler, K. B. & Klich, M. Territory acquisition in loons: the importance of take-over. Anim. Behav. 59, 385–394 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Nocera, J. J., Forbes, G. J. & Giraldeau, L.-A. Inadvertent social information in breeding site selection of natal dispersing birds. Proc. R. Soc. B 273, 349–355 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Ward, M. P. Habitat selection by dispersing yellow-headed blackbirds: evidence of prospecting and the use of public information. Oecologia 145, 650–657 (2005).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Pärt, T., Arlt, D., Doligez, B., Low, M. & Qvarnström, A. Prospectors combine social and environmental information to improve habitat selection and breeding success in the subsequent year. J. Anim. Ecol. 80, 1227–1235 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Boulinier, T. & Danchin, E. The use of conspecific reproductive success for breeding patch selection in terrestrial migratory species. Evol. Ecol. 11, 505–517 (1997).
    Article  Google Scholar 

    41.
    McNamara, J. M. & Dall, S. R. X. The evolution of unconditional strategies via the “multiplier effect”. Ecol. Lett. 14, 237–243 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    42.
    Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    43.
    Piper, W. H., Palmer, M. W., Banfield, N. & Meyer, M. W. Can settlement in natal-like habitat explain maladaptive habitat selection?. Proc. R. Soc. B 280, 20130979 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    McParland, C. E., Paszkowski, C. A. & Newbrey, J. L. Trophic relationships of breeding Red-necked Grebes (Podiceps grisegena) on wetlands with and without fish in the Aspen Parkland. Can. J. Zool. 88, 186–194 (2010).
    Article  Google Scholar 

    45.
    Mäntylä, E., Sirkiä, P. M., Klemola, T. & Laaksonen, T. An experimental test of whether pied flycatchers choose the best territory for rearing the young. Curr. Zool. 61, 604–613 (2015).
    Article  Google Scholar 

    46.
    Gilroy, J. J. & Sutherland, W. J. Beyond ecological traps: perceptual errors and undervalued resources. Trends Ecol. Evol. 22, 351–356 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    47.
    Patten, M. A. & Kelly, J. F. Habitat selection and the perceptual trap. Ecol. Appl. 20, 2148–2156 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Visser, M. E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B 275, 649–659 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Nudds, R. L. & Bryant, D. M. Consequences of load carrying by birds during short flights are found to be behavioral and not energetic. Am. J. Physiol. 283, R249–R256 (2002).
    CAS  Google Scholar 

    50.
    Hutchinson, J. M. C. & Gigerenzer, G. Simple heuristics and rules of thumb: where psychologists and behavioural biologists might meet. Behav. Proc. 69, 97–124 (2005).
    Article  Google Scholar 

    51.
    Hipfner, J. Matches and mismatches: ocean climate, prey phenology and breeding success in a zooplanktivorous seabird. Mar. Ecol. Prog. Ser. 368, 295–304 (2008).
    ADS  Article  Google Scholar 

    52.
    Ponchon, A., Garnier, R., Grémillet, D. & Boulinier, T. Predicting population responses to environmental change: the importance of considering informed dispersal strategies in spatially structured population models. Divers. Distrib. 21, 88–100 (2015).
    Article  Google Scholar 

    53.
    Bocedi, G., Heinonen, J. & Travis, J. M. J. Uncertainty and the role of information acquisition in the evolution of context-dependent emigration. Am. Nat. 179, 606–620 (2012).
    PubMed  Article  Google Scholar 

    54.
    Grosbois, V. & Tavecchia, G. Modeling dispersal with capture–recapture data: disentangling decisions of leaving and settlement. Ecology 84, 1225–1236 (2003).
    Article  Google Scholar 

    55.
    Owen, M. A., Swaisgood, R. R. & Blumstein, D. T. Contextual influences on animal decision-making: significance for behavior-based wildlife conservation and management. Integr. Zool. 12, 32–48 (2017).
    PubMed  Article  Google Scholar 

    56.
    Grieco, F., van Noordwijk, A. J. & Visser, M. E. Evidence for the effect of learning on timing of reproduction in blue tits. Science 296, 136–138 (2002).
    ADS  CAS  PubMed  Article  Google Scholar 

    57.
    Stodola, K. W. & Ward, M. P. The emergent properties of conspecific attraction can limit a species’ ability to track environmental change. Am. Nat. 189, 726–733 (2017).
    PubMed  Article  Google Scholar  More

  • in

    Distinct bacterial community structure and composition along different cowpea producing ecoregions in Northeastern Brazil

    1.
    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trend Ecol. Evol. 31, 440–452. https://doi.org/10.1016/j.tree.2016.02.016 (2016).
    Article  Google Scholar 
    2.
    El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Glob. Food Secur. 20, 132–144. https://doi.org/10.1016/j.gfs.2019.01.007 (2019).
    Article  Google Scholar 

    3.
    Schimel, J. Playing scales in the methane cycle: from microbial ecology to the globe. Proc. Natl. Acad. Sci. USA 101, 12400–12401. https://doi.org/10.1073/pnas.0405075101 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    4.
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541. https://doi.org/10.1038/ncomms10541 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Xue, P. P., Carrillo, Y., Pino, V., Minasny, B. & McBratney, A. B. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci. Rep. 8, 11725. https://doi.org/10.1038/s41598-018-30005-8 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    6.
    Araujo, A. S. F. et al. Bacterial community associated with rhizosphere of maize and cowpea in a subsequent cultivation. Appl. Soil Ecol. 143, 26–34. https://doi.org/10.1016/j.apsoil.2019.05.019 (2019).
    Article  Google Scholar 

    7.
    Mendes, L. W. et al. Using metagenomics to connect microbial community biodiversity and functions. Curr. Issues Mol. Biol. 24, 103–118. https://doi.org/10.21775/cimb.024.103 (2017).
    Article  PubMed  Google Scholar 

    8.
    Miranda, A. R. L. et al. Responses of soil bacterial community after seventh yearly applications of composted tannery sludge. Geoderma 318, 1–8. https://doi.org/10.1016/j.geoderma.2017.12.026 (2018).
    ADS  CAS  Article  Google Scholar 

    9.
    Pajares, S., Campo, J., Bohannan, B. J. M. & Etchevers, J. D. Environmental controls on soil microbial communities in a seasonally dry tropical forest. Appl. Environ. Microbiol. 84, e00342-e418. https://doi.org/10.1128/AEM.00342-18 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Dequiedt, S. et al. Biogeographical patterns of soil bacterial communities. Environ. Microbiol. Rep. 1, 251–255. https://doi.org/10.1111/j.1758-2229.2009.00040.x (2009).
    Article  PubMed  Google Scholar 

    11.
    Barnett, S. E., Youngblut, N. D. & Buckley, D. H. Soil characteristics and land-use drive bacterial community assembly patterns. FEMS Microbiol. Ecol. 96, fiz194. https://doi.org/10.1093/femsec/fiz194 (2020).
    Article  PubMed  Google Scholar 

    12.
    Araújo Filho, J. C. et al. Levantamento de reconhecimento de baixa e média intensidade dos solos do Estado de Pernambuco. Boletim de Pesquisa N 11 (2000).

    13.
    Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 22, 711–728 (2013).
    ADS  Article  Google Scholar 

    14.
    Lopes, M. B. S., Tavares, T. C. D. O., Veloso, D. A., Silva, N. C. & Fidelis, R. R. Cowpea bean production under water stress using hydrogels. Pesq. Agropec. Trop. 47, 87–92. https://doi.org/10.1590/1983-40632016v4743398 (2017).
    Article  Google Scholar 

    15.
    Bezerra, A. A. C. et al. Morfologia e produção de grãos em linhagens modernas de feijão-caupi submetidas a diferentes densidades populacionais Morphology and grain yield in modern lines of cowpea under different planting densities. Biologia (Bratisl) 8, 85–93 (2008).
    Google Scholar 

    16.
    Cardoso, E. J. B. N. et al. Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?. Sci. Agric. 70, 274–289 (2013).
    Article  Google Scholar 

    17.
    Pereira, A. P. A. et al. Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Front. Microbiol. 9, 1–13 (2018).
    Article  Google Scholar 

    18.
    Bockheim, J. G. & Hartemink, A. E. Alfisols BT. The Soils of Wisconsin. in (eds. Bockheim, J. G. & Hartemink, A. E.) 129–147 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-52144-2_8

    19.
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630. https://doi.org/10.1038/ncomms13630 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    20.
    Zheng, Q. et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 136, 107521. https://doi.org/10.1016/j.soilbio.2019.107521 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M. & Raaijmakers, J. M. The wild side of plant microbiomes. Microbiome 6, 143. https://doi.org/10.1186/s40168-018-0519-z (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Hartman, K., van der Heijden, M. G. A., Roussely-Provent, V., Walser, J. C. & Schlaeppi, K. Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5, 2. https://doi.org/10.1186/s40168-016-0220-z (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Kolton, M. et al. Draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. Cv. Maccabi). J. Bacteriol. 194, 5462–5463. https://doi.org/10.1128/JB.01249-12 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    24.
    Schaefer, C. E. G. R., Fabris, J. D. & Ker, J. C. Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Miner. 43, 137–154. https://doi.org/10.1180/claymin.2008.043.1.11 (2008).
    ADS  CAS  Article  Google Scholar 

    25.
    Mendes, L. W., de Lima Brossi, M. J., Kuramae, E. E. & Tsai, S. M. Land-use system shapes soil bacterial communities in Southeastern Amazon region. Appl. Soil Ecol. 95, 151–160. https://doi.org/10.1016/j.apsoil.2015.06.005 (2015).
    Article  Google Scholar 

    26.
    Gyaneshwar, P., Naresh Kumar, G., Parekh, L. J. & Poole, P. S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245, 83–93 (2002).
    CAS  Article  Google Scholar 

    27.
    Germano, M. G. et al. Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia. Pesq. Agropec. Bras. 47, 654–664. https://doi.org/10.1590/S0100-204X2012000500004 (2012).
    Article  Google Scholar 

    28.
    Mohammadipanah, F. & Wink, J. Actinobacteria from arid and desert habitats: diversity and biological activity. Front. Microbiol. 6, 1541. https://doi.org/10.3389/fmicb.2015.01541 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    29.
    Andreote, F. D. & Pereira e Silva, M. D. C. Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr. Opin. Microbiol. 37, 29–34 (2017).
    Article  Google Scholar 

    30.
    Rocha, S. M. B. et al. Nodule microbiome from cowpea and lima bean grown in composted tannery sludge-treated soil. Appl. Soil Ecol. 151, 103542 (2020).
    Article  Google Scholar 

    31.
    Soltani, A.-A. et al. Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J. Agric. Sci. 2, 106–115. https://doi.org/10.5539/jas.v2n4p106 (2010).
    Article  Google Scholar 

    32.
    Liew, K. J. et al. Complete genome sequence of Rhodothermaceae bacterium RA with cellulolytic and xylanolytic activities. 3 Biotech 8, 376. https://doi.org/10.1007/s13205-018-1391-z (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Navarrete, A. A. et al. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Anto. van Leeuwe. 108, 741–752. https://doi.org/10.1007/s10482-015-0530-3 (2015).
    CAS  Article  Google Scholar 

    34.
    Buckley, D. H. & Schmidt, T. M. Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiol. Ecol. 35, 105–112. https://doi.org/10.1016/S0168-6496(00)00122-7 (2001).
    CAS  Article  PubMed  Google Scholar 

