1.
Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 1, 1–7. https://doi.org/10.1126/science.1196624 (2010).
CAS Article Google Scholar
2.
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45 (2015).
ADS CAS PubMed Article Google Scholar
3.
Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
ADS CAS PubMed Article Google Scholar
4.
Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
CAS Article Google Scholar
5.
Sodhi, N. S. & Brook, B. W. Southeast Asian Biodiversity in Crisis (Cambridge University Press, Cambridge, 2006).
Google Scholar
6.
Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 16, 265–280 (2007).
Article Google Scholar
7.
Murcia, C. Forest fragmentation and the pollination of neotropical plants. For. Patches Trop. Landsc. 1, 19–36 (1996).
Google Scholar
8.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).
PubMed PubMed Central Article Google Scholar
9.
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
10.
Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: Lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).
ADS Article Google Scholar
11.
Deb, J. C., Phinn, S., Butt, N. & McAlpine, C. A. The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecol. Evol. 7, 2238–2248 (2017).
PubMed PubMed Central Article Google Scholar
12.
Garcia, K., Lasco, R., Ines, A., Lyon, B. & Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl. Geogr. 44, 12–22 (2013).
Article Google Scholar
13.
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
PubMed PubMed Central Article Google Scholar
14.
McShea, W. J. What are the roles of species distribution models in conservation planning?. Environ. Conserv. 41, 93–96 (2014).
Article Google Scholar
15.
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Article Google Scholar
16.
Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010: Deforestation in insular Southeast Asia 2000–2010. Glob. Change Biol. 17, 2261–2270 (2011).
ADS Article Google Scholar
17.
Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).
Article Google Scholar
18.
Yusuf, A. A. & Francisco, H. Climate change vulnerability mapping for Southeast Asia. (2009).
19.
Ambal, R. G. R. et al. Key biodiversity areas in the Philippines: priorities for conservation. J. Threat. Taxa 4, 2788–2796 (2012).
Article Google Scholar
20.
Feeley, K. J. & Silman, M. R. The data void in modeling current and future distributions of tropical species. Glob. Change Biol. 17, 626–630 (2011).
ADS Article Google Scholar
21.
Ramos, L. T., Torres, A. M., Pulhin, F. B. & Lasco, R. D. Developing a georeferenced database of selected threatened forest tree species in the Philippines. Philipp. J. Sci. 141, 165–177 (2012).
Google Scholar
22.
Liu, D. S., Iverson, L. R. & Brown, S. Rates and patterns of deforestation in the Philippines: application of geographic information system analysis. For. Ecol. Manag. 57, 1–16 (1993).
Article Google Scholar
23.
Shively, G. & Pagiola, S. Agricultural intensification, local labor markets, and deforestation in the Philippines. Environ. Dev. Econ. 9, 241–266 (2004).
Article Google Scholar
24.
Ashton, P. S. Dipterocarpaceae. Dipterocarpaceae. 9, 237–552 (1982).
Google Scholar
25.
De Guzman, E. D., Umali, R. M. & Sotalbo, E. D. Guide to Philippine Flora and Fauna, Vol. 3: Dipterocarps, Non-Dipterocarps. Nat. Resour. Manag. Cent. Minist. Nat. Resour. Univ. Philipp. (1986).
26.
Fernando, E. S., Suh, M. H., Lee, J. & Lee, D. K. Forest formations of the Philippines. (ASEAN-Korea Environmental Cooperation Unit, 2008).
27.
Tuck, S. L. et al. The value of biodiversity for the functioning of tropical forests: insurance effects during the first decade of the Sabah biodiversity experiment. Proc. R. Soc. B Biol. Sci. 283, 20161451 (2016).
Article Google Scholar
28.
Brearley, F. Q., Banin, L. F. & Saner, P. The ecology of the Asian dipterocarps. Plant Ecol. Divers. 9, 429–436 (2016).
Article Google Scholar
29.
Schulte, A. Dipterocarp forest ecosystem theory based on matter balance and biodiversity. in Dipterocarp Forest Ecosystems: Towards Sustainable Management 3–28 (1996).
30.
Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30 (2013).
ADS Article Google Scholar
31.
