Genetic and demographic history define a conservation strategy for earth’s most endangered pinniped, the Mediterranean monk seal Monachus monachus
1.
Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).
PubMed Article Google Scholar
2.
Said, M. Y. et al. Effects of extreme land fragmentation on wildlife and livestock population abundance and distribution. J. Nat. Cons. 34, 151–164 (2016).
Article Google Scholar
3.
Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 1–617 (Cambridge University Press, Cambridge, 2002).
Google Scholar
4.
Lacy, R. C. Importance of genetic variation to the viability of mammalian populations. J. Mammal. 78, 320–335 (1997).
Article Google Scholar
5.
Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).
ADS CAS PubMed PubMed Central Article Google Scholar
6.
Marín, J. C. et al. Mitochondrial phylogeography and demographic history of the vicuna: Implications for conservation. Heredity 99, 70–80 (2007).
PubMed Article CAS Google Scholar
7.
Karamanlidis, A. A. & Dendrinos, P. Monachus monachus. The IUCN Red List of Threatened Species 2015: e.T13653A45227543 (2015).
8.
Karamanlidis, A. A. et al. The Mediterranean monk seal Monachus monachus: Status, biology, threats, and conservation priorities. Mamm. Rev. 46, 92–105 (2016).
Article Google Scholar
9.
Karamanlidis, A. A., Adamantopoulou, S., Tounta, E. & Dendrinos, D. Monachus monachus Eastern Mediterranean subpopulation. The IUCN Red List of Threatened Species 2019, e.T120868935A120869697 (2019).
10.
Dendrinos, D. et al. LIFE-IP 4 NATURA: Integrated actions for the conservation and management of Natura 2000 sites, species, habitats and ecosystems in Greece. Deliverable Action A.1: Action Plan for the Mediterranean monk seal (Monachus monachus). 1–105; Annexes 112p (Hellenic Ministry of Environment and Energy, 2020).
11.
Piggott, M. P. & Taylor, A. C. Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl. Res. 30, 1–13 (2003).
Article Google Scholar
12.
Pastor, T. et al. Genetic diversity and differentiation between the two remaining populations of the critically endangered Mediterranean monk seal. Anim. Conserv. 10, 461–469 (2007).
Article Google Scholar
13.
Karamanlidis, A. A. et al. Shaping species conservation strategies using mtDNA analysis: The case of the elusive Mediterranean monk seal (Monachus monachus). Biol. Conserv. 193, 71–79 (2016).
Article Google Scholar
14.
Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).
PubMed Article Google Scholar
15.
Rey-Iglesia, A. et al. Mitogenomics of the endangered Mediterranean monk seal (Monachus monachus) reveals dramatic loss of diversity and supports historical gene-flow between Atlantic and eastern Mediterranean populations. Zool. J. Linn. Soc. 20, 1–13 (2020).
Google Scholar
16.
Dayon, J. et al. Development and characterization of nineteen microsatellite loci for the endangered Mediterranean monk seal Monachus monachus. Mar. Biodiv. 50, 1–7 (2020).
17.
Brandström, M. & Ellegren, H. Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Gen. Res. 18, 881–887 (2008).
Article CAS Google Scholar
18.
Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley, New York, 2009).
Google Scholar
19.
Tokarska, M., Pertoldi, C., Kowalczyk, R. & Perzanowski, K. Genetic status of the European bison Bison bonasus after extinction in the wild and subsequent recovery. Mamm. Rev. 41, 151–162 (2011).
Article Google Scholar
20.
Casas-Marce, M. et al. Spatio-temporal dynamics of genetic variation in the Iberian Lynx along its path to extinction reconstructed with ancient DNA. Mol. Biol. Evol. 34, 2893–2907 (2017).
CAS PubMed PubMed Central Article Google Scholar
21.
Hasselgren, M. et al. Genetic rescue in an inbred Arctic fox (Vulpes lagopus) population. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 285, 20172814 (2018).
