More stories

  • in

    Tropical rhodolith beds are a major and belittled reef fish habitat

    The Abrolhos shelf extends ~ 200 km offshore and is SWA’s most biodiverse region, encompassing a large mid-to-outer shelf hard bottom domain with reefs and rhodolith beds (~ 20,900 km2)5,6. Fine-sediment dissipative beaches and a large estuary with mangroves dominate the coastline, and terrigenous-mixed sediments predominate in the inner shelf27. This large and complex seascape (Fig. 1) comprises a representative experimental setting for understanding the distribution and abundance of reef fishes in different habitats, as well as for exploring the drivers and spatial scaling of beta diversity in reef fish assemblages. The high richness of reef fishes off coral reefs that we found in Abrolhos was unexpected, and sheds new light toward the integration of phenomena that occur at different scales and across distinct habitats and groups of organisms11,20. From a practical standpoint, our results are relevant to improve marine management in complex tropical seascapes with rhodolith beds23 and other large marginal habitats.
    The high richness of reef fishes in rhodolith beds, where fish biomass was smaller than on reefs (Supplementary Fig. S1 online; Fig. 4), seems to be primarily related to the much larger area of rhodolith beds, as well as to the broader depth and cross-shelf range of this hard-bottom habitat, contrasting with reefs. Rather than being a regional idiosyncrasy, the relatively larger area and cross-shelf range of non-reef habitat used by reef fishes seems to be recurrent in tropical shelves across all ocean basins8,9,23. However, due to logistical constrains and to the apparent smaller relevance of marginal habitats to fish and other reef-associated organisms, these habitats are still much less sampled than the iconic shallow water reefs20, with the exception of mangroves and seagrass beds3,8,9.
    Compositional variability in biological communities is strongly dependent on spatial scale. Accordingly, beta diversity is expected to be high at biogeographic and local scales, while turnover tends to be lower at regional scales28,29. Reef fish assemblages tend to vary sharply at small spatial scales ( More

  • in

    Near-term climate change impacts on sub-national malaria transmission

    1.
    World Health Organization. Global Health Observatory (GHO) data: Malaria. (2018). Available at: https://www.who.int/gho/malaria/en/.
    2.
    World Health Organization. Climate Change and health. (2018). Available at: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health. Accessed 31st December 2019.

    3.
    World Health Organization. World Malaria Report 2018. WHO/HTM/GM (World Health Organization, Geneva, 2018).
    Google Scholar 

    4.
    Aal, R. & Elshayeb, A. A. The effects of climate changes on the distribution and spread of malaria in Sudan. Am. J. Environ. Eng. 1, 15–20 (2012).
    Article  Google Scholar 

    5.
    Abeku, T. A. et al. Effects of meteorological factors on epidemic malaria in Ethiopia: a statistical modelling approach based on theoretical reasoning. Parasitology 128, 585–593 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Parham, P. E. & Michael, E. Modelling climate change and malaria transmission. Model. Parasite Transm. Control 673, 184–199 (2010).
    Article  Google Scholar 

    7.
    Gething, P. W. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Zhai, J. X. et al. Development of an empirical model to predict malaria outbreaks based on monthly case reports and climate variables in Hefei, China, 1990–2011. Acta Trop. 178, 148–154 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Tompkins, A. M. & Thomson, M. C. Uncertainty in malaria simulations in the highlands of Kenya: relative contributions of model parameter setting, driving climate and initial condition errors. PLoS ONE 13, 16831 (2018).
    Article  CAS  Google Scholar 

    10.
    Moukam Kakmeni, F. M. et al. Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios. Int. J. Health Geogr. 17, 1–13 (2018).
    Article  Google Scholar 

    11.
    Hurtado, L. A., Calzada, J. E., Rigg, C. A., Castillo, M. & Chaves, L. F. Climatic fluctuations and malaria transmission dynamics, prior to elimination, in Guna Yala, República de Panamá. Malar. J. 17, 1–12 (2018).
    Article  Google Scholar 

    12.
    Ferrao, J. L., Niquisse, S., Mendes, J. M. & Painho, M. Mapping and modelling malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Int. J. Environ. Res. Public Health 15, 1–15 (2018).
    Article  Google Scholar 

    13.
    Semakula, H. M. et al. Prediction of future malaria hotspots under climate change in sub-Saharan Africa. Clim. Change 143, 415–428 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    Imai, C. et al. Associations between malaria and local and global climate variability in five regions in Papua New Guinea. Trop. Med. Health 44, 1–9 (2016).
    Article  Google Scholar 

    15.
    Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1302089111 (2014).
    Article  PubMed  Google Scholar 

    16.
    World Health Organization. World Malaria Report 2008 (World Health Organization, Geneva, 2008). ISBN 978 92 4 1564403

    17.
    Chizema-Kawesha, E. et al. Scaling up malaria control in Zambia: progress and impact 2005–2008. Am. J. Trop. Med. Hyg. 83, 480–488 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Mukonka, V. et al. Diagnostic approaches to malaria in Zambia, 2009–2014. Geospat. Health 10, 330 (2015).
    PubMed  Article  Google Scholar 

    19.
    Chanda, E. et al. Insecticide resistance and the future of malaria control in Zambia. PLoS ONE 6, 1–9 (2011).
    Article  CAS  Google Scholar 

    20.
    Kamuliwo, M. et al. The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006–2011. Malar. J. 12, 1–9 (2013).
    Article  Google Scholar 

    21.
    Shimaponda-Mataa, N. M., Tembo-Mwase, E., Gebreslasie, M., Achia, T. N. O. & Mukaratirwa, S. Modelling the influence of temperature and rainfall on malaria incidence in four endemic provinces of Zambia using semiparametric Poisson regression. Acta Trop. 166, 81–91 (2017).
    PubMed  Article  Google Scholar 

    22.
    President’s Malaria Initiative. President’s Malaria Initiative Zambia Malaria Operational Plan FY 2019 (2019).

    23.
    Pinchoff, J. et al. Predictive malaria risk and uncertainty mapping in Nchelenge District, Zambia: evidence of widespread, persistent risk and implications for targeted interventions. Am. J. Trop. Med. Hyg. 93, 1260–1267 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Nkumama, I. N., O’Meara, W. P. & Osier, F. H. A. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 33, 128–140 (2017).
    PubMed  Article  Google Scholar 

    25.
    Bennett, A. et al. The relative contribution of climate variability and vector control coverage to changes in malaria parasite prevalence in Zambia 2006–2012. Parasites Vectors 9, 431 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Ashton, R. A., Prosnitz, D., Andrada, A., Herrera, S. & Yé, Y. Evaluating malaria programmes in moderate- and low-transmission settings: practical ways to generate robust evidence. Malar. J. https://doi.org/10.1186/s12936-020-03158-z (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Carpenter, C. C. J., Pearson, G. W., Mitchell, V. S. & Oaks, S. C. Jr. Malaria: Obstacles and Opportunities (National Academies Press, Washington, 1991).
    Google Scholar 

    28.
    Benelli, G., Jeffries, C. L. & Walker, T. Biological control of mosquito vectors: past, present, and future. Insects 7, 52 (2016).
    PubMed Central  Article  PubMed  Google Scholar 

    29.
    Ukawuba, I. et al. Using rainfall and temperature data in the evaluation of national malaria control programs in Africa. Am. J. Trop. Med. Hyg. 97, 32–45 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Martens, W. J., Jetten, T. H. & Focks, D. A. Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim. Change 35, 145–156 (1997).
    Article  Google Scholar 

    31.
    Martens, W., Niessen, L. W., Rotmans, J., Jetten, T. H. & McMichael, A. J. Potential impact of global climate change on malaria risk. Environ. Health Perspect. 103, 458–464 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Van Lieshout, M., Kovats, R. S., Livermore, M. T. J. & Martens, P. Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 87–99 (2004).
    Article  Google Scholar 

    33.
    Martens, P. et al. Climate change and future populations at risk of malaria. Glob. Environ. Change 9, S89–S107 (1999).
    Article  Google Scholar 

    34.
    Arab, A., Jackson, M. C. & Kongoli, C. Modelling the effects of weather and climate on malaria distributions in West Africa. Malar. J. 13, 126 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Central Statistical Office. 2010 census of population and housing: Population and Demographic Projections 2011–2035. 199 (2013).

    36.
    Maude, R. J., Mercado, C. E. G., Rowley, J., Ekapirat, N. & Dondorp, A. Estimating malaria disease burden in the Asia-Pacific. Wellcome Open Res. 4, 59 (2019).
    Article  Google Scholar 

    37.
    Van Buuren, S. Flexible Imputation of Missing Data (Chapman and Hall/CRC, Boca Raton, 2018).
    Google Scholar 

    38.
    Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2011).
    PubMed  Article  CAS  Google Scholar 

    39.
    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Saha, S. et al. NCEP Climate Forecast System Version 2 (CFSv2) Monthly Products (2012). https://doi.org/10.5065/D69021ZF

    41.
    Smets, B., Jacobs, T., Swinnen, E., Toté, C. & Wolfs, D. Gio Global Land Component-Lot I “Operation of the Global Land Component”, Framework Service Contract N° 388533 (JRC), Product User Manual Normalized Difference Vegetation Index (NDVI). 2.2 (2018).

    42.
    Smets, B. et al. A 10-daily 1km NDVI from METOP-AVHRR. 10 (2013).

    43.
    Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 2.8–19. Vienna, Austria R Found. Retrieved from https://CRAN.R-project.org/package=rasterImage (2019).

    44.
    Colón-González, F. J., Tompkins, A. M., Biondi, R., Bizimana, J. P. & Namanya, D. B. Assessing the effects of air temperature and rainfall on malaria incidence: an epidemiological study across Rwanda and Uganda. Geospat. Health 11, 1–2 (2016).
    Article  Google Scholar 

    45.
    Suk, J. E. Climate change, malaria, and public health: accounting for socioeconomic contexts in past debates and future research. Wiley Interdiscip. Rev. Clim. Change 7, 551–568 (2016).
    Article  Google Scholar 

    46.
    Mohammadkhani, M., Khanjani, N., Bakhtiari, B. & Sheikhzadeh, K. The relation between climatic factors and malaria incidence in Kerman, South East of Iran. Parasite Epidemiol. Control 1, 205–210 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Okuneye, K. & Gumel, A. B. Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics. Math. Biosci. 287, 72–92 (2017).
    MathSciNet  PubMed  MATH  Article  Google Scholar 

    48.
    Krefis, A. C. et al. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 84, 285–291 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Abiodun, G. J., Maharaj, R., Witbooi, P. & Okosun, K. O. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar. J. 15, 1–15 (2016).
    Article  Google Scholar 

    50.
    Blanford, J. I. et al. Implications of temperature variation for malaria parasite development across Africa. Sci. Rep. 3, 1300 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Odongo-Aginya, E., Ssegwanyi, G., Kategere, P. & Vuzi, P. C. Relationship between malaria infection intensity and rainfall pattern in Entebbe peninsula, Uganda. Afr. Health Sci. 5, 238–245 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    52.
    Darkoh, E. L., Larbi, J. A. & Lawer, E. A. A weather-based prediction model of malaria prevalence in Amenfi West District, Ghana. Malar. Res. Treat. https://doi.org/10.1155/2017/7820454 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    53.
    Kilian, A. H., Langi, P., Talisuna, A. & Kabagambe, G. Rainfall pattern, El Nino and malaria in Uganda. Trans. R. Soc. Trop. Med. Hyg. 93, 22–23 (1999).
    CAS  PubMed  Article  Google Scholar 

    54.
    Phung, D., Talukder, M. R. R., Rutherford, S. & Chu, C. A climate-based prediction model in the high-risk clusters of the Mekong Delta region, Vietnam: towards improving dengue prevention and control. Trop. Med. Int. Health 21, 1324–1333 (2016).
    PubMed  Article  Google Scholar 

    55.
    Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ. Int. 86, 14–23 (2016).
    PubMed  Article  Google Scholar 