Granados, A. Ecological Effects of Disrupting Plant-Animal Interactions (University of British Columbia, Vancouver, 2017).
Google Scholar
32.
Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
33.
Albrecht, J. et al. Correlated loss of ecosystem services in coupled mutualistic networks. Nat. Commun. 5, 3810 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
34.
Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).
Article Google Scholar
35.
Kettle, C. J. Ecological considerations for using dipterocarps for restoration of lowland rainforest in Southeast Asia. Biodivers. Conserv. 19, 1137–1151 (2010).
Article Google Scholar
36.
Titeux, N. et al. Biodiversity scenarios neglect future land-use changes. Glob. Change Biol. 22, 2505–2515 (2016).
ADS Article Google Scholar
37.
Pimm, S. L., Jenkins, C. N. & Li, B. V. How to protect half of Earth to ensure it protects sufficient biodiversity. Sci. Adv. 4, 2616 (2018).
ADS Article Google Scholar
38.
Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
ADS CAS PubMed Article PubMed Central Google Scholar
39.
Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr. 1, 1407–1413. https://doi.org/10.1111/j.1365-2699.2010.02300.x (2010).
Article Google Scholar
40.
Graham, V., Baumgartner, J. B., Beaumont, L. J., Esperón-Rodríguez, M. & Grech, A. Prioritizing the protection of climate refugia: designing a climate-ready protected area network. J. Environ. Plan. Manag. 1, 1–19. https://doi.org/10.1080/09640568.2019.1573722 (2019).
Article Google Scholar
41.
Mair, L. et al. Land use changes could modify future negative effects of climate change on old-growth forest indicator species. Divers. Distrib. 24, 1416–1425 (2018).
Article Google Scholar
42.
Methorst, J., Böhning-Gaese, K., Khaliq, I. & Hof, C. A framework integrating physiology, dispersal and land-use to project species ranges under climate change. J. Avian Biol. 48, 1532–1548 (2017).
Article Google Scholar
43.
Segan, D. B., Murray, K. A. & Watson, J. E. M. A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Glob. Ecol. Conserv. 5, 12–21 (2016).
Article Google Scholar
44.
Milanesi, P., Della Rocca, F. & Robinson, R. A. Integrating dynamic environmental predictors and species occurrences: Toward true dynamic species distribution models. Ecol. Evol. 10, 1087–1092 (2020).
PubMed Article PubMed Central Google Scholar
45.
Faurby, S. & Araújo, M. B. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 8, 252–256 (2018).
ADS Article Google Scholar
46.
Peterson, A. T., Cobos, M. E. & Jiménez-García, D. Major challenges for correlational ecological niche model projections to future climate conditions: Climate change, ecological niche models, and uncertainty. Ann. N. Y. Acad. Sci. 1429, 66–77 (2018).
ADS PubMed Article PubMed Central Google Scholar
47.
Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche Contractions in declining species: Mechanisms and consequences. Trends Ecol. Evol. 32, 346–355 (2017).
PubMed Article PubMed Central Google Scholar
48.
PAGASA. Daily Rainfall and Temperature. http://bagong.pagasa.dost.gov.ph/climate/climate-monitoring#daily-rainfall-and-temperature (2019).
49.
GBIF. GBIF Occurrence Download. https://doi.org/10.15468/dl.cetigh (2020).
50.
Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).
Article Google Scholar
51.
DAO. Updated national list of threatened Philippine plants and their categories. Dep. Environ. Nat. Resour. Repub. Philipp. Quezon City Manila (2017).
52.
IUCN. IUCN Red List of Threatened Species. (IUCN, Geneva, 2019).
53.
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
Article Google Scholar
54.
Newbold, T. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog. Phys. Geogr. 34, 3–22 (2010).
Article Google Scholar
55.
Yackulic, C. B. et al. Presence-only modelling using MAXENT: when can we trust the inferences?. Methods Ecol. Evol. 4, 236–243 (2013).
Article Google Scholar
56.
Pelser, P. B., Barcelona, J. F. & Nickrent, D. L. Co’s Digital Flora of the Philippines. (2011).
57.
IPNI. The International Plant Names Index. http://www.ipni.org (2020).
58.
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
PubMed PubMed Central Article Google Scholar
59.
