Novel approach to enhance coastal habitat and biotope mapping with drone aerial imagery analysis
1.
Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
ADS CAS PubMed Article Google Scholar
2.
Lefcheck, J. S., Wilcox, D. J., Murphy, R. R., Marion, S. R. & Orth, R. J. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Glob. Change Biol. 32, 202–3483 (2017).
Google Scholar
3.
Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).
ADS CAS PubMed Article Google Scholar
4.
Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).
PubMed Article Google Scholar
5.
Liquete, C. et al. Current status and future prospects for the assessment of marine and coastal ecosystem services: A systematic review. PLoS ONE 8, e67737 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
6.
Bayley, D. T. I. & Mogg, A. O. M. Chapter 6—New Advances in Benthic Monitoring Technology and Methodology. World Seas: An Environmental Evaluation 121–132 (Elsevier, Amsterdam, 2018). https://doi.org/10.1016/B978-0-12-805052-1.00006-1.
Google Scholar
7.
González-Rivero, M. et al. The Catlin Seaview Survey—Kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 184–198 (2014).
Article Google Scholar
8.
Ventura, D., Bruno, M., Jona Lasinio, G., Belluscio, A. & Ardizzone, G. A low-cost drone based application for identifying and mapping of coastal fish nursery grounds. Estuar. Coast. Shelf Sci. 171, 85–98 (2016).
ADS Article Google Scholar
9.
Pyle, R. L. in Mesophotic Coral Ecosystems (eds. Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 12, 959–972 (Springe, Berlin, 2019).
10.
Lam, K. et al. A comparison of video and point intercept transect methods for monitoring subtropical coral communities. J. Exp. Mar. Biol. Ecol. 333, 115–128 (2006).
Article Google Scholar
11.
Dumas, P., Bertaud, A., Peignon, C., Léopold, M. & Pelletier, D. A ‘quick and clean’ photographic method for the description of coral reef habitats. J. Exp. Mar. Biol. Ecol. 368, 161–168 (2009).
Article Google Scholar
12.
Monteiro, J. G., Almeida, C., Freitas, R., Delgado, A. & Porteiro, F. Coral assemblages of Cabo Verde: preliminary assessment and description. Proceedings of the 11th ICRS (2009).
13.
Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 10, e0130312 (2015).
PubMed PubMed Central Article CAS Google Scholar
14.
Chennu, A., Färber, P., De’ath, G., de Beer, D. & Fabricius, K. E. A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Sci. Rep. 7, 1–12 (2017).
CAS Article Google Scholar
15.
Purkis, S. J. Remote sensing tropical coral reefs: The view from above. Annu. Rev. Mar. Sci. 10, 149–168 (2018).
ADS Article Google Scholar
16.
Kao, H.-M. et al. Determination of shallow water depth using optical satellite images. Int. J. Remote Sens. 30, 6241–6260 (2009).
ADS Article Google Scholar
17.
Saul, S. & Purkis, S. Semi-automated object-based classification of coral reef habitat using discrete choice models. Remote Sens. 7, 15894–15916 (2015).
ADS Article Google Scholar
18.
Marcello, J., Eugenio, F. & Marques, F. Benthic mapping using high resolution multispectral and hyperspectral imagery. In IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium 1535–1538 (2018). https://doi.org/10.1109/IGARSS.2018.8519166
19.
Chénier, R., Faucher, M.-A. & Ahola, R. Satellite-derived bathymetry for improving canadian hydrographic service charts. ISPRS Int. J. Geo-Inf. 7, 306–315 (2018).
Article Google Scholar
20.
Casella, E. et al. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 36, 269–275 (2016).
ADS Article Google Scholar
21.
Chust, G., Galparsoro, I., Borja, Á., Franco, J. & Uriarte, A. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar. Coast. Shelf Sci. 78, 633–643 (2008).
ADS Article Google Scholar
22.
Garcia, R., Hedley, J., Tin, H. & Fearns, P. A method to analyze the potential of optical remote sensing for benthic habitat mapping. Remote Sens. 7, 13157–13189 (2015).
