More stories

  • in

    Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips

    1.
    Steffan-Dewenter, I., Potts, S. G. & Packer, L. Pollinator diversity and crop pollination services are at risk. Trends Ecol. Evol. 20, 651–652 (2005).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. 108, 5909–5914 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Goulson, D. Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst. 34, 1–26 (2003).
    Article  Google Scholar 

    5.
    Paini, D. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. Aust. Ecol. 29, 399–407 (2004).
    Article  Google Scholar 

    6.
    Aslan, C. E., Liang, C. T., Galindo, B., Kimberly, H. & Topete, W. The role of honey bees as pollinators in natural areas. Nat. Areas J. 36, 478–489 (2016).
    Article  Google Scholar 

    7.
    Mallinger, R. E., Gaines-Day, H. R. & Gratton, C. Do managed bees have negative effects on wild bees? A systematic review of the literature. PLoS ONE 12, e0189268 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Wignall, V. R. et al. Seasonal variation in exploitative competition between honeybees and bumblebees. Oecologia 192, 351–361 (2020).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Thomson, D. M. Detecting the effects of introduced species: A case study of competition between Apis and Bombus. Oikos 114, 407–418 (2006).
    Article  Google Scholar 

    10.
    Franco, E. L., Aguiar, C. M. & Ferreiraz, V. S. Plant use and niche overlap between the introduced honey bee (Apis mellifera) and the native bumblebee (Bombus atratus) (Hymenoptera: Apidae) in an area of tropical mountain vegetation in northeastern Brazil. Sociobiology 53, 141–150 (2009).
    Google Scholar 

    11.
    Herbertsson, L., Lindström, S. A., Rundlöf, M., Bommarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616 (2016).
    Article  Google Scholar 

    12.
    Thomson, D. M. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecol. Lett. 19, 1247–1255 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. 103, 13890–13895 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Badano, E. I. & Vergara, C. H. Potential negative effects of exotic honey bees on the diversity of native pollinators and yield of highland coffee plantations. Agric. For. Entomol. 13, 365–372 (2011).
    Article  Google Scholar 

    15.
    Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 280, 20122767 (2013).
    Article  Google Scholar 

    16.
    Müller, H. T. Interaction Between Bombus terrestris and Honeybees in Red Clover Fields Reduces Abundance of Other Bumblebees and Red Clover Yield and Honeybees in Red Clover Fields Reduces Abundance of Other Bumblebees and Red Clover Yield (Norwegian University of Life Sciences, Ås, 2016).
    Google Scholar 

    17.
    Grass, I. et al. Pollination limitation despite managed honeybees in South African macadamia orchards. Agric. Ecosyst. Environ. 260, 11–18 (2018).
    Article  Google Scholar 

    18.
    hUallacháin, D. Ó. (United Nations Convention to Combat Desertification, Bonn, Germany, 2017).

    19.
    Vaughan, M. & Skinner, M. Using 2014 farm bill programs for pollinator conservation. USDA Biol. Tech. Note 78, 2nd Ed. (2015).

    20.
    Vaughan, M. & Skinner, M. Using Farm Bill programs for pollinator conservation. USDA-NRCS National Plant Data Center, USDA Biol. Tech. Note 78 (2008).

    21.
    FSA. CP42 pollinator habitat: Establishing and supporting diverse pollinator-friendly habitat. (Farm Service Agency, U.S. Department of Agriculture, Washington, D.C., 2013).

    22.
    Venturini, E. M., Drummond, F. A., Hoshide, A. K., Dibble, A. C. & Stack, L. B. Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecol. Sustain. Food Syst. 41, 101–142 (2017).
    Article  Google Scholar 

    23.
    Wood, T. J., Holland, J. M., Hughes, W. O. & Goulson, D. Targeted agri-environment schemes significantly improve the population size of common farmland bumblebee species. Mol. Ecol. 24, 1668–1680 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Haaland, C. & Gyllin, M. Butterflies and bumblebees in greenways and sown wildflower strips in southern Sweden. J. Insect Conserv. 14, 125–132 (2010).
    Article  Google Scholar 

    25.
    Ponisio, L. C., M’Gonigle, L. K. & Kremen, C. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob. Change Biol. 22, 704–715 (2016).
    ADS  Article  Google Scholar 

    26.
    Dolezal, A. G., Clair, A. L. S., Zhang, G., Toth, A. L. & O’Neal, M. E. Native habitat mitigates feast–famine conditions faced by honey bees in an agricultural landscape. Proc. Natl. Acad. Sci. 116, 25147–25155 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Venturini, E., Drummond, F., Hoshide, A., Dibble, A. & Stack, L. B. Pollination reservoirs in lowbush blueberry (Ericales: Ericaceae). J. Econ. Entomol. 110, 333–346 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Morandin, L. A. & Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 23, 829–839 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).
    Article  Google Scholar 

    30.
    Feltham, H., Park, K., Minderman, J. & Goulson, D. Experimental evidence of the benefit of wild flower strips to crop pollination. Ecol. Evolut. 5, 3523–3530 (2015).
    Article  Google Scholar 

    31.
    Gross, C. & Mackay, D. Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae). Biol. Cons. 86, 169–178 (1998).
    Article  Google Scholar 

    32.
    do Carmo, R. M., Franceschinelli, E. V. & da Silveira, F. A. Introduced honeybees (Apis mellifera) reduce pollination success without affecting the floral resource taken by native pollinators. Biotropica 36, 371–376 (2004).
    Google Scholar 

    33.
    Bruckman, D. & Campbell, D. R. Floral neighborhood influences pollinator assemblages and effective pollination in a native plant. Oecologia 176, 465–476 (2014).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Carvalheiro, L. G. et al. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 14, 251–259 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Jönsson, A. M. et al. Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause. Clim. Change 109, 695–718 (2011).
    ADS  Article  Google Scholar 

    37.
    Scheper, J. et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 52, 1165–1175 (2015).
    Article  Google Scholar 

    38.
    Krimmer, E., Martin, E. A., Krauss, J., Holzschuh, A. & Steffan-Dewenter, I. Size, age and surrounding semi-natural habitats modulate the effectiveness of flower-rich agri-environment schemes to promote pollinator visitation in crop fields. Agric. Ecosyst. Environ. 284, 106590 (2019).
    Article  Google Scholar 

    39.
    Klein, A. M. et al. Wild pollination services to California almond rely on semi-natural habitat. J. Appl. Ecol. 49, 723–732 (2012).
    Google Scholar 

    40.
    Grab, H., Poveda, K., Danforth, B. & Loeb, G. Landscape context shifts the balance of costs and benefits from wildflower borders on multiple ecosystem services. Proc. R. Soc. B Biol. Sci. 285, 20181102 (2018).
    Article  Google Scholar 

    41.
    Prendergast, K. S., Menz, M. H., Dixon, K. W. & Bateman, P. W. The relative performance of sampling methods for native bees: An empirical test and review of the literature. Ecosphere 11, e03076 (2020).
    Article  Google Scholar 

    42.
    Cane, J. H., Minckley, R. L. & Kervin, L. J. Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: pitfalls of pan-trapping. J. Kansas Entomol. Soc. 73, 225–231 (2000).
    Google Scholar 

    43.
    O’Connor, R. S. et al. Monitoring insect pollinators and flower visitation: The effectiveness and feasibility of different survey methods. Methods Ecol. Evol. 10, 2129–2140. https://doi.org/10.1111/2041-210x.13292 (2019).
    Article  Google Scholar 

    44.
    Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. Do managed bees drive parasite spread and emergence in wild bees?. Int. J. Parasitol. Parasites Wildlife 5, 64–75 (2016).
    Article  Google Scholar 

    45.
    Alger, S. A., Burnham, P. A., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PloS One 14, e0217822 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Schaffer, W. M. et al. Competition, foraging energetics, and the cost of sociality in three species of bees. Ecology 60, 976–987 (1979).
    Article  Google Scholar 

    47.
    Pleasants, J. M. Bumblebee response to variation in nectar availability. Ecology 62, 1648–1661 (1981).
    Article  Google Scholar 

    48.
    Ginsberg, H. S. Foraging ecology of bees in an old field. Ecology 64, 165–175 (1983).
    Article  Google Scholar 

    49.
    Schaffer, W. M. et al. Competition for nectar between introduced honey bees and native North American bees and ants. Ecology 64, 564–577 (1983).
    Article  Google Scholar 

    50.
    Gross, C. L. The effect of introduced honeybees on native bee visitation and fruit-set in Dillwynia juniperina (Fabaceae) in a fragmented ecosystem. Biol. Cons. 102, 89–95 (2001).
    Article  Google Scholar 

    51.
    Hudewenz, A. & Klein, A.-M. Competition between honey bees and wild bees and the role of nesting resources in a nature reserve. J. Insect Conserv. 17, 1275–1283 (2013).
    Article  Google Scholar 

    52.
    Johnson, L. K. & Hubbell, S. P. Aggression and competition among stingless bees: Field studies. Ecology 55, 120–127 (1974).
    Article  Google Scholar 

    53.
    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1–10 (2019).
    ADS  CAS  Article  Google Scholar 

    55.
    Garibaldi, L. A. et al. From research to action: enhancing crop yield through wild pollinators. Front. Ecol. Environ. 12, 439–447 (2014).
    Article  Google Scholar 

    56.
    Connelly, H., Poveda, K. & Loeb, G. Landscape simplification decreases wild bee pollination services to strawberry. Agric. Ecosyst. Environ. 211, 51–56 (2015).
    Article  Google Scholar 

    57.
    MacInnis, G. & Forrest, J. R. K. Pollination by wild bees yields larger strawberries than pollination by honey bees. J. Appl. Ecol. 56, 824–832. https://doi.org/10.1111/1365-2664.13344 (2019).
    Article  Google Scholar 

    58.
    Seeley, T. D. Social foraging by honeybees: how colonies allocate foragers among patches of flowers. Behav. Ecol. Sociobiol. 19, 343–354 (1986).
    Article  Google Scholar 

    59.
    Bänsch, S., Tscharntke, T., Gabriel, D. & Westphal, C. Crop pollination services: complementary resource use by social vs solitary bees facing crops with contrasting flower supply. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13777 (2020).

    60.
    Nye, W. P. & Anderson, J. L. Insect pollinators frequenting strawberry blossoms and the effect of honey bees on yield and fruit quality. J. Am. Soc. Horticult. Sci. 99, 40 (1974).
    Google Scholar 

    61.
    De Oliveira, D., Savoie, L. & Vincent, C. in VI International Symposium on Pollination 288, 420–424 (1990).

    62.
    Chagnon, M., Gingras, J. & DeOliveira, D. Complementary aspects of strawberry pollination by honey and indigenous bees (Hymenoptera). J. Econ. Entomol. 86, 416–420 (1993).
    Article  Google Scholar 

    63.
    Horth, L. & Campbell, L. A. Supplementing small farms with native mason bees increases strawberry size and growth rate. J. Appl. Ecol. 55, 591–599 (2018).
    Article  Google Scholar 

    64.
    Pfister, S. C. et al. Dominance of cropland reduces the pollen deposition from bumble bees. Sci. Rep. 8, 13873 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Artz, D. R. & Nault, B. A. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. J. Econ. Entomol. 104, 1153–1161 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Petersen, J., Huseth, A. & Nault, B. Evaluating pollination deficits in pumpkin production in New York. Environ. Entomol. 43, 1247–1253 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    McGrady, C., Troyer, R. & Fleischer, S. Wild bee visitation rates exceed pollination thresholds in commercial cucurbita agroecosystems. J. Econ. Entomol. 113, 562–574 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Geslin, B. et al. Advances in Ecological Research Vol. 57, 147–199 (Elsevier, San Diego, 2017).
    Google Scholar 

    69.
    Steffan-Dewenter, I. & Tscharntke, T. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia 122, 288–296 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Torné-Noguera, A., Rodrigo, A., Osorio, S. & Bosch, J. Collateral effects of beekeeping: Impacts on pollen-nectar resources and wild bee communities. Basic Appl. Ecol. 17, 199–209 (2016).
    Article  Google Scholar 

    71.
    Free, J. B. Insect Pollination of Crops (Academic Press, London, 1970).
    Google Scholar 

    72.
    Delaplane, K. S., Mayer, D. R. & Mayer, D. F. Crop pollination by bees. (CABI, 2000).

    73.
    Phillips, B. Current honey bee and bumble bee stocking information. Michigan State University, MSU Extension: Pollination (2019). https://www.canr.msu.edu/news/current_honey_bee_stocking_information_and_an_introduction_to_commercial_bu.

    74.
    Angelella, G. M. & O’Rourke, M. E. Pollinator habitat establishment after organic and no-till seedbed preparation methods. HortScience 52, 1349–1355 (2017).
    CAS  Article  Google Scholar 

    75.
    Blaauw, B. R. & Isaacs, R. Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wildflowers. Basic Appl. Ecol. 15, 701–711 (2014).
    Article  Google Scholar 

    76.
    Klatt, B. K. et al. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B Biol. Sci. 281, 20132440 (2014).
    Article  Google Scholar 

    77.
    King, S. R., Davis, A. R. & Wehner, T. C. Classical genetics and traditional breeding. In Genetics, Genomics, and Breeding of Cucurbits (eds. Wang, Y.-H. et al.) 61–92 (CRC Press, 2012).

