More stories

  • in

    Genetic and demographic history define a conservation strategy for earth’s most endangered pinniped, the Mediterranean monk seal Monachus monachus

    1.
    Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).
    PubMed  Article  Google Scholar 
    2.
    Said, M. Y. et al. Effects of extreme land fragmentation on wildlife and livestock population abundance and distribution. J. Nat. Cons. 34, 151–164 (2016).
    Article  Google Scholar 

    3.
    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 1–617 (Cambridge University Press, Cambridge, 2002).
    Google Scholar 

    4.
    Lacy, R. C. Importance of genetic variation to the viability of mammalian populations. J. Mammal. 78, 320–335 (1997).
    Article  Google Scholar 

    5.
    Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Marín, J. C. et al. Mitochondrial phylogeography and demographic history of the vicuna: Implications for conservation. Heredity 99, 70–80 (2007).
    PubMed  Article  CAS  Google Scholar 

    7.
    Karamanlidis, A. A. & Dendrinos, P. Monachus monachus. The IUCN Red List of Threatened Species 2015: e.T13653A45227543 (2015).

    8.
    Karamanlidis, A. A. et al. The Mediterranean monk seal Monachus monachus: Status, biology, threats, and conservation priorities. Mamm. Rev. 46, 92–105 (2016).
    Article  Google Scholar 

    9.
    Karamanlidis, A. A., Adamantopoulou, S., Tounta, E. & Dendrinos, D. Monachus monachus Eastern Mediterranean subpopulation. The IUCN Red List of Threatened Species 2019, e.T120868935A120869697 (2019).

    10.
    Dendrinos, D. et al. LIFE-IP 4 NATURA: Integrated actions for the conservation and management of Natura 2000 sites, species, habitats and ecosystems in Greece. Deliverable Action A.1: Action Plan for the Mediterranean monk seal (Monachus monachus). 1–105; Annexes 112p (Hellenic Ministry of Environment and Energy, 2020).

    11.
    Piggott, M. P. & Taylor, A. C. Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildl. Res. 30, 1–13 (2003).
    Article  Google Scholar 

    12.
    Pastor, T. et al. Genetic diversity and differentiation between the two remaining populations of the critically endangered Mediterranean monk seal. Anim. Conserv. 10, 461–469 (2007).
    Article  Google Scholar 

    13.
    Karamanlidis, A. A. et al. Shaping species conservation strategies using mtDNA analysis: The case of the elusive Mediterranean monk seal (Monachus monachus). Biol. Conserv. 193, 71–79 (2016).
    Article  Google Scholar 

    14.
    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).
    PubMed  Article  Google Scholar 

    15.
    Rey-Iglesia, A. et al. Mitogenomics of the endangered Mediterranean monk seal (Monachus monachus) reveals dramatic loss of diversity and supports historical gene-flow between Atlantic and eastern Mediterranean populations. Zool. J. Linn. Soc. 20, 1–13 (2020).
    Google Scholar 

    16.
    Dayon, J. et al. Development and characterization of nineteen microsatellite loci for the endangered Mediterranean monk seal Monachus monachus. Mar. Biodiv. 50, 1–7 (2020).

    17.
    Brandström, M. & Ellegren, H. Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Gen. Res. 18, 881–887 (2008).
    Article  CAS  Google Scholar 

    18.
    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Wiley, New York, 2009).
    Google Scholar 

    19.
    Tokarska, M., Pertoldi, C., Kowalczyk, R. & Perzanowski, K. Genetic status of the European bison Bison bonasus after extinction in the wild and subsequent recovery. Mamm. Rev. 41, 151–162 (2011).
    Article  Google Scholar 

    20.
    Casas-Marce, M. et al. Spatio-temporal dynamics of genetic variation in the Iberian Lynx along its path to extinction reconstructed with ancient DNA. Mol. Biol. Evol. 34, 2893–2907 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Hasselgren, M. et al. Genetic rescue in an inbred Arctic fox (Vulpes lagopus) population. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 285, 20172814 (2018).
    Google Scholar 

    22.
    Mills, L. S. & Allendorf, F. W. The One-Migrant-per-Generation rule in conservation and management. Conserv. Biol. 10, 1509–1518 (1996).
    Article  Google Scholar 

    23.
    Heber, S. et al. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 280, 20122228 (2013).
    CAS  Google Scholar 

    24.
    Greenbaum, G., Templeton, A. R., Zarmi, Y. & Bar-David, S. Allelic richness following population founding events—A stochastic modeling framework incorporating gene flow and genetic drift. PLoS ONE 9, e115203 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Vucetich, J. A. & Waite, T. A. Is one migrant per generation sufficient for the genetic management of fluctuating populations?. Anim. Conserv. 3, 261–266 (2000).
    Article  Google Scholar 

    26.
    Waples, R. S. in: Population viability analysis (eds S.R. Beissinger & D.R. McCullough), 147–168 (University of Chicago Press, 2002).

    27.
    Lynch, M. & Lande, R. The critical effective size for a genetically secure population. Anim. Cons. For. 1, 70–72 (1998).
    Article  Google Scholar 

    28.
    Johnson, C. N. Sex-biased philopatry and dispersal in mammals. Oecologia 69, 626–627 (1986).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Oosthuizen, W. C. et al. Dispersal and dispersion of southern elephant seals in the Kerguelen province, Southern Ocean. Antarct.sSci. 23, 567–577 (2011).
    ADS  Article  Google Scholar 

    30.
    Fabiani, A., Galimberti, F., Sanvito, S. & Hoelzel, A. R. Relatedness and site fidelity at the southern elephant seal, Mirounga leonina, breeding colony in the Falkland Islands. Anim. Behav. 72, 617–626 (2006).
    Article  Google Scholar 

    31.
    Hofmeyr, G. J. G., Kirkman, S. P., Pistorius, P. A. & Bester, M. N. Natal site fidelity by breeding female southern elephant seals in relation to their history of participation in the winter haulout. Afr. J. Mar. Sci. 34, 373–382 (2012).
    Article  Google Scholar 

    32.
    Dendrinos, P. et al. Pupping habitat use in the Mediterranean monk seal: A long-term study. Mar. Mamm. Sci. 23, 615–628 (2007).
    Article  Google Scholar 

    33.
    Gücü, A. C., Gücü, G. & Orek, H. Habitat use and preliminary demographic evaluation of the critically endangered Mediterranean monk seal (Monachus monachus) in the Cilician Basin (Eastern Mediterranean). Biol. Conserv. 116, 417–431 (2004).
    Article  Google Scholar 

    34.
    Valtonen, M. et al. Causes and consequences of fine-scale population structure in a critically endangered freshwater seal. BMC Ecol. 14, 22 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    35.
    Karamanlidis, A. A., Dendrinos, P., Tounta, E. & Kotomatas, S. Monitoring human activity in an area dedicated to the protection of the endangered Mediterranean monk seal. Coast. Manag. 32, 293–306 (2004).
    Article  Google Scholar 

    36.
    Karamanlidis, A. A. et al. An interview-based approach to assess seal—small-scale fishery interactions informs the conservation strategy of the endangered Mediterranean monk seal. Aquat. Cons. Mar. Freshw. Ecos. 30, 928–936 (2020).
    Article  Google Scholar 

    37.
    Karamanlidis, A. A. Establishment of the “Hellenic Monk Seal Register”. Final report of a grant award from the Marine Mammal Commission to MOm/Hellenic Society for the Study and Protection of the Monk seal. 1–25 (2017).

    38.
    Stoffel, M. A. et al. Demographic histories and genetic diversity across pinnipeds are shaped by human exploitation, ecology and life-history. Nat. Commun. 9, 1–12 (2018).
    Article  CAS  Google Scholar 

    39.
    Gaubert, P. et al. Insights from 180 years of mitochondrial variability in the endangered Mediterranean monk seal (Monachus monachus). Mar. Mamm. Sci. 35, 1489–1511 (2019).
    Article  Google Scholar 

    40.
    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
    Article  Google Scholar 

    41.
    Hoelzel, A. R. et al. Impact of a population bottleneck on symmetry and genetic diversity in the northern elephant seal. J. Evol. Biol. 15, 567–575 (2002).
    Article  Google Scholar 

    42.
    Allen, P. J., Amos, W., Pomeroy, P. P. & Twiss, S. D. Microsatellite variation in grey seals (Halichoerus grypus) shows evidence of genetic differentiation between two British breeding colonies. Mol. Ecol. 4, 653–662 (1995).
    CAS  PubMed  Article  Google Scholar 

    43.
    Goodman, S. J. Molecular population genetics of the European harbour seal (Phoca vitulina) with reference to the 1988 phocine distemper virus epizootic PhD thesis thesis, University of Cambridge, (1995).

    44.
    Coltman, D. W., Bowen, W. D. & Wright, J. M. PCR primers for harbour seal (Phoca vitulina concolour) microsatellites amplify polymorphic loci in other pinniped species. Mol. Ecol. 5, 161–163 (1996).
    CAS  PubMed  Article  Google Scholar 

    45.
    Goodman, S. J. Patterns of extensive genetic differentiation and variation among European harbor seals (Phoca vitulina vitulina) revealed using microsatellite DNA polymorphisms. Mol. Biol. Evol. 15, 104–118 (1998).
    CAS  PubMed  Article  Google Scholar 

    46.
    Pastor, T. et al. Low genetic variability in the highly endangered Mediterranean monk seal. J. Hered. 95, 291–300 (2004).
    CAS  PubMed  Article  Google Scholar 

    47.
    Schultz, J. K., Marshall, A. J. & Pfunder, M. Genome-wide loss of diversity in the critically endangered Hawaiian monk seal. Diversity 2, 863–880 (2010).
    CAS  Article  Google Scholar 

    48.
    Mihnovets, A. N. et al. A novel microsatellite multiplex assay for the endangered Hawaiian monk seal (Neomonachus schauinslandi). Con. Gen. Res. 8, 91–95 (2016).
    Article  Google Scholar 

    49.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Jombart, T., Devillard, S. & Durfour, A.-B. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101, 92–103 (2008).
    CAS  PubMed  Article  Google Scholar 

    51.
    Upton, G. & Fingleton, B. Spatial Data Analysis by Example. Volume 1: Point Pattern and Quantitative Data (Wiley, New York, 1985).
    Google Scholar 

    52.
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).

    53.
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
    CAS  Article  Google Scholar 

    54.
    Forbes, S. H. & Hogg, J. T. Assessing population structure at high levels of differentiation: Microsatellite comparisons of bighorn sheep and large carnivores. Anim. Cons. For. 2, 223–233 (1999).
    Article  Google Scholar 

    55.
    Hardy, O. J. & Vekemans, X. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).
    Article  CAS  Google Scholar 

    56.
    Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubicaceae). Am. J. Bot. 82, 1420–1425 (1995).
    Article  Google Scholar 

    57.
    Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).
    CAS  PubMed  PubMed Central  Google Scholar 

    58.
    Engels, W. R. Exact tests for Hardy–Weinberg proportions. Genetics 183, 1431–1441 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    HWxtest: Exact Tests for Hardy–Weinberg proportions. R package version 1.1.7. (2016).

    60.
    Karamanlidis, A. A. et al. History-driven population structure and assymetric gene flow in a recovering large carnivore at the rear-edge of its European range. Heredity 120, 168–182 (2018).
    CAS  PubMed  Article  Google Scholar 

    61.
    Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Res. 11, 141–145 (2011).
    Article  Google Scholar 

    62.
    Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184 (2006).
    Article  Google Scholar 

    63.
    Waples, R. S. & Do, C. H. I. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).
    PubMed  Article  Google Scholar 

    64.
    Do, C. et al. NeEstimator V2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Res. 14, 209–214 (2014).
    CAS  Article  Google Scholar 

    65.
    Waples, R. S. & Do, C. LdNe: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Res. 8, 753–756 (2008).
    Article  Google Scholar  More

  • in

    Effects of climate change and land cover on the distributions of a critical tree family in the Philippines

    1.
    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 1, 1–7. https://doi.org/10.1126/science.1196624 (2010).
    CAS  Article  Google Scholar 
    2.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
    CAS  Article  Google Scholar 

    5.
    Sodhi, N. S. & Brook, B. W. Southeast Asian Biodiversity in Crisis (Cambridge University Press, Cambridge, 2006).
    Google Scholar 

    6.
    Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 16, 265–280 (2007).
    Article  Google Scholar 

    7.
    Murcia, C. Forest fragmentation and the pollination of neotropical plants. For. Patches Trop. Landsc. 1, 19–36 (1996).
    Google Scholar 

    8.
    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: Lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).
    ADS  Article  Google Scholar 

    11.
    Deb, J. C., Phinn, S., Butt, N. & McAlpine, C. A. The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecol. Evol. 7, 2238–2248 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Garcia, K., Lasco, R., Ines, A., Lyon, B. & Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl. Geogr. 44, 12–22 (2013).
    Article  Google Scholar 

    13.
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    McShea, W. J. What are the roles of species distribution models in conservation planning?. Environ. Conserv. 41, 93–96 (2014).
    Article  Google Scholar 

    15.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    16.
    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010: Deforestation in insular Southeast Asia 2000–2010. Glob. Change Biol. 17, 2261–2270 (2011).
    ADS  Article  Google Scholar 

    17.
    Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).
    Article  Google Scholar 

    18.
    Yusuf, A. A. & Francisco, H. Climate change vulnerability mapping for Southeast Asia. (2009).

    19.
    Ambal, R. G. R. et al. Key biodiversity areas in the Philippines: priorities for conservation. J. Threat. Taxa 4, 2788–2796 (2012).
    Article  Google Scholar 

    20.
    Feeley, K. J. & Silman, M. R. The data void in modeling current and future distributions of tropical species. Glob. Change Biol. 17, 626–630 (2011).
    ADS  Article  Google Scholar 

    21.
    Ramos, L. T., Torres, A. M., Pulhin, F. B. & Lasco, R. D. Developing a georeferenced database of selected threatened forest tree species in the Philippines. Philipp. J. Sci. 141, 165–177 (2012).
    Google Scholar 

    22.
    Liu, D. S., Iverson, L. R. & Brown, S. Rates and patterns of deforestation in the Philippines: application of geographic information system analysis. For. Ecol. Manag. 57, 1–16 (1993).
    Article  Google Scholar 

    23.
    Shively, G. & Pagiola, S. Agricultural intensification, local labor markets, and deforestation in the Philippines. Environ. Dev. Econ. 9, 241–266 (2004).
    Article  Google Scholar 

    24.
    Ashton, P. S. Dipterocarpaceae. Dipterocarpaceae. 9, 237–552 (1982).
    Google Scholar 

    25.
    De Guzman, E. D., Umali, R. M. & Sotalbo, E. D. Guide to Philippine Flora and Fauna, Vol. 3: Dipterocarps, Non-Dipterocarps. Nat. Resour. Manag. Cent. Minist. Nat. Resour. Univ. Philipp. (1986).