    35.
    Kroeger, M. E. et al. New biological insights into how deforestation in amazonia affects soil microbial communities using metagenomics and metagenome-assembled genomes. Front. Microbiol. 9, 1635. https://doi.org/10.3389/fmicb.2018.01635 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Maron, P.-A. et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 84, 1–13 (2018).
    Article  Google Scholar 

    37.
    Székely, A. J. & Langenheder, S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol. Ecol. 87, 102–112 (2014).
    Article  Google Scholar 

    38.
    López-Mondéjar, R. et al. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. 12, 1768–1778 (2018).
    Article  Google Scholar 

    39.
    Pasternak, Z. et al. Spatial and temporal biogeography of soil microbial communities in Arid and Semiarid regions. PLoS ONE 8, e69705. https://doi.org/10.1371/journal.pone.0069705 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    40.
    Pandit, S. N., Kolasa, J. & Cottenie, K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262. https://doi.org/10.1890/08-0851.1 (2009).
    Article  PubMed  Google Scholar 

    41.
    Yang, W. et al. Response of fungal communities and co-occurrence network patterns to compost amendment in black soil of northeast China. Front. Microbiol. 10, 1–11 (2019).
    Article  Google Scholar 

    42.
    van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378. https://doi.org/10.1371/journal.pbio.1002378 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Saboya, R. D. C. C. et al. Resposta do feijão-caupi a estirpes fixadoras de nitrogênio em Gurupi-TO. J. Biotechnol. Biodivers. 4, 40–48. https://doi.org/10.20873/jbb.uft.cemaf.v4n1.saboya (2013).
    Article  Google Scholar 

    44.
    IBGE. Levantamento Sistemático da Produção Agrícola Estatística da Produção Agrícola. (2019).

    45.
    Tedesco, M., Gianello, C. & Bissani, C. Análises de solo, plantas e outros materiais (UFRGS, Porto Alegre, 1995).
    Google Scholar 

    46.
    Yeomans, J. C. & Bremner, J. M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 19, 1467–1476. https://doi.org/10.1080/00103628809368027 (1988).
    CAS  Article  Google Scholar 

    47.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    ADS  CAS  Article  Google Scholar 

    48.
    Illumina. MiSeq System. Denature and Dilute Libraries Guide. Document 15039740 (2019).

    49.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620. https://doi.org/10.1093/bioinformatics/btt593 (2014).
    CAS  Article  Google Scholar 

    50.
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods https://doi.org/10.1038/nmeth.3869 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    51.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).
    Article  Google Scholar 

    52.
    Leps, J. & Smilauer, P. Multivariate Analysis of Ecological Data usingCANOCO This. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki https://doi.org/10.1017/CBO9780511615146 (2003).
    Article  MATH  Google Scholar 

    53.
    Anderson, M. J. A new method for non parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    54.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).
    Google Scholar 

    55.
    Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).
    CAS  Article  Google Scholar 

    56.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).
    MathSciNet  Article  MATH  Google Scholar 

    57.
    R Core Team. R Development Core Team. R: A Language and Environment for Statistical Computing 55, 275–286 (2016).

    58.
    Chazdon, R. L. et al. A novel statistical method for classifying habitat generalists and specialists. Ecology 92, 1332–1343. https://doi.org/10.1890/10-1345.1 (2011).
    Article  PubMed  Google Scholar 

    59.
    Pedrinho, A., Mendes, L. W., Merloti, L. F., Andreote, F. D. & Tsai, S. M. The natural recovery of soil microbial community and nitrogen functions after pasture abandonment in the Amazon region. FEMS Microbiol. Ecol. 96, fiaa149. https://doi.org/10.1093/femsec/fiaa149 (2020).
    Article  PubMed  Google Scholar 

    60.
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, 1–11 (2012).
    Article  Google Scholar 

    61.
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. BT – International AAAI Conference on Weblogs and Social. 361–362 (2009). More

  • in

    An open access dataset for developing automated detectors of Antarctic baleen whale sounds and performance evaluation of two commonly used detectors

    1.
    Mellinger, D. K., Stafford, K. M., Moore, S. E., Dziak, R. P. & Matsumoto, H. An overview of fixed passive acoustic observation methods for cetaceans. Oceanography 20, 36–45 (2007).
    Article  Google Scholar 
    2.
    Van Parijs, S. et al. Management and research applications of real-time and archival passive acoustic sensors over varying temporal and spatial scales. Mar. Ecol. Prog. Ser. 395, 21–36 (2009).
    ADS  Article  Google Scholar 

    3.
    Sousa-Lima, R. S., Norris, T. F., Oswald, J. N. & Fernandes, D. P. A review and inventory of fixed autonomous recorders for passive acoustic monitoring of marine mammals. Aquat. Mamm. 39, (2013).

    4.
    Van Opzeeland, I. et al. Towards collective circum-Antarctic passive acoustic monitoring: The Southern Ocean Hydrophone Network (SOHN). Polarforschung 83, 47–61 (2013).
    Google Scholar 

    5.
    Branch, T. A., Matsuoka, K. & Miyashita, T. Evidence for increases in Antarctic blue whales based on Bayesian modelling. Mar. Mammal Sci. 20, 726–754 (2004).
    Article  Google Scholar 

    6.
    Branch, T. A. Abundance of Antarctic blue whales south of 60 S from three complete circumpolar sets of surveys. J. Cetacean Res. Manag. 9, 253–262 (2007).
    Google Scholar 

    7.
    Rocha, R. C. Jr., Clapham, P. J. & Ivashchenko, Y. Emptying the oceans: A summary of industrial whaling catches in the 20th century. Mar. Fish. Rev. 76, 37–48 (2015).
    Article  Google Scholar 

    8.
    Branch, T. A. & Butterworth, D. S. Estimates of abundance south of 60° S for cetacean species sighted frequently on the 1978/79 to 1997/98 IWC/IDCR-SOWER sighting surveys. J. Cetacean Res. Manag. 3, 251–270 (2001).
    Google Scholar 

    9.
    Cooke, J. G. Balaenoptera musculus ssp. intermedia. IUCN Red List Threat. Species e.T41713A50226962 (2018). https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T41713A50226962.en.

    10.
    Sears, R., Ramp, C., Douglas, A. & Calambokidis, J. Reproductive parameters of eastern North Pacific blue whales Balaenoptera musculus. Endanger. Species Res. 22, 23–31 (2013).
    Article  Google Scholar 

    11.
    Rankin, S., Ljungblad, D. K., Clark, C. W. & Kato, H. Vocalisations of Antarctic blue whales, Balaenoptera musculus intermedia, recorded during the 2001/2002 and 2002/2003 IWC/SOWER circumpolar cruises, Area V Antarctica. J. Cetacean Res. Manag. 7, 13–20 (2005).
    Google Scholar 

    12.
    Watkins, W. A., Tyack, P., Moore, K. E. & Bird, J. E. The 20-Hz signals of finback whales (Balaenoptera physalus). J. Acoust. Soc. Am. 82, 1901–1912 (1987).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    McDonald, M. A., Mesnick, S. L. & Hildebrand, J. A. Biogeographic characterisation of blue whale song worldwide: using song to identify populations. J. Cetacean Res. Manag. 8, 55–65 (2006).
    Google Scholar 

    14.
    Gavrilov, A. N., McCauley, R. D. & Gedamke, J. Steady inter and intra-annual decrease in the vocalization frequency of Antarctic blue whales. J. Acoust. Soc. Am. 131, 4476–4480 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Gedamke, J. Geographic variation in Southern Ocean fin whale song. Submitt. to Sci. Comm. Int. Whal. Comm. SC/61/SH16, 1–8 (2009).

    16.
    Shabangu, F. W., Yemane, D., Stafford, K. M., Ensor, P. & Findlay, K. P. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales. PLoS ONE 12, e0172705 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    17.
    Širović, A. et al. Seasonality of blue and fin whale calls and the influence of sea ice in the Western Antarctic Peninsula. Deep Sea Res. Part II Top. Stud. Oceanogr. 51, 2327–2344 (2004).

    18.
    Širović, A., Hildebrand, J. A., Wiggins, S. M. & Thiele, D. Blue and fin whale acoustic presence around Antarctica during 2003 and 2004. Mar. Mammal Sci. 25, 125–136 (2009).
    Article  Google Scholar 

    19.
    Thomisch, K. et al. Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea. Endanger. Species Res. 30, 239–253 (2016).
    Article  Google Scholar 

    20.
    Tripovich, J. S. et al. Temporal segregation of the Australian and Antarctic blue whale call types (Balaenoptera musculus spp.). J. Mammal. 1–8 (2015). https://doi.org/10.1093/jmammal/gyv065.

    21.
    Dréo, R., Bouffaut, L., Leroy, E., Barruol, G. & Samaran, F. Baleen whale distribution and seasonal occurrence revealed by an ocean bottom seismometer network in the Western Indian Ocean. Deep. Res. Part II Top. Stud. Oceanogr. 161, 132–144 (2019).

    22.
    Bouffaut, L., Madhusudhana, S., Labat, V., Boudraa, A.-O. & Klinck, H. A performance comparison of tonal detectors for low-frequency vocalizations of Antarctic blue whales. J. Acoust. Soc. Am. 147, 260–266 (2020).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Bouffaut, L., Dréo, R., Labat, V., Boudraa, A.-O. & Barruol, G. Passive stochastic matched filter for Antarctic blue whale call detection. J. Acoust. Soc. Am. 144, 955–965 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Gedamke, J. & Robinson, S. M. Acoustic survey for marine mammal occurrence and distribution off East Antarctica (30–80°E) in January-February 2006. Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 968–981 (2010).

    25.
    Gedamke, J., Gales, N., Hildebrand, J. A. & Wiggins, S. Seasonal occurrence of low frequency whale vocalisations across eastern Antarctic and southern Australian waters, February 2004 to February 2007. Rep. SC/59/SH5 Submitt. to Sci. Comm. Int. Whal. Comm. Anchorage, Alaska SC/59, 1–11 (2007).

    26.
    Leroy, E. C., Samaran, F., Bonnel, J. & Royer, J. Seasonal and diel vocalization patterns of Antarctic blue whale (Balaenoptera musculus intermedia) in the Southern Indian Ocean: a multi-year and multi-site study. PLoS ONE 11, e0163587 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Miller, B. S. et al. Validating the reliability of passive acoustic localisation: a novel method for encountering rare and remote Antarctic blue whales. Endanger. Species Res. 26, 257–269 (2015).
    Article  Google Scholar 

    28.
    Miller, B. S. et al. Software for real-time localization of baleen whale calls using directional sonobuoys: A case study on Antarctic blue whales. J. Acoust. Soc. Am. 139, EL83–EL89 (2016).

    29.
    Miller, B. S. et al. Circumpolar acoustic mapping of endangered Southern Ocean whales: Voyage report and preliminary results for the 2016/17 Antarctic Circumnavigation Expedition. Pap. SC/67a/SH03 Submitt. to Sci. Comm. 67a Int. Whal. Commision, Bled Slov. 18 (2017).