    56.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    57.
    Jiang, Z., Raymond, M., Shi, D. & DiStefano, C. Using a linear mixed-effect model framework to estimate multivariate generalizability theory parameters in R. Behav. Res. Methods https://doi.org/10.3758/s13428-020-01399-z (2020).
    Article  PubMed  Google Scholar 

    58.
    Napier, G., Lee, D., Robertson, C. & Lawson, A. A Bayesian space-time model for clustering areal units based on their disease trends. Biostatistics 00, 1–17 (2018).
    CAS  Google Scholar 

    59.
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis. Technometrics 46, 696 (2004).
    MATH  Google Scholar 

    60.
    Hamra, G., MacLehose, R. & Richardson, D. Markov chain monte carlo: an introduction for epidemiologists. Int. J. Epidemiol. 42, 627–634 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Lee, D., Rushworth, A. & Napier, G. Spatio-temporal areal unit modeling in R with conditional autoregressive priors using the CARBayesST package. J. Stat. Softw. 84, 1–39 (2018).
    CAS  Article  Google Scholar 

    62.
    Jaiswal, R. K., Lohani, A. K. & Tiwari, H. L. Statistical analysis for change detection and trend assessment in climatological parameters. Environ. Process. 2, 729–749 (2015).
    Article  Google Scholar 

    63.
    Wijngaard, J. B., Klein Tank, A. M. G. & Können, G. P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 23, 679–692 (2003).
    Article  Google Scholar 

    64.
    Hachigonta, S. & Reason, C. J. C. Interannual variability in dry and wet spell characteristics over Zambia. Clim. Res. 32, 49–62 (2006).
    Article  Google Scholar 

    65.
    Kaluba, P., Verbist, K. M. J., Cornelis, W. M. & Van Ranst, E. Spatial mapping of drought in Zambia using regional frequency analysis. Hydrol. Sci. J. https://doi.org/10.1080/02626667.2017.1343475 (2017).
    Article  Google Scholar 

    66.
    Waldman, K. B. et al. Cognitive biases about climate variability in smallholder farming systems in Zambia. Weather Clim. Soc. https://doi.org/10.1175/WCAS-D-18-0050.1 (2019).
    Article  Google Scholar 

    67.
    Musonda, B. Rainfall and Temperature Characteristic Over Zambia (2013).

    68.
    Mubanga, K. H. & Umar, B. B. Climate variability and change in Southern Zambia: 1910 to 2009 Kabwe. In 2014 International Conference on Intelligent Agriculture (ICOIA) (2015). https://doi.org/10.7763/IPCBEE

    69.
    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2006. 38–41 (2006).

    70.
    Zambian Ministry of Health. The Zambia National Malaria Indicator Survey 2008 (2008).

    71.
    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2012 (2012).

    72.
    Zambian Ministry of Health. Zambia Malaria Indicator Survey 2015 (2015).

    73.
    Zambian Ministry of Health. Zambia National Malaria Indicator Survey 2010. Malariasurveys.org (2010).

    74.
    Kilian, A. et al. Evidence for a useful life of more than three years for a polyester-based long-lasting insecticidal mosquito net in Western Uganda. Malar. J. 10, 299 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    75.
    Tan, K. R. et al. A longitudinal study of the durability of long-lasting insecticidal nets in Zambia. Malar. J. 15, 1–12 (2016).
    Article  CAS  Google Scholar 

    76.
    Pulkki-Brännström, A.-M., Wolff, C., Brännström, N. & Skordis-Worrall, J. Cost and cost effectiveness of long-lasting insecticide-treated bed nets-a model-based analysis. Cost Eff. Resour. Alloc. 10, 5 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    77.
    Stuckey, E. M. et al. Simulation of malaria epidemiology and control in the highlands of western Kenya. Malar. J. https://doi.org/10.1186/1475-2875-11-357 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    78.
    Carter, R., Mendis, K. N. & Roberts, D. Spatial targeting of interventions against malaria. Bull. World Health Organ. 78, 1401–1411 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial. Trials 14, 36 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Bousema, T. et al. The impact of hotspot-targeted interventions on malaria transmission in Rachuonyo South District in the Western Kenyan Highlands: a cluster-randomized controlled trial. PLoS Med. 13, e1001993 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    81.
    Walker, P. G. T., Griffin, J. T., Ferguson, N. M. & Ghani, A. C. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob. Health 4, e474–e484 (2016).
    PubMed  Article  Google Scholar 

    82.
    World Health Organisation (WHO). Malaria Prevention Works: Let’s Close the Gap (WHO, Geneva, 2017).
    Google Scholar 

    83.
    Kitojo, C. et al. Estimating malaria burden among pregnant women using data from antenatal care centres in Tanzania: a population-based study. Lancet Glob. Health 7, e1695–e1705 (2019).
    PubMed  Article  Google Scholar 

    84.
    Coldiron, M. E., Von Seidlein, L. & Grais, R. F. Seasonal malaria chemoprevention: successes and missed opportunities. Malar. J. https://doi.org/10.1186/s12936-017-2132-1 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    85.
    Ndiaye, J. L. A. et al. Seasonal malaria chemoprevention combined with community case management of malaria in children under 10 years of age, over 5months, in south-east senegal: a cluster randomized trial. PLoS Med. https://doi.org/10.1371/journal.pmed.1002762 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    86.
    Issiaka, D. et al. Impact of seasonal malaria chemoprevention on hospital admissions and mortality in children under 5 years of age in Ouelessebougou, Mali. Malar. J. https://doi.org/10.1186/s12936-020-03175-y (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    87.
    Lasry, E. et al. Seasonal malaria chemoprevention, three years of implementation. Am. J. Trop. Med. Hyg. 51, 523–532 (2015).
    Google Scholar 

    88.
    Cissé, B. et al. Effectiveness of seasonal malaria chemoprevention in children under ten years of age in senegal: a stepped-wedge cluster-randomised trial. PLoS Med. https://doi.org/10.1371/journal.pmed.1002175 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    89.
    Chandramohan, D. et al. Effect of adding azithromycin to seasonal malaria chemoprevention. N. Engl. J. Med. https://doi.org/10.1056/nejmoa1811400 (2019).
    Article  PubMed  Google Scholar 

    90.
    Ndiaye, J. L. A. et al. Impact of seasonal malaria chemoprevention after 3 years at scale in Southern Senegal. Am. J. Trop. Med. Hyg. 19, 103 (2017).
    Google Scholar 

    91.
    Braganza, K., Karoly, D. J. & Arblaster, J. M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 31, 1–4 (2004).
    Article  Google Scholar 

    92.
    Roget, E. & Khan, V. M. Decadal differences of the diurnal temperature range in the Aral Sea region at the turn of the century. Tellus A Dyn. Meteorol. Oceanogr. 70, 1–12 (2018).
    Article  Google Scholar 

    93.
    Lubinda, J. The spatio-temporal impact of climate change on malaria transmission, control and elimination in southern Africa: the case of Zambia (Unpublished doctoral dissertation). (Ulster University, 2020).

    94.
    Chaves, L. F. & Koendraat, C. J. Climate change and highland malaria: fresh air for a hot debate the quarterly review of bilology. J. Chem. Inf. Model. 53, 1689–1699 (2010).
    Google Scholar 

    95.
    Murdock, C. C., Sternberg, E. D. & Thomas, M. B. Malaria transmission potential could be reduced with current and future climate change. Sci. Rep. 6, 27771 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    96.
    Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl. Acad. Sci. 107, 15135–15139 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    97.
    Thomson, M. C. et al. Using rainfall and temperature data in the evaluation of national malaria control programs in Africa. Am. J. Trop. Med. Hyg. https://doi.org/10.4269/ajtmh.16-0696 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    98.
    Sena, L., Deressa, W. & Ali, A. Correlation of climate variability and malaria: a retrospective comparative study, Southwest Ethiopia. Ethiop. J. Health Sci. 25, 129 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    99.
    Kiszewski, A. E. & Teklehaimanot, A. A review of the clinical and epidemiologic burdens of epidemic malaria. Am. J. Trop. Med. Hyg. 71, 128–135 (2004).
    PubMed  Article  Google Scholar 

    100.
    Lobo, N. F. et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci. Rep. 5, 17952 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Moyes, C. L. et al. Analysis-ready datasets for insecticide resistance phenotype and genotype frequency in African malaria vectors. Sci. Data https://doi.org/10.1038/s41597-019-0134-2 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    102.
    President’s Malaria Initiative. President’s Malaria Initiative 2016—Zambia. 1–45 (2016).

    103.
    Hancock, P. A. et al. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000633 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    104.
    World Health Organization. INDOOR RESIDUAL SPRAYING: An Operational Manual for Indoor Residual Spraying (IRS) for Malaria Transmission Control and Elimination (WHO Press, Cleveland, 2015).
    Google Scholar 

    105.
    Mukonka, V. M. et al. High burden of malaria following scale-up of control interventions in Nchelenge District, Luapula Province, Zambia. Malar. J. 13, 153 (2014).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Individual fate and gut microbiome composition in the European wild rabbit (Oryctolagus cuniculus)

    1.
    Graham, A. L. et al. Fitness consequences of immune responses: Strengthening the empirical framework for ecoimmunology. Funct. Ecol. 25, 5–17 (2011).
    Article  Google Scholar 
    2.
    Maynard, C. L., Elson, C. O., Hatton, R. D. & Weaver, C. T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    3.
    Baldo, L., Riera, J. L., Tooming-Klunderud, A., Albà, M. M. & Salzburger, W. Gut microbiota dynamics during dietary shift in eastern African cichlid fishes. PLoS ONE 10, 1–23. https://doi.org/10.1371/journal.pone.0127462 (2015).
    CAS  Article  Google Scholar 

    4.
    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).
    PubMed  Article  Google Scholar 

    5.
    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    6.
    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Org, E. et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Russell, J. B. Factors that alter rumen microbial ecology. Science 292, 1119–1122 (2001).
    CAS  PubMed  Article  ADS  Google Scholar 

    9.
    DuPont, A. W. & DuPont, H. L. The intestinal microbiota and chronic disorders of the gut. Nat. Rev. Gastroenterol. Hepatol. 8, 523–531 (2011).
    PubMed  Article  Google Scholar 

    10.
    Walters, A. W. et al. The microbiota influences the Drosophila melanogaster life history strategy. Mol. Ecol. 29, 639–653 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Moreno, S., Villafuerte, R., Cabezas, S. & Lombardi, L. Wild rabbit restocking for predator conservation in Spain. Biol. Cons. 118, 183–193 (2004).
    Article  Google Scholar 

    12.
    Webb, N. J. Growth and mortality in juvenile European wild rabbits (Oryctolagus cuniculus). J. Zool. 230, 665–677 (1993).
    Article  Google Scholar 

    13.
    Villafuerte, R. & Delibes-Mateos, M. The IUCN red list of threatened species: Oryctolagus cuniculus (2019). https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T41291A45189779.en (2019).

