More stories

  • in

    Synapsid tracks with skin impressions illuminate the terrestrial tetrapod diversity in the earliest Permian of equatorial Pangea

    Špinar, Z. V. Revize nĕkterých moravských diskosauriscidů (Labyrinthodontia). Rozpravy Ústředního Ústavu Geologického. 15, 1–115 (1952).
    Google Scholar 
    Klembara, J. & Meszároš, Š. New finds of Discosauriscus austriacus (Makowsky 1876) from the Lower Permian of the Boskovice Furrow (Czecho-Slovakia). Geol. Carpath. 43, 305–312 (1992).
    Google Scholar 
    Klembara, J. The external gills and ornamentation of the skull roof bones of the Lower Permian tetrapod Discosauriscus austriacus (Makowsky 1876) with remarks to its ontogeny. Paläontol. Z. 69, 265–281 (1995).
    Google Scholar 
    Klembara, J. The cranial anatomy of Discosauriscus Kuhn, a seymouriamorph tetrapod from the Lower Permian of the Boskovice Furrow (Czech Republic). Philos. Trans. R. Soc. B 352, 257–302 (1997).ADS 

    Google Scholar 
    Calábková, G., Březina, J. & Madzia, D. Evidence of large terrestrial seymouriamorphs in the lowermost Permian of the Czech Republic. Pap. Palaeontol. https://doi.org/10.1002/spp2.1428 (2022).Article 

    Google Scholar 
    Makowsky, A. Über einen neuen Labyrinthodonten ‘Archegosaurus austriacus nov. spec’. Sitzungsberichte der keiserischen Akademie der Wissenschaft. 73, 155–166 (1876).
    Google Scholar 
    Fritsch, H. A. Neue Übersicht der in der Gaskohle und den Kalksteinen der Permformation in Böhmen vorgefundenen Tierreste. Sitzungsberichte der königlichen böhmische Gesellschaft der Wissenschaften in Prag 1879, 184–195 (1880).
    Google Scholar 
    Klembara, J. A new discosauriscid seymouriamorph tetrapod from the Lower Permian of Moravia, Czech Republic. Acta Palaeontol. Pol. 50, 25–48 (2005).
    Google Scholar 
    Klembara, J. New cranial and dental features of Discosauriscus austriacus (Seymouriamorpha, Discosauriscidae) and the ontogenetic conditions of Discosauriscus. Spec. Pap. Palaeontol. 81, 61–69 (2009).
    Google Scholar 
    Klembara, J. A new find of discosauriscid seymouriamorph from the Lower Permian of Boskovice Basin in Moravia (the Czech Republic). Fossil Imprint 72, 117–121 (2016).
    Google Scholar 
    Augusta, J. Spodnopermaská zvířena a květena z nového naleziště za pilou dolu “Antonín” u Zbýšova na Moravě. Věstník Státního geologického Ústavu. 22(4), 187–224 (1947).
    Google Scholar 
    Milner, A. W., Klembara, J. & Dostál, O. A zatrachydid temnospondyl from the Lower Permian of the Boskovice Furrow in Moravia (Czech Republic). J. Vertebr. Paleontol. 27, 711–715 (2007).
    Google Scholar 
    Klembara, J. & Steyer, S. A new species of Sclerocephalus (Temnospondyli: Stereospondylomorpha) from the Early Permian of the Boskovice Basin (Czech Republic). J. Paleontol. 86, 302–310 (2012).
    Google Scholar 
    Zajíc, J. & Štamberg, S. Selected important fossiliferous horizons of the Boskovice Basin in the light of the new zoopaleontological data. Acta Musei Reginaehradecensis A 30, 5–15 (2004).
    Google Scholar 
    Štamberg, S. & Zajíc, J. Carboniferous and Permian faunas and Their Occurrence in the Limnic Basins of the Czech Republic Museum of Eastern Bohemia (Hradec Králové, 2008).Calábková, G. & Nosek, V. Stopy velkého čtvernožce z permu boskovické brázdy. Sborník Muzea Brněnska. 59–68 (2022).Calábková, G., Březina, J., Nosek, V. & Madzia, D. High diversity of tetrapods in the lower Permian of the Boskovice Basin, Czech Republic. In 21st Slovak-Czech-Polish Paleontological Conference, Bratislava, Slovakia 113–114 (2022).Fritsch, H. A. Über die Fauna der Gaskohle der Pilsner und Rakonitzer Beckens. In Věstník Královské české společnosti nauk. Třída mathematicko-přírodovědecká. 70–79. (Praha, 1875).Fritsch, A. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens. II/2. Prague: F. Řivnáč. 33–64 (1885).Fritsch, H. A. Ueber neue Wirbelthiere aus der Permformation Böhmens nebst einer Uebersicht der aus derselben bekannt gewordenen Arten. Sitzungsberichte der königl. böhmischen Gesellschaft der Wissenschaften, mathematischnaturwissenschaftliche Classe 52, 17 (1895).Švestka, F. Příspěvek k dnešní bilanci nálezů rostlinných fossilií z uhelné pánve rosicko-oslavanské a památné Rybičkové skály pod spodnopermským Konvizem u Padochova. Příroda. 35(5), 116–119 (1943).
    Google Scholar 
    Švestka, F. Druhý příspěvek k fytopaleontologickému Průzkumu spodního perrnu a permokarbonu Oslavan, Padochova a Zbýšova. Příroda. 36, 159–165 (1944).
    Google Scholar 
    Fritsch, A. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens II/4. Prague: F. Řivnáč. 93–114 (1889).Reisz, R. R. Pennsylvanian Pelycosaurs from Linton, Ohio and Nýřany, Czechoslovakia. J. Paleontol. 49, 522–527 (1975).
    Google Scholar 
    Fröbisch, J., Schoch, R. R., Müller, J., Schindler, T. & Schweiss, D. A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar-Nahe Basin, Germany. Acta Palaeontol. Pol. 56, 113–120 (2011).
    Google Scholar 
    Spindler, F., Voigt, S. & Fischer, J. Edaphosauridae (Synapsida, Eupelycosauria) from Europe and their relationship to North American representatives. PalZ. 94, 125–153 (2019).
    Google Scholar 
    Jaroš, J. Litostratigrafie permokarbonu Boskovické brázdy. Věstník Ústředního ústavu geologického 38, 115–118 (1963).
    Google Scholar 
    Jaroš J. & Malý, L. Boskovická brázda. 208–223. In Geologie a ložiska svrchnopaleozoických limnických pánví České republiky (ed. PEšEK, J.) (Český geologický ústav, 2001).Pešek, J. Late Paleozoic limnic basins and coal deposits of the Czech Republic. Folia Musei Rerum Naturalium Bohemiae occidentalis: Geologica et Paleobiologica, 1 (2004).Jaroš, J. Geologický vývoj a stavba boskovické brázdy. PhD thesis, Charles University, Prague, Czech Republic (1962).Houzar, S., Hršelová, P., Gilíková, H., Buriánek, D. & Nehyba, S. Přehled historie vyzkumů permokarbonskych sedimentů jižni časti boskovicke brazdy (Čast 2. Geologie a petrografie). Acta Musei Moraviae Scientiae Geologicae. 102, 3–65 (2017).
    Google Scholar 
    Opluštil, S., Jirásek, J., Schmitz, M. & Matýsek, D. Biotic changes around the radioisotopically constrained Carboniferous-Permian boundary in the Boskovice Basin (Czech Republic). Bull. Geosci. 92, 95–122 (2017).
    Google Scholar 
    Dopita, M., Havlena, V. & Pešek, J. Ložiska fosilních paliv. Vyd. 1. Nakladatelství technické literatury, Praha (1985).Pešek, J., Holub, V., Jaroš, J., Malý, L., Martínek, K., Prouza, V., Spudil, J. & Tasler, R. Geologie a ložiska svrchnopaleozoických limnických pánví České republiky. Český geologický ústav, Praha (2001).Šimůnek, Z. & Martínek, K. A study of Late Carboniferous and Early Permian plant assemblages from the Boskovice Basin, Czech Republic. Rev. Palaeobot. Palynol. 155, 275–307 (2009).
    Google Scholar 
    Kukalová, J. On the Family Blattinopsidae Bolton, 1925 (Insecta, Protorthoptera). Rozpravy Československé akademie věd, Rada matematických a přírodních věd 69, 1–27 (1959).
    Google Scholar 
    Kukalová, J. Permian protelytroptera, coleoptera and protorthoptera (insecta) of Moravia. Sborník geologických věd, Paleontonologie. 6, 61–98 (1965).
    Google Scholar 
    Schneider, J. W. Zur Entomofauna des Jungpalaozoikums der Boskovicer Furche (ČSSR), Teil 1: Mylacridae (Insecta, Blattoidea). Freiberger Forschungshefte C 357, 43–55 (1980).
    Google Scholar 
    Schneider, J. W. Zur Entomofauna des Jungpalaozoikums der Boskovicer Furche (ČSSR), Teil 2: Phyloblattidae (Insecta, Blattoidea). Freiberger Forschungshefte C 395, 19–37 (1984).
    Google Scholar 
    Zajíc, J. Sladkovodní mikrovertebrátní společenstva svrchního Stefanu a spodního autunu Čech. Závěrečný zpráva za grant GAČR, MS, Česká geologický Ústav, 1–61. Praha (1996).Zajíc, J., Martínek, K., Šimůnek Z. & Drábková, J. Permokarbon Boskovické brázdy ve výkopu pro rozšíření tranzitního plynovodu. Zprávy o geologických výzkumech v roce 1995, 179–182. Praha. (1996).Ivanov, M. Přehled historie paleontologickeho badani v permokarbonu boskovicke brazdy na Moravě. Acta Musei Moraviae Scientiae Geologicae. 88, 3–112 (2003).
    Google Scholar 
    Zajíc, J. Vertebrate biozonation of the Permo-Carboniferous lakes of the Czech Republic: New data. Acta Musei Reginaehradecensis A 30, 15–16 (2004).
    Google Scholar 
    Zajíc, J. Permian acanthodians of the Czech Republic Czech Geological Survey Special Paper. 18, 1–42 (2005).Štamberg, S. Fossiliferous Early Permian horizons of the Krkonoše Piedmont Basin and the Boskovice Graben (Bohemian Massif) in view of the occurrence of actinopterygians. Paläontologie, Stratigraphie, Fazies (22). Freiberger Forschungshefte, C, 548, 45–60 (2014).Kukalová, J. Permian insects of Moravia. Part I: Miomoptera. Sborník geologických věd, Paleontonologie 1, 7–52 (1963).
    Google Scholar 
    Kukalová, J. Permian insects of Moravia. Part II: Liomopteridae. Sborník geologických věd, Paleontonologie. 3, 3–118 (1964).
    Google Scholar 
    Štamberg, S. Permo-Carboniferous actinopterygians of the Boskovice Graben. Part 1. Neslovicella, Bourbonnella, Letovichthys. Museum of Eastern Bohemia in Hradec Králové (2007).Klembara, J. The skeletal anatomy and relationships of a new discosauriscid seymouriamorph from the Lower Permian of Moravia (Czech Republic). Ann. Carnegie Museum 77, 451–484 (2009).
    Google Scholar 
    Klembara, J. & Mikudíková, M. New cranial material of Discosauriscus pulcherrimus (Seymouriamorpha, Discosauriscidae) from the Lower Permian of the Boskovice Basin (Czech Republic). Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 225–236 (2018).
    Google Scholar 
    Leonardi, G. Glossary and Manual of Tetrapod Footprint Palaeoichnology 1–117 (Departamento Nacional de Producao Mineral, 1987).
    Google Scholar 
    Porter, S., Roussel, M. & Soressi, M. A simple photogrammetry rig for the reliable creation of 3D artifact models in the field: Lithic examples from the early upper paleolithic sequence of Les Cottés (France). Adv. Archaeol. Pract. 4, 1–86 (2016).
    Google Scholar 
    Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J. & Reynolds, J. M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314 (2012).ADS 

    Google Scholar 
    Yilmaz, H., Yakar, M., Gulec, S. & Dulgerler, O. Importance of digital close-range photogrammetry in documentation of cultural heritage. J. Cult. Herit. 8(4), 428–433 (2007).
    Google Scholar 
    Haeckel, E. Generelle Morphologie der Organismen (Reimer, 1866).
    Google Scholar 
    Osborn, H. F. The reptilian subclasses Diapsida and Synapsida and the early history of the Diaptosauria. Mem. Am. Mus. Nat. Hist. 1, 265–270 (1903).
    Google Scholar 
    Romer, A. S. & Price, L. I. Review of the Pelycosauria. Geol. Soc. Am. Spec. Pap. 28, 1–538 (1940).
    Google Scholar 
    Geinitz, H. B. Beiträge zur Kenntnis der organischen Überreste in der Dyas (oder permischen Formation zum Theil) und über den Namen Dyas: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. 385–398 (1863).Voigt, S. & Lucas, S. G. Outline of a Permian tetrapod footprint ichnostratigraphy. 387–404. In The Permian Timescale: An Introduction (eds. Lucas, S. G. and Shen, S. Z.) 450 (Geological Society, London, Special Publications, 2016). https://doi.org/10.1144/SP450.10 (2016).Voigt, S. & Ganzelewski, M. Toward the origin of amniotes: Diadectomorph and synapsid footprints from the early Late Carboniferous of Germany. Acta Palaeontol. Pol. 55, 57–72 (2010).
    Google Scholar 
    Marchetti, L. et al. Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth Sci. Rev. 193, 109–145 (2019).ADS 

    Google Scholar 
    Voigt, S. Die Tetrapodenichnofauna des kontinentalen Oberkarbon und Perm im Thüringer Wald—Ichnotaxonomie, Paläoökologie und Biostratigraphie. Cuvillier, Göttingen (2005).Voigt, S. & Lucas, S. G. On a diverse tetrapod ichnofauna from early Permian red beds in San Miguel County, north-central New Mexico: New Mexico Geological Society. Guidebook. 66, 241–252 (2015).
    Google Scholar 
    Tilton, J. L. Permian vertebrate tracks in West Virginia. Bull. Geol. Soc. Am. 42, 547–556 (1931).
    Google Scholar 
    Van Allen, H. E. K., Calder, J. H. & Hunt, A. P. The trackway record of a tetrapod community in a walchian conifer forest from the Permo-Carboniferous of Nova Scotia. N. M. Mus. Nat. Hist. Sci. Bull. 30, 322–332 (2005).
    Google Scholar 
    Gand, G. Les traces de Vertébrés Tétrapodes du Permien français: Paléontologie, stratigraphie, paléoenvironnements (Bourgogne University, 1987).
    Google Scholar 
    Sacchi, E., Cifelli, R., Citton, P., Nicosia, U. & Romano, M. Dimetropus osageorum n. isp. from the Early Permian of Oklahoma (USA): A trace and its trackmaker. Ichnos 21, 175–192 (2014).
    Google Scholar 
    Buchwitz, M. & Voigt, S. On the morphological variability of Ichniotherium tracks and evolution of locomotion in the sistergroup of amniotes. PeerJ 6, e4346. https://doi.org/10.7717/peerj.4346 (2018).Article 
    CAS 

    Google Scholar 
    Mujal, E., Marchetti, L., Schoch, R. R. & Fortuny, J. Upper Paleozoic to lower mesozoic tetrapod ichnology revisited: Photogrammetry and relative depth pattern inferences on functional prevalence of autopodia. Front. Earth Sci. 8(248), 1–23 (2020).
    Google Scholar 
    Lucas, S. G., Kollar, A. D., Berman, D. S. & Henrici, A. C. Pelycosaurian-grade (Amniota: Synapsida) footprints from the Lower Permian Dunkard Group of Pennsylvania and West Virginia. Ann. Carnegie Mus. 83(4), 287–294 (2016).
    Google Scholar 
    Haubold, H., Hunt, A. P., Lucas, S. G. & Lockley, M. G. Wolfcampian (Early Permian) vertebrate tracks from Arizona and New Mexico. N. M. Mus. Nat. Hist. Sci. Bull. 6, 135–165 (1995).
    Google Scholar 
    Meade, L. E., Jones, A. S. & Butler, R. J. A revision of tetrapod footprints from the late Carboniferous of the West Midlands, UK. PeerJ 4, e2718. https://doi.org/10.7717/peerj.2718 (2016).Article 

    Google Scholar 
    Haubold, H. Die Tetrapodenfährten des Buntsandsteins. Paläontologische Abhandlungen A. IV, 395–548 (1971).Gand, G. & Haubold, H. Traces de Vertébrés du Permien du bassin de Saint-Affrique (Description, datation, comparaison avec celles du bassin de Lodève). Géologie Méditerranéenne 11, 321–348 (1984).
    Google Scholar 
    Voigt, S., Niedźwiedski, G., Raczyński, P., Mastaler, K. & Ptaszyński, T. Early Permian tetrapod ichnofauna from the Intra-Sudetic Basin, SW Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313–314, 173–180 (2012).
    Google Scholar 
    Niedźwiedzki, G. & Bojanowski, M. A supposed eupelycosaur body impression from the Early Permian of the Intra-Sudetic Basin, Poland. Ichnos Int. J. Plant Anim. Traces. 19(3), 150–155 (2012).
    Google Scholar 
    Marchetti, L. New occurrences of tetrapod ichnotaxa from the Permian Orobic Basin (Northern Italy) and critical discussion of the age of the ichnoassociation. Pap. Palaeontol. 2, 363–386. https://doi.org/10.1002/spp2.1045 (2016).Article 

    Google Scholar 
    Mujal, E. et al. Palaeoenvironmental reconstruction and early Permian ichnoassemblage from the NE Iberian Peninsula (Pyrenean Basin). Geol. Mag. 153, 578–600 (2016).ADS 