Google Scholar
22.
Mills, L. S. & Allendorf, F. W. The One-Migrant-per-Generation rule in conservation and management. Conserv. Biol. 10, 1509–1518 (1996).
Article Google Scholar
23.
Heber, S. et al. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 280, 20122228 (2013).
CAS Google Scholar
24.
Greenbaum, G., Templeton, A. R., Zarmi, Y. & Bar-David, S. Allelic richness following population founding events—A stochastic modeling framework incorporating gene flow and genetic drift. PLoS ONE 9, e115203 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
25.
Vucetich, J. A. & Waite, T. A. Is one migrant per generation sufficient for the genetic management of fluctuating populations?. Anim. Conserv. 3, 261–266 (2000).
Article Google Scholar
26.
Waples, R. S. in: Population viability analysis (eds S.R. Beissinger & D.R. McCullough), 147–168 (University of Chicago Press, 2002).
27.
Lynch, M. & Lande, R. The critical effective size for a genetically secure population. Anim. Cons. For. 1, 70–72 (1998).
Article Google Scholar
28.
Johnson, C. N. Sex-biased philopatry and dispersal in mammals. Oecologia 69, 626–627 (1986).
ADS CAS PubMed Article Google Scholar
29.
Oosthuizen, W. C. et al. Dispersal and dispersion of southern elephant seals in the Kerguelen province, Southern Ocean. Antarct.sSci. 23, 567–577 (2011).
ADS Article Google Scholar
30.
Fabiani, A., Galimberti, F., Sanvito, S. & Hoelzel, A. R. Relatedness and site fidelity at the southern elephant seal, Mirounga leonina, breeding colony in the Falkland Islands. Anim. Behav. 72, 617–626 (2006).
Article Google Scholar
31.
Hofmeyr, G. J. G., Kirkman, S. P., Pistorius, P. A. & Bester, M. N. Natal site fidelity by breeding female southern elephant seals in relation to their history of participation in the winter haulout. Afr. J. Mar. Sci. 34, 373–382 (2012).
Article Google Scholar
32.
Dendrinos, P. et al. Pupping habitat use in the Mediterranean monk seal: A long-term study. Mar. Mamm. Sci. 23, 615–628 (2007).
Article Google Scholar
33.
Gücü, A. C., Gücü, G. & Orek, H. Habitat use and preliminary demographic evaluation of the critically endangered Mediterranean monk seal (Monachus monachus) in the Cilician Basin (Eastern Mediterranean). Biol. Conserv. 116, 417–431 (2004).
Article Google Scholar
34.
Valtonen, M. et al. Causes and consequences of fine-scale population structure in a critically endangered freshwater seal. BMC Ecol. 14, 22 (2014).
PubMed PubMed Central Article Google Scholar
35.
Karamanlidis, A. A., Dendrinos, P., Tounta, E. & Kotomatas, S. Monitoring human activity in an area dedicated to the protection of the endangered Mediterranean monk seal. Coast. Manag. 32, 293–306 (2004).
Article Google Scholar
36.
Karamanlidis, A. A. et al. An interview-based approach to assess seal—small-scale fishery interactions informs the conservation strategy of the endangered Mediterranean monk seal. Aquat. Cons. Mar. Freshw. Ecos. 30, 928–936 (2020).
Article Google Scholar
37.
Karamanlidis, A. A. Establishment of the “Hellenic Monk Seal Register”. Final report of a grant award from the Marine Mammal Commission to MOm/Hellenic Society for the Study and Protection of the Monk seal. 1–25 (2017).
38.
Stoffel, M. A. et al. Demographic histories and genetic diversity across pinnipeds are shaped by human exploitation, ecology and life-history. Nat. Commun. 9, 1–12 (2018).
Article CAS Google Scholar
39.