    14.
    Ferrand, N. Inferring the evolutionary history of the European rabbit (Oryctolagus cuniculus) from molecular markers. In Lagomorph Biology: Evolution, Ecology and Conservation (eds Alves, P. C. et al.) 47–63 (Springer, Berlin, 2008).
    Google Scholar 

    15.
    Rafati, N. N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478 (2018).
    CAS  PubMed  Article  Google Scholar 

    16.
    Delibes-Mateos, M., Villafuerte, R., Cooke, B. & Alves, P. C. Oryctolagus cuniculus (Linnaeus, 1758). In Lagomorphs: Pikas, Rabbits and Hares of the World (eds Smith, A. T. et al.) 99–104 (John Hopkins University Press, Baltimore, 2018).
    Google Scholar 

    17.
    Geraldes, A. et al. Reduced introgression of the Y chromosome between subspecies of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula. Mol. Ecol. 17, 4489–4499 (2008).
    CAS  PubMed  Article  Google Scholar 

    18.
    Sneddon, I. A. Latrine use by the European rabbit (Oryctolagus cuniculus). J. Mammal. 72, 769–775 (1991).
    Article  Google Scholar 

    19.
    Mykytowycz, R. & Dudzinski, M. L. A study on the weight of odoriferous and other glands in relation to the social status and degree of sexual activity in the wild rabbit, Oryctolagus cuniculus (L.). Wildl. Res. 11, 31–47 (1996).
    Article  Google Scholar 

    20.
    Rouco, C., Villafuerte, R., Castro, F. & Ferreras, P. Effect of artificial warren size on a restocked European wild rabbit population. Anim. Conserv. 14, 117–123 (2011).
    Article  Google Scholar 

    21.
    Villafuerte, R. & Viñuela, J. Size of rabbits consumed by black kites increased after a rabbit epizootic. Mammal Rev. 29, 261–264 (1999).
    Article  Google Scholar 

    22.
    Ferrera, I. et al. High-diversity biofilm for the oxidation of sulfide-containing effluents. Appl. Environ. Microbiol. 64, 726–734 (2004).
    CAS  Google Scholar 

    23.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    CAS  PubMed  Article  ADS  Google Scholar 

    24.
    Edgar, R. C. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 10, 996–998 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).
    Article  CAS  Google Scholar 

    26.
    Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).
    Google Scholar 

    28.
    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.3-5 (2016).

    29.
    Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Bayer, E. A., Shoham, Y. & Lamed, R. Cellulose-Decomposing Bacteria and Their Enzyme Systems 3rd edn. (Springer, Berlin, 2006).
    Google Scholar 

    32.
    Foley, W. J. & Cork, S. J. Use of fibrous diets by small herbivores: How far can the rules be ‘bent’?. Trends Ecol. Evol. 7, 159–162 (1992).
    CAS  PubMed  Article  Google Scholar 

    33.
    Hirakawa, H. Coprophagy in leporids and other mammalian herbivores. Mammal Rev. 31, 61–80 (2001).
    Article  Google Scholar 

    34.
    Zeng, B. et al. The bacterial communities associated with fecal types and body weight of rex rabbits. Sci. Rep. 5, 9342. https://doi.org/10.1038/srep09342 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    35.
    Grimont, F. & Grimont, P. A. D. Proteobacteria: Gamma subclass. In The Prokaryotes Vol. 6 (eds Falkow, S. et al.) 219–244 (Springer, New York, 2006).
    Google Scholar 

    36.
    Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 109, 1269–1274 (2012).
    CAS  PubMed  Article  ADS  Google Scholar 

    37.
    Gagen, E. J., Padmanabha, J., Denman, S. E. & McSweeney, C. S. Hydrogenotrophic culture enrichment reveals rumen Lachnospiraceae and Ruminococcaceae acetogens and hydrogen-responsive Bacteroidetes from pasture-fed cattle. FEMS Microbiol. Lett. 362, 1–8 (2015).
    Article  CAS  Google Scholar 

    38.
    Meehan, C. J. & Beiko, R. G. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 6, 703–713 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Barcenilla, A. et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 1654–1661 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Flint, H. J. Polysaccharide breakdown by anaerobic microorganisms inhabiting the mammalian gut. Adv. Appl. Microbiol. 56, 89–120 (2004).
    CAS  PubMed  Article  Google Scholar 

    41.
    Stalder, G. L. et al. Gut microbiota of the European hare (Lepus europaeus). Sci. Rep. 9, 2738. https://doi.org/10.1038/s41598-019-39638-9 (2019).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    42.
    Gillilland, M. G. et al. Ecological succession of bacterial communities during conventionalization of germ-free mice. Appl. Environ. Microbiol. 78, 2359–2366 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Lupp, C. Host-Mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).
    CAS  PubMed  Article  Google Scholar 

    45.
    Punzalan, C. & Qamar, A. Probiotics for the treatment of liver disease. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis (eds Floch, M. H. et al.) 373–381 (Academic Press, New York, 2017).
    Google Scholar 

    46.
    Lopez-Siles, M. et al. Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Appl. Environ. Microbiol. 81, 7582–7592 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Li, H. et al. Pika population density is associated with the composition and diversity of gut microbiota. Front. Microbiol. 7, 758 (2016).
    PubMed  PubMed Central  Google Scholar 

    48.
    Amato, K. R. Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Sci. Med. 1, 10–29 (2013).
    Article  Google Scholar 

    49.
    Thompson, H. V. & King, C. M. The European Rabbit: History and Biology of a Successful Colonizer (Oxford Science Publications, Oxford, 1984).
    Google Scholar 

    50.
    Martins, H., Milne, J. A. & Rego, F. Seasonal and spatial variation in the diet of the wild rabbit (Oryctolagus cuniculus L.) in Portugal. J. Zool. 258, 395–404 (2002).
    Article  Google Scholar 

    51.
    Cubas, J. et al. Endemic plant species are more palatable to introduced herbivores than non-endemics. Proc. R. Soc. B 286, 20190136. https://doi.org/10.1098/rspb.2019.0136 (2019).
    Article  PubMed  Google Scholar 

    52.
    Khalifa, A. Y., Alsyeeh, A. M., Almalki, M. A. & Saleh, F. A. Characterization of the plant growth promoting bacterium, Enterobacter cloacae msr1, isolated from roots of non-nodulating Medicago sativa. Saudi J. Biol. Sci. 23, 79–86 (2016).
    CAS  PubMed  Article  Google Scholar 

    53.
    Polizeli, M. L. T. M. et al. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005).
    CAS  PubMed  Article  Google Scholar 

    54.
    Fisher, E. H. & Stein, E. A. α-Amylases. In The Enzyme 2nd edn (eds Boyer, P. D. et al.) 313–143 (Academic Press Inc, New York, 1960).
    Google Scholar 

    55.
    Bletz, M. C. et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7, 13699. https://doi.org/10.1038/ncomms13699 (2016).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    56.
    Martínez-Mota, R. et al. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).
    PubMed  Article  CAS  Google Scholar 

    57.
    Van Leeuwen, P. et al. Effects of captivity, diet, and relocation on the gut bacterial communities of white-footed mice. Ecol. Evol. 10, 4677–4690 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Grieneisen, L. E., Livermore, J., Alberts, S., Tung, J. & Archie, E. A. Group living and male dispersal to predict core gut microbiome in wild baboons. Integr. Comp. Biol. 57, 770–785 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Cowan, D. P. Aspects of the social organization of the European wild rabbit (Oryctolagus cuniculus). Ethology 75, 197–210 (1987).
    Article  Google Scholar 

    60.
    Marsh, M. K., Hutchings, M. R., McLeod, S. R. & White, P. C. Spatial and temporal heterogeneities in the contact behavior of rabbits. Behav. Ecol. Sociobiol. 65, 183–195 (2011).
    Article  Google Scholar 

    61.
    Moller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997. https://doi.org/10.1126/sciadv.1500997 (2016).
    CAS  Article  ADS  Google Scholar 

    62.
    Carro, F., Ortega, M. & Soriguer, R. C. Is restocking a useful tool for increasing rabbit densities?. Glob. Ecol. Conserv. 17, e00560. https://doi.org/10.1016/j.gecco.2019.e00560 (2019).
    Article  Google Scholar 

    63.
    Rouco, C., Ferreras, P., Castro, F. & Villafuerte, R. A longer confinement period favors European wild rabbit (Oryctolagus cuniculus) survival during soft releases in low-cover habitats. Eur. J. Wildl. Res. 56, 215–219 (2010).
    Article  Google Scholar  More

  • in

    Fine-scale genetic structure in the critically endangered red-fronted macaw in the absence of geographic and ecological barriers

    1.
    Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & De Meester, L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22, 5983–5999. https://doi.org/10.1111/mec.12561 (2013).
    Article  PubMed  Google Scholar 
    2.
    Legrand, D. et al. Eco-evolutionary dynamics in fragmented landscapes. Ecography 40, 9–25. https://doi.org/10.1111/ecog.02537 (2017).
    Article  Google Scholar 

    3.
    Slatkin, M. Gene flow and the geographic structure of natural populations. Science 236, 787–792. https://doi.org/10.1126/science.3576198 (1987).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    4.
    Dolby, G. A., Dorsey, R. J. & Graham, M. R. A legacy of geo-climatic complexity and genetic divergence along the lower Colorado River: Insights from the geological record and 33 desert-adapted animals. J. Biogeogr. 46, 2479–2505. https://doi.org/10.1111/jbi.13685 (2019).
    Article  Google Scholar 

    5.
    Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052. https://doi.org/10.1111/ele.12303 (2014).
    Article  PubMed  Google Scholar 

    6.
    Ross, K. G. Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol. Ecol. 10, 265–284. https://doi.org/10.1046/j.1365-294X.2001.01191.x (2001).
    CAS  Article  PubMed  Google Scholar 

    7.
    Beck, N. R., Peakall, R. & Heinsohn, R. Social constraint and an absence of sex-biased dispersal drive fine-scale genetic structure in white-winged choughs. Mol. Ecol. 17, 4346–4358. https://doi.org/10.1111/j.1365-294X.2008.03906.x (2008).
    CAS  Article  PubMed  Google Scholar 

    8.
    Morinha, F. et al. Extreme genetic structure in a social bird species despite high dispersal capacity. Mol. Ecol. 26, 2812–2825. https://doi.org/10.1111/mec.14069 (2017).
    Article  PubMed  Google Scholar 

    9.
    Marzluff, J. M. & Angell, T. Cultural coevolution: how the human bond with crows and ravens extends theory and raises new questions. J. Ecol. Anthropol. 9, 69–75 (2005).
    Google Scholar 

    10.
    Toft, C. A. & Wright, T. F. Parrots of the wild: A natural history of the world’s most captivating birds (Univ. California Press, Oakland, California, USA, 2015).
    Google Scholar 

    11.
    Armansin, N. C. et al. Social barriers in ecological landscapes: The social resistance hypothesis. Trends Ecol. Evol. 35, 137–148. https://doi.org/10.1016/j.tree.2019.10.001 (2020).
    Article  PubMed  Google Scholar 

    12.
    Abdelkrim, J., Hunt, G. R., Gray, R. D. & Gemmell, N. J. Population genetic structure and colonisation history of the tool-using New Caledonian Crow. PLoS ONE 7, e36608. https://doi.org/10.1371/journal.pone.0036608 (2012).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    13.
    Rutz, C., Ryder, T. B. & Fleischer, R. C. Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows. Naturwissenschaften 99, 313–320. https://doi.org/10.1007/s00114-012-0904-6 (2012).
    CAS  Article  PubMed  ADS  Google Scholar 

    14.
    Wright, T. F., Rodriguez, A. M. & Fleischer, R. C. Vocal dialects, sex-biased dispersal, and microsatellite population structure in the parrot Amazona auropalliata. Mol. Ecol. 14, 1197–1205. https://doi.org/10.1111/j.1365-294X.2005.02466.x (2005).
    CAS  Article  PubMed  Google Scholar 

    15.
    Hobson, E. A., Avery, M. L. & Wright, T. F. The socioecology of Monk Parakeets: Insights into parrot social complexity. Auk 131, 756–775. https://doi.org/10.1642/AUK-14-14.1 (2014).
    Article  Google Scholar 

    16.
    Wright, T. F. & Dahlin, C. R. Vocal dialects in parrots: patterns and processes of cultural evolution. Emu 118, 50–66. https://doi.org/10.1080/01584197.2017.1379356 (2018).
    Article  PubMed  Google Scholar 

    17.
    Smith-Vidaurre, G., Araya-Salas, M. & Wright, T. F. Individual signatures outweigh social group identity in contact calls of a communally nesting parrot. Behav. Ecol. 31, 448–458. https://doi.org/10.1093/beheco/arz202 (2020).
    Article  Google Scholar 

    18.
    Lowe, W. H., Kovach, R. P. & Allendorf, F. W. Population genetics and demography unite ecology and evolution. Trends Ecol. Evol. 32, 141–152. https://doi.org/10.1016/j.tree.2016.12.002 (2017).
    Article  PubMed  Google Scholar 

    19.
    Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 26, 561–569. https://doi.org/10.1016/j.tree.2011.07.009 (2011).
    Article  PubMed  Google Scholar 

    20.
    Méndez, M., Vögeli, M., Tella, J. L. & Godoy, J. A. Joint effects of population size and isolation on genetic erosion in fragmented populations: finding fragmentation thresholds for management. Evol. Appl. 7, 506–518. https://doi.org/10.1111/eva.12154 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    21.
    Klauke, N., Schaefer, H. M., Bauer, M. & Segelbacher, G. Limited dispersal and significant fine-scale genetic structure in a tropical montane parrot species. PLoS ONE 11, e0169165. https://doi.org/10.1371/journal.pone.0169165 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Monge, O., Schmidt, K., Vaughan, C. & Gutiérrez-Espeleta, G. Genetic patterns and conservation of the Scarlet Macaw (Ara macao) in Costa Rica. Conserv. Genet. 17, 745–750. https://doi.org/10.1007/s10592-015-0804-3 (2016).
    Article  Google Scholar 

    23.
    Kopps, A. M. et al. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins. Proc. R. Soc. Lond., B, Biol. Sci. 281, 20133245. https://doi.org/10.1098/rspb.2013.3245 (2014).

