Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips
1.
Steffan-Dewenter, I., Potts, S. G. & Packer, L. Pollinator diversity and crop pollination services are at risk. Trends Ecol. Evol. 20, 651–652 (2005).
PubMed Article PubMed Central Google Scholar
2.
Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008).
CAS PubMed Article PubMed Central Google Scholar
3.
Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. 108, 5909–5914 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Goulson, D. Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst. 34, 1–26 (2003).
Article Google Scholar
5.
Paini, D. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. Aust. Ecol. 29, 399–407 (2004).
Article Google Scholar
6.
Aslan, C. E., Liang, C. T., Galindo, B., Kimberly, H. & Topete, W. The role of honey bees as pollinators in natural areas. Nat. Areas J. 36, 478–489 (2016).
Article Google Scholar
7.
Mallinger, R. E., Gaines-Day, H. R. & Gratton, C. Do managed bees have negative effects on wild bees? A systematic review of the literature. PLoS ONE 12, e0189268 (2017).
PubMed PubMed Central Article CAS Google Scholar
8.
Wignall, V. R. et al. Seasonal variation in exploitative competition between honeybees and bumblebees. Oecologia 192, 351–361 (2020).
ADS PubMed Article PubMed Central Google Scholar
9.
Thomson, D. M. Detecting the effects of introduced species: A case study of competition between Apis and Bombus. Oikos 114, 407–418 (2006).
Article Google Scholar
10.
Franco, E. L., Aguiar, C. M. & Ferreiraz, V. S. Plant use and niche overlap between the introduced honey bee (Apis mellifera) and the native bumblebee (Bombus atratus) (Hymenoptera: Apidae) in an area of tropical mountain vegetation in northeastern Brazil. Sociobiology 53, 141–150 (2009).
Google Scholar
11.
Herbertsson, L., Lindström, S. A., Rundlöf, M., Bommarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616 (2016).
Article Google Scholar
12.
Thomson, D. M. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecol. Lett. 19, 1247–1255 (2016).
PubMed Article PubMed Central Google Scholar
13.
Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. 103, 13890–13895 (2006).
ADS CAS PubMed Article PubMed Central Google Scholar
14.
Badano, E. I. & Vergara, C. H. Potential negative effects of exotic honey bees on the diversity of native pollinators and yield of highland coffee plantations. Agric. For. Entomol. 13, 365–372 (2011).
Article Google Scholar
15.
Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 280, 20122767 (2013).
Article Google Scholar
16.
Müller, H. T. Interaction Between Bombus terrestris and Honeybees in Red Clover Fields Reduces Abundance of Other Bumblebees and Red Clover Yield and Honeybees in Red Clover Fields Reduces Abundance of Other Bumblebees and Red Clover Yield (Norwegian University of Life Sciences, Ås, 2016).
Google Scholar
17.
Grass, I. et al. Pollination limitation despite managed honeybees in South African macadamia orchards. Agric. Ecosyst. Environ. 260, 11–18 (2018).
Article Google Scholar
18.
hUallacháin, D. Ó. (United Nations Convention to Combat Desertification, Bonn, Germany, 2017).
19.
Vaughan, M. & Skinner, M. Using 2014 farm bill programs for pollinator conservation. USDA Biol. Tech. Note 78, 2nd Ed. (2015).
20.
Vaughan, M. & Skinner, M. Using Farm Bill programs for pollinator conservation. USDA-NRCS National Plant Data Center, USDA Biol. Tech. Note 78 (2008).
21.
FSA. CP42 pollinator habitat: Establishing and supporting diverse pollinator-friendly habitat. (Farm Service Agency, U.S. Department of Agriculture, Washington, D.C., 2013).
22.
Venturini, E. M., Drummond, F. A., Hoshide, A. K., Dibble, A. C. & Stack, L. B. Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecol. Sustain. Food Syst. 41, 101–142 (2017).
Article Google Scholar
23.
Wood, T. J., Holland, J. M., Hughes, W. O. & Goulson, D. Targeted agri-environment schemes significantly improve the population size of common farmland bumblebee species. Mol. Ecol. 24, 1668–1680 (2015).
PubMed Article PubMed Central Google Scholar
24.
Haaland, C. & Gyllin, M. Butterflies and bumblebees in greenways and sown wildflower strips in southern Sweden. J. Insect Conserv. 14, 125–132 (2010).
Article Google Scholar
25.
Ponisio, L. C., M’Gonigle, L. K. & Kremen, C. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob. Change Biol. 22, 704–715 (2016).
ADS Article Google Scholar
26.
Dolezal, A. G., Clair, A. L. S., Zhang, G., Toth, A. L. & O’Neal, M. E. Native habitat mitigates feast–famine conditions faced by honey bees in an agricultural landscape. Proc. Natl. Acad. Sci. 116, 25147–25155 (2019).
CAS PubMed Article PubMed Central Google Scholar
27.
Venturini, E., Drummond, F., Hoshide, A., Dibble, A. & Stack, L. B. Pollination reservoirs in lowbush blueberry (Ericales: Ericaceae). J. Econ. Entomol. 110, 333–346 (2017).
