Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon
1.
Stearns, S. C. The Evolution of Life Histories (Oxford University Press, Oxford, 1996).
Google Scholar
2.
Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).
Google Scholar
3.
Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: Embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).
PubMed Article PubMed Central Google Scholar
4.
Kozlowski, J. Why life histories are diverse. Polish J. Ecol. 54, 585–605 (2006).
Google Scholar
5.
Ejsmond, M. J., Varpe, Ø., Czarnoleski, M. & Kozłowski, J. Seasonality in offspring value and trade-offs with growth explain capital breeding. Am. Nat. 186, E111–E125 (2015).
Article Google Scholar
6.
Filipiak, M. A better understanding of bee nutritional ecology is needed to optimize conservation strategies for wild bees-the application of ecological stoichiometry. Insects 9, 85 (2018).
PubMed Central Article Google Scholar
7.
Filipiak, Z. M. & Filipiak, M. The scarcity of specific nutrients in wild bee larval food negatively influences certain life history traits. Biology (Basel). 9, 462 (2020).
8.
Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, Princeton, 2012).
Google Scholar
9.
Bärlocher, F. & Rennenberg, H. Food chains and nutrient cycles. In Ecological biochemistry (eds Krauss, G. J. & Nies, D. H.) 92–122 (Wiley, New York, 2014).
Google Scholar
10.
DeAngelis, D. L. Dynamics of Nutrient Cycling and Food Webs (Springer Netherlands, Amsterdam, 1992).
Google Scholar
11.
Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry (Academic Press, London, 2020).
Google Scholar
12.
Jeyasingh, P. D., Cothran, R. D. & Tobler, M. Testing the ecological consequences of evolutionary change using elements. Ecol. Evol. 4, 528–538 (2014).
PubMed PubMed Central Article Google Scholar
13.
Jeyasingh, P. D., Goos, J. M., Thompson, S. K., Godwin, C. M. & Cotner, J. B. Ecological stoichiometry beyond redfield: An ionomic perspective on elemental homeostasis. Front. Microbiol. 8, 722 (2017).
PubMed PubMed Central Article Google Scholar
14.
González, A. L. et al. Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America. Funct. Ecol. 32, 2448–2463 (2018).
Article Google Scholar
15.
Peñuelas, J. et al. The bioelements, the elementome, and the biogeochemical niche. Ecology 100, e02652 (2019).
PubMed Article PubMed Central Google Scholar
16.
Fagan, W. F. & Denno, R. F. Stoichiometry of actual vs. potential predator-prey interactions: Insights into nitrogen limitation for arthropod predators. Ecol. Lett. 7, 876–883 (2004).
Article Google Scholar
17.
Kay, A. D. et al. Toward a stoichiometric framework for evolutionary biology. Oikos 109, 6–17 (2005).
Article Google Scholar
18.
Cherif, M. et al. An operational framework for the advancement of a molecule-to-biosphere stoichiometry theory. Front. Mar. Sci. 4, 1–16 (2017).
ADS Article Google Scholar
19.
Welti, N. et al. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Front. Microbiol. 8, 1298 (2017).
PubMed PubMed Central Article Google Scholar
20.
Hessen, D. O., Elser, J. J., Sterner, R. W. & Urabe, J. Ecological stoichiometry: An elementary approach using basic principles. Limnol. Oceanogr. 58, 2219–2236 (2013).
ADS CAS Article Google Scholar
21.
Lemoine, N. P., Giery, S. T. & Burkepile, D. E. Differing nutritional constraints of consumers across ecosystems. Oecologia 174, 1367–1376 (2014).
ADS PubMed Article PubMed Central Google Scholar
22.
Morehouse, N. I., Nakazawa, T., Booher, C. M., Jeyasingh, P. D. & Hall, M. D. Sex in a material world: Why the study of sexual reproduction and sex-specific traits should become more nutritionally-explicit. Oikos 119, 766–778 (2010).
Article Google Scholar
23.
Filipiak, M. Key pollen host plants provide balanced diets for wild bee larvae: A lesson for planting flower strips and hedgerows. J. Appl. Ecol. 56, 1410–1418 (2019).
CAS Article Google Scholar
24.
Goos, J. M., Cothran, R. D. & Jeyasingh, P. D. Within-population variation in the chemistry of life: The stoichiometry of sexual dimorphism in multiple dimensions. Evol. Ecol. 31, 635–651 (2017).
Article Google Scholar
25.
Halvorson, H. M., Scott, J. T., Sanders, A. J. & Evans-White, M. A. A stream insect detritivore violates common assumptions of threshold elemental ratio bioenergetics models. Freshw. Sci. 34, 508–518 (2015).