    24.
    Foote, A. D. et al. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nat. Commun. 7, 1–12. https://doi.org/10.1038/ncomms11693 (2016).
    CAS  Article  Google Scholar 

    25.
    Pilot, M., Dahlheim, M. E. & Hoelzel, A. R. Social cohesion among kin, gene flow without dispersal and the evolution of population genetic structure in the killer whale (Orcinus orca). J. Evol. Biol. 23, 20–31. https://doi.org/10.1111/j.1420-9101.2009.01887.x (2010).
    CAS  Article  PubMed  Google Scholar 

    26.
    Estrada, A. Reintroduction of the scarlet macaw (Ara macao cyanoptera) in the tropical rainforests of Palenque, Mexico: Project design and first year progress. Trop. Conserv. Sci. 7, 342–364. https://doi.org/10.1177/194008291400700301 (2014).
    Article  Google Scholar 

    27.
    Lopes, A. R. et al. The influence of anti-predator training, personality and sex in the behavior, dispersion and survival rates of translocated captive-raised parrots. Glob Ecol. Conserv. 11, 146–157. https://doi.org/10.1016/j.gecco.2017.05.001 (2017).
    Article  Google Scholar 

    28.
    Pitter, E. & Christiansen, M. B. Ecology, status and conservation of the Red-fronted Macaw Ara rubrogenys. Bird Conserv. Int. 5, 61–78. https://doi.org/10.1017/S0959270900002951 (1995).
    Article  Google Scholar 

    29.
    Meyer, C. Spatial ecology and conservation of the endemic and endangered Red-fronted Macaw (Ara rubrogenys) in the Bolivian Andes. Diploma Thesis. Centre for Nature Conservation, Faculty of Biology, Georg-August University Göttingen (2010).

    30.
    Tella, J. L., Rojas, A., Carrete, M. & Hiraldo, F. Simple assessments of age and spatial population structure can aid conservation of poorly known species. Biol. Conserv. 167, 425–434. https://doi.org/10.1016/j.biocon.2013.08.035 (2013).
    Article  Google Scholar 

    31.
    Leite, K. C. E., Seixas, G. H. F., Berkunsky, I., Collevatti, R. G. & Caparroz, R. Population genetic structure of the blue-fronted Amazon (Amazona aestiva, Psittacidae: Aves) based on nuclear microsatellite loci: Implications for conservation. Genet. Mol. Res. 7, 819–829. https://doi.org/10.4238/vol7-3gmr474 (2008).
    CAS  Article  PubMed  Google Scholar 

    32.
    Masello, J. F. et al. The high Andes, gene flow and a stable hybrid zone shape the genetic structure of a wide-ranging South American parrot. Front. Zool. 8, 16. https://doi.org/10.1186/1742-9994-8-16 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Olah, G., Heinsohn, R. G., Brightsmith, D. J. & Peakall, R. The application of non-invasive genetic tagging reveals new insights into the clay lick use by macaws in the Peruvian Amazon. Conserv. Genet. 18, 1037–1046. https://doi.org/10.1007/s10592-017-0954-6 (2017).
    Article  Google Scholar 

    34.
    Ellegren, H. et al. Microsatellite evolution: A reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol. Biol. Evol. 14, 854–860. https://doi.org/10.1093/oxfordjournals.molbev.a025826 (1997).
    CAS  Article  PubMed  Google Scholar 

    35.
    Mills, L. S., Citta, J. J., Lair, K. P., Schwartz, M. K. & Tallmon, D. A. Estimating animal abundance using noninvasive DNA sampling: Promise and pitfalls. Ecol. Appl. 10, 283–294. https://doi.org/10.1890/1051-0761(2000)010[0283:EAAUND]2.0.CO;2 (2000).
    Article  Google Scholar 

    36.
    Alcaide, M., Serrano, D., Tella, J. L. & Negro, J. J. Strong philopatry derived from capture-recapture methods does not lead to fine-scale genetic differentiation in lesser kestrels. J. Anim. Ecol. 78, 468–475. https://doi.org/10.1111/j.1365-2656.2008.01493.x (2009).
    Article  PubMed  Google Scholar 

    37.
    Barrowclough, G. F. Gene flow, effective population sizes, and genetic variance components in birds. Evolution 34, 789–798. https://doi.org/10.2307/2408033 (1980).
    Article  PubMed  Google Scholar 

    38.
    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to conservation genetics (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    39.
    Jones, O. R. & Wang, J. A comparison of four methods for detecting weak genetic structure from marker data. Ecol. Evol. 2, 1048–1055. https://doi.org/10.1002/ece3.237 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    40.
    van Rees, C. B., Reed, J. M., Wilson, R. E., Underwood, J. G. & Sonsthagen, S. A. Small-scale genetic structure in an endangered wetland specialist: possible effects of landscape change and population recovery. Conserv. Genet. 19, 129–142. https://doi.org/10.1007/s10592-017-1020-0 (2018).
    Article  Google Scholar 

    41.
    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Graciá, E. et al. Genetic signatures of demographic changes in an avian top predator during the last century: Bottlenecks and expansions of the Eurasian Eagle Owl in the Iberian Peninsula. PLoS ONE 10, e0133954. https://doi.org/10.1371/journal.pone.0133954 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    43.
    Williamson-Natesan, E. G. Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv. Genet. 6, 551–562. https://doi.org/10.1007/s10592-005-9009-5 (2005).
    Article  Google Scholar 

    44.
    Peery, M. Z. et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21, 3403–3418. https://doi.org/10.1111/j.1365-294X.2012.05635.x (2012).
    Article  PubMed  Google Scholar 

    45.
    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318. https://doi.org/10.1046/j.1365-294X.2001.01190.x (2001).
    CAS  Article  PubMed  Google Scholar 

    46.
    BirdLife International. Ara rubrogenys. The IUCN Red List of Threatened Species 2018: e.T22685572A131382876. Downloaded on 30 May 2020 (2018). https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22685572A131382876.en (2018).

    47.
    El, D. O. reto del espacio andino (Instituto de Estudios Peruanos, Lima, Perú, 1981).
    Google Scholar 

    48.
    Williams, J. J., Gosling, W. D., Coe, A. L., Brooks, S. J. & Gulliver, P. Four thousand years of environmental change and human activity in the Cochabamba Basin Bolivia. Quat. Res. 76, 58–68. https://doi.org/10.1016/j.yqres.2011.03.004 (2011).
    Article  Google Scholar 

    49.
    Flantua, S. G. et al. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records. Clim. Past 12, 483–523. https://doi.org/10.5194/cp-12-483-2016 (2016).
    Article  Google Scholar 

    50.
    Schlaifer, M., Las especies nativas y la deforestación en los Andes. Una visión histórica, social y cultural en Cochabamba, Bolivia. Bulletin de l’Institut français d’études andines 22, 585–610 (1993).

    51.
    Sánchez Canedo, W. Inkas,“flecheros” y mitmaqkuna: Cambio social y paisajes culturales en los Valles y en los Yungas de Inkachaca/Paracti y Tablas Monte (Cochabamba-Bolivia, siglos XV-XVI) (Doctoral dissertation, Institutionen för arkeologi och antik historia) Universitetstryckeriet, Uppsala, Sweden (2008).

    52.
    Cobo, B. Historia del Nuevo Mundo (Obras del P. Bernabé Cobo) II Tomos. Estudio preliminar y edición del P. Francisco Mateos. Biblioteca de Autores Españoles, Madrid. Disponible en: http://www.bibliotecavirtualdeandalucia.es/catalogo/consulta/registro.cmd?id=1014725 (1964) [1652].

    53.
    Guaman Poma de Ayala, F. El primer Nueva corónica y buen gobierno [1615] (eds J. V. Murra and R. Adorno, Quechua trans. J. L. Urioste), 3 vols. Mexico City: Siglo Veintiuno 1980 [1615].

    54.
    Tella, J. L. The unknown extent of ancient bird introductions. Ardeola 58, 399–404. https://doi.org/10.13157/arla.58.2.2011.399 (2011).

    55.
    Wilkinson, D., The influence of Amazonia on state formation in the ancient Andes. Antiquity 92, 1362–1376. https://doi.org/10.15184/aqy.2018.194 (2018).

    56.
    Gomez Casaverde, Y. Textiles Chimú con aplicaciones de plumas del Sitio Huaca de la Luna (Circa 800 dc-1470 dc): caracterización tecnológica y aproximación a las rutas de intercambio amazónico-andinas (Modelización y Técnicas Analíticas. Universidad Nacional de Trujillo. Trujillo, Perú, Maestría en Arqueología Sudamericana mención Arqueometría, 2020).
    Google Scholar 

    57.
    Boakes, E. H., Wang, J. & Amos, W. An investigation of inbreeding depression and purging in captive pedigreed populations. Heredity 98, 172–182. https://doi.org/10.1038/sj.hdy.6800923 (2007).
    CAS  Article  PubMed  Google Scholar 

    58.
    Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20, 1843–1861. https://doi.org/10.1007/s10531-011-0074-4 (2011).
    Article  Google Scholar 

    59.
    Thévenon, S., Bonnet, A., Claro, F. & Maillard, J. C. Genetic diversity analysis of captive populations: The Vietnamese sika deer (Cervus nippon pseudaxis) in zoological parks. Zool. Biol. 22, 465–475. https://doi.org/10.1002/zoo.10091 (2003).
    CAS  Article  Google Scholar 

    60.
    Kekkonen, J., Wikström, M. & Brommer, J. E. Heterozygosity in an isolated population of a large mammal founded by four individuals is predicted by an individual-based genetic model. PLoS ONE 7, e43482. https://doi.org/10.1371/journal.pone.0043482 (2012).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    61.
    Jackson, N. D. & Fahrig, L. Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc. Ecol. 31, 951–968. https://doi.org/10.1007/s10980-015-0313-2 (2016).
    Article  Google Scholar 

    62.
    Gibbs, J. P. Demography versus habitat fragmentation as determinants of genetic variation in wild populations. Biol. Conserv. 100, 15–20. https://doi.org/10.1016/S0006-3207(00)00203-2 (2001).
    Article  Google Scholar 

    63.
    Blanco, G., Hiraldo, F. & Tella, J. L. Ecological functions of parrots: an integrative perspective from plant life cycle to ecosystem functioning. Emu 118, 36–49. https://doi.org/10.1080/01584197.2017.1387031 (2018).
    Article  Google Scholar 

    64.
    Storfer, A. et al. Putting the “landscape” in landscape genetics. Heredity 98, 128–142. https://doi.org/10.1038/sj.hdy.6800917 (2007).
    CAS  Article  PubMed  Google Scholar 

    65.
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68, 1–15. https://doi.org/10.1111/evo.12258 (2014).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    66.
    Rojas, A., Yucra, E., Vera, I., Requejo, A. & Tella, J. A new population of the globally endangered red-fronted Macaw Ara rubrogenys unusually breeding in palms. Bird Conserv. Int. 24, 389–392. https://doi.org/10.1017/S095927091200038X (2014).
    Article  Google Scholar 

    67.
    Blanco, G., Hiraldo, F., Rojas, A., Dénes, F. V. & Tella, J. L. Parrots as key multilinkers in ecosystem structure and functioning. Ecol. Evol. 5, 4141–4160. https://doi.org/10.1002/ece3.1663 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    68.
    Andrews, K. Population genetics in the conservation of cetaceans and primates in Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies (eds. Yamagiwa, J. & Karczmarski, L.) 289–30 (Springer, Japan, 2014).