Dormann, C. F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 16, 129–138 (2007).
Article Google Scholar
60.
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
Article Google Scholar
61.
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
ADS Article Google Scholar
62.
Kamworapan, S. & Surussavadee, C. Evaluation of CMIP5 global climate models for simulating climatological temperature and precipitation for Southeast Asia. Adv. Meteorol. 2019, 1–18 (2019).
Article Google Scholar
63.
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213 (2011).
ADS CAS Article Google Scholar
64.
PAGASA. Observed and Projected Climate Change in the Philippines. (2018).
65.
Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
PubMed PubMed Central Article CAS Google Scholar
66.
R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna Austria 55, 275–286 (2013).
67.
Hijmans, R. J. & Etten, J. V. Geographic analysis and modeling with raster data. R Package Version 2, 1–25 (2012).
Google Scholar
68.
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
Article Google Scholar
69.
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Article Google Scholar
70.
Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography 30, 550–560 (2007).
Article Google Scholar
71.
Breiner, F. T., Nobis, M. P., Bergamini, A. & Guisan, A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol. Evol. 9, 802–808 (2018).
Article Google Scholar
72.
Zhu, G. P. & Peterson, A. T. Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biol. Invasions 19, 2519–2532 (2017).
Article Google Scholar
73.
Araujo, M. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
PubMed Article PubMed Central Google Scholar
74.
Hannemann, H., Willis, K. J. & Macias-Fauria, M. The devil is in the detail: unstable response functions in species distribution models challenge bulk ensemble modelling. Glob. Ecol. Biogeogr. 25, 26–35 (2016).
Article Google Scholar
75.
Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography https://doi.org/10.1111/ecog.04890 (2020).
Article Google Scholar
76.
Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
Article Google Scholar
77.
Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
Article Google Scholar
78.
Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256 (2018).
Article Google Scholar
79.
Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. A single-algorithm ensemble approach to estimating suitability and uncertainty: Cross-time projections for four Malagasy tenrecs. Divers. Distrib. 23, 196–208 (2017).
Article Google Scholar
80.
Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Model. 269, 9–17 (2013).
Article Google Scholar
81.
Iturbide, M. et al. A framework for species distribution modelling with improved pseudo-absence generation. Ecol. Model. 312, 166–174 (2015).
Article Google Scholar
82.
VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Model. 220, 589–594 (2009).
Article Google Scholar
83.
Chefaoui, R. M. & Lobo, J. M. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol. Model. 210, 478–486 (2008).
Article Google Scholar
84.
Liu, C., Newell, G. & White, M. The effect of sample size on the accuracy of species distribution models: Considering both presences and pseudo-absences or background sites. Ecography 42, 535–548 (2019).
Article Google Scholar
85.
Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 5, e3093 (2017).
PubMed PubMed Central Article Google Scholar
86.
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).
Article Google Scholar
87.
Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
Article Google Scholar
88.
Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).
PubMed Article PubMed Central Google Scholar
89.
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?: How to use pseudo-absences in niche modelling?. Methods Ecol. Evol. 3, 327–338 (2012).
Article Google Scholar
90.
Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).
Article Google Scholar
91.
Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
Article Google Scholar
92.
Velasco, J. A. & González-Salazar, C. Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecol. Inform. 51, 25–32 (2019).
Article Google Scholar
93.
Vignali, S., Barras, A. & Braunisch, V. SDMtune: Species distribution model selection. R Package Version 101 (2019) https://github.com/ConsBiol-unibern/SDMtune.
94.
Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).
PubMed Article PubMed Central Google Scholar
95.
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS): Assessing the accuracy of distribution models. J. Appl. Ecol. 43, 1223–1232 (2006).
Article Google Scholar
96.
Somodi, I., Lepesi, N. & Botta-Dukát, Z. Prevalence dependence in model goodness measures with special emphasis on true skill statistics. Ecol. Evol. 7, 863–872 (2017).
PubMed PubMed Central Article Google Scholar
97.
Warren, D. L., Matzke, N. J. & Iglesias, T. L. Evaluating species distribution models with discrimination accuracy is uninformative for many applications. https://doi.org/10.1101/684399 (2019)
98.