    78.
    Kronenberg, H. G. Poor fruit setting in strawberries. I. Euphytica 8, 47–57 (1959).
    Article  Google Scholar 

    79.
    Kronenberg, H. G., Braak, J. & Zeilinga, A. Poor fruit setting in strawberries. II. Euphytica 8, 245–251 (1959).
    Article  Google Scholar 

    80.
    Robinson, R. W. & Decker-Walters, D. S. Cucurbits (CAB Intl., New York, 1997).
    Google Scholar 

    81.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

    82.
    Magnusson, A. et al. Package ‘glmmTMB’. R Package Version 0.2. 0 (2017).

    83.
    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R Package Version 2, 74 (2007).
    Google Scholar 

    84.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 

    85.
    Wien, H., Stapleton, S., Maynard, D., McClurg, C. & Riggs, D. Flowering, sex expression, and fruiting of pumpkin (Cucurbita sp.) cultivars under various temperatures in greenhouse and distant field trials. HortScience 39, 239–242 (2004).
    Article  Google Scholar  More

  • in

    Hybridisation capture allows DNA damage analysis of ancient marine eukaryotes

    Samples
    Cores were collected during the RV Investigator voyage IN2018_T02 (19 and 20 May 2018, respectively, Fig. 2) to Tasmania, from sites in the Mercury Passage and Maria Island (Fig. 2). We collected one KC Denmark Multi-Core (MCS3, inner core diameter 10 cm, 36 cm long, estimated to cover the last ~ 145 years based on 210Pb dating at the Australian Nuclear Science and Technology Organisation (ANSTO, Lucas Heights, Sydney) in the Mercury Passage (MP, 42.550 S, 148.014 E; 68 m water depth), and one gravity core (GC2; inner core diameter 10 cm, 3 m long) offshore from Maria Island (42.845 S, 148.240 E; 104 m) composed of 2 sections; GC2A (bottom) and GC2B (top) estimated to cover the last ~ 8950 years based on 210Pb and 14C dating, ANSTO). The untreated cores were immediately sealed with plastic caps and sealed with duct-tape, stored initially on-board at 10 °C, followed by transport to and storage at 4 °C at ANSTO. To minimise contamination during core splitting and subsampling (October, 2018, ANSTO), we wiped working benches, sampling and cutting tools with bleach and 80% EtOH, changed gloves immediately when contaminated with sediment, and wore appropriate PPE at all times (gloves, facemask, hairnet, disposable lab gown). We removed the outer ~ 1 cm of the working core-half (working from bottom to the top of the core), then collected plunge samples by pressing sterile 15 mL centrifuge tubes (Falcon) ~ 2 cm deep into the sediment core centre at 5 cm depth intervals. All sedaDNA samples were immediately frozen at − 20 °C and transported to the Australian Centre for Ancient DNA (ACAD), Adelaide. For this study, a total of 30 samples were selected from both cores, representing ~ 2 cm depth intervals within the upper 36 cm of MCS3 and GC2, and ~ 20 cm depth intervals in GC2 downcore from 36 cm below seafloor (cmbsf).
    Figure 2

    Map of coring sites, inshore (MCS3) and offshore (GC2) of Maria Island, Tasmania, South-East Australian Coast. Map created in ODV (Schlitzer, R., Ocean Data View, https://odv.awi.de, 2018).

    Full size image

    SedaDNA extractions
    We prepared sedaDNA extracts and sequencing libraries at ACAD’s ultra-clean ancient (GC2) and forensic (MCS3) facilities following ancient DNA decontamination standards24. All sample tubes were wiped with bleach on the outside prior to entering the laboratory for subsampling. Our extraction method followed the optimised (“combined”) approach outlined in detail previously7, with a minor modification in that we stored the final purified DNA in TLE buffer (50 μL Tris HCL (1 M), 10 μL EDTA (0.5 M), 5 mL nuclease-free water) instead of customary Elution Buffer (Qiagen) (see Supplementary Material Methods). To monitor laboratory contamination, we used extraction blank controls (EBCs) by processing 1–2 (depending on the extraction-batch size) empty bead-tubes through the extraction protocol. A total of 30 extracts were generated from sediment samples and 7 extracts from EBCs.
    RNA-baits design
    We designed two RNA hybridisation bait-sets, one targeting phyto- and zooplankton for a more detailed overview of plankton diversity (hereafter ‘Planktonbaits1’), and one targeting specific plankton organisms and their predators to enable detailed investigation of HABs, especially those caused by dinoflagellates, in coastal marine ecosystems (hereafter, ‘HABbaits1’). Planktonbaits1 was based on 18S-V9 and 16S-V4 sequences of major phyto- and zooplankton groups, whereas we designed HABbaits1 from a collection of LSU, SSU, D1-D2-LSU, COI, rbcL and ITS sequences for specific marine target organisms often associated with HABs in our study region (Table 1).
    Table 1 Planktonbaits1 and HABbaits1.
    Full size table

    Planktonbaits1
    To design Planktonbaits1 we downloaded the W2_V9_PR2 database25 (containing 18S-V9 rDNA and rRNA sequences of marine protists and their predators, downloaded on 30 July 2018), deduplicated using Geneious software (Geneious NZ), and filtered the remaining sequences to keep only those from major phyto- and zooplankton groups (Table 1). In collaboration with Arbor Biosciences, USA, we designed RNA baits based on these 15,035 target sequences by masking any repeating Ns (i.e., any consecutive Ns that were  83% overlap, and  > 95% identity). We added five 16S-V4 rRNA sequences (the prokaryotic equivalent of the small subunit ribosomal rRNA gene) of common marine cyanobacteria (one Trichodesmium erythraeum sequence, and two Prochlorococcus marinus and Synechococcus sp. sequences each), acquired from the SILVA database26; Table 1). To check and ensure target-taxon specificity, these five cyanobacterial sequences were mapped against a non-target sequence (Escherichia coli 16S RefSeq sequence NR_114042.1), then reverse-transcribed to DNA, and BLASTed to the same NCBI RefSeq database described above. BLAST hits of  More

  • in

    Adaptive evolution in a conifer hybrid zone is driven by a mosaic of recently introgressed and background genetic variants

    1.
    Abbott, R. D. et al. Hybridization and speciation. J. Evol. Bio. 26, 229–246 (2013).
    CAS  Article  Google Scholar 
    2.
    de Lafontaine, G. & Bousquet, J. Asymmetry matters: a genomic assessment of directional biases in gene flow between hybridizing spruces. Ecol. Evol. 7, 3883–3893 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    3.
    Todesco, M. et al. Hybridization and extinction. Evol. Appl. 9, 892–908 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Anderson, E. & Stebbins, G. L. Hybridization as an evolutionary stimulus. Evolution 8, 378–388 (1954).
    Article  Google Scholar 

    5.
    De La Torre, A. R., Li, Z., Van de Peer, Y. & Ingvarsson, P. K. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol. Bio. Evol. 34, 1363–1377 (2017).
    Article  CAS  Google Scholar 

    6.
    Critchfield, W. B. Hybridization and classification of the white pines (Pinus section Strobus). Taxon 35, 647–656 (1986).
    Article  Google Scholar 

    7.
    Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Bouille, M. & Bousquet, J. Trans-species shared polymorphisms at orthologous nuclear gene loci among distant species in the conifer Picea (Pinaceae): implications for long term maintenance of genetic diversity in trees. Am. J. Bot. 92, 63–73 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    9.
    Hamilton, J. A., Lexer, C. & Aitken, S. N. Genomic and phenotypic architecture of a spruce hybrid zone (Picea sitchensis × P. glauca). Mol. Ecol. 22, 827–841 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Hamilton, J. & Miller, J. Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv. Biol. 30, 33–41 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Jagoda, E. et al. Disentangling immediate adaptive introgression from selection on standing introgressed variation in humans. Mol. Biol. Evol. 35, 623–630 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Bresadola, L. et al. Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits. N. Phytol. 223, 2076–2089 (2019).
    CAS  Article  Google Scholar 

    13.
    Suarez-Gonzalez, A. et al. Genomic and functional approaches reveal a case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood). Mol. Ecol. 25, 2427–2442 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Suarez-Gonzalez, A., Hefer, C. A., Lexer, C., Cronk, Q. C. & Douglas, C. J. Scale and direction of adaptive introgression between black cottonwood (Populus trichocarpa) and balsam poplar (P. balsamifera). Mol. Ecol. 27, 1667–1680 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Leroy, T. et al. Adaptive introgression as a driver of local adaptation to climate in European white oaks. New. Phytol. 226, 1171–1182 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Hufford, M.B. et al. Genomic signature of crop-wild introgression in Maize. PLoS Genet. 9, e100347 (2013).
    Article  Google Scholar 

    17.
    Ma, Y. et al. Ancient introgression drives adaptation to cooler and drier mountain habitats in a cypress species complex. Commun. Biol. 18, 210–213 (2019).
    Google Scholar 

    18.
    Pyhäjärvi, T., Hufford, M. B., Mezmouk, S. & Ross-Ibarra, J. Complex patterns of local adaptation in Teosinte. Genome Biol. Evol. 5, 1594–1609 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Mei, W., Stetter, M. G. & Stitzer, M. C. Adaptation in plant genomes: bigger is different. Am. J. Bot. 105, 16–19 (2019).
    Article  Google Scholar 

    20.
    Syring, J. et al. Widespread genealogical non-monophyly in species of the Pinus subgenus. Strobus. Syst. Biol. 56, 163–181 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Menon, M. et al. The role of hybridization during ecological divergence of southwestern white pine (Pinus strobiformis) and limber pine (P. flexilis). Mol. Ecol. 27, 1245–1260 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    22.
    Looney, C. E. & Waring, K. M. Pinus strobiformis (southwestern white pine) stand dynamics, regeneration, and disturbance ecology: a review. For. Ecol. Manag. 287, 90–102 (2013).
    Article  Google Scholar 

    23.
    Schoettle, A. W. & Rochelle, S. G. Morphological variation of Pinus flexilis (Pinaceae), a bird-dispersed pine, across a range of elevations. Am. J. Bot. 87, 1797–1806 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Frankis, M. P. The high altitude white pines (Pinus L. subgenus Strobus Lemmon, Pinaceae) of Mexico and the adjacent SW USA. Int. Dendrol. Soc. Yearb. 2008, 64–72 (2009).
    Google Scholar 

    25.
    Tomback, D. F. et al. Seed dispersal in limber and southwestern white pine: comparing core and peripheral populations. In The Future of High Elevation, Five-Needle White Pines in Western North America: Proceedings of the High Five Symposium. Proceedings RMRS-P- 63 69–71 (US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, 2011).

    26.
    Moreno-Letelier, A., Ortíz-Medrano, A. & Piñero, D. Niche divergence versus neutral processes: combined environmental and genetic analyses identify contrasting patterns of differentiation in recently diverged pine species. PLoS ONE 8, e78228 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Moreno-Letelier, A. & Barraclough, T. G. Mosaic genetic differentiation along environmental and geographic gradients indicate divergent selection in a white pine species complex. Evol. Ecol. 29, 733–748 (2015).
    Article  Google Scholar 

    28.
    Little, E. L. Jr. Atlas of United States Trees. Vol. 5, 22 (Florida. Misc. Publ. 1361, U.S. Department of Agriculture, Forest Service, 1978).

    29.
    Bisbee, J. Cone morphology of the Pinus ayacahuite-flexilis complex of the southwestern United States and Mexico. Bull. Cupressus Conserv. Proj. 3, 3–33 (2014).
    Google Scholar 

    30.
    Borgman, E. M., Schoettle, A. W. & Angert, A. L. Assessing the potential for maladaptation during active management of limber pine populations: a common garden study detects genetic differentiation in response to soil moisture in the Southern Rocky Mountains. Can. J. For. Res. 45, 496–505 (2015).
    CAS  Article  Google Scholar 

    31.
    Neale, D. B. & Kremer, A. Forest tree genomics: growing resources and applications. Nat. Rev. Genet. 12, 111–122 (2011).
    CAS  PubMed  Article  Google Scholar 

    32.
    Mitton, J., Kreiser, B. R. & Latta, R. G. Glacial refugia of limber pine (Pinus flexilis James) inferred from the population structure of mitochondrial DNA. Mol. Ecol. 9, 91–97 (2000).
    CAS  PubMed  Article  Google Scholar 

    33.
    Jorgensen, S., Hamrick, J. L. & Wells, P. V. Regional patterns of genetic diversity in Pinus flexilis (Pinaceae) reveal complex species history. Am. J. Bot. 89, 792–800 (2002).
    PubMed  Article  Google Scholar 

    34.
    Goodrich, B. A., Waring, K. M. & Kolb, T. E. Genetic variation in Pinus strobiformis growth and drought tolerance from southwestern US populations. Tree Physiol. 36, 1219–1235 (2016).
    CAS  PubMed  Article  Google Scholar 

    35.
    DaBell, J. Pinus Strobiformis Response to an Elevational Gradient and Correlation with Source Climate. Master’s thesis, Northern Arizona University (2017).

    36.
    Francis, J. A. & Vavrus, S. J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 10, 014005 (2015).
    Article  Google Scholar 

    37.
    Rellstab, C. et al. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Coop, G., Witonsky, D., Di Rienzo, A. & Pritchard, J. K. Using environmental correlations to identify loci underlying local adaptation. Genetics 185, 1411–1423 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Levitt J. Responses of Plants to Environmental Stress. Chilling, Freezing, and High Temperature Stresses 2nd edn (Academic Press, 1980).

    40.
    Bierne, N., Welch, J., Loire, E., Bonhomme, F. & David, P. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol. Ecol. 20, 2044–2072 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. 1, 3–14 (2010).
    Article  Google Scholar 

    42.
    Harrison, K. A. et al. Signatures of polygenic adaptation associated with climate across the range of a threatened fish species with high genetic connectivity. Mol. Ecol. 26, 6253–6269 (2017).
    Article  Google Scholar 

    43.
    Lind, B. M. et al. Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA. Mol. Ecol. 26, 3168–3185 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Csillery, K. et al. Detecting short spatial scale local adaptation and epistatic selection in climate‐related candidate genes in European beech (Fagus sylvatica) populations. Mol. Ecol. 23, 4696–4708 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Schumer, M. & Brandvain, Y. Determining epistatic selection in admixed populations. Mol. Ecol. 25, 2577–2591 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Menon, M. et al. Tracing the footprints of a moving hybrid zone under a demographic history of speciation with gene flow. Evol. Appl. 13, 195–209 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Whitney, K. D. et al. Quantitative trait locus mapping identifies candidate alleles involved in adaptive introgression and range expansion in a wild sunflower. Mol. Ecol. 24, 2194–2211 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Chhatre, V. E., Evan, L. M., DiFazio, S. P. & Keller, S. R. Adaptive introgression and maintenance of a trispecies hybrid complex in range‐edge populations of Populus. Mol. Ecol. 27, 4820–4838 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    49.
    Aitken, S. A. et al. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    50.
    Alberto, F. J. et al. Potential for evolutionary responses to climate change—evidence from tree populations. Glob. Chn. Bio. 19, 1645–1661 (2013).
    Article  Google Scholar 

    51.
    Kirkpatrick, M. & Barton, N. H. Evolution of a species’ range. Am. Nat. 150, 1–23 (1997).
    CAS  PubMed  Article  Google Scholar 

    52.
    Stebbins, G. L. The role of hybridization in evolution. Proc. Am. Philos. Soc. 103, 231–251 (1959).
    Google Scholar 

    53.
    Petit, R. J. & Excoffier, L. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386–393 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Barton, N. H. & Hewitt, G. M. Analysis of hybrid zones. Annu. Rev. Ecol. Evol. S 16, 113–148 (1985).
    Article  Google Scholar 