    69.
    Manel, S. & Holderegger, R. T. years of landscape genetics. Trends Ecol. Evol. 28, 614–621. https://doi.org/10.1016/j.tree.2013.05.012 (2013).
    Article  PubMed  Google Scholar 

    70.
    Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity?. Mol. Ecol. 19, 3038–3051. https://doi.org/10.1111/j.1365-294X.2010.04688.x (2010).
    Article  PubMed  Google Scholar 

    71.
    Hatchwell, B. J. Cryptic kin selection: kin structure in vertebrate populations and opportunities for kin-directed cooperation. Ethology 116, 203–216. https://doi.org/10.1111/j.1439-0310.2009.01732.x (2010).
    Article  Google Scholar 

    72.
    Bicknell, A. W. J. et al. Population genetic structure and long-distance dispersal among seabird populations: Implications for colony persistence. Mol. Ecol. 21, 2863–2876. https://doi.org/10.1111/j.1365-294X.2012.05558.x (2012).
    CAS  Article  PubMed  Google Scholar 

    73.
    Welch, A. J. et al. Population divergence and gene flow in an endangered and highly mobile seabird. Heredity 109, 19–28. https://doi.org/10.1038/hdy.2012.7 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    74.
    Bonilla, L. M. Monitoreo de la nidificación de la Paraba Frente Roja (Ara rubrogenys) en dos sitios de reproducción en los valles de los Departamentos de Santa Cruz y Cochabamba) en dos sitios de reproducción en los valles de los Departamentos de Santa Cruz y Cochabamba (Universidad Autónoma Gabriel René Moreno, Santa Cruz de La Sierra, Bolivia, 2007).
    Google Scholar 

    75.
    Caparroz, R., Miyaki, C. Y. & Baker, A. J. Contrasting phylogeographic patterns in mitochondrial DNA and microsatellites: evidence of female philopatry and male-biased gene flow among regional populations of the blue-and-yellow macaw (Psittaciformes: Ara ararauna) in Brazil. Auk 126, 359–370. https://doi.org/10.1525/auk.2009.07183 (2009).
    Article  Google Scholar 

    76.
    Alcaide, M. et al. Population fragmentation leads to isolation by distance but not genetic impoverishment in the philopatric Lesser Kestrel: a comparison with the widespread and sympatric Eurasian Kestrel. Heredity 102, 190–198. https://doi.org/10.1038/hdy.2008.107 (2009).
    CAS  Article  PubMed  Google Scholar 

    77.
    Olah, G. et al. Exploring dispersal barriers using landscape genetic resistance modelling in scarlet macaws of the Peruvian Amazon. Landsc. Ecol. 32, 445–456. https://doi.org/10.1007/s10980-016-0457-8 (2017).
    Article  Google Scholar 

    78.
    Pitter, E. & Christiansen, M. B. Behavior of individuals and social interactions of the Red-fronted Macaw Ara rubrogenys in the wild during the mid-day rest. Ornitol. Neotrop. 8, 133–143 (1997).
    Google Scholar 

    79.
    Keighley, M. V., Heinsohn, R., Langmore, N. E., Murphy, S. A. & Peñalba, J. V. Genomic population structure aligns with vocal dialects in Palm Cockatoos (Probosciger aterrimus); evidence for refugial late-Quaternary distribution?. EMU 119, 24–37. https://doi.org/10.1080/01584197.2018.1483731 (2019).
    Article  Google Scholar 

    80.
    Pacífico, E. C. et al. Breeding to non-breeding population ratio and breeding performance of the globally endangered Lear’s Macaw (Anodorhynchus leari): conservation and monitoring implications. Bird Conserv. Int. 24, 466–476. https://doi.org/10.1017/S095927091300049X (2014).
    Article  Google Scholar 

    81.
    Stutchbury, B. J. & Zack, S. Delayed breeding in avian social systems: the role of territory quality and” floater” tactics. Behaviour 123, 194–219. https://doi.org/10.1163/156853992X00020 (1992).
    Article  Google Scholar 

    82.
    Kokko, H. & Sutherland, W. J. Optimal floating and queuing strategies: consequences for density dependence and habitat loss. Am. Nat. 152, 354–366. https://doi.org/10.1086/286174 (1998).
    CAS  Article  PubMed  Google Scholar 

    83.
    Blanco, G., Laiolo, P. & Fargallo, J. A. Linking environmental stress, feeding-shifts and the ‘island syndrome’: a nutritional challenge hypothesis. Popul. Ecol. 56, 203–216. https://doi.org/10.1007/s10144-013-0404-3 (2014).
    Article  Google Scholar 

    84.
    Koenig, W. D. & Dickinson, J. L. Cooperative breeding in vertebrates: studies of ecology, evolution, and behavior. Cambridge University Press (2016).

    85.
    Gao, H., Bryc, K. & Bustamante, C. D. On identifying the optimal number of population clusters via the deviance information criterion. PLoS ONE 6, e21014. https://doi.org/10.1371/journal.pone.0021014 (2011).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    86.
    Rodríguez-Ramilo, S. T. & Wang, J. The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Mol. Ecol. Resour. 12, 873–884. https://doi.org/10.1111/j.1755-0998.2012.03156.x (2012).
    Article  PubMed  Google Scholar 

    87.
    Harrisson, K. A. et al. Fine-scale effects of habitat loss and fragmentation despite large-scale gene flow for some regionally declining woodland bird species. Landsc. Ecol. 27, 813–827. https://doi.org/10.1007/s10980-012-9743-2 (2012).
    Article  Google Scholar 

    88.
    Rull, V. Microrefugia. J. Biogeogr. 36, 481–484. https://doi.org/10.1111/j.1365-2699.2008.02023.x (2009).
    Article  Google Scholar 

    89.
    Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G. & Ellegren, H. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375–1380. https://doi.org/10.1016/j.cub.2015.03.047 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    90.
    James, J. E., Lanfear, R. & Eyre-Walker, A. Molecular evolutionary consequences of island colonization. Genome Biol. Evol. 8, 1876–1888. https://doi.org/10.1093/gbe/evw120 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    91.
    Gregory-Wodzicki, K. M. Uplift history of the central and Northern Andes: A review. Geol. Soc. Am. Bull. 112, 1091–1105. https://doi.org/10.1130/0016-7606(2000)112%3c1091:UHOTCA%3e2.0.CO;2 (2000).
    Article  ADS  Google Scholar 

    92.
    Navarro, G. & Maldonado M. Geografía ecológica de Bolivia: vegetación y ambientes acuáticos. Edit.: Centro de Ecología Simón I. Patiño-Departamento de Difusión. Cochabamba, Bolivia (2002).

    93.
    López, R. P. Phytogeographical relations of the Andean dry valleys of Bolivia. J. Biogeogr. 30, 1659–1668. https://doi.org/10.1046/j.1365-2699.2003.00919.x (2003).
    Article  Google Scholar 

    94.
    Montesinos-Navarro, A., Hiraldo, F., Tella, J. L. & Blanco, G. Network structure embracing mutualism–antagonism continuums increases community robustness. Nat. Ecol. Evol. 1, 1661–1669. https://doi.org/10.1038/s41559-017-0320-6 (2017).
    Article  PubMed  Google Scholar 

    95.
    Da Silva, A. G., Eberhard, J. R., Wright, T. F., Avery, M. L. & Russello, M. A. Genetic evidence for high propagule pressure and long-distance dispersal in monk parakeet (Myiopsitta monachus) invasive populations. Mol. Ecol. 19, 3336–3350. https://doi.org/10.1111/j.1365-294X.2010.04749.x (2010).
    Article  Google Scholar 

    96.
    Russello, M., Calcagnotto, D., DeSalle, R. & Amato, G. Characterization of microsatellite loci in the endangered St. Vicent parrot, Amazona guildingii. Mol. Ecol. Notes 1, 13–13. https://doi.org/10.1046/j.1471-8278.2001.00061.x (2001).

    97.
    Bergner, L. M., Jamieson, I. G. & Robertson, B. C. Combining genetic data to identify relatedness among founders in a genetically depauperate parrot, the Kakapo (Strigops habroptilus). Conserv. Genet. 15, 1013–1020. https://doi.org/10.1007/s10592-014-0595-y (2014).
    Article  Google Scholar 

    98.
    Stojanovic, D., Olah, G., Webb, M., Peakall, R. & Heinsohn, R. Genetic evidence confirms severe extinction risk for critically endangered swift parrots: implications for conservation management. Anim. Conserv. 21, 313–323. https://doi.org/10.1111/acv.12394 (2018).
    Article  Google Scholar 

    99.
    Väli, Ü., Einarsson, A., Waits, L. & Ellegren, H. To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations?. Mol. Ecol. 17, 3808–3817. https://doi.org/10.1111/j.1365-294X.2008.03876.x (2008).
    Article  PubMed  Google Scholar 

    100.
    Young, A. M., Hobson, E. A., Lackey, L. B. & Wright, T. E. Survival on the ark: Life-history trends in captive parrots. Anim. Conserv. 15, 28–43. https://doi.org/10.1111/j.1469-1795.2011.00477.x (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    101.
    Fraser, D. J. & Bernatchez, L. Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Mol. Ecol. 10, 2741–2752. https://doi.org/10.1046/j.0962-1083.2001.01411.x (2001).
    CAS  Article  PubMed  Google Scholar 

    102.
    Palsbøll, P. J., Bérubé, M. & Allendorf, F. W. Identification of management units using population genetic data. Trends Ecol. Evol. 22, 11–16. https://doi.org/10.1016/j.tree.2006.09.003 (2007).
    Article  PubMed  Google Scholar 

    103.
    Schiegg, K. Environmental autocorrelation: curse or blessing?. Trends Ecol. Evol. 18, 212–214. https://doi.org/10.1016/S0169-5347(03)00074-0 (2004).
    Article  Google Scholar 

    104.
    Shafer, A. B. A. et al. Genomics and the challenging translation into conservation practice. Trends Ecol. Evol. 30, 78–87. https://doi.org/10.1016/j.tree.2014.11.009 (2015).
    Article  PubMed  Google Scholar 

    105.
    Valière, N. GIMLET: a computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379. https://doi.org/10.1046/j.1471-8286.2002.00228.x-i2 (2002).
    Article  Google Scholar 

    106.
    Jones, O. R. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x (2010).
    Article  PubMed  Google Scholar 

    107.
    Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241. https://doi.org/10.1016/S0169-5347(02)02489-8 (2002).
    Article  Google Scholar 

    108.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370. https://doi.org/10.2307/2408641 (1984).
    CAS  Article  PubMed  Google Scholar 

    109.
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2012).

    110.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    111.
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    112.
    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    113.
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).
    Article  Google Scholar 

    114.
    Tishkoff, S. A., Reed, F. A., Friedlaender, F. R., Ehret, C., Ranciaro, A., Froment, et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044. https://doi.org/10.1126/science.1172257 (2009).

    115.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).
    CAS  Article  PubMed  Google Scholar 

    116.
    Rousset, F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).
    Article  PubMed  Google Scholar 

    117.
    Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).
    CAS  PubMed  PubMed Central  Google Scholar 

    118.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x (2007).
    Article  PubMed  Google Scholar 

    119.
    Ciofi, C., Beaumontf, M. A., Swingland, I. R. & Bruford, M. W. Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc. R. Soc. Lond. B Biol. Sci. 266, 2269–2274. https://doi.org/10.1098/rspb.1999.0918 (1999).