    30.
    Samaran, F. et al. Seasonal and geographic variation of Southern blue whale subspecies in the Indian Ocean. PLoS ONE 8, e71561 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Samaran, F., Adam, O. & Guinet, C. Discovery of a mid-latitude sympatric area for two Southern Hemisphere blue whale subspecies. Endanger. Species Res. 12, 157–165 (2010).
    Article  Google Scholar 

    32.
    Stafford, K. M., Fox, C. G. & Clark, D. S. Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. J. Acoust. Soc. Am. 104, 3616–3625 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Weirathmueller, M. J. et al. Spatial and temporal trends in fin whale vocalizations recorded in the NE Pacific Ocean between 2003–2013. PLoS ONE 12, 1–24 (2017).
    Article  CAS  Google Scholar 

    34.
    Harris, D., Matias, L., Thomas, L., Harwood, J. & Geissler, W. H. Applying distance sampling to fin whale calls recorded by single seismic instruments in the northeast Atlantic. J. Acoust. Soc. Am. 134, 3522–3535 (2013).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Morano, J. L. et al. Seasonal and geographical patterns of fin whale song in the western North Atlantic Ocean. J. Acoust. Soc. Am. 132, 1207–1212 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Socheleau, F.-X. et al. Automated detection of Antarctic blue whale calls. J. Acoust. Soc. Am. 138, 3105–3117 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Mellinger, D. K. & Clark, C. W. Recognizing transient low-frequency whale sounds by spectrogram correlation. J. Acoust. Soc. Am. 107, 3518–3529 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Mellinger, D. K. Ishmael 1.0 User’s Guide. (2001).

    39.
    Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localisation of cetaceans. Proc. Inst. Acoust. 30, 54–62 (2008).
    Google Scholar 

    40.
    Figueroa, H. & Robbins, M. XBAT: an open-source extensible platform for bioacoustic research and monitoring. Comput. bioacoustics Assess. Biodivers. 143–155 (2008).

    41.
    Balcazar, N. E. et al. Calls reveal population structure of blue whales across the southeast Indian Ocean and southwest Pacific Ocean. J. Mammal. gyv126 (2015). https://doi.org/10.1093/jmammal/gyv126.

    42.
    Buchan, S. J., Hucke-Gaete, R., Stafford, K. M. & Clark, C. W. Occasional acoustic presence of Antarctic blue whales on a feeding ground in southern Chile. Mar. Mammal Sci. 34, 220–228 (2017).
    Article  Google Scholar 

    43.
    Harris, D. V., Miksis-Olds, J. L., Vernon, J. A. & Thomas, L. Fin whale density and distribution estimation using acoustic bearings derived from sparse arrays. J. Acoust. Soc. Am. 143, (2018).

    44.
    Aulich, M. G., McCauley, R. D., Saunders, B. J. & Parsons, M. J. G. Fin whale (Balaenoptera physalus) migration in Australian waters using passive acoustic monitoring. Sci. Rep. 9, 1–12 (2019).
    CAS  Article  Google Scholar 

    45.
    Balcazar, N. E. et al. Using calls as an indicator for Antarctic blue whale occurrence and distribution across the southwest Pacific and southeast Indian Oceans. Mar. Mammal Sci. 33, 172–186 (2017).
    Article  Google Scholar 

    46.
    Helble, T. A. et al. Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones. J. Acoust. Soc. Am. 134, 2556–2570 (2013).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    McDonald, M. A., Hildebrand, J. A. & Mesnick, S. Worldwide decline in tonal frequencies of blue whale songs. Endanger. Species Res. 9, 13–21 (2009).
    Article  Google Scholar 

    48.
    Leroy, E. C., Royer, J.-Y., Bonnel, J. & Samaran, F. Long-term and seasonal vhanges of large whale call frequency in the Southern Indian Ocean. J. Geophys. Res. Ocean. 1–13 (2018). https://doi.org/10.1029/2018JC014352.

    49.
    Gavrilov, A. N., Mccauley, R. D., Salgado-kent, C., Tripovich, J. & Burton, C. L. K. Vocal characteristics of pygmy blue whales and their change over time. J. Acoust. Soc. Am. 130, 3651–3660 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Miller, B. S., Leaper, R., Calderan, S. & Gedamke, J. Red shift blue shift: Doppler shifts and seasonal variation in the tonality of Antarctic blue whale song. PLoS ONE 9, e107740 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Širović, A., Oleson, E. M., Buccowich, J., Rice, A. & Bayless, A. R. Fin whale song variability in southern California and the Gulf of California. Sci. Rep. 7, 1–11 (2017).
    Article  CAS  Google Scholar 

    52.
    Nieukirk, S. L. et al. Sounds from airguns and fin whales recorded in the mid-Atlantic Ocean, 1999–2009. J. Acoust. Soc. Am. 131, 1102–1112 (2012).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Širović, A. Variability in the performance of the spectrogram correlation detector for North-east Pacific blue whale calls. Bioacoustics 25, 145–160 (2016).
    Article  Google Scholar 

    54.
    Roch, M. A., Stinner-Sloan, J., Baumann-Pickering, S. & Wiggins, S. M. Compensating for the effects of site and equipment variation on delphinid species identification from their echolocation clicks. J. Acoust. Soc. Am. 137, 22–29 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Thomisch, K. et al. Effects of subsampling of passive acoustic recordings on acoustic metrics. J. Acoust. Soc. Am. 138, 267–278 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Pawlowicz, R. M_Map: A mapping package for Matlab. Version 1.4k (2019).

    57.
    Center for conservation bioacoustics. raven pro: interactive sound analysis software. (2014).

    58.
    Širović, A., Williams, L. N., Kerosky, S. M., Wiggins, S. M. & Hildebrand, J. A. Temporal separation of two fin whale call types across the eastern North Pacific. Mar. Biol. 160, 47–57 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Ou, H., Au, W. W. L., Oleson, E. M. & Rankin, S. Discrimination of frequency-modulated Baleen whale downsweep calls with overlapping frequencies. 137, 1 (2016).

    60.
    Lurton, X. Underwater acoustic wave propagation. in An Introduction to Underwater Acoustics Principles and Applications 13–74 (Springer-Verlag, 2010).

    61.
    Dawe, R. L. Detection Threshold Modelling Explained. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA335337 (1997).

    62.
    Davis, J. & Goadrich, M. The relationship between precision-recall and ROC curves. Proc. 23rd Int. Conf. Mach. Learn.—ICML’06 233–240 (2006). https://doi.org/10.1145/1143844.1143874.

    63.
    Wood, S. N. Generalized Additive Models. Generalized Additive Models: An Introduction with R, Second Edition (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.

    64.
    R Core Team. R: A language and environment for statistical computing. (2019).

    65.
    Leroy, E. C., Thomisch, K., Royer, J., Boebel, O. & Van Opzeeland, I. On the reliability of acoustic annotations and automatic detections of Antarctic blue whale calls under different acoustic conditions. J. Acoust. Soc. Am. 144, 740–754 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Tsang-Hin-Sun, E., Royer, J.-Y. & Leroy, E. C. Low-frequency sound level in the Southern Indian Ocean. J. Acoust. Soc. Am. 138, 3439–3446 (2015).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Samaran, F., Adam, O. & Guinet, C. Detection range modeling of blue whale calls in Southwestern Indian Ocean. Appl. Acoust. 71, 1099–1106 (2010).
    Article  Google Scholar 

    68.
    Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Baumgartner, M. F. & Mussoline, S. E. A generalized baleen whale call detection and classification system. J. Acoust. Soc. Am. 129, 2889–2902 (2011).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Mellinger, D. & Bradbury, J. Acoustic measurement of marine mammal sounds in noisy environments. in Proc. Second International Conference on Underwater Acoustic Measurements Technologies and Results 25–29 (2007).

    71.
    Urazghildiiev, I. R. & Clark, C. W. Acoustic detection of North Atlantic right whale contact calls using the generalized likelihood ratio test. J. Acoust. Soc. Am. 120, 1956–1963 (2006).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Dugan, P. et al. Using high performance computing to explore large complex bioacoustic soundscapes: case study for right whale acoustics. Procedia Comput. Sci. 20, 156–162 (2013).
    Article  Google Scholar 

    73.
    Shiu, Y. et al. Use of deep neural networks for automated detection of marine mammal species. 1–29 (2020). https://doi.org/10.1038/s41598-020-57549-y.

    74.
    Miller, B. S. et al. An annotated library of underwater acoustic recordings for testing and training automated algorithms for detecting Antarctic blue and fin whale sounds. Dataset hosted by the Australian Antarctic Data Centre http://data.aad.gov.au/metadata/records/AcousticTrends_BlueFinLibrary (2020) doi:https://doi.org/10.26179/5e6056035c01b. More

  • in

    Tropical rhodolith beds are a major and belittled reef fish habitat

    The Abrolhos shelf extends ~ 200 km offshore and is SWA’s most biodiverse region, encompassing a large mid-to-outer shelf hard bottom domain with reefs and rhodolith beds (~ 20,900 km2)5,6. Fine-sediment dissipative beaches and a large estuary with mangroves dominate the coastline, and terrigenous-mixed sediments predominate in the inner shelf27. This large and complex seascape (Fig. 1) comprises a representative experimental setting for understanding the distribution and abundance of reef fishes in different habitats, as well as for exploring the drivers and spatial scaling of beta diversity in reef fish assemblages. The high richness of reef fishes off coral reefs that we found in Abrolhos was unexpected, and sheds new light toward the integration of phenomena that occur at different scales and across distinct habitats and groups of organisms11,20. From a practical standpoint, our results are relevant to improve marine management in complex tropical seascapes with rhodolith beds23 and other large marginal habitats.
    The high richness of reef fishes in rhodolith beds, where fish biomass was smaller than on reefs (Supplementary Fig. S1 online; Fig. 4), seems to be primarily related to the much larger area of rhodolith beds, as well as to the broader depth and cross-shelf range of this hard-bottom habitat, contrasting with reefs. Rather than being a regional idiosyncrasy, the relatively larger area and cross-shelf range of non-reef habitat used by reef fishes seems to be recurrent in tropical shelves across all ocean basins8,9,23. However, due to logistical constrains and to the apparent smaller relevance of marginal habitats to fish and other reef-associated organisms, these habitats are still much less sampled than the iconic shallow water reefs20, with the exception of mangroves and seagrass beds3,8,9.
    Compositional variability in biological communities is strongly dependent on spatial scale. Accordingly, beta diversity is expected to be high at biogeographic and local scales, while turnover tends to be lower at regional scales28,29. Reef fish assemblages tend to vary sharply at small spatial scales ( More

  • in

    Near-term climate change impacts on sub-national malaria transmission

    1.
    World Health Organization. Global Health Observatory (GHO) data: Malaria. (2018). Available at: https://www.who.int/gho/malaria/en/.
    2.
    World Health Organization. Climate Change and health. (2018). Available at: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health. Accessed 31st December 2019.