    26.
    Fernando, E. S., Suh, M. H., Lee, J. & Lee, D. K. Forest formations of the Philippines. (ASEAN-Korea Environmental Cooperation Unit, 2008).

    27.
    Tuck, S. L. et al. The value of biodiversity for the functioning of tropical forests: insurance effects during the first decade of the Sabah biodiversity experiment. Proc. R. Soc. B Biol. Sci. 283, 20161451 (2016).
    Article  Google Scholar 

    28.
    Brearley, F. Q., Banin, L. F. & Saner, P. The ecology of the Asian dipterocarps. Plant Ecol. Divers. 9, 429–436 (2016).
    Article  Google Scholar 

    29.
    Schulte, A. Dipterocarp forest ecosystem theory based on matter balance and biodiversity. in Dipterocarp Forest Ecosystems: Towards Sustainable Management 3–28 (1996).

    30.
    Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30 (2013).
    ADS  Article  Google Scholar 

    31.
    Granados, A. Ecological Effects of Disrupting Plant-Animal Interactions (University of British Columbia, Vancouver, 2017).
    Google Scholar 

    32.
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Albrecht, J. et al. Correlated loss of ecosystem services in coupled mutualistic networks. Nat. Commun. 5, 3810 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).
    Article  Google Scholar 

    35.
    Kettle, C. J. Ecological considerations for using dipterocarps for restoration of lowland rainforest in Southeast Asia. Biodivers. Conserv. 19, 1137–1151 (2010).
    Article  Google Scholar 

    36.
    Titeux, N. et al. Biodiversity scenarios neglect future land-use changes. Glob. Change Biol. 22, 2505–2515 (2016).
    ADS  Article  Google Scholar 

    37.
    Pimm, S. L., Jenkins, C. N. & Li, B. V. How to protect half of Earth to ensure it protects sufficient biodiversity. Sci. Adv. 4, 2616 (2018).
    ADS  Article  Google Scholar 

    38.
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 1, 1407–1413. https://doi.org/10.1111/j.1365-2699.2010.02300.x (2010).
    Article  Google Scholar 

    40.
    Graham, V., Baumgartner, J. B., Beaumont, L. J., Esperón-Rodríguez, M. & Grech, A. Prioritizing the protection of climate refugia: designing a climate-ready protected area network. J. Environ. Plan. Manag. 1, 1–19. https://doi.org/10.1080/09640568.2019.1573722 (2019).
    Article  Google Scholar 

    41.
    Mair, L. et al. Land use changes could modify future negative effects of climate change on old-growth forest indicator species. Divers. Distrib. 24, 1416–1425 (2018).
    Article  Google Scholar 

    42.
    Methorst, J., Böhning-Gaese, K., Khaliq, I. & Hof, C. A framework integrating physiology, dispersal and land-use to project species ranges under climate change. J. Avian Biol. 48, 1532–1548 (2017).
    Article  Google Scholar 

    43.
    Segan, D. B., Murray, K. A. & Watson, J. E. M. A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Glob. Ecol. Conserv. 5, 12–21 (2016).
    Article  Google Scholar 

    44.
    Milanesi, P., Della Rocca, F. & Robinson, R. A. Integrating dynamic environmental predictors and species occurrences: Toward true dynamic species distribution models. Ecol. Evol. 10, 1087–1092 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Faurby, S. & Araújo, M. B. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 8, 252–256 (2018).
    ADS  Article  Google Scholar 

    46.
    Peterson, A. T., Cobos, M. E. & Jiménez-García, D. Major challenges for correlational ecological niche model projections to future climate conditions: Climate change, ecological niche models, and uncertainty. Ann. N. Y. Acad. Sci. 1429, 66–77 (2018).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche Contractions in declining species: Mechanisms and consequences. Trends Ecol. Evol. 32, 346–355 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    PAGASA. Daily Rainfall and Temperature. http://bagong.pagasa.dost.gov.ph/climate/climate-monitoring#daily-rainfall-and-temperature (2019).

    49.
    GBIF. GBIF Occurrence Download. https://doi.org/10.15468/dl.cetigh (2020).

    50.
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).
    Article  Google Scholar 

    51.
    DAO. Updated national list of threatened Philippine plants and their categories. Dep. Environ. Nat. Resour. Repub. Philipp. Quezon City Manila (2017).

    52.
    IUCN. IUCN Red List of Threatened Species. (IUCN, Geneva, 2019).

    53.
    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
    Article  Google Scholar 

    54.
    Newbold, T. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog. Phys. Geogr. 34, 3–22 (2010).
    Article  Google Scholar 

    55.
    Yackulic, C. B. et al. Presence-only modelling using MAXENT: when can we trust the inferences?. Methods Ecol. Evol. 4, 236–243 (2013).
    Article  Google Scholar 

    56.
    Pelser, P. B., Barcelona, J. F. & Nickrent, D. L. Co’s Digital Flora of the Philippines. (2011).

    57.
    IPNI. The International Plant Names Index. http://www.ipni.org (2020).

    58.
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Dormann, C. F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 16, 129–138 (2007).
    Article  Google Scholar 

    60.
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Article  Google Scholar 

    61.
    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
    ADS  Article  Google Scholar 

    62.
    Kamworapan, S. & Surussavadee, C. Evaluation of CMIP5 global climate models for simulating climatological temperature and precipitation for Southeast Asia. Adv. Meteorol. 2019, 1–18 (2019).
    Article  Google Scholar 

    63.
    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213 (2011).
    ADS  CAS  Article  Google Scholar 

    64.
    PAGASA. Observed and Projected Climate Change in the Philippines. (2018).

    65.
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna Austria 55, 275–286 (2013).

    67.
    Hijmans, R. J. & Etten, J. V. Geographic analysis and modeling with raster data. R Package Version 2, 1–25 (2012).
    Google Scholar 

    68.
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
    Article  Google Scholar 

    69.
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Article  Google Scholar 

    70.
    Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 30, 550–560 (2007).
    Article  Google Scholar 

    71.
    Breiner, F. T., Nobis, M. P., Bergamini, A. & Guisan, A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol. Evol. 9, 802–808 (2018).
    Article  Google Scholar 

    72.
    Zhu, G. P. & Peterson, A. T. Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biol. Invasions 19, 2519–2532 (2017).
    Article  Google Scholar 

    73.
    Araujo, M. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    74.
    Hannemann, H., Willis, K. J. & Macias-Fauria, M. The devil is in the detail: unstable response functions in species distribution models challenge bulk ensemble modelling. Glob. Ecol. Biogeogr. 25, 26–35 (2016).
    Article  Google Scholar 

    75.
    Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography https://doi.org/10.1111/ecog.04890 (2020).
    Article  Google Scholar 

    76.
    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
    Article  Google Scholar 

    77.
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
    Article  Google Scholar 

    78.
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256 (2018).
    Article  Google Scholar 

    79.
    Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. A single-algorithm ensemble approach to estimating suitability and uncertainty: Cross-time projections for four Malagasy tenrecs. Divers. Distrib. 23, 196–208 (2017).
    Article  Google Scholar 

    80.
    Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Model. 269, 9–17 (2013).
    Article  Google Scholar 

    81.
    Iturbide, M. et al. A framework for species distribution modelling with improved pseudo-absence generation. Ecol. Model. 312, 166–174 (2015).
    Article  Google Scholar 

    82.
    VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Model. 220, 589–594 (2009).
    Article  Google Scholar 

    83.
    Chefaoui, R. M. & Lobo, J. M. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol. Model. 210, 478–486 (2008).
    Article  Google Scholar 

    84.
    Liu, C., Newell, G. & White, M. The effect of sample size on the accuracy of species distribution models: Considering both presences and pseudo-absences or background sites. Ecography 42, 535–548 (2019).
    Article  Google Scholar 

    85.
    Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 5, e3093 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).
    Article  Google Scholar 

    87.
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
    Article  Google Scholar 

    88.
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    89.
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?: How to use pseudo-absences in niche modelling?. Methods Ecol. Evol. 3, 327–338 (2012).
    Article  Google Scholar 

    90.
    Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).
    Article  Google Scholar 

    91.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    92.
    Velasco, J. A. & González-Salazar, C. Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecol. Inform. 51, 25–32 (2019).
    Article  Google Scholar 

    93.
    Vignali, S., Barras, A. & Braunisch, V. SDMtune: Species distribution model selection. R Package Version 101 (2019) https://github.com/ConsBiol-unibern/SDMtune.

    94.
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    95.
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS): Assessing the accuracy of distribution models. J. Appl. Ecol. 43, 1223–1232 (2006).
    Article  Google Scholar 

    96.
    Somodi, I., Lepesi, N. & Botta-Dukát, Z. Prevalence dependence in model goodness measures with special emphasis on true skill statistics. Ecol. Evol. 7, 863–872 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    97.
    Warren, D. L., Matzke, N. J. & Iglesias, T. L. Evaluating species distribution models with discrimination accuracy is uninformative for many applications. https://doi.org/10.1101/684399 (2019)

    98.
    Angelstam, P. Conservation of communities—the importance of edges, surroundings and landscape mosaic structure. in Ecological principles of nature conservation 9–70 (Springer, 1992).

    99.
    Waldhardt, R., Simmering, D. & Otte, A. Estimation and prediction of plant species richness in a mosaic landscape. Landsc. Ecol. 19, 211–226 (2004).
    Article  Google Scholar 

    100.
    Fischer, J. & Lindenmayer, D. B. Small patches can be valuable for biodiversity conservation: two case studies on birds in southeastern Australia. Biol. Conserv. 106, 129–136 (2002).
    Article  Google Scholar 

    101.
    Struebig, M. J. et al. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Curr. Biol. 25, 372–378 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    UNEP-WCMC. World database on protected areas. UNEP WCMC Camb. UK (2018).

    103.
    LP DAAC. Global 30 arc-second elevation data set GTOPO30. Land Process Distrib. Act. Arch. Cent. (2004) http://edcdaac.usgs.gov/gtopo30/gtopo30.asp.

    104.
    Amaral, A. G., Munhoz, C. B. R., Walter, B. M. T., Aguirre-Gutiérrez, J. & Raes, N. Richness pattern and phytogeography of the Cerrado herb-shrub flora and implications for conservation. J. Veg. Sci. 28, 848–858 (2017).
    Article  Google Scholar 

    105.
    Kanagaraj, R. et al. Predicting range shifts of Asian elephants under global change. Divers. Distrib. https://doi.org/10.1111/ddi.12898 (2019).
    Article  Google Scholar 

    106.
    De Alban, J. D. et al. High Conservation Value Areas as a strategic approach for protected area management in the Philippines. in 1–10 (Asian Association on Remote Sensing, 2015).

    107.
    IUCN. IUCN Red List Categories and Criteria: Version 3.1. (IUCN, Gland, 2012).

    108.
    Fuller, R. A. et al. Replacing underperforming protected areas achieves better conservation outcomes. Nature 466, 365 (2010).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    109.
    Davis, K. F., Yu, K., Rulli, M. C., Pichdara, L. & D’Odorico, P. Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat. Geosci. 8, 772–775 (2015).
    ADS  CAS  Article  Google Scholar 

    110.
    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    111.
    Walck, J. L., Hidayati, S. N., Dixon, K. W., Thompson, K. E. N. & Poschlod, P. Climate change and plant regeneration from seed. Glob. Change Biol. 17, 2145–2161 (2011).
    ADS  Article  Google Scholar 

    112.
    Corlett, R. T. Seed dispersal distances and plant migration potential in tropical East Asia. Biotropica 41, 592–598 (2009).
    Article  Google Scholar 

    113.
    Smith, J. R. et al. Predicting dispersal of auto-gyrating fruit in tropical trees: a case study from the Dipterocarpaceae. Ecol. Evol. 5, 1794–1801 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    114.
    Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    115.
    Bonn, A. & Gaston, K. J. Capturing biodiversity: Selecting priority areas for conservation using different criteria. Biodivers. Conserv. 14, 1083–1100 (2005).
    Article  Google Scholar 

    116.
    Hannah, L. et al. Protected area needs in a changing climate. Front. Ecol. Environ. 5, 131–138 (2007).
    Article  Google Scholar 

    117.
    Carvalho, S. B., Brito, J. C., Crespo, E. G., Watts, M. E. & Possingham, H. P. Conservation planning under climate change: Toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biol. Conserv. 144, 2020–2030 (2011).
    Article  Google Scholar 

    118.
    Lemes, P. & Loyola, R. D. Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS ONE 8, e54323 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    119.
    Suzuki, E. & Ashton, P. S. Sepal and nut size ratio of fruits of Asian Dipterocarpaceae and its implications for dispersal. J. Trop. Ecol. 12, 853–870 (1996).
    Article  Google Scholar 

    120.
    Ball, I. R., Possingham, H. P. & Watts, M. Marxan and relatives: software for spatial conservation prioritisation. Spat. Conserv. Prioritisation Quant. Methods Comput. Tools 1, 185–195 (2009).
    Google Scholar 

    121.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).
    Google Scholar  More

  • in

    Pulmonary adiaspiromycosis in armadillos killed by motor vehicle collisions in Brazil