    120.
    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503. https://doi.org/10.1093/jhered/90.4.502 (1999).
    Article  Google Scholar 

    121.
    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275. https://doi.org/10.1111/j.1558-5646.1989.tb04226.x (1989).
    Article  PubMed  Google Scholar 

    122.
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).
    PubMed  PubMed Central  Google Scholar 

    123.
    Piry, S. et al. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).
    CAS  Article  PubMed  Google Scholar 

    124.
    Waples, R. S. & Do, C. H. I. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756. https://doi.org/10.1111/mec.12561 (2008).
    Article  PubMed  Google Scholar 

    125.
    Waples, R. S. & Do, C. H. I. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x (2010).
    Article  Google Scholar 

    126.
    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).
    CAS  PubMed  PubMed Central  Google Scholar 

    127.
    Bohonak, A. J. IBD (isolation by distance): a program for analyses of isolation by distance. J. Hered. 93, 153–154. https://doi.org/10.1093/jhered/93.2.153 (2002).
    CAS  Article  Google Scholar  More

  • in

    Assembling mitogenome of Himalayan Black Bear (U. t. laniger) from low depth reads and its application in drawing phylogenetic inferences

    1.
    Garshelis, D. & Steinmetz, R. Ursus thibetanus. The IUCN Red List of Threatened Species 2016. https://dx.doi.org/Downloaded on 17 January 2020 (2016).
    2.
    Parter, S. H. The Book of Indian Animal (Bombay Natural History Society and Oxford University Press, India, 1980).
    Google Scholar 

    3.
    Sathyakumar, S. & Choudhury, A. Distribution and status of asiatic black bear in India. J. Bomb. Nat. Hist. Soci. 104, 316–323 (2007).
    Google Scholar 

    4.
    Pocock, R. I. The Fauna of British India, Including Ceylon and Burma, Mammalia Vol. 2 (Taylor and Francis, London, 1941).
    Google Scholar 

    5.
    Sathyakumar, S., Kaul, R., Ashraf, N. V. K., Mookerjee, A. & Menon, V. National Bear Conservation and Welfare Action Plan (Ministry of Environment and Forest, Wildlife Institute of India and Wildlife Trust of India, 2012).
    Google Scholar 

    6.
    Charoo, S.A., Sharma, L.K. & Sathyakumar, S. Asiatic Black Bear—Human Conflicts around Dachigam National Park, Kashmir. Technical Report. Wildlife Institute of India, Dehradun. 29 (2009).

    7.
    Hou, W. R. et al. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis). Int. J. Biol. Sci. 3, 85–90 (2007).
    CAS  Article  Google Scholar 

    8.
    Yu, L. et al. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evol. Biol. 7, 198 (2007).
    Article  Google Scholar 

    9.
    Hwang, D. S. et al. A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae). Mitochondrial. DNA 19, 418–429 (2008).
    CAS  PubMed  Google Scholar 

    10.
    Kadariya, R. et al. High genetic diversity and distinct ancient lineage of Asiatic black bears revealed by non-invasive surveys in the Annapurna Conservation Area Nepal. PLoS ONE 13, 0207622 (2018).
    Google Scholar 

    11.
    Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).
    CAS  Article  Google Scholar 

    12.
    Ekblom, R. & Galindo, J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb) 107, 1–15 (2011).
    CAS  Article  Google Scholar 

    13.
    Edwards, S. V., Shultz, A. J. & Campbell-Staton, S. C. Next-generation sequencing and the expanding domain of phylogeography. Folia Zool. 64, 187–206 (2015).
    Article  Google Scholar 

    14.
    Natesh, M. et al. Conservation priorities for endangered Indian tigers through a genomic lens. Sci. Rep. 7, 9614 (2017).
    ADS  Article  Google Scholar 

    15.
    Song, N., Cai, W. & Li, H. Deep-level phylogeny of Cicadomorpha inferred from mitochondrial genomes sequenced by NGS. Sci. Rep. 7, 10429 (2017).
    ADS  Article  Google Scholar 

    16.
    Delisle, I. & Strobeck, C. Conserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bears. Mol. Biol. Evol. 19, 357–361 (2002).
    CAS  Article  Google Scholar 

    17.
    Van Dijk, E., Auger, H., Jaszczyszyn, Y. & Thermes, C. T. years of next-generation sequencing technology. Trends Genet. 30(9), 418–426 (2014).
    Article  Google Scholar 

    18.
    Heather, J. & Chain, B. The sequence of sequencers: the history of sequencing DNA. Genomics 107(1), 1–8 (2016).
    CAS  Article  Google Scholar 

    19.
    Wang, S., Wang, B., Wang, F. & Wu, Z. Complete mitochondrial genome of Gallus domesticus (Galliformes: Phasianidae). Mitochondrial. DNA A DNA Mapp. Seq. Anal. 27(2), 978–979 (2016).
    Article  Google Scholar 

    20.
    Zhou, M., Yu, J., Li, J., Ouyang, B. & Yang, J. The complete mitochondrial genome of Budorcas taxicolor tibetana (Artiodactyla: Bovidae) and comparison with other Caprinae species: Insight into the phylogeny of the genus Budorcas Int. J. Biol. Macromol. 121, 223–232 (2019).
    CAS  Article  Google Scholar 

    21.
    Kamalakkannan, R. et al. The complete mitochondrial genome of Indian gaur, Bos gaurus and its phylogenetic implications. Sci. Rep. 10, 11936. https://doi.org/10.1038/s41598-020-68724-6 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach. Nucleic Acids Res. 41, 129 (2013).
    Article  Google Scholar 

    23.
    Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).
    CAS  Article  Google Scholar 

    24.
    Feng, H., Feng, C., Wang, L. & Huang, Y. Complete mitochondrial genome of the golden takin (Budorcas taxicolor bedfordi). Mitochondrial. DNA 1, 186–188 (2016).
    Article  Google Scholar 

    25.
    Kumar, A. et al. Sequencing and characterization of the complete mitochondrial genome of Mishmi takin (Budorcas taxi color taxicolor) and comparison with the other Caprinae species. Int. J. Biol. Macromol. 137, 87–94 (2019).
    CAS  Article  Google Scholar 

    26.
    Sarvani, R. K. et al. Characterization of the complete mitogenome of Indian Mouse Deer, Moschiola indica (Artiodactyla: Tragulidae) and its evolutionary significance. Sci. Rep. 8, 2697 (2018).
    ADS  Article  Google Scholar 

    27.
    Lan, T. et al. Evolutionary history of enigmatic bears in the Tibetan Plateau-Himalaya region and the identity of the yeti. Proc. R. Soc. B 284, 20171804 (2017).
    Article  Google Scholar 

    28.
    Jiagi, W. et al. Phylogeographic and demographic analysis of the Asian Black Bear (Ursus thibetanus) based on Mitochondrial DNA. PLoS ONE 10, e0136398 (2015).
    Article  Google Scholar 

    29.
    Timmermans, M. J. et al. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res. 38, e197 (2010).
    CAS  Article  Google Scholar 

    30.
    Cabrera-Brandt, M. A. & Gaitan-Espitia, J. D. Phylogenetic analysis of the complete mitogenome sequence of the raspberry weevil Aegorhinus superciliosus (Coleoptera: Curculionidae), supports monophyly of the tribe Aterpini. Gene 571, 205–211 (2015).
    CAS  Article  Google Scholar 

    31.
    Grant, J. R. & Stothard, P. The CGView Server: a comparative genomics tool for circular 423 genomes. Nucleic Acids Res. 36, 181–184 (2008).
    Article  Google Scholar 

    32.
    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
    CAS  Article  Google Scholar 

    33.
    Perna, N. T. & Kocher, T. D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358 (1995).
    ADS  CAS  Article  Google Scholar 

    34.
    Beier, S., Thiel, T., Munch, T., Scholz, U. & Mascher, M. MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583–2585 (2017).
    CAS  Article  Google Scholar 

    35.
    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 36, 573–580 (1999).
    Article  Google Scholar 

    36.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. Mega X: molecular evolutionary genetics analysis across computing platform. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  Article  Google Scholar 

    37.
    Mattei, E., Pietrosanto, M., Ferree, F. & Citterich, M. H. Web-Beagle: a web server for the alignment of RNA secondary structures. Nuc Acids Res. 43, 493–497 (2015).
    Article  Google Scholar 

    38.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 1–5 (2018).
    Article  Google Scholar 

    39.
    Nylander, J.A.A. MrModelTest Version 2. Programme Distributed by the Author. Evolutionary Biology Centre, Uppsala University (2004).

    40.
    Wayne, R. K., Van, V. B. & O’Brien, S. J. Molecular distance and divergence time in carnivores and primates. Mol. Biol. Evol. 8, 297–319 (1991).
    CAS  PubMed  Google Scholar 

    41.
    Rambaut, A. FigTree, Version1.4.4. Available at: https://tree.bio.ed.ac.uk/software/figtree/. (2018). More

  • in

    Uncovering multi-faceted taxonomic and functional diversity of soil bacteriomes in tropical Southeast Asian countries

    The soil bacterial diversity
    The soil bacteriome dataset in this study included 558 soil samples collected from Thailand, the Philippines, Malaysia, and Indonesia (Fig. 1).
    Figure 1

    The number of soil samples from the selected Southeast Asian countries which were included in this study. The number in each circle represented the number of samples from each country. The Southeast Asia map was redrawn from “Southeast Asia” map (Google Maps retrieved 7 May 2020, from https://www.google.com/maps/@8.2763609,98.123781,4z).

    Full size image

    Mapping to the global gridded soil information system: SoilGrids21, the soil samples of each selected country encompassed different soil classes (Supplementary Figure S2). The soil from Thailand samples were mostly Acrisols, which comprise clay-rich subsoil with low fertility and high aluminium content. The soil from the Philippines samples were mostly Gleysols, iron-rich wetland soil saturated with groundwater or underwater or in tidal areas. The soil from Malaysia samples were mostly Ferralsols. The soils from Indonesia samples were of mixed soil classes; nearly half (45%) of them belonged to Nitisols, well-drained soil with a moderate-to-high clay content and limited phosphorus availability. Ferralsols took up about 20% of the Indonesia soil samples while another 18% were Histosols (moist soils with thick organic layers). The soil pH levels were significantly different among the soil samples of 4 selected countries (ANOVA, P value  More

  • in

    Impacts of streamflow alteration on benthic macroinvertebrates by mini-hydro diversion in Sri Lanka

    1.
    Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19(5–6), 397–441 (2003).
    Article  Google Scholar 
    2.
    Finn, M. A., Boulton, A. J. & Chessman, B. C. Ecological responses to artificial drought in two Australian rivers with differing water extraction. Fund. Appl. Limnol. 175(3), 231–248 (2009).
    Article  Google Scholar 

    3.
    Dewson, Z. S., James, A. B. & Death, R. G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J. N. Am. Benthol. Soc. 26(3), 401–415 (2007).
    Article  Google Scholar 

    4.
    Poff, N. L. & Zimmerman, J. K. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biol. 55(1), 194–205 (2010).
    Article  Google Scholar 

    5.
    Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshwater Biol. 60(2), 410–425 (2015).
    Article  Google Scholar 

    6.
    GOSL. CEB statistical digest, Ceylon electricity Board, Colombo, Sri Lanka (2012).

    7.
    Richter, B. D., Baumgartner, J. V., Wigington, R. & Braun, D. P. How much water does a river need?. Freshwater Biol. 37, 231–249 (1997).
    Article  Google Scholar 

    8.
    Dudgeon, D. Effects of water transfer on aquatic insects in a stream in Hong Kong. Regul. River 7, 369–377 (1992).
    Article  Google Scholar 

    9.
    Petts, G. E. & Bickerton, M. A. Influence of water abstraction on the macroinvertebrate community gradient within a glacial stream: La Borgne d’Arolla, Valais Switzerland. Freshwater Biol. 32, 375–386 (1994).
    Article  Google Scholar 