    3.
    World Health Organization. World Malaria Report 2018. WHO/HTM/GM (World Health Organization, Geneva, 2018).
    Google Scholar 

    4.
    Aal, R. & Elshayeb, A. A. The effects of climate changes on the distribution and spread of malaria in Sudan. Am. J. Environ. Eng. 1, 15–20 (2012).
    Article  Google Scholar 

    5.
    Abeku, T. A. et al. Effects of meteorological factors on epidemic malaria in Ethiopia: a statistical modelling approach based on theoretical reasoning. Parasitology 128, 585–593 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Parham, P. E. & Michael, E. Modelling climate change and malaria transmission. Model. Parasite Transm. Control 673, 184–199 (2010).
    Article  Google Scholar 

    7.
    Gething, P. W. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Zhai, J. X. et al. Development of an empirical model to predict malaria outbreaks based on monthly case reports and climate variables in Hefei, China, 1990–2011. Acta Trop. 178, 148–154 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Tompkins, A. M. & Thomson, M. C. Uncertainty in malaria simulations in the highlands of Kenya: relative contributions of model parameter setting, driving climate and initial condition errors. PLoS ONE 13, 16831 (2018).
    Article  CAS  Google Scholar 

    10.
    Moukam Kakmeni, F. M. et al. Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios. Int. J. Health Geogr. 17, 1–13 (2018).
    Article  Google Scholar 

    11.
    Hurtado, L. A., Calzada, J. E., Rigg, C. A., Castillo, M. & Chaves, L. F. Climatic fluctuations and malaria transmission dynamics, prior to elimination, in Guna Yala, República de Panamá. Malar. J. 17, 1–12 (2018).
    Article  Google Scholar 

    12.
    Ferrao, J. L., Niquisse, S., Mendes, J. M. & Painho, M. Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Int. J. Environ. Res. Public Health 15, 1–15 (2018).
    Article  Google Scholar 

    13.
    Semakula, H. M. et al. Prediction of future malaria hotspots under climate change in sub-Saharan Africa. Clim. Change 143, 415–428 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    Imai, C. et al. Associations between malaria and local and global climate variability in five regions in Papua New Guinea. Trop. Med. Health 44, 1–9 (2016).
    Article  Google Scholar 

    15.
    Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1302089111 (2014).
    Article  PubMed  Google Scholar 

    16.
    World Health Organization. World Malaria Report 2008 (World Health Organization, Geneva, 2008). ISBN 978 92 4 1564403

    17.
    Chizema-Kawesha, E. et al. Scaling up malaria control in Zambia: progress and impact 2005–2008. Am. J. Trop. Med. Hyg. 83, 480–488 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Mukonka, V. et al. Diagnostic approaches to malaria in Zambia, 2009–2014. Geospat. Health 10, 330 (2015).
    PubMed  Article  Google Scholar 

    19.
    Chanda, E. et al. Insecticide resistance and the future of malaria control in Zambia. PLoS ONE 6, 1–9 (2011).
    Article  CAS  Google Scholar 

    20.
    Kamuliwo, M. et al. The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006–2011. Malar. J. 12, 1–9 (2013).
    Article  Google Scholar 

    21.
    Shimaponda-Mataa, N. M., Tembo-Mwase, E., Gebreslasie, M., Achia, T. N. O. & Mukaratirwa, S. Modelling the influence of temperature and rainfall on malaria incidence in four endemic provinces of Zambia using semiparametric Poisson regression. Acta Trop. 166, 81–91 (2017).
    PubMed  Article  Google Scholar 

    22.
    President’s Malaria Initiative. President’s Malaria Initiative Zambia Malaria Operational Plan FY 2019 (2019).

    23.
    Pinchoff, J. et al. Predictive malaria risk and uncertainty mapping in Nchelenge District, Zambia: evidence of widespread, persistent risk and implications for targeted interventions. Am. J. Trop. Med. Hyg. 93, 1260–1267 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Nkumama, I. N., O’Meara, W. P. & Osier, F. H. A. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 33, 128–140 (2017).
    PubMed  Article  Google Scholar 

    25.
    Bennett, A. et al. The relative contribution of climate variability and vector control coverage to changes in malaria parasite prevalence in Zambia 2006–2012. Parasites Vectors 9, 431 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Ashton, R. A., Prosnitz, D., Andrada, A., Herrera, S. & Yé, Y. Evaluating malaria programmes in moderate- and low-transmission settings: practical ways to generate robust evidence. Malar. J. https://doi.org/10.1186/s12936-020-03158-z (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Carpenter, C. C. J., Pearson, G. W., Mitchell, V. S. & Oaks, S. C. Jr. Malaria: Obstacles and Opportunities (National Academies Press, Washington, 1991).
    Google Scholar 

    28.
    Benelli, G., Jeffries, C. L. & Walker, T. Biological control of mosquito vectors: past, present, and future. Insects 7, 52 (2016).
    PubMed Central  Article  PubMed  Google Scholar 

    29.
    Ukawuba, I. et al. Using rainfall and temperature data in the evaluation of national malaria control programs in Africa. Am. J. Trop. Med. Hyg. 97, 32–45 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Martens, W. J., Jetten, T. H. & Focks, D. A. Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim. Change 35, 145–156 (1997).
    Article  Google Scholar 

    31.
    Martens, W., Niessen, L. W., Rotmans, J., Jetten, T. H. & McMichael, A. J. Potential impact of global climate change on malaria risk. Environ. Health Perspect. 103, 458–464 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).
    Article  Google Scholar 

    33.
    Martens, P. et al. Climate change and future populations at risk of malaria. Glob. Environ. Change 9, S89–S107 (1999).
    Article  Google Scholar 

    34.
    Arab, A., Jackson, M. C. & Kongoli, C. Modelling the effects of weather and climate on malaria distributions in West Africa. Malar. J. 13, 126 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Central Statistical Office. 2010 census of population and housing: Population and Demographic Projections 2011–2035. 199 (2013).

    36.
    Maude, R. J., Mercado, C. E. G., Rowley, J., Ekapirat, N. & Dondorp, A. Estimating malaria disease burden in the Asia-Pacific. Wellcome Open Res. 4, 59 (2019).
    Article  Google Scholar 

    37.
    Van Buuren, S. Flexible Imputation of Missing Data (Chapman and Hall/CRC, Boca Raton, 2018).
    Google Scholar 

    38.
    Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2011).
    PubMed  Article  CAS  Google Scholar 

    39.
    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Saha, S. et al. NCEP Climate Forecast System Version 2 (CFSv2) Monthly Products (2012). https://doi.org/10.5065/D69021ZF

    41.
    Smets, B., Jacobs, T., Swinnen, E., Toté, C. & Wolfs, D. Gio Global Land Component-Lot I “Operation of the Global Land Component”, Framework Service Contract N° 388533 (JRC), Product User Manual Normalized Difference Vegetation Index (NDVI). 2.2 (2018).

    42.
    Smets, B. et al. A 10-daily 1km NDVI from METOP-AVHRR. 10 (2013).

    43.
    Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 2.8–19. Vienna, Austria R Found. Retrieved from https://CRAN.R-project.org/package=rasterImage (2019).

    44.
    Colón-González, F. J., Tompkins, A. M., Biondi, R., Bizimana, J. P. & Namanya, D. B. Assessing the effects of air temperature and rainfall on malaria incidence: an epidemiological study across Rwanda and Uganda. Geospat. Health 11, 1–2 (2016).
    Article  Google Scholar 

    45.
    Suk, J. E. Climate change, malaria, and public health: accounting for socioeconomic contexts in past debates and future research. Wiley Interdiscip. Rev. Clim. Change 7, 551–568 (2016).
    Article  Google Scholar 

    46.
    Mohammadkhani, M., Khanjani, N., Bakhtiari, B. & Sheikhzadeh, K. The relation between climatic factors and malaria incidence in Kerman, South East of Iran. Parasite Epidemiol. Control 1, 205–210 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Okuneye, K. & Gumel, A. B. Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics. Math. Biosci. 287, 72–92 (2017).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    48.
    Krefis, A. C. et al. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 84, 285–291 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Abiodun, G. J., Maharaj, R., Witbooi, P. & Okosun, K. O. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar. J. 15, 1–15 (2016).
    Article  Google Scholar 

    50.
    Blanford, J. I. et al. Implications of temperature variation for malaria parasite development across Africa. Sci. Rep. 3, 1300 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Odongo-Aginya, E., Ssegwanyi, G., Kategere, P. & Vuzi, P. C. Relationship between malaria infection intensity and rainfall pattern in Entebbe peninsula, Uganda. Afr. Health Sci. 5, 238–245 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Darkoh, E. L., Larbi, J. A. & Lawer, E. A. A weather-based prediction model of malaria prevalence in Amenfi West District, Ghana. Malar. Res. Treat. https://doi.org/10.1155/2017/7820454 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Kilian, A. H., Langi, P., Talisuna, A. & Kabagambe, G. Rainfall pattern, El Nino and malaria in Uganda. Trans. R. Soc. Trop. Med. Hyg. 93, 22–23 (1999).
    CAS  PubMed  Article  Google Scholar 

    54.
    Phung, D., Talukder, M. R. R., Rutherford, S. & Chu, C. A climate-based prediction model in the high-risk clusters of the Mekong Delta region, Vietnam: towards improving dengue prevention and control. Trop. Med. Int. Health 21, 1324–1333 (2016).
    PubMed  Article  Google Scholar 

    55.
    Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ. Int. 86, 14–23 (2016).
    PubMed  Article  Google Scholar 

    56.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    57.
    Jiang, Z., Raymond, M., Shi, D. & DiStefano, C. Using a linear mixed-effect model framework to estimate multivariate generalizability theory parameters in R. Behav. Res. Methods https://doi.org/10.3758/s13428-020-01399-z (2020).
    Article  PubMed  Google Scholar 

    58.
    Napier, G., Lee, D., Robertson, C. & Lawson, A. A Bayesian space-time model for clustering areal units based on their disease trends. Biostatistics 00, 1–17 (2018).
    CAS  Google Scholar 

    59.
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis. Technometrics 46, 696 (2004).
    MATH  Google Scholar 

    60.
    Hamra, G., MacLehose, R. & Richardson, D. Markov chain monte carlo: an introduction for epidemiologists. Int. J. Epidemiol. 42, 627–634 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Lee, D., Rushworth, A. & Napier, G. Spatio-temporal areal unit modeling in R with conditional autoregressive priors using the CARBayesST package. J. Stat. Softw. 84, 1–39 (2018).
    CAS  Article  Google Scholar 

    62.
    Jaiswal, R. K., Lohani, A. K. & Tiwari, H. L. Statistical analysis for change detection and trend assessment in climatological parameters. Environ. Process. 2, 729–749 (2015).
    Article  Google Scholar 

    63.
    Wijngaard, J. B., Klein Tank, A. M. G. & Können, G. P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 23, 679–692 (2003).
    Article  Google Scholar 

    64.
    Hachigonta, S. & Reason, C. J. C. Interannual variability in dry and wet spell characteristics over Zambia. Clim. Res. 32, 49–62 (2006).
    Article  Google Scholar 

    65.
    Kaluba, P., Verbist, K. M. J., Cornelis, W. M. & Van Ranst, E. Spatial mapping of drought in Zambia using regional frequency analysis. Hydrol. Sci. J. https://doi.org/10.1080/02626667.2017.1343475 (2017).
    Article  Google Scholar 

    66.
    Waldman, K. B. et al. Cognitive biases about climate variability in smallholder farming systems in Zambia. Weather Clim. Soc. https://doi.org/10.1175/WCAS-D-18-0050.1 (2019).
    Article  Google Scholar 

    67.
    Musonda, B. Rainfall and Temperature Characteristic Over Zambia (2013).

    68.
    Mubanga, K. H. & Umar, B. B. Climate variability and change in Southern Zambia: 1910 to 2009 Kabwe. In 2014 International Conference on Intelligent Agriculture (ICOIA) (2015). https://doi.org/10.7763/IPCBEE

    69.
    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2006. 38–41 (2006).

    70.
    Zambian Ministry of Health. The Zambia National Malaria Indicator Survey 2008 (2008).

    71.
    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2012 (2012).

    72.
    Zambian Ministry of Health. Zambia Malaria Indicator Survey 2015 (2015).

    73.
    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2010. Malariasurveys.org (2010).