    Google Scholar 
    Matamales-Andreu, R., Mujal, E., Galobart, A. & Fortuny, J. Insights on the evolution of synapsid locomotion based on tetrapod tracks from the lower Permian of Mallorca (Balearic Islands, western Mediterranean). Palaeogeogr. Palaeoclimatol. Palaeoecol. 579, 110589 (2021).
    Google Scholar 
    Matamales-Andreu, R. et al. Early–middle Permian ecosystems of equatorial Pangaea: Integrated multi-stratigraphic and palaeontological review of the Permian of Mallorca (Balearic Islands, western Mediterranean. Earth Sci. Rev. 228, 103948 (2022).
    Google Scholar 
    Voigt, S., Lagnaoui, A., Hminna, A., Saber, H. & Schneider, J. W. Revisional notes on the Permian tetrapod ichnofauna from the Tiddas Basin, central Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 474–483 (2011).
    Google Scholar 
    Voigt, S., Saber, H., Schneider, J. W., Hmich, D. & Hminna, A. Late Carboniferous-early Permian tetrapod ichnofauna from the Khenifra Basin, central Morocco. Geobios 44, 309–407 (2011).
    Google Scholar 
    Lagnaoui, A. et al. Late Carboniferous tetrapod footprints from the Souss Basin, Western High Atlas Mountains, Morocco. Ichnos https://doi.org/10.1080/10420940.2017.1320284 (2017).Article 

    Google Scholar 
    Fichter, J. Aktuopaläontologische Studien zur Lokomotion rezenter Urodelen und Lacertilier sowie paläontologische Untersuchungen an Tetrapodenfährten des Rotliegenden (Unter-Perm) SW-Deutschlands. PhD thesis. Johannes-Gutenberg University, Mainz (1979).Haubold, H. The Early Permian tetrapod ichnofauna of Tambach, the changing concepts in ichnotaxonomy. Hallesches Jahrb. Geowiss. B 20, 1–16 (1998).Haubold, H. Tetrapodenfährten aus dem Perm—Kenntnisstand und Progress 2000. Hallesches Jahrb. Geowiss. B 22, 1–16 (2000).Romano, M., Citton, P. & Nicosia, U. Corroborating trackmaker identification through footprint functional analysis: The case study of Ichniotherium and Dimetropus. Lethaia 49(1), 102–116. https://doi.org/10.1111/let.12136 (2016).Article 

    Google Scholar 
    Ford, D. P. & Benson, J. B. R. The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nat. Ecol. Evol. 4, 57–65. https://doi.org/10.1038/s41559-019-1047-3 (2020).Article 

    Google Scholar 
    Modesto, S. P. Rooting about reptile relationships. Nat. Ecol. Evol. 4, 10–11 (2020).
    Google Scholar 
    Spindler, F. et al. First arboreal ’pelycosaurs’ (Synapsida: Varanopidae) from the early Permian Chemnitz Fossil Lagerstätte, SE Germany, with a review of varanopid phylogeny. PalZ. 92, 315–364 (2018).
    Google Scholar 
    Haubold, H. & Sarjeant, W. A. S. Tetrapodenfährten aus den Keele und Enville Groups (Permokarbon: Stefan und Autun) von Shropshire und South Staffordshire. Großbritannien. Z. geol. Wiss 1, 895–933 (1973).
    Google Scholar 
    Kümmell, S., Abdala, F., Sassoon, J. & Abdala, V. Evolution and identity of synapsid carpal bones. Acta Palaeontol. Pol. 65(4), 649–678 (2020).
    Google Scholar 
    Berman, D. S. et al. New primitive caseid (Synapsida, Caseasauria) from the Early Permian of Germany. Ann. Carnegie Museum 86(1), 47–74 (2020).
    Google Scholar 
    Spindler, F., Falconnet, J. & Fröbisch, J. Callibrachion and Datheosaurus, Two Historical and Previously Mistaken Basal Caseasaurian Synapsids From Europe. Acta Palaeontol. Pol. 61(3), 597–616 (2016).
    Google Scholar 
    Reisz, R. R., Madin, H. C., Fröbisch, J. & Falconnet, J. A new large caseid (Synapsida, Caseasauria) from the Permian of Rodez (France), including a reappraisal of “Casea” rutena Sigogneau-Russell & Russell, 1974. Geodiversitas 33(2), 227–246. https://doi.org/10.5252/g2011n2a2 (2011).Article 

    Google Scholar 
    Voigt, S. & Lucas, S. G. Permian tetrapod ichnodiversity of the Prehistoric Trackways National Monument (south-central New Mexico, USA). N. M. Mus. Nat. Hist. Sci. Bull. 65, 153–167 (2015).
    Google Scholar 
    Brand, L. R. Variations in salamander trackways resulting from substrate differences. J. Paleontol. 70, 1004–1010 (1996).
    Google Scholar 
    Krapovickas, V., Marsicano, C. A., Mancuso, A. C., de la Fuente, M. S. & Ottone, E. G. Tetrapod and invertebrate trace fossils from aeolian deposits of the lower Permian of central-western Argentina. Hist. Biol. 27, 827–842 (2015).
    Google Scholar 
    Benson, R. B. J. Interrelationships of basal synapsids: Cranial and postcranial morphological partitions suggest different topologies. J. Syst. Paleontol. 10, 601–624 (2012).
    Google Scholar 
    Spindler, F. The basal Sphenacodontia—Systematic revision and evolutionary implications. PhD Thesis, Technische Universität Bergakademie Freiberg, Germany (2015).Spindler, F. Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England. Earth Environ. Sci. Trans. R. Soc. Edinb. 111, 27–37 (2020).
    Google Scholar 
    Reisz, R. R. & Fröbisch, J. The oldest caseid synapsid from the Late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates. PLoS ONE 9(4), e94518. https://doi.org/10.1371/journal.pone.00945 (2014) (1–9).Article 
    ADS 

    Google Scholar 
    Werneburg, R., Spindler, F., Falconnet, J., Steyer, J.-S., Vianey-Liaud, M & Schneider, J. W. New caseid synapsid from the Permian (Guadalupian) of the Lodève basin (Occitanie, France). Palaeo Vertebrata 1–36 (2022).Ronchi, A., Sacchi, E., Romano, M. & Nicosia, U. A huge caseid pelycosaur from north-western Sardinia and its bearing on European Permian stratigraphy and palaeobiogeography. Acta Palaeontol. Pol. 56, 723–738 (2011).
    Google Scholar 
    Romano, M. & Nicosia, U. Alierasaurus ronchii, gen. et. Sp. nov., a caseid from the Permian of Sardinia, Italy. J. Vertebr. Paleontol. 34, 900–913 (2014).
    Google Scholar 
    Maddin, H. C., Sidor, C. A. & Reisz, R. R. Cranial anatomy of Ennatosaurus tecton (Synapsida: Caseidae) from the Middle Permian of Russia and the evolutionary relationships of Caseidae. J. Vertebr. Paleontol. 28, 160–180 (2008).
    Google Scholar 
    Langiaux, J., Parriat, H. & Sotty, D. Faune fossile du bassin de Blanzy-Montceau. La Physiophilie. 80, 55–67 (1974).
    Google Scholar 
    Gaudry, A. Sur un reptile très perfectionné trouvé dans le terrain permien. Comptes rendus hebdomadaires des Séances de l’Académie des Sciences. 91(16), 669–671 (1880).
    Google Scholar 
    Reisz, R. R. Handbuch der Paläoherpetologie. Teil 17A, Pelycosauria. (Gustav Fischer Verlag, 1986).Ziegler, J. et al. U-Pb ages of magmatic and detrital zircon of the Döhlen Basin: Geological history of a Permian strike-slip basin in the Elbe Zone (Germany). Int. J. Earth Sci. 108, 887–910 (2019).
    Google Scholar  More

  • in

    Soil organic carbon, total nitrogen stocks and CO2 emissions in top- and subsoils with contrasting management regimes in semi-arid environments

    Lal, R. Soil Carbon sequestration impacts on global climate change and food security. Science 30, 1623–1627 (2004).ADS 

    Google Scholar 
    Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164, 80–99 (2013).CAS 

    Google Scholar 
    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47(2), 151–163 (1996).CAS 

    Google Scholar 
    Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. & Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen: A synthesis for temperate forests. Biogeochemistry 52, 173–205 (2001).
    Google Scholar 
    Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).CAS 

    Google Scholar 
    Song, M. H. et al. Shifts in priming partly explain impacts of long-term nitrogen input in different chemical forms on soil organic carbon storage. Glob. Chang. Biol. 24, 4160–4172 (2018).ADS 

    Google Scholar 
    Okolo, C. C. et al. Priming effect in semi-arid soils of northern Ethiopia under different land use types. Biogeochemistry https://doi.org/10.1007/s10533-022-00905-z (2022).Article 

    Google Scholar 
    Eze, P. N., Udeigwe, T. K. & Stietiya, M. H. Distribution and potential source evaluation of heavy metals in prominent soils of Accra plains, Ghana. Geoderma 156(3–4), 357–362 (2010).ADS 
    CAS 

    Google Scholar 
    Eze, P. N., Mbakwe, I. & Okolo, C. C. Ecosystem functions of the soil highlighted in Igbo proverbs. In IUSS Global Soil Proverbs: Cultural Language of the Soil (eds Yang, J. E. et al.) (Schweizerbart and Borntraeger Science Publishers, 2019).
    Google Scholar 
    Nottingham, A. T. et al. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. Chang. Biol. 25, 827–838 (2019).ADS 

    Google Scholar 
    Paul, K. I., Polglase, P. J., Nyakuengama, J. G. & Khanna, P. K. Change in soil carbon following afforestation. Forest Ecol. Manag. 168, 241–257 (2002).
    Google Scholar 
    Batjes, N. H. Options for increasing carbon sequestration in West Africa soils: An exploratory study with special focus on Senegal. Land Degrad. Dev. 12, 131–142 (2001).
    Google Scholar 
    Powlson, D. S., Whitmore, A. P. & Goulding, K. W. T. Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. Eur. J. Soil Sci. 62, 42–55 (2011).CAS 

    Google Scholar 
    Zhang, K., Dang, H., Zhang, Q. & Cheng, X. Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: Evidence from stable isotopes. Glob. Chang. Biol. 21, 2762–2772 (2015).ADS 

    Google Scholar 
    Gebresamuel, G. et al. Nutrient Balance of farming systems in tigray, Northern Ethiopia. J. Soil Sci. Plant Nutr. 21, 315–328 (2021).CAS 

    Google Scholar 
    IPCC, Climate Change: The physical science basis. Contribution of working Group I to the Fourth Assessment. In Report of the Intergovernmental Panel on Climate Change (Eds. Solomon, S., Quin, D and Manning, M). (Cambridge University Press, Cambridge, UK) (2007).Yang, Y. S., Xie, J. S. & Sheng, H. The impact of land use/cover change on storage and quality of soil organic carbon in mid-subtropical mountainous area of southern China. J. Geo. Sci. 19, 49–57 (2009).
    Google Scholar 
    Akinyemi, F. O., Tlhalerwa, L. T. & Eze, P. N. Land degradation assessment in an African dryland context based on the composite Land Degradation Index and mapping method. Geocarto Int. 36(16), 1838–1854 (2021).
    Google Scholar 
    Button, E. S. et al. Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biol. Biochem. 170, 108697 (2022).CAS 

    Google Scholar 
    Rumpel, C. & Kögel-Knabner, I. Deep soil organic matter: A key but poorly understood component of terrestrial C cycle. Plant Soil 338(1), 143–158 (2011).CAS 

    Google Scholar 
    Lal, R., Lorenz, K., Huttle, R. F., Schneider, B. U. & Von, B. J. Terrestrial biosphere as a source and sink of atmospheric carbon dioxide. In Recarbonization of the Biosphere: Ecosystems and the Global Cycle (eds Lal, R. et al.) (Springer, 2012).
    Google Scholar 
    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).ADS 
    CAS 

    Google Scholar 
    Salome, C., Nunan, N., Pouteau, V., Lerchw, T. Z. & Chenu, C. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob. Chang. Biol. 16, 416–426 (2010).ADS 

    Google Scholar 
    Sithole, N. J., Magwaza, L. S. & Thibaud, G. R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Tillage Res. 190, 147–156 (2019).
    Google Scholar 
    Tashi, S., Singh, B., Keitel, C. & Adams, M. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Glob. Chang. Biol. 22, 2255–2268 (2016).ADS 

    Google Scholar 
    Zhou, Z., Wang, C. & Luo, Y. Effects of forest degradation on microbial communities and soil carbon cycling: A global meta-analysis. Global Ecol. Biogeography 27, 110–124 (2018).
    Google Scholar 
    Mhete, M., Eze, P. N., Rahube, T. O. & Akinyemi, F. O. Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Sci. African 7, e00246 (2020).
    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8, 885–889 (2018).ADS 
    CAS 

    Google Scholar 
    Murty, D., Kirschbaum, M. U. F., Mcmurtrie, R. E. & Mcgilvray, H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob. Chang. Biol. 8, 105–123 (2002).ADS 

    Google Scholar 
    Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).ADS 

    Google Scholar 
    Kebonye, N. M., Eze, P. N., Ahado, S. K. & John, K. Structural equation modeling of the interactions between trace elements and soil organic matter in semiarid soils. Intl. J. Environ. Sci. Technol. 17(4), 2205–2214 (2020).CAS 

    Google Scholar 
    Del Galdo, L., Six, J., Peressotti, A. & Cotrufo, M. F. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fraction and stable C isotopes. Glob. Chang. Biol. 9, 1204–1213 (2003).ADS 

    Google Scholar 
    Lal, R. Carbon sequestration in dry land ecosystems of West Asia and North Africa. Land Degrad. Dev. 13, 45–59 (2002).
    Google Scholar 
    Gebresamuel, G., Singh, B. R., Mitiku, H., Borresen, T. & Lal, R. Carbon Stocks in Ethiopian Soils in relation to land use and soil management. Land Degrad. Dev. 19(4), 351–367 (2008).
    Google Scholar 
    Fisseha, I., Mats, O. & Karl, S. Effect of land use changes on soil carbon status of some soil types in the Ethiopian Rift Valley. J. Drylands 4(1), 289–299 (2011).
    Google Scholar 
    Shiferaw, A., Hans, H. & Gete, Z. A review on soil carbon sequestration in Ethiopia to Mitigate land degradation and climate change. J. Environ. Earth Sci. 3(12), 187–201 (2013).
    Google Scholar 
    Bazezew, M. N., Teshome, S. & Eyale, B. Above- and below-ground reserved carbon in danaba community forest of Oromia Region, Ethiopia: Implications for CO2 emission balance. Am. J. Environ. Prot. 4(2), 75–82 (2015).
    Google Scholar 
    Berihu, T. et al. Soil carbon and nitrogen losses following deforestation in Ethiopia. Agron. Sust. Dev. 37, 1 (2017).CAS 

    Google Scholar 
    Gebresamuel, G. et al. Changes in soil organic carbon stock and nutrient status after conversion of pasture land to cultivated land in semi-arid areas of northern Ethiopia. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2020.1823372 (2022).Article 

    Google Scholar 
    Hoyle, F. C., Baldock, J. A. & Murphy, D. V. Soil organic carbon: Role in rainfed farming systems: With particular reference to Australian Conditions. In Rainfed Farming Systems (eds Tow, P. et al.) (Springer, 2011). https://doi.org/10.1007/978-1-4020-9132-2_14.Chapter 

    Google Scholar 
    Mekuria, W. et al. Restoration of degraded landscapes for ecosystem services in North-Western Ethiopia. Heliyon 4, e00764. https://doi.org/10.1016/j.heliyon.2018 (2018).Article 

    Google Scholar 
    Okolo, C. C. et al. Assessing the sustainability of land use management of Northern Ethiopian drylands by various indicators for soil health. Ecol. Indic. 112, 106092. https://doi.org/10.1016/j.ecolind.2020.106092 (2020).Article 
    CAS 

    Google Scholar 
    WRB. International Union of Soil Science Working Group. In World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome (2014).NMA 2018. National Metrological Agency (NMA), 2018. The National Metrological Agency of Ethiopia Mekelle center, Tigray Regional State, Mekelle, Ethiopia.Anikwe, M. A. N., Obi, M. E. & Agbim, N. N. Effect of crop and soil management practices soil compactibility in maize and groundnut plots in a Paleustult in Southeastern Nigeria. Plant Soils. 253, 457–465 (2003).CAS 

    Google Scholar 
    Anikwe, M. A. N. Carbon storage in soils of southeastern Nigeria under different management practices. Carbon Bal. Manag. https://doi.org/10.1186/1750-0680-5-5 (2010).Article 