    1.
    Morner, T., Obendorf, D. L., Artois, M. & Woodford, M. H. Surveillance and monitoring of wildlife diseases. Rev. Sci. Tech. 21(1), 67–76 (2002).
    CAS  PubMed  Article  Google Scholar 
    2.
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287(5452), 443–449 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Bagagli, E. et al. Isolation of Paracoccidioides brasiliensis from armadillos (Dasypus noveminctus) captured in an endemic area of paracoccidioidomycosis. Am. J. Trop. Med. Hyg. 58(4), 505–512 (1998).
    CAS  PubMed  Article  Google Scholar 

    4.
    Truman, R. Leprosy in wild armadillos. Leprosy Rev. 76(3), 198–208 (2005).
    PubMed  Article  Google Scholar 

    5.
    da Silva, M. B. et al. Evidence of zoonotic leprosy in Pará, Brazilian Amazon, and risks associated with human contact or consumption of armadillos. PLOS Neglect. Trop. D. 12(6), e0006532. https://doi.org/10.1371/journal.pntd.0006532 (2018).
    MathSciNet  CAS  Article  Google Scholar 

    6.
    Rodrigues, T. F., Mantellatto, A. M., Superina, M. & Chiarello, A. G. Ecosystem services provided by armadillos. Biol. Rev. 95(1), 1–21 (2020).
    Article  Google Scholar 

    7.
    Jiang, Y. et al. Phylogeny, ecology and taxonomy of systemic pathogens and their relatives in Ajellomycetaceae (Onygenales): Blastomyces, Emergomyces, Emmonsia, Emmonsiellopsis. Fungal Divers. 90(1), 245–291 (2018).
    Article  Google Scholar 

    8.
    Schwartz, I. S. et al. 50 years of Emmonsia disease in humans: The dramatic emergence of a cluster of novel fungal pathogens. PLoS Pathog. 11(11), e1005198. https://doi.org/10.1371/journal.ppat.1005198 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Moraes, M. A., Gomes, M. I. & Vianna, L. M. S. Pulmonary adiaspiromycosis: Casual finding in a deceased yellow fever patient [in Portuguese]. Rev. Soc. Bras. Med. Trop. 34(1), 83–85 (2001).
    CAS  PubMed  Article  Google Scholar 

    10.
    Mendes, M. O. et al. Acute conjunctivitis with episcleritis and anterior uveitis linked to adiaspiromycosis and freshwater sponges, Amazon region, Brazil, 2005. Emerg. Infect. Dis. 15(4), 633 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Emmons, C. W. & Ashburn, L. L. The isolation of Haplosporangium parvum n. sp. and Coccidioides immitis from wild rodents. Their relationship to coccidioidomycosis. Public Health Rep. 57(46), 1715–1727 (1942).
    Article  Google Scholar 

    12.
    Doby-Dubois, M., Chevrel, M. L., Doby, J. M. & Louvet, M. First human case of adiaspiromycosis by Emmonsia crescens, Emmons and Jellison 1960 [in french]. Bull. Soc. Pathol. Exot. 57, 240–244 (1964).
    CAS  Google Scholar 

    13.
    Danesi, P. et al. Molecular diagnosis of Emmonsia-like fungi occurring in wild animals. Mycopathologia 185, 51–65 (2020).
    CAS  PubMed  Google Scholar 

    14.
    Peres, L. C., Figueiredo, F., Peinado, M. & Soares, F. A. Fulminant disseminated pulmonary adiaspiromycosis in humans. Am. J. Trop. Med. Hyg. 46(2), 146–1450 (1992).
    CAS  PubMed  Article  Google Scholar 

    15.
    Mörner, T., Avenäs, A. & Mattsson, R. Adiaspiromycosis in a European beaver from Sweden. J. Wildl. Dis. 35(2), 367–370 (1999).
    PubMed  Article  Google Scholar 

    16.
    Simpson, V. R. & Gavier-Widen, D. Fatal adiaspiromycosis in a wild Eurasian otter (Lutra lutra). Vet. Rec. 147(9), 239–241 (2000).
    CAS  PubMed  Article  Google Scholar 

    17.
    Pusterla, N. et al. Disseminated pulmonary adiaspiromycosis caused by Emmonsia crescens in a horse. Equine Vet. J. 34(7), 749–752 (2002).
    CAS  PubMed  Article  Google Scholar 

    18.
    Kenyon, C. et al. A dimorphic fungus causing disseminated infection in South Africa. N. Engl. J. Med. 369(15), 1416–1424 (2013).
    CAS  PubMed  Article  Google Scholar 

    19.
    Santos, V. M. D., Fatureto, M. C., Saldanha, J. C. & Adad, S. J. Pulmonary adiaspiromycosis: Report of two cases. Rev. Soc. Bras. Med. Trop. 33(5), 483–488 (2000).
    PubMed  Article  Google Scholar 

    20.
    Moraes, M. A. & Gomes, M. I. Human adiaspiromycosis: Cicatricial lesions in mediastinal lymph nodes [in Portuguese]. Rev. Soc. Bras. Med. Trop. 37(2), 177–178 (2004).
    PubMed  Article  Google Scholar 

    21.
    Pfaller, M. A. & Diekema, D. J. Unusual fungal and pseudofungal infections of humans. J. Clin. Microbiol. 43(4), 1495–14504 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Ministério da Saúde do Brasil. Ed. 3. Risk Classification of Biological Agents [in Portuguese]. Brasil. Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Departamento do Complexo Industrial e Inovação em Saúde, 48 (2017). ISBN 978-85-334-2547-7.

    23.
    Richini-Pereira, V. B., Bosco, S. M. G., Theodoro, R. C., Barrozo, L. & Bagagli, E. Road-killed wild animals: A preservation problem useful for eco-epidemiological studies of pathogens. J. Venom. Anim. Toxins Incl. Trop. Dis. 16(4), 607–613 (2010).
    Article  Google Scholar 

    24.
    Jellison, W. L. & Lord, R. D. Adiaspiromycosis in Argentine mammals. Mycologia 56(3), 374–383 (1964).
    Article  Google Scholar 

    25.
    Ascensão, F., Yogui, D., Alves, M., Medici, E. P. & Desbiez, A. Predicting spatiotemporal patterns of road mortality for medium-large mammals. J. Environ. 248, 109320. https://doi.org/10.1016/j.jenvman.2019.109320 (2019).
    Article  Google Scholar 

    26.
    Cáceres, N. C. Biological characteristics influence mammal roadkill in an Atlantic Forest-Cerrado interface in south-western Brazil. Ital. J. Zool. 78(3), 379–389 (2011).
    Article  Google Scholar 

    27.
    Ascensão, F., Desbiez, A. L., Medici, E. P. & Bager, A. Spatial patterns of road mortality of medium–large mammals in Mato Grosso do Sul, Brazil. Wildlife Res. 44(2), 135–1346 (2017).
    Article  Google Scholar 

    28.
    Ribeiro, P., Miranda, J. S. & de Araújo, D. R. The effect of roadkills on the persistence of xenarthran populations: the case of the Brazilian Cerrado. Edentata 18, 51–61 (2017).
    Google Scholar 

    29.
    Zhu, X., Xu, J. M., Marsh, C. M., Hines, M. K. & Dein, F. J. Machine learning for zoonotic emerging disease detection.  In International Conference on Machine Learning. Proc. 2011 Workshop on Machine Learning for Global Challenges, Bellevue, WA, USA. http://pages.cs.wisc.edu/~jerryzhu/pub/WHER.pdf (2011).

    30.
    Desbiez, A. L. J., Massocato, G. F., Kluyber, D. & Santos, R. C. F. Unraveling the cryptic life of the southern naked-tailed armadillo, Cabassous unicinctus squamicaudis (Lund, 1845), in a Neotropical wetland: home range, activity pattern, burrow use and reproductive behaviour. Mamm. Biol. 91(1), 95–103 (2018).
    Article  Google Scholar 

    31.
    Borman, A. M., Simpson, V. R., Palmer, M. D., Linton, C. J. & Johnson, E. M. Adiaspiromycosis due to Emmonsia crescens is widespread in native British mammals. Mycopathologia 168(4), 153–163 (2009).
    PubMed  Article  Google Scholar 

    32.
    Muñoz, J. F., McEwen, J. G., Clay, O. K. & Cuomo, C. A. Genome analysis reveals evolutionary mechanisms of adaptation in systemic dimorphic fungi. Sci. Rep. 8(1), 1–13 (2018).
    Article  CAS  Google Scholar 

    33.
    Munson, L. et al. Necropsy of Wild Animals (Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, 2006).
    Google Scholar 

    34.
    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Intern. 11(7), 36–42 (2004).
    Google Scholar 

    35.
    Sambrook, J., Fitsch, E. F. & Maniatis, T. Molecular cloning. In A Laboratory Manual (eds Sambrook, J. et al.) 65–69 (Cold Spring Harbor, New York, 1989).
    Google Scholar 

    36.
    Sacristán, C. et al. Identification of novel gammaherpesviruses in a South American fur seal (Arctocephalus australis) with ulcerative skin lesions. J. Wildl. Dis. 54(3), 592–596 (2018).
    PubMed  Article  CAS  Google Scholar 

    37.
    Coutinho, S. D. A. et al. Malassezia japonica is part of the cutaneous microbiome of free-ranging golden-headed lion tamarins (Leontopithecus chrysomelas–Kuhl, 1820). Med. Mycol. J. 58(1), 133–136 (2020).
    CAS  Article  Google Scholar 

    38.
    Kumar, S. et al. Molecular diversity of terpene synthases in the liverwort Marchantia polymorpha. Plant Cell. 28(10), 2632–2650 (2016).
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Chemical staining of particulate organic matter for improved contrast in soil X-ray µCT images

    Staining of POM in presence of fine sand and coarse silt
    Compared to the unstained control (unstained sample mean peak grey value ± standard deviation: 3686 ± 1557), all staining treatments caused a slight shift of the central grey value peak to the right, towards 3757 ± 1272 and 4421 ± 1646 for the PMA and PbAc treatments, respectively. This central peak represents X-ray attenuation by coarse silt and POM (Fig. 2a). However, no increased X-ray attenuation was observed in coarse silt in the reconstructed CT-sections (Fig. 3). Instead, the grey value distributions of pin-pointed POM particles (Fig. 3) confirmed that staining did cause a clear shift in POM’s grey values, viz. from 1000–4000 to 6000–18,000. This contrast enhancement of POM was more intense for AgNO3, PbAc and Pb(NO3)2 treatments compared to PMA (Fig. 3) and caused the very clear increase in the histogram’s right tail (grey values  > 7500), which was absent with PMA treatment (Fig. 2a). Staining with Pb2+ or Ag+ also resulted in broad grey value peaks of POM that overlapped those of the coarse silt (grey value range: 2500–5000) and fine sand particles (grey value range: 5000–7500), represented by the second and third peak on the bulk soil histograms (Fig. 2a). However, the histogram peak maxima of the AgNO3 (11,118), PbAc (13,829), Pb(NO3)2 (14,255) and PMA (9678) stained POM particles (Fig. 3) clearly exceeded the grey value range of both the coarse silt and fine sand, which suggests that CT grey value based discrimination of POM from these mineral fractions should be feasible. The smaller peak shift in the POM histograms for PMA (Fig. 3) shows that PMA was less efficient in increasing attenuation of POM and this could be ascribed to the lower atomic mass (AM) of Mo (95.9) compared to Pb (207.2). Likewise, the effect of Ag (AM 107.9) was closer to that of Mo. Next to atomic mass, the affinity for binding to OM likely also differs between the contrast agents. While Ag+ and Pb2+ bind with the organic functional groups of POM via ionic bonds, PMA is known to interact with conjugated unsaturated bonds37.
    Figure 2

    Grey scale histogram (0–16,000) for 16 bit images of (a) the fine sand + coarse silt + POM soil samples, (b) the fine sand + fine silt + POM mixtures and (c) the fine sand + clay + POM mixtures. The unstained control treatment (black) and the stained AgNO3 (red), PbAc (blue), Pb(NO3)2 (purple) and PMA (green) treatments. (d) Grey scale histogram (0–16,000) for 16 bit images of OsO4 stained fine sand + coarse silt + POM (fSa + cSi + POM; red), fine sand + fine silt + POM (fSa + fSi + POM; blue) and fine sand + clay + POM (fSa + C + POM; black) mixtures. The equivalent control treatments are indicated by dotted lines.

    Full size image

    Figure 3

    Grey scale histograms (0–40,000) of operator-supervised pin-pointed POM particles in 16 bit images of fine sand + coarse silt + POM mixtures: the unstained control treatment (black) and the stained AgNO3 (red), PbAc (blue), Pb(NO3)2 (purple) and PMA (green) treatments. For each treatment, a two dimensional grey scale image representing a segment of a horizontal slice of the fine sand + coarse silt + POM mixtures is included (image contrast was enhanced in this figure). An unstained POM particle in the control treatment and stained POM particles in the AgNO3, PbAc, Pb(NO3)2 and PMA treatments are indicated by the red arrows.