    74.
    Kilian, A. et al. Evidence for a useful life of more than three years for a polyester-based long-lasting insecticidal mosquito net in Western Uganda. Malar. J. 10, 299 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    75.
    Tan, K. R. et al. A longitudinal study of the durability of long-lasting insecticidal nets in Zambia. Malar. J. 15, 1–12 (2016).
    Article  CAS  Google Scholar 

    76.
    Pulkki-Brännström, A.-M., Wolff, C., Brännström, N. & Skordis-Worrall, J. Cost and cost effectiveness of long-lasting insecticide-treated bed nets-a model-based analysis. Cost Eff. Resour. Alloc. 10, 5 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Stuckey, E. M. et al. Simulation of malaria epidemiology and control in the highlands of western Kenya. Malar. J. https://doi.org/10.1186/1475-2875-11-357 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    78.
    Carter, R., Mendis, K. N. & Roberts, D. Spatial targeting of interventions against malaria. Bull. World Health Organ. 78, 1401–1411 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial. Trials 14, 36 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission in Rachuonyo South District in the Western Kenyan Highlands: a cluster-randomized controlled trial. PLoS Med. 13, e1001993 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Walker, P. G. T., Griffin, J. T., Ferguson, N. M. & Ghani, A. C. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob. Health 4, e474–e484 (2016).
    PubMed  Article  Google Scholar 

    82.
    World Health Organisation (WHO). Malaria Prevention Works: Let’s Close the Gap (WHO, Geneva, 2017).
    Google Scholar 

    83.
    Kitojo, C. et al. Estimating malaria burden among pregnant women using data from antenatal care centres in Tanzania: a population-based study. Lancet Glob. Health 7, e1695–e1705 (2019).
    PubMed  Article  Google Scholar 

    84.
    Coldiron, M. E., Von Seidlein, L. & Grais, R. F. Seasonal malaria chemoprevention: successes and missed opportunities. Malar. J. https://doi.org/10.1186/s12936-017-2132-1 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    85.
    Ndiaye, J. L. A. et al. Seasonal malaria chemoprevention combined with community case management of malaria in children under 10 years of age, over 5months, in south-east senegal: a cluster randomized trial. PLoS Med. https://doi.org/10.1371/journal.pmed.1002762 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    86.
    Issiaka, D. et al. Impact of seasonal malaria chemoprevention on hospital admissions and mortality in children under 5 years of age in Ouelessebougou, Mali. Malar. J. https://doi.org/10.1186/s12936-020-03175-y (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    87.
    Lasry, E. et al. Seasonal malaria chemoprevention, three years of implementation. Am. J. Trop. Med. Hyg. 51, 523–532 (2015).
    Google Scholar 

    88.
    Cissé, B. et al. Effectiveness of seasonal malaria chemoprevention in children under ten years of age in senegal: a stepped-wedge cluster-randomised trial. PLoS Med. https://doi.org/10.1371/journal.pmed.1002175 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    89.
    Chandramohan, D. et al. Effect of adding azithromycin to seasonal malaria chemoprevention. N. Engl. J. Med. https://doi.org/10.1056/nejmoa1811400 (2019).
    Article  PubMed  Google Scholar 

    90.
    Ndiaye, J. L. A. et al. Impact of seasonal malaria chemoprevention after 3 years at scale in Southern Senegal. Am. J. Trop. Med. Hyg. 19, 103 (2017).
    Google Scholar 

    91.
    Braganza, K., Karoly, D. J. & Arblaster, J. M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 31, 1–4 (2004).
    Article  Google Scholar 

    92.
    Roget, E. & Khan, V. M. Decadal differences of the diurnal temperature range in the Aral Sea region at the turn of the century. Tellus A Dyn. Meteorol. Oceanogr. 70, 1–12 (2018).
    Article  Google Scholar 

    93.
    Lubinda, J. The spatio-temporal impact of climate change on malaria transmission, control and elimination in southern Africa: the case of Zambia (Unpublished doctoral dissertation). (Ulster University, 2020).

    94.
    Chaves, L. F. & Koendraat, C. J. Climate change and highland malaria: fresh air for a hot debate the quarterly review of bilology. J. Chem. Inf. Model. 53, 1689–1699 (2010).
    Google Scholar 

    95.
    Murdock, C. C., Sternberg, E. D. & Thomas, M. B. Malaria transmission potential could be reduced with current and future climate change. Sci. Rep. 6, 27771 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    96.
    Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl. Acad. Sci. 107, 15135–15139 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    97.
    Thomson, M. C. et al. Using rainfall and temperature data in the evaluation of national malaria control programs in Africa. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.16-0696 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    98.
    Sena, L., Deressa, W. & Ali, A. Correlation of climate variability and malaria: a retrospective comparative study, Southwest Ethiopia. Ethiop. J. Health Sci. 25, 129 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    99.
    Kiszewski, A. E. & Teklehaimanot, A. A review of the clinical and epidemiologic burdens of epidemic malaria. Am. J. Trop. Med. Hyg. 71, 128–135 (2004).
    PubMed  Article  Google Scholar 

    100.
    Lobo, N. F. et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci. Rep. 5, 17952 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Moyes, C. L. et al. Analysis-ready datasets for insecticide resistance phenotype and genotype frequency in African malaria vectors. Sci. Data https://doi.org/10.1038/s41597-019-0134-2 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    102.
    President’s Malaria Initiative. President’s Malaria Initiative 2016—Zambia. 1–45 (2016).

    103.
    Hancock, P. A. et al. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000633 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    104.
    World Health Organization. INDOOR RESIDUAL SPRAYING: An Operational Manual for Indoor Residual Spraying (IRS) for Malaria Transmission Control and Elimination (WHO Press, Cleveland, 2015).
    Google Scholar 

    105.
    Mukonka, V. M. et al. High burden of malaria following scale-up of control interventions in Nchelenge District, Luapula Province, Zambia. Malar. J. 13, 153 (2014).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Individual fate and gut microbiome composition in the European wild rabbit (Oryctolagus cuniculus)

    1.
    Graham, A. L. et al. Fitness consequences of immune responses: Strengthening the empirical framework for ecoimmunology. Funct. Ecol. 25, 5–17 (2011).
    Article  Google Scholar 
    2.
    Maynard, C. L., Elson, C. O., Hatton, R. D. & Weaver, C. T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    3.
    Baldo, L., Riera, J. L., Tooming-Klunderud, A., Albà, M. M. & Salzburger, W. Gut microbiota dynamics during dietary shift in eastern African cichlid fishes. PLoS ONE 10, 1–23. https://doi.org/10.1371/journal.pone.0127462 (2015).
    CAS  Article  Google Scholar 

    4.
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).
    PubMed  Article  Google Scholar 

    5.
    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    6.
    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Org, E. et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Russell, J. B. Factors that alter rumen microbial ecology. Science 292, 1119–1122 (2001).
    CAS  PubMed  Article  ADS  Google Scholar 

    9.
    DuPont, A. W. & DuPont, H. L. The intestinal microbiota and chronic disorders of the gut. Nat. Rev. Gastroenterol. Hepatol. 8, 523–531 (2011).
    PubMed  Article  Google Scholar 

    10.
    Walters, A. W. et al. The microbiota influences the Drosophila melanogaster life history strategy. Mol. Ecol. 29, 639–653 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Moreno, S., Villafuerte, R., Cabezas, S. & Lombardi, L. Wild rabbit restocking for predator conservation in Spain. Biol. Cons. 118, 183–193 (2004).
    Article  Google Scholar 

    12.
    Webb, N. J. Growth and mortality in juvenile European wild rabbits (Oryctolagus cuniculus). J. Zool. 230, 665–677 (1993).
    Article  Google Scholar 

    13.
    Villafuerte, R. & Delibes-Mateos, M. The IUCN red list of threatened species: Oryctolagus cuniculus (2019). https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T41291A45189779.en (2019).

    14.
    Ferrand, N. Inferring the evolutionary history of the European rabbit (Oryctolagus cuniculus) from molecular markers. In Lagomorph Biology: Evolution, Ecology and Conservation (eds Alves, P. C. et al.) 47–63 (Springer, Berlin, 2008).
    Google Scholar 

    15.
    Rafati, N. N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478 (2018).
    CAS  PubMed  Article  Google Scholar 

    16.
    Delibes-Mateos, M., Villafuerte, R., Cooke, B. & Alves, P. C. Oryctolagus cuniculus (Linnaeus, 1758). In Lagomorphs: Pikas, Rabbits and Hares of the World (eds Smith, A. T. et al.) 99–104 (John Hopkins University Press, Baltimore, 2018).
    Google Scholar 

    17.
    Geraldes, A. et al. Reduced introgression of the Y chromosome between subspecies of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula. Mol. Ecol. 17, 4489–4499 (2008).
    CAS  PubMed  Article  Google Scholar 

    18.
    Sneddon, I. A. Latrine use by the European rabbit (Oryctolagus cuniculus). J. Mammal. 72, 769–775 (1991).
    Article  Google Scholar 

    19.
    Mykytowycz, R. & Dudzinski, M. L. A study on the weight of odoriferous and other glands in relation to the social status and degree of sexual activity in the wild rabbit, Oryctolagus cuniculus (L.). Wildl. Res. 11, 31–47 (1996).
    Article  Google Scholar 

    20.
    Rouco, C., Villafuerte, R., Castro, F. & Ferreras, P. Effect of artificial warren size on a restocked European wild rabbit population. Anim. Conserv. 14, 117–123 (2011).
    Article  Google Scholar 

    21.
    Villafuerte, R. & Viñuela, J. Size of rabbits consumed by black kites increased after a rabbit epizootic. Mammal Rev. 29, 261–264 (1999).
    Article  Google Scholar 

    22.
    Ferrera, I. et al. High-diversity biofilm for the oxidation of sulfide-containing effluents. Appl. Environ. Microbiol. 64, 726–734 (2004).
    CAS  Google Scholar 

    23.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    CAS  PubMed  Article  ADS  Google Scholar 

    24.
    Edgar, R. C. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 10, 996–998 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).
    Article  CAS  Google Scholar 

    26.
    Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).
    Google Scholar 

    28.
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.3-5 (2016).