    Google Scholar 
    IPCC Guidelines for National Greenhouse Gas Inventories. In Vol. 4: Agriculture, Forestry and other Land Use (eds. Eggleston, S., Buendia, K., Miwa, K., Ngara, T. and Tanabe, K.) (Institute for Global Environmental Strategies, 2006).McKenzie, N., Ryan, P., Fogarty, P. & Wood, J. Sampling, measurement and analytical protocols for carbon estimation in soil, litter and coarse woody debris. National Carbon Accounting System Technical Report No. 14. Australian Greenhouse Office, Canberra (2000).Nelson, D. W. & Sommers, L. E. Total carbon, total organic carbon and organic matter. In Methods of Soil Analysis. Part 3: Chemical Methods. Agronomy Monograph No. 9 (Ed. Sparks, D.L) 961–1010. (American Society of Agronomy, 1996).Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Chemical and Microbiological Properties (eds Keeney, D. R. et al.) 595–624 (American Society of Agronomy and Soil Science Society of America, 1982).
    Google Scholar 
    McLean, E. O. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd edn. Agronomy monograph No. 9 (Eds. Page, A.L., Miller, R.H and Keeney, D.R). 199–224. (American Society of Agronomy, 1982).Rhoades, J. D. Cation exchange capacity. In Methods of Soil Analysis: Part 2 Chemical and Microbial Properties. Agronomy Monograph No. 9. (Eds. Page, A.L., Miller, R.H and Keeney, D.R) pp. 149–157 (American Society of Agronomy, 1982).Blake, G. R. & Hartge, K. H. Bulk density. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Properties. 2nd edn. Agronomy Monograph No. 9 (ed. Klute, A) 363–382. (American Society of Agronomy, 1986).Gee, G. W. & Bauder, J. W. Particle size analysis. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Properties. 2nd edn. Agronomy Monograph No. 9. (Ed. A Klute) 91–100. (American Society of Agronomy, 1986).Gelaw, A. M., Singh, B. R. & Lal, R. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia. Agric. Ecosyst. Environ. 188, 256–263 (2014).
    Google Scholar 
    Puget, P. & Lal, R. Soil organic carbon and nitrogen in a Mollisol in Central Ohio as affected by tillage and land use. Soil Tillage Res. 80, 201–213 (2005).
    Google Scholar 
    Chan, Y. Increasing soil organic carbon of agricultural land. Primefact 735, 1–5 (2008).
    Google Scholar 
    Worku, G., Bantider, A. & Temesgen, H. Effects of land use/land cover change on some soil physical and chemical properties in Ameleke micro-watershed Gedeo and Borena Zones. South Ethiopia. J. Environ. Earth Sci. 4, 13–24 (2014).
    Google Scholar 
    Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. CATENA 153, 89–99 (2017).CAS 

    Google Scholar 
    Gessesse, T. A., Khamzina, A., Gebresamuel, G. & Amelung, W. Terrestrial carbon stocks following 15 years of integrated watershed management intervention in semi-arid Ethiopia. CATENA 190, 104543 (2020).CAS 

    Google Scholar 
    Haileslassie, A., Priess, J., Veldkamp, E., Teketay, D. & Lesschen, J. P. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agric. Ecosyst. Environ. 108, 1–16 (2005).
    Google Scholar 
    Lemenih, M., Lemma, B. & Teketay, D. Changes in soil carbon and total nitrogen following reforestation of previously cultivated land in the highlands of Ethiopia. Ethiopian J. Sci. 28(2), 99–108 (2005).
    Google Scholar 
    Lemenih, M., Karltun, E. & Olsson, M. Soil organic matter dynamics after deforestation along a farm field chronosequences in southern highlands of Ethiopia. Agric. Ecosyst. Environ. 109, 9–19 (2005).
    Google Scholar 
    Okebalama, C. B., Igwe, C. A. & Okolo, C. C. Soil organic carbon levels in soils of contrasting land uses in Southeastern Nigeria. Trop. Subtrop. Agroecosyst. 20, 493–504 (2017).CAS 

    Google Scholar 
    Nwite, J. N., Orji, J. E. & Okolo, C. C. Effect of different land use systems on soil carbon storage and structural indices in Abakaliki, Nigeria. Indian J. Ecol. 45(3), 522–527 (2018).
    Google Scholar 
    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis. Glob. Chang. Biol. 17, 1658–1670 (2011).ADS 

    Google Scholar 
    Zinn, Y. L., Marrenjo, G. J. & Silva, C. A. Soil C: N ratos are unresponsive to land use change in Brazil: A comparative analysis. Agric. Ecosyst. Environ. 255, 62–72 (2018).CAS 

    Google Scholar 
    Lou, Y. L., Xu, M. G., Chen, X. N., He, X. H. & Zhao, K. Stratification of soil organic C, N and C: N ratio as affected by conservation tillage in two maize fields of China. CATENA 95, 124–130 (2012).CAS 

    Google Scholar 
    Xiao, X., Kuang, X., Sauer, T. J., Heitman, J. L. & Horton, R. Bare soil carbon dioxide fluxes with time and depth determined by high-resolution gradient-based measurements and surface chambers. Soil Sci. Soc. Am. 79, 1073–1083 (2015).CAS 

    Google Scholar 
    Wang, X. et al. Forest soil profile inversion and mixing change the vertical stratification of soil CO2 concentration without altering soil surface CO2 Flux. Forests 10, 192 (2019).
    Google Scholar 
    Bates, C. T. et al. Conversion of marginal land into switchgrass conditionally accrues soil carbon but reduces methane consumption. ISME J. 16, 10 (2021).
    Google Scholar 
    Slessarev, E. W. et al. Quantifying the effects of switchgrass (Panicum virgatum) on deep organic C stocks using natural abundance 14C in three marginal soils. GCB Bioenergy 12, 834–847 (2020).CAS 

    Google Scholar 
    Balesdent, J., Besnard, E., Arrouays, D. & Chenu, C. The dynamics of carbon in particle size fractions of soil in a forest-cultivation sequence. Plant Soil 201, 49–57 (1998).CAS 

    Google Scholar 
    Birch, H. F. & Friend, M. T. The organ matter and nitrogen status of east African soils. J. Soil Sci. 7, 156–167 (1956).CAS 

    Google Scholar 
    Deng, L., Zhu, G., Tang, Z. & Shangguan, Z. Global patterns of the effects of land-usechanges on soil carbon stocks. Glob. Ecol. Conserv. 5, 127–138 (2016).
    Google Scholar 
    Post, W. M. & Kwon, K. C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 6, 317–327 (2000).ADS 

    Google Scholar 
    Feng, X. & Simpson, M. J. Temperature responses of individual soil organic matter components. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2008JG000743 (2008).Article 

    Google Scholar 
    Chen, S., Huang, Y., Zou, J. & Shi, Y. Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Glob. Planet. Chang. 100, 99–108 (2013).ADS 

    Google Scholar 
    Alemayehu, K. & Sheleme, B. Effects of different land use systems on selected soi properties in South Ethiopia. J. Soil Sci. Environ. Manag. 4(5), 100–107 (2013).
    Google Scholar 
    Bockheim, J. G. Soil endemism and its relation to soil formation theory. Geoderma 129, 109–124 (2005).ADS 

    Google Scholar 
    Ukaegbu, E. P., Osuaku, S. K. & Okolo, C. C. Suitability assessment of soils supporting oilpalm plantations in the coastal plains sand, Imo State Nigeria. Int. J. Agric. For. 5(2), 113–120 (2015).
    Google Scholar 
    Okolo, C. C. et al. Impact of open cast mine land use on soil physical properties in Enyigba, Southeastern Nigeria and the implication for sustainable land use management. Niger. J. Soil Sci. 25(1), 95–101 (2015).
    Google Scholar 
    Nwite, J. N. & Okolo, C. C. Soil water relations of an Ultisol amended with agro-wastes and its effect on grain yield of maize (Zea Mays L.) in Abakaliki, Southeastern Nigeria. Eur. J. Sci. Res. 141, 126–140 (2016).
    Google Scholar 
    Nwite, J. N. & Okolo, C. C. Organic carbon dynamics and changes in some physical properties of soil and their effect on grain yield of maize under conservative tillage practices in Abakaliki, Nigeria. Afr. J. Agric. Res. 12(26), 2215–2222 (2017).CAS 

    Google Scholar 
    Mbah, C. N., Njoku, C., Okolo, C. C., Attoe, E. & Osakwe, U. C. Amelioration of a degraded Ultisol with hardwood biochar: Effects on soil physico-chemical properties and yield of cucumber (Cucumis sativus L). Afr. J. Agric. Res. 12(21), 1781–1792 (2017).CAS 

    Google Scholar 
    Nandan, R. et al. Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma 340, 104–114 (2019).ADS 
    CAS 

    Google Scholar 
    Sharma, K.L. Effect of agroforestry systems on soil quality–monitoring and assessment. Central Research Institute for Dryland Agriculture. 2011. http://www.crida.in/DRM1-WinterSchool/KLS.pdf/. Accessed on 30 Dec 2018.Okolo, C. C., Gebresamuel, G., Zenebe, A., Haile, M. & Eze, P. N. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agric. Ecosyst. Environ. 297, 106924. https://doi.org/10.1016/j.agee.2020.106924 (2020).Article 
    CAS 

    Google Scholar 
    Okolo, C. C., Gebresamuel, G., Retta, A. N., Zenebe, A. & Haile, M. Advances in quantifying soil organic carbon under different land uses in Ethiopia: A review and synthesis. Bull. Natl. Res. Cent. 43(99), 2019. https://doi.org/10.1186/s42269-019-0120-z (2019).Article 

    Google Scholar  More

  • in

    Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification

    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.Article 
    CAS 

    Google Scholar 
    Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, et al. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu Rev Pub Health. 2017;38:259–77.Article 

    Google Scholar 
    Brown AR, Lilley M, Shutler J, Lowe C, Artioli Y, Torres R, et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev Aquac. 2020;12:1663–88.
    Google Scholar 
    Bates SS, Hubbard KA, Lundholm N, Montresor M, Leaw CP. Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae. 2018;79:3–43.Article 

    Google Scholar 
    Silver MW, Bargu S, Coale SL. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic pacific. Proc Natl Acad Sci. 2010;107:20762–67.Article 
    CAS 

    Google Scholar 
    Trick CG, Bill BD, Cochlan WP, Wells ML, Trainer VL, Pickell LD. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proc Natl Acad Sci. 2010;107:5887–92.Article 
    CAS 

    Google Scholar 
    Hallegraeff G, Enevoldsen H, Zingone A. Global harmful algal bloom status reporting. Harmful Algae. 2021;102:101992.Article 

    Google Scholar 
    McKibben SM, Peterson W, Wood AM, Trainer VL, Hunter M, White AE. Climatic regulation of the neurotoxin domoic acid. Proc Natl Acad Sci. 2017;114:239–44.Article 
    CAS 

    Google Scholar 
    Clark S, Hubbard KA, Ralston DK, McGillicuddy DJ, Stocke C, Alexander MA, et al. Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine. J Mar Syst. 2022;230:103737.Article 

    Google Scholar 
    Trainer VL, Kudela RM, Hunter MV, Adams NG, McCabe RM. Climate extreme seeds a new domoic ccid hotspot on the US West Coast. Front Clim. 2020;2:1–11.Article 

    Google Scholar 
    Hinder SL, Hays GC, Edwards M, Roberts EC, Walne AW, Gravenor MB. Changes in marine dinoflagellate and diatom abundance under climate change. Nat Clim Change. 2012;2:271–75.Article 

    Google Scholar 
    Sun J, Hutchins DA, Feng Y, Seubert EL, Caron DA, Fu FX. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol Oceanogr. 2011;56:829–40.Article 
    CAS 

    Google Scholar 
    Zhu Z, Qu P, Fu F, Tennenbaum N, Tatters AO, Hutchins DA. Understanding the blob bloom: warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae. 2017;67:36–43.Article 
    CAS 

    Google Scholar 
    Radan RL, Cochlan WP. Differential toxin response of Pseudo-nitzschia multiseries as a function of nitrogen speciation in batch and continuous cultures, and during a natural assemblage experiment. Harmful Algae. 2018;73:12–29.Article 
    CAS 

    Google Scholar 
    Wingert CJ, Cochlan WP. Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae. 2021;107:102030.Article 
    CAS 

    Google Scholar 
    Auro ME, Cochlan WP. Nitrogen utilization and toxin production by two diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidate and P. fryxelliana. J Phycol. 2013;49:156–69.Article 
    CAS 

    Google Scholar 
    Lundholm N, Clarke A, Ellegaard M. A 100-year record of changing Pseudo-nitzschia species in a sill-fjord in Denmark related to nitrogen loading and temperature. Harmful Algae. 2010;9:449–57.Article 

    Google Scholar 
    Ryan JP, Kudela RM, Birch JM, Blum M, Bower HA, Chavez FP, et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys Res Lett. 2017;44:5571–79.Article 

    Google Scholar 
    McCabe RM, Hickey BM, Kudela RM, Lefebvre KA, Adams NG, Bill BD, et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett. 2016;43:10,366–76.Article 

    Google Scholar 
    Tatters AO, Fu FX, Hutchins DA. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One. 2012;7:e32116.Article 
    CAS 

    Google Scholar 
    Lundholm N, Hansen PJ, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar Ecol Prog Ser. 2004;273:1–15.Article 
    CAS 

    Google Scholar 
    Trimborn S, Lundholm N, Thoms S, Richter KW, Krock B, Hansen P, et al. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry. Physiol Plant. 2008;133:92–105.Article 
    CAS 

    Google Scholar 
    Brunson JK, McKinnie SMK, Chekan JR, McCrow JP, Miles ZD, Bertrand EM, et al. Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science. 2018;361:1356–58.Article 
    CAS 

    Google Scholar 
    Boissonneault KR, Henningsen BM, Bates SS, Robertson DL, Milton S, Pelletier J, et al. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries. BMC Mole Biol. 2013;14:1–19.
    Google Scholar 
    Pierrot DE, Lewis E, Wallace DWR MS Excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of. Energy, Oak Ridge, TN. 2006; Retrieved from https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a.Brzezinski MA, Nelson DM. The annual silica cycle in the Sargasso Sea near Bermuda. Deep-Sea Res Pt I Oceanogr Res Papers. 1995;42:1215–37.Article 
    CAS 

    Google Scholar 
    Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change. 2014;4:1024–30.Article 

    Google Scholar 
    Schaum CE, Barton S, Bestion E, Buckling A, Garcia-Carreras B, Lopez P, et al. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol. 2017;1:0094.Article 

    Google Scholar 
    Wang Z, Maucher-Fuquay J, Fire SE, Mikulski CM, Haynes B, Doucette GJ, et al. Optimization of solid-phase extraction and liquid chromatography–tandem mass spectrometry for the determination of domoic acid in seawater, phytoplankton, and mammalian fluids and tissues. Anal Chim Acta. 2012;715:71–9.Article 
    CAS 

    Google Scholar 
    Brandenburg KM, Velthuis M, Van de Waal DB. Meta-analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO2 levels. Glob Change Biol. 2019;25:2607–18.Article 

    Google Scholar 
    Wohlrab S, John U, Klemm K, Rberlein T, Grivogiannis AMF, Krock B, et al. Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton. Harmful Algae. 2020;92:101697.Article 
    CAS 

    Google Scholar 
    Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, et al. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Sci Total Environ. 2021;771:145167.Article 
    CAS 

    Google Scholar 
    Trainer VL, Bates SS, Lundholm N, Thessen AE, Cochlan WP, Adams NG, et al. Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae. 2012;14:271–300.Article 

    Google Scholar 
    Zhu Z, Qu P, Gale J, Fu F, Hutchins DA. Individual and interactive effects of warming and CO2 on Pseudo-nitzschia subcurvata and Phaeocystis antarctica, two dominant phytoplankton from the Ross Sea, Antarctica. Biogeosciences. 2017;14:5281–95.Article 
    CAS 

    Google Scholar 
    Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, McIlvin MR, et al. Irreversibly increased N2 fixation in Trichodesmium experimentally adapted to high CO2. Nat Commun. 2015;6:8155.Article 

    Google Scholar 
    Walworth NG, Lee MD, Fu FX, Hutchins DA, Webb EA. Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium. P Natl Acad Sci. 2016;113:E7367–74.Article 
    CAS 

    Google Scholar 
    Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun. 2018;9:1719.Article 

    Google Scholar 
    Hutchins DA, Capone DG. The ocean nitrogen cycle: New developments and global change. Nat Rev Microbiol. 2022;20:401–14.Article 
    CAS 

    Google Scholar 
    Xu D, Tong S, Wang B, Zhang X, Wang W, Zhang X, et al. Ocean acidification stimulation of phytoplankton growth depends on the extent of departure from the optimal growth temperature. Mar Pollut Bull. 2022;177:113510.Article 
    CAS 

    Google Scholar 
    Hennon GMM, Sefbom J, Schaum E, Dyhrman ST, Godhe A Studying the acclimation and adaptation of HAB species to changing environmental conditions. In: Wells ML, et al. (eds.). GlobalHAB. 2021. Guidelines for the Study of Climate Change Effects on HABs. Paris: UNESCO-IOC/SCOR, 2021. pp 64–78.Collins S, Bell G. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature. 2004;431:566–9.Article 
    CAS 

    Google Scholar 
    Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol. 2012;2:1195–207.Article 

    Google Scholar 
    Tatters AO, Schnetzer A, Fu F, Lie AY, Caron DA, Hutchins DA. Short‐versus long‐term responses to changing CO2 in a coastal dinoflagellate bloom: Implications for interspecific competitive interactions and community structure. Evolution. 2013;67:1879–91.Article 

    Google Scholar 
    Schaum CE, Collins S. Plasticity predicts evolution in a marine alga. P Roy Soc B-Biol Sci. 2014;281:20141486.
    Google Scholar 
    Moran XAG, Lopez-Urrutia Á, Calvo-Díaz A, Li WKW. Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol. 2010;16:1137–44.Article 

    Google Scholar 
    Thomas MK, Kremer CT, Klausmeier CA, Litchman EA. Global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–88.Article 
    CAS 

    Google Scholar 
    Toseland ADSJ, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84.Article 
    CAS 

    Google Scholar 
    Collins S. Many Possible Worlds: Expanding the Ecological Scenarios in Experimental Evolution. Evol Biol. 2011;38:3–14.Article 

    Google Scholar 
    Qu PP, Fu F, Wang XW, Kling JD, Elghazzawy M, Huh M, et al. Two co‐dominant nitrogen‐fixing cyanobacteria demonstrate distinct acclimation and adaptation responses to cope with ocean warming. Env Microbiol Rep. 2022;14:203–17.Article 
    CAS 

    Google Scholar 
    Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol. 2009;22:1435–46.Article 

    Google Scholar 
    Draghi J, Whitlock MC. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 2012;66:2891–902.Article 