    Full size image

    There was no shift towards higher grey values in the third peak in the soil core histograms, representing fine sand (Fig. 2a). In addition, we did not find traces of Pb, Ag or Mo on any SEM–EDX scanned fine sand or coarse silt particles (Supplementary Fig. S1). Visual inspection of horizontal reconstructed slices revealed a clear discrimination of the stained POM particles vs. the soil mineral phase. SEM–EDX scans confirmed substantial Mo, Pb or Ag EDX-peaks on randomly chosen POM particles, directly confirming the successful selective staining of POM by all agents (Supplementary Fig. S1). Smaller mineral patches on the surface of POM were visible in the SEM-images (Supplementary Fig. S2), but our analysis demonstrates that these were not responsible for Mo, Pb or Ag-staining of the POM. Stained POM could also be discriminated from several other high density particles such as glauconite, since the latter were not only characterized by higher grey values32 but also a different grey value pattern. The SEM–EDX spectra of some dense mineral particles moreover revealed Zr peaks, suggesting these to be ZrO2 or Zr-silicate. In conclusion, the experiment demonstrates that Pb(NO3)2, AgNO3 and PbAc are able to selectively bind with POM in fine sand + coarse silt mixtures. However the potential to raise POM contrast in such soil mixtures by treatment with PMA is smaller.
    Staining of POM in presence of fine silt and clay
    PMA did not appear to stain fine silt, with no shifts of peaks in the bulk soil histogram (Fig. 2B), no visible impact on contrast of the soil mineral phase (Supplementary Fig. S3) and again no discernible Mo peaks in the SEM–EDX spectra of mineral particles (Supplementary Fig. S4 and Supplementary Fig. S5). In contrast, AgNO3, PbAc and Pb(NO3)2 appeared rather non-selective for POM (Fig. 2B). Indeed, the staining increased the grey values of histogram peaks corresponding to fine silt (Fig. 2b), which can be seen from shifting fine silt histogram peaks from a grey value of 4303 to 4702–5577. The increase of the fine silt grey values following staining even resulted in a partial (Pb(NO3)2 and AgNO3) or complete (PbAc) overlap with the sand fraction histogram peak. The grey value histogram right tail was also much enlarged by Pb(NO3)2, AgNO3 and PbAc treatment and increasingly overlapped with the grey value range of stained POM (6000–18,000) (Fig. 3). This overlap was clearly an effect of staining of fine silt, as was also apparent in the CT-sections (Supplementary Fig. S3). The shift in histogram grey values following staining in the fine sand + clay mixtures was similar to that in the sand + fine silt mixtures, but with a larger shift in the right tail of the Pb2+ and Ag+-histograms to grey values between 7500 and  > 12,000 (Fig. 2c). However, we did not detect Pb or Ag EDX peaks on pinpointed fine silt or clay particles (Supplementary Fig. S4). But as inspection of CT-sections (Fig. 4) demonstrated that large patches of the mixtures were stained by AgNO3, PbAc and Pb(NO3)2, it is well possible that such discrete stained areas were coincidently not sampled in our ancillary unsystematic SEM-analysis of subsamples. Regardless, overlap in grey value-ranges of Pb2+ and Ag+ stained POM and stained clay particles clearly impedes proper segmentation of both phases. As was the case for fine silt, PMA treatment did not cause any shift in histogram peaks of mineral particles (Fig. 2c) and there was no visible impact on mineral phase attenuation in the CT-sections (Fig. 4). This also suggests that Mo has a higher potential than Pb2+ and Ag+ to bind to OM solely and not to mineral surfaces. Indeed, this may be a result of the neutral Mo(VI)O3 in PMA, while the cations Pb2+ and Ag+ may adsorb to negatively charged mineral surfaces. However, Chenu and Plante24 did not detect any sorption of both Pb and Ag on pure clay minerals (vermiculite, illite, kaolinite). Despite minerals identified in our clay fraction being kaolinite and smectite, sorption of Pb (as observed by Chenu and Plante24) or Ag onto Al and Fe oxides and hydroxides in the clay fraction could have occurred.
    Figure 4

    Two dimensional grey scale image representing a horizontal slice of the fine sand + clay + POM mixtures: the control treatment and the stained AgNO3, PbAc, Pb(NO3)2 and PMA treatments (image contrast was enhanced in this figure). Clusters of stained clay particles are clearly observable as brighter structures in the AgNO3, PbAc and Pb(NO3)2 treatment.

    Full size image

    While manual pin-pointing of the PMA stained POM was not impeded, automated POM extraction from the CT volume may still prove to be challenging due to the lack of image contrast between POM and mineral soil particles. Very recent work by Lammel et al.38 applied a machine learning segmentation tool in synchrotron-based soil CT volumes but experienced limited success. Piccoli et al.39 suggested that an operator-based ability for the selection of thresholds may still result in the most accurate segmentation of POM in soil.
    Impact on sample structure
    Bulk sample histogram evaluation (Fig. 2a) of the fine sand + coarse silt samples demonstrated that the grey value peak of the pore space (unstained sample mean peak grey value ± standard deviation: 1765 ± 609) had slightly shifted following staining with Pb(NO3)2 (1930 ± 386), AgNO3 (1923 ± 392) and PbAc (2204 ± 314), and to a lesser extent with PMA (1801 ± 611). There was also a reduction in the pore space peak height for the Pb(NO3)2, AgNO3 and PbAc stained treatments of 16%, 27% and 42%, respectively. In the PbAc treatment, the pore space peak disappeared nearly completely, whereas this drop was smaller for AgNO3 and much smaller for Pb(NO3)2. In contrast, no such decline in pore space peak was observed in the PMA-stained samples. A decrease in pore volume (Fig. 5) for the Pb(NO3)2, AgNO3 and PbAc treatments matched the trend in reduction of pore peak height. In addition, opposite trends of peak height increases existed for the second, coarse silt peak (+ 6%, 13%, 25%, respectively) and for the third, fine sand peak (+ 18%, 19% and 33%, respectively). Combined, these observations demonstrate that the observed changes in pore space and mineral phase peak areas are the result of the compaction of the samples by the Pb(NO3)2, AgNO3 and PbAc treatments.
    Figure 5

    Total X-ray µCT visible porosity in the fine sand + coarse silt + POM mixtures: the unstained control treatment (black) and the stained AgNO3 (red), PbAc (blue), Pb(NO3)2 (purple) and PMA (green) treatments.

    Full size image

    Given that peak height reductions were very different for Pb(NO3)2 and PbAc, the deterioration of soil structure could not be solely related to the heavy-element applied (both containing Pb2+). In addition, the decreased porosity is unlikely to have been predominantly due to the addition of NO3−, as the addition of Pb(NO3)2 would have impacted structure to a greater extent than AgNO3 which contains less (0.5×) NO3− (solutions were all at 1 M). Deterioration of the sample structure was therefore more likely to be a physical phenomenon. One possible mechanism could be that an increased underpressure, as a result of perfusion of a more viscous agent, could have more severely disrupted the structure of the soil mixtures. However, an increasing degree of structure distortion could not be related to a higher viscosity of the staining solutions (considered at 0.01 or 0.1 M40,41,42). Hence, the results in this study did not allow identification of the exact origin of this artifact. As a consequence, caution has to be taken when perfusing soil samples with liquid staining agents since deterioration of soil structure would alter spatial location of the POM as well. Thus, these results indicate that soil structure validation is still required as long as the specific cause for deterioration is not identified.
    The Pb(NO3)2, AgNO3 and PbAc treatment histograms of both the fine silt (Fig. 2b) and clay (Fig. 2c) mixtures also had a smaller and broader pore space peak. It is likely that these are both derived from increased occurrence of partial volume effects (PVE) from chemical staining. It is thought that compaction following staining resulted in more voxels containing both pore space and mineral particles. With a voxel resolution of 7 µm this increased the number of pore space voxels with an intermediate grey value (2000–4000). The order in grey value increase magnitude for the fine silt and clay samples was similar as for the coarse silt mixtures: PbAc  > Pb(NO3)2  > AgNO3. Chemical staining had an increasingly stronger effect on pore space X-ray attenuation for the finer particle size mixtures, probably because of more intensive binding of Ag+ and Pb2+ on their much larger reactive surfaces.
    In this study the combination of the structural degradation and the overlap in grey value ranges of POM and the mineral fractions render these staining agents unsuitable for staining natural soils. However, further development and testing of the staining method may reduce the impact on soil structure to a minimum. PMA treated silt and clay samples were not structurally degraded and no undesirable shifts of mineral particles’ grey value ranges were observed. However, the artificial soil samples are not fully representative of naturally structured soil and further testing could also rule out degradation of natural soil structure by perfusion with PMA solutions. We expect structural integrity of natural soil samples to exceed that of the ‘loose’ soil mixtures tested in this work.
    Performance of PMA compared to gaseous OsO4 staining
    Inspection of horizontal CT-sections suggested that OsO4 (Supplementary Fig. S6a–c) did not increase X-ray attenuation of mineral material. This is also suggested by the absence of a shift to the left of mineral fraction peaks (grey value 2500–7000), following OsO4 treatment (Fig. 2d).
    The grey value distribution obtained via manual pin-pointing of POM particles demonstrated that the grey value interval of OsO4-stained POM (Fig. 6) corresponded to the right tail of the soil mixture histograms. This effect was larger but still comparable to the POM grey value shift obtained by PMA treatment. This outcome is a likely result of both staining agents targeting unsaturated bonds in e.g. hydrocarbons or proteins, and the higher atomic mass of Os (190.2) compared to Mo (95.9). Because of the significant health risks when using OsO4, PMA appears to be a suitable alternative. The increase in POM grey values following both PMA and OsO4 staining showed a sufficient differentiation of POM particles from the mineral fraction, at least for manual pin-pointing. However, single threshold-based segmentation of PMA- or OsO4-stained POM in the X-ray CT volumes obtained with this lab-scale polychromatic X-ray µCT system did not appear possible. More sophisticated segmentation algorithms are required, as was also very recently suggested by Piccoli et al.39. We propose to develop self-learning algorithms (e.g. incorporate machine learning) that consider the local grey value patterns of POM in combination with morphological characteristics for a more objective and faster segmentation of the stained POM. By using self-learning algorithms, the expert intervention to segment POM particles would be reduced to an absolute minimum and decrease further over time. In addition, technological development will very likely further enhance the X-ray CT resolution, which will strongly improve the morphological characterization of finer grained POM.
    Figure 6

    Grey scale histogram (0–25,000) for pin-pointed POM particles in the 16 bit images of PMA (green) or OsO4 (black) stained fine sand + clay + POM mixtures.

    Full size image

    Alternatively, the occurrence of a K-edge in the X-ray absorption spectrum of molybdenum could be exploited to discriminate POM in CT images. Rawlins et al.33 and Peth et al.31 have previously used the occurrence of a K-edge in the X-ray absorption spectrum of Os by scanning soil with synchrotron µCT at photon energies immediately below and beyond the K-edge successfully. However, the K-edge of Mo is situated at 20 keV, an energy level at which most X-rays may be attenuated by the soil mineral fraction, thereby probably making a dual energy approach similar to that used for Os challenging for non-synchrotron scanners and probably also for synchrotrons. Very recently, Lammel et al.38 identified gaseous iodide (I2) as a plausible candidate for selective staining of OM in soil for use with synchrotron scanners. However, they did not fully demonstrate its selectivity for OM versus silt and clay sized mineral particles, nor in X-ray µCT soil volumes obtained with non-synchrotron scanners.
    The findings presented here demonstrate that laboratory based X-ray µCT scanners may also enable the segmentation of OsO4-stained POM from mineral particles, provided that better segmentation tools are developed. This opens up new possibilities for a more widespread application of the OsO4 staining technique due to much better availability of laboratory based X-ray µCT scanners and throughput time of samples. More

  • in

    Effects of small ridge and furrow mulching degradable film on dry direct seeded rice

    1.
    Huang, H. Study on mechanized production engineering mode for paddy rice in double-cropping areas in south china. Published doctorial dissertation, China Agricultural University, Beijing. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFD1214&filename=1014223520.nh (2014).
    2.
    Gao, Y. M., Yan, T. & Liu, W. J. Research and progress of direct rice seeding mechanization at home and abroad. Agric. Sci. Technol. Equip. 1, 28–29. https://doi.org/10.16313/j.cnki.nykjyzb.2013.01.020 (2013).
    Article  Google Scholar 

    3.
    Fawzy, S., Osman, A. I., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 6, 2069–2094. https://doi.org/10.1007/s10311-020-01059-w (2020).
    CAS  Article  Google Scholar 

    4.
    Hussain, S. et al. Rice production under climate change: Adaptations and mitigating strategies. In Environment, Climate, Plant and Vegetation Growth (eds Fahad, S. et al.) 659–686 (Springer, Berlin, 2020).
    Google Scholar 

    5.
    Vicente-Serrano, S. M., Quiring, S. M., Pena-Gallardo, M., Yuan, S. S. & Dominguez-Castro, F. A review of environmental droughts: Increased risk under global warming?. Earth Sci. Rev. 201, 102953. https://doi.org/10.1016/j.earscirev.2019.102953 (2020).
    Article  Google Scholar 

    6.
    Ault, T. R. On the essentials of drought in a changing climate. Science 6488, 256–260. https://doi.org/10.1126/science.aaz5492 (2020).
    ADS  CAS  Article  Google Scholar 

    7.
    Zhang, L. X. & Zhou, T. J. Drought over east Asia: A review. J. Clim. 8, 3375–3399. https://doi.org/10.1175/JCLI-D-14-00259.1 (2015).
    ADS  Article  Google Scholar 

    8.
    Zhang, X. et al. Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 693, 133536. https://doi.org/10.1016/j.scitotenv.2019.07.342 (2019).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Chakraborty, D. et al. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 7, 9342. https://doi.org/10.1038/s41598-017-09742-9 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    10.
    Peng, S. B., Tang, Q. Y. & Zou, Y. B. Current status and challenges of rice production in China. Plant Prod. Sci. 12, 3–8. https://doi.org/10.1626/pps.12.3 (2009).
    Article  Google Scholar 

    11.
    Sun, L. M. et al. Implications of low sowing rate for hybrid rice varieties under dry direct-seeded rice system in central China. Field Crops Res. 175, 87–95. https://doi.org/10.1016/j.fcr.2015.02.009 (2015).
    Article  Google Scholar 

    12.
    Farooq, M. et al. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res. 111, 87–98. https://doi.org/10.1016/j.still.2010.10.008 (2011).
    Article  Google Scholar 

    13.
    Sandhu, N. et al. Deciphering the genetic basis of root morphology, nutrient uptake, yield, and yield-related traits in rice under dry direct-seeded cultivation systems. Sci. Rep. 9, 9334. https://doi.org/10.1038/s41598-019-45770-3 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Liu, H. Y. et al. Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China. Agron. Sustain. Dev. 35, 285–294. https://doi.org/10.1007/s13593-014-0239-0 (2015).
    Article  Google Scholar 