Article Google Scholar
26.
Meunier, C. L. et al. From elements to function: Toward unifying ecological stoichiometry and trait-based ecology. Front. Environ. Sci. 5, 1–10 (2017).
Article Google Scholar
27.
Sperfeld, E., Wagner, N. D., Halvorson, H. M., Malishev, M. & Raubenheimer, D. Bridging ecological stoichiometry and nutritional geometry with homeostasis concepts and integrative models of organism nutrition. Funct. Ecol. 31, 286–296 (2017).
Article Google Scholar
28.
Filipiak, M. & Weiner, J. Plant–insect interactions: The role of ecological stoichiometry. Acta Agrobot. 70, 1–16 (2017).
Article Google Scholar
29.
Elser, J. J., Dobberfuhl, D. R., MacKay, N. A. & Schampel, J. H. Organism size, life history, and N: P stoichiometry: Toward a unified view of cellular and ecosystem processes. Bioscience 46, 674–684 (1996).
Article Google Scholar
30.
Polidori, C. et al. Strong phylogenetic constraint on transition metal incorporation in the mandibles of the hyper-diverse Hymenoptera (Insecta). Org. Divers. Evol. https://doi.org/10.1007/s13127-020-00448-x (2020).
Article Google Scholar
31.
Bosch, J., Sgolastra, F. & Kemp, W. P. Life cycle ecophysiology of Osmia mason bees used as crop pollinators. In Bee Pollination in Agricultural Eco-systems (eds James, R. & Pitts-Singer, T. L.) 83–105 (Oxford Scholarship Online, Oxford, 2008).
Google Scholar
32.
Giejdasz, K. & Wilkaniec, Z. Individual development of the red mason bee (Osmia rufa L., Megachilidae) under natural and laboratory conditions. J. Apic. Sci. 46, 51–57 (2002).
Google Scholar
33.
Gruber, B., Eckel, K., Everaars, J. & Dormann, C. F. On managing the red mason bee (Osmia bicornis) in apple orchards. Apidologie 42, 564–576 (2011).
Article Google Scholar
34.
Kaspari, M. The seventh macronutrient: How sodium shortfall ramifies through populations, food webs and ecosystems. Ecol. Lett. 23, 1153–1168 (2020).
PubMed Article PubMed Central Google Scholar
35.
Rizzuto, M. et al. Patterns and potential drivers of intraspecific variability in the body C, N, and P composition of a terrestrial consumer, the snowshoe hare (Lepus americanus). Ecol. Evol. 9, 14453–14464 (2019).
PubMed PubMed Central Article Google Scholar
36.
Sitters, J. & Olde Venterink, H. The need for a novel integrative theory on feedbacks between herbivores, plants and soil nutrient cycling. Plant Soil 396, 421–426 (2015).
CAS Article Google Scholar
37.
Sitters, J. et al. Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Glob. Change Biol. 26, 2060–2071 (2020).
ADS Article Google Scholar
38.
Sitters, J. et al. The stoichiometry of nutrient release by terrestrial herbivores and its ecosystem consequences. Front. Earth Sci. 5, 1–8 (2017).
Article Google Scholar
39.
González, A. L., Fariña, J. M., Kay, A. D., Pinto, R. & Marquet, P. A. Exploring patterns and mechanisms of interspecific and intraspecific variation in body elemental composition of desert consumers. Oikos 120, 1247–1255 (2011).
Article Google Scholar
40.
Seidelmann, K. Optimal progeny body size in a solitary bee, Osmia bicornis (Apoidea: Megachilidae). Ecol. Entomol. 39, 656–663 (2014).
Article Google Scholar
41.
Kim, J. Y. Female size and fitness in the leaf-cutter bee Megachile apicalis. Ecol. Entomol. 22, 275–282 (1997).
Article Google Scholar
42.
Markow, T. et al. Elemental stoichiometry of Drosophila and their hosts. Funct. Ecol. 13, 78–84 (1999).
Article Google Scholar
43.
Bergwitz, C. & Jüppner, H. Phosphate sensing. Adv. Chronic Kidney Dis. 18, 132–144 (2011).
PubMed PubMed Central Article Google Scholar
44.
Werner, A. & Kinne, R. K. H. Evolution of the Na-Pi cotransport systems. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R301–R312 (2001).
CAS PubMed Article PubMed Central Google Scholar
45.
Morgan, A. J., Kille, P. & Stürzenbaum, S. R. Microevolution and ecotoxicology of metals in invertebrates. Environ. Sci. Technol. 41, 1085–1096 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
46.