    Google Scholar 
    Collins S, Rost B, Rynearson TA. Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl. 2014;7:140–55.Article 
    CAS 

    Google Scholar 
    Kim H, Spivack AJ, Menden-Deuer S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: Implications for bloom formation in an acidified ocean. Harmful Algae. 2013;26:1–11.Article 
    CAS 

    Google Scholar 
    Hennon GMM, Quay P, Morales RL, Swanson LM, Armbrust EV. Acclimation conditions modify physiological response of the diatom Thalassiosira pseudonana to elevated CO2 concentrations in a nitrate-limited chemostat. J Phycol. 2014;50:243–53.Article 
    CAS 

    Google Scholar 
    Daufresne M, Lengfellner K, Sommer U. Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci. 2009;106:12788–93.Article 
    CAS 

    Google Scholar 
    Atkinson D, Ciotti BJ, Montagnes DJS. Protists decrease in size linearly with temperature: ca. 2.5% °C-1. Proc R Soc Lond B 2003;270:2605–11.Article 

    Google Scholar 
    Tong S, Gao K, Hutchins DA. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2. Glob Chang Biol 2018;24:3055–64.Article 

    Google Scholar 
    Kelly KJ, Fu FX, Jiang X, Li H, Xu D, Yang N, et al. Interactions between ultraviolet B radiation, warming, and changing nitrogen source may reduce the accumulation of toxic Pseudo-nitzschia multiseries biomass in future coastal oceans. Front Mar Sci. 2021;8:433.Article 

    Google Scholar 
    Sterner R, Elser, J Ecological stoichiometry. In: Levin SA, et al. (eds) The Princeton Guide to Ecology. Princeton Univ. Press, 2009. pp 376–85.Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG, Davidson AT. Acidification diminishes diatom silica production in the Southern Ocean. Nat Clim Change 2019;9:781–86.Article 
    CAS 

    Google Scholar  More

  • in

    The influence of task difficulty, social tolerance and model success on social learning in Barbary macaques

    Heyes, B. Y. C. M. Social learning in animals: Categories and mechanisms. Biol. Rev. 69(2), 207–231. https://doi.org/10.1111/j.1469-185X.1994.tb01506.x (1994).Article 
    CAS 

    Google Scholar 
    Hoppitt, W. & Laland, K. N. Social processes influencing learning in animals: A review of the evidence. Adv. Study Behav. 38, 105–165. https://doi.org/10.1016/S0065-3454(08)00003-X (2008).Article 

    Google Scholar 
    Kendal, R. L., Coolen, I. & Laland, K. N. Adaptive trade-offs in the use of social and personal information. In Cognitive Ecology II (eds Dukas, R. & Ratcliffe, J. M.) 249–271 (University of Chicago Press, 2009).Chapter 

    Google Scholar 
    Marshall-Pescini, S. & Whiten, A. Social learning of nut-cracking behavior in East African sanctuary-living chimpanzees (Pan troglodytes schweinfurthii). J. Comp. Psychol. 122(2), 186. https://doi.org/10.1037/0735-7036.122.2.186 (2008).Article 

    Google Scholar 
    Hobaiter, C., Poisot, T., Zuberbühler, K., Hoppitt, W. & Gruber, T. Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees. PLoS Biol. 12(9), e1001960. https://doi.org/10.1371/journal.pbio.1001960 (2014).Article 
    CAS 

    Google Scholar 
    Coelho, C. G. et al. Social learning strategies for nut-cracking by tufted capuchin monkeys (Sapajus spp.). Anim. Cogn. 18(4), 911–919. https://doi.org/10.1007/s10071-015-0861-5 (2015).Article 
    CAS 

    Google Scholar 
    Boyd, R. & Richerson, P. J. Culture and the evolutionary process (University of Chicago press, 1985).
    Google Scholar 
    Laland, K. N. Social learning strategies. Anim. Learn. Behav. 32(1), 4–14. https://doi.org/10.3758/BF03196002 (2004).Article 

    Google Scholar 
    Kendal, R. L. Animal ‘culture wars’: Evidence from the Wild?. Psychologist 21(4), 312–315 (2008).
    Google Scholar 
    Kendal, R. L., Kendal, J. R., Hoppitt, W. & Laland, K. N. Identifying social learning in animal populations: A new ‘option-bias’ method. PLoS ONE 4(8), e6541. https://doi.org/10.1371/journal.pone.0006541 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Giraldeau, L. A., Valone, T. J. & Templeton, J. J. Potential disadvantages of using socially acquired information. Philos. Trans. R. Soc. Lond. Series B. 357(1427), 1559–1566. https://doi.org/10.1098/rstb.2002.1065 (2002).Article 

    Google Scholar 
    Kendal, R. L., Coolen, I., van Bergen, Y. & Laland, K. N. Trade-offs in the adaptive use of social and asocial learning. Adv. Study Behav. 35, 333–379. https://doi.org/10.1016/S0065-3454(05)35008-X (2005).Article 

    Google Scholar 
    Galef, B. G. Jr. Why behaviour patterns that animals learn socially are locally adaptive. Anim. Behav. 49(5), 1325–1334. https://doi.org/10.1006/anbe.1995.0164 (1995).Article 

    Google Scholar 
    Kendal, R. L. et al. Social learning strategies: Bridge-building between fields. Trends Cogn. Sci. 22(7), 651–665. https://doi.org/10.1016/j.tics.2018.04.003 (2018).Article 

    Google Scholar 
    Rendell, L. et al. Cognitive culture: Theoretical and empirical insights into social learning strategies. Trends Cogn. Sci. 15(2), 68–76. https://doi.org/10.1016/j.tics.2010.12.002 (2011).Article 

    Google Scholar 
    Dindo, M., Thierry, B. & Whiten, A. Social diffusion of novel foraging methods in brown capuchin monkeys (Cebus apella). Proc. R. Soc. B 275(1631), 187–193. https://doi.org/10.1098/rspb.2007.1318 (2008).Article 

    Google Scholar 
    Reader, S. M. & Biro, D. Experimental identification of social learning in wild animals. Learn. Behav. 38(3), 265–283. https://doi.org/10.3758/LB.38.3.265 (2010).Article 

    Google Scholar 
    Hoppitt, W. & Laland, K. N. Social Learning: An Introduction to Mechanisms, Methods, and Models (Princeton University Press, 2013).Book 

    Google Scholar 
    Byrne, R. W. & Russon, A. E. Learning by imitation: A hierarchical approach. Behav. Brain Sci. 21(5), 667–684. https://doi.org/10.1017/S0140525X9833174X (1998).Article 
    CAS 

    Google Scholar 
    Kendal, R. L. et al. Evidence for social learning in wild lemurs (Lemur catta). Learn. Behav. 38(3), 220–234. https://doi.org/10.3758/LB.38.3.220 (2010).Article 

    Google Scholar 
    Lonsdorf, E. V. & Bonnie, K. E. Opportunities and constraints when studying social learning: Developmental approaches and social factors. Learn. Behav. 38(3), 195–205. https://doi.org/10.3758/LB.38.3.195 (2010).Article 

    Google Scholar 
    Coussi-korbel, S. & Fragaszy, M. On the relation between social dynamics and social learning. Anim. Behav. 50(6), 1441–1453. https://doi.org/10.1016/0003-3472(95)80001-8 (1995).Article 

    Google Scholar 
    Franz, M. & Nunn, C. L. Network-based diffusion analysis: A new method for detecting social learning. Proc. R. Soc. Lond B 276(1663), 1829–1836. https://doi.org/10.1098/rspb.2008.1824 (2009).Article 

    Google Scholar 
    Hoppitt, W., Boogert, N. J. & Laland, K. N. Detecting social transmission in networks. J. Theor. Biol. 263(4), 544–555. https://doi.org/10.1016/j.jtbi.2010.01.004 (2010).Article 
    ADS 
    MATH 

    Google Scholar 
    Hoppitt, W. & Laland, K. N. Detecting social learning using networks: A users guide. Am. J. Primatol. 73(8), 834–844. https://doi.org/10.1002/ajp.20920 (2011).Article 

    Google Scholar 
    Hasenjager, M. J., Leadbeater, E. & Hoppitt, W. Detecting and quantifying social transmission using network-based diffusion analysis. J. Anim. Ecol. 90(1), 8–26. https://doi.org/10.1111/1365-2656.13307 (2021).Article 

    Google Scholar 
    Schnoell, A. V. & Fichtel, C. Wild red-fronted lemurs (Eulemur rufifrons) use social information to learn new foraging techniques. Anim. Cogn. 15(4), 505–516. https://doi.org/10.1007/s10071-012-0477-y (2012).Article 

    Google Scholar 
    Coelho, C. Social Dynamics and Diffusion of Novel Behaviour Patterns in Wild Capuchin Monkeys (Sapajus libidinosus) Inhabiting the Serra da Capivara National Park. (Unpublished Doctoral Dissertation) (Durham University, 2015).
    Google Scholar 
    Claidière, N., Messer, E. J., Hoppitt, W. & Whiten, A. Diffusion dynamics of socially learned foraging techniques in squirrel monkeys. Curr. Biol. 23(13), 1251–1255. https://doi.org/10.1016/j.cub.2013.05.036 (2013).Article 
    CAS 

    Google Scholar 
    van Leeuwen, E. J., Staes, N., Verspeek, J., Hoppitt, W. J. & Stevens, J. M. Social culture in bonobos. Curr. Biol. 30(6), R261–R262. https://doi.org/10.1016/j.cub.2020.02.038 (2020).Article 
    CAS 

    Google Scholar 
    Canteloup, C., Hoppitt, W. & van de Waal, E. Wild primates copy higher-ranked individuals in a social transmission experiment. Nat. Commun. 11(1), 1–10. https://doi.org/10.1038/s41467-019-14209-8 (2020).Article 
    CAS 

    Google Scholar 
    Kawai, M. Newly-acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima Islet. Primates 6(1), 1–30. https://doi.org/10.1007/BF01794457 (1965).Article 

    Google Scholar 
    Huffman, M. A., Leca, J. B. & Nahallage, C. A. Cultured Japanese macaques: A multidisciplinary approach to stone handling behavior and its implications for the evolution of behavioral tradition in nonhuman primates. In The Japanese Macaques (eds Nakagawa, N. et al.) 191–219 (Springer, 2010). https://doi.org/10.1007/978-4-431-53886-8_9.Chapter 

    Google Scholar 
    Drapier, M. & Thierry, B. Social transmission of feeding techniques in Tonkean macaques?. Int. J. Primatol. 23(1), 105–122. https://doi.org/10.1023/A:1013201924975 (2002).Article 

    Google Scholar 
    Ducoing, A. M. & Thierry, B. Tool-use learning in Tonkean macaques (Macaca tonkeana). Anim. Cogn. 8(2), 103–113. https://doi.org/10.1007/s10071-004-0240-0 (2005).Article 

    Google Scholar 
    Ferrari, P. F. et al. Neonatal imitation in rhesus macaques. PLoS Biol. 4(9), e302. https://doi.org/10.1371/journal.pbio.0040302 (2006).Article 
    CAS 

    Google Scholar 
    Leca, J. B., Gunst, N. & Huffman, M. A. The first case of dental flossing by a Japanese macaque (Macaca fuscata): Implications for the determinants of behavioral innovation and the constraints on social transmission. Primates 51(1), 13. https://doi.org/10.1007/s10329-009-0159-9 (2010).Article 

    Google Scholar 
    Macellini, S. et al. Individual and social learning processes involved in the acquisition and generalization of tool use in macaques. Philos. Trans. R. Soc. B 367(1585), 24–36. https://doi.org/10.1098/rstb.2011.0125 (2012).Article 
    CAS 

    Google Scholar 
    Redshaw, J. Re-analysis of data reveals no evidence for neonatal imitation in rhesus macaques. Biol. Let. 15(7), 20190342. https://doi.org/10.1098/rsbl.2019.0342 (2019).Article 

    Google Scholar 
    Hook, M. A. et al. Inter-group variation in abnormal behavior in chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Appl. Anim. Behav. Sci. 76(2), 165–176. https://doi.org/10.1016/S0168-1591(02)00005-9 (2002).Article 

    Google Scholar 
    Watanabe, K., Urasopon, N. & Malaivijitnond, S. Long-tailed macaques use human hair as dental floss. Am. J. Primatol. 69(8), 940–944. https://doi.org/10.1002/ajp.20403 (2007).Article 

    Google Scholar 
    Gumert, M. D., Kluck, M. & Malaivijitnond, S. The physical characteristics and usage patterns of stone axe and pounding hammers used by long-tailed macaques in the Andaman Sea region of Thailand. Am. J. Primatol. 71(7), 594–608. https://doi.org/10.1002/ajp.20694 (2009).Article 

    Google Scholar 
    Tan, A. W., Hemelrijk, C. K., Malaivijitnond, S. & Gumert, M. D. Young macaques (Macaca fascicularis) preferentially bias attention towards closer, older, and better tool users. Anim. Cogn. 21(4), 551–563. https://doi.org/10.1007/s10071-018-1188-9 (2018).Article 

    Google Scholar 
    Bandini, E. & Tennie, C. Exploring the role of individual learning in animal tool-use. PeerJ 8, e9877. https://doi.org/10.7717/peerj.9877 (2020).Article 

    Google Scholar 
    Leca, J. B., Gunst, N., & Huffman, M. A. Japanese macaque cultures: Inter-and intra-troop behavioural variability of stone handling patterns across 10 troops. Behaviour, 251–281. https://www.jstor.org/stable/4536445 (2007).Tanaka, I. Matrilineal distribution of louse egg-handling techniques during grooming in free-ranging Japanese macaques. Am. J. Phys. Anthropol. 98(2), 197–201. https://doi.org/10.1002/ajpa.1330980208 (1995).Article 
    CAS 

    Google Scholar 
    Tanaka, I. Social diffusion of modified louse egg-handling techniques during grooming in free-ranging Japanese macaques. Anim. Behav. 56(5), 1229–1236. https://doi.org/10.1006/anbe.1998.0891 (1998).Article 
    CAS 

    Google Scholar 
    Whiten, A. & van de Waal, E. The pervasive role of social learning in primate lifetime development. Behav. Ecol. Sociobiol. 72(5), 1–16. https://doi.org/10.1007/s00265-018-2489-3 (2018).Article 

    Google Scholar 
    Widdig, A., Streich, W. J. & Tembrock, G. Coalition formation among male Barbary macaques (Macaca sylvanus). Am. J. Primatol. 50(1), 37–51. https://doi.org/10.1002/(SICI)1098-2345(200001)50:1%3c37::AID-AJP4%3e3.0.CO;2-3 (2000).Article 
    CAS 

    Google Scholar 
    Thierry, B. Unity in diversity: Lessons from macaque societies. Evol. Anthropol. 16(6), 224–238. https://doi.org/10.1002/evan.20147 (2007).Article 

    Google Scholar 
    Berghänel, A., Ostner, J., Schröder, U. & Schülke, O. Social bonds predict future cooperation in male Barbary macaques, Macaca sylvanus. Anim. Behav. 81(6), 1109–1116. https://doi.org/10.1016/j.anbehav.2011.02.009 (2011).Article 

    Google Scholar 
    Carne, C., Wiper, S. & Semple, S. Reciprocation and interchange of grooming, agonistic support, feeding tolerance, and aggression in semi-free-ranging Barbary macaques. Am. J. Primatol. 73(11), 1127–1133. https://doi.org/10.1002/ajp.20979 (2011).Article 

    Google Scholar 
    Molesti, S. & Majolo, B. Cooperation in wild Barbary macaques: Factors affecting free partner choice. Anim. Cogn. 19(1), 133–146. https://doi.org/10.1007/s10071-015-0919-4 (2016).Article 

    Google Scholar 
    Rebout, N., Desportes, C. & Thierry, B. Resource partitioning in tolerant and intolerant macaques. Aggress. Behav. 43(5), 513–520. https://doi.org/10.1002/ab.21709 (2017).Article 

    Google Scholar 
    Amici, F., Caicoya, A. L., Majolo, B. & Widdig, A. Innovation in wild Barbary macaques (Macaca sylvanus). Sci. Rep. 10(1), 1–12. https://doi.org/10.1038/s41598-020-61558-2 (2020).Article 
    CAS 

    Google Scholar 
    Fischer, J. Emergence of individual recognition in young macaques. Anim. Behav. 67(4), 655–661. https://doi.org/10.1016/j.anbehav.2003.08.006 (2004).Article 

    Google Scholar 
    Seyfarth, R. M. & Cheney, D. L. Production, usage, and comprehension in animal vocalizations. Brain Lang. 115(1), 92–100. https://doi.org/10.1016/j.bandl.2009.10.003 (2010).Article 

    Google Scholar 
    Garcia-Nisa, I. Communication and cultural transmission in populations of semi free-ranging Barbary macaques (Macaca sylvanus). (Doctoral dissertation). Durham University, United Kingdom. http://etheses.dur.ac.uk/14140/ (2021).Hoppitt, W. The conceptual foundations of network-based diffusion analysis: Choosing networks and interpreting results. Philos. Trans. R. Soc. B 372(1735), 20160418. https://doi.org/10.1098/rstb.2016.0418 (2017).Article 

    Google Scholar 
    Hikami, K., Hasegawa, Y. & Matsuzawa, T. Social transmission of food preferences in Japanese monkeys (Macaca fuscata) after mere exposure or aversion training. J. Comp. Psychol. 104(3), 233. https://doi.org/10.1037/0735-7036.104.3.233 (1990).Article 
    CAS 

    Google Scholar 
    Deaner, R. O., Khera, A. V. & Platt, M. L. Monkeys pay per view: Adaptive valuation of social images by rhesus macaques. Curr. Biol. 15(6), 543–548. https://doi.org/10.1016/j.cub.2005.01.044 (2005).Article 
    CAS 