    29.
    Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Bayer, E. A., Shoham, Y. & Lamed, R. Cellulose-Decomposing Bacteria and Their Enzyme Systems 3rd edn. (Springer, Berlin, 2006).
    Google Scholar 

    32.
    Foley, W. J. & Cork, S. J. Use of fibrous diets by small herbivores: How far can the rules be ‘bent’?. Trends Ecol. Evol. 7, 159–162 (1992).
    CAS  PubMed  Article  Google Scholar 

    33.
    Hirakawa, H. Coprophagy in leporids and other mammalian herbivores. Mammal Rev. 31, 61–80 (2001).
    Article  Google Scholar 

    34.
    Zeng, B. et al. The bacterial communities associated with fecal types and body weight of rex rabbits. Sci. Rep. 5, 9342. https://doi.org/10.1038/srep09342 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Grimont, F. & Grimont, P. A. D. Proteobacteria: Gamma subclass. In The Prokaryotes Vol. 6 (eds Falkow, S. et al.) 219–244 (Springer, New York, 2006).
    Google Scholar 

    36.
    Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 109, 1269–1274 (2012).
    CAS  PubMed  Article  ADS  Google Scholar 

    37.
    Gagen, E. J., Padmanabha, J., Denman, S. E. & McSweeney, C. S. Hydrogenotrophic culture enrichment reveals rumen Lachnospiraceae and Ruminococcaceae acetogens and hydrogen-responsive Bacteroidetes from pasture-fed cattle. FEMS Microbiol. Lett. 362, 1–8 (2015).
    Article  CAS  Google Scholar 

    38.
    Meehan, C. J. & Beiko, R. G. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 6, 703–713 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Barcenilla, A. et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 1654–1661 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Flint, H. J. Polysaccharide breakdown by anaerobic microorganisms inhabiting the mammalian gut. Adv. Appl. Microbiol. 56, 89–120 (2004).
    CAS  PubMed  Article  Google Scholar 

    41.
    Stalder, G. L. et al. Gut microbiota of the European hare (Lepus europaeus). Sci. Rep. 9, 2738. https://doi.org/10.1038/s41598-019-39638-9 (2019).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    42.
    Gillilland, M. G. et al. Ecological succession of bacterial communities during conventionalization of germ-free mice. Appl. Environ. Microbiol. 78, 2359–2366 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Lupp, C. Host-Mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).
    CAS  PubMed  Article  Google Scholar 

    45.
    Punzalan, C. & Qamar, A. Probiotics for the treatment of liver disease. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis (eds Floch, M. H. et al.) 373–381 (Academic Press, New York, 2017).
    Google Scholar 

    46.
    Lopez-Siles, M. et al. Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Appl. Environ. Microbiol. 81, 7582–7592 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Li, H. et al. Pika population density is associated with the composition and diversity of gut microbiota. Front. Microbiol. 7, 758 (2016).
    PubMed  PubMed Central  Google Scholar 

    48.
    Amato, K. R. Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Sci. Med. 1, 10–29 (2013).
    Article  Google Scholar 

    49.
    Thompson, H. V. & King, C. M. The European Rabbit: History and Biology of a Successful Colonizer (Oxford Science Publications, Oxford, 1984).
    Google Scholar 

    50.
    Martins, H., Milne, J. A. & Rego, F. Seasonal and spatial variation in the diet of the wild rabbit (Oryctolagus cuniculus L.) in Portugal. J. Zool. 258, 395–404 (2002).
    Article  Google Scholar 

    51.
    Cubas, J. et al. Endemic plant species are more palatable to introduced herbivores than non-endemics. Proc. R. Soc. B 286, 20190136. https://doi.org/10.1098/rspb.2019.0136 (2019).
    Article  PubMed  Google Scholar 

    52.
    Khalifa, A. Y., Alsyeeh, A. M., Almalki, M. A. & Saleh, F. A. Characterization of the plant growth promoting bacterium, Enterobacter cloacae msr1, isolated from roots of non-nodulating Medicago sativa. Saudi J. Biol. Sci. 23, 79–86 (2016).
    CAS  PubMed  Article  Google Scholar 

    53.
    Polizeli, M. L. T. M. et al. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005).
    CAS  PubMed  Article  Google Scholar 

    54.
    Fisher, E. H. & Stein, E. A. α-Amylases. In The Enzyme 2nd edn (eds Boyer, P. D. et al.) 313–143 (Academic Press Inc, New York, 1960).
    Google Scholar 

    55.
    Bletz, M. C. et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7, 13699. https://doi.org/10.1038/ncomms13699 (2016).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    56.
    Martínez-Mota, R. et al. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).
    PubMed  Article  CAS  Google Scholar 

    57.
    Van Leeuwen, P. et al. Effects of captivity, diet, and relocation on the gut bacterial communities of white-footed mice. Ecol. Evol. 10, 4677–4690 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Grieneisen, L. E., Livermore, J., Alberts, S., Tung, J. & Archie, E. A. Group living and male dispersal to predict core gut microbiome in wild baboons. Integr. Comp. Biol. 57, 770–785 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Cowan, D. P. Aspects of the social organization of the European wild rabbit (Oryctolagus cuniculus). Ethology 75, 197–210 (1987).
    Article  Google Scholar 

    60.
    Marsh, M. K., Hutchings, M. R., McLeod, S. R. & White, P. C. Spatial and temporal heterogeneities in the contact behavior of rabbits. Behav. Ecol. Sociobiol. 65, 183–195 (2011).
    Article  Google Scholar 

    61.
    Moller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997. https://doi.org/10.1126/sciadv.1500997 (2016).
    CAS  Article  ADS  Google Scholar 

    62.
    Carro, F., Ortega, M. & Soriguer, R. C. Is restocking a useful tool for increasing rabbit densities?. Glob. Ecol. Conserv. 17, e00560. https://doi.org/10.1016/j.gecco.2019.e00560 (2019).
    Article  Google Scholar 

    63.
    Rouco, C., Ferreras, P., Castro, F. & Villafuerte, R. A longer confinement period favors European wild rabbit (Oryctolagus cuniculus) survival during soft releases in low-cover habitats. Eur. J. Wildl. Res. 56, 215–219 (2010).
    Article  Google Scholar  More

  • in

    Fine-scale genetic structure in the critically endangered red-fronted macaw in the absence of geographic and ecological barriers

    1.
    Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & De Meester, L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22, 5983–5999. https://doi.org/10.1111/mec.12561 (2013).
    Article  PubMed  Google Scholar 
    2.
    Legrand, D. et al. Eco-evolutionary dynamics in fragmented landscapes. Ecography 40, 9–25. https://doi.org/10.1111/ecog.02537 (2017).
    Article  Google Scholar 

    3.
    Slatkin, M. Gene flow and the geographic structure of natural populations. Science 236, 787–792. https://doi.org/10.1126/science.3576198 (1987).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    4.
    Dolby, G. A., Dorsey, R. J. & Graham, M. R. A legacy of geo-climatic complexity and genetic divergence along the lower Colorado River: Insights from the geological record and 33 desert-adapted animals. J. Biogeogr. 46, 2479–2505. https://doi.org/10.1111/jbi.13685 (2019).
    Article  Google Scholar 

    5.
    Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052. https://doi.org/10.1111/ele.12303 (2014).
    Article  PubMed  Google Scholar 

    6.
    Ross, K. G. Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol. Ecol. 10, 265–284. https://doi.org/10.1046/j.1365-294X.2001.01191.x (2001).
    CAS  Article  PubMed  Google Scholar 

    7.
    Beck, N. R., Peakall, R. & Heinsohn, R. Social constraint and an absence of sex-biased dispersal drive fine-scale genetic structure in white-winged choughs. Mol. Ecol. 17, 4346–4358. https://doi.org/10.1111/j.1365-294X.2008.03906.x (2008).
    CAS  Article  PubMed  Google Scholar 

    8.
    Morinha, F. et al. Extreme genetic structure in a social bird species despite high dispersal capacity. Mol. Ecol. 26, 2812–2825. https://doi.org/10.1111/mec.14069 (2017).
    Article  PubMed  Google Scholar 

    9.
    Marzluff, J. M. & Angell, T. Cultural coevolution: how the human bond with crows and ravens extends theory and raises new questions. J. Ecol. Anthropol. 9, 69–75 (2005).
    Google Scholar 

    10.
    Toft, C. A. & Wright, T. F. Parrots of the wild: A natural history of the world’s most captivating birds (Univ. California Press, Oakland, California, USA, 2015).
    Google Scholar 

    11.
    Armansin, N. C. et al. Social barriers in ecological landscapes: The social resistance hypothesis. Trends Ecol. Evol. 35, 137–148. https://doi.org/10.1016/j.tree.2019.10.001 (2020).
    Article  PubMed  Google Scholar 

    12.
    Abdelkrim, J., Hunt, G. R., Gray, R. D. & Gemmell, N. J. Population genetic structure and colonisation history of the tool-using New Caledonian Crow. PLoS ONE 7, e36608. https://doi.org/10.1371/journal.pone.0036608 (2012).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    13.
    Rutz, C., Ryder, T. B. & Fleischer, R. C. Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows. Naturwissenschaften 99, 313–320. https://doi.org/10.1007/s00114-012-0904-6 (2012).
    CAS  Article  PubMed  ADS  Google Scholar 

    14.
    Wright, T. F., Rodriguez, A. M. & Fleischer, R. C. Vocal dialects, sex-biased dispersal, and microsatellite population structure in the parrot Amazona auropalliata. Mol. Ecol. 14, 1197–1205. https://doi.org/10.1111/j.1365-294X.2005.02466.x (2005).
    CAS  Article  PubMed  Google Scholar 

    15.
    Hobson, E. A., Avery, M. L. & Wright, T. F. The socioecology of Monk Parakeets: Insights into parrot social complexity. Auk 131, 756–775. https://doi.org/10.1642/AUK-14-14.1 (2014).
    Article  Google Scholar 

    16.
    Wright, T. F. & Dahlin, C. R. Vocal dialects in parrots: patterns and processes of cultural evolution. Emu 118, 50–66. https://doi.org/10.1080/01584197.2017.1379356 (2018).
    Article  PubMed  Google Scholar 

    17.
    Smith-Vidaurre, G., Araya-Salas, M. & Wright, T. F. Individual signatures outweigh social group identity in contact calls of a communally nesting parrot. Behav. Ecol. 31, 448–458. https://doi.org/10.1093/beheco/arz202 (2020).
    Article  Google Scholar 

    18.
    Lowe, W. H., Kovach, R. P. & Allendorf, F. W. Population genetics and demography unite ecology and evolution. Trends Ecol. Evol. 32, 141–152. https://doi.org/10.1016/j.tree.2016.12.002 (2017).
    Article  PubMed  Google Scholar 

    19.
    Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 26, 561–569. https://doi.org/10.1016/j.tree.2011.07.009 (2011).
    Article  PubMed  Google Scholar 

    20.
    Méndez, M., Vögeli, M., Tella, J. L. & Godoy, J. A. Joint effects of population size and isolation on genetic erosion in fragmented populations: finding fragmentation thresholds for management. Evol. Appl. 7, 506–518. https://doi.org/10.1111/eva.12154 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Klauke, N., Schaefer, H. M., Bauer, M. & Segelbacher, G. Limited dispersal and significant fine-scale genetic structure in a tropical montane parrot species. PLoS ONE 11, e0169165. https://doi.org/10.1371/journal.pone.0169165 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Monge, O., Schmidt, K., Vaughan, C. & Gutiérrez-Espeleta, G. Genetic patterns and conservation of the Scarlet Macaw (Ara macao) in Costa Rica. Conserv. Genet. 17, 745–750. https://doi.org/10.1007/s10592-015-0804-3 (2016).
    Article  Google Scholar 

    23.
    Kopps, A. M. et al. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins. Proc. R. Soc. Lond., B, Biol. Sci. 281, 20133245. https://doi.org/10.1098/rspb.2013.3245 (2014).