    55.
    Mimura, M., Mishima, M., Lascoux, M. & Yahara, T. Range shift and introgression of the rear and leading populations in two ecologically distinct Rubus species. BMC Evol. Biol. 2014, 209 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    56.
    De La Torre, A. R., Wang, T., Jaquish, B. & Aitken, S. N. Adaptation and exogenous selection in a Picea glauca × Picea engelmannii hybrid zone: implications for forest management under climate change. N. Phytol. 201, 687–699 (2014).
    Article  CAS  Google Scholar 

    57.
    Hamilton, J. R., De La Torre, A. R. & Aitken, S. N. Fine-scale environmental variation contributes to introgression in a three-species spruce hybrid complex. Tree Genet. Genomes 11, 1–14 (2015).
    Article  Google Scholar 

    58.
    Fraïsse, C. K., Belkhir, J., Welch, J. & Bierne, N. Local interspecies introgression is the main cause of extreme levels of intraspecific differentiation in mussels. Mol. Ecol. 25, 269–770 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Wu, D. D. et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat. Ecol. Evol. 2, 1139–1145 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Kremer, A. & Le Corre, V. Decoupling of differentiation between traits and their underlying genes in response to divergent selection. Heredity 10, 375–385 (2012).
    Article  Google Scholar 

    61.
    Eckert, A. J. et al. Local adaptation at fine spatial scales: an example from sugar pine (Pinus lambertiana, Pinaceae). Tree Genet. Genomes 11, 42 (2015).
    Article  Google Scholar 

    62.
    Hornoy, B., Pavy, N., Gérardi, S., Beaulieu, J. & Bousquet, J. Genetic adaptation to climate in white spruce involves small to moderate allele frequency shifts in functionally diverse genes. Genome Biol. Evol. 7, 3269–3285 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Rieseberg, L. H. et al. Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129, 149–165 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Lewontin, R. C. & Birch, L. C. Hybridization as a source of variation for adaptation to new environments. Evolution 20, 315–336 (1966).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Pavy, N. et al. The heterogeneous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers. Heredity 108, 273–284 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Kim, B. Y., Huber, C. D. & Lohmueller, K. Deleterious variation shapes the genomic landscape of introgression. PLoS Genet. 14, e1007741 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173, 891–900 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Christe, C. et al. Adaptive evolution and segregating load contribute to the genomic landscape of divergence in two tree species connected by episodic gene flow. Mol. Ecol. 26, 59–76 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Lu, M., Hodgins, K. A., Degner, J. C. & Yeaman, S. Purifying selection does not drive signatures of convergent local adaptation of lodgepole pine and interior spruce. BMC Evol. Biol. 19, 110 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Whitlock, M. C. Temporal fluctuations in demographic parameters and the genetic variance among populations. Evolution 46, 608–615 (1992).
    PubMed  Article  Google Scholar 

    71.
    Lexer, C. et al. Genomic admixture analysis in European Populus spp. reveals unexpected patterns of reproductive isolation and mating. Genetics 186, 699–712 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Lowry, D. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).
    CAS  PubMed  Article  Google Scholar 

    73.
    Parchman, T. L. et al. RADseq approaches and applications for forest tree genetics. Tree Genet. Genomes 14, 39 (2018).
    Article  Google Scholar 

    74.
    Gossmann, T. I., Keightley, P. D. & Eyre-Walker, A. The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biol. Evol. 4, 658–667 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    75.
    Lexer, C. & Widmer, A. The genic view of plant speciation: recent progress and emerging questions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3023–3036 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    76.
    Bucholz, E. Early Growth, Water Relations and Growth: Common Garden Studies of Pinus Strobiformis under Climate Change. PhD dissertation, Northern Arizona University (2020).

    77.
    Lotterhos, K. & Whitlock, M. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).
    PubMed  Article  Google Scholar 

    78.
    Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Goudet, J. hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).
    Article  Google Scholar 

    80.
    R Core Team. R v.3.3.2: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

    81.
    Parchman, T. L. et al. Genome -wide association genetics of an adaptive trait in lodgepole pine: association mapping of serotiny. Mol. Ecol. 21, 2991–3005 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Puritz, J. B., Hollenbeck, C. M. & Gold, J. R. dDocent: a RADseq, variant -calling pipeline designed for population genomics of non -model organisms. PeerJ 2, e431 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    83.
    Wang, T., Hamann, A., Spittlehouse, D. L. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    84.
    Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Günther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    86.
    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).
    Google Scholar 

    87.
    Camacho et al. BLAST+: architecture and applications. BMC Bioinfo. 10, 421 (2009).
    Article  CAS  Google Scholar 

    88.
    Warnes, G., Gorjanc, G., Leisch, F. & Man, M. genetics: Population Genetics. R package version 1.3.8.1 (2013).

    89.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2 (2013).

    90.
    Legendre, P. & Legendre, L. Numerical Ecology 2nd English edn (Elsevier, 1998).

    91.
    Montgomery, D. C. & Peck, E. A. Introduction to Linear Regression Analysis 2nd edn (John Wiley & Sons, 1992).

    92.
    Liu, Q. Variation partitioning by partial redundancy analysis (RDA). Environmetrics 8, 75–85 (1997).
    CAS  Article  Google Scholar 

    93.
    Kemppainen, P. et al. Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure. Mol. Ecol. Resour. 15, 1031–1045 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Ohta, T. Linkage disequilibrium with the island model. Genetics 101, 139–155 (1982).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    95.
    Beissinger, T. M. et al. Using the variability of linkage disequilibrium between subpopulations to infer sweeps and epistatic selection in a diverse panel of chickens. Heredity 116, 58–166 (2015).
    Google Scholar 

    96.
    Hijmans, R. J. geosphere: Spherical trigonometry. R package version 1.5‐7 (2017).

    97.
    Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).
    Article  Google Scholar 

    98.
    Gompert, Z. & Buerkle, A. C. introgress: methods for analyzing introgression between divergent lineages. R package version 1.2.3 (2012).

    99.
    Gompert, Z. & Buerkle, C. A. A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol. Ecol. 18, 1207–1224 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    100.
    Janoušek, V. et al. Genome‐wide architecture of reproductive isolation in a naturally occurring hybrid zone between Mus musculus musculus and M. m. domesticus. Mol. Ecol. 21, 3032–3047 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    101.
    Hancock, A. M. et al. Adaptation to climate across the Arabidopsis thaliana genome. Science 334, 83–86 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    102.
    Menon, M. et al. Data from: adaptive evolution in a confier hybrid zone is driven by a mosaic of recently introgressed and background genetic variants. Figshare, Dataset https://doi.org/10.6084/m9.figshare.c.5130104 (2020).

    103.
    Shirk, A. J. et al. Southwestern white pine (Pinus strobiformis) species distribution models predict large range shift and contraction due to climate change. For. Ecol. Manag. 411, 176–186 (2018).
    Article  Google Scholar 

    104.
    Little, E. L., Jr. Atlas of United States Trees, Vol. 1., Conifers and important hardwoods. Misc. Publ. 1146, 320 (U.S. Department of Agriculture, Forest Service, 1971).

    105.
    Menon, M. et al. Code from: adaptive evolution in a confier hybrid zone is driven by a mosaic of recently introgressed and background genetic variants. Zenodo, Dataset https://doi.org/10.5281/zenodo.4054085 (2020). More

  • in

    C-STABILITY an innovative modeling framework to leverage the continuous representation of organic matter

    C-STABILITY description
    Organic matter representation
    The description of SOM in C-STABILITY consists of several subdivisions. First, organic matter is separated in two main pools, one for living microbes (noted Cmic) and one for the substrate (noted Csub) (Fig. 1a). Several groups of living microbes can be considered simultaneously (e.g., bacteria, fungi, etc.) and C-STABILITY classes them into functional communities. Second, SOM is also separated between several biochemical classes, e.g., cellulose (or plant sugar), lignin, lipid, protein, and microbial sugar in this study (Fig. 1a). Third for each biochemical class, substrate accessible to its enzymes (noted ac) is separated from substrate which is inaccessible (noted in) due to specific physicochemical conditions, e.g., interaction between different molecules, inclusion in aggregates, sorption on mineral surfaces, etc.
    Polymerization is a driver of interactions between substrate and living microbes and a continuous description of the degree of organic matter polymerization (noted p) is provided for each of these pools, as a distribution (Fig. 1b). The polymerization axis is oriented from the lowest to the highest degree of polymerization. A right-sided distribution corresponds to a highly polymerized substrate whereas a left-sided distribution corresponds to monomer or small oligomer forms. For each biochemical class ∗ (∗ = cellulose, lignin, lipid, etc.), the polymerization range is identical for both accessible and inaccessible pools. The total amount of C (in gC) in the accessible and the inaccessible pools of any biochemical class is as follows:

    $${C}_{* }^{rm{ac}}=int_{{p}_{* }^{rm{min}}}^{{p}_{* }^{rm{max}}}{chi }_{* }^{rm{ac}}(p)dp,$$
    (1)

    $${C}_{* }^{rm{in}}=int_{{p}_{* }^{rm{min}}}^{{p}_{* }^{rm{max}}}{chi }_{* }^{rm{in}}(p)dp,$$
    (2)

    where ({p}_{* }^{rm{min}}) and ({p}_{* }^{rm{max}}) are the minimum and maximum degrees of polymerization of the biochemical class ∗ and ({chi }_{* }^{rm{ac}}), ({chi }_{* }^{rm{in}}) (gC.p−1) are the polymerization distributions. Finally, the total substrate C pool is defined as the sum of all biochemical pools,

    $${C}_{rm{sub}}=sum _{* }left({C}_{* }^{rm{in}}+{C}_{* }^{rm{ac}}right).$$
    (3)

    Accessibility to microbe uptake is described by the interval (also called domain) ({{mathcal{D}}}_{u}), which corresponds to small substrate compounds, monomers, dimers or trimers smaller than 600 Daltons1, that microbes are able to take up (in red in Fig. 1b). Besides, accessibility to enzymes occurs in the ({{mathcal{D}}}_{rm{enz}}) domain (in blue in Fig. 1b). Over time the substrate accessible to enzymes is depolymerized and its distribution shifts toward ({{mathcal{D}}}_{u}) where it eventually becomes accessible to microbe uptake.
    The numerical rules chosen to represent polymerization are as simple as possible in the context of theoretical simulations. Each pool is associated with a polymerization interval ([{p}_{* }^{rm{min}},{p}_{* }^{rm{max}}]) of length two. Initial substrate distributions are represented by Gaussian distributions centered at a relative distance of 25% from ({p}_{* }^{rm{max}}) (here 0.5), with the standard deviation set at 5% of polymerization interval length (here 0.1). In the accessible pool, the microbial uptake domains ({{mathcal{D}}}_{u}) are positioned at the left of the interval with a relative length of 20% (here 0.4), and enzymatic domains ({{mathcal{D}}}_{rm{enz}}) overlap the entire polymerization intervals.
    Organic matter dynamics
    As described in Fig. 1, three processes drive OM dynamics: (i) enzymatic activity, (ii) microbial uptake, biotransformation, and mortality, and (iii) changes in local physicochemical conditions. First, enzymes have a depolymerization role, which enables the transformation of highly polymerized substrate into fragments accessible to microbes. Second, microbial uptake of substrate is only possible for molecules having a very small degree of polymerization. When C is taken up, a fraction is respired and the remaining is metabolized, and biotransformed into microbial molecules that return to the substrate upon microbe death. Each microbial group has a specific signature that describes its composition in terms of biochemistry and polymerization. Third, changes in local substrate conditions drive exchanges between substrate accessible and inaccessible to enzymes (e.g., aggregate formation and break). All of these processes are considered with a daily time step (noted d).
    Enzymatic activity Enzymes are specific to biochemical classes. They are not individually reported, but rather as a family of enzymes contributing to the depolymerization of a biochemical substrate (e.g., combined action of endoglucanase, exoglucanase, betaglucosidase, etc., on cellulose will be reported as cellulolytic action). Figure 2 describes how substrate polymerization distributions are impacted by enzymes. The overall functioning of each enzyme family (noted enz) is described by two parameters: a depolymerization rate ({tau }_{rm{enz}}^{0}) providing the number of broken bonds per time unit and a factor accounting for the type of substrate cleavage αenz. The term ({F}_{rm{enz}}^{rm{act}}) (gC.p−1.d−1) represents the change in polymerization of ({chi }_{* }^{rm{ac}}) due to enzyme activity for all (pin {{mathcal{D}}}_{rm{enz}}),

    $${F}_{rm{enz}}^{rm{act}}({chi }_{* }^{rm{ac}},p,t)= -{tau }_{rm{enz}}(t){chi }_{* }^{rm{ac}}(p,t)\ +int_{{{mathcal{D}}}_{rm{enz}}}{{mathcal{K}}}_{rm{enz}}(p,p^{prime} ){tau }_{rm{enz}}(t){chi }_{* }^{rm{ac}}(p^{prime} ,t)dp^{prime}.$$
    (4)