    Google Scholar 
    Gariépy, J. F. et al. Social learning in humans and other animals. Front. Neurosci. 8, 58. https://doi.org/10.3389/fnins.2014.00058 (2014).Article 

    Google Scholar 
    Barrett, B. J., McElreath, R. L. & Perry, S. E. Pay-off-biased social learning underlies the diffusion of novel extractive foraging traditions in a wild primate. Proc. R. Soc. B 284(1856), 20170358. https://doi.org/10.1098/rspb.2017.0358 (2017).Article 

    Google Scholar 
    Kuester, J. & Paul, A. Group fission in Barbary macaques (Macaca sylvanus) at Affenberg Salem. Int. J. Primatol. 18(6), 941–966. https://doi.org/10.1023/A:1026396113830 (1997).Article 

    Google Scholar 
    Whitehead, H. Analyzing Animal Societies: Quantitative Methods for Vertebrate Social Analysis (University of Chicago Press, 2008).Book 

    Google Scholar 
    Hoppitt, W. (2011). NBDA User Guide V1.2. https://lalandlab.st-andrews.ac.uk/freeware/ 28 Sept 2016.Fleiss, J. L., Levin, B. & Paik, M. C. Statistical Methods for Rates and Proportions 3rd edn. (Wiley, 2003).Book 
    MATH 

    Google Scholar 
    McHugh, M. L. Interrater reliability: the kappa statistic. Biochemia medica: Biochemia medica, 22(3), 276–282. https://hrcak.srce.hr/89395 (2012).Hair, J. F., Anderson, R. E., Babin, B. J. & Black, W. C. Multivariate Data Analysis: A Global Perspective Vol. 7 (Pearson Education, 2010).
    Google Scholar 
    Campbell, L. A., Tkaczynski, P. J., Lehmann, J., Mouna, M. & Majolo, B. Social thermoregulation as a potential mechanism linking sociality and fitness: Barbary macaques with more social partners form larger huddles. Sci. Rep. 8(1), 1–8. https://doi.org/10.1038/s41598-018-24373-4 (2018).Article 
    CAS 

    Google Scholar 
    Barrett, L., Henzi, S. P., Weingrill, T., Lycett, J. E. & Hill, R. A. Market forces predict grooming reciprocity in female baboons. Proc. R. Soc. Lond. Ser. B 266(1420), 665–670. https://doi.org/10.1098/rspb.1999.0687 (1999).Article 

    Google Scholar 
    Henzi, S. P. et al. Effect of resource competition on the long-term allocation of grooming by female baboons: Evaluating Seyfarth’s model. Anim. Behav. 66(5), 931–938. https://doi.org/10.1006/anbe.2003.2244 (2003).Article 

    Google Scholar 
    Ueno, M. & Nakamichi, M. Grooming facilitates huddling formation in Japanese macaques. Behav. Ecol. Sociobiol. 72(6), 1–10. https://doi.org/10.1007/s00265-018-2514-6 (2018).Article 

    Google Scholar 
    Carter, A. J., Tico, M. T. & Cowlishaw, G. Sequential phenotypic constraints on social information use in wild baboons. Elife 5, e13125. https://doi.org/10.7554/eLife.13125.001 (2016).Article 

    Google Scholar 
    Barelli, C., Reichard, U. H. & Mundry, R. Is grooming used as a commodity in wild white-handed gibbons, Hylobates lar?. Anim. Behav. 82(4), 801–809. https://doi.org/10.1016/j.anbehav.2011.07.012 (2011).Article 

    Google Scholar 
    Schülke, O., Dumdey, N. & Ostner, J. Selective attention for affiliative and agonistic interactions of dominants and close affiliates in macaques. Sci. Rep. 10(1), 1–8. https://doi.org/10.1038/s41598-020-62772-8 (2020).Article 
    CAS 

    Google Scholar 
    Heesen, M., Macdonald, S., Ostner, J. & Schülke, O. Ecological and social determinants of group cohesiveness and within-group spatial position in wild Assamese macaques. Ethology 121(3), 270–283. https://doi.org/10.1111/eth.12336 (2015).Article 

    Google Scholar 
    Ortiz, K. M. Female feeding competition in a folivorous primate (Propithecus verreauxi) with formalized dominance hierarchies: contest or scramble? (Doctoral dissertation). University of Texas, USA. https://repositories.lib.utexas.edu/handle/2152/34120 (2015).Jurczyk, V., Fröber, K. & Dreisbach, G. Increasing reward prospect motivates switching to the more difficult task. Mot. Sci. 5(4), 295–313. https://doi.org/10.1037/mot0000119 (2019).Article 

    Google Scholar 
    Rathke, E. M. & Fischer, J. Differential ageing trajectories in motivation, inhibitory control and cognitive flexibility in Barbary macaques (Macaca sylvanus). Philos. Trans. R. Soc. B 375(1811), 20190617. https://doi.org/10.1098/rstb.2019.0617 (2020).Article 

    Google Scholar 
    Kendal, R. et al. Chimpanzees copy dominant and knowledgeable individuals: Implications for cultural diversity. Evol. Hum. Behav. 36(1), 65–72. https://doi.org/10.1016/j.evolhumbehav.2014.09.002 (2015).Article 

    Google Scholar 
    van de Waal, E., Claidière, N. & Whiten, A. Social learning and spread of alternative means of opening an artificial fruit in four groups of vervet monkeys. Anim. Behav. 85(1), 71–76. https://doi.org/10.1016/j.anbehav.2012.10.008 (2013).Article 

    Google Scholar 
    Luncz, L. V. & Boesch, C. Tradition over trend: Neighboring chimpanzee communities maintain differences in cultural behavior despite frequent immigration of adult females. Am. J. Primatol. 76(7), 649–657. https://doi.org/10.1002/ajp.22259 (2014).Article 

    Google Scholar 
    van Leeuwen, E. J., Acerbi, A., Kendal, R. L., Tennie, C. & Haun, D. B. A reappreciation of ‘conformity’. Anim. Behav. 122, e5–e10. https://doi.org/10.1016/j.anbehav.2016.09.010 (2016).Article 

    Google Scholar 
    Horner, V. & Whiten, A. Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Anim. Cogn. 8(3), 164–181. https://doi.org/10.1007/s10071-004-0239-6 (2005).Article 

    Google Scholar 
    Wood, L. The influence of model-based biases and observer prior experience on social learning mechanisms and strategies. (Doctoral dissertation). Durham University, United Kingdom. http://etheses.dur.ac.uk/7274/ (2013).van Leeuwen, E. J., Cronin, K. A., Schütte, S., Call, J. & Haun, D. B. Chimpanzees (Pan troglodytes) flexibly adjust their behaviour in order to maximize payoffs, not to conform to majorities. PLoS ONE 8(11), e80945. https://doi.org/10.1371/journal.pone.0080945 (2013).Article 
    CAS 

    Google Scholar 
    Vale, G. L., Flynn, E. G., Lambeth, S. P., Schapiro, S. J. & Kendal, R. L. Public information use in chimpanzees (Pan troglodytes) and children (Homo sapiens). J. Comp. Psychol. 128(2), 215–223. https://doi.org/10.1037/a0034420 (2014).Article 

    Google Scholar 
    Canteloup, C., Cera, M. B., Barrett, B. J. & van de Waal, E. Processing of novel food reveals payoff and rank-biased social learning in a wild primate. Sci. Rep. 11(1), 1–13. https://doi.org/10.1038/s41598-021-88857-6 (2021).Article 
    CAS 

    Google Scholar 
    Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122. https://doi.org/10.1016/j.physrep.2014.07.001 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Kivela, M. et al. Multilayer networks. J. Complex Netw. 2(3), 203e271. https://doi.org/10.1093/comnet/cnu016 (2014).Article 

    Google Scholar 
    Snijders, L. & Naguib, M. Communication in animal social networks: A missing link. Adv. Study Behav. 49, 297–359. https://doi.org/10.1016/bs.asb.2017.02.004 (2017).Article 

    Google Scholar 
    Finn, K. R., Silk, M. J., Porter, M. A. & Pinter-Wollman, N. The use of multilayer network analysis in animal behaviour. Anim. Behav. 149, 7–22. https://doi.org/10.1016/j.anbehav.2018.12.016 (2019).Article 

    Google Scholar  More

  • in

    Unspoilt forests fall to feed the global supply chain

    .readcube-buybox { display: none !important;}
    Agricultural expansion can plunder forests, but it is not the only human activity to do so. Researchers have found that more than one-third of the loss of Earth’s large, intact forests is driven by production for export — especially of wood, minerals and energy1.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to Nature and 55 other Nature journal$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-023-00119-9

    References

    Subjects

    Conservation biology More

  • in

    Significant changes in soil microbial community structure and metabolic function after Mikania micrantha invasion

    Runyon, J. B., Butler, J. L., Friggens, M. M., Meyer, S. E. & Sing, S. E. Invasive species and climate change. USDA For. Serv. 285, 97–115 (2012).
    Google Scholar 
    Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).Article 

    Google Scholar 
    Mollot, G., Pantel, J. H. & Romanuk, T. N. The effects of invasive species on the decline in species richness: a global meta-analysis. Adv. Ecol. Res. 56, 61–83 (2017).Article 

    Google Scholar 
    Gaertner, M., Den Breeyen, A., Hui, C. & Richardson, D. M. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: A meta-analysis. Prog. Phys. Geog. 33, 319–338 (2009).Article 

    Google Scholar 
    Vilà, M. et al. Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J. Biogeogr. 33, 853–861 (2010).Article 

    Google Scholar 
    Hejda, M., Pysek, P. & Jarosik, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).Article 

    Google Scholar 
    Powell, K. I., Chase, J. M. & Knight, T. M. A synthesis of plant invasion effects on biodiversity across spatial scales. Am. J. Bot. 98, 539–548 (2011).Article 

    Google Scholar 
    Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6, 503–523 (2003).Article 
    CAS 

    Google Scholar 
    Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytol. 177, 706–714 (2008).Article 
    CAS 

    Google Scholar 
    Chabrerie, O., Laval, K., Puget, P., Desaire, S. & Alard, D. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Appl. Soil Ecol. 24, 43–56 (2003).Article 

    Google Scholar 
    Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers?. Science 325, 573–574 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Dawson, W. & Schrama, M. Identifying the role of soil microbes in plant invasions. J. Ecol. 104, 1211–1218 (2016).Article 

    Google Scholar 
    Lankau, R. Soil microbial communities alter allelopathic competition between Alliaria petiolata and a native species. Biol. Invasions 12, 2059–2068 (2010).Article 

    Google Scholar 
    Siefert, A., Zillig, K. W., Friesen, M. L. & Strauss, S. Y. Soil microbial communities alter conspecific and congeneric competition consistent with patterns of field coexistence in three Trifolium congeners. J. Ecol. 106, 1876–1891 (2018).Article 
    CAS 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83, 3152–3166 (2002).Article 

    Google Scholar 
    Li, W. H., Zhang, C. B., Jiang, H. B., Xin, G. R. & Yang, Z. Y. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281, 309–324 (2006).Article 
    CAS 

    Google Scholar 
    Li, W. H., Zhang, C., Gao, G., Zan, Q. & Yang, Z. Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity. Plant Soil 296, 197–207 (2007).Article 
    CAS 

    Google Scholar 
    Chen, X. P. et al. Exotic plant Alnus trabeculosa alters the composition and diversity of native rhizosphere bacterial communities of Phragmites australis. Pedosphere 26, 108–119 (2016).Article 

    Google Scholar 
    Yin, L., Liu, B., Wang, H., Zhang, Y. & Fan, W. The rhizosphere microbiome of Mikania micrantha provides insight into adaptation and invasion. Front. Microbiol. 11, 1462 (2020).Article 

    Google Scholar 
    Griffiths, B. S., Ritz, K. & Wheatley, R. E. Relationship between functional diversity and genetic diversity in complex microbial communities. In Microbial Communities (eds Insam, H. & Rangger, A.) 1–9 (Springer, 1997). https://doi.org/10.1007/978-3-642-60694-6_1.Chapter 

    Google Scholar 
    Pérez-Piqueres, A., Edel-Hermann, V., Alabouvette, C. & Steinberg, C. Response of soil microbial communities to compost amendments. Soil Biol. Biochem. 38, 460–470 (2006).Article 

    Google Scholar 
    Grime, J. P. Plant strategies and vegetation processes. Biol. Plant 23, 254–254 (1979).
    Google Scholar 
    Goldberg, D. & Novoplansky, A. On the relative importance of competition in unproductive environments. J. Ecol. 85, 409–418 (1997).Article 

    Google Scholar 
    Goldberg, D. E., Martina, J. P., Elgersma, K. J. & Currie, W. S. Plant size and competitive dynamics along nutrient gradients. Am. Nat. 190, 229–243 (2017).Article 

    Google Scholar 
    Castro-Díez, P., Godoy, O., Alonso, A., Gallardo, A. & Saldaña, A. What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol. Lett. 17, 1–12 (2014).Article 

    Google Scholar 
    Chapuis-Lardy, L., Vanderhoeven, S., Dassonville, N., Koutika, L. S. & Meerts, P. Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status. Biol. Fertil. Soils 42, 481–489 (2006).Article 

    Google Scholar 
    Thorpe, A. S., Archer, V. & DeLuca, T. H. The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Appl. Soil Ecol. 32, 118–122 (2006).Article 

    Google Scholar 
    Hawkes, C. V., Wren, I. F., Herman, D. J. & Firestone, M. K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 8, 976–985 (2005).Article 

    Google Scholar 
    Zhang, A. M., Chen, Z. H., Zhang, G. N., Chen, L. J. & Wu, Z. J. Soil phosphorus composition determined by 31P NMR spectroscopy and relative phosphatase activities influenced by land use. Eur. J. Soil Biol. 52, 73–77 (2012).Article 

    Google Scholar 
    Souza-Alonso, P., Novoa, A. & Gonzalez, L. Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biol. Biochem. 79, 100–108 (2014).Article 
    CAS 

    Google Scholar 
    Callaway, M. et al. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J. Ecol. 104, 994–1002 (2016).Article 

    Google Scholar 
    Zhao, M. et al. Ageratina adenophora invasions are associated with microbially mediated differences in biogeochemical cycles. Sci. Total Environ. 677, 47–56 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Litton, C. M., Sandquist, D. R. & Cordell, S. Effects of non-native grass invasion on aboveground carbon pools and tree population structure in a tropical dry forest of Hawaii. For. Ecol. Manag. 231, 105–113 (2006).Article 

    Google Scholar 
    Wolkovich, E. M., Lipson, D. A., Virginia, R. A., Cottingham, K. L. & Bolger, D. T. Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Glob. Chang. Biol. 16, 1351–1365 (2010).Article 
    ADS 

    Google Scholar 
    Sardans, J. et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob. Chang. Biol. 23, 1282–1291 (2017).Article 
    ADS 

    Google Scholar 
    Yu, H. et al. Soil nitrogen dynamics and competition during plant invasion: insights from Mikania micrantha invasions in China. New Phytol. 229, 3440–3452 (2021).Article 
    CAS 

    Google Scholar 
    Day, M. D. et al. Biology and impacts of pacific islands invasive species. 13. Mikania micrantha Kunth (Asteraceae). Pac. Sci. 70, 257–285 (2016).Article 

    Google Scholar 
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (eds) 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. CID: 20.500.12592/drpzmz. (Auckland: Invasive Species Specialist Group, 2000).Zhang, L. Y., Ye, W. H., Cao, H. L. & Feng, H. L. Mikania micrantha H.B.K. in China: An overview. Weed Res. 44, 42–49 (2004).Article 

    Google Scholar 
    Manrique, V., Diaz, R., Cuda, J. P. & Overholt, W. A. Suitability of a new plant invader as a target for biological control in Florida. Invas. Plant Sci. Manag. 4, 1–10 (2011).Article 

    Google Scholar 
    Macanawai, A., Day, M., Tumaneng-Diete, T., Adkins, S. & Nausori, F. Impact of Mikania micrantha on crop production systems in Viti Levu, Fiji. Pak. J. Weed Sci. Res. 18, 357–365 (2012).
    Google Scholar 
    Carter, M. R. & Gregorich, E. G. (eds) Soil Sampling and Methods of Analysis 2nd edn. (CRC Press, 2007). https://doi.org/10.1201/9781420005271.Book 

    Google Scholar 
    Liu, X. et al. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?. Agric. For. Meteorol. 246, 78–85 (2017).Article 
    ADS 

    Google Scholar 
    Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130 (2014).Article 
    CAS 

    Google Scholar 
    Sun, S. & Badgley, B. D. Changes in microbial functional genes within the soil metagenome during forest ecosystem restoration. Soil Biol. Biochem. 135, 163–172 (2019).Article 
    CAS 

    Google Scholar 
    Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).Article 
    CAS 

    Google Scholar 
    Dawkins, K. & Esiobu, N. The invasive brazilian pepper tree (Schinus terebinthifolius) is colonized by a root microbiome enriched with Alphaproteobacteria and unclassified Spartobacteria. Front. Microbiol. 9, 876 (2018).Article 

    Google Scholar 
    Carey, C. J., Beman, J. M., Eviner, V. T., Malmstrom, C. M. & Hart, S. C. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Front. Microbiol. 6, 466 (2015).Article 

    Google Scholar 
    Strickland, M. S., Osburn, E., Lauber, C., Fierer, N. & Bradford, M. A. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 23, 627–636 (2009).Article 

    Google Scholar 
    Kanokratana, P. et al. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb. Ecol. 61, 518–528 (2011).Article 

    Google Scholar 
    Margesin, R., Jud, M., Tscherko, D. & Schinner, F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol. Ecol. 67, 208–218 (2009).Article 
    CAS 

    Google Scholar 
    Xu, Z. W. et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biol. Biochem. 104, 152–163 (2017).Article 
    CAS 