Gaubert, P. et al. Insights from 180 years of mitochondrial variability in the endangered Mediterranean monk seal (Monachus monachus). Mar. Mamm. Sci. 35, 1489–1511 (2019).
Article Google Scholar
40.
Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
Article Google Scholar
41.
Hoelzel, A. R. et al. Impact of a population bottleneck on symmetry and genetic diversity in the northern elephant seal. J. Evol. Biol. 15, 567–575 (2002).
Article Google Scholar
42.
Allen, P. J., Amos, W., Pomeroy, P. P. & Twiss, S. D. Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies. Mol. Ecol. 4, 653–662 (1995).
CAS PubMed Article Google Scholar
43.
Goodman, S. J. Molecular population genetics of the European harbour seal (Phoca vitulina) with reference to the 1988 phocine distemper virus epizootic PhD thesis thesis, University of Cambridge, (1995).
44.
Coltman, D. W., Bowen, W. D. & Wright, J. M. PCR primers for harbour seal (Phoca vitulina concolour) microsatellites amplify polymorphic loci in other pinniped species. Mol. Ecol. 5, 161–163 (1996).
CAS PubMed Article Google Scholar
45.
Goodman, S. J. Patterns of extensive genetic differentiation and variation among European harbor seals (Phoca vitulina vitulina) revealed using microsatellite DNA polymorphisms. Mol. Biol. Evol. 15, 104–118 (1998).
CAS PubMed Article Google Scholar
46.
Pastor, T. et al. Low genetic variability in the highly endangered Mediterranean monk seal. J. Hered. 95, 291–300 (2004).
CAS PubMed Article Google Scholar
47.
Schultz, J. K., Marshall, A. J. & Pfunder, M. Genome-wide loss of diversity in the critically endangered Hawaiian monk seal. Diversity 2, 863–880 (2010).
CAS Article Google Scholar
48.
Mihnovets, A. N. et al. A novel microsatellite multiplex assay for the endangered Hawaiian monk seal (Neomonachus schauinslandi). Con. Gen. Res. 8, 91–95 (2016).
Article Google Scholar
49.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
50.
Jombart, T., Devillard, S. & Durfour, A.-B. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101, 92–103 (2008).
CAS PubMed Article Google Scholar
51.
Upton, G. & Fingleton, B. Spatial Data Analysis by Example. Volume 1: Point Pattern and Quantitative Data (Wiley, New York, 1985).
Google Scholar
52.
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).
53.
Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
CAS Article Google Scholar
54.
Forbes, S. H. & Hogg, J. T. Assessing population structure at high levels of differentiation: Microsatellite comparisons of bighorn sheep and large carnivores. Anim. Cons. For. 2, 223–233 (1999).
Article Google Scholar
55.
Hardy, O. J. & Vekemans, X. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).
Article CAS Google Scholar
56.
Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubicaceae). Am. J. Bot. 82, 1420–1425 (1995).
Article Google Scholar
57.
Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
CAS PubMed PubMed Central Google Scholar
58.
Engels, W. R. Exact tests for Hardy–Weinberg proportions. Genetics 183, 1431–1441 (2009).
PubMed PubMed Central Article Google Scholar
59.
HWxtest: Exact Tests for Hardy–Weinberg proportions. R package version 1.1.7. (2016).
60.
Karamanlidis, A. A. et al. History-driven population structure and assymetric gene flow in a recovering large carnivore at the rear-edge of its European range. Heredity 120, 168–182 (2018).
CAS PubMed Article Google Scholar
61.
Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Res. 11, 141–145 (2011).
Article Google Scholar
62.
Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184 (2006).
Article Google Scholar
63.
Waples, R. S. & Do, C. H. I. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).
PubMed Article Google Scholar
64.
Do, C. et al. NeEstimator V2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Res. 14, 209–214 (2014).
CAS Article Google Scholar
65.
Waples, R. S. & Do, C. LdNe: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Res. 8, 753–756 (2008).
Article Google Scholar More