    15.
    Muhammad, S. et al. The effect of different weed management strategies on the growth and yield of direct-seeded dry rice (Oryza sativa). Planta Daninha. 34, 57–64. https://doi.org/10.1590/S0100-83582016340100006 (2016).
    Article  Google Scholar 

    16.
    Kakumanu, K. R., Kotapati, G. R., Nagothu, U. S., Kuppanan, P. & Kallam, S. R. Adaptation to climate change and variability: A case of direct seeded rice in Andhra Pradesh, India. J. Water Clim. Change. 10, 419–430. https://doi.org/10.2166/wcc.2018.141 (2019).
    Article  Google Scholar 

    17.
    Yamane, K. et al. Seed vigour contributes to yield improvement in dry direct-seeded rainfed lowland rice. Ann Appl. Biol. 172, 100–110. https://doi.org/10.1111/aab.12405 (2018).
    CAS  Article  Google Scholar 

    18.
    Nakano, H., Hattori, I. & Morita, S. Dry matter yield response to seeding rate and row spacing in direct-seeded and double-harvested forage rice. Jpn. Agric. Res. Q. 53, 255–264. https://doi.org/10.6090/jarq.53.255 (2019).
    CAS  Article  Google Scholar 

    19.
    Sun, C. L. et al. Implications of low sowing rate for hybrid rice varieties under drydirect-seeded rice system in Central China. Field Crops Res. 175, 87–95. https://doi.org/10.1016/j.fcr.2015.02.009 (2015).
    Article  Google Scholar 

    20.
    Jabran, K. et al. Mulching improves water productivity, yield and quality of fine rice under water-saving rice production systems. J. Agron. Crop Sci. 201, 389–400. https://doi.org/10.1111/jac.12099 (2015).
    Article  Google Scholar 

    21.
    Fawibe, O. O., Hiramatsu, M., Taguchi, Y., Wang, J. & Isoda, A. Grain yield, water-use efficiency, and physiological characteristics of rice cultivars under drip irrigation with plastic-film-mulch. J. Crop Improv. 34, 414–436. https://doi.org/10.1080/15427528.2020.1725701 (2020).
    Article  Google Scholar 

    22.
    He, H. B. et al. Rice performance and water use efficiency under plastic mulching with drip irrigation. PLoS ONE 8, e83103. https://doi.org/10.1371/journal.pone.0083103 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Farooqi, Z. U. R., Sabir, M., Zeeshan, N., Naveed, K. & Hussain, M. M. Enhancing carbon sequestration using organic amendments and agricultural practices. In Carbon Capture, Utilization and Sequestration (ed. Agarwal, R. K.) 17–35 (IntechOpen, London, 2018).
    Google Scholar 

    24.
    Fuss, S. et al. Negative emissions-part 2: Costs, potentials and side effects. Environ. Res. Lett. 6, 063002. https://doi.org/10.1088/1748-9326/aabf9f (2018).
    ADS  CAS  Article  Google Scholar 

    25.
    Li, Y. S. et al. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil Tillage Res. 93, 370–378. https://doi.org/10.1016/j.still.2006.05.010 (2007).
    Article  Google Scholar 

    26.
    Huang, Y., Liu, Q., Jia, W. Q., Yan, C. R. & Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 260, 114096. https://doi.org/10.1016/j.envpol.2020.114096 (2020).
    CAS  Article  PubMed  Google Scholar 

    27.
    Yu, Q. et al. Distribution, abundance and risks of microplastics in the environment. Chemosphere 249, 126059. https://doi.org/10.1016/j.chemosphere.2020.126059 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    28.
    Yan, X. Y. et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environ. Pollut. 262, 114270. https://doi.org/10.1016/j.envpol.2020.114270 (2020).
    CAS  Article  PubMed  Google Scholar 

    29.
    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 7, e1700782. https://doi.org/10.1126/sciadv.1700782 (2017).
    ADS  CAS  Article  Google Scholar 

    30.
    Osman, A. I. et al. Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environ. Sci. Eur. 1, 112. https://doi.org/10.1186/s12302-020-00390-x (2020).
    CAS  Article  Google Scholar 

    31.
    Kumar, U. S. U. et al. Neem leaves extract based seaweed bio-degradable composite films with excellent antimicrobial activity for sustainable packaging material. BioResources 1, 700–713. https://doi.org/10.15376/biores.14.1.700-713 (2019).
    CAS  Article  Google Scholar 

    32.
    Qasim, U. et al. Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01090-x (2020).
    Article  Google Scholar 

    33.
    Wang, Y. J., He, K., Zhang, J. B. & Chang, H. Y. Environmental knowledge, risk attitude, and households’ willingness to accept compensation for the application of degradable agricultural mulch film: Evidence from rural China. Sci. Total Environ. 744, 140616. https://doi.org/10.1016/j.scitotenv.2020.140616 (2020).
    ADS  CAS  Article  PubMed  Google Scholar 

    34.
    Cirujeda, A. et al. Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agron. Sustain. Dev. 32, 889–897. https://doi.org/10.1007/s13593-012-0084-y (2012).
    CAS  Article  Google Scholar 

    35.
    Yin, M. H., Li, Y. N., Fang, H. & Chen, P. P. Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth. Agric. Water Manag. 216, 127–137. https://doi.org/10.1016/j.agwat.2019.02.004 (2019).
    Article  Google Scholar 

    36.
    Daryanto, S., Wang, L. X. & Jacinthe, P. A. Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?. Agric. Water Manag. 190, 1–5. https://doi.org/10.1016/j.agwat.2017.05.005 (2017).
    Article  Google Scholar 

    37.
    Qin, S. H., Zhang, J. L., Dai, H. L., Wang, D. & Li, D. M. Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric. Water Manag. 131, 87–94. https://doi.org/10.1016/j.agwat.2013.09.015 (2014).
    Article  Google Scholar 

    38.
    Fan, Y. L. et al. Effects of ridge and furrow film mulching on soil environment and yield under potato continuous cropping system. Plant Soil Environ. 65, 523–529. https://doi.org/10.17221/481/2019-PSE (2019).
    Article  Google Scholar 

    39.
    Fan, T. L. et al. Film mulched furrow-ridge water harvesting planting improves agronomic productivity and water use efficiency in rainfed areas. Agric. Water Manag. 217, 1–10. https://doi.org/10.1016/j.agwat.2019.02.031 (2019).
    Article  Google Scholar 

    40.
    Diaz-Perez, J. C. Root zone temperature, plant growth and yield of broccoli [Brassica oleracea (plenck) var. italica] as affected by plastic film mulches. Sci. Hortic. 123, 156–163. https://doi.org/10.1016/j.scienta.2009.08.014 (2009).
    Article  Google Scholar 

    41.
    Gholamhoseini, M., Dolatabadian, A. & Habibzadeh, F. Ridge-furrow planting system and wheat straw mulching effects on dryland sunflower yield, soil temperature, and moisture. Agron. J. 111, 3383–3392. https://doi.org/10.2134/agronj2019.02.0097 (2019).
    CAS  Article  Google Scholar 

    42.
    Mo, F. et al. Alternating small and large ridges with full film mulching increase linseed (Linum usitatissimum L.) productivity and economic benefit in a rainfed semiarid environment. Field Crops Res. 219, 120–130. https://doi.org/10.1016/j.fcr.2018.01.036 (2018).
    Article  Google Scholar 

    43.
    Gu, X. B., Li, Y. N., Du, Y. D. & Yin, M. H. Ridge-furrow rainwater harvesting with supplemental irrigation to improve seed yield and water use efficiency of winter oilseed rape (Brassica napus L.). J. Integr. Agric. 16, 1162–1172. https://doi.org/10.1016/S2095-3119(16)61447-8 (2017).
    Article  Google Scholar 

    44.
    Mo, F., Wang, J. Y., Xiong, Y. C., Nguluu, S. N. & Li, F. M. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 80, 124–136. https://doi.org/10.1016/j.eja.2016.07.005 (2016).
    Article  Google Scholar 

    45.
    Zhang, X. D. et al. Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region. Field Crops Res. 233, 121–130. https://doi.org/10.1016/j.fcr.2019.01.009 (2019).
    Article  Google Scholar 

    46.
    Li, F. M., Wang, J., Xu, J. Z. & Xu, H. L. Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid loess plateau of China. Soil Tillage Res. 78, 9–20. https://doi.org/10.1016/j.still.2003.12.009 (2004).
    CAS  Article  Google Scholar 

    47.
    Li, C. J. et al. Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area. Field Crops Res. 188, 62–73. https://doi.org/10.1016/j.fcr.2016.01.013 (2016).
    ADS  Article  Google Scholar 

    48.
    Li, Y. Z. et al. The effect of tillage on nitrogen use efficiency in maize (Zea mays L.) in a ridge–furrow plastic film mulch system. Soil Tillage Res. 195, 104409. https://doi.org/10.1016/j.still.2019.104409 (2019).
    Article  Google Scholar 

    49.
    Zheng, J., Fan, J. L., Zou, Y. F., Chau, H. W. & Zhang, F. C. Ridge-furrow plastic mulching with a suitable planting density enhances rainwater productivity, grain yield and economic benefit of rainfed maize. J. Arid Land. 12, 181–198. https://doi.org/10.1007/s40333-020-0001-1 (2020).
    CAS  Article  Google Scholar 

    50.
    Zhao, H. et al. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crops Res. 161, 137–148. https://doi.org/10.1016/j.fcr.2014.02.013 (2014).
    ADS  Article  Google Scholar 

    51.
    Ren, X., Chen, X. & Jia, Z. Effect of rainfall collecting with ridge and furrow on soil moisture and root growth of corn in semiarid northwest China. J. Agron. Crop Sci. 196, 109–122. https://doi.org/10.1111/j.1439-037X.2009.00401.x (2010).
    Article  Google Scholar 

    52.
    Dong, W. L. et al. Ridge and furrow systems with film cover increase maize yields and mitigate climate risks of cold and drought stress in continental climates. Field Crops Res. 207, 71–78. https://doi.org/10.1016/j.fcr.2017.03.003 (2017).
    Article  Google Scholar 

    53.
    Tian, Y., Su, D. R., Li, F. M. & Li, X. L. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas. Field Crops Res. 84, 385–391. https://doi.org/10.1016/S0378-4290(03)00118-7 (2003).
    Article  Google Scholar 

    54.
    Zhang, X. D. et al. Ridge-furrow mulching system drives the efficient utilization of key production resources and the improvement of maize productivity in the loess plateau of China. Soil Tillage Res. 190, 10–21. https://doi.org/10.1016/j.still.2019.02.015 (2019).
    Article  Google Scholar 

    55.
    Li, R., Hou, X. Q., Jia, Z. K. & Han, Q. F. Soil environment and maize productivity in semi-humid regions prone to drought of Weibei Highland are improved by ridge-and-furrow tillage with mulching. Soil Tillage Res. 196, 104476. https://doi.org/10.1016/j.still.2019.104476 (2020).
    Article  Google Scholar 

    56.
    Gu, X. B., Li, Y. N. & Du, Y. D. Film-mulched continuous ridge-furrow planting improves soil temperature, nutrient content and enzymatic activity in a winter oilseed rape field, northwest China. J. Arid Land. 10, 362–374. https://doi.org/10.1007/s40333-018-0055-5 (2018).
    Article  Google Scholar 

    57.
    Li, M. Study on dynamic of maize (Zea mays L.) yield, soil water and soil carbon under the dry-farming plastic mulching system of ridge and furrow. Published doctorial dissertation, LanZhou University, Lanzhou. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDTEMP&filename=1020655864.nh (2020).

    58.
    Liu, X. E. et al. Film-mulched ridge-furrow management increases maize productivity and sustains soil organic carbon in a dryland cropping system. Soil Sci. Soc. Am. J. 4, 1434–1441. https://doi.org/10.2136/sssaj2014.04.0121 (2014).
    CAS  Article  Google Scholar 

    59.
    Wang, Y. P. et al. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric. For. Meteorol. 228, 42–51. https://doi.org/10.1016/j.agrformet.2016.06.016 (2016).
    ADS  Article  Google Scholar 

    60.
    Li, S. P., Cai, Z. C., Yang, H. & Wang, J. K. Effects of long-term fertilization and plastic film covering on some soil fertility and microbial properties. Acta Ecol. Sin. 5, 2489–2498 (2009).
    Google Scholar  More

  • in

    Degree day-based model predicts pink bollworm phenology across geographical locations of subtropics and semi-arid tropics of India

    1.
    Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. U. S. A. 108(44), 17905–17909 (2011).
    ADS  CAS  Article  Google Scholar 
    2.
    Hodgson, J. A. et al. Predicting insect phenology across space and time. Glob. Change Biol. 17, 1289–1300 (2011).
    ADS  Article  Google Scholar 

    3.
    Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).
    ADS  CAS  Article  Google Scholar 

    4.
    IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151.

    5.
    Ge, Q. S., Wang, H. J., Rutishauser, T. & Dai, J. H. Phenological response to climate change in China: a meta-analysis. Glob. Chang. Biol. 21, 265–274 (2015).
    ADS  Article  Google Scholar 

    6.
    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).
    ADS  CAS  Article  Google Scholar 

    7.
    Berzitis, E. A., Minigan, J. N., Hellett, R. H. & Newman, J. A. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Glob. Change Biol. 20, 2778–2792 (2014).
    ADS  Article  Google Scholar 

    8.
    Fand, B. B., Tonnang, H. E. Z., Bal, S. K. & Dhawan, A. K. Shift in the Manifestations of Insect Pests Under Predicted Climatic Change Scenarios: Key Challenges and Adaptation Strategies. In Advances in Crop Environment Interaction (eds Bal, S. et al.). (Springer, Singapore, 2018).