    10.
    Rader, R. B. & Belish, T. A. Influence of mild to severe flow alterations on invertebrates in three mountain streams. Regul. River 15, 353–363 (1999).
    Article  Google Scholar 

    11.
    Dunbar, M. J. et al. River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshwater Biol. 55(1), 226–242 (2010).
    Article  Google Scholar 

    12.
    Schneider, S. C. & Petrin, Z. Effects of flow regime on benthic algae and macroinvertebrates: a comparison between regulated and unregulated rivers. Sci. Total Environ. 579, 1059–1072 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Olden, J. D. & Naiman, R. J. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biol. 55(1), 86–107 (2010).
    Article  Google Scholar 

    14.
    Mueller, M., Pander, J. & Geist, J. The effects of weirs on structural stream habitat and biological communities. J. Appl. Ecol. 48(6), 1450–1461 (2011).
    Article  Google Scholar 

    15.
    Holt, C. R., Pfitzer, D., Scalley, C., Caldwell, B. A. & Batzer, D. P. Macroinvertebrate community responses to annual flow variation from river regulation: an 11-year study. River Res. Appl. 31(7), 798–807 (2015).
    Article  Google Scholar 

    16.
    Krajenbrink, H. J. et al. Macroinvertebrate community responses to river impoundment at multiple spatial scales. Sci. Total Environ. 650, 2648–2656 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Mbaka, J. G. & Wanjiru Mwaniki, M. A global review of the downstream effects of small impoundments on stream habitat conditions and macroinvertebrates. Environ. Rev. 23(3), 257–262 (2015).
    Article  Google Scholar 

    18.
    Anderson, D., Moggridge, H., Warren, P. & Shucksmith, J. The impacts of ‘run-of-river’hydropower on the physical and ecological condition of rivers. Water Environ. J. 29(2), 268–276 (2015).
    Article  Google Scholar 

    19.
    Bilotta, G. S., Burnside, N. G., Turley, M. D., Gray, J. C. & Orr, H. G. The effects of run-of-river hydroelectric power schemes on invertebrate community composition in temperate streams and rivers. Plos One 12(2), e0171634 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Gabbud, C., Robinson, C. T. & Lane, S. N. Summer is in winter: Disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Sci. Total Environ. 650, 2164–2180 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Quadroni, S., Crosa, G., Gentili, G. & Espa, P. Response of stream benthic macroinvertebrates to current water management in Alpine catchments massively developed for hydropower. Sci. Total Environ. 609, 484–496 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Rosero-López, D., Knighton, J., Lloret, P. & Encalada, A. C. Invertebrate response to impacts of water diversion and flow regulation in high-altitude tropical streams. River Res. Appl. 36(2), 223–233 (2019).
    Article  Google Scholar 

    23.
    Ogbeibu, A. E. & Oribhabor, B. J. Ecological impact of river impoundment using benthic macro-invertebrates as indicators. Water Res. 36(10), 2427–2436 (2002).
    CAS  PubMed  Article  Google Scholar 

    24.
    Álvarez-Cabria, M., Barquín, J. & Juanes, J. A. Spatial and seasonal variability of macroinvertebrate metrics: Do macroinvertebrate communities track river health?. Ecol. Indic. 10(2), 370–379 (2010).
    Article  CAS  Google Scholar 

    25.
    Hart, D. D. & Finelli, C. M. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annu. Rev. Ecol. Syst. 30, 363–395 (1999).
    Article  Google Scholar 

    26.
    Wills, T. C., Baker, E. A., Nuhfer, A. J. & Zorn, T. G. Response of the benthic macroinvertebrate community in a northern Michigan stream to reduced summer stream flows. River Res. Appl. 22(7), 819–836 (2006).
    Article  Google Scholar 

    27.
    James, A. B. W., Dewson, Z. S. & Death, R. G. The influence of flow reduction on macroinvertebrate drift density and distance in three New Zealand streams. J. N. Am. Benthol. Soc. 28, 220–232 (2009).
    Article  Google Scholar 

    28.
    Richter, B. D., Baumgartner, J. V., Braun, D. P. & Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. River 14(4), 329–340 (1998).
    Article  Google Scholar 

    29.
    Shieh, C. L., Guh, Y. R. & Wang, S. Q. The application of range of variability approach to the assessment of a check dam on riverine habitat alteration. Environ. Geol. 52, 427–435 (2007).
    Article  Google Scholar 

    30.
    Yang, P., Yin, X.-A., Yang, Z.-F. & Tang, J. A revised range of variability approach considering the periodicity of hydrological indicators. Hydrol. Process. 28, 6222–6235 (2014).
    ADS  Article  Google Scholar 

    31.
    Yu, C., Yin, X. & Yang, Z. A revised range of variability approach for the comprehensive assessment of the alteration of flow regime. Ecol. Eng. 96, 200–207 (2016).
    Article  Google Scholar 

    32.
    Ge, J., Peng, W., Huang, W., Qu, X. & Singh, S. K. Quantitative assessment of flow regime alteration using a revised range of variability methods. Water 10, 597 (2018).
    Article  Google Scholar 

    33.
    Timpe, K. & Kaplan, D. The changing hydrology of a dammed Amazon. Science Advances 3(11), e1700611 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Smakhtin, V. U. & Weragala, N. An assessment of hydrology and environmental flows in the Walawe river basin, Sri Lanka. Working Paper 103. International Water Management Institute (IWMI), Colombo, Sri Lanka (2005).

    35.
    Mood, A. M., Graybill, F. A. & Boes, P. D. C. Introduction to the Theory of Statistics Vol. 3 (McGraw-Hill, New York, 2005).
    Google Scholar 

    36.
    Zhang, Q., Xu, C. Y., Chen, Y. D. & Yang, T. Spatial assessment of hydrologic alteration across the Pearl River Delta, China, and possible underlying causes. Hydrol. Process. 23(11), 1565–1574 (2009).
    ADS  Article  Google Scholar 

    37.
    Lee, A., Cho, S., Kang, D. K. & Kim, S. Analysis of the effect of climate change on the Nakdong river stream flow using indicators of hydrological alteration. J. Hydro Environ. Res. 8(3), 234–247 (2014).
    Article  Google Scholar 

    38.
    Stefanidis, K., Panagopoulos, Y., Psomas, A. & Mimikou, M. Assessment of the natural flow regime in a Mediterranean river impacted from irrigated agriculture. Sci. Total Environ. 573, 1492–1502 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Assahira, C. et al. Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. Forest Ecol. Manag. 396, 113–123 (2017).
    Article  Google Scholar 

    40.
    Ali, R., Kuriqi, A., Abubaker, S. & Kisi, O. Hydrologic alteration at the upper and middle part of the yangtze river, China: towards sustainable water resource management under increasing water exploitation. Sustainability 11(19), 5176 (2019).
    Article  Google Scholar 

    41.
    Carlisle, D. M., Falcone, J., Wolock, D. M., Meador, M. R. & Norris, R. H. Predicting the natural flow regime: models for assessing hydrological alteration in streams. River Res. Appl. 26(2), 118–136 (2010).
    Google Scholar 

    42.
    Maynard, C. M. & Lane, S. N. Reservoir compensation releases: Impact on the macroinvertebrate community of the Derwent River, Northumberland, UK—a longitudinal study. River Res. Appl. 28(6), 692–702 (2012).
    Article  Google Scholar 

    43.
    Salmaso, F. et al. Benthic macroinvertebrates response to water management in a lowland river: effects of hydro-power vs irrigation off-stream diversions. Environ. Monit. Assess. 190(1), 33 (2018).
    Article  CAS  Google Scholar 

    44.
    Power, M. E., Sun, A., Parker, G., Dietrich, W. E. & Wootton, J. T. Hydraulic food-chain models. BioScience 45(3), 159–167 (1995).
    Article  Google Scholar 

    45.
    Jayawardana, J. M. C. K., Gunawardana, W. D. T. M., Udayakumara, E. P. N. & Westbrooke, M. Land use impacts on river health of Uma Oya, Sri Lanka: implications of spatial scales. Environ. Monit. Assess. 189(4), 192 (2017).
    CAS  PubMed  Article  Google Scholar 

    46.
    Weliange, W. S., Leichtfried, M., Amarasinghe, U. S. & Füreder, L. Longitudinal variation of benthic macroinvertebrate communities in two contrasting tropical streams in Sri Lanka. Int. Rev. Hydrobiol. 102(3–4), 70–82 (2017).
    Article  Google Scholar 

    47.
    Benzie, J. A. The colonisation mechanisms of stream benthos in a tropical river (Menik Ganga: Sri Lanka). Hydrobiologia 111(3), 171–179 (1984).
    Article  Google Scholar 

    48.
    Amarathunga, A. D. & Fernando, R. W. Suspended sediment concentration and its impact on aquatic invertebrates in the Gin River, Sri Lanka. Journal of Food and Agriculture 9(1–2), 24–38 (2016).
    Article  Google Scholar 

    49.
    Lancaster, J. & Downes, B. J. Aquatic entomology (OUP, Oxford, 2013).
    Google Scholar 

    50.
    Ramos, V., Formigo, N. & Maia, R. Environmental flows under the WFD implementation. Water Resour. Manag. 32(15), 5115–5149 (2018).
    Article  Google Scholar 

    51.
    Rosero-López, D. et al. Streamlined eco-engineering approach helps define environmental flows for tropical Andean headwaters. Freshwater Biol. 64(7), 1315–1325 (2019).
    Article  Google Scholar 

    52.
    Warfe, D. M., Hardie, S. A., Uytendaal, A. R., Bobbi, C. J. & Barmuta, L. A. The ecology of rivers with contrasting flow regimes: identifying indicators for setting environmental flows. Freshwater Biol. 59(10), 2064–2080 (2014).
    Article  Google Scholar 

    53.
    Wu, M., Chen, A., Zhang, X. & McClain, M. E. A comment on Chinese policies to avoid negative impacts on river ecosystems by hydropower projects. Water 12(3), 869 (2020).
    Article  Google Scholar 

    54.
    Chandrapala, L. Long term trends of rainfall and temperature in Sri Lanka. In Climate Variability and Agriculture (eds Abrol, Y. P. et al.) (Narosa Publishing House, New Delhi, 1996).
    Google Scholar 

    55.
    Halwatura, D. & Najim, M. M. M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Modell. Softw. 46, 155–162 (2013).
    Article  Google Scholar 

    56.
    USEPA (US ENVIRONMENTAL PROTECTION AGENCY). Field and laboratory methods for macroinvertebrate and habitat assessment of low gradient, non-tidal streams. Mid-Atlantic Coastal Streams (MACS) Workgroup, Environmental Services Division, Region 3, USEPA, Wheeling, West Virginia, USA (1997).

    57.
    Turner, A. M. & Trexler, J. C. Sampling aquatic invertebrates from marshes: evaluating the options. J. N. Am. Benthol. Soc. 16(3), 694–709 (1997).
    Article  Google Scholar 

    58.
    Mendis, A. S. & Fernando, C. H. A guide to the fresh water fauna of Ceylon (Sri Lanka) (Weerawardhena S. R. and Fernando C. H., eds), Gestetner, Sri Lanka, 42-126 pp. (1962).

    59.
    Starmühlner, F. Result of the Australian: ceylonese hydrological mission, Part xvii: The freshwater Gastropods of Ceylon. Bull. Fish. Res. St. Sri Lanka (Ceylon) 25(1), 97–181 (1974).
    Google Scholar 

    60.
    APHA. Standard Methods for Examinations of Water and Wastewater, 21st ed. APHA, AWWA and WEF DC, Washington (2005).