    Google Scholar 
    Zhou, X. et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Sci. Total Environ. 444, 552–558 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Mao, T. & Minoru, K. Using the KEGG database resource. Curr. Protoc. Bioinform. 38, 1121–11243. https://doi.org/10.1002/0471250953.bi0112s38 (2012).Article 

    Google Scholar 
    Grayston, S. J., Griffith, G. S., Mawdsley, J. L., Campbell, C. D. & Bardgett, R. D. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 33, 533–551 (2001).Article 
    CAS 

    Google Scholar 
    Chen, W. B. & Chen, B. M. Considering the preferences for nitrogen forms by invasive plants: a case study from a hydroponic culture experiment. Weed Res. 59, 49–57 (2019).CAS 

    Google Scholar 
    Christian, J. M. & Wilson, S. D. Long-term ecosystem impacts of an introduced grass in the northern Great Plains. Ecology 80, 2397–2407 (1999).Article 

    Google Scholar 
    Strickland, M. S., Devore, J. L., Maerz, J. C. & Bradford, M. A. Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Glob. Chang. Biol. 16, 1338–1350 (2010).Article 
    ADS 

    Google Scholar 
    Bradley, B. A., Houghtonw, R. A., Mustard, J. F. & Hamburg, S. P. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Glob. Chang. Biol. 12, 1815–1822 (2006).Article 
    ADS 

    Google Scholar 
    Ogle, S. M., Ojima, D. & Reiners, W. A. Modeling the impact of exotic annual brome grasses on soil organic carbon storage in a northern mixed-grass prairie. Biol. Invasions 6, 365–377 (2004).Article 

    Google Scholar 
    Ni, G. Y. et al. Mikania micrantha invasion enhances the carbon (C) transfer from plant to soil and mediates the soil C utilization through altering microbial community. Sci. Total Environ. 711, 135020. https://doi.org/10.1016/j.scitotenv.2019.135020 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Kourtev, P. S., Ehrenfeld, J. G. & Haggblom, M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol. Biochem. 35, 895–905 (2003).Article 
    CAS 

    Google Scholar 
    Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).Article 
    CAS 

    Google Scholar 
    Ehrenfeld, J. G., Kourtev, P. & Huang, W. Z. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol. Appl. 11, 1287–1300 (2001).Article 

    Google Scholar 
    Allison, S. D. & Vitousek, P. M. Rapid nutrient cycling in leaf litter from invasive plants in Hawai’i. Oecologia 141, 612–619 (2004).Article 
    ADS 

    Google Scholar 
    Harner, M. J. et al. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats. Ecol. Appl. 19, 1135–1146 (2009).Article 

    Google Scholar 
    Wolkovich, E. M. Nonnative grass litter enhances grazing arthropod assemblages by increasing native shrub growth. Ecology 91, 756–766 (2010).Article 

    Google Scholar 
    Yan, J. et al. Conversion of organic carbon from decayed native and invasive plant litter in Jiuduansha wetland and its implications for SOC formation and sequestration. J. Soils Sediments 20, 675–689 (2020).Article 
    CAS 

    Google Scholar 
    Aerts, R. & de Caluwe, H. Nitrogen deposition effects on carbon dioxide and methane emissions from temperate peatland soils. Oikos 84, 44–54 (1999).Article 

    Google Scholar 
    Shen, C. C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 57, 204–211 (2013).Article 
    CAS 

    Google Scholar 
    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).Article 
    CAS 

    Google Scholar 
    Mothé, G. P. B., Quintanilha-Peixoto, G., Souza, G. R. D., Ramos, A. C. & Intorne, A. C. Overview of the role of nitrogen in copper pollution and bioremediation mediated by plant–microbe interactions. In Soil Nitrogen Ecology (eds Cruz, C. et al.) 249–264. https://doi.org/10.1007/978-3-030-71206-8_12 (Springer, 2021).Chapter 

    Google Scholar 
    Chen, B. M., Peng, S. L. & Ni, G. Y. Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biol. Invasions 11, 1291–1299 (2009).Article 

    Google Scholar 
    Fan, Y. X. et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biol. Fertil. Soils 54, 149–161 (2018).Article 
    CAS 

    Google Scholar 
    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).Article 
    ADS 
    CAS 

    Google Scholar 
    Khan, M. S., Zaidi, A., Ahemad, M. & Oves, M. Plant growth promotion by phosphate solubilizing fungi: Current perspective. Arch. Agron. Soil Sci. 56, 73–98 (2010).Article 
    CAS 

    Google Scholar 
    Kouas, S., Labidi, N., Debez, A. & Abdelly, C. Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev. 25, 389–393 (2005).Article 
    CAS 

    Google Scholar 
    Bolan, N. S. et al. Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv. Agron. 110, 1–75 (2011).Article 
    CAS 

    Google Scholar 
    Dail, D. B., Davidson, E. A. & Chorover, J. Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry 54, 131–146 (2001).Article 
    CAS 

    Google Scholar 
    Fitzhugh, R. D., Lovett, G. M. & Venterea, R. T. Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Glob. Chang. Biol. 9, 1591–1601 (2003).Article 
    ADS 

    Google Scholar  More

  • in

    Revisiting Mt Fuji’s groundwater origins with helium, vanadium and environmental DNA tracers

    Chakraborty, A. & Jones, T. E. in Natural Heritage of Japan Geoheritage, Geoparks and Geotourism (Conservation and Management Series) (eds Chakraborty, A. et al.) Ch. 16 (Springer, 2018).Nakamura, K. Possible nascent trench along the eastern Japan Sea as the convergent boundary between Eurasian and North American plates (in Japanese). Bull. Earthq. Res. Inst. 58, 711–722 (1983).
    Google Scholar 
    Seno, T. Is northern Honshu a microplate? Tectonophysics 115, 177–196 (1985).Article 

    Google Scholar 
    Ogawa, Y., Takami, Y. & Takazawa, S. in Formation and Applications of the Sedimentary Record in Arc Collision Zones Vol. 436 (eds Draut, A. E. at al.) 155–170 (Geological Society of America, 2008).Tsuya, H. & Morimoto, R. Types of volcanic eruptions in Japan (in Japanese). Bull. Volcanol. 26, 209–222 (1963).Article 
    CAS 

    Google Scholar 
    Aoki, Y., Tsunematsu, K. & Yoshimoto, M. Recent progress of geophysical and geological studies of Mt. Fuji Volcano, Japan. Earth Sci. Rev. 194, 264–282 (2019).Article 

    Google Scholar 
    Tsuchi, R. Geology and groundwater of Mt. Fuji, Japan (in Japanese). J. Geogr. 126, 33–42 (2017).Article 

    Google Scholar 
    Vittecoq, B., Reninger, P.-A., Lacquement, F., Martelet, G. & Violette, S. Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics. Hydrol. Earth Sys. Sci. 23, 2321–2338 (2019).Article 
    CAS 

    Google Scholar 
    Yamamoto, S. Hydrologic study of volcano Fuji and its adjacent areas (in Japanese). Geogr. Rev. Jpn 43, 267–184 (1970).Article 

    Google Scholar 
    Yamamoto, T. & Nakada, S. in Volcanic Hazards, Risks, and Disasters (eds Shroder, J. F. & Papale, P.) 355–376 (Elsevier, 2015).Hasegawa, A. et al. Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic observations: an overview. Gondwana Res. 16, 370–400 (2009).Article 

    Google Scholar 
    Kashiwagi, H. & Nakajima, J. Three‐dimensional seismic attenuation structure of central Japan and deep sources of arc magmatism. Geophys. Res. Lett. 46, 13746–13755 (2019).Article 

    Google Scholar 
    Obrochta, S. P. et al. Mt. Fuji Holocene eruption history reconstructed from proximal lake sediments and high-density radiocarbon dating. Quat. Sci. Rev. 200, 395–405 (2018).Article 

    Google Scholar 
    Tosaki, Y. & Asai, K. Groundwater ages in Mt. Fuji (in Japanese). J. Geogr. 126, 89–104 (2017).Article 

    Google Scholar 
    Imtiaz, M. et al. Vanadium, recent advancements and research prospects: a review. Environ. Int. 80, 79–88 (2015).Article 
    CAS 

    Google Scholar 
    Koshimizu, S., & Tomura, K. (2000). Geochemical behavior of trace vanadium in the spring, groundwater and lake water at the foot of Mt. Fuji, Central Japan. In K. Sato & Y. Iwasa (Eds.), Groundwater Updates. Springer, Tokyo. 171-176. https://doi.org/10.1007/978-4-431-68442-8_29Ono, M. et al. Regional groundwater flow system in a stratovolcano adjacent to a coastal area: a case study of Mt. Fuji and Suruga Bay, Japan. Hydrogeol. J. 27, 717–730 (2019).Article 

    Google Scholar 
    UNESCO Fujisan, Sacred Place and Source of Artistic Inspiration (World Heritage Convention, 2013); https://whc.unesco.org/en/list/1418Nationally Designated Cultural Properties Database (in Japanese) (Agency of Cultural Affairs Japan, 2020); https://kunishitei.bunka.go.jp/bsys/indexShowa’s 100 Famous Waters of Japan (Ministry of the Environment Japan (MOEJ), 1985); https://www.env.go.jp/water/meisui/Heisei’s 100 Famous Waters of Japan (MOEJ, 2009): https://www.env.go.jp/water/meisui/An Overview of the Bottled Water Market in Japan (Frost & Sullivan, 2016).Fujiyoshida Mineral Water Conservation Association FMWCA Regulations (in Japanese) (Mt. Fuji Springs Inc., 2016); http://fujiyoshida-hozen.org/aboutwater/Adachi, Y. et al. The physiological effects of the undercurrent water from Mt. Fuji on type 2 diabetic KK-Ay mice. Biomed. Res. Trace Elem. 15, 76–78 (2004).CAS 

    Google Scholar 
    Isogai, A., Kanada, R., Iawata, H. & Sudo, S. The influence of vanadium on the components of hineka (in Japanese). J. Brew. Soc. Jpn 107, 443–450 (2012).Article 

    Google Scholar 
    Tamada, Y., Tokui, M., Yamashita, N., Kubodera, T. & Akashi, T. Analyzing the relationship between the inorganic element profile of sake dilution water and dimethyl trisulfide formation using multi-element profiling. J. Biosci. Bioeng. 127, 710–713 (2019).Article 
    CAS 

    Google Scholar 
    London Sake Challenge 2018: Awarded Sake (Sake Somelier Association (SSA), 2018); https://londonsakechallenge.com/awarded-sake-2019/London Sake Challenge 2019: Awarded Sake (SSA, 2019); https://londonsakechallenge.com/awarded-sake-2019/Yasuhara, M., Hayashi, T. & Asai, K. Overview of the special issue “Groundwater in Mt. Fuji”. J. Geogr. 126, 25–27 (2017).Article 

    Google Scholar 
    Yasuhara, M., Hayashi, T., Asai, K., Uchiyama, M. & Nakamura, T. Overview of the special issue “Groundwater in Mt. Fuji (Part 2)”. J. Geogr. 129, 657–660 (2020).Article 

    Google Scholar 
    Gmati, S., Tase, N., Tsujimura, M. & Tosaki, Y. Aquifers interaction in the southwestern foot of Mt. Fuji, Japan, examined through hydrochemistry and statistical analyses. Hydrol. Res. Lett. 5, 58–63 (2011).Article 

    Google Scholar 
    Ikeda, K. Water-sediments interaction of salinized groundwater, and its chemical compositions in coastal areas (in Japanese). Jpn. J. Limnol. 46, 303–314 (1985).Article 
    CAS 

    Google Scholar 
    Kato, K. et al. Unveiled groundwater flushing from the deep seafloor in Suruga Bay. Limnology https://doi.org/10.1007/s10201-014-0445-0 (2015).Segawa, T. et al. Microbes in groundwater of a volcanic mountain, Mt. Fuji; 16S rDNA phylogenetic analysis as a possible indicator for the transport routes of groundwater. Geomicrobiol. J. 32, 677–688 (2015).Article 

    Google Scholar 
    Sugiyama, A., Masuda, S., Nagaosa, K., Tsujimura, M. & Kato, K. Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA. Biogeosciences 15, 721–732 (2018).Article 
    CAS 

    Google Scholar 
    Yasuhara, M., Kazahaya, K. & Marui, A. in Fuji Volcano (eds Aramaki, S. et al.) 389–405 (Yamanashi Institute of Environmental Sciences, 2007).Tsuchi, R. in Fuji Volcano (eds Aramaki, S. et al.) 375–387 (Yamanashi Institute of Environmental Sciences, 2007).Takada, A., Yamamoto, T., Ishizuka, Y. & Nakano, S. in Miscellaneous Map Series No. 12, 56 (Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), 2016).Uchiyama, T. Hydrogeological structure and hydrological characterization in the northern foot area of Fuji volcano, central Japan (in Japanese). J. Geogr. 129, 697–724 (2020).Article 

    Google Scholar 
    Ikawa, R. et al. in S-5: Seamless Geoinformation of Coastal Zone “Northern Coastal Zone of Suruga Bay” (GSJ, AIST, 2016).AIST 2014 Marine Geological and Environmental Survey Confirmation Technology Development Results Report (in Japanese) (AIST, 2015).AIST 2015 Marine Geological and Environmental Survey Confirmation Technology Development Results Report (in Japanese) (AIST, 2016).Lin, A., Iida, K. & Tanaka, H. On-land active thrust faults of the Nankai–Suruga subduction zone: the Fujikawa-kako Fault Zone, central Japan. Tectonophysics 601, 1–19 (2013).Article 

    Google Scholar 
    Fujita, E. et al. Stress field change around the Mount Fuji volcano magma system caused by the Tohoku megathrust earthquake, Japan. Bull. Volcanol. 75, 679 (2013).Article 

    Google Scholar 
    Kano, K.-I., Odawara, K., Yamamoto, G. & Ito, T. Tectonics of the Fujikawa-kako Fault Zone around the Hoshiyama Hills, central Japan, since 1 Ma. Geosci. Rep. Shizuoka Univ. 46, 19–49 (2019).
    Google Scholar 
    Schilling, O. S., Cook, P. G. & Brunner, P. Beyond classical observations in hydrogeology: the advantages of including exchange flux, temperature, tracer concentration, residence time and soil moisture observations in groundwater model calibration. Rev. Geophys. 57, 146–182 (2019).Article 

    Google Scholar 
    Schilling, O. S. et al. Quantifying groundwater recharge dynamics and unsaturated zone processes in snow-dominated catchments via on-site dissolved gas analysis. Water Resour. Res. 57, e2020WR028479 (2021).Article 

    Google Scholar 
    National Hydrological Environment Database of Japan (GSJ, AIST, 2020).Hayashi, T. Understanding the groundwater flow system at the northern part of Mt. Fuji: current issues and prospects (in Japanese). J. Geogr. 129, 677–695 (2020).Article 

    Google Scholar 
    Yasuhara, M., Marui, A., & Kazahaya, K. (1997). Stable isotopic composition of groundwater from Mt. Yatsugatake and Mt. Fuji, Japan. Proceedings of the Rabat Symposium. Rabat Symposium, April 1997, Wallingford, UK.Jasechko, S. Global isotope hydrogeology—review. Rev. Geophys. https://doi.org/10.1029/2018RG000627 (2019).Yaguchi, M., Muramatsu, Y., Chiba, H., Okumura, F. & Ohba, T. The origin and hydrochemistry of deep well waters from the northern foot of Mt. Fuji, central Japan. Geochem. J. 50, 227–239 (2016).Article 
    CAS 

    Google Scholar 
    Aizawa, K. et al. Gas pathways and remotely triggered earthquakes beneath Mount Fuji, Japan. Geology 44, 127–130 (2016).Article 
    CAS 

    Google Scholar 
    Kipfer, R. et al. Injection of mantle type helium into Lake Van (Turkey): the clue for quantifying deep water renewal. Earth Planet. Sci. Lett. 125, 357–370 (1994).Article 
    CAS 

    Google Scholar 
    Kipfer, R., Aeschbach-Hertig, W., Peeters, F. & Stute, M. in Noble Gases in Geochemistry and Cosmochemistry Reviews in Mineralogy and Geochemistry Vol. 47 (eds Porcelli, D. et al.) Ch. 14 (De Gruyter, 2002).Sano, Y. & Fischer, T. P. in The Noble Gases as Geochemical Tracers: Advances in isotope geochemistry (ed. Burnard, O.) Ch. 10 (Springer, 2013).Sano, Y. & Wakita, H. Distribution of 3He/4He ratios and its implications for geotectonic structure of the Japanese Islands. J. Geophys. Res. 90, 8729–8741 (1985).Article 
    CAS 

    Google Scholar 
    Tomonaga, Y. et al. Fluid dynamics along the Nankai Trough: He isotopes reveal direct seafloor mantle-fluid emission in the Kumano Basin (Southwest Japan). ACS Earth Space Chem. 4, 2015–2112 (2020).Article 

    Google Scholar 
    Chen, A. et al. Mantle fluids associated with crustal-scale faulting in a continental subduction setting, Taiwan. Sci Rep. 9, 10805 (2019).Article 

    Google Scholar 
    Crossey, L. J. et al. Continental smokers couple mantle degassing and distinctive microbiology within continents. Earth Planet. Sci. Lett. 435, 22–30 (2016).Article 
    CAS 

    Google Scholar 
    Crossey, L. J. et al. Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region—neotectonic connections and implications for groundwater systems. Geol. Soc. Am. Bull. 121, 1034–1053 (2009).Article 
    CAS 

    Google Scholar 
    Kusuda, C., Iwamori, H., Nakamura, H., Kazahaya, K. & Morikawa, N. Arima hot spring waters as a deep-seated brine from subducting slab. Earth Planets Space 66, 119 (2014).Article 