    9.
    Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species?. Ecology 96(6), 1473–1479 (2015).
    Article  Google Scholar 

    10.
    Arnold, C. Y. The determination and significance of the base temperature in a linear heat unit system. Am. Soc. Hort. Sci. 74, 430–445 (1959).
    Google Scholar 

    11.
    Higley, L. G., Pedigo, L. P. & Ostile, K. R. DEGDAY: a program for calculating degree–days, and assumptions behind the degree–day approach. Environ. Entomol. 15, 999–1016 (1986).
    Article  Google Scholar 

    12.
    Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P. & Mackauer, M. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431–438 (1974).
    Article  Google Scholar 

    13.
    Stinner, R. E., Gutierrez, A. P. & Butler, G. D. An algorithm for temperature-dependent growth rate simulation. Can. Entomol. 106, 519–524 (1974).
    Article  Google Scholar 

    14.
    Sharpe, P. J. H. & DeMichele, D. W. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649–670 (1977).
    CAS  Article  Google Scholar 

    15.
    Huber, R. T. Heat units and insect population prediction. In Proceedings of Beltwide cotton Production Mechanization Conference, 6–7 Jan, 1982. Las Vegas (1982).

    16.
    Peddu, H., Fand, B. B., Sawai, H. R. & Lave, N. V. Estimation and validation of developmental thresholds and thermal requirements for cotton pink bollworm Pectinophora gossypiella. Crop Prot. 127, 104984. https://doi.org/10.1016/j.cropro.2019.104984 (2020).
    CAS  Article  Google Scholar 

    17.
    Beasley, C. A. & Adams, C. J. Field–based, degree–day model for pink bollworm (Lepidoptera: Gelechiidae) development. J. Econ. Entomol. 89, 881–890 (1996).
    Article  Google Scholar 

    18.
    Trnka, M. et al. European corn borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecol. Model. 207, 61–84 (2007).
    Article  Google Scholar 

    19.
    Fand, B. B., Tonnang, H. E. Z., Kumar, M., Kamble, A. L. & Bal, S. K. A temperature-based phenology model for predicting development, survival and population growth potential of mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Crop Prot. 55, 98–108 (2014).
    Article  Google Scholar 

    20.
    Fand, B. B., Sul, N. T., Bal, S. K. & Minhas, P. S. Temperature Impacts the development and survival of common cutworm (Spodoptera litura): Simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS ONE 10(4), e0124682 (2015).
    Article  Google Scholar 

    21.
    Sporleder, M., Simon, R., Juarez, H. & Kroschel, J. Regional and seasonal forecasting of the potato tuber moth using a temperature-driven phenology model linked with geographic information systems. In Integrated Pest Management for the Potato Tuber Moth, Phthorimaea operculella Zeller – A Potato Pest of Global Importance Zeller – A Potato Pest of Global Importance (eds Kroschel, J. & Lacey, L.) 15–30 (Margraf Publishers, Weikersheim (Germany), 2008).
    Google Scholar 

    22.
    Khadioli, N. et al. Effect of temperature on the phenology of Chilo partellus (Swinhoe) (Lepidoptera, Crambidae): simulation and visualization of the potential future distribution of C. partellus in Africa under warmer temperatures through the development of life-table parameters. Bulle Entomol. Res. 104, 809–822 (2014).
    CAS  Article  Google Scholar 

    23.
    Chimel, S. M. & Wilson, M. C. Estimation of the lower and upper developmental threshold temperatures and duration of the nymphal stages of the meadow spittlebug, Philaenus spumarius. Environ. Entomol. 8, 682–685 (1979).
    Article  Google Scholar 

    24.
    Henneberry, T. J. & Hutchison, W. D. Tobacco budworm (Lepidoptera: Noctuidae): phenology of fall and summer diapausing and degree-day requirements for larval development and adult emergence. Environ. Entomol. 18, 563–569 (1989).
    Article  Google Scholar 

    25.
    Sevacherian, V., Toscano, N. C., Van Steenwyk, R. A., Sharma, R. K. & Sanders, R. R. Forecasting pink bollworm emergence by thermal summation. Environ. Entomol. 6, 545–546 (1977).
    Article  Google Scholar 

    26.
    Zalom, F. G. et al. Degree–days: the calculation and use of heat units in pest management. University of California DANR Leaflet 21373. (1983).

    27.
    Allen, J. C. A modified sine wave method for calculating degree days. Environ. Ent. 5, 388–396 (1976).
    Article  Google Scholar 

    28.
    Fry, K. E. Heat-unit calculations in cotton cropand insect models. USDA-ARS AAT-W-23. Agricultural Research Service (Western Region), U. S. Department of Agriculture, Oakland, CA. (1983).

    29.
    Pruess, K. P. Day-degree methods for pest management. Environ. Entomol. 12, 613–619 (1983).
    Article  Google Scholar 

    30.
    CABI. (2020). Invasive species compendium: Pectinophora gossypiella (pink bollworm). https://www.cabi.org/isc/datasheet/39417#70AF7142-7A8B-4F36-A0BA-4F14FA270EED. Accessed 29 April 2020.

    31.
    Naik, V. C. B. N., Dhara Jothi, B., Dabhade, P. L. & Kranthi, S. Pink Boll worm Pectinophora gossypiella (saunders) infestation on Bt and Non Bt Hybrids in India in 2011–2012. Cotton Res. J. 6, 37–40 (2014).
    Google Scholar 

    32.
    Fand, B. B. et al. Widespread infestation of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechidae) on Bt cotton in Central India: a new threat and concerns for cotton production. Phytoparasitica 47, 313–325 (2019).
    CAS  Article  Google Scholar 

    33.
    Huber, R. T., Moore, L. & Hoffman, M. P. Feasibility study of wide–area pheromone trapping of male pink bollworm moths in a cotton insect pest management program. J. Econ. Entomol. 72, 222–227 (1979).
    Article  Google Scholar 

    34.
    Hutchinson, W. D., Butler, G. D. Jr. & Martin, J. M. Age–specific developmental times for pink bollworm (Lepidoptera: Gelechiidae): three age classes of eggs, five larval instars, and pupae. Ann. Entomol. Soc. Am. 79, 482–487 (1986).
    Article  Google Scholar 

    35.
    Bryant, S. R., Thomas, C. D. & Bale, J. S. The influence of thermal ecology on the distribution of three nymphalid butterflies. J. Appl. Ecol. 39, 43–55 (2002).
    Article  Google Scholar 

    36.
    Gergis, M. F., Soliman, M. A., Moftah, E. A. & Naby, A. A. Temperature dependent development and functional responses of pink bollworm Pectinophora gossypiella (Saund.). Assiut. J. Agric. Sci. 21, 119–126 (1990).
    Google Scholar 

    37.
    Yones, M. S., Rahman, H. A., AbouHadid, A. F., Arafat, S. M. & Dahi, H. F. Heat unit requirements for development of the pink bollworm, Pectinophora gossypiella (Saunds.). Egypt Acad. J. Biol. Sci. 4(1), 115–122 (2011).
    Google Scholar 

    38.
    El-Lebody, K. A., Mostafa, H. Z. & Rizk, A. M. Study the biology and thermal requirements of Pectinophora gossypiella (Saunders), infestated cotton bolls var giza 90, under natural conditions. Egypt. Acad. J. Biol. Sci. 8(3), 115–125 (2015).
    Google Scholar 

    39.
    Higley, L. G. & Peterson, R. K. D. Initiating sampling programs. In Handbook of Sampling Methods for Arthropods in Agriculture (eds Pedigo, L. P. & Buntin, G. D.) 119–136 (CRC, Boca Raton, FL, 1994).
    Google Scholar 

    40.
    Nath, V. & Agarwal, R. A. Insect pests of crops and their control. Bharati Publications, Delhi 1:139 (1982).

    41.
    Sevacherian, V. & El-Zik, K. M. A slide rule for cotton crop and insect management. Univ. Calif. Div. Agric. Sci. Coop. Ext. Leaf. 21361 (1983).

    42.
    Klein, Z. & Applebaum, S. W. pink bollworm (Pectinophora gossypiella) lifecycle and diapause induction in Israel 1990. Hassadeh 71(2), 210–213 (1990).
    Google Scholar 

    43.
    Kranthi, K. R. Bt Cotton: Questions and Answers 70 (Indian Society for Cotton Improvement (ISCI), Mumbai, India, 2012).
    Google Scholar 

    44.
    Kranthi, K. R. Pink bollworm strikes Bt cotton. Cotton Stat. News 35, 1–6 (2015).
    Google Scholar 

    45.
    Jha, R. C. & Bisen, R. S. Effect of climatic factors on the seasonal incidence of thepink bollworm on cotton crop. Annu. Plant Prot. Sci. 2, 12–14 (1994).
    Google Scholar 

    46.
    Sarwar, M. Biological parameters of pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae): a looming threat for cotton and its eradication opportunity. Int. J. Res. Agric. For. I7, 25–36 (2017).
    Google Scholar 

    47.
    Ellsworth, P., et al. 2006. Pink Bollworm Management. Newsletter of the Pink Bollworm Action Committee. A Project of The Cotton Foundation Produced by the University of Arizona – Cooperative Extension, 1(2): 1–2.

    48.
    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).
    ADS  CAS  Article  Google Scholar 

    49.
    Snyder, R. L. 2002. DegDay.xls, Version 1.01. University of California Department of Land, Air and Water Resources, Atmospheric Science, Davis, California, USA. http://biomet.ucdavis.edu/DegreeDays/DegDay.htm. Accessed 10 Jan 2018.

    50.
    ICAR-CICR. 2006. Approved Package of practices for Cotton: Maharashtra State. ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India. 440 010. http://www.cicr.org.in/pop/mh.pdf. Accessed 22 April 2020.

    51.
    Fife, L. C. Factors influencing pink bollworm pupation and emergence from overwintering larvae in central Texas. J. Econ. Entomol. 54, 908–918 (1961).
    Article  Google Scholar 

    52.
    Fand, B. B. et al. A simple and low-cost laboratory rearing technique for cotton pink bollworm, Pectinophora gossypiella (Suanders) (Lepidoptera: Gelechidae) using detached green bolls of cotton. Phytoparasitica https://doi.org/10.1007/s12600-019-00779-2 (2020).
    Article  Google Scholar 

    53.
    Box, G. E. P. & Jenkins, G. M. Time Series Analysis: Forecasting and Control (Holden-Day, San Francisco, 1970).
    Google Scholar  More

  • in

    Wetland hydroperiod predicts community structure, but not the magnitude of cross-community congruence

    1.
    Vellend, M. The Theory of Ecological Communities (MPB-57). The Theory of Ecological Communities (Princeton University Press, Princeton, 2016). https://doi.org/10.1515/9781400883790.
    2.
    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Article  Google Scholar 

    3.
    Pearson, D. E., Ortega, Y. K., Eren, Ö. & Hierro, J. L. Community assembly theory as a framework for biological invasions. Trends Ecol. Evol. 33, 313–325 (2018).
    PubMed  Article  Google Scholar 

    4.
    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).
    PubMed  Article  Google Scholar 

    5.
    Duan, M. et al. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles. Sci. Rep. 6, 23511 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Uboni, C. et al. Exploring cross-taxon congruence between carabid beetles (Coleoptera: Carabidae) and vascular plants in sites invaded by Ailanthus altissima versus non-invaded sites: The explicative power of biotic and abiotic factors. Ecol. Indic. 103, 145–155 (2019).
    Article  Google Scholar 

    7.
    Robertson, M. & Avilés, L. Rain, predators and vegetation lushness may structure web-building spider communities along precipitation gradients. Ecol. Entomol. 44, 217–226 (2019).
    Article  Google Scholar 

    8.
    Vleminckx, J. et al. Coordinated community structure among trees, fungi and invertebrate groups in Amazonian rainforests. Sci. Rep. 9, 11337 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Maestre, F. T. et al. Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Philos. Trans. R. Soc. B 365, 2057–2070 (2010).
    Article  Google Scholar 

    10.
    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).
    PubMed  Article  Google Scholar 

    11.
    Scherrer, D. et al. Disentangling the processes driving plant assemblages in mountain grasslands across spatial scales and environmental gradients. J. Ecol. 107, 265–278 (2019).
    Article  Google Scholar 

    12.
    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27, 337–363 (1996).
    Article  Google Scholar 

    13.
    Chamberlain, D. E., Cannon, A. R. & Toms, M. P. Associations of garden birds with gradients in garden habitat and local habitat. Ecography 27, 589–600 (2004).
    Article  Google Scholar 

    14.
    Pennings, S. C. & Silliman, B. R. Linking biogeography and community ecology: Latitudinal variation in plant–herbivore interaction strength. Ecology 86, 2310–2319 (2005).
    Article  Google Scholar 

    15.
    Chamberlain, S. A., Bronstein, J. L. & Rudgers, J. A. How context dependent are species interactions?. Ecol. Lett. 17, 881–890 (2014).
    PubMed  Article  Google Scholar 

    16.
    Kissling, W. D. et al. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J. Biogeogr. 39, 2163–2178 (2012).
    Article  Google Scholar 

    17.
    Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. https://doi.org/10.1111/ele.13277 (2019).
    Article  PubMed  Google Scholar 

    18.
    Thompson, J. N. Variation in interspecific interactions. Annu. Rev. Ecol. Syst. 19, 65–87 (1988).
    Article  Google Scholar 

    19.
    Bar-Massada, A. & Belmaker, J. Non-stationarity in the co-occurrence patterns of species across environmental gradients. J. Ecol. 105, 391–399 (2017).
    Article  Google Scholar 

    20.
    Hengeveld, R. Biogeographical ecology. J. Biogeogr. 21, 341–351 (1994).
    Article  Google Scholar 

    21.
    Osborne, P. E., Foody, G. M. & Suárez-Seoane, S. Non-stationarity and local approaches to modelling the distributions of wildlife. Divers. Distrib. 13, 313–323 (2007).
    Article  Google Scholar 

    22.
    Clark, N. J., Wells, K. & Lindberg, O. Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology 99, 1277–1283 (2018).
    PubMed  Article  Google Scholar 