    The depolymerization rate, τenz (d−1), is expressed as a linear function of microbial C biomass Cmic (gC),

    $${tau }_{rm{enz}}(t)={tau }_{rm{enz}}^{0}{C}_{rm{mic}}(t),$$
    (5)

    where ({tau }_{rm{enz}}^{0}) (g({,}_{C}^{-1}).d−1) is the action rate of a given enzyme per amount of microbial C. If several microbial communities are associated with the same enzyme family, we replace the Cmic term by a weighted sum of the C mass of all communities involved in Eq. (5). The ({{mathcal{K}}}_{rm{enz}}) (p−1) kernel provides the polymerization change from (p^{prime}) to p,

    $${{mathcal{K}}}_{rm{enz}}(p,p^{prime} )={{mathbb{1}}}_{ple p^{prime} }({alpha }_{rm{enz}}+1)frac{{(p-{p}_{* }^{rm{min}})}^{{alpha }_{rm{enz}}}}{{(p^{prime} -{p}_{* }^{rm{min}})}^{{alpha }_{rm{enz}}+1}},$$
    (6)

    where ({{mathbb{1}}}_{ple p^{prime} }) equals 1 if (ple p^{prime}) and 0 otherwise. The αenz cleavage factor denotes the enzyme efficiency to generate a large amount of small fragments and to shift the substrate polymerization distribution toward the microbe uptake domain ({{mathcal{D}}}_{u}) (Fig. 2). αenz = 1 is typical of the action of endo-cleaving enzymes, which randomly disrupts any bond of its polymeric substrate and generates oligomers. The shift toward ({{mathcal{D}}}_{u}) is slower if αenz increases. This is characteristic of exo-cleaving enzymes, which attack the end-members of their polymeric substrate, generate small fragments, and preserve highly polymerized compounds. To satisfy the mass balance, the kernel verifies (int {{mathcal{K}}}_{rm{enz}}(p,p^{prime} )dp=1). Then ({F}_{rm{enz}}^{rm{act}}) does not change the total C mass but only the polymerization distribution (i.e., (int {F}_{rm{enz}}^{rm{act}}(chi ,p,t)dp=0)).
    Microbial biotransformation Each microbial group (denoted mic) produces new organic compounds from the assimilated C. After death, the composition of the necromass returning to each biochemical pool ∗ of SOM is assumed to be constant, accessible and is depicted with a set of distributions smic,∗, named signature. Each distribution smic,* (p–1) describes the polymerization of the dead microbial compounds returning to the pool ∗. The signature is normalized and unitless to ensure mass conservation, i.e., if we note that,

    $${S}_{rm{mic},* }=mathop{int}nolimits_{{p}_{* }^{rm{min}}}^{{p}_{* }^{rm{max}}}{s}_{rm{mic},* }(p)dp,$$
    (7)

    then we have ∑*Smic,* = 1.
    For each accessible pool of substrate, the term ({F}_{rm{mic},* }^{rm{upt}}) describes how the microbes utilize the substrate available in the microbial uptake ({{mathcal{D}}}_{u}) domain (Fig. 1b). For all (pin {{mathcal{D}}}_{u}),

    $${F}_{rm{mic},* }^{rm{upt}}({chi }^{rm{ac}},p,t)={u}_{rm{mic},* }^{0}{C}_{rm{mic}}(t){chi }_{* }^{rm{ac}}(p,t),$$
    (8)

    where ({u}_{rm{mic},* }^{0}) (g({,}_{C}^{-1}).d−1) is the uptake rate per amount of microbe C. The substrate uptake rate linearly depends on the microbial C quantity.
    Depending on a carbon use efficiency parameter ({e}_{rm{mic},* }^{0}) (ratio between microbe assimilated C and taken up C), taken up C is respired or assimilated and biotransformed into microbial metabolites. This induces a change in the biochemistry and polymerization (Fig. 1a).
    Finally, microbial necromass returns to the substrate pools with a specific mortality, which linearly depends on the microbial C quantity,

    $${F}_{rm{mic},* }^{rm{nec}}(p,t)={m}_{rm{mic}}^{0}{C}_{rm{mic}}(t){s}_{rm{mic},* }(p),$$
    (9)

    where ({m}_{rm{mic}}^{0}) (d−1) is the mortality rate of the microbe (Fig. 1a).
    Change in local physicochemical conditions The polymerization of a substrate inaccessible to its enzymes remains unchanged over time. A specific event changing the accessibility to enzymes (e.g., aggregate disruption or desorption from mineral surfaces) is modeled with a flux from the inaccessible to the accessible pool. Transfer between these pools is described by the ({F}_{rm{ac},* }^{rm{loc}}) term for each biochemistry ∗,

    $${F}_{rm{ac},* }^{rm{loc}}(p,t)={tau }_{rm{tr}}^{rm{ac}}{chi }_{* }^{rm{in}}(p,t)$$
    (10)

    where ({tau }_{rm{tr},* }^{rm{ac}}) (d−1) is rate of local condition change toward accessibility.
    Transfer in the opposite way (e.g., aggregate formation, association with mineral surfaces) is described by the ({F}_{rm{in},* }^{rm{loc}}) term,

    $${F}_{rm{in},* }^{rm{loc}}(p,t)={tau }_{rm{tr}}^{rm{in}}{chi }_{* }^{rm{ac}}(p,t)$$
    (11)

    where ({tau }_{rm{tr},* }^{rm{in}}) (d−1) is rate of local condition change toward inaccessibility.
    Organic matter input We defined time dependent distributions for carbon input fluxes. There are denoted ({i}_{* }^{rm{ac}}) and ({i}_{* }^{rm{in}}) (gC.p−1.d−1) for both accessible and inaccessible pools of biochemical classes ∗. The total carbon input flux, expressed in gC.d−1, is:

    $$I(t)=sum _{* }int_{{p}_{* }^{rm{min}}}^{{p}_{* }^{rm{max}}}left({i}_{* }^{rm{in}}(p,t)+{i}_{* }^{rm{ac}}(p,t)right)dp.$$
    (12)

    General dynamics equations The distribution dynamics for each biochemical class * is obtained from Eqs. (4)–(6) and (8)–(11),

    $$frac{partial {chi }_{* }^{rm{ac}}}{partial t}(p,t)= , {F}_{rm{ac},* }^{loc}(p,t)-{F}_{rm{in},* }^{rm{loc}}(p,t)\ +{F}_{rm{enz}}^{rm{act}}({chi }_{* }^{rm{ac}},p,t) +sum _{{rm{mic}}}left({F}_{rm{mic},* }^{rm{nec}}(p,t)-{F}_{rm{mic},* }^{rm{upt}}({chi }^{rm{ac}},p,t)right) +{i}_{* }^{rm{ac}}(p,t),$$
    (13)

    $$frac{partial {chi }_{* }^{rm{in}}}{partial t}(p,t)={F}_{rm{in},* }^{rm{loc}}(p,t)-{F}_{rm{ac},* }^{rm{loc}}(p,t) +{i}_{* }^{rm{in}}(p,t).$$
    (14)

    Then, the expended equations are,

    $$frac{partial {chi }_{* }^{rm{ac}}}{partial t}(p,t)= , {tau }_{rm{tr},* }^{rm{ac}}{chi }_{* }^{rm{in}}(p,t)-{tau }_{rm{tr},* }^{rm{in}}{chi }_{* }^{rm{ac}}(p,t)\ -{tau }_{rm{enz}}^{0}sum _{,text{mic},}{C}_{rm{mic}}(t){chi }_{* }^{rm{ac}}(p,t)\ +{tau }_{rm{enz}}^{0}sum _{,text{mic},}{C}_{rm{mic}}(t)({alpha }_{rm{enz}}+1)\ int_{p}^{{p}_{* }^{rm{max}}}frac{{(p-{p}_{* }^{rm{min}})}^{{alpha }_{rm{enz}}}}{{(p^{prime} -{p}_{* }^{rm{min}})}^{{alpha }_{rm{enz}}+1}}{chi }_{* }^{rm{ac}}(p^{prime} ,t)dp^{prime} \ +sum _{,text{mic},}{C}_{rm{mic}}(t){m}_{rm{mic}}^{0}{s}_{rm{mic},* }(p)\ -sum _{,text{mic},}{C}_{rm{mic}}(t){{mathbb{1}}}_{{{mathcal{D}}}_{u}}(p){u}_{rm{mic},* }^{0}{chi }_{* }^{rm{ac}}(p,t)\ +{i}_{* }^{rm{ac}}(p,t),$$
    (15)

    $$frac{partial {chi }_{* }^{rm{in}}}{partial t}(p,t)={tau }_{rm{tr},* }^{rm{in}}{chi }_{* }^{rm{ac}}(p,t)-{tau }_{rm{tr},* }^{rm{ac}}{chi }_{* }^{rm{in}}(p,t)+{i}_{* }^{rm{in}}(p,t).$$
    (16)

    where ({{mathbb{1}}}_{{{mathcal{D}}}_{u}}(p)) equals 1 if (pin {{mathcal{D}}}_{u}) and 0 otherwise.
    The dynamics of the total substrate is ruled by,

    $$frac{d{C}_{rm{sub}}(t)}{dt}=sum _{* }int_{{p}_{* }^{rm{min}}}^{{p}_{* }^{rm{max}}}left(frac{partial {chi }_{* }^{rm{ac}}}{partial t}(p,t)+frac{partial {chi }_{* }^{rm{in}}}{partial t}(p,t)right)dp.$$
    (17)

    The dynamics of microbial Cmic is obtained by,

    $$frac{d{C}_{rm{mic}}}{dt}(t)=-{m}_{rm{mic}}^{0}{C}_{rm{mic}}(t) +sum _{* }{u}_{rm{mic},* }^{0}{e}_{rm{mic},* }^{0}{C}_{rm{mic}}(t)int_{{{mathcal{D}}}_{u}}{chi }_{* }^{rm{ac}}(p,t)dp,$$
    (18)

    and the CO2 flux (gC.d−1) produced by the microbes is given by,

    $${F}_{rm{CO}_{2}}(t)={C}_{rm{mic}}(t)sum _{* }{u}_{rm{mic},* }^{0}left(1-{e}_{rm{mic},* }^{0}right){int}_{{{mathcal{D}}}_{u}}{chi }_{* }^{rm{ac}}(p,t)dp.$$
    (19)

    Model implementation
    The model was implemented in the Julia© language63,64. An explicit finite difference scheme approximates the solutions of integro-differential equations with a Δt = 0.1d time step and a Δp = 0.01p polymerization step. Differential equations were solved with a Runge–Kutta method.
    Scenarios
    Scenario 1: cellulose decomposition kinetics and model sensitivity
    A first simulation was run to depict cellulose depolymerization and uptake by a decomposer community over one year (see parameters in Table 1). A global sensitivity analysis focusing on the residual cellulose variable was made to determine (i) the relative influence of parameters, and (ii) how parameters influence varies over time (Fig. 3c). A specific attention was given on enzymatic parameters (especially α) to verify the pertinence of their introduction in the model.
    We considered a specific method defined by Sobol for calculating sensitivity indices65. It provides the relative contribution of the model parameters to the total model variance, here at different times of the simulation. The method relies on the same principle as the analysis of variance. It was designed to decompose the variance of a model output according to the various degrees of interaction between the n uncertain parameters ({({x}_{i})}_{iin {1,n}}). Formally, by assuming that the parameter uncertainties are independent, the model output, denoted y, could be expressed as a sum of functions that take parameter interactions into account,

    $$y={f}_{0}+mathop{sum }limits_{i=1}^{n}{f}_{i}({x}_{i})+mathop{sum }limits_{{i,j=1}atop {ine j}}^{n}{f}_{i,j}({x}_{i},{x}_{j})+…+{f}_{1, , …, , n}({x}_{1},…,{x}_{n}).$$
    (20)

    Under independence assumptions between models parameters variability, model variance is:

    $${{mathbb{V}}ar}(y)= , mathop{sum }limits_{i=1}^{n}{{mathbb{V}}ar}({f}_{i}({x}_{i}))\ +mathop{sum }limits_{{i,j=1}atop {ine j}}^{n}{{mathbb{V}}ar}({f}_{i,j}({x}_{i},{x}_{j}))\ +…+{{mathbb{V}}ar}({f}_{1, , …, , n}({x}_{1},…,{x}_{n})).$$
    (21)

    This variance decomposition leads to the definition of several sensitivity indices. The first-order Sobol’s index of each parameter is,

    $${S}_{i}=frac{{{mathbb{V}}ar}({f}_{i}({x}_{i}))}{{{mathbb{V}}ar}(y)},$$
    (22)

    and higher order indices are defined by:

    $${S}_{i,j}=frac{{{mathbb{V}}ar}({f}_{i,j}({x}_{i},{x}_{j}))}{{{mathbb{V}}ar}(y)},$$
    (23)

    and so on. These indices are unique, with a value of 0–1 and their sum equals 1. Here we focused on Sobol’s first-order indices as they are usually sufficient to give a straightforward interpretation of the actual influence of different parameters66,67. We computed the sensitivity of the model outputs at several times of the simulation to highlight the role of model’s parameters at different phases. Figure 3c shows the normalized Sobol’s first-order indices to illustrate the relative influence of the model parameters on residual cellulose-C amount. Sobol’s indices were estimated using a Monte Carlo estimator of the variance68. This was performed for a small variation in parameter values (±5% uniform variability), by running 12,000 model simulations for the Monte Carlo sampling.
    Scenario 2: effect of substrate inaccessibility to enzyme on litter decomposition kinetics
    A simulation of lignocellulose (76% cellulose, 24% lignin) degradation was performed by taking into account peroxidases, which deconstruct the lignin polymer, and cellulases, which hydrolyze cellulose. The cellulose was initially embedded in lignin and inaccessible to cellulase. The lignolytic activity (peroxidases) induces a disentanglement of the cellulose from the lignocellulosic complex. Therefore, the action of peroxidases was seen as a change of cellulose physicochemical local conditions resulting in a progressive transfer to the accessible pool. This transfer was assumed to be linearly related to the activity of lignolytic enzymes in Eq. (10),

    $${tau }_{rm{tr,cell.}}^{rm{ac}}={tau }_{rm{tr,cell.}}^{rm{ac},0}int_{{{mathcal{D}}}_{rm{lig.}}}{tau }_{rm{lig.}}^{0}{C}_{rm{mic}}(t){chi }_{rm{lig.}}^{rm{ac}}(p,t)dp,$$
    (24)

    where ({{mathcal{D}}}_{rm{lig.}}) is the domain of lignolytic activity and where the ({tau }_{rm{tr,cell.}}^{ac,0}) coefficient is set at 13 g({,}_{C}^{-1}) for the current illustration.
    The simulation was performed over one year. Enzymatic and microbial parameters given in Table 1 were chosen to be closely in line with the litter decomposition and enzyme action observation16,37,69.
    Scenario 3: effect of community succession on C fluxes and substrate biochemistry
    We simulated the succession of two microbial functional communities, on the same previous lignocellulose, considering microbial residue recycling. The parameters (Table 1) were chosen according to the microbial community succession observations43,45,70. The first microbial community was specialized in plant substrate degradation, the second was specialized in the degradation of microbial residues. We referred to them as plant decomposers and microbial residue decomposers. Microbial residue decomposers were more competitive than plant decomposers because of their higher carbon use efficiency and lower mortality rate (Table 1). Both communities had the same biochemical signature, i.e., 50% polysaccharides, 30% lipids, and 20% proteins. We tested the impact of cheating as follows. Either uptake was impossible, i.e., u0 equaled 0 for the community not involved in enzyme production, or uptake was possible but at a lower rate than the enzyme producers because the substrate fragments were released in the vicinity of the enzyme producers (Table 1).
    Scenario 4: soil organic matter composition at steady state
    We resolved the analytic formulation of the C stock and chemistry at steady state under several assumptions. We only considered one microbial community, a continuous constant plant input I at a rate of 2.74.10−4 gC.cm−2.d−1 and microbial recycling47. To be able to explicitly calculate the steady state, we only considered accessible pools, then cellulose substrate was not embedded in lignin but directly accessible to cellulolytic enzymes (Fig. 6). Finally, we considered that C use efficiency (({e}_{rm{mic}}^{0})) and uptake (({u}_{rm{mic}}^{0})) parameters were identical for all biochemical classes. A full mathematical proof is given in Supplementary Note 3.
    At steady state, the amount of microbial carbon is,

    $${C}_{rm{mic}}=frac{{e}_{rm{mic}}^{0}I}{(1-{e}_{rm{mic}}^{0}){m}_{rm{mic}}^{0}}.$$
    (25)