    24.
    Foote, A. D. et al. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nat. Commun. 7, 1–12. https://doi.org/10.1038/ncomms11693 (2016).
    CAS  Article  Google Scholar 

    25.
    Pilot, M., Dahlheim, M. E. & Hoelzel, A. R. Social cohesion among kin, gene flow without dispersal and the evolution of population genetic structure in the killer whale (Orcinus orca). J. Evol. Biol. 23, 20–31. https://doi.org/10.1111/j.1420-9101.2009.01887.x (2010).
    CAS  Article  PubMed  Google Scholar 

    26.
    Estrada, A. Reintroduction of the scarlet macaw (Ara macao cyanoptera) in the tropical rainforests of Palenque, Mexico: Project design and first year progress. Trop. Conserv. Sci. 7, 342–364. https://doi.org/10.1177/194008291400700301 (2014).
    Article  Google Scholar 

    27.
    Lopes, A. R. et al. The influence of anti-predator training, personality and sex in the behavior, dispersion and survival rates of translocated captive-raised parrots. Glob Ecol. Conserv. 11, 146–157. https://doi.org/10.1016/j.gecco.2017.05.001 (2017).
    Article  Google Scholar 

    28.
    Pitter, E. & Christiansen, M. B. Ecology, status and conservation of the Red-fronted Macaw Ara rubrogenys. Bird Conserv. Int. 5, 61–78. https://doi.org/10.1017/S0959270900002951 (1995).
    Article  Google Scholar 

    29.
    Meyer, C. Spatial ecology and conservation of the endemic and endangered Red-fronted Macaw (Ara rubrogenys) in the Bolivian Andes. Diploma Thesis. Centre for Nature Conservation, Faculty of Biology, Georg-August University Göttingen (2010).

    30.
    Tella, J. L., Rojas, A., Carrete, M. & Hiraldo, F. Simple assessments of age and spatial population structure can aid conservation of poorly known species. Biol. Conserv. 167, 425–434. https://doi.org/10.1016/j.biocon.2013.08.035 (2013).
    Article  Google Scholar 

    31.
    Leite, K. C. E., Seixas, G. H. F., Berkunsky, I., Collevatti, R. G. & Caparroz, R. Population genetic structure of the blue-fronted Amazon (Amazona aestiva, Psittacidae: Aves) based on nuclear microsatellite loci: Implications for conservation. Genet. Mol. Res. 7, 819–829. https://doi.org/10.4238/vol7-3gmr474 (2008).
    CAS  Article  PubMed  Google Scholar 

    32.
    Masello, J. F. et al. The high Andes, gene flow and a stable hybrid zone shape the genetic structure of a wide-ranging South American parrot. Front. Zool. 8, 16. https://doi.org/10.1186/1742-9994-8-16 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Olah, G., Heinsohn, R. G., Brightsmith, D. J. & Peakall, R. The application of non-invasive genetic tagging reveals new insights into the clay lick use by macaws in the Peruvian Amazon. Conserv. Genet. 18, 1037–1046. https://doi.org/10.1007/s10592-017-0954-6 (2017).
    Article  Google Scholar 

    34.
    Ellegren, H. et al. Microsatellite evolution: A reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol. Biol. Evol. 14, 854–860. https://doi.org/10.1093/oxfordjournals.molbev.a025826 (1997).
    CAS  Article  PubMed  Google Scholar 

    35.
    Mills, L. S., Citta, J. J., Lair, K. P., Schwartz, M. K. & Tallmon, D. A. Estimating animal abundance using noninvasive DNA sampling: Promise and pitfalls. Ecol. Appl. 10, 283–294. https://doi.org/10.1890/1051-0761(2000)010[0283:EAAUND]2.0.CO;2 (2000).
    Article  Google Scholar 

    36.
    Alcaide, M., Serrano, D., Tella, J. L. & Negro, J. J. Strong philopatry derived from capture-recapture methods does not lead to fine-scale genetic differentiation in lesser kestrels. J. Anim. Ecol. 78, 468–475. https://doi.org/10.1111/j.1365-2656.2008.01493.x (2009).
    Article  PubMed  Google Scholar 

    37.
    Barrowclough, G. F. Gene flow, effective population sizes, and genetic variance components in birds. Evolution 34, 789–798. https://doi.org/10.2307/2408033 (1980).
    Article  PubMed  Google Scholar 

    38.
    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to conservation genetics (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    39.
    Jones, O. R. & Wang, J. A comparison of four methods for detecting weak genetic structure from marker data. Ecol. Evol. 2, 1048–1055. https://doi.org/10.1002/ece3.237 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    van Rees, C. B., Reed, J. M., Wilson, R. E., Underwood, J. G. & Sonsthagen, S. A. Small-scale genetic structure in an endangered wetland specialist: possible effects of landscape change and population recovery. Conserv. Genet. 19, 129–142. https://doi.org/10.1007/s10592-017-1020-0 (2018).
    Article  Google Scholar 

    41.
    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Graciá, E. et al. Genetic signatures of demographic changes in an avian top predator during the last century: Bottlenecks and expansions of the Eurasian Eagle Owl in the Iberian Peninsula. PLoS ONE 10, e0133954. https://doi.org/10.1371/journal.pone.0133954 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Williamson-Natesan, E. G. Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv. Genet. 6, 551–562. https://doi.org/10.1007/s10592-005-9009-5 (2005).
    Article  Google Scholar 

    44.
    Peery, M. Z. et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21, 3403–3418. https://doi.org/10.1111/j.1365-294X.2012.05635.x (2012).
    Article  PubMed  Google Scholar 

    45.
    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318. https://doi.org/10.1046/j.1365-294X.2001.01190.x (2001).
    CAS  Article  PubMed  Google Scholar 

    46.
    BirdLife International. Ara rubrogenys. The IUCN Red List of Threatened Species 2018: e.T22685572A131382876. Downloaded on 30 May 2020 (2018). https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22685572A131382876.en (2018).

    47.
    El, D. O. reto del espacio andino (Instituto de Estudios Peruanos, Lima, Perú, 1981).
    Google Scholar 

    48.
    Williams, J. J., Gosling, W. D., Coe, A. L., Brooks, S. J. & Gulliver, P. Four thousand years of environmental change and human activity in the Cochabamba Basin Bolivia. Quat. Res. 76, 58–68. https://doi.org/10.1016/j.yqres.2011.03.004 (2011).
    Article  Google Scholar 

    49.
    Flantua, S. G. et al. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records. Clim. Past 12, 483–523. https://doi.org/10.5194/cp-12-483-2016 (2016).
    Article  Google Scholar 

    50.
    Schlaifer, M., Las especies nativas y la deforestación en los Andes. Una visión histórica, social y cultural en Cochabamba, Bolivia. Bulletin de l’Institut français d’études andines 22, 585–610 (1993).

    51.
    Sánchez Canedo, W. Inkas,“flecheros” y mitmaqkuna: Cambio social y paisajes culturales en los Valles y en los Yungas de Inkachaca/Paracti y Tablas Monte (Cochabamba-Bolivia, siglos XV-XVI) (Doctoral dissertation, Institutionen för arkeologi och antik historia) Universitetstryckeriet, Uppsala, Sweden (2008).

    52.
    Cobo, B. Historia del Nuevo Mundo (Obras del P. Bernabé Cobo) II Tomos. Estudio preliminar y edición del P. Francisco Mateos. Biblioteca de Autores Españoles, Madrid. Disponible en: http://www.bibliotecavirtualdeandalucia.es/catalogo/consulta/registro.cmd?id=1014725 (1964) [1652].

    53.
    Guaman Poma de Ayala, F. El primer Nueva corónica y buen gobierno [1615] (eds J. V. Murra and R. Adorno, Quechua trans. J. L. Urioste), 3 vols. Mexico City: Siglo Veintiuno 1980 [1615].

    54.
    Tella, J. L. The unknown extent of ancient bird introductions. Ardeola 58, 399–404. https://doi.org/10.13157/arla.58.2.2011.399 (2011).

    55.
    Wilkinson, D., The influence of Amazonia on state formation in the ancient Andes. Antiquity 92, 1362–1376. https://doi.org/10.15184/aqy.2018.194 (2018).

    56.
    Gomez Casaverde, Y. Textiles Chimú con aplicaciones de plumas del Sitio Huaca de la Luna (Circa 800 dc-1470 dc): caracterización tecnológica y aproximación a las rutas de intercambio amazónico-andinas (Modelización y Técnicas Analíticas. Universidad Nacional de Trujillo. Trujillo, Perú, Maestría en Arqueología Sudamericana mención Arqueometría, 2020).
    Google Scholar 

    57.
    Boakes, E. H., Wang, J. & Amos, W. An investigation of inbreeding depression and purging in captive pedigreed populations. Heredity 98, 172–182. https://doi.org/10.1038/sj.hdy.6800923 (2007).
    CAS  Article  PubMed  Google Scholar 

    58.
    Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20, 1843–1861. https://doi.org/10.1007/s10531-011-0074-4 (2011).
    Article  Google Scholar 

    59.
    Thévenon, S., Bonnet, A., Claro, F. & Maillard, J. C. Genetic diversity analysis of captive populations: The Vietnamese sika deer (Cervus nippon pseudaxis) in zoological parks. Zool. Biol. 22, 465–475. https://doi.org/10.1002/zoo.10091 (2003).
    CAS  Article  Google Scholar 

    60.
    Kekkonen, J., Wikström, M. & Brommer, J. E. Heterozygosity in an isolated population of a large mammal founded by four individuals is predicted by an individual-based genetic model. PLoS ONE 7, e43482. https://doi.org/10.1371/journal.pone.0043482 (2012).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    61.
    Jackson, N. D. & Fahrig, L. Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc. Ecol. 31, 951–968. https://doi.org/10.1007/s10980-015-0313-2 (2016).
    Article  Google Scholar 

    62.
    Gibbs, J. P. Demography versus habitat fragmentation as determinants of genetic variation in wild populations. Biol. Conserv. 100, 15–20. https://doi.org/10.1016/S0006-3207(00)00203-2 (2001).
    Article  Google Scholar 

    63.
    Blanco, G., Hiraldo, F. & Tella, J. L. Ecological functions of parrots: an integrative perspective from plant life cycle to ecosystem functioning. Emu 118, 36–49. https://doi.org/10.1080/01584197.2017.1387031 (2018).
    Article  Google Scholar 

    64.
    Storfer, A. et al. Putting the “landscape” in landscape genetics. Heredity 98, 128–142. https://doi.org/10.1038/sj.hdy.6800917 (2007).
    CAS  Article  PubMed  Google Scholar 

    65.
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68, 1–15. https://doi.org/10.1111/evo.12258 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Rojas, A., Yucra, E., Vera, I., Requejo, A. & Tella, J. A new population of the globally endangered red-fronted Macaw Ara rubrogenys unusually breeding in palms. Bird Conserv. Int. 24, 389–392. https://doi.org/10.1017/S095927091200038X (2014).
    Article  Google Scholar 

    67.
    Blanco, G., Hiraldo, F., Rojas, A., Dénes, F. V. & Tella, J. L. Parrots as key multilinkers in ecosystem structure and functioning. Ecol. Evol. 5, 4141–4160. https://doi.org/10.1002/ece3.1663 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    68.
    Andrews, K. Population genetics in the conservation of cetaceans and primates in Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies (eds. Yamagiwa, J. & Karczmarski, L.) 289–30 (Springer, Japan, 2014).