Angelstam, P. Conservation of communities—the importance of edges, surroundings and landscape mosaic structure. in Ecological principles of nature conservation 9–70 (Springer, 1992).
99.
Waldhardt, R., Simmering, D. & Otte, A. Estimation and prediction of plant species richness in a mosaic landscape. Landsc. Ecol. 19, 211–226 (2004).
Article Google Scholar
100.
Fischer, J. & Lindenmayer, D. B. Small patches can be valuable for biodiversity conservation: two case studies on birds in southeastern Australia. Biol. Conserv. 106, 129–136 (2002).
Article Google Scholar
101.
Struebig, M. J. et al. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Curr. Biol. 25, 372–378 (2015).
CAS PubMed Article PubMed Central Google Scholar
102.
UNEP-WCMC. World database on protected areas. UNEP WCMC Camb. UK (2018).
103.
LP DAAC. Global 30 arc-second elevation data set GTOPO30. Land Process Distrib. Act. Arch. Cent. (2004) http://edcdaac.usgs.gov/gtopo30/gtopo30.asp.
104.
Amaral, A. G., Munhoz, C. B. R., Walter, B. M. T., Aguirre-Gutiérrez, J. & Raes, N. Richness pattern and phytogeography of the Cerrado herb-shrub flora and implications for conservation. J. Veg. Sci. 28, 848–858 (2017).
Article Google Scholar
105.
Kanagaraj, R. et al. Predicting range shifts of Asian elephants under global change. Divers. Distrib. https://doi.org/10.1111/ddi.12898 (2019).
Article Google Scholar
106.
De Alban, J. D. et al. High Conservation Value Areas as a strategic approach for protected area management in the Philippines. in 1–10 (Asian Association on Remote Sensing, 2015).
107.
IUCN. IUCN Red List Categories and Criteria: Version 3.1. (IUCN, Gland, 2012).
108.
Fuller, R. A. et al. Replacing underperforming protected areas achieves better conservation outcomes. Nature 466, 365 (2010).
ADS CAS PubMed Article PubMed Central Google Scholar
109.
Davis, K. F., Yu, K., Rulli, M. C., Pichdara, L. & D’Odorico, P. Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat. Geosci. 8, 772–775 (2015).
ADS CAS Article Google Scholar
110.
Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).
PubMed PubMed Central Article Google Scholar
111.
Walck, J. L., Hidayati, S. N., Dixon, K. W., Thompson, K. E. N. & Poschlod, P. Climate change and plant regeneration from seed. Glob. Change Biol. 17, 2145–2161 (2011).
ADS Article Google Scholar
112.
Corlett, R. T. Seed dispersal distances and plant migration potential in tropical East Asia. Biotropica 41, 592–598 (2009).
Article Google Scholar
113.
Smith, J. R. et al. Predicting dispersal of auto-gyrating fruit in tropical trees: a case study from the Dipterocarpaceae. Ecol. Evol. 5, 1794–1801 (2015).
PubMed PubMed Central Article Google Scholar
114.
Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
115.
Bonn, A. & Gaston, K. J. Capturing biodiversity: Selecting priority areas for conservation using different criteria. Biodivers. Conserv. 14, 1083–1100 (2005).
Article Google Scholar
116.
Hannah, L. et al. Protected area needs in a changing climate. Front. Ecol. Environ. 5, 131–138 (2007).
Article Google Scholar
117.
Carvalho, S. B., Brito, J. C., Crespo, E. G., Watts, M. E. & Possingham, H. P. Conservation planning under climate change: Toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biol. Conserv. 144, 2020–2030 (2011).
Article Google Scholar
118.
Lemes, P. & Loyola, R. D. Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS ONE 8, e54323 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
119.
Suzuki, E. & Ashton, P. S. Sepal and nut size ratio of fruits of Asian Dipterocarpaceae and its implications for dispersal. J. Trop. Ecol. 12, 853–870 (1996).
Article Google Scholar
120.
Ball, I. R., Possingham, H. P. & Watts, M. Marxan and relatives: software for spatial conservation prioritisation. Spat. Conserv. Prioritisation Quant. Methods Comput. Tools 1, 185–195 (2009).
Google Scholar
121.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).
Google Scholar More