    23.
    Bryant, J. P., Chapin, F. S. & Klein, D. R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357 (1981).
    Article  Google Scholar 

    24.
    Post, D. M., Palkovacs, E. P., Schielke, E. G. & Dodson, S. I. Intraspecific variation in a predator affects community structure and cascading trophic interactions. Ecology 89, 2019–2032 (2008).
    PubMed  Article  Google Scholar 

    25.
    Agrawal, A. A., Lau, J. A. & Hambäck, P. A. Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q. Rev. Biol. 81, 349–376 (2006).
    PubMed  Article  Google Scholar 

    26.
    Lisboa, F. J. G. et al. Much beyond Mantel: Bringing procrustes association metric to the plant and soil ecologist’s toolbox. PLoS ONE 9, e101238 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Kraft, A. J., Robinson, D. T., Evans, I. S. & Rooney, R. C. Concordance in wetland physicochemical conditions, vegetation, and surrounding land cover is robust to data extraction approach. PLoS ONE 14, e0216343 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Toranza, C. & Arim, M. Cross-taxon congruence and environmental conditions. BMC Ecol. 10, 18 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Rooney, R. C. & Bayley, S. E. Community congruence of plants, invertebrates and birds in natural and constructed shallow open-water wetlands: Do we need to monitor multiple assemblages?. Ecol. Indic. 20, 42–50 (2012).
    Article  Google Scholar 

    30.
    Larsen, S., Mancini, L., Pace, G., Scalici, M. & Tancioni, L. Weak concordance between fish and macroinvertebrates in Mediterranean streams. PLoS ONE 7, e51115 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Heino, J., Paavola, R., Virtanen, R. & Muotka, T. Searching for biodiversity indicators in running waters: Do bryophytes, macroinvertebrates, and fish show congruent diversity patterns?. Biodivers. Conserv. 14, 415–428 (2005).
    Article  Google Scholar 

    32.
    Corte, G. N. et al. Cross-taxon congruence in benthic communities: Searching for surrogates in marine sediments. Ecol. Indic. 78, 173–182 (2017).
    Article  Google Scholar 

    33.
    Cracraft, J. & Prum, R. O. Pattern and processes of diversification: Speciation and historical congruence in some Neotropical birds. Evolution 42, 603–620 (1988).
    PubMed  Article  Google Scholar 

    34.
    Moritz, C. et al. Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proc. R. Soc. Lond. Ser. B. 268, 1875–1881 (2001).
    CAS  Article  Google Scholar 

    35.
    Rooney, R. C. & Azeria, E. T. The strength of cross-taxon congruence in species composition varies with the size of regional species pools and the intensity of human disturbance. J. Biogeogr. 42, 439–451 (2014).
    Article  Google Scholar 

    36.
    Daniel, J., Gleason, J. E., Cottenie, K. & Rooney, R. C. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 128, 1158–1169 (2019).
    Article  Google Scholar 

    37.
    Gleason, J. E. & Rooney, R. C. Pond permanence is a key determinant of aquatic macroinvertebrate community structure in wetlands. Freshw. Biol. 63, 264–277 (2018).
    Article  Google Scholar 

    38.
    Clark, J. S., Campbell, J. H., Grizzle, H., Acosta-Martìnez, V. & Zak, J. C. Soil microbial community response to drought and precipitation variability in the chihuahuan desert. Microb. Ecol. 57, 248–260 (2009).
    PubMed  Article  Google Scholar 

    39.
    Brock, M. A., Nielsen, D. L., Shiel, R. J., Green, J. D. & Langley, J. D. Drought and aquatic community resilience: The role of eggs and seeds in sediments of temporary wetlands. Freshw. Biol. https://doi.org/10.1046/j.1365-2427.2003.01083.x (2003).
    Article  Google Scholar 

    40.
    Stewart, R. E. & Kantrud, H. A. Classification of Natural Ponds and Lakes in the Glaciated Prairie Region. Bureau of Sport Fisheries and Wildlife Resource Publication 92, vol. 554 (1971).

    41.
    Euliss, N. H. et al. The wetland continuum: A conceptual framework for interpreting biological studies. Wetlands 24, 448–458 (2004).
    Article  Google Scholar 

    42.
    Wright, H. E. J. Quaternary history of Minnesota. In Geology of Minnesota: A Centennial (eds Sims, P. K. & Morey, G.) 515–546 (Minnesota Geological Survey University of Minnesota, Minnesota, 1972).
    Google Scholar 

    43.
    Sauchyn, D. J., Barrow, E. M., Hopkinson, R. F. & Leavitt, P. R. Aridity on the Canadian plains. Géogr. Phys. Quat. 56, 247–259 (2004).
    Google Scholar 

    44.
    Downing, D. J. & Pettapiece, W. W. Natural Regions and Subregions of Alberta. https://www.albertaparks.ca/media/2942026/nrsrcomplete_may_06.pdf (2006).

    45.
    Government of Alberta. Alberta Merged Wetland Inventory. (2014).

    46.
    Anderson, D. L. & Rooney, R. C. Differences exist in bird communities using restored and natural wetlands in the Parkland region, Alberta, Canada. Restor. Ecol. 27, 1495–1507 (2019).
    Article  Google Scholar 

    47.
    Meyer, M. D., Davis, C. A. & Bidwell, J. R. Assessment of two methods for sampling invertebrates in shallow vegetated wetlands. Wetlands 33, 1063–1073 (2013).
    Article  Google Scholar 

    48.
    Gleason, J. E. & Rooney, R. C. Aquatic macroinvertebrates are poor indicators of agricultural activity in northern prairie pothole wetlands. Ecol. Indic. 81, 333–339 (2017).
    Article  Google Scholar 

    49.
    Clifford, H. F. Aquatic Invertebrates of Alberta (University of Alberta Press, Edmonton, 1991).
    Google Scholar 

    50.
    Merrit, R. W., Cummins, K. W. & Berg, M. B. An Introduction to the Aquatic Insects of North America (Kendall Hunt Publishing Company, Dubuque, 2008).
    Google Scholar 

    51.
    Environment Canada. CABIN Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. 36 (2014).

    52.
    Bolding, M. T., Kraft, A. J., Robinson, D. T. & Rooney, R. C. Improvements in multi-metric index development using a whole-index approach. Ecol. Indic. 113, 106191 (2020).
    Article  Google Scholar 

    53.
    Meyers, N. Use of Water Isotope Tracers to Characterize the Hydrology of Prairie Wetlands in Alberta (University of Waterloo, Waterloo, 2018).
    Google Scholar 

    54.
    Peres-Neto, P. R. & Jackson, D. A. How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the Mantel test. Oecologia 129, 169–178 (2001).
    ADS  PubMed  Article  Google Scholar 

    55.
    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).
    Article  Google Scholar 

    56.
    Dijksterhuis, G. B. & Gower, J. C. The interpretation of generalized procrustes analysis and allied methods. Food Qual. Prefer. https://doi.org/10.1016/0950-3293(91)90027-C (1991).
    Article  Google Scholar 

    57.
    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.4–2 (2017).

    58.
    Broadbooks, W. J. & Elmore, P. B. A Monte Carlo study of the sampling distribution of the congruence coefficient. Educ. Psychol. Meas. 47, 1–11 (1987).
    Article  Google Scholar 

    59.
    Fife, D. fifer: A Biostatisticians Toolbox for Various Activities, Including Plotting, Data Cleanup, and Data Analysis. R package version 1.1. https://CRAN.R-project.org/package=fifer. (2017).

    60.
    Levine, J. M. Indirect facilitation: Evidence and predictions from a riparian community. Ecology 80, 1762 (1999).
    Article  Google Scholar 

    61.
    Maestre, F. T., Valladares, F. & Reynolds, J. F. Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J. Ecol. 93, 748–757 (2005).
    Article  Google Scholar 

    62.
    Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Klanderud, K., Vandvik, V. & Goldberg, D. The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS ONE 10, e0130205 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Lários, M. C. et al. Evidence of cross-taxon congruence in Neotropical wetlands: Importance of environmental and spatial factors. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2017.09.003 (2017).
    Article  Google Scholar 

    65.
    Casanova, M. T. & Brock, M. A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities?. Plant Ecol. 147, 237–250 (2000).
    Article  Google Scholar 

    66.
    Murkin, H. R., Murkin, E. J. & Ball, J. P. Avian habitat selection and prairie wetland dynamics: A 10-year experiment. Ecol. Appl. 7, 1144–1159 (1997).
    Article  Google Scholar 

    67.
    Naugle, D. E., Johnson, R. R., Estey, M. E. & Higgins, K. F. A landscape approach to conserving wetland bird habitat in the Prairie Pothole Region of eastern South Dakota. Wetlands 20, 588–604 (2001).
    Article  Google Scholar 

    68.
    Mabidi, A., Bird, M. S. & Perissinotto, R. Distribution and diversity of aquatic macroinvertebrate assemblages in a semi-arid region earmarked for shale gas exploration (Eastern Cape Karoo, South Africa). PLoS ONE 12, e0178559 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Panov, V. E. & Caceres, C. Role of diapause in dispersal of aquatic invertebrates. in Diapause in Aquatic Invertebrates Theory and Human Use 187–195 (Springer, New York, 2007). https://doi.org/10.1007/978-1-4020-5680-2_12.

    70.
    Faist, A. M., Ferrenberg, S. & Collinge, S. K. Banking on the past: Seed banks as a reservoir for rare and native species in restored vernal pools. AoB Plants 5, 1–10 (2013).
    Article  Google Scholar 

    71.
    Reynolds, C. & Cumming, G. S. Seed traits and bird species influence the dispersal parameters of wetland plants. Freshw. Biol. 61, 1157–1170 (2016).
    Article  Google Scholar 

    72.
    Klaassen, M. & Nolet, B. A. The role of herbivorous water birds in aquatic systems through interactions with aquatic macrophytes, with special reference to the Bewick’s Swan: Fennel Pondweed system. Hydrobiologia 584, 205–213 (2007).
    Article  Google Scholar 

    73.
    Kleyheeg, E. et al. Movement patterns of a keystone waterbird species are highly predictable from landscape configuration. Mov. Ecol. 5, 2 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    DeVlaming, V. & Proctor, V. W. Dispersal of aquatic organisms: viability of seeds recovered from the droppings of captive Killdeer and Mallard Ducks. Am. J. Bot. 55, 20 (2006).
    Article  Google Scholar 

    75.
    Ma, M., Ma, Z. & Du, G. Effects of water level on three wetlands soil seed banks on the Tibetan Plateau. PLoS ONE 9, e101458 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Poiani, K. A. & Johnson, W. C. Effect of hydroperiod on seed-bank composition in semipermanent prairie wetlands. Can. J. Bot. 67, 856–864 (1989).
    Article  Google Scholar 

    77.
    Johnson, W. C. et al. Vulnerability of Northern Prairie wetlands to climate change. Bioscience 55, 863 (2005).
    Article  Google Scholar 

    78.
    Voldseth, R. A., Johnson, W. C., Gilmanov, T., Guntenspergen, G. R. & Millett, B. V. Model estimation of land-use effects on water levels of northern Prairie wetlands. Ecol. Appl. 17, 527–540 (2007).
    PubMed  Article  Google Scholar  More

  • in

    Online media reveals a global problem of discarded containers as deadly traps for animals

    1.
    Ravenelle, J. & Nyhus, P. J. Global patterns and trends in human–wildlife conflict compensation. Conserv. Biol. 31, 1247–1256 (2017).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hopewell, J., Dvorak, R. & Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B 364, 2115–2126 (2009).
    CAS  Article  Google Scholar 

    3.
    Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. What a waste 2.0: A global snapshot of solid waste management to 2050. Urban Development (World Bank, Washington, DC, 2018).

    4.
    Obradović, M., Kalambura, S., Smolec, D. & Jovičić, N. Dumping and illegal transport of hazardous waste, danger of modern society. Coll. Antropol. 38, 793–803 (2014).
    PubMed  PubMed Central  Google Scholar 

    5.
    Kubásek, M. & Hřebíček, J. Crowdsource approach for mapping of illegal dumps in the Czech Republic. Int. J. Spatial Data Infrastruct. Res. 8, 144–157 (2013).
    Google Scholar 

    6.
    Danthurebandara, M., Van Passel, S., Nelen, D., Tielemans, Y., & Van Acker, K. Environmental and socio-economic impacts of landfills. Linnaeus Eco-Tech 2012, 26–28 (2012).