    Google Scholar 
    Sano, Y., Kameda, A., Takahata, N., Yamamoto, J. & Nakajima, J. Tracing extinct spreading center in SW Japan by helium-3 emanation. Chem. Geol. 266, 50–56 (2009).Article 
    CAS 

    Google Scholar 
    Sano, Y. et al. Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan. Sci. Rep. 6, 37939 (2016).Article 
    CAS 

    Google Scholar 
    Peeters, F. et al. Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios. Geochim. Cosmochim. Acta 67, 587–600 (2002).Article 

    Google Scholar 
    Reimann, C. & de Caritat, P. Chemical Elements in the Environment 398 (Springer, 1998).Hamada, T. in Vanadium in the Environment. Part 1: Chemistry and Biochemistry Advances in Environmental Sciences and Technology Vol. 10 (ed. Nriagu, J. O.) 97–123 (Wiley & Sons, 1998).Koshimizu, S. & Kyotani, T. Geochemical behaviors of multi-elements in water samples from the Fuji and Sagami Rivers, Central Japan, using vanadium as an effective indicator. Jpn J. Limnol. 63, 113–124 (2002).Article 
    CAS 

    Google Scholar 
    Sohrin, R. in Green Science and Technology (eds Park, E. Y. et al.) Ch. 7 (CRC, 2019).Wehrli, B. & Stumm, W. Oxygenation of vanadyl(IV). Effect of coordinated surface hydroxyl groups and hydroxide ion. Langmuir 4, 753–758 (1988).Article 
    CAS 

    Google Scholar 
    Wright, M. T. & Belitz, K. Factors controlling the regional distribution of vanadium in groundwater. Ground Water 48, 515–525 (2010).Article 
    CAS 

    Google Scholar 
    Deverel, S. J., Goldberg, S. & Fujii, R. in Agricultural salinity assessment and management (eds W.W. Wallender & K.K. Tanji) 89–137 (American Society of Civil Engineers, 2012).Wehrli, B. & Stumm, W. Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochim. Cosmochim. Acta 53, 69–77 (1989).Article 
    CAS 

    Google Scholar 
    Chen, G. & Liu, H. Understanding the reduction kinetics of aqueous vanadium(V) and transformation products using rotating ring-disk electrodes. Environ. Sci. Technol. 51, 11643–11651 (2017).Article 
    CAS 

    Google Scholar 
    Telfeyan, K., Johannesson, K. H., Mohajerin, T. J. & Palmore, C. D. Vanadium geochemistry along groundwater flow paths in contrasting aquifers of the United States: Carrizo Sand (Texas) and Oasis Valley (Nevada) aquifers. Chem. Geol. 410, 63–78 (2015).Article 
    CAS 

    Google Scholar 
    Kan, K. et al. Archaea in Yellowstone Lake. ISME J. 5, 1784–1795 (2011).Article 
    CAS 

    Google Scholar 
    Wong, H. L. et al. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci. Rep. 7, 46160 (2017).Article 
    CAS 

    Google Scholar 
    Ikeda, K. A study on chemical characteristics of ground water in Fuji area (in Japanese). J. Groundw. Hydrol. 24, 77–93 (1982).
    Google Scholar 
    Aizawa, K. et al. Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential. Earth Planet. Sci. Lett. 235, 343–355 (2005).Article 
    CAS 

    Google Scholar 
    Yamamoto, T., Takada, A., Ishizuka, Y., Miyaji, N. & Tajima, Y. Basaltic pyroclastic flows of Fuji volcano, Japan: characteristics of the deposits and their origin. Bull. Volcanol. 67, 622–633 (2005).Article 

    Google Scholar 
    Yamamoto, T., Takada, A., Ishizuka, Y. & Nakano, S. Chronology of the products of Fuji volcano based on new radiometoric carbon ages (in Japanese). Bull. Volcanol. 50, 53–70 (2005).CAS 

    Google Scholar 
    Aizawa, K., Yoshimura, R. & Oshiman, N. Splitting of the Philippine Sea Plate and a magma chamber beneath Mt. Fuji. Geophys. Res. Lett. 31, L09603 (2004).Article 

    Google Scholar 
    Nakamura, H., Iwamori, H. & Kimura, J.-I. Geochemical evidence for enhanced fluid flux due to overlapping subducting plates. Nat. Geosci. 1, 380–384 (2008).Article 
    CAS 

    Google Scholar 
    Kaneko, T., Yasuda, A., Fujii, T. & Yoshimoto, M. Crypto-magma chambers beneath Mt. Fuji. J. Volcanol. Geotherm. Res. 193, 161–170 (2010).Article 
    CAS 

    Google Scholar 
    Tsuya, H., Machida, H., & Shimozuru, D. (1988). Geology of volcano Mt. Fuji. Explanatory text of the geologic map of Mt. Fuji (scale 1:50,000; second printing). Geological Survey of Japan (GSJ), Tsukuba, Japan.Yoshimoto, M. et al. Evolution of Mount Fuji, Japan: inference from drilling into the subaerial oldest volcano, pre-Komitake. Isl. Arc. 19, 470–488 (2010).Article 

    Google Scholar 
    Shikazono, N., Arakawa, T. & Nakano, T. Groundwater quality, flow, and nitrogen pollution at the southern foot of Mt. Fuji (in Japanese). J. Geogr. 123, 323–342 (2014).Article 

    Google Scholar 
    Tosaki, Y., Tase, N., Sasa, K., Takahashi, T. & Nagashima, Y. Estimation of groundwater residence time using the 36Cl bomb pulse. Groundwater 49, 891–902 (2011).Article 
    CAS 

    Google Scholar 
    Yamamoto, T. Geology of the Southwestern Part of Fuji Volcano (in Japanese) 27 (GSJ, AIST, 2014).Tsuya, H. Geology of volcano Mt. Fuji. Explanatory text of the geologic map of Mt. Fuji (scale 1:50,000). Geological Survey of Japan, Tsukuba, Japan. (1968).Tomiyama, S., Ii, H., Miyaike, S., Hattori, R. & Ito, Y. Estimation of the sources and flow system of groundwater in Fuji-Gotenba area by stable isotopic analysis and groundwater flow simulation (in Japanese). Bunseki Kagaku 58, 865–872 (2009).Article 
    CAS 

    Google Scholar 
    Oguchi, T. & Oguchi, C. T. in Geomorphological Landscapes of the World (ed. Migoń, P.) Ch. 31 (Springer, 2010).Mean Annual Precipitation from 1981-2010 Recorded at the Four Mt. Fuji Observatories (Mishima, Fuji, Furuseki, Yamanaka) (Japan Meteorological Agency, 2015).Schilling, O. S., Park, Y.-J., Therrien, R. & Nagare, R. M. Integrated surface and subsurface hydrological modeling with snowmelt and pore water freeze-thaw. Groundwater 57, 63–74 (2018).Article 

    Google Scholar 
    Sakio, H. & Masuzawa, T. Advancing timberline on Mt. Fuji between 1978 and 2018. Plants 9, 1537 (2020).Article 

    Google Scholar 
    Asai, K. & Koshimizu, S. 3H/3He-based groundwater ages for springs located at the foot of Mt. Fuji (in Japanese). J. Groundw. Hydrol. 61, 291–298 (2019).Article 

    Google Scholar 
    Sakai, Y., Shita, K., Koshimizu, S. & Tomura, K. Geochemical study of trace vanadium in water by preconcentrational neutron activation analysis. J. Radioanal. Nucl. Chem. 216, 203–212 (1997).Article 
    CAS 

    Google Scholar 
    Nahar, S. & Zhang, J. Concentration and distribution of organic and inorganic water pollutants in eastern Shizuoka, Japan. Toxicol. Environ. Chem. https://doi.org/10.1080/02772248.2011.610498 (2011).Kamitani, T., Watanabe, M., Muranaka, Y., Shin, K.-C. & Nakano, T. Geographical characteristics and sources of dissolved ions in groundwater at the southern part of Mt. Fuji (in Japanese). J. Geogr. 126, 43–71 (2017).Article 

    Google Scholar 
    Kawagucci, S. et al. Disturbance of deep-sea environments induced by the M9.0 Tohoku earthquake. Sci Rep. 2, 270 (2012).Article 

    Google Scholar 
    Uchida, N. & Bürgmann, R. A decade of lessons learned from the 2011 Tohoku-Oki earthquake. Rev. Geophys. 59, e2020RG000713 (2021).Article 

    Google Scholar 
    Mahara, Y., Igarashi, T. & Tanaka, Y. Groundwater ages of confined aquifer in Mishima lava flow, Shizuoka (in Japanese). J. Groundw. Hydrol. 35, 201–215 (1993).Article 

    Google Scholar 
    Nakamura, T. et al. Sources of water and nitrate in springs at the northern foot of Mt. Fuji and nitrate loading in the Katsuragawa River (in Japanese). J. Geogr. 126, 73–88 (2017).Article 

    Google Scholar 
    Notsu, K., Mori, T., Sumino, H. & Ohno, M. in Fuji Volcano (eds Aramaki, S. et al.) 173–182 (Yamanashi Institute of Environmental Sciences, 2007).Ogata, M. & Kobayashi, H. Hydrologic Science Research for the Management and Utilization of Ground Water Resources in the Northern Piedmont Area of Mt. Fuji: Fluorine Ion and Vanadium Contained in Ground Water at the Northern Foot of Mt. Fuji (Yamanashi Industrial Technology Center, 2015).Ogata, M., Kobayashi, H. & Koshimizu, S. Concentration of fluorine in groundwater and groundwater table at the northern foot of Mt. Fuji (in Japanese). J. Groundw. Hydrol. 56, 35–51 (2014).Article 

    Google Scholar 
    Ohno, M., Sumino, H., Hernandez, P. A., Sato, T. & Nagao, K. Helium isotopes in the Izu Peninsula, Japan: relation of magma and crustal activity. J. Volcanol. Geotherm. Res. 199, 118–126 (2011).Article 
    CAS 

    Google Scholar 
    Okabe, S., Shibasaki, M., Oikawa, T., Kawaguchi, Y. & Nihongi, H. Geochemical studies of spring and lake waters on and around Mt. Fuji (in Japanese). J. Sch. Mar. Sci. Technol. Tokai Univ. 14, 81–105 (1981).CAS 

    Google Scholar 
    Ono, M., Ikawa, R., Machida, H. & Marui, A. Distribution of radon concentration in groundwater at the southwestern foot of Mt. Fuji (in Japanese). Radioisotopes 65, 431–439 (2016).Article 
    CAS 

    Google Scholar 
    Tosaki, Y. Estimation of Groundwater Residence Time Using Bomb-Produced Chlorine-36. PhD thesis, Univ. Tsukuba (2008).Umeda, K., Asamori, K. & Kusano, T. Release of mantle and crustal helium from a fault following an inland earthquake. Appl. Geochem. 37, 134–141 (2013).Article 
    CAS 

    Google Scholar 
    Yamamoto, C. Estimation of Groundwater Flow System Using Multi-tracer Techniques in Mt. Fuji, Japan. (in Japanese) PhD thesis, Univ. Tsukuba (2016).Yamamoto, S. & Nakamura, T. Visit to valuable water springs (129) valuable water at the northern foot of Mount Fuji (Fuji-Kawaguchiko Town) (in Japanese). J. Groundw. Hydrol. 62, 329–336 (2020).Article 

    Google Scholar 
    Yamamoto, S. et al. Water sources of lake bottom springs in Lake Kawaguchi, northern foot of Mount Fuji, Japan (in Japanese). J. Geogr. 129, 665–676 (2020).Article 

    Google Scholar 
    Yamamoto, S., Nakamura, T. & Uchiyama, T. Newly discovered lake bottom springs from Lake Kawaguchi, the northern foot of Mount Fuji, Japan (in Japanese). J. Jpn Assoc. Hydrol. Sci. 47, 49–59 (2017).
    Google Scholar 
    Yamamoto, S., Nakamura, T., Koishikawa, H. & Uchiyama, T. Water quality of shallow groundwater in the southern coast area of Lake Kawaguchi at the northern foot of Mt. Fuji, Yamanashi, Japan (in Japanese). Mt Fuji Res. 11, 1–9 (2017).
    Google Scholar 
    Coplen, T. B. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Geothermics 66, 273–276 (1994).CAS 

    Google Scholar 
    Nimz, G. J. in Isotope Tracers in Catchment Hydrology (eds Kendall, C. & McDonnell, J. J.) Ch. 8 (Elsevier, 1998).Bullen, T. D. & Kendall, C. in Isotope Tracers in Catchment Hydrology (eds Kendall, C. & McDonnell, J. J.) Ch. 18 (Elsevier, 1998).Vanadium Pentoxide and Other Inorganic Vanadium Compounds Vol. 29 (WHO, 2001).Nagai, T., Takahashi, M., Hirahara, Y. & Shuto, K. Sr-Nd isotopic compositions of volcanic rocks from Fuji, Komitake and Ashitaka Volcanoes, Central Japan (in Japanese). Proc. Inst. Nat. Sci. Nihon Univ. 39, 205–215 (2004).CAS 

    Google Scholar 
    Hogan, J. F. & Blum, J. D. Tracing hydrologic flow paths in a small forested watershed using variations in 87Sr/86Sr, [Ca]/[Sr], [Ba]/[Sr] and δ18O. Water Resour. Res. 39, 1282 (2003).Article 

    Google Scholar 
    Koshikawa, M. K. et al. Using isotopes to determine the contribution of volcanic ash to Sr and Ca in stream waters and plants in a granite watershed, Mt. Tsukuba, central Japan. Environ. Earth Sci. 75, 501 (2016).Article 

    Google Scholar 
    Graustein, W. C. in Stable Isotopes in Ecological Research Ecological Studies (Analysis and Synthesis) (eds Rundel, JP.W. et al.) Ch. 28 (Springer, 1989).Cook, P. G. & Böhlke, J.-K. in Environmental Tracers in Subsurface Hydrology (eds Cook, P. G. & Herczeg, A. L.) Ch. 1 (Springer, 2000).Aeschbach-Hertig, W. & Solomon, D. K. in The Noble Gases as Geochemical Tracers (ed. Burnard, P.) Ch. 5 (Springer, 2013).Popp, A. L. et al. A framework for untangling transient groundwater mixing and travel times. Water Resour. Res. 57, e2020WR028362 (2021).Article 

    Google Scholar 
    Schilling, O. S. et al. Advancing physically-based flow simulations of alluvial systems through observations of 222Rn, 3H/3He, atmospheric noble gases and the novel 37Ar tracer method. Water Resour. Res. 53, 10465–10490 (2017).Article 

    Google Scholar 
    Tomonaga, Y. et al. Using noble-gas and stable-isotope data to determine groundwater origin and flow regimes: applicatoin to the Ceneri Base Tunnel (Switzerland). J. Hydrol. 545, 395–409 (2017).Article 
    CAS 

    Google Scholar 
    Niu, Y. et al. Noble gas signatures in the island of Maui, Hawaii – characterizing groundwater sources in fractured systems. Water Resour. Res. 53, 3599–3614 (2017).Article 

    Google Scholar 
    Warrier, R. B., Castro, M. C. & Hall, C. M. Recharge and source-water insights from the Galapagos Islands using noble gases and stable isotopes. Water Resour. Res. https://doi.org/10.1029/2011WR010954 (2012).Schilling, O. S. et al. Buried paleo-channel detection with a groundwater model, tracer-based observations, and spatially varying, preferred anisotropy pilot point calibration. Geophys. Res. Lett. 49, e2022GL098944 (2022).Article 

    Google Scholar 
    Brennwald, M. S., Schmidt, M., Oser, J. & Kipfer, R. A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environ. Sci. Technol. 50, 13455–12463 (2016).Article 
    CAS 

    Google Scholar 
    Tomonaga, Y. et al. On-line monitoring of the gas composition in the full-scale emplacement experiment at Mont Terri (Switzerland). Appl. Geochem. 100, 234–243 (2019).Article 
    CAS 

    Google Scholar 
    Brennwald, M. S., Tomonaga, Y. & Kipfer, R. Deconvolution and compensation of mass spectrometric overlap interferences with the miniRUEDI portable mass spectrometer. MethodsX 7, 101038 (2020).Article 
    CAS 

    Google Scholar 
    Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).Beyerle, U. et al. A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ. Sci. Technol. 34, 2042–2050 (2000).Article 
    CAS 

    Google Scholar 
    Clarke, W. B., Jenkins, W. J. & Top, Z. Determination of tritium by mass spectrometric measurement of 3He. Int. J. Appl. Radiat. Isotopes 27, 515–522 (1976).Article 
    CAS 

    Google Scholar 
    Bucci, A., Petrella, E., Celivo, F. & Naclerio, G. Use of molecular approaches in hydrogeological studies: the case of carbonate aquifers in southern Italy. Hydrogeol. J. 25, 1017–1031 (2017).Article 
    CAS 

    Google Scholar 
    Proctor, C. R. et al. Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME J. 12, 1344–1359 (2018).Article 
    CAS 

    Google Scholar 
    Pronk, M., Goldscheider, N. & Zopfi, J. Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol. J. 17, 37–48 (2009).Article 

    Google Scholar 
    Miller, J. B., Frisbee, M. D., Hamilton, T. L. & Murugapiran, S. K. Recharge from glacial meltwater is critical for alpine springs and their microbiomes. Environ. Res. Lett. 16, 064012 (2021).Article 
    CAS 

    Google Scholar 
    Ginn, T. R. et al. in Encyclopedia of Hydrological Sciences (ed. Anderson, M.G.) Ch. 105 (John Wiley & Sons, 2005).Tufenkji, N. & Emelko, M. B. in Encyclopedia of Environmental Health (ed. Nriagu, J.O.) Vol. 2, 715–726 (Elsevier, 2011).Nevecherya, I. K., Shestakov, V. M., Mazaev, V. T. & Shlepnina, T. G. Survival rate of pathogenic bacteria and viruses in groundwater. Water Res. 32, 209–214 (2005).Article 
    CAS 