    69.
    Manel, S. & Holderegger, R. T. years of landscape genetics. Trends Ecol. Evol. 28, 614–621. https://doi.org/10.1016/j.tree.2013.05.012 (2013).
    Article  PubMed  Google Scholar 

    70.
    Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity?. Mol. Ecol. 19, 3038–3051. https://doi.org/10.1111/j.1365-294X.2010.04688.x (2010).
    Article  PubMed  Google Scholar 

    71.
    Hatchwell, B. J. Cryptic kin selection: kin structure in vertebrate populations and opportunities for kin-directed cooperation. Ethology 116, 203–216. https://doi.org/10.1111/j.1439-0310.2009.01732.x (2010).
    Article  Google Scholar 

    72.
    Bicknell, A. W. J. et al. Population genetic structure and long-distance dispersal among seabird populations: Implications for colony persistence. Mol. Ecol. 21, 2863–2876. https://doi.org/10.1111/j.1365-294X.2012.05558.x (2012).
    CAS  Article  PubMed  Google Scholar 

    73.
    Welch, A. J. et al. Population divergence and gene flow in an endangered and highly mobile seabird. Heredity 109, 19–28. https://doi.org/10.1038/hdy.2012.7 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    74.
    Bonilla, L. M. Monitoreo de la nidificación de la Paraba Frente Roja (Ara rubrogenys) en dos sitios de reproducción en los valles de los Departamentos de Santa Cruz y Cochabamba) en dos sitios de reproducción en los valles de los Departamentos de Santa Cruz y Cochabamba (Universidad Autónoma Gabriel René Moreno, Santa Cruz de La Sierra, Bolivia, 2007).
    Google Scholar 

    75.
    Caparroz, R., Miyaki, C. Y. & Baker, A. J. Contrasting phylogeographic patterns in mitochondrial DNA and microsatellites: evidence of female philopatry and male-biased gene flow among regional populations of the blue-and-yellow macaw (Psittaciformes: Ara ararauna) in Brazil. Auk 126, 359–370. https://doi.org/10.1525/auk.2009.07183 (2009).
    Article  Google Scholar 

    76.
    Alcaide, M. et al. Population fragmentation leads to isolation by distance but not genetic impoverishment in the philopatric Lesser Kestrel: a comparison with the widespread and sympatric Eurasian Kestrel. Heredity 102, 190–198. https://doi.org/10.1038/hdy.2008.107 (2009).
    CAS  Article  PubMed  Google Scholar 

    77.
    Olah, G. et al. Exploring dispersal barriers using landscape genetic resistance modelling in scarlet macaws of the Peruvian Amazon. Landsc. Ecol. 32, 445–456. https://doi.org/10.1007/s10980-016-0457-8 (2017).
    Article  Google Scholar 

    78.
    Pitter, E. & Christiansen, M. B. Behavior of individuals and social interactions of the Red-fronted Macaw Ara rubrogenys in the wild during the mid-day rest. Ornitol. Neotrop. 8, 133–143 (1997).
    Google Scholar 

    79.
    Keighley, M. V., Heinsohn, R., Langmore, N. E., Murphy, S. A. & Peñalba, J. V. Genomic population structure aligns with vocal dialects in Palm Cockatoos (Probosciger aterrimus); evidence for refugial late-Quaternary distribution?. EMU 119, 24–37. https://doi.org/10.1080/01584197.2018.1483731 (2019).
    Article  Google Scholar 

    80.
    Pacífico, E. C. et al. Breeding to non-breeding population ratio and breeding performance of the globally endangered Lear’s Macaw (Anodorhynchus leari): conservation and monitoring implications. Bird Conserv. Int. 24, 466–476. https://doi.org/10.1017/S095927091300049X (2014).
    Article  Google Scholar 

    81.
    Stutchbury, B. J. & Zack, S. Delayed breeding in avian social systems: the role of territory quality and” floater” tactics. Behaviour 123, 194–219. https://doi.org/10.1163/156853992X00020 (1992).
    Article  Google Scholar 

    82.
    Kokko, H. & Sutherland, W. J. Optimal floating and queuing strategies: consequences for density dependence and habitat loss. Am. Nat. 152, 354–366. https://doi.org/10.1086/286174 (1998).
    CAS  Article  PubMed  Google Scholar 

    83.
    Blanco, G., Laiolo, P. & Fargallo, J. A. Linking environmental stress, feeding-shifts and the ‘island syndrome’: a nutritional challenge hypothesis. Popul. Ecol. 56, 203–216. https://doi.org/10.1007/s10144-013-0404-3 (2014).
    Article  Google Scholar 

    84.
    Koenig, W. D. & Dickinson, J. L. Cooperative breeding in vertebrates: studies of ecology, evolution, and behavior. Cambridge University Press (2016).

    85.
    Gao, H., Bryc, K. & Bustamante, C. D. On identifying the optimal number of population clusters via the deviance information criterion. PLoS ONE 6, e21014. https://doi.org/10.1371/journal.pone.0021014 (2011).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    86.
    Rodríguez-Ramilo, S. T. & Wang, J. The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Mol. Ecol. Resour. 12, 873–884. https://doi.org/10.1111/j.1755-0998.2012.03156.x (2012).
    Article  PubMed  Google Scholar 

    87.
    Harrisson, K. A. et al. Fine-scale effects of habitat loss and fragmentation despite large-scale gene flow for some regionally declining woodland bird species. Landsc. Ecol. 27, 813–827. https://doi.org/10.1007/s10980-012-9743-2 (2012).
    Article  Google Scholar 

    88.
    Rull, V. Microrefugia. J. Biogeogr. 36, 481–484. https://doi.org/10.1111/j.1365-2699.2008.02023.x (2009).
    Article  Google Scholar 

    89.
    Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G. & Ellegren, H. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375–1380. https://doi.org/10.1016/j.cub.2015.03.047 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    90.
    James, J. E., Lanfear, R. & Eyre-Walker, A. Molecular evolutionary consequences of island colonization. Genome Biol. Evol. 8, 1876–1888. https://doi.org/10.1093/gbe/evw120 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    91.
    Gregory-Wodzicki, K. M. Uplift history of the central and Northern Andes: A review. Geol. Soc. Am. Bull. 112, 1091–1105. https://doi.org/10.1130/0016-7606(2000)112%3c1091:UHOTCA%3e2.0.CO;2 (2000).
    Article  ADS  Google Scholar 

    92.
    Navarro, G. & Maldonado M. Geografía ecológica de Bolivia: vegetación y ambientes acuáticos. Edit.: Centro de Ecología Simón I. Patiño-Departamento de Difusión. Cochabamba, Bolivia (2002).

    93.
    López, R. P. Phytogeographical relations of the Andean dry valleys of Bolivia. J. Biogeogr. 30, 1659–1668. https://doi.org/10.1046/j.1365-2699.2003.00919.x (2003).
    Article  Google Scholar 

    94.
    Montesinos-Navarro, A., Hiraldo, F., Tella, J. L. & Blanco, G. Network structure embracing mutualism–antagonism continuums increases community robustness. Nat. Ecol. Evol. 1, 1661–1669. https://doi.org/10.1038/s41559-017-0320-6 (2017).
    Article  PubMed  Google Scholar 

    95.
    Da Silva, A. G., Eberhard, J. R., Wright, T. F., Avery, M. L. & Russello, M. A. Genetic evidence for high propagule pressure and long-distance dispersal in monk parakeet (Myiopsitta monachus) invasive populations. Mol. Ecol. 19, 3336–3350. https://doi.org/10.1111/j.1365-294X.2010.04749.x (2010).
    Article  Google Scholar 

    96.
    Russello, M., Calcagnotto, D., DeSalle, R. & Amato, G. Characterization of microsatellite loci in the endangered St. Vicent parrot, Amazona guildingii. Mol. Ecol. Notes 1, 13–13. https://doi.org/10.1046/j.1471-8278.2001.00061.x (2001).

    97.
    Bergner, L. M., Jamieson, I. G. & Robertson, B. C. Combining genetic data to identify relatedness among founders in a genetically depauperate parrot, the Kakapo (Strigops habroptilus). Conserv. Genet. 15, 1013–1020. https://doi.org/10.1007/s10592-014-0595-y (2014).
    Article  Google Scholar 

    98.
    Stojanovic, D., Olah, G., Webb, M., Peakall, R. & Heinsohn, R. Genetic evidence confirms severe extinction risk for critically endangered swift parrots: implications for conservation management. Anim. Conserv. 21, 313–323. https://doi.org/10.1111/acv.12394 (2018).
    Article  Google Scholar 

    99.
    Väli, Ü., Einarsson, A., Waits, L. & Ellegren, H. To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations?. Mol. Ecol. 17, 3808–3817. https://doi.org/10.1111/j.1365-294X.2008.03876.x (2008).
    Article  PubMed  Google Scholar 

    100.
    Young, A. M., Hobson, E. A., Lackey, L. B. & Wright, T. E. Survival on the ark: Life-history trends in captive parrots. Anim. Conserv. 15, 28–43. https://doi.org/10.1111/j.1469-1795.2011.00477.x (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    101.
    Fraser, D. J. & Bernatchez, L. Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Mol. Ecol. 10, 2741–2752. https://doi.org/10.1046/j.0962-1083.2001.01411.x (2001).
    CAS  Article  PubMed  Google Scholar 

    102.
    Palsbøll, P. J., Bérubé, M. & Allendorf, F. W. Identification of management units using population genetic data. Trends Ecol. Evol. 22, 11–16. https://doi.org/10.1016/j.tree.2006.09.003 (2007).
    Article  PubMed  Google Scholar 

    103.
    Schiegg, K. Environmental autocorrelation: curse or blessing?. Trends Ecol. Evol. 18, 212–214. https://doi.org/10.1016/S0169-5347(03)00074-0 (2004).
    Article  Google Scholar 

    104.
    Shafer, A. B. A. et al. Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 30, 78–87. https://doi.org/10.1016/j.tree.2014.11.009 (2015).
    Article  PubMed  Google Scholar 

    105.
    Valière, N. GIMLET: a computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379. https://doi.org/10.1046/j.1471-8286.2002.00228.x-i2 (2002).
    Article  Google Scholar 

    106.
    Jones, O. R. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x (2010).
    Article  PubMed  Google Scholar 

    107.
    Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241. https://doi.org/10.1016/S0169-5347(02)02489-8 (2002).
    Article  Google Scholar 

    108.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. https://doi.org/10.2307/2408641 (1984).
    CAS  Article  PubMed  Google Scholar 

    109.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2012).

    110.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    111.
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    112.
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    113.
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
    Article  Google Scholar 

    114.
    Tishkoff, S. A., Reed, F. A., Friedlaender, F. R., Ehret, C., Ranciaro, A., Froment, et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044. https://doi.org/10.1126/science.1172257 (2009).

    115.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
    CAS  Article  PubMed  Google Scholar 

    116.
    Rousset, F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).
    Article  PubMed  Google Scholar 

    117.
    Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).
    CAS  PubMed  PubMed Central  Google Scholar 

    118.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x (2007).
    Article  PubMed  Google Scholar 

    119.
    Ciofi, C., Beaumontf, M. A., Swingland, I. R. & Bruford, M. W. Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc. R. Soc. Lond. B Biol. Sci. 266, 2269–2274. https://doi.org/10.1098/rspb.1999.0918 (1999).

    120.
    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503. https://doi.org/10.1093/jhered/90.4.502 (1999).
    Article  Google Scholar 

    121.
    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275. https://doi.org/10.1111/j.1558-5646.1989.tb04226.x (1989).
    Article  PubMed  Google Scholar 

    122.
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).
    PubMed  PubMed Central  Google Scholar 

    123.
    Piry, S. et al. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).
    CAS  Article  PubMed  Google Scholar 

    124.
    Waples, R. S. & Do, C. H. I. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756. https://doi.org/10.1111/mec.12561 (2008).
    Article  PubMed  Google Scholar 

    125.
    Waples, R. S. & Do, C. H. I. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x (2010).
    Article  Google Scholar 

    126.
    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    127.
    Bohonak, A. J. IBD (isolation by distance): a program for analyses of isolation by distance. J. Hered. 93, 153–154. https://doi.org/10.1093/jhered/93.2.153 (2002).
    CAS  Article  Google Scholar  More