    7.
    Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666. https://doi.org/10.1038/s41598-018-22939-w (2018).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    8.
    Baranová, B., Manko, P. & Jászay, T. Waste dumps as local biodiversity hotspots for soil macrofauna and ground beetles (Coleoptera: Carabidae) in the agricultural landscape. Ecol. Eng. 81, 1–13 (2015).
    Article  Google Scholar 

    9.
    Jagiello, Z., Dylewski, Ł, Tobolka, M. & Aguirre, J. I. Life in a polluted world: A global review of anthropogenic materials in bird nests. Environ. Pollut. 251, 717–722 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Michlewicz, M. & Tryjanowski, P. Anthropogenic waste products as preferred nest sites for Myrmica rubra (L.) (Hymenoptera, Formicidae). J. Hymenopt. Res. 57, 103–114 (2017).
    Article  Google Scholar 

    11.
    Kolenda, K. et al. Deadly trap or sweet home? The case of discarded containers as novelty microhabitats for ants. Glob. Ecol. Conserv. 23, e01064. https://doi.org/10.1016/j.gecco.2020.e01064 (2020).
    Article  Google Scholar 

    12.
    Robertson, B. A., Rehage, J. S. & Sih, A. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evol. 28, 552–560 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Schuyler, Q., Hardesty, B. D., Wilcox, C. & Townsend, K. Global analysis of anthropogenic debris ingestion by sea turtles. Conserv. Biol. 28, 129–139 (2014).
    PubMed  Article  Google Scholar 

    14.
    Roman, L., Schuyler, Q. A., Hardesty, B. D. & Townsend, K. A. Anthropogenic debris ingestion by avifauna in eastern Australia. PLoS One 11, e0158343. https://doi.org/10.1371/journal.pone.0158343 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Zhao, S., Zhu, L. & Li, D. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Sci. Total Environ. 550, 1110–1115 (2016).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    16.
    Lusher, A. L. et al. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: The True’s beaked whale Mesoplodon mirus. Environ. Pollut. 199, 185–191 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Foley, C. J., Feiner, Z. S., Malinich, T. D. & Höök, T. O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631, 550–559 (2018).
    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

    18.
    Rideout, B. A. et al. Patterns of mortality in free-ranging California Condors (Gymnogyps californianus). J. Wildl. Dis. 48, 95–112 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Strine, C. T. et al. Mortality of a wild king cobra, Ophiophagus hannah Cantor, 1836 (Serpentes: Elapidae) from Northeast Thailand after ingesting a plastic bag. Asian Herpetol. Res. 5, 284–286 (2014).
    Article  Google Scholar 

    20.
    Ryan, P. G., Dilley, B. J., Ronconi, R. A. & Connan, M. Rapid increase in Asian bottles in the South Atlantic Ocean indicates major debris inputs from ships. Proc. Natl. Acad. Sci. USA. 116, 20892–20897 (2019).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    21.
    Debernardi, P., Patriarca, E., Perrone, A., Cantini, M. & Chiarenzi, B. Small mammals found in discarded bottles in alpine and pre-alpine areas of NW-Italy. Hystrix 9, 51–55 (1997).
    Google Scholar 

    22.
    Davenport, J., Hills, J., Glasspool, A. & Ward, J. Threats to the critically endangered endemic Bermudian skink Eumeces longirostris. Oryx 35, 332–339 (2001).
    Article  Google Scholar 

    23.
    Benedict, R. A. & Billeter, M. C. Discarded bottles as a cause of mortality in small vertebrates. Southeast. Nat. 3, 371–378 (2004).
    Article  Google Scholar 

    24.
    Brannon, M. P. & Bargelt, L. B. Discarded bottles as a mortality threat to shrews and other small mammals in the Southern Appalachian Mountains. J. N. C. Acad. Sci. 129, 126–129 (2013).
    Google Scholar 

    25.
    Morris, P. A. & Harper, J. F. The occurrence of small mammals in discarded bottles. Proc. Zool. Soc. Lond. 145, 148–153 (1965).
    Article  Google Scholar 

    26.
    Hamed, M. K. & Laughlin, T. F. Small-mammal mortality caused by discarded bottles and cans along a US Forest Service road in the Cherokee National Forest. Southeast. Nat. 14, 506–516 (2015).
    Article  Google Scholar 

    27.
    Kolenda, K., Przybył, M., Piłacińska, B. & Rychlik, L. Survey of discarded bottles as an effective method in detection of small mammal diversity. Pol. J. Ecol. 66, 57–63 (2018).
    Article  Google Scholar 

    28.
    Kolenda, K., Kurczaba, K. & Kulesza, M. Littering as a lethal threat to small animals. Przegląd Przyr. 26, 53–62 (2015) (in Polish with English summary).
    Google Scholar 

    29.
    Poeta, G., Romiti, F. & Battisti, C. Discarded bottles in sandy coastal dunes as threat for macro-invertebrate populations: First evidence of a trap effect. Vie Milieu 65, 125–127 (2015).
    Google Scholar 

    30.
    Lavers, J. L., Sharp, P. B., Stuckenbrock, S. & Bond, A. L. Entrapment in plastic debris endangers hermit crabs. J. Hazard. Mater. 387, 121703. https://doi.org/10.1016/j.jhazmat.2019.121703 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Moates, G. Small mammal mortality in discarded bottles and drinks cans—A Norfolk-based field study in a global context. J. Litter Environ. Qual. 2, 5–13 (2018).
    Google Scholar 

    32.
    Castilla, A. M. & Bauwens, D. Observations on the natural history, present status, and conservation of the insular lizard Podarcis hispanica atrata on the Columbretes archipelago, Spain. Biol. Conserv. 58, 69–84 (1991).
    Article  Google Scholar 

    33.
    Di Minin, E., Tenkanen, H. & Toivonen, T. Prospects and challenges for social media data in conservation science. Front. Environ. Sci. 3, 63. https://doi.org/10.3389/fenvs.2015.00063 (2015).
    Article  Google Scholar 

    34.
    Toivonen, T. et al. Social media data for conservation science: A methodological overview. Biol. Conserv. 233, 298–315 (2019).
    Article  Google Scholar 

    35.
    Kaplan, A. M. & Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 53, 59–68 (2010).
    Article  Google Scholar 

    36.
    Perrin, A. Social media usage 2005–2015. (Pew Research Center, Washington, 2015).
    Google Scholar 

    37.
    Jagiello, Z., Dyderski, M. K. & Dylewski, Ł. What can we learn about the behaviour of red and grey squirrels from YouTube? Ecol. Inform. 51, 52–60 (2019).
    Article  Google Scholar 

    38.
    Ruths, D. & Pfeffer, J. Social media for large studies of behavior. Science 346, 1063–1064 (2014).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    39.
    Anderson, A. A. & Huntington, H. E. Social media, science, and attack discourse: How Twitter discussions of climate change use sarcasm and incivility. Sci. Commun. 39, 598–620 (2017).
    Article  Google Scholar 

    40.
    Sorokowski, P., Kowal, M., Zdybek, P. & Oleszkiewicz, A. Are online haters psychopaths? Psychological predictors of online hating behavior. Front. Psychol. 11, 553 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Mikula, P., Hadrava, J., Albrecht, T. & Tryjanowski, P. Large-scale assessment of commensalistic–mutualistic associations between African birds and herbivorous mammals using internet photos. PeerJ 6, e4520. https://doi.org/10.7717/peerj.4520 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Daume, S., Albert, M. & Von Gadow, K. Forest monitoring and social media—Complementary data sources for ecosystem surveillance? For. Ecol. Manag. 316, 9–20 (2014).
    Article  Google Scholar 

    43.
    Stafford, R. et al. Eu-social science: The role of internet social networks in the collection of bee biodiversity data. PLoS One 5, e14381. https://doi.org/10.1371/journal.pone.0014381 (2010).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    44.
    van Zanten, B. T. et al. Continental-scale quantification of landscape values using social media data. Proc. Natl. Acad. Sci. 113, 12974–12979 (2016).
    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

    45.
    Hausmann, A. et al. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 11, e12343. https://doi.org/10.1111/conl.12343 (2018).
    Article  Google Scholar 

    46.
    Tryjanowski, P. et al. Birds drinking alcohol: Species and relationship with people. A review of information from scientific literature and social media. Animals 10, 270. https://doi.org/10.3390/ani10020270 (2020).
    Article  Google Scholar 

    47.
    Hausmann, A. et al. Assessing global popularity and threats to important bird and biodiversity areas using social media data. Sci. Total Environ. 683, 617–623 (2019).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    48.
    Hetman, M., Kubicka, A. M., Sparks, T. H. & Tryjanowski, P. Road kills of non-human primates: A global view using a different type of data. Mammal Rev. 49, 276–283 (2019).
    Article  Google Scholar 

    49.
    Pace, D. S. et al. An integrated approach for cetacean knowledge and conservation in the central Mediterranean Sea using research and social media data sources. Aquat. Conserv. 29, 1302–1323 (2019).
    Article  Google Scholar 

    50.
    Guinard, É., Julliard, R. & Barbraud, C. Motorways and bird traffic casualties: Carcasses surveys and scavenging bias. Biol. Conserv. 147, 40–51 (2012).
    Article  Google Scholar 

    51.
    Luniak, M. Synurbization–adaptation of animal wildlife to urban development. In Proceedings of the 4th International Symposium on Urban Wildlife Conservation, Tucson, AZ (eds. Shaw, W. W. et al.) 50–55 (2004).

    52.
    Soulsbury, C. D. & White, P. C. Human–wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildlife Res. 42, 541–553 (2016).
    Article  Google Scholar 

    53.
    Brown, T. J., Ham, S. H. & Hughes, M. Picking up litter: An application of theory-based communication to influence tourist behaviour in protected areas. J. Sustain. Tour. 18, 879–900 (2010).
    Article  Google Scholar 

    54.
    Wilson, S. P. & Verlis, K. M. The ugly face of tourism: Marine debris pollution linked to visitation in the southern Great Barrier Reef, Australia. Mar. Pollut. Bull. 117, 239–246 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jakiel, M., Bernatek-Jakiel, A., Gajda, A., Filiks, M. & Pufelska, M. Spatial and temporal distribution of illegal dumping sites in the nature protected area: The Ojców National Park, Poland. J. Environ. Plan. Manag. 62, 286–305 (2019).
    Article  Google Scholar 

    56.
    Ducarme, F., Luque, G. M. & Courchamp, F. What are “charismatic species” for conservation biologists. BioSci. Master Rev. 10, 1–8 (2013).
    Google Scholar 

    57.
    Elfström, M., Zedrosser, A., Støen, O. G. & Swenson, J. E. Ultimate and proximate mechanisms underlying the occurrence of bears close to human settlements: Review and management implications. Mammal Rev. 44, 5–18 (2014).
    Article  Google Scholar 

    58.
    Kumbhojkar, S., Yosef, R., Benedetti, Y. & Morelli, F. Human-leopard (Panthera pardus fusca) co-existence in Jhalana forest reserve, India. Sustainability 11, 3912. https://doi.org/10.3390/su11143912 (2019).
    Article  Google Scholar 

    59.
    IUCN. The IUCN Red List of Threatened Species, http://www.iucnredlist.org (2019).

    60.
    Arrizabalaga, A., González, L. M. & Torre, I. Small mammals in discarded bottles: A new world record. Galemys 28, 63–65 (2016).
    Article  Google Scholar 

    61.
    Chandrasekaran, S. et al. Disposed paper cups and declining bees. Curr. Sci. 101, 1262 (2011).
    Google Scholar 

    62.
    Shine, R. & Koenig, J. Snakes in the garden: An analysis of reptiles “rescued” by community-based wildlife carers. Biol. Conserv. 102, 271–283 (2001).
    Article  Google Scholar 

    63.
    Peris, S. J. Feeding in urban refuse dumps: Ingestion of plastic objects by the White Stork (Ciconia ciconia). Ardeola 50, 81–84 (2003).
    Google Scholar 

    64.
    Mrosovsky, N., Ryan, G. D. & James, M. C. Leatherback turtles: The menace of plastic. Mar. Pollut. Bull. 58, 287–289 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Jankowiak, Ł, Malecha, A. W. & Krawczyk, A. J. Garbage in the diet of carnivores in an agricultural area. Eur. J. Ecol. 2, 81–86 (2016).
    Article  Google Scholar 

    66.
    Poeta, G., Eleonora, S., Alicia, T. R. & Battisti, C. Ecological effects of anthropogenic litter on marine mammals: A global review with a “black-list” of impacted taxa. Hystrix 28, 253–264 (2017).
    Google Scholar 

    67.
    Heathcote, G., Hobday, A. J., Spaulding, M., Gard, M. & Irons, G. Citizen reporting of wildlife interactions can improve impact-reduction programs and support wildlife carers. Wildlife Res. 46, 415–428 (2019).
    Article  Google Scholar 

    68.
    Fraser, H., Taylor, N. & Signal, T. Young people empathising with other animals: Reflections on an Australian RSPCA humane education programme. Aotearoa N. Z. Soc. Work 29, 5–16 (2017).
    Article  Google Scholar 

    69.
    Tiplady, C. M., Walsh, D. A. B. & Phillips, C. J. Public response to media coverage of animal cruelty. J. Agric. Environ. Ethics. 26, 869–885 (2013).
    Article  Google Scholar 

    70.
    ElQadi, M. et al. Mapping species distributions with social media geo-tagged images: Case studies of bees and flowering plants in Australia. Ecol. Inform. 39, 23–31 (2017).
    Article  Google Scholar 

    71.
    Siriwat, P. & Nijman, V. Illegal pet trade on social media as an emerging impediment to the conservation of Asian otters species. J. Asia-Pacific Biodivers. 11, 469–475 (2018).
    Article  Google Scholar 

    72.
    Di Minin, E., Fink, C., Hiippala, T. & Tenkanen, H. A framework for investigating illegal wildlife trade on social media with machine learning. Conserv. Biol. 33, 210–213 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    RSPCA. Plastic litter is a growing threat to animals reveals RSPCA Cymru, https://news.rspca.org.uk/2019/02/05/plastic-litter-is-a-growing-threat-to-animals-reveals-rspca-cymru/ (2019).

    74.
    Schuyler, Q., Hardesty, B. D., Lawson, T. J., Opie, K. & Wilcox, C. Economic incentives reduce plastic inputs to the ocean. Mar. Policy 96, 250–255 (2018).
    Article  Google Scholar 

    75.
    Haarr, M. L., Pantalos, M., Hartviksen, M. K. & Gressetvold, M. Citizen science data indicate a reduction in beach litter in the Lofoten archipelago in the Norwegian Sea. Mar. Pollut. Bull. 153, 111000. https://doi.org/10.1016/j.marpolbul.2020.111000 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    76.
    Brannon, M. P., Brannon, J. K. & Baird, R. E. Educational applications of small-mammal skeletal remains found in discarded bottles. Southeast. Nat. 16, 4–10 (2017).
    Article  Google Scholar 

    77.
    Wyles, K. J., Pahl, S., Holland, M. & Thompson, R. C. Can beach cleans do more than clean-up litter? Comparing beach cleans to other coastal activities. Environ. Behav. 49, 509–535 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    78.
    Ethnologue 2019. What are the top 200 most spoken languages? http://www.ethnologue.com/guides/ethnologue200 (2019).

    79.
    Lessa, E. P. & Farina, R. A. Reassessment of extinction patterns among the late Pleistocene mammals of South America. Palaeontology 39, 651–662 (1996).
    Google Scholar 

    80.
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Article  Google Scholar 

    81.
    Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020). More