    For each biochemical class ∗, we define ({p}_{* }^{u}) which verifies ({p}_{* }^{rm{min}} More

  • in

    Development of a robust protocol for the characterization of the pulmonary microbiota

    Many precautions should be taken to limit the modification of the commensal communities studied and the increase of interindividual variation not attributable to the experimental variables. The following factors can influence the human microbiota and should be considered when designing studies targeting the lung microbiota: the administration of antibiotics or neoadjuvant25,26,27,28, the size of the lesion, the type of surgical procedure, the type of pulmonary pathology under study, and living habits of patients (e.g., smoking status, physical exercise, buccal hygiene, alcohol consumption)29,30,31,32,33,34.
    A more exhaustive list of concomitant factors was pointed out by Carney et al.35. However, as the different fields of microbiota studies expand, it is likely that additional variables that can alter its composition will be uncovered. The molecular tools currently used to analyze the human microbiota do not have the power to discriminate the impact of that many factors over the microbial profiles. Whenever possible, patients selected for lung microbiota studies should be extensively screened so that they can be as similar as possible. Longitudinal studies could also minimize the impact of those variables, as the same patient, with similar concomitant factors through the study, would be compared to himself overtime.
    Tissue management steps should consider the contamination possibilities. In addition to the selection of a less contamination-prone procedure, such as thoracoscopic lobectomy, the manipulations and the instrument used in subsampling the excised organ should be taken into account. A combination of bleach and humid heat was chosen to sterilize the instruments used to sample the cancerous and healthy tissue as it was considered the most easily accessible method. The use of humid heat itself (autoclave) lacks the power to completely neutralize bacterial genomic DNA in solutions and on surfaces36. On the other hand, the utilization of bleach, or a chlorinated detergent, leads to the complete degradation of contaminating DNA on surfaces, such as benches and instruments37,38, but requires rinsing to avoid corrosion. Hence, combining both methods, soaking the instruments in bleach 1.6% for 10 min before rinsing with distilled water and autoclaving in a sterilization pouches, ensures a minimal amount of DNA has to be degraded by moist heat. The rest of the single-use equipment used was commercially sterilized with ionizing radiation.
    Healthy lung tissue was subsampled from the pulmonary lobe containing the tumor to ensure that the developed method could be used on a variety of lung tissue samples. It could also act as a control of non-pathologic microbiota to allow comparisons of cancerous and non-cancerous samples within the same subject, hence minimizing the impact on inter-individual microbiota variations. In fact, Riquelme et al. found that the gut microbiota has the capacity to specifically colonize pancreatic tissue8. Correspondingly, the use of adjacent pulmonary tissue to the tumor could help get better insights at a specific colonization of the tumor by lung bacteria. A 5 cm distance between the tumor and the healthy sample was ensured to minimize the potential effect of increased inflammation surrounding the tumor. Furthermore, the lung microbiota composition seems to vary dependently on the position and depth of the respiratory tract, even inside a same lobe39. The healthy tissue was collected in the same tierce of pulmonary depth (Supplementary Fig. 4) in an attempt to sample a microbial community that it would be as representative of non-pathologic microbiota in the tumoral region as possible.
    The homogenization of frozen and thawed pulmonary tissues was attempted and was unsuccessful, both with the use of only a 2.8 mm tungsten bead in the Retsch – MM301 mixer mill (30 beats/s, 20 min) or of the Fisherbrand 150 homogenizer with plastic probes (Fisher scientific, Pittsburg). The elasticity of the tissue or its frozen state make the mass nearly unbreakable. The use of the Liberase™ TM enzymatic cocktail (collagenase I & II, thermolysin) prior to the mechanical homogenization proved successful and a homogeneous suspension was obtained using the two-step homogenization protocol (Supplementary Fig. 3). Multiple ratios of liquid to mass of tissue were tested and 3 mL/g was found optimal, as it facilitates the homogenization without overly diluting to sample. A similar ratio of liquid to tissue was used in breast tissue microbiota study40. The samples were first thawed at 4 °C to reduce potential growth or degradation of microorganisms. The digestion was performed directly in the 50 mL collection tube to limit the tissue manipulation and ensure possible contaminant tracking.
    Our team was also unable to replicate the results obtain by Yu et al. on larger tissue samples using 0.2 mg/mL of Proteinase K for 24 h13. The samples remained firm and turned brown. Using the Liberase™ cocktail enabled a much faster digestion (75 min) and broke down specifically the lung component responsible for its elasticity, the collagen.
    Three commercially available DNA extraction kits were tested. They were selected for their previous successful use in the study of pulmonary or gut microbiota and their intended application as described by the manufacturer. The extraction kits were first tested on homogenized lung tissue spiked with whole-cell bacterial community to assess the efficiency of DNA extraction and recuperation of the commercial kits. The three kits were able to recover more than 88% of the genera added to the samples. All the genera that were not detected by the Microbial and Powersoil (Cutibacterium acnes, Bacteroides vulgatus, Bifidobacterium adolescentis, D. radiodurans, Clostridium beijerinckii, L. gasseri), with the exception of H. pylori, were Gram-positive bacteria. This type of bacteria has been reported to require more aggressive extraction methods to break their tougher cell walls19. However, the bacterial community did not go through the enzymatic and physical homogenization that usually takes place before DNA extraction since we needed to obtain a homogenous tissue sample that could be processed with or without spiked bacteria. These hard to lyse Gram-positive bacteria could have been fragilized by these processes, rendering them easier to break down during the extraction protocol. Furthermore, the detection of the artificially incorporated bacteria does not account for the natural physical association that may occur between the human tissue and microbial cells. Nonetheless, these high percentages of recovery were promising and lead us to continue with the characterization of the extraction kits in a real-life context, meaning the analysis of the base-level microbiota in pulmonary samples collected and processed through the entire pipeline.
    Every measurement of the efficiency of extraction, including DNA yield (Supplementary Fig. 5), DNA purity (Supplementary Figs. 6 and 7), and alpha diversity (Fig. 1), pointed in the same direction. In fact, they all showed that the Blood extraction kit was the best option out of the three kits. Therefore, using the Blood kit is recommended as one of the pieces of a complete study design. Additionally, the presence of a high concentration of host DNA in tissue samples might tend to saturate the purification column, which could reduce to amount of bacterial DNA recovered. The superior DNA binding capacity of the affinity column of the Blood kit compared to the two others could explain its better performance and its higher yield in most cases. The samples extracted with the Blood kit were also associated with higher alpha diversity (Shannon index). Therefore, this extraction method was able to recover a higher number of different bacterial organisms (richness) and proportionality in the different OTUs (evenness). The absence of PCR inhibitors and a higher recuperation rate of bacterial DNA in the Blood extracted samples could have led to a more proper amplification in the sequencing process and to the recuperation of very low abundance bacterial DNA in the extraction eluate. For further research, it is advised to take the additional precaution of working under a biosafety cabinet or in the sterile field when analyzing the microbiota of lung tissues to reduce the risk of incorporation of airborne contaminants.
    The Illumina Miseq sequencing platform with the use of dual-index strategy has become the dominant technology used in microbial ecology studies for its cost efficiency, low error rate, and user-friendliness41,42,43. Most studies interested in the pulmonary microbiota have also used this technology11,13,14. The sequencing of the 16S rRNA gene amplicon was favored over a shotgun sequencing method because of the overwhelming quantity of human DNA joining bacterial genomes in the pulmonary tissue. The 16S rRNA gene is the most used marker of bacterial identification. No consensus has been reached on the selection of the 16S rRNA gene variable region (V) to sequence for human microbiota18,44. However, it should be kept consistent across studies to allow comparisons. Targeting the V3–V4 regions was suggested using the universal primers developed by Klindworth et al.45. Several microbiota studies, including lung microbiota, have also used these regions7,13,46,47,48.
    In the context of this study, genomic mock-community was spiked in DNA extracted from the pulmonary tissue at a biological meaningful concentration. Every genus added to the samples was successfully detected. Consequently, the high ratio of human DNA to bacterial DNA did not interfere with the amplification and detection steps of the sequencing procedure. The sequencing method in place seems adequate for its application in the characterization of pulmonary microbiota.
    Contaminating bacteria or DNA can have an important impact of the microbial profile observed in very low biomass samples such as pulmonary tissue23. Consequentially, in addition to proper protocol selection, methodological design that attempts to follow, detect, and account for contamination was proposed. Its main features include the incorporation of a single negative control that monitors the incorporation of contaminants at every step of the experimental method (Supplementary Fig. 3). Since every step of the protocol prior to the extraction is meant to be executed in a single tube and only by the addition of reagents, it is possible to carry and detect the contaminants introduced throughout the procedure. On the contrary, microbiota study methodologies usually dictate for the incorporation of multiple controls at every step of the procedure (e.g. DNA extraction kit, PCR controls, etc.)18. Although more informative as to which step leads to contamination, it makes data analysis harder since the presence of contamination in the multiple controls cannot by added.
    No bioinformatics standard operating procedure is available and what should be done with controls sequencing data is still under debate18. Some research groups tried to use a neutral community model49, additional qPCR data50, amplicon DNA yield, or prevalence algorithms51 to assess the influence of methodological contaminants. The removal of every bacterial OTU found in controls from the samples is often not appropriate as these OTUs might also be naturally present in the samples22. We propose using relative abundance ratio between samples and controls to remove contaminating OTUs. Since controls have much lower richness than extracted lung samples and that the total number of reads (sequencing depth) is distributed across every OTU, the relative abundance of reads for each OTU tend to be much higher in the control than the same OTU in samples. Therefore, if the relative abundance of an OTU is greatly superior in the sample than in the control, it is reasonable to think that the same OTU was also in the sample in a substantial quantity. To ensure that OTUs that were present in very low absolute abundance (e.g., from only 1–2 reads) do not lead to the removal of the highly abundant corresponding OTU in samples, only the OTUs with a ratio of 1000 (relative abundance of sample/relative abundance of sample) were kept. The rest of the OTUs found in controls were completely removed from the related samples, since the influence of contaminating DNA could not be differentiated from the pulmonary microbiota. This method would theoretically tolerate no more than 20 reads (0.1%) before removing the entire OTU from the sample if only one OTU was present in the samples (20,000 reads, 100%). The use of relative abundance helps reduce the absolute abundance bias induced by the divergence in sequencing depth. The OTUs were removed from both tissues at the same time or not at all to avoid adding artificial intraindividual variation. The authors acknowledge that the proposed contaminant management method does not have the in-dept validation of other methods, such as described by Davis et al. with the decontam package51. However, it does not share its limitations regarding the lack of consideration for OTU abundance and need of high number of controls to ensure sensitivity while using prevalence-based detection. Further research focused on the development of statistical methods to detect contaminant OTUs in the cases of lung microbiota is needed. This work is to be a starting point toward methodological standardization and its modular nature makes the bioinformatic contaminant management method proposed here interchangeable once a more robust one is uncovered.
    Pearson’s correlation tests were performed on the number of reads per OTU between the samples and their respective controls. Although these values were not normally distributed (Shapiro-Wilk, p  More

  • in

    Demographic effects of interacting species: exploring stable coexistence under increased climatic variability in a semiarid shrub community

    1.
    Jongejans, E., de Kroon, H., Tuljapurkar, S. & Shea, K. Plant populations track rather than buffer climate fluctuations. Ecol. Lett. 13, 736–743 (2010).
    PubMed  Article  Google Scholar 
    2.
    Tenhumberg, B., Crone, E. E., Ramula, S. & Tyre, A. J. Time-lagged effects of weather on plant demography: Drought and Astragalus scaphoides. Ecology 99, 915–925 (2018).
    PubMed  Article  Google Scholar 

    3.
    Boyce, M. S., Haridas, C. V., Lee, C. T. & the NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Törang, P., Ehrlén, J. & Ågren, J. Linking environmental and demographic data to predict future population viability of a perennial herb. Oecologia 163, 99–109 (2010).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
    Article  Google Scholar 

    6.
    García-Cervigón, A. I., Camarero, J. J., Cueva, E., Espinosa, C. I. & Escudero, A. Climate seasonality and tree growth strategies in a tropical dry forest. J. Veg. Sci. 31, 266–280 (2020).
    Article  Google Scholar 

    7.
    Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl. Acad. Sci. U.S.A. 103, 12793–12798 (2006).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    8.
    Wasonga, O., Gabiri, G., MacOpiyo, L., Mburu, J. & Majaliwa, J. G. M. Land cover and soil properties influence on forage quantity in a semiarid region in East Africa. Appl. Environ. Soil Sci. 2019, 6874268 (2019).
    Google Scholar 

    9.
    Zheng, X. X., Liu, G. H., Fu, B. J., Jin, T. T. & Liu, Z. F. Effects of biodiversity and plant community composition on productivity in semiarid grasslands of Hulunbeir, Inner Mongolia, China. Ann. N. Y. Acad. Sci. 1195, E52–E64 (2010).
    PubMed  Article  Google Scholar 

    10.
    Saiz, H. & Alados, C. L. Changes in semi-arid plant species associations along a livestock grazing gradient. PLoS ONE 9, e91478 (2012).
    Google Scholar 

    11.
    Chacón-Labella, J., de la Cruz, M., Pescador, D. S. & Escudero, A. Individual species affect plant traits structure in their surroundings: Evidence of functional mechanisms of assembly. Oecologia 180, 975–987 (2016).
    ADS  PubMed  Article  Google Scholar 

    12.
    Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).
    Article  Google Scholar 

    13.
    Nicolè, F., Dahlgren, J. P., Vivat, A., Till-Bottraud, I. & Ehrlén, J. Interdependent effects of habitat quality and climate on population growth of an endangered plant. J. Ecol. 99, 1211–1218 (2011).
    Article  Google Scholar 

    14.
    McIntire, E. J. B. & Fajardo, A. Facilitation as a ubiquitous driver of biodiversity. New Phytol. 201, 403–416 (2014).
    PubMed  Article  Google Scholar 

    15.
    Mihoč, M. A. K. et al. Soil under nurse plants is always better than outside: A survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 408, 31–41 (2016).
    Article  CAS  Google Scholar 