ADS Article Google Scholar
23.
Hernandez, W. & Armstrong, R. Deriving bathymetry from multispectral remote sensing data. JMSE 4, 8 (2016).
Article Google Scholar
24.
Gonzalez, L. et al. Unmanned Aerial Vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 16, 97 (2016).
Article Google Scholar
25.
Jiménez López, J. & Mulero-Pázmány, M. Drones for conservation in protected areas: Present and future. Drones 3, 10 (2019).
Article Google Scholar
26.
Chirayath, V. & Earle, S. A. Drones that see through waves—Preliminary results from airborne fluid lensing for centimetre-scale aquatic conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 237–250 (2016).
Article Google Scholar
27.
Giordano, F., Mattei, G., Parente, C., Peluso, F. & Santamaria, R. Integrating sensors into a marine drone for bathymetric 3D surveys in shallow waters. Sensors 16, 41–17 (2016).
Article Google Scholar
28.
Collin, A. et al. Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery. Int. J. Remote Sens. 00, 1–13 (2018).
Google Scholar
29.
Konar, B. & Iken, K. The use of unmanned aerial vehicle imagery in intertidal monitoring. Deep-Sea Res. Part II(147), 79–86 (2018).
Article Google Scholar
30.
Parsons, M., Bratanov, D., Gaston, K. J. & Gonzalez, F. UAVs, hyperspectral remote sensing, and machine learning revolutionizing reef monitoring. Sensors 18, 2026 (2018).
Article Google Scholar
31.
Rossiter, T., Furey, T., McCarthy, T. & Stengel, D. B. UAV-mounted hyperspectral mapping of intertidal macroalgae. Estuar. Coast. Shelf Sci. https://doi.org/10.1016/j.ecss.2020.106789 (2020).
Article Google Scholar
32.
United Nations Environment Programme. Out of the Blue. 1–96 (UNEP, 2020).
33.
Monteiro, J. G. & Lopez, J. J. Map of Quinta do Lorde Bay—Madeira Island. 1–3 (2020). doi:https://doi.org/10.22541/au.158939921.14824633
34.
Stumpf, R. P., Holderied, K. & Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 48, 547–556 (2003).
ADS Article Google Scholar
35.
Conger, C. L., Hochberg, E. J., Fletcher, C. H. & Atkinson, M. J. Decorrelating remote sensing color bands from bathymetry in optically shallow waters. IEEE Trans. Geosci. Remote Sens. 44, 1655–1660 (2006).
ADS Article Google Scholar
36.
Clarke, K. & Warwick, R. Change in Marine Communities: An Approach to Statistical Analysis (Primer-e Ltd, London, 2014).
Google Scholar
37.
Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the mesophotic. Sci. Rep. https://doi.org/10.1038/s41598-018-23067-1 (2018).
Article PubMed PubMed Central Google Scholar
38.
Olenin, S. & Ducrotoy, J.-P. The concept of biotope in marine ecology and coastal management. J. Exp. Mar. Biol. Ecol. 53, 20–29 (2006).
CAS Google Scholar
39.
Frazão Santos, C. et al. in World Seas: An Environmental Evaluation 571–592 (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/B978-0-12-805052-1.00033-4
40.
Mumby, P. J. et al. Remote sensing of coral reefs and their physical environment. Mar Polut Bull 48, 219–228 (2004).
CAS Article Google Scholar
41.
Hayes, R. & Goreau, T. Satellite-derived sea surface temperature from Caribbean and Atlantic coral reef sites, 1984–2003. Rev. Biol. Trop. 56, 97–118 (2008).
Google Scholar
42.
Sugara, A. A., Siregar, V. P. V. & Agus, S. B. S. Classification of benthic habitat of shallow water using worldview-2 image with in-situ and drone data. Jurnal Ilmu dan Teknologi Kelautan Tropis 12, 135–150 (2020).
Article Google Scholar
43.
Murfitt, S. L. et al. Applications of unmanned aerial vehicles in intertidal reef monitoring. Sci. Rep. https://doi.org/10.1038/s41598-017-10818-9 (2017).