    Google Scholar 
    Franzosa, E. A. et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nature Rev. Microbiol. 13, 360–372 (2015).Article 
    CAS 

    Google Scholar 
    Kimura, H., Ishibashi, J. I., Masuda, H., Kato, K. & Hanada, S. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere. Appl. Environ. Microbiol. 73, 2110–2117 (2007).Article 
    CAS 

    Google Scholar 
    Somerville, C. C., Knight, I. T., Straube, W. L. & Colwell, R. R. Simple, rapid method for direct isolation of nucleic-acids from aquatic environments. Appl. Environ. Microbiol. 55, 548–554 (1989).Article 
    CAS 

    Google Scholar 
    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE https://doi.org/10.1371/journal.pone.0105592 (2014).Wasimuddin et al. Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Mol. Ecol. Resour. 20, 1558–1571 (2020).Article 
    CAS 

    Google Scholar 
    Suzuki, Y., Shimizu, H., Kuroda, T., Takada, Y. & Nukazawa, K. Plant debris are hotbeds for pathogenic bacteria on recreational sandy beaches. Sci Rep. 11, 11496 (2021).Article 
    CAS 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high- throughput community sequencing data. Nat. Methods 7, 335–336 (2010).Article 
    CAS 

    Google Scholar 
    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).Article 
    CAS 

    Google Scholar 
    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
    CAS 

    Google Scholar 
    R: A Language and Environment for Statistical Computing v.3.6.2 (R Foundation for Statistical Computing, 2019).Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948 (1980).Article 

    Google Scholar 
    Schilling, O. S. et al. Mt. Fuji hydrogeochemical and microbiological dataset. HydroShare https://doi.org/10.4211/hs.4eac370d12e142b5aa718e5deb57da39 (2022).Gotelli, N. J. & Chao, A. in Encyclopedia of Biodiversity Vol. 5 (ed. Levin, S. A.) 195–211 (Academic, 2013).World Imagery (Esri, 2021); https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9Elevation Tile Map of Japan (DEM5A; Resolution: 5m) (Geospatial Information Authority of Japan (GSI), 2021).Chiba, T., Kaneta, S. & Suzuki, Y. in The International Archives of the Photogrammetry Vol. XXXVII Ch. B2 (Remote Sensing and Spatial Information Sciences, 2008).Air Asia Survey Co. Ltd Red Relief Image Map of Japan (RRIM 10_2016) (GSI, 2016).Active Fault Database of Japan April 26 2019 edn Disclosure database DB095 (AIST, 2019).Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001GC000252 (2003).Van Horne, A., Sato, H. & Ishiyama, T. Evolution of the Sea of Japan back-arc and some unsolved issues. Tectonophysics 710–711, 6–20 (2017).Article 

    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 

    Google Scholar 
    2019 Coastal Disposal System Evaluation Confirmation Technology Results Report (in Japanese) (AIST, 2019). More

  • in

    Human-mediated dispersal drives the spread of the spotted lanternfly (Lycorma delicatula)

    Simberloff, D. et al. (eds) Invasive Species in a Globalized World (University of Chicago Press, 2015).
    Google Scholar 
    Gippet, J. M., Liebhold, A. M., Fenn-Moltu, G. & Bertelsmeier, C. Human-mediated dispersal in insects. Curr. Opin. Insect Sci. 35, 96–102 (2019).Article 

    Google Scholar 
    Hall, C. M. Biological invasion, biosecurity, tourism, and globalisation. In Handbook of Globalisation and Tourism (Edward Elgar Publishing, 2019).
    Google Scholar 
    Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. https://doi.org/10.1016/j.cois.2021.01.006 (2021).Article 

    Google Scholar 
    Simberloff, D. How common are invasion-induced ecosystem impacts?. Biol. Invasions 13, 1255–1268 (2011).Article 

    Google Scholar 
    Hayes, K. R. & Barry, S. C. Are there any consistent predictors of invasion success?. Biol. Invasions 10, 483–506 (2008).Article 

    Google Scholar 
    Catford, J. A., Vesk, P. A., Richardson, D. M. & Pyšek, P. Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Glob. Change Biol. 18, 44–62 (2012).Article 
    ADS 

    Google Scholar 
    Arim, M., Abades, S. R., Neill, P. E., Lima, M. & Marquet, P. A. Spread dynamics of invasive species. Proc. Natl. Acad. Sci. USA 103, 374–378 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Kamenova, S. et al. Invasions toolkit: Current methods for tracking the spread and impact of invasive species. Adv. Ecol. Res. 56, 85–182 (2017).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).Article 

    Google Scholar 
    Crooks, J. A. & Rilov, G. The establishment of invasive species. In Biological Invasions in Marine Ecosystems 173–175 (Springer, 2009).Chapter 

    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. M. The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 15, 904–910 (2009).Article 

    Google Scholar 
    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).Article 

    Google Scholar 
    O’Reilly-Nugent, A. et al. Landscape effects on the spread of invasive species. Curr. Landsc. Ecol. Rep. 1, 107–114 (2016).Article 

    Google Scholar 
    Simberloff, D. We can eliminate invasions or live with them. Successful management projects. In Ecological Impacts of Non-native Invertebrates and Fungi on Terrestrial Ecosystems 149–157 (Springer, 2008).
    Google Scholar 
    Gutierrez, A. P. & Ponti, L. Eradication of invasive species: Why the biology matters. Environ. Entomol. 42, 395–411 (2013).Article 

    Google Scholar 
    McLaughlin, G. M. & Dearden, P. K. Invasive insects: Management methods explored. J. Insect Sci. 19, 17 (2019).Article 

    Google Scholar 
    Han, J. M. et al. Lycorma delicatula (hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae) finally, but suddenly arrived in Korea. Entomol. Res. 38, 281–286 (2008).Article 

    Google Scholar 
    Park, J.-D. et al. Biological characteristics of lycorma delicatula and the control effects of some insecticides. Korean J. Appl. Entomol. 48, 53–57 (2009).Article 

    Google Scholar 
    Shin, Y.-H., Moon, S.-R., Yoon, C.-M., Ahn, K.-S. & Kim, G.-H. Insecticidal activity of 26 insectcides against eggs and nymphs of Lycorma delicatula (hemiptera: Fulgoridae). Korean J. Pestic. Sci. 14, 157–163 (2010).
    Google Scholar 
    Dara, S. K., Barringer, L. & Arthurs, S. P. Lycorma delicatula (hemiptera: Fulgoridae): A new invasive pest in the United States. J. Integr. Pest Manag. 6, 20 (2015).Article 

    Google Scholar 
    Urban, J. M. Perspective: Shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 76, 10–17 (2020).Article 
    CAS 

    Google Scholar 
    Liu, G. Some extracts from the history of entomology in china. Psyche 46, 23–28 (1939).Article 

    Google Scholar 
    Barringer, L. E., Donovall, L. R., Spichiger, S.-E., Lynch, D. & Henry, D. The first new world record of Lycorma delicatula (insecta: Hemiptera: Fulgoridae). Entomol. News 125, 20–23 (2015).Article 

    Google Scholar 
    Parra, G., Moylett, H. & Bulluck, R. Technical Working Group Summary Report: Spotted Lanternfly, Lycorma Delicatula (White, 1845). (2018).Harper, J. K., Stone, W., Kelsey, T. W. & Kime, L. F. Potential Economic Impact of the Spotted Lanternfly on Agriculture and Forestry in Pennsylvania 1–84 (The Center for Rural Pennsylvania, 2019).
    Google Scholar 
    Kim, J. G., Lee, E.-H., Seo, Y.-M. & Kim, N.-Y. Cyclic behavior of Lycorma delicatula (insecta: Hemiptera: Fulgoridae) on host plants. J. Insect Behav. 24, 423–435 (2011).Article 

    Google Scholar 
    Albright, T. A. et al. Pennsylvania forests 2014. Resour. Bull. 111, 1–140 (2017).
    Google Scholar 
    Liu, H. Oviposition substrate selection, egg mass characteristics, host preference, and life history of the spotted lanternfly (hemiptera: Fulgoridae) in North America. Environ. Entomol. 48, 1452–1468 (2019).
    Google Scholar 
    Barringer, L. & Ciafré, C. M. Worldwide feeding host plants of spotted lanternfly, with significant additions from North America. Environ. Entomol. 49, 999–1011 (2020).Article 

    Google Scholar 
    Murman, K. et al. Distribution, survival, and development of spotted lanternfly on host plants found in North America. Environ. Entomol. 49, 1270–1281 (2020).Article 

    Google Scholar 
    Huron, N. A., Behm, J. E. & Helmus, M. R. Paninvasion severity assessment of a us grape pest to disrupt the global wine market. bioRxiv (2021).Dara, S. K. Update on the Spotted Lanternfly.Jung, J.-M., Jung, S., Byeon, D.-H. & Lee, W.-H. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (hemiptera: Fulgoridae), by using climex. J. Asia-Pac. Biodivers. 10, 532–538 (2017).Article 

    Google Scholar 
    Namgung, H., Kim, M.-J., Baek, S., Lee, J.-H. & Kim, H. Predicting potential current distribution of Lycorma delicatula (hemiptera: Fulgoridae) using maxent model in south korea. J. Asia-Pac. Entomol. 23, 291–297 (2020).Article 

    Google Scholar 
    Wakie, T. T., Neven, L. G., Yee, W. L. & Lu, Z. The establishment risk of Lycorma delicatula (hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 113, 306–314 (2020).
    Google Scholar 
    Grimm, V. et al. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198, 115–126 (2006).Article 

    Google Scholar 
    DeAngelis, D. L. Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems (CRC Press, 2018).Book 

    Google Scholar 
    Łomnicki, A. Individual-based models and the individual-based approach to population ecology. Ecol. Model. 115, 191–198 (1999).Article 

    Google Scholar 
    Grimm, V. & Railsback, S. F. A conceptual framework for designing individual-based models. In Individual-Based Modeling and Ecology 71–121 (Princeton University Press, 2005).Chapter 
    MATH 

    Google Scholar 
    Smith, N. R. et al. Agent-based models of malaria transmission: A systematic review. Malar. J. 17, 1–16 (2018).Article 
    CAS 

    Google Scholar 
    Venkatramanan, S. et al. Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 22, 43–49 (2018).Article 

    Google Scholar 
    Harris, C. M., Park, K. J., Atkinson, R., Edwards, C. & Travis, J. Invasive species control: Incorporating demographic data and seed dispersal into a management model for rhododendron ponticum. Ecol. Inform. 4, 226–233 (2009).Article 

    Google Scholar 
    Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I. & Thuiller, W. Predicting potential distributions of invasive species: Where to go from here?. Divers. Distrib. 16, 331–342 (2010).Article 

    Google Scholar 
    Rebaudo, F., Crespo-Pérez, V., Silvain, J.-F. & Dangles, O. Agent-based modeling of human-induced spread of invasive species in agricultural landscapes: Insights from the potato moth in ecuador. J. Artif. Soc. Soc. Simul. 14, 7 (2011).Article 

    Google Scholar 
    Day, C. C., Landguth, E. L., Bearlin, A., Holden, Z. A. & Whiteley, A. R. Using simulation modeling to inform management of invasive species: A case study of eastern brook trout suppression and eradication. Biol. Conserv. 221, 10–22 (2018).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Phillips, S. J., Dudı’k, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-first International Conference on Machine Learning 83 (2004).Phillips, S. J. et al. A brief tutorial on maxent. AT&T Res. 190, 231–259 (2005).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Urbanek, S. RJava: Low-Level R to Java Interface. (2020).Hijmans, R. J., Phillips, S., Leathwick, J., Elith, J. & Hijmans, M. R. J. Package ‘dismo’. Circles 9, 1–68 (2017).
    Google Scholar 
    Elith, J. et al. A statistical explanation of maxent for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    Lane, M. A. & Edwards, J. L. The global biodiversity information facility (gbif). Syst. Assoc. Spec. 73, 1 (2007).
    Google Scholar 
    O’Donnell, M. S. & Ignizio, D. A. Bioclimatic predictors for supporting ecological applications in the conterminous united states. US Geol. Surv. Data Ser. 691, 4–9 (2012).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. (2020).Venter, O. et al. Last of the wild project, version 3 (lwp-3): 2009 human footprint, 2018 release. NASA Socioeconomic Data and Applications Center (SEDAC) 10, H46T40JQ44 (2018).Park, M. Overwintering ecology and population genetics of Lycorma delicatula (hemiptera: Fulgoridae) in Korea. Seoul National University, Seoul, Korea Doctoral Thesis (2015).Pearson, K. I. Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Philos. Trans. R. Soc. Lond. Ser. A 195, 1–47 (1900).ADS 
    MATH 

    Google Scholar 
    Warmerdam, F. The geospatial data abstraction library. In Open Source Approaches in Spatial Data Handling 87–104 (Springer, 2008).Chapter 

    Google Scholar 
    Greenberg, J. A., Mattiuzzi, M. & SystemRequirements, G. Package ‘gdalUtils’. (2020).Domingue, M. J. & Baker, T. C. Orientation of flight for physically disturbed spotted lanternflies, Lycorma delicatula, (Hemiptera, fulgoridae). J. Asia-Pac. Entomol. 22, 117–120 (2019).Article 

    Google Scholar 
    Myrick, A. J. & Baker, T. C. Analysis of anemotactic flight tendencies of the spotted lanternfly (Lycorma delicatula) during the 2017 mass dispersal flights in pennsylvania. J. Insect Behav. 32, 11–23 (2019).Article 

    Google Scholar 
    Wolfin, M. S., Myrick, A. J. & Baker, T. C. Flight duration capabilities of dispersing adult spotted lanternflies, Lycorma delicatula. J. Insect Behav. 33, 125–137 (2020).Article 

    Google Scholar 
    Strömbom, D. & Pandey, S. Modeling the life cycle of the spotted lanternfly (Lycorma delicatula) with management implications. Math. Biosci. 340, 108670 (2021).Article 
    MATH 

    Google Scholar 
    Wellington, W. G. Conditions governing the distribution of insects in the free atmosphere. Can. Entomol. 77, 7–15 (1945).Article 

    Google Scholar 
    DeLong, D. M. The bionomics of leafhoppers. Annu. Rev. Entomol. 16, 179–210 (1971).Article 

    Google Scholar 
    Baker, T. et al. Progression of seasonal activities of adults of the spotted lanternfly, Lycorma delicatula, during the 2017 season of mass flight dispersal behavior in eastern Pennsylvania. J. Asia-Pac. Entomol. 22, 705–713 (2019).Article 

    Google Scholar 
    Leach, H. & Leach, A. Seasonal phenology and activity of spotted lanternfly (Lycorma delicatula) in eastern us vineyards. J. Pest Sci. 93, 1215–1224 (2020).Article 

    Google Scholar 
    Goutte, C. & Gaussier, E. A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. In European Conference on Information Retrieval 345–359 (Springer, 2005).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Tukey, J. Multiple comparisons. J. Am. Stat. Assoc. 48, 624–625 (1953).
    Google Scholar 
    Mendiburu, F. de & Mendiburu, M. F. de. Package ‘agricolae’. R Package, Version 1-2 (2019).McAvoy, T. J., Snyder, A. L., Johnson, N., Salom, S. M. & Kok, L. T. Road survey of the invasive tree-of-heaven (Ailanthus altissima) in Virginia. Invasive Plant Sci. Manag. 5, 506–512 (2012).Article 

    Google Scholar 
    Casella, F. & Vurro, M. Ailanthus altissima (tree of heaven): Spread and harmfulness in a case-study urban area. Arboricult. J. 35, 172–181 (2013).Article 

    Google Scholar 
    Takahashi, D. & Park, Y.-S. Spatial heterogeneities of human-mediated dispersal vectors accelerate the range expansion of invaders with source–destination-mediated dispersal. Sci. Rep. 10, 1–9 (2020).Article 

    Google Scholar 
    Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).Article 
    ADS 

    Google Scholar 
    Turner, R. M. et al. Worldwide border interceptions provide a window into human-mediated global insect movement. Ecol. Appl. 31, e02412 (2021).Article 

    Google Scholar 
    Ricciardi, A. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21, 329–336 (2007).Article 

    Google Scholar 
    Wilson, J. R., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).Article 

    Google Scholar 
    Auffret, A. G., Berg, J. & Cousins, S. A. The geography of human-mediated dispersal. Divers. Distrib. 20, 1450–1456 (2014).Article 

    Google Scholar 
    Koch, F. H., Yemshanov, D., Magarey, R. D. & Smith, W. D. Dispersal of invasive forest insects via recreational firewood: A quantitative analysis. J. Econ. Entomol. 105, 438–450 (2012).Article 

    Google Scholar 
    Eyer, P.-A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol. Ecol. 30, 3948–3964 (2020).Article 

    Google Scholar 
    Petrice, T. R. & Haack, R. A. Effects of cutting date, outdoor storage conditions, and splitting on survival of Agrilus planipennis (coleoptera: Buprestidae) in firewood logs. J. Econ. Entomol. 99, 790–796 (2006).Article 

    Google Scholar 
    Petrice, T. R. & Haack, R. A. Can emerald ash borer, Agrilus planipennis (coleoptera: Buprestidae), emerge from logs two summers after infested trees are cut?. Great Lakes Entomol. 40, 92–95 (2007).
    Google Scholar 
    Muirhead, J. R. et al. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (coleoptera) in North America. Divers. Distrib. 12, 71–79 (2006).Article 

    Google Scholar 
    Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 15, 044015 (2020).Article 
    ADS 

    Google Scholar 
    Hulme, P. E. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679 (2021).Article 
    ADS 

    Google Scholar  More