    16.
    Maestre, F. T., Valladares, F. & Reynolds, J. F. Is the change of plant–plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J. Ecol. 93, 748–757 (2005).
    Article  Google Scholar 

    17.
    Gustaffson, C. & Ehrlén, J. Effects of intraspecific and interspecific density on the demography of a perennial herb, Sanicula europaea. Oikos 100, 317–324 (2003).
    Article  Google Scholar 

    18.
    García-Cervigón, A. I., Iriondo, J. M., Linares, J. C. & Olano, J. M. Disentangling facilitation along the life cycle: Impacts of plant–plant interactions at vegetative and reproductive stages in a Mediterranean forb. Front. Plant Sci. 7, 129 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Miriti, M. N. Ontogenetic shift from facilitation to competition in a desert shrub. J. Ecol. 94, 973–979 (2006).
    Article  Google Scholar 

    20.
    Soliveres, S. L., DeSoto, L., Maestre, F. T. & Olano, J. M. Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation. Perspect. Plant Ecol. Evol. Syst. 12, 227–234 (2010).
    Article  Google Scholar 

    21.
    Dahlgren, J. P. & Ehrlén, J. Linking environmental variation to population dynamics of a forest herb. J. Ecol. 97, 666–674 (2009).
    Article  Google Scholar 

    22.
    Griffith, A. B. Positive effects of native shrubs on Bromus tectorum demography. Ecology 91, 141–154 (2010).
    PubMed  Article  Google Scholar 

    23.
    Tenhumberg, B., Suwa, T., Tyre, A. J., Russell, F. L. & Louda, S. M. Integral projection models show exotic thistle is more limited than native thistle by ambient competition and herbivory. Ecosphere 6, 69 (2015).
    Article  Google Scholar 

    24.
    García-Algarra, J., Galeano, J., Pastor, J. M., Iriondo, J. M. & Ramasco, J. J. Rethinking the logistic approach for population dynamics of mutualistic interactions. J. Theoret. Biol. 363, 332–343 (2014).
    MathSciNet  MATH  Article  Google Scholar 

    25.
    Adler, P. B., Dalgleish, H. J. & Ellner, S. P. Forecasting plant community impacts of climate variability and change: When do competitive interactions matter?. J. Ecol. 100, 478–487 (2012).
    Article  Google Scholar 

    26.
    Chu, C. & Adler, P. B. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecol. Monogr. 85, 373–392 (2015).
    Article  Google Scholar 

    27.
    Easterling, M. R., Ellner, S. P. & Dixon, P. M. Size-specific sensitivity: Applying a new structured population model. Ecology 81, 694–708 (2000).
    Article  Google Scholar 

    28.
    Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).
    PubMed  Article  Google Scholar 

    29.
    Rees, M. & Ellner, S. P. Integral projection models for populations in temporally varying environments. Ecol. Monogr. 79, 575–594 (2009).
    Article  Google Scholar 

    30.
    Williams, J. L., Jacquemyn, H., Ochocki, B. M., Brys, R. & Miller, T. E. X. Life history evolution under climate change and its influence on the population dynamics of a long-lived plant. J. Ecol. 103, 798–808 (2015).
    Article  Google Scholar 

    31.
    IPCC. Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).

    32.
    Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc. Natl. Acad. Sci. U.S.A. 95, 14839–14842 (1998).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Olano, J. M., Eugenio, M. & Escudero, A. Site effect is stronger than species identity in driving demographic responses of Helianthemum (Cistaceae) shrubs in gypsum environments. Am. J. Bot. 98, 1–8 (2011).
    Article  Google Scholar 

    34.
    Arroyo-Cosultchi, G., Golubov, J. & Mandujano, M. C. Pulse seedling recruitment on the population dynamics of a columnar cactus: Effect of an extreme rainfall event. Acta Oecol. 71, 52–60 (2016).
    ADS  Article  Google Scholar 

    35.
    Quintana-Ascencio, P. F., Caballero, I., Olano, J. M., Escudero, A. & Albert, M. J. Does habitat structure matter? Spatially explicit population modeling of an Iberian gypsum endemic. Popul. Ecol. 51, 317–328 (2009).
    Article  Google Scholar 

    36.
    Eugenio, M., Olano, J. M., Ferrandis, P., Martínez-Duro, E. & Escudero, A. Population structure of two dominant gypsophyte shrubs through a secondary plant succession. J. Arid Environ. 76, 30–35 (2012).
    ADS  Article  Google Scholar 

    37.
    Martínez, I. et al. Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Aust. J. Bot. 54, 339–348 (2006).
    Article  Google Scholar 

    38.
    Sánchez, A. M., Alonso-Valiente, P., Albert, M. J. & Escudero, A. How might edaphic specialists in gypsum islands respond to climate change? Reciprocal sowing experiment to infer local adaptation and phenotypic plasticity. Ann. Bot. 120, 135–146 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).
    ADS  PubMed  Article  Google Scholar 

    40.
    Escudero, A., Somolinos, R. C., Olano, J. M. & Rubio, A. Factors controlling the establishment of Helianthemum squamatum (L.) Dum., an endemic gypsophite of semi-arid Spain. J. Ecol. 87, 290–302 (1999).
    Article  Google Scholar 

    41.
    Escudero, A., Iriondo, J. M., Olano, J. M., Rubio, A. & Somolinos, R. Factors affecting establishment of a gypsophyte: The case of Lepidium subulatum (Brassicaceae). Am. J. Bot. 87, 861–871 (2000).
    CAS  PubMed  Article  Google Scholar 

    42.
    Aragón, C. F., Albert, M. J., Giménez-Benavides, L., Luzuriaga, A. L. & Escudero, A. Environmental scales on the reproduction of a gypsophyte: A hierarchical approach. Ann. Bot. 99, 519–527 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Caballero, I., Olano, J. M., Loidi, J. & Escudero, A. A model for small-scale seed bank and standing vegetation connection along time. Oikos 117, 1788–1795 (2008).
    Article  Google Scholar 

    44.
    de la Cruz, M., Romão, R. L., Escudero, A. & Maestre, F. T. Where do seedlings go? A spatio-temporal analysis of seedling mortality in a semi-arid gypsophyte. Ecography 31, 720–730 (2008).
    Article  Google Scholar 

    45.
    Tye, M. R. et al. Assessing seed and microsite limitation on population dynamics of a gypsophyte through experimental soil crust disturbance and seed addition. Plant Ecol. 218, 595–607 (2017).
    Article  Google Scholar 

    46.
    Olano, J. M., Caballero, I., Loidi, J. & Escudero, A. Prediction of plant cover from seed bank analysis in a semi-arid plant community on gypsum. J. Veg. Sci. 16, 215–222 (2005).
    Article  Google Scholar 

    47.
    Luzuriaga, A. L., Sánchez, A. M., Maestre, F. T. & Escudero, A. Assemblage of a semi-arid annual plant community: Abiotic and biotic filters act hierarchically. PLoS ONE 7, e41270 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Peralta, A. M. L., Sánchez, A. M., Luzuriaga, A. L., de Bello, F. & Escudero, A. Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach. J. Ecol. 107, 2772–2788 (2019).
    CAS  Article  Google Scholar 

    49.
    Wilcock, C. & Neiland, R. Pollination failure in plants: Why it happens and when it matters. Trends Plant Sci. 7, 270–277 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Watson, I. W., Westoby, M. & Holm, A. M. Continuous and episodic components of demographic change in arid zone shrubs: Models of two Eremophila species from Western Australia compared with published data on other species. J. Ecol. 85, 833–846 (1997).
    Article  Google Scholar 

    51.
    Schwinning, S., Sala, O. E., Loik, M. E. & Ehleringer, J. R. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141, 191–193 (2004).
    ADS  PubMed  Article  Google Scholar 

    52.
    Wiegand, K., Jeltsch, F. & Ward, D. Minimum recruitment frequency in plants with episodic recruitment. Oecologia 141, 363–372 (2004).
    ADS  PubMed  Article  Google Scholar 

    53.
    Caballero, I., Olano, J. M., Escudero, A. & Loidi, J. Seed bank structure along a semi-arid gypsum gradient in central Spain. J. Arid Environ. 55, 287–299 (2003).
    ADS  Article  Google Scholar 

    54.
    Olano, J. M., Caballero, I. & Escudero, A. Soil seed bank recovery occurs more rapidly than expected in semi-arid Mediterranean gypsum vegetation. Ann. Bot. 109, 299–307 (2012).
    CAS  PubMed  Article  Google Scholar 

    55.
    Holzapfel, C. & Mahall, B. E. Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 80, 1747–1761 (1999).
    Article  Google Scholar 

    56.
    Schöb, C., Prieto, I., Armas, C. & Pugnaire, F. I. Consequences of facilitation: One plant’s benefit is another plant’s cost. Funct. Ecol. 28, 500–508 (2014).
    Article  Google Scholar 

    57.
    Chesson, R. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Article  Google Scholar 

    58.
    Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
    PubMed  Article  Google Scholar 

    59.
    Shipley, B. et al. Reinforcing foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).
    ADS  PubMed  Article  Google Scholar 

    60.
    Lankau, R. A. & Strauss, S. Y. Newly rare or newly common: Evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evol. Appl. 4, 338–353 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Escavy, J. I., Herrero, M. J. & Arribas, M. E. Gypsum resources of Spain: Temporal and spatial distribution. Ore Geol. Rev. 49, 72–84 (2012).
    Article  Google Scholar 

    62.
    Monturiol, F. & Alcalá-del-Olmo, L. Mapa de Asociaciones de Suelos de la Comunidad de Madrid. Escala 1:200.000 (Consejo Superior de Investigaciones Científicas, Madrid, 1990).
    Google Scholar 

    63.
    Guerrero-Campo, J., Palacio, S., Pérez-Rontome, C. & Montserrat-Martí, G. Effect of root system morphology on root-sprouting and shoot-rooting abilities in 123 plant species from eroded lands in north-east Spain. Ann. Bot. 98, 439–447 (2006).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1–7. http://CRAN.R-project.org/package=lme4. Accessed June 2018 (2014).

    65.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–120. http://CRAN.R-project.org/package=nlme. Accessed June 2018 (2015).

    66.
    Metcalf, C. J. E., McMahon, S. M., Salguero-Gómez, R. & Jongejans, E. IPMpack: An R package for integral projection models. Methods Ecol. Evol. 4, 195–200 (2013).
    Article  Google Scholar 

    67.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed June 2018 (2015). More

  • in

    The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions

    1.
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
    CAS  PubMed  Article  Google Scholar 
    2.
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
    PubMed  Article  Google Scholar 

    4.
    Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. L. & Schäfer, P. Challenges and approaches in microbiome research: from fundamental to applied. Front. Plant Sci. 9, 1205 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    5.
    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Finzi, A. C. et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob. Change Biol. 21, 2082–2094 (2015).
    ADS  Article  Google Scholar 

    7.
    Haichar, F. Z., Santaella, C., Heulin, T. & Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).
    CAS  Article  Google Scholar 

    8.
    Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).
    CAS  Article  Google Scholar 

    9.
    Paterson, E., Gebbing, T., Abel, C., Sim, A. & Telfer, G. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol. 173, 600–610 (2007).
    CAS  PubMed  Article  Google Scholar 

    10.
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).
    CAS  PubMed  Article  Google Scholar 

    11.
    Richardson, A. E. & Simpson, R. J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 156, 989–996 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Zhu, B. et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 76, 183–192 (2014).
    CAS  Article  Google Scholar 

    13.
    Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L. & Philippot, L. A plant perspective on nitrogen cycling in the rhizosphere. Funct. Ecol. 33, 540–552 (2019).
    Article  Google Scholar 

    14.
    Sharma, A., Johri, B. N., Sharma, A. K. & Glick, B. R. Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol. Biochem. 35, 887–894 (2003).
    CAS  Article  Google Scholar 

    15.
    Vaid, S. K., Kumar, B., Sharma, A., Shukla, A. K. & Srivastava, P. C. Effect of zinc solubilizing bacteria on growth promotion and zinc nutrition of rice. J. Soil Sci. Plant Nutr. 22 (2014).

    16.
    Goteti, P. K., Emmanuel, L. D. A., Desai, S. & Shaik, M. H. A. Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int. J. Microbiol. 2013, 1–7 (2013).
    Article  CAS  Google Scholar 

    17.
    Vacheron, J. et al. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4 (2013).

    18.
    Narendra Babu, A., Jogaiah, S., Ito, S., Kestur Nagaraj, A. & Tran, L.-S.P. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci. 231, 62–73 (2015).
    CAS  PubMed  Article  Google Scholar 

    19.
    Inderbitzin, P. et al. Soil Microbiomes associated with verticillium wilt-suppressive broccoli and chitin amendments are enriched with potential biocontrol agents. Phytopathology 108, 31–43 (2018).
    CAS  PubMed  Article  Google Scholar 

    20.
    Simpson, D. The Economic Importance of Strawberry Crops. In The Genomes of Rosaceous Berries and Their Wild Relatives (eds Hytönen, T. et al.) 1–7 (Springer, Berlin, 2018). https://doi.org/10.1007/978-3-319-76020-9_1.
    Google Scholar 

    21.
    Food and Agriculture Organization of the United Nations (FAO). FAO Global Statistical Yearbook. (2018).

    22.
    California Department of Food and Agriculture. California Agricultural Statistics Review 2017–2018. (2018).

    23.
    Holmes, G. J., Mansouripour, S. M. & Hewavitharana, S. Strawberries at the Crossroads: Management of Soilborne Diseases in California without Methyl Bromide. Phytopathology PHYTO-11-19-0406-IA (2020) https://doi.org/10.1094/PHYTO-11-19-0406-IA.