Article PubMed PubMed Central Google Scholar
44.
Kaplanis, N. J., Edwards, C. B., Eynaud, Y. & Smith, J. E. Future sea-level rise drives rocky intertidal habitat loss and benthic community change. PeerJ 8, e9186–e9221 (2020).
PubMed PubMed Central Article Google Scholar
45.
Chatzinikolaou, E. Use and limitations of ecological models. Transit. Waters Bull. 6, 34–41 (2012).
Google Scholar
46.
de Carneiro, L. R. A., Lima, A. P., Machado, R. B. & Magnusson, W. E. Limitations to the use of species-distribution models for environmental-impact assessments in the Amazon. PLoS ONE 11, e0146543 (2016).
PubMed PubMed Central Article CAS Google Scholar
47.
van der Wal, D., van Dalen, J., Dool, den, A. W.-V., Dijkstra, J. T. & Ysebaert, T. Biophysical control of intertidal benthic macroalgae revealed by high-frequency multispectral camera images. J. Sea Res. 90, 111–120 (2014).
48.
Goldberg, J. & Wilkinson, C. in Status of coral reefs of the World (ed. Wilkinson, C.) 1, 67–92 (Status of coral reefs of the World, 2004).
49.
Fabry, V. J., Seibel, B. A. & Feely, R. A. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).
CAS Article Google Scholar
50.
Radeta, M. et al. in Human-Computer Interaction—INTERACT 2019, vol. 11748, 237–248 (Springer, Cham, 2019).
51.
Rusu, E. & Guedes Soares, C. Wave energy pattern around the Madeira Islands. Energy 45, 771–785 (2012).
Article Google Scholar
52.
Pullen, J., Caldeira, R., Doyle, J. D., May, P. & Tomé, R. Modeling the air-sea feedback system of Madeira Island. J. Adv. Model. Earth Syst. 9, 1641–1664 (2017).
ADS Article Google Scholar
53.
Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275 (2010).
Article Google Scholar
54.
Earth Systems Research Institute (ESRI). ArcGIS Desktop: Release 10 (2011).
55.
Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogram. Remote Sens. 65, 2–16 (2010).
ADS Article Google Scholar
56.
Darwish, A., Leukert, K. & Reinhardt, W. Image segmentation for the purpose of object-based classification. in 3, 2039–2041 (IEEE, 2003).
57.
Qian, Y., Zhou, W., Yan, J., Li, W. & Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 7, 153–168 (2015).
ADS Article Google Scholar
58.
Masi, B., Macedo, I. & Zalmon, I. Benthic community zonation in a breakwater on the North Coast of the State of Rio de Janeiro, Brazil. Braz. Arch. Biol. Technol. 52, 637–646 (2009).
Article Google Scholar
59.
Sangil, C. et al. Shallow subtidal macroalgae in the North-eastern Atlantic archipelagos (Macaronesian region): A spatial approach to community structure. Eur. J. Phycol. 00, 1–16 (2018).
Google Scholar
60.
Su, T.-C. & Chou, H.-T. Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu Reservoir in Kinmen, Taiwan. Remote Sens. 7, 10078–10097 (2015).
ADS Article Google Scholar
61.
Kohler, K. & Gill, S. Coral Point Count with Excel Extensions (CPCe): A Visual Basic Program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).
ADS Article Google Scholar
62.
Clarke, K. R. & Gorley, R. N. Getting started with PRIMER V7 (PRIMER-E, Plymouth, 2015).
Google Scholar
63.
Berman, J. & Bell, J. J. Spatial Variability of Sponge Assemblages on the Wellington South Coast, New Zealand. Open Mar. Biol. J. 4, 12–25 (2010). https://doi.org/10.2174/1874450801004010012.
64.
Rawson, C. A. et al. Benthic macroinvertebrate assemblages in remediated wetlands around Sydney, Australia. Ecotoxicology 19, 1589–1600 (2010).
CAS PubMed Article Google Scholar
65.
Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA for PRIMER: a guide to software and statistical methods. (PRIMER-E Ltd, 2008). More