CAS PubMed PubMed Central Google Scholar
28.
Morandin, L. A. & Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 23, 829–839 (2013).
PubMed Article PubMed Central Google Scholar
29.
Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).
Article Google Scholar
30.
Feltham, H., Park, K., Minderman, J. & Goulson, D. Experimental evidence of the benefit of wild flower strips to crop pollination. Ecol. Evolut. 5, 3523–3530 (2015).
Article Google Scholar
31.
Gross, C. & Mackay, D. Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae). Biol. Cons. 86, 169–178 (1998).
Article Google Scholar
32.
do Carmo, R. M., Franceschinelli, E. V. & da Silveira, F. A. Introduced honeybees (Apis mellifera) reduce pollination success without affecting the floral resource taken by native pollinators. Biotropica 36, 371–376 (2004).
Google Scholar
33.
Bruckman, D. & Campbell, D. R. Floral neighborhood influences pollinator assemblages and effective pollination in a native plant. Oecologia 176, 465–476 (2014).
ADS PubMed Article PubMed Central Google Scholar
34.
Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).
ADS CAS PubMed Article PubMed Central Google Scholar
35.
Carvalheiro, L. G. et al. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 14, 251–259 (2011).
PubMed Article PubMed Central Google Scholar
36.
Jönsson, A. M. et al. Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause. Clim. Change 109, 695–718 (2011).
ADS Article Google Scholar
37.
Scheper, J. et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 52, 1165–1175 (2015).
Article Google Scholar
38.
Krimmer, E., Martin, E. A., Krauss, J., Holzschuh, A. & Steffan-Dewenter, I. Size, age and surrounding semi-natural habitats modulate the effectiveness of flower-rich agri-environment schemes to promote pollinator visitation in crop fields. Agric. Ecosyst. Environ. 284, 106590 (2019).
Article Google Scholar
39.
Klein, A. M. et al. Wild pollination services to California almond rely on semi-natural habitat. J. Appl. Ecol. 49, 723–732 (2012).
Google Scholar
40.
Grab, H., Poveda, K., Danforth, B. & Loeb, G. Landscape context shifts the balance of costs and benefits from wildflower borders on multiple ecosystem services. Proc. R. Soc. B Biol. Sci. 285, 20181102 (2018).
Article Google Scholar
41.
Prendergast, K. S., Menz, M. H., Dixon, K. W. & Bateman, P. W. The relative performance of sampling methods for native bees: An empirical test and review of the literature. Ecosphere 11, e03076 (2020).
Article Google Scholar
42.
Cane, J. H., Minckley, R. L. & Kervin, L. J. Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: pitfalls of pan-trapping. J. Kansas Entomol. Soc. 73, 225–231 (2000).
Google Scholar
43.
O’Connor, R. S. et al. Monitoring insect pollinators and flower visitation: The effectiveness and feasibility of different survey methods. Methods Ecol. Evol. 10, 2129–2140. https://doi.org/10.1111/2041-210x.13292 (2019).
Article Google Scholar
44.
Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. Do managed bees drive parasite spread and emergence in wild bees?. Int. J. Parasitol. Parasites Wildlife 5, 64–75 (2016).
Article Google Scholar
45.
Alger, S. A., Burnham, P. A., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PloS One 14, e0217822 (2019).
CAS PubMed PubMed Central Article Google Scholar
46.
Schaffer, W. M. et al. Competition, foraging energetics, and the cost of sociality in three species of bees. Ecology 60, 976–987 (1979).
Article Google Scholar
47.
Pleasants, J. M. Bumblebee response to variation in nectar availability. Ecology 62, 1648–1661 (1981).
Article Google Scholar
48.
Ginsberg, H. S. Foraging ecology of bees in an old field. Ecology 64, 165–175 (1983).
Article Google Scholar
49.
Schaffer, W. M. et al. Competition for nectar between introduced honey bees and native North American bees and ants. Ecology 64, 564–577 (1983).
Article Google Scholar
50.
Gross, C. L. The effect of introduced honeybees on native bee visitation and fruit-set in Dillwynia juniperina (Fabaceae) in a fragmented ecosystem. Biol. Cons. 102, 89–95 (2001).
Article Google Scholar
51.
Hudewenz, A. & Klein, A.-M. Competition between honey bees and wild bees and the role of nesting resources in a nature reserve. J. Insect Conserv. 17, 1275–1283 (2013).
Article Google Scholar
52.
Johnson, L. K. & Hubbell, S. P. Aggression and competition among stingless bees: Field studies. Ecology 55, 120–127 (1974).
Article Google Scholar
53.
Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
PubMed Article PubMed Central Google Scholar
54.
Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1–10 (2019).
ADS CAS Article Google Scholar
55.
Garibaldi, L. A. et al. From research to action: enhancing crop yield through wild pollinators. Front. Ecol. Environ. 12, 439–447 (2014).
Article Google Scholar
56.
Connelly, H., Poveda, K. & Loeb, G. Landscape simplification decreases wild bee pollination services to strawberry. Agric. Ecosyst. Environ. 211, 51–56 (2015).