    24.
    Lloyd, M. Growing for the future: Collective action, land stewardship and soilborne pathogens in California strawberry production. Calif. Agric. 70, 101–103 (2016).
    Article  Google Scholar 

    25.
    Koike, S. T. Crown Rot of Strawberry Caused by Macrophomina phaseolina in California. Plant Dis. 92 (2018).

    26.
    Guthman, J. Land access and costs may drive strawberry growers’ increased use of fumigation. Calif. Agric. 71, 184–191 (2017).
    Article  Google Scholar 

    27.
    Shaw, D. V., Gubler, D. & Hansen, J. Field resistance of California strawberries to Verticilium dahliae at three conidial inoculum concentrations. HortScience 32, 711–713 (1997).
    Article  Google Scholar 

    28.
    Shaw, D. V., Gordon, T. R., Hansen, J. & Kirkpatrick, S. C. Relationship between the extent of colonization by Verticillium dahliae and symptom expression in strawberry (Fragaria × ananassa ) genotypes resistant to verticillium wilt. Plant Pathol. 59, 376–381 (2010).
    Article  Google Scholar 

    29.
    Antanaviciute, L. et al. Mapping QTL associated with Verticillium dahliae resistance in the cultivated strawberry (Fragaria × ananassa). Hortic. Res. 2, 15009 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Besbes, F., Habegger, R. & Schwab, W. Induction of PR-10 genes and metabolites in strawberry plants in response to Verticillium dahliae infection. BMC Plant Biol. 19, 128 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Sánchez, S., Henríquez, J. L., Urcola, L. A., Scott, A. & Gambardella, M. Susceptibility of strawberry cultivars to root and crown rot caused by Macrophomina phaseolina. J. Berry Res. 6, 345–354 (2016).
    Article  CAS  Google Scholar 

    32.
    Pastrana, A. M., Basallote-Ureba, M. J., Aguado, A. & Capote, N. Potential inoculum sources and incidence of strawberry soilborne pathogens in Spain. Plant Dis. 101, 751–760 (2017).
    CAS  PubMed  Article  Google Scholar 

    33.
    Viejobueno, J., Ramallo, A. C., Kirschbaum, D. S., Baino, O. M. & Salazar, S. M. Severe outbreaks of strawberry crown and root charcoal rot caused by Macrophomina phaseolina in Tucumán, Argentina. 5 (2017).

    34.
    Mendes, L. W., Raaijmakers, J. M., de Hollander, M., Mendes, R. & Tsai, S. M. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J. 12, 212–224 (2018).
    PubMed  Article  Google Scholar 

    35.
    Yao, H. & Wu, F. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt: Soil microbial community structure in cucumber rhizosphere. FEMS Microbiol. Ecol. 72, 456–463 (2010).
    CAS  PubMed  Article  Google Scholar 

    36.
    Kwak, M.-J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100–1109 (2018).
    CAS  Article  Google Scholar 

    37.
    Lee, S. A. et al. A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Sci. Rep. 9, 9300 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Edwards, K. R., Kaštovská, E., Borovec, J., Šantrůčková, H. & Picek, T. Species effects and seasonal trends on plant efflux quantity and quality in a spruce swamp forest. Plant Soil 426, 179–196 (2018).
    CAS  Article  Google Scholar 

    39.
    Brisson, V. L., Schmidt, J. E., Northen, T. R., Vogel, J. P. & Gaudin, A. C. M. Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil. Sci. Rep. 9, 15611 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    40.
    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. 115, 7368–7373 (2018).
    PubMed  Article  Google Scholar 

    42.
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Dennis, P. G., Miller, A. J. & Hirsch, P. R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? Root exudates and rhizosphere bacteria. FEMS Microbiol. Ecol. 72, 313–327 (2010).
    CAS  PubMed  Article  Google Scholar 

    44.
    Hinsinger, P., Plassard, C., Tang, C. & Jaillard, B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248, 43–59 (2003).
    CAS  Article  Google Scholar 

    45.
    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. 110, 6548–6553 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    46.
    Youseif, S. H. Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Ann. Agric. Sci. 63, 25–35 (2018).
    Article  Google Scholar 

    47.
    Rolli, E. et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait: Root bacteria protect plants from drought. Environ. Microbiol. 17, 316–331 (2015).
    PubMed  Article  Google Scholar 

    48.
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).
    CAS  PubMed  Article  Google Scholar 

    49.
    Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).
    CAS  PubMed  Article  Google Scholar 

    50.
    Chakraborty, U. & Chakraborty, B. N. Interaction of Rhizobium leguminosarum and Fusarium solani f.sp. pisi on pea affecting disease development and phytoalexin production. Can. J. Bot. 67, 1698–1701 (1989).
    CAS  Article  Google Scholar 

    51.
    Tonelli, M. L., Figueredo, M. S., Rodríguez, J., Fabra, A. & Ibañez, F. Induced systemic resistance -like responses elicited by rhizobia. Plant Soil https://doi.org/10.1007/s11104-020-04423-5 (2020).
    Article  Google Scholar 

    52.
    Alami, Y., Achouak, W., Marol, C. & Heulin, T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66, 3393–3398 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    García-Fraile, P. et al. Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 7, e38122 (2012).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Perin, L. et al. Diazotrophic burkholderia species associated with field-grown maize and sugarcane. Appl. Environ. Microbiol. 72, 3103–3110 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Caballero-Mellado, J., Onofre-Lemus, J., Estrada-de los Santos, P. & Martinez-Aguilar, L. The tomato rhizosphere, an environment rich in nitrogen-fixing burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73, 5308–5319 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Van Deynze, A. et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLOS Biol. 16, e2006352 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Nallanchakravarthula, S., Mahmood, S., Alström, S. & Finlay, R. D. Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry. PLoS ONE 9, e111455 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Gu, Y. et al. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Biol. Fertil. Soils 52, 997–1005 (2016).
    CAS  Article  Google Scholar 

    59.
    Dudenhöffer, J., Scheu, S. & Jousset, A. Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. J. Ecol. 104, 1566–1575 (2016).
    Article  CAS  Google Scholar 

    60.
    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0412-1 (2020).
    Article  PubMed  Google Scholar 

    62.
    Snelders, N. C. et al. A Plant Pathogen Utilizes Effector Proteins for Microbiome Manipulation. (2020). https://doi.org/10.1101/2020.01.30.926725.

    63.
    Franke-Whittle, I. H., Manici, L. M., Insam, H. & Stres, B. Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards. Plant Soil 395, 317–333 (2015).
    CAS  Article  Google Scholar 

    64.
    Fu, L. et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem. 104, 39–48 (2017).
    CAS  Article  Google Scholar 

    65.
    Morrissey, R. F., Dugan, E. P. & Koths, J. S. Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biol. Biochem. 8, 23–28 (1976).
    CAS  Article  Google Scholar 

    66.
    Zhao, F. et al. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil. Plant Soil 440, 491–505 (2019).
    CAS  Article  Google Scholar 

    67.
    Trivedi, P. et al. Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol. Biochem. 111, 10–14 (2017).
    CAS  Article  Google Scholar 

    68.
    Cha, J.-Y. et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10, 119–129 (2016).
    CAS  PubMed  Article  Google Scholar 

    69.
    Butterfield, E. J. Reassessment of soil assays for Verticillium dahliae. Phytopathology 77, 1073 (1977).
    Article  Google Scholar 

    70.
    Kabir, Z., Bhat, R. G. & Subbarao, K. V. Comparison of media for recovery of Verticillium dahliae from soil. Plant Dis. 88, 49–55 (2004).
    CAS  PubMed  Article  Google Scholar 

    71.
    Mihail, J. D. Macrophomina. In Methods for Research on Soilborne Phytopathogenic Fungi 134–136 (American Phytopathological Society, Saint Paul).

    72.
    U.S. EPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils (1996).

    73.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    74.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucl. Acids Res. 42, D633–D642 (2014).
    CAS  PubMed  Article  Google Scholar 

    76.
    Clarke, K. R. & Warwik, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-e Ltd, Plymouth, 2014).
    Google Scholar  More

  • in

    Surface slicks are pelagic nurseries for diverse ocean fauna

    1.
    Leis, J. M. & McCormick, M. I. The biology, behavior, and ecology of the pelagic, larval stage of coral reef fishes. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 171–199 (Academic Press, Cambridge, 2002).
    2.
    Cowen, R. K. Oceanographic influences on larval dispersal and retention and their consequences for population connectivity. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 149–170 (Academic Press, Cambridge, 2002).

    3.
    Doherty, P. J. & Fowler, T. An empirical test of recruitment limitation in a coral reef fish. Science 263, 935–939 (1994).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Armsworth, P. R. Recruitment limitation, population regulation, and larval connectivity in reef fish metapopulations. Ecology 83, 1092–1104 (2002).
    Article  Google Scholar 

    5.
    Houde, E. D. Patterns and trends in larval-stage growth and mortality of teleost fish. J. Fish Biol. 51, 52–83 (1997).
    ADS  Article  Google Scholar 

    6.
    Haury, L. R., McGowan, J. A. & Wiebe, P. H. Patterns and processes in the time-space scales of plankton distributions. In Spatial Pattern in Plankton Communities 34, 277–327 (Springer, Boston, 1978).

    7.
    Letcher, B. H., Rice, J. A., Crowder, L. B. & Rose, K. A. Variability in survival of larval fish: Disentangling components with a generalized individual-based model. Can. J. Fish. Aquat. Sci. 53, 787–801 (1996).
    Article  Google Scholar 

    8.
    Shanks, A. L. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Mar. Ecol. Prog. Ser. 13, 311–315 (1983).
    ADS  Article  Google Scholar 

    9.
    Pineda, J. Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. J. Mar. Res. 52, 427–458 (1994).
    Article  Google Scholar 

    10.
    Shanks, A. L., Largier, J., Brink, L., Brubaker, J. & Hooff, R. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45, 230–236 (2000).
    ADS  Article  Google Scholar 

    11.
    Garland, E. D., Zimmer, C. A. & Lentz, S. J. Larval distributions in inner-shelf waters: The roles of wind-driven cross-shelf currents and diel vertical migrations. Limnol. Oceanogr. 47, 803–817 (2002).
    ADS  Article  Google Scholar 

    12.
    Sponaugle, S., Lee, T., Kourafalou, V. & Pinkard, D. Florida Current frontal eddies and the settlement of coral reef fishes. Limnol. Oceanogr. 50, 1033–1048 (2005).
    ADS  Article  Google Scholar 

    13.
    Greer, A. T., Cowen, R. K., Guigand, C. M., Hare, J. A. & Tang, D. The role of internal waves in larval fish interactions with potential predators and prey. Prog. Oceanogr. 127, 47–61 (2014).
    ADS  Article  Google Scholar 

    14.
    Shulzitski, K. et al. Close encounters with eddies: Oceanographic features increase growth of larval reef fishes during their journey to the reef. Biol. Lett. 11, 20140746 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Shulzitski, K., Sponaugle, S., Hauff, M., Walter, K. D. & Cowen, R. K. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes. Proc. Natl. Acad. Sci. U. S. A. 113, 6928–6933 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Woodson, C. B. & Litvin, S. Y. Ocean fronts drive marine fishery production and biogeochemical cycling. Proc. Natl. Acad. Sci. U. S. A. 112, 1710–1715 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Apel, J. R., Byrne, H. M., Proni, J. R. & Charnell, R. L. Observations of oceanic internal and surface waves from the Earth Resources Technology Satellite. J. Geophys. Res. 80, 865–881 (1975).
    ADS  Article  Google Scholar 

    18.
    Kingsford, M. J. Linear oceanographic features: A focus for research on recruitment processes. Aust. J. Ecol. 15, 391–401 (1990).
    Article  Google Scholar 

    19.
    Klymak, J. M. et al. The direct breaking of internal waves at steep topography. Oceanography 25(2), 150–159 (2012).
    Article  Google Scholar 

    20.
    Engel, A. et al. The Ocean’s Vital Skin: Toward an integrated understanding of the sea surface microlayer. Front. Mar. Sci. 4, 269 (2017).
    Article  Google Scholar 

    21.
    Jillett, J. B. & Zeldis, J. R. Aerial observations of surface patchiness of a planktonic crustacean. Bull. Mar. Sci. 37, 609–619 (1985).
    Google Scholar 

    22.
    Kingsford, M. J. & Choat, J. H. Influence of surface slicks on the distribution and onshore movements of small fish. Mar. Biol. 91, 161–171 (1986).
    Article  Google Scholar 

    23.
    Shanks, A. & Wright, W. Internal-wave-mediated shoreward transport of cyprids, megalopae, and gammarids and correlated longshore differences in the settling rate of intertidal barnacles. J. Exp. Mar. Biol. Ecol. 114, 1–13 (1987).
    Article  Google Scholar 

    24.
    Shanks, A. L. Further support for the hypothesis that internal waves can cause shoreward transport of larval invertebrates and fish. Fish. Bull. 86, 703–714 (1988).
    Google Scholar 

    25.
    Kingsford, M. J., Wolanski, E. & Choat, J. H. Influence of tidally induced fronts and Langmuir circulations on distribution and movements of presettlement fishes around a coral reef. Mar. Biol. 109, 167–180 (1991).
    Article  Google Scholar 

    26.
    Weidberg, N., Lobón, C., López, E. & Flórez, L. G. Effect of nearshore surface slicks on meroplankton distribution: role of larval behaviour. Mar. Ecol. 506, 15–30 (2014).
    Article  Google Scholar 

    27.
    Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).
    Article  Google Scholar 

    28.
    Hughes, B. B., Levey, M. D., Brown, J. A. & Fountain, M. C. Nursery Functions of US West Coast Estuaries: The State of Knowledge for Juveniles of Focal Invertebrate and Fish Species (The Nature Conservancy, Arlington, 2014).
    Google Scholar 

    29.
    Sheridan, P. & Hays, C. Are mangroves nursery habitat for transient fishes and decapods?. Wetlands 23, 449–458 (2003).
    Article  Google Scholar 

    30.
    Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 70, 105–122 (2006).
    Article  Google Scholar 

    31.
    Logerwell, E. A. & Smith, P. E. Mesoscale eddies and survival of late stage Pacific sardine (Sardinops sagax) larvae. Fish. Oceanogr. 10, 13–25 (2001).
    Article  Google Scholar 

    32.
    Govoni, J. J., Hare, J. A., Davenport, E. D., Chen, M. H. & Marancik, K. E. Mesoscale, cyclonic eddies as larval fish habitat along the southeast United States shelf: A Lagrangian description of the zooplankton community. ICES J. Mar. Sci. 67, 403–411 (2010).
    Article  Google Scholar 

    33.
    Merrifield, M. A. & Holloway, P. E. Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res. Oceans 107, 5-1-5–12 (2002).
    Google Scholar 

    34.
    Gove, J. M., Whitney, J.L. et al. Prey-size plastics are invading larval fish nurseries. Proc. Natl. Acad. Sci. U. S. A. 53, 201907496 (2019).
    Google Scholar 

    35.
    Reid, S. B., Hirota, J., Young, R. E. & Hallacher, L. E. Mesopelagic-boundary community in Hawaii: Micronekton at the interface between neritic and oceanic ecosystems. Mar. Biol. 109, 427–440 (1991).
    Article  Google Scholar 

    36.
    Mundy, B. C. Checklist of the fishes of the Hawaiian archipelago. Bishop Mus. Bull. Zool. 6, 1–706 (2005).
    Google Scholar 

    37.
    Smith, K., Whitney, J. L., Lecky, J., Gove, J. M., Copeland, A., Kobayashi, D. R. & McManus, M. A. Physical mechanisms driving biological accumulation in surface lines on coastal Hawaiian waters. (in review).