    61.
    Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation Vol. 2 (PRIMER-E Ltd, Plymouth, 2001).
    Google Scholar 

    62.
    Clarke, K. R. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18, 117–143 (1993).
    Article  Google Scholar 

    63.
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods PRIMER-E (Plymouth, UK, 2008).
    Google Scholar  More

  • in

    Pseudogymnoascus destructans growth in wood, soil and guano substrates

    1.
    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Fisher, M. C., Gow, N. A. R. & Gurr, S. J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B Biol. Sci. 371, 20160332 (2016).
    Article  Google Scholar 

    3.
    Ghosh, P. N., Fisher, M. C. & Bates, K. A. Diagnosing emerging fungal threats: A one health perspective. Front. Genet. 9, 376 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Seyedmousavi, S. et al. Aspergillus and aspergilloses in wild and domestic animals: A global health concern with parallels to human disease. Med. Mycol. 53, 765–797 (2015).
    PubMed  Article  Google Scholar 

    5.
    Stephen, C., Lester, S., Black, W., Fyfe, M. & Raverty, S. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can. Vet. J. 43, 792–794 (2002).
    PubMed  PubMed Central  Google Scholar 

    6.
    Speare, R., Thomas, A. D., O’Shea, P. & Shipton, W. A. Mucor amphibiorum in the toad, Bufo marinus Australia. J. Wildl. Dis. 30, 399–407 (1994).
    CAS  PubMed  Article  Google Scholar 

    7.
    Connolly, J. H. A review of mucormycosis in the platypus (Ornithorhynchus anatinus). Aust. J. Zool. 57, 235–244 (2009).
    Article  Google Scholar 

    8.
    Gust, N. & Griffiths, J. Platypus mucormycosis and its conservation implications. Austral. Mycol. 28, 1–8 (2009).
    Google Scholar 

    9.
    Thiel, R. P., Mech, L. D., Ruth, G. R., Archer, J. R. & Kaufman, L. Blastomycosis in wild wolves. J. Wildl. Dis. 23, 321–323 (1987).
    CAS  PubMed  Article  Google Scholar 

    10.
    Storms, T. N., Victoria L. Clyde, Linda Munson & Edward C. Ramsay. Blastomycosis in nondomestic felids. J. Zool. Wildl. Med. 34, 231–238 (2003).

    11.
    Guillot, J., Guérin, C. & Chermette, R. Histoplasmosis in Animals. in Emerging and Epizootic Fungal Infections in Animals (eds. Seyedmousavi, S., de Hoog, G. S., Guillot, J. & Verweij, P. E.) 115–128 (Springer International Publishing, 2018). doi:https://doi.org/10.1007/978-3-319-72093-7_5.

    12.
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. USA 110, 15325 (2013).

    14.
    Riley, S. Large-scale spatial-transmission models of infectious disease. Science 316, 1298 (2007).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Engering, A., Hogerwerf, L. & Slingenbergh, J. Pathogen–host–environment interplay and disease emergence. Emerg. Microbes Infect. 2, 1–7 (2013).
    Article  CAS  Google Scholar 

    17.
    Shikano, I. & Cory, J. S. Impact of environmental variation on host performance differs with pathogen identity: Implications for host-pathogen interactions in a changing climate. Sci. Rep. 5, 15351 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Kraay, A. N. M. et al. Fomite-mediated transmission as a sufficient pathway: A comparative analysis across three viral pathogens. BMC Infect. Dis. 18, 540 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Stephens, B. et al. Microbial exchange via fomites and implications for human health. Curr. Pollut. Rep. 5, 198–213 (2019).
    CAS  Article  Google Scholar 

    20.
    Langwig, K. E. et al. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proc. Biol. Sci. 282, (2015).

    21.
    Huebschman, J. J. et al. Detection of Pseudogymnoascus destructans during Summer on Wisconsin Bats. J. Wildl. Dis. https://doi.org/10.7589/2018-06-146 (2019).
    Article  PubMed  Google Scholar 

    22.
    Hoyt, J. R. et al. Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. Proc. Natl. Acad. Sci. USA 117, 7255 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Foley, J., Clifford, D., Castle, K., Cryan, P. & Osfeld, R. S. Investigating and managing the rapid emergence of white nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv. Biol. 25, 223–231 (2011).
    PubMed  Google Scholar 

    24.
    Blanco, C. M. & Garrie, J. Species specific effects of prescribed burns on bat occupancy in northwest Arkansas. For. Ecol. Manage. 460, 117890 (2020).
    Article  Google Scholar 

    25.
    Gargas, A., Trest, M., Christensen, M., Volk, T. J. & Blehert, D. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108, 147–154 (2009).

    26.
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227 (2009).
    CAS  PubMed  Article  Google Scholar 

    27.
    Cryan, P. M. et al. Electrolyte depletion in white-nose syndrome bats. J. Wildl. Dis. 49, 398–402 (2013).
    CAS  PubMed  Article  Google Scholar 

    28.
    Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Biol. Lett. 9, 20130177 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Verant, M. L. et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14, 10 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    31.
    Turner, G. G., Reeder, D. M. & Coleman, J. T. H. A Five-year assessment of mortality and geographic spread of white-nose syndrome in North American Bats, with a Look at the Future. Update of white-nose syndrome in bats. Bat Res. News 52, 13–27 (2011).

    32.
    Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057 (2012).
    PubMed  Article  Google Scholar 

    33.
    Langwig, K. E. et al. Invasion dynamics of white-nose syndrome fungus, midwestern United States. Emerg. Infect. Dis. 21, 1023–1026 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    USFW. U.S. Fish and Wildlife Service. 2019. White-nose syndrome: The devastating disease of hibernating bats in North America. Accessed 1 May 2020. https://www.whitenosesyndrome.org/mmedia-education/white-nose-syndrome-fact-sheet-june-2018. (2019).

    35.
    Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Lorch, J. M. et al. Distribution and environmental persistence of the causative agent of white-nose syndrome, geomyces destructans, in bat hibernacula of the Eastern United States. Appl. Environ. Microbiol. 79, 1293–1301 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Hoyt, J. R. et al. Long-term persistence of Pseudogymnoascus destructans, the Causative Agent of white-nose syndrome, in the absence of bats. EcoHealth 12, 330–333 (2015).
    PubMed  Article  Google Scholar 

    38.
    Campbell, L. J., Walsh, D., Blehert, D. S. & Lorch, J. M. Long-term survival of Pseudogymnoascus destructans at elevated temperatures. J. Wildl. Dis. 56, 278–287 (2020).
    PubMed  Article  Google Scholar 

    39.
    Urbina, J., Chestnut, T., Schwalm, D., Allen, J. & Levi, T. Experimental evaluation of genomic DNA degradation rates for the pathogen Pseudogymnoascus destructans (Pd) in bat guano. PeerJ 8, e8141 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Lorch, J. M. et al. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105, 237–252 (2013).
    CAS  PubMed  Article  Google Scholar 

    41.
    Reynolds, H. T., Ingersoll, T. & Barton, H. A. Modeling the environmental growth of Pseudogymnoascus destructans and its impact on the White-nose syndrome epidemic. J. Wildl. Dis. 51, 318–331 (2015).
    PubMed  Article  Google Scholar 

    42.
    Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. USA 109, 6999 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    WNS Multiagency decontamination team. https://www.whitenosesyndrome.org/mmedia-education/united-states-national-white-nose-syndrome-decontamination-protocol-april-2016-2. (2018).

    44.
    Verant, M., Bohuski, E., Lorch, J. & Blehert, D. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples. J. VET Diagn. Invest. 28, 110–118 (2016).
    CAS  PubMed  Article  Google Scholar 

    45.
    Rocke, T. E. et al. Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Sci. Rep. 9, 6788 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Zhelyazkova, V. L. et al. Screening and biosecurity for white-nose Fungus Pseudogymnoascus destructans (Ascomycota: Pseudeurotiaceae) in Hawai‘i. Pac. Sci. 73, 357–365 (2019).
    Article  Google Scholar 

    47.
    Muller, L. K. et al. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia 105, 253–259 (2013).
    CAS  PubMed  Article  Google Scholar 

    48.
    Vanderwolf, K. J., Malloch, D. & McAlpine, D. F. Detecting viable Pseudogymnoascus destructans (Ascomycota: Pseudeurotiaceae) from walls of bat hibernacula: Effect of culture media. J. Cave Karst Stud. 78, 158 (2016).
    CAS  Article  Google Scholar 

    49.
    Cheng, T. L. et al. Efficacy of a probiotic bacterium to treat bats affected by the disease white-nose syndrome. J. Appl. Ecol. 54, 701–708 (2017).
    Article  Google Scholar 

    50.
    Micalizzi, E. W., Mack, J. N., White, G. P., Avis, T. J. & Smith, M. L. Microbial inhibitors of the fungus Pseudogymnoascus destructans, the causal agent of white-nose syndrome in bats. PLoS ONE 12, e0179770 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Singh, A., Lasek-Nesselquist, E., Chaturvedi, V. & Chaturvedi, S. Trichoderma polysporum selectively inhibits white-nose syndrome fungal pathogen Pseudogymnoascus destructans amidst soil microbes. Microbiome 6, 139 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    De Mandal, S., Zothansanga, Panda, A. K., Bisht, S. S. & Senthil Kumar, N. First report of bacterial community from a Bat Guano using Illumina next-generation sequencing. Genom. Data 4, 99–101. (2015).

    53.
    Banskar, S., Bhute, S. S., Suryavanshi, M. V., Punekar, S. & Shouche, Y. S. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci. Rep. 6, 36948 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Newman, M. M., Kloepper, L. N., Duncan, M., McInroy, J. A. & Kloepper, J. W. Variation in bat guano bacterial community composition with depth. Front. Microbiol. 9, 914 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C. & Garsin, D. A. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect. Immun. 81, 189 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Graham, C. E., Cruz, M. R., Garsin, D. A. & Lorenz, M. C. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc. Natl. Acad. Sci. USA 114, 4507 (2017).
    CAS  PubMed  Article  Google Scholar 

    57.
    Khan, N. et al. Antifungal activity of bacillus species against fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9, 2363 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Kerr, J. R. Bacterial inhibition of fungal growth and pathogenicity. Microb. Ecol. Health Dis. 11, 129–142 (1999).
    Google Scholar 

    59.
    Wheatley, R. E. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81, 357–364 (2002).
    CAS  PubMed  Article  Google Scholar 

    60.
    Cornelison, C. T., Gabriel, K. T., Barlament, C. & Crow, S. A. Inhibition of pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds. Mycopathologia 177, 1–10 (2014).
    CAS  PubMed  Article  Google Scholar 

    61.
    Sussman, A. & Douthit, H. Dormancy in microbial spores. Annu. Rev. Plant Physiol. 24, 311–352 (1973).
    CAS  Article  Google Scholar 

    62.
    Feofilova, E. P., Ivashechkin, A. A., Alekhin, A. I. & Sergeeva, Ya. E. Fungal spores: Dormancy, germination, chemical composition, and role in biotechnology (review). Appl. Biochem. Microbiol. 48, 1–11 (2012).

    63.
    Gasch, A. P. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24, 961–976 (2007).
    CAS  PubMed  Article  Google Scholar 

    64.
    Marroquin, C. M., Lavine, J. O. & Windstam, S. T. Effect of humidity on development of pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. Northeastern Nat. 24, 54–64 (2017).
    Article  Google Scholar 

    65.
    Raudabaugh, D. B. & Miller, A. N. Nutritional capability of and substrate suitability for pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. PLoS ONE 8, e78300 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Gabriel, K. T., Kartforosh, L., Crow, S. A. & Cornelison, C. T. Antimicrobial activity of essential oils against the fungal pathogens ascosphaera apis and pseudogymnoascus destructans. Mycopathologia 183, 921–934 (2018).
    CAS  PubMed  Article  Google Scholar 

    67.
    Boire, N. et al. Potent inhibition of pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, by cold-pressed, terpeneless valencia orange oil. PLoS ONE 11, e0148473 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    68.
    Turbill, C. & Welbergen, J. A. Anticipating white-nose syndrome in the Southern Hemisphere: Widespread conditions favourable to Pseudogymnoascus destructans pose a serious risk to Australia’s bat fauna. Austral. Ecol. 45, 89–96 (2020).
    Article  Google Scholar  More