Article Google Scholar
57.
MacInnis, G. & Forrest, J. R. K. Pollination by wild bees yields larger strawberries than pollination by honey bees. J. Appl. Ecol. 56, 824–832. https://doi.org/10.1111/1365-2664.13344 (2019).
Article Google Scholar
58.
Seeley, T. D. Social foraging by honeybees: how colonies allocate foragers among patches of flowers. Behav. Ecol. Sociobiol. 19, 343–354 (1986).
Article Google Scholar
59.
Bänsch, S., Tscharntke, T., Gabriel, D. & Westphal, C. Crop pollination services: complementary resource use by social vs solitary bees facing crops with contrasting flower supply. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13777 (2020).
60.
Nye, W. P. & Anderson, J. L. Insect pollinators frequenting strawberry blossoms and the effect of honey bees on yield and fruit quality. J. Am. Soc. Horticult. Sci. 99, 40 (1974).
Google Scholar
61.
De Oliveira, D., Savoie, L. & Vincent, C. in VI International Symposium on Pollination 288, 420–424 (1990).
62.
Chagnon, M., Gingras, J. & DeOliveira, D. Complementary aspects of strawberry pollination by honey and indigenous bees (Hymenoptera). J. Econ. Entomol. 86, 416–420 (1993).
Article Google Scholar
63.
Horth, L. & Campbell, L. A. Supplementing small farms with native mason bees increases strawberry size and growth rate. J. Appl. Ecol. 55, 591–599 (2018).
Article Google Scholar
64.
Pfister, S. C. et al. Dominance of cropland reduces the pollen deposition from bumble bees. Sci. Rep. 8, 13873 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
65.
Artz, D. R. & Nault, B. A. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. J. Econ. Entomol. 104, 1153–1161 (2011).
PubMed Article PubMed Central Google Scholar
66.
Petersen, J., Huseth, A. & Nault, B. Evaluating pollination deficits in pumpkin production in New York. Environ. Entomol. 43, 1247–1253 (2014).
CAS PubMed Article PubMed Central Google Scholar
67.
McGrady, C., Troyer, R. & Fleischer, S. Wild bee visitation rates exceed pollination thresholds in commercial cucurbita agroecosystems. J. Econ. Entomol. 113, 562–574 (2020).
CAS PubMed Article PubMed Central Google Scholar
68.
Geslin, B. et al. Advances in Ecological Research Vol. 57, 147–199 (Elsevier, San Diego, 2017).
Google Scholar
69.
Steffan-Dewenter, I. & Tscharntke, T. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia 122, 288–296 (2000).
ADS CAS PubMed Article PubMed Central Google Scholar
70.
Torné-Noguera, A., Rodrigo, A., Osorio, S. & Bosch, J. Collateral effects of beekeeping: Impacts on pollen-nectar resources and wild bee communities. Basic Appl. Ecol. 17, 199–209 (2016).
Article Google Scholar
71.
Free, J. B. Insect Pollination of Crops (Academic Press, London, 1970).
Google Scholar
72.
Delaplane, K. S., Mayer, D. R. & Mayer, D. F. Crop pollination by bees. (CABI, 2000).
73.
Phillips, B. Current honey bee and bumble bee stocking information. Michigan State University, MSU Extension: Pollination (2019). https://www.canr.msu.edu/news/current_honey_bee_stocking_information_and_an_introduction_to_commercial_bu.
74.
Angelella, G. M. & O’Rourke, M. E. Pollinator habitat establishment after organic and no-till seedbed preparation methods. HortScience 52, 1349–1355 (2017).
CAS Article Google Scholar
75.
Blaauw, B. R. & Isaacs, R. Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wildflowers. Basic Appl. Ecol. 15, 701–711 (2014).
Article Google Scholar
76.
Klatt, B. K. et al. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B Biol. Sci. 281, 20132440 (2014).
Article Google Scholar
77.
King, S. R., Davis, A. R. & Wehner, T. C. Classical genetics and traditional breeding. In Genetics, Genomics, and Breeding of Cucurbits (eds. Wang, Y.-H. et al.) 61–92 (CRC Press, 2012).
78.
Kronenberg, H. G. Poor fruit setting in strawberries. I. Euphytica 8, 47–57 (1959).
Article Google Scholar
79.
Kronenberg, H. G., Braak, J. & Zeilinga, A. Poor fruit setting in strawberries. II. Euphytica 8, 245–251 (1959).
Article Google Scholar
80.
Robinson, R. W. & Decker-Walters, D. S. Cucurbits (CAB Intl., New York, 1997).
Google Scholar
81.
R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).
82.
Magnusson, A. et al. Package ‘glmmTMB’. R Package Version 0.2. 0 (2017).
83.
Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R Package Version 2, 74 (2007).
Google Scholar
84.
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
Google Scholar
85.
Wien, H., Stapleton, S., Maynard, D., McClurg, C. & Riggs, D. Flowering, sex expression, and fruiting of pumpkin (Cucurbita sp.) cultivars under various temperatures in greenhouse and distant field trials. HortScience 39, 239–242 (2004).
Article Google Scholar More