    38.
    Cheng, L. Notes on the ecology of the oceanic insect Halobates. Mar. Fish. Rev. 36(2), 1–7 (1974).

    39.
    Senta, T., Kimura, M. & Kanbara, T. Predation of fishes on open-ocean species of sea-skaters (Halobates spp.). Jpn. J. Ichthyol. 40, 193–198 (1993).
    Google Scholar 

    40.
    West, A. P. Aspects of the Early Life History of Billfish Off Kona, Hawaii. PhD Dissertation 1–202 (University of Technology, Sydney, 2004).

    41.
    Gove, J. M., Lecky, J., Walsh, W. J., Ingram, R. J., Leong, K., Polovina, J. J., Maynard, J. A., Whittier, R., Kramer, L., Schemmel, E. M., Hospital, J., Wongbusarakum, S., Conklin, E., Wiggins, C. & Williams, G. J. West Hawai‘i integrated ecosystem assessment ecosystem status report. Pacific Islands Fisheries Science Center, PIFSC Special Publication SP-19-001, 1–46 (2019).

    42.
    Friedlander, A.M. Status of Hawaii’s coastal fisheries in the new millennium, Revised 2004 edition, in: 2001 Fisheries Symposium. Presented at the 2001 Fisheries Symposium, American Fisheries Society, Hawaii Chapter (2004).

    43.
    Gaffney, R. Evaluation of the status of the recreational fishery for ulua in Hawai‘i, and recommendations for future management. Hawaii Department of Land and Natural Resources, Division of Aquatic Resources Technical Report 20–02, 1–42 (2004).

    44.
    Boehlert, G. W. & Mundy, B. C. Vertical distribution of larval fishes off Kahe Point, Oahu, a site for potential ocean thermal energy development. Final Report to National Ocean Service, Division of Ocean Minerals and Energy, NOAA 1–76 (1986).

    45.
    Boehlert, G. W., Watson, W. & Sun, L. C. Horizontal and vertical distributions of larval fishes around an isolated oceanic island in the tropical Pacific. Deep-Sea Res. Part I 39, 439–466 (1992).
    ADS  Article  Google Scholar 

    46.
    Randall, J. E. Reef and Shore Fishes of the Hawaiian Islands (University of Hawaii Press, Honolulu, Hawaii, 2007).
    Google Scholar 

    47.
    Hobson, E. S. Trophic relationships of fishes specialized to feed on zooplankters above coral reefs. In The Ecology of Fishes on Coral Reefs (ed. Sale, P. F.) 69–95 (1991).

    48.
    Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, 1–33 (2015).
    Article  Google Scholar 

    49.
    Downie, R. A., Babcock, R. C., Thomson, D. P. & Vanderklift, M. A. Density of herbivorous fish and intensity of herbivory are influenced by proximity to coral reefs. Mar. Ecol. Prog. Ser. 482, 217–225 (2013).
    ADS  Article  Google Scholar 

    50.
    Parrish, J. D. Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar. Ecol. Prog. Ser. 58, 143–160 (1989).
    ADS  Article  Google Scholar 

    51.
    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science 364, 1189–1192 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    52.
    Grimes, C. B. & Kingsford, M. J. How do riverine plumes of different sizes influence fish larvae: Do they enhance recruitment?. Mar. Freshw. Res. 47, 191–208 (1996).
    Article  Google Scholar 

    53.
    Zenitani, H., Kono, N. & Tsukamoto, Y. Relationship between daily survival rates of larval Japanese anchovy (Engraulis japonicus) and concentrations of copepod nauplii in the Seto Inland Sea, Japan. Fish. Oceanogr. 16, 473–478 (2007).
    Article  Google Scholar 

    54.
    Hunter, J. R. Feeding ecology and predation of marine fish larvae. In Marine Fish Larvae: Morphology, Ecology, and Relation to Fisheries (ed. Lasker, R.) 34–77 (Washington Sea Grant Program, 1981).

    55.
    Samprey, A., McKinnon, A. D., Meekan, M. G. & McCormick, M. I. Glimpse into guts: Overview of the feeding of larvae of tropical shorefishes. Mar. Ecol. Prog. Ser. 339, 1–15 (2007).

    56.
    Carassou, L. & Le borgne, R. & Ponton, D. Diet of pre-settlement larvae of coral-reef fishes: Selection of prey types and sizes. J. Fish. Biol. 75, 707–715 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Østergaard, P., Munk, P. & Janekarn, V. Contrasting feeding patterns among species of fish larvae from the tropical Andaman Sea. Mar. Biol. 146, 595–606 (2005).
    Article  Google Scholar 

    58.
    Yang, J. W. et al. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioninginterplay between nanoflagellates and bacterioplankton. ISME J. 12, 1532–1542 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Greer, A. T. et al. Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton. J. Plankton Res. 35, 939–956 (2013).
    Article  Google Scholar 

    60.
    Benoit-Bird, K. J. & McManus, M. A. A critical time window for organismal interactions in a pelagic ecosystem. PLoS ONE 9, e97763 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    61.
    Benoit-Bird, K., Shroyer, E. L. & McManus, M. A. A critical scale in plankton aggregations across coastal ecosystems. Geophys. Res. Lett. 40, 3968–3974 (2013).
    ADS  Article  Google Scholar 

    62.
    Sponaugle, S., Llopiz, J. K., Havel, L. N. & Rankin, T. L. Spatial variation in larval growth and gut fullness in a coral reef fish. Mar. Ecol. Prog. Ser. 383, 239–249 (2009).
    ADS  Article  Google Scholar 

    63.
    Castro, J., Santiago, J. & Santana-Ortega, A. A general theory on fish aggregation to floating objects: An alternative to the meeting point hypothesis. Rev. Fish. Biol. Fish. 11, 255–277 (2002).

    64.
    Kingsford, M. Biotic and abiotic structure in the pelagic environment: Importance to small fishes. Bull. Mar. Sci. 53, 393–415 (1993).
    Google Scholar 

    65.
    Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 0116 (2017).
    Article  Google Scholar 

    66.
    Gregory, M. R. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 364, 2013–2025 (2009).
    Article  Google Scholar 

    67.
    Carpenter, E. J., Anderson, G. R., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    de Sá, L. C., Luís, L. G. & Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 196, 359–362 (2015).
    Article  CAS  Google Scholar 

    69.
    Franks, P. Sink or swim, accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 82, 1–12 (1992).
    ADS  Article  Google Scholar 

    70.
    Genin, A., Jaffe, J. S., Reef, R., Richter, C. & Franks, P. J. S. Swimming against the flow: A mechanism of zooplankton aggregation. Science 308, 860–862 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    71.
    Young, M. & Adams, N. J. Plastic debris and seabird presence in the Hauraki Gulf, New Zealand. NZ J. Mar. Freshw. Res. 44, 167–175 (2010).
    CAS  Article  Google Scholar 

    72.
    Wolanski, E. & Hamner, W. M. Topographically controlled fronts in the ocean and their biological influence. Science 241, 177–181 (1988).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Morgan, S. G., Fisher, J. L. & Largier, J. L. Larval retention, entrainment, and accumulation in the lee of a small headland: Recruitment hotspots along windy coasts. Limnol. Oceanogr. 56, 161–178 (2011).
    ADS  Article  Google Scholar 

    74.
    Leis, J. M., Siebeck, U. & Dixson, D. L. How Nemo finds home: The neuroecology of dispersal and of population connectivity in larvae of marine fishes. Integr. Comp. Biol. 51, 826–843 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    75.
    Woodson, C. B. et al. Coastal fronts set recruitment and connectivity patterns across multiple taxa. Limnol. Oceanogr. 57, 582–596 (2012).
    ADS  Article  Google Scholar 

    76.
    Woodson, C. B. & McManus, M. A. Foraging behavior can influence dispersal of marine organisms. Limnol. Oceanogr. 52, 2701–2709 (2007).
    ADS  Article  Google Scholar 

    77.
    Simpson, S. D., Radford, A. N., Tickle, E. J., Meekan, M. G. & Jeffs, A. G. Adaptive avoidance of reef noise. PLoS ONE 6, e16625 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    78.
    Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268 (2006).
    PubMed  Article  Google Scholar 

    79.
    Rudershausen, P. J. et al. Feeding ecology of blue marlins, dolphinfish, yellowfin tuna, and wahoos from the North Atlantic Ocean and comparisons with other oceans. Trans. Am. Fish. Soc. 139, 1335–1359 (2011).
    Article  Google Scholar 

    80.
    Harrison, C. S., Hilsa, T. S. & Seki, M. P. Hawaiian seabird feeding ecology. Wildl. Monogr. 85, 3–71 (1983).

    81.
    Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Pikitch, E. K. et al. The global contribution of forage fish to marine fisheries and ecosystems. Fish Fish. 15, 43–64 (2014).
    Article  Google Scholar 

    83.
    Greer, A. T. & Woodson, C. B. Application of a predator–prey overlap metric to determine the impact of sub-grid scale feeding dynamics on ecosystem productivity. ICES J. Mar. Sci. 73, 1051–1061 (2016).
    Article  Google Scholar 

    84.
    Woodson, C. B. The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci. 10, 421–441 (2018).
    ADS  CAS  Article  Google Scholar 

    85.
    Luiz, O. et al. Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc. Natl. Acad. Sci. U. S. A. 110, 16498–16502 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Stobutzki, I. C. & Bellwood, D. R. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35–41 (1997).
    ADS  Article  Google Scholar 

    87.
    Jones, G. P. et al. Larval retention and connectivity among populations of corals and reef fishes: History, advances and challenges. Coral Reefs 28, 307–325 (2009).
    ADS  Article  Google Scholar 

    88.
    Underwood, J. N. Ecologically relevant dispersal of corals on isolated reefs: Implications for managing resilience. Ecol. Appl. 19, 18–29 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    89.
    Walsh, W. J. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ. Biol. Fish. 18, 257–276 (1987).
    Article  Google Scholar 

    90.
    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Comms. 7, 1–8 (2016).
    Article  CAS  Google Scholar 

    91.
    Brown, D. M. & Cheng, L. New net for sampling the ocean surface. Mar. Ecol. Prog. Ser. 5, 225–227 (1981).
    ADS  Article  Google Scholar 

    92.
    Isaacs, J. E. & Kidd, L. W. Isaacs-Kidd Midwater Trawl. University of California Scripps Institute of Oceanography Final Report 1, SIO Ref.53-3 (1953).

    93.
    Mann, K. H. & Lazier, J. R. N. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. (Wiley-Blackwell, Hoboken, 2006).

    94.
    Tejada-Martínez, A. E., Akkerman, I. & Bazilevs, Y. Large-eddy simulation of shallow water langmuir turbulence using isogeometric analysis and the residual-based variational multiscale method. J. Appl. Mech. 79, 1–12 (2011).
    Google Scholar 

    95.
    Miller, J. M., Leis, J. M. & Watson, W. An Atlas of Common Nearshore Marine Fish Larvae of the Hawaiian Islands (University of Hawaii Sea Grant College Program, Honolulu, 1979).
    Google Scholar 

    96.
    Moser, H. G., Richards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W. & Richardson, S. L. Ontogeny and Systematics of Fishes. (American Society of Ichthyologists and Herpetologists Special Publication Number 1, Allen Press, Lawrence, Kansas, 1984).

    97.
    Ozawa, T. Studies on the Oceanic Ichthyoplankton in the Western North Pacific (Kyushu University Press, Japan, 1986).
    Google Scholar 

    98.
    Moser, H. G. The early stages of fishes in the California current region. Calif. Cooper. Ocean. Fish. Investig. Atlas No. 33, 1–1517 (1996).

    99.
    Leis, J. M. & Carson-Ewart, B. M. The Larvae of Indo-Pacific Coastal Fishes: An Identification Guide to Marine Fish Larvae. (Australia Museum, 2006).

    100.
    Okiyama, M. An Atlas of the Early Stage Fishes in Japan. vols. 1 & 2, 2nd Ed., 1–1639 (Tokai University Press, Kanagawa, Japan, 2014).

    101.
    Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. 51, 57–141 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    102.
    Kingsford, M. J. & Milicich, M. J. Presettlement phase of Parika scaber (Pisces: Monacanthidae): A temperate reef fish. Mar. Ecol. Prog. Ser. 36, 65–79 (1987).
    ADS  Article  Google Scholar 

    103.
    Andersen, N. M. & Cheng, L. The marine insect Halobates (Heteroptera: Gerridae): Biology, adaptations, distribution, and phylogeny. Oceanogr. Mar. Biol. Annu. Rev. 42, 119–180 (2004).
    Google Scholar 

    104.
    Froese, R. & Pauly, D. FishBase. www.fishbase.org (2018).

    105.
    Hajibabaei, M. et al. Critical factors for assembling a high volume of DNA barcodes. Philos. Trans. R. Soc. B Biol. Sci. 360, 1959–1967 (2005).
    CAS  Article  Google Scholar 

    106.
    Noren, F. Small plastic particles in Swedish West Coast waters. N-Research Consultants Report 1–12 (2008).

    107.
    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    108.
    Hedges, L. V., Gurevitch, J. & Curtis, P. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Article  Google Scholar 

    109.
    Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., OHara, R. B., Simpson, G. L., Solymos, P., Stevens, M. & Wagner, H. vegan: community ecology package. R. package. version 2.2-1. http://CRAN.R-project.org/packagepvegan. (2015). at http://CRAN.R-project.org/packagepvegan.

    110.
    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).

    111.
    Legendre, P. & Legendre, L. Numerical Ecology, Third Edition. (Elsevier, Amsterdam, 2012).

    112.
    Harrell, F. E., Jr. Package ‘Hmisc’—Harrell Miscellaneous. 1–363 (http://cran.r-project.org/web/packages/Hmisc, 2012).

    113.
    Wei, T. Package ‘corrplot’—Visualization of a correlation matrix v0.60. 1–16 (https://CRAN.R-project.org/package=corrplot, 2012).

    114.
    Zeileis, A., Cribari-Neto, F., Gruen, B. & Kosmidis, I. Beta Regression in R. J. Stat. Softw. 34, 1–24 (2010).
    Article  Google Scholar 

    115.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2017). https://www.R-project.org/. More