Bednarska, A. J., Świątek, Z. M. & Labecka, A. M. Effects of cadmium bioavailability in food on its distribution in different tissues in the ground beetle Pterostichus oblongopunctatus. Bull. Environ. Contam. Toxicol. 103, 421–427 (2019).
CAS PubMed PubMed Central Article Google Scholar
47.
Świątek, Z. M. & Bednarska, A. J. Energy reserves and respiration rate in the earthworm Eisenia andrei after exposure to zinc in nanoparticle or ionic form. Environ. Sci. Pollut. Res. Int. 26, 24933–24945 (2019).
PubMed PubMed Central Article CAS Google Scholar
48.
Cohen, A. C. Insect Diets: Science and Technology (CRC Press, Boca Raton, 2005).
Google Scholar
49.
Seidelmann, K. Optimal resource allocation, maternal investment, and body size in a solitary bee, Osmia bicornis. Entomol. Exp. Appl. 166, 790–799 (2018).
Article Google Scholar
50.
Bosch, J. & Vicens, N. Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav. Ecol. Sociobiol. 60, 26–33 (2006).
Article Google Scholar
51.
Seidelmann, K., Ulbrich, K. & Mielenz, N. Conditional sex allocation in the Red Mason bee, Osmia rufa. Behav. Ecol. Sociobiol. 64, 337–347 (2010).
Article Google Scholar
52.
González, A. L., Dézerald, O., Marquet, P. A., Romero, G. Q. & Srivastava, D. S. The multidimensional stoichiometric niche. Front. Ecol. Evol. 5, 110 (2017).
Article Google Scholar
53.
Lemmen, K. D., Butler, O. M., Koffel, T., Rudman, S. M. & Symons, C. C. Stoichiometric traits vary widely within species: A meta-analysis of common garden experiments. Front. Ecol. Evol. 7, 1–15 (2019).
Article Google Scholar
54.
Prater, C., Wagner, N. D. & Frost, P. C. Interactive effects of genotype and food quality on consumer growth rate and elemental content. Ecology 98, 1399–1408 (2017).
PubMed Article PubMed Central Google Scholar
55.
Sherman, R. E., Chowdhury, P. R., Baker, K. D., Weider, L. J. & Jeyasingh, P. D. Genotype-specific relationships among phosphorus use, growth and abundance in Daphnia pulicaria. R. Soc. Open Sci. 4, 170770 (2017).
ADS PubMed PubMed Central Article CAS Google Scholar
56.
Zajitschek, F. & Connallon, T. Partitioning of resources: The evolutionary genetics of sexual conflict over resource acquisition and allocation. J. Evol. Biol. 30, 826–838 (2017).
CAS PubMed Article PubMed Central Google Scholar
57.
Moe, S. J. et al. Recent advances in ecological stoichiometry: Insights for population and community ecology. Oikos 109, 29–39 (2005).
Article Google Scholar
58.
Peñuelas, J., Sardans, J., Ogaya, R. & Estiarte, M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: Effect of simulated climate change. Polish J. Ecol. 56, 613–622 (2008).
Google Scholar
59.
Urbina, I. et al. Plant community composition affects the species biogeochemical niche. Ecosphere 8, e01801 (2017).
Article Google Scholar
60.
Jeyasingh, P. D., Goos, J. M., Lind, P. R., Roy Chowdhury, P. & Sherman, R. E. Phosphorus supply shifts the quotas of multiple elements in algae and Daphnia: Ionomic basis of stoichiometric constraints. Ecol. Lett. 23, 1064–1072 (2020).
PubMed Article PubMed Central Google Scholar
61.
Ruedenauer, F. A. et al. Best be (e) on low fat: Linking nutrient perception, regulation and fitness. Ecol. Lett. 23, 545–554 (2020).
PubMed Article PubMed Central Google Scholar
62.
Trinkl, M. et al. Floral species richness correlates with changes in the nutritional quality of larval diets in a stingless bee. Insects 11, E125 (2020).
PubMed Article PubMed Central Google Scholar
63.
Roswell, M., Dushoff, J. & Winfree, R. Male and female bees show large differences in floral preference. PLoS ONE 14, e0214909 (2019).
CAS PubMed PubMed Central Article Google Scholar
64.
Vaudo, A. D. et al. Pollen protein: Lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects 11, 132 (2020).
PubMed Central Article Google Scholar
65.
Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Google Scholar
66.
Smilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data using CANOCO 5 (Cambridge University Press, Cambridge, 2014).